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1. INTRODUCTION 

This paper describes statistical methods based on the linear model in the context ofapplications 
to World Fertility Survey data. The common aim of all the methods presented is to relate the 
mean level of a quantitative variable Y to a set. of other variables XI, .... X measured in the 
survey. For example, Y may be a measure of fertility, such as the number of Nhldren ever born 
or births in the five yezrs prior to the Interview, or a measure of contraceptive use such as 
current use of amethod. Trhe variables Xq ,... , Xk may be demographic controls such as age at 
interview or age at first marriage, or socioeconomic factors such as level of education, type 
of place of residence or eth-ic group. The term model in the title means that the analysis is 
based on the imposition of a simplifying pattern or structure relating Y to the X's. The term 
linear relates to the fact that the equation defining the model Is linear in the unknown para
meters, a technical point 1hat will be elucidated later. In practice a number of common statist
ical techniques are based on linear models, including direct standardization, multiple classifl
cation analysis, analysis of variance, analysis of covariance and linear regression, and these will 
be the principal subjects of the paper. 

The linear model can also be described as the linear regressionmodel. Although the term regres
sion is sometimes limited to cases where the X's are interval-scaled, it can also be regarded as a 
generic term describing the whole family of methods. The technical justification of this view
point Is delayed until chapter 5, but from the outset we use the terminology of regression to 
describe the variables. Thus Y is called the regrenwd variable (or simply the regressand) and 
the X's are called regressorvariables (or simply regressors). Alternative terms for the regressand 
in the literature include the response variable and the dependent variable; alternative terms for 
regressors include predictor variables, independent variables and explanatory variables. Regres
sand and regressor are used here despite the initial difficulty of remembering which is which, 
because the other terms have potentially misleading implications. 

Two types of regressors will also be distinguished. In the first part of the bulletin we shall be 
concerned with regressors which are zategorical variables. Interval-scaled variables such as age 
are grouped into a relatively small number of categories, and the ordering between the cate
gories is ignored. We described categorial regressors as factor Later in the paper we shall treat 
intervl-scaled regressors without grouping them into categories. The term covarlates is reserved 
for regressors treated in this way. This terminology is not entirely satisfactory, but it is never
theless convenient. 

The basic strategy of the methods can be described as follows. Let us suppose we have N 
individuals in the sample, and let the suffix I denue the ith individual in the sample. Then the 
observed values of the regressandY2Y are .. ... Y,or [Yi:i--I toNJ 

In an illustrative example used throughout the text, Y is the variable Number of Children Ever 
Born, also called simply parity, for a sample of N = 6810 ever-married women from the Sri 
Lanka Fertility Survey. Thus Yi is the number of children ever born to the ith individual in the 
sample. 

For simplicity we assume for the moment that the individualsin the sample are "represen
tative" of the population, in the sense that they were selected by probability sampling and 
each individual in the population had an equal chance of being selected. In other words, we 
assume a self-weighted probability sample. In fact for the Sri Lanka case this assumption is not 
valid, since certain areas were sampled more heavily than others. For the analysis given here, 
individuals were assigned weights which are (a) inversely proportional to the probability of se
lection, and (b) normalized so that they sum to the number of observations in the sample. 

The first step in an analysis is to estimate the mean value of Y for the population by the sample 
mean, Y. For example, the mean parity for the Sri Lanka sample is Y = 3.94 children. If all the 
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women in the sample had the same ,value, Y, then this would be an adquate description of the 

data. In practice of course the valurs of Y vary among women in the sample. It is convenient to 

decompose each value of Y into the mean and the deviation from the mean, that is, 

Y = Y + (Yi-Y). (1.1) 

Then the deviations Yi - V represent fluctuations in the values of Y about the mean. The 

basic intent of the analysis is not to explain the average level ofY in the poulatlon. Rather we 

attempt to discover patterns or structure in the set of deviations (Y - Y). That is, we attempt to 

"explain" the differences in the values of Y between individuals in terms of other variables 

measured in the survey. 

It is not feasible to look at all the deviations in the sample, because of the large number of 

individuals in the sample. A powerful technique is to cross classify the mean values of Y by the 

factors expected to influence the deviations. For example, in the Sri Lanka example we may 

cross-classify the mean parities by demographic variables such as marital duration and age at 
as education level, or geographical indicators such asmarriage, socioeconomic variables such 

urban-rural residence or region. The analysis of cross-tabulated means in the subject of the first 

two chapters of the text. Later more flexible methods for analyzing patterns in the deviations 

based on linear regression are considered. 

Each analysis has an associated decomposition of the observed values Y into fitted values, 

representing the simplified structure imposed on the data and residuals, the deviations of the 

observed values from the fitted values, representing unexplained variation in the data. That is, 

observed = fit + residual. (1.2) 

Thus in (1.1), the fitted values are all equal to the sample mean, and the residuals are the 

deviations from the mean. In a 1-way cross-tabulation, the fitted values are the means within 

each level of the cross-classifying factor, and the residuals are the deviations of the individual 

values in each category from the mean for that category. At the other extreme, the observed 

values are equal to the fitted values and the residuals are all zero. 

In general, as more factors are included to account for the variations in the dependent variable, 

the "fit" component becomes more elaborate and the residual component has correspondingly 

less structure. One of the aims of the analysis is to find a model for the Y values which is a par

simonious description of the data and which leaves residuals which are relatively free of explain

able patterns. 

should become clearer when applied to a specific set of analysis. WeThis general procedure 

begin with the simplest, a one way cross-classification of means.
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2. 	CROSS-TABULATION AND 
DIRECT STANDARDIZATION 

2.1 Introduction 

In this charter we review some of the basic ideas underlying the analysis of cross-tabulations of 
means and sample sizes. These are analysed with the aid of the method of direct standard
ization, a simple technique for controlling categorical predictors which is familiar to most 
demographers. This method provides a convenient introduction to the statistical methods which 
are the principal subjects of this document. 

2.2 One-Way CrosClassifications 

We begin with the simplest data structure, consisting of a single regressand variable Y and a 

single categorical regressor (orfactrr)X. For illustrative purpose we shall refer to the problem 

of assessing the relationship between education and fertility from a fertility survey of ever

married women. The first step in the process is taken in the following example. 

Example 2.1 Data from the Sri Lanka Fertility Survey of 6810 women are available on the 
following variables: 

Y = Number of Children Ever Born, otherwise called simply Parity. 

X = Respondent's Educational level (LVED), with four categories: 

LVED= 	1: No schooling 
2 0-5 Years schooling 
3 : 6-9 Years schooling 
4 :10 )r more years schooling 

The full data consists of the distribution of parities within each educational level. However, we
 

suppose that interest is confined to a comparison of average parities, and hence we reduce the
 

data to a one way cross-classification of the mean parity TJ for each educational level j, together
 
with the sample sizes. This one way cross-classification is presented in (Table 2.1.a).
 

The mean