An objective method for determining	th from length-frequency data
Crensomal atione (ICO)	

E. CORPOMATE AUTHORS(101)

Fisices
Growth
Merhodology

F333

An objective method for determining fish growth from length -frequency data

DANIEL PAUL
ICLARM
AND
NOEL DAVID
ICLARM AFFILIATE SCIENTIST

Reprinted from ICLARM Newsletter 313;: 13-16.
ICLARM Newsletter Reprint No. 3. 19e0. 3 p.

Tothe fishery biologist working on stock asressment, know!edge of how the fish in a given population grow is essential. Usually, the available growth information is reduced to and expressed by means of a simple equation, such as the von Bertalanffy Growth Formula (VBGF), which has, in ifs simplest form, two major parameter: ($\mathrm{I}_{\mathrm{s}_{0}}, \mathrm{~K}$) and one minor parameter (t_{o}).

The biological data from which growth parameters can be estimated
short-lived fishes which so greatly contribute to both demersal and pelagic tropical fisherics. The reason for this is that length-frequency analyses are easier and cheaper, since less equipment is required.

The methods presently in use for the analysis of length-frequency data find their origin in the work of Petersen who in 1892 pioneered the two commonly applied "paper-and-pencil mathods."
ing of the growth of tropical fishes. It is, however, also in the tropics that these methods have often been found to generate questionable results. The reasons are obvious: the spawning seasons of tropical fishes are often quite long, and/or spawning may occur in several batches, each later resulting in a peak in the length-frequency distribution of the population. (This phenomenon was bricfly discussed in a letter by Goldman in the Anril 1980

An objective method for determining fish growth from length-frequency data

DANIEL PAlILY, ICLAFIM, and NOEL DAVID, ICLARM Affiliate Scientist

are of three general types

- periodic markings (annual or daily) on akeletal parts-scales, otoliths or other bones
- taggng-recapture data
- size-frequency data, most commonly length-frequency data, such as shown in Figs. 1A and 2.
Despite frequent criticism, methods using analysis of length-frequency data hava found wider application than aksletal and tagging studies - at least in the case of those relatively small,

The lirst, named the "Petersen Method", essentially consists of attributing approximate ages to the various "peaks" of a single length.frequency sample (Fig. (A). The second, generally called "Mode? Class Progression Anal. ysis," consists of following the progression, along the length axis, of the peaks in a series of length.frequency samples sequentially arranged in time (see Fig. 2). These two methods have greatly contributed to our understand.

ICLARM Newsetter). Interpretation and interconnection of peaks thes become fraught with uncertainty.

Actually, this is not even the worst shortcoming of these methods. An inherent feature of both is that results obtained by different authors from the same data set generally differ, often to a large extent, because the methods are cssentially based on subjective interpectation.

That subjectivity, more than any. thing clse, has endered these methods somewhat suspect.
Fio 1. Length.fiequency dats on coral trout (Plectropomus hooserdus) caught near Heron Island (Great Barrier Reet. Australia) in Octoter 1971. Fromi Goeden, G B. 1978. Quensiand Fisher.
iet Service, Research Bulletin 1. 42 p .
A. Original date: the eqes are from Goeden, with questions maths added. $\mathrm{N}=319$. Note emall class interval $(5 \mathrm{~mm})$.
8. Serne dota. replotied in 2 cm clast utervali to imooth out imall irregu. leritios, showing running everege Prequencies lover 5 longen classest to emphesize peaks lilriped bars above running everegesl and intervening troughs.
C. Seme date as in $\mathbf{\theta}$. after division of each frequency velue ty ite corres. ponding eunning overage Irequency. substrection of 1 from sech of the rewiting quotients and subsequetit minor edjustments to remove potan. tid sources of bies. Note that "peoki" heve been alloteds similar numbers of "points." Irrespective 0 ' the nurnber of lish they represent. Arrows show the "pointi" used in the computation of USP (me taxi).

The Hew Approsch

The iask we undeitook was to devise a computing procedure that would "trace," through a series of length-frequency samples sequentially arranged in time, a multitude of growth curves, and select the single curve which, by passing through a maximum of peaks, would best "explain" these peaks. The method would have to be wholly objective in the sense that any researcher using the program should arrive, for each data set, at e:actly the same results. Thus, the solution would have to be based exclusively on the length-frequency data themselves, and require no additional (necessarily subjective) inputs, such as the assumed number of age groups represented in each sample (as required, e.g., by the NORMSEP program, still often used for dissecting length-frequency samples).

We have succeeded in this, the result being a computer program called ELEFAN 1 (Electronic LEngth Fre. quency ANalysis). It is written in BASIC and can be run on most of the cheap microcomputers now avallable (we used a Radio-Shack TSR-80, Level II, 16K).

Put anthromorphically, for any (set of length-frequency sample(s), the prograni:

- restructures the sample(s) that have been entered, such that tiven small but clearly identifiable peaks are altributed a number of "points" sinilar to those allocated to peaks based on larger numbers of fishes (see Figs. 18 and $1($)
- calculates the sum of points "available" (see lig. l(). This sum is termed "unerplained sum of peaks" (USP) f(is reasons which should become cbvious below
- "traces" a series of growth curves started from the length value corresponding to the base of each preak, for any urbitraty "sced" inpul of I_{∞} and K, projected backwatd and forward in time to meet all othet samples of a chrorologically ordered sample set (Fiz. 2), and/or the same sample repeated again and apain (IIt. 3)
- summates the "points" oblained by each growth crive when passing through peaks (positive points) or troughs separating peaki (negativo polnts) (seo Fitys. (C'and 3)

Fig. 2. A set of lengeth-frequency semples arranged sequentially in time, with growth curve fitted by ELEFAN I. Note that the distance botween the beses of the camples and the time

period between the mempling dates are proportional, end that the wt of samples is "repseted" ono yoer later, to allow for the furward projection of the growth curve. The curve hat the parameters $L_{\infty}=12.2 \mathrm{~cm}$ and K - 1.3, with ESP/USP $=0.804$. It must be emphasized thet the curve was not fitted by eye, and that no inputs were made as to expected ages of the various peaks, which of the peaks should be Interconnattad, etc., (see text). The date, which pertain to slipmouths (Letognothus bindus) caught off Caticut, India, in 1958, were originally published by Balan, V. 1967. Ind. J. Fish. 10(1): 118-134.

- selects the curve which, by passing through most peaks and avoiding most troughs, best "explains" the peaks by seoring the most proints. This sum is called "explained sum of peaks" (t:SP)
- decrements or increinents the "seed. ed" values of t_{∞} and K until the ratio I:SP/IISP reaches a maximum and outputs the corresponding growth parameters.
The validity ol this procedure rests on the following assumptions:

1. That the samplets) used repiesent the population investigated
2. That the krowth patterns in the population ate the same from year to year.
3. That the VBGIF dexcribes the average growth of the investigated population.
4. That all nethes in the (ret on cample(s) have the same length at the ame age. such that all differences in lengih can be attributed to differences in age.
Of these 4 assumptions, the first is trivial and need not be discussed here. Assumptions 2 and 3 appear to be realistic, and they are in fact made-. explicitly or not--when growth para. meters of fish are calculated from annual markings on skeletal parts.

The last of these assumptions does not stictly apply, since it is known that fishes of the, same ape may have differen: lengith. We feel, bowever, that no attoung bias is perectated by making this assumption, which is cssential to our program.

Seasonal Growth

In order for our program to be more versatile, and to analyze seasonal growth patteins, we have Incorporated a routine which generates seamally

Fig. 3. Lenth-irequency dete un coral trout, fitted with a growth curve by mems of ELEFAN 1. Note that it is the orlginal semple of Fig. IA which is shown here, but that the optimization performed by FLEFAN I wes baed on the "rsstructured" sample of Fig. 1C. The growth curve has the parameters $L_{\infty}=62.4 \mathrm{~cm}$ and $K=$ 0.31. with ESP/USP $=0.942$. It is again emphasized that the curve was traced without any input except for the length-frequency data thismselves.

The curve provides an interpretation of the age structure of the sam. ple different from that origiaally presented by Goeden. Particularly, what was identified as age group 5 (see Fig. 1A) appears to be agn group 6, while the longavity of the fish appears quite higher than originally assumad.
oscillating growth curves (not shown here). Two adutional parameters are included for expressing the timing and intensity of the growth oscillation. The first is called Winter Point (WP) and refers to the time of the year when growth is slowest; the second is a constant (C) which expresses the intensity of the growth oscillation and which can take values ranging from zero (in tropical fishes) to unity (in temperate fishes).

Incorporation of seasonal growth in jur program thus results in an optimiration procedure involving not only he parameters L_{∞} and K, but also WP ind C.
While searching for the optinial :ombination of the two parameters, $+\infty$ and K, is a relativeiy straightorward job, searching for the optimal omblnation of four parameters is puite another matter. In fact, the mount of computation involved with arger sample sets can become elc. thantine.
This is compounded by the fact hat the execution of programs written 1 Interpreter BASIC is relatively slow, nd that the optimization procedure is artly human-aided, the result of these hings beling that running ELIEFAN I na microcomputer can become guite edious. However, with time-sharing. uger systems, the time problem should c less important.
A report containing more details on LEFAN I, including several com. sted examples and a full program

listing will be made avallable sonn. We hope that this program will eventually become widely used, both to determine growth parameters from newly sampled or already published length. frequency data, and to reassess the validity of carlier growth estimates using paper-and-pencil methods.

Future Work

The interpretation of length.fiequency samples performed by tiLe. FAN 1 , sho:ld, when used in conjunction with catch information. lead to data amenable to subsequent "collort analysis."

Coblort analysis is the very powerful method in which mumbers of tish caught are used to obtain rather reliable estimates of fishing mortality
and of the sizes of (past) populations. Fuliowing an inviation by Dr. D. Cushing and Mr. J. Pope, one of us (Pauly) will spend 3 weeks in October at the Fisheries Laburatory in lower. toft, England, to investigate, with J. Pope, the possibility of making till: FAN I the basis of a prograin package for the overall analysis, including cohort amalysis, of lengiti.frequency data in tropical and other fishes.

Further Reading

Pauly, 1). and (; Cias hiuts. 1919. A sumple inethod fors filting wsillating kingth growth data. with a pupsam for poxkel calculators. IC'S C.M. 1979/C:24. Demersal I ith Crice., 26 p
Pope. J.C. 1972 An Investigation Intu the accuracs of viflual population analyedz using cchort enalyws. Int. Comm. Northwest. Ali. I'inh. Rex. Dull. 9.65.74.

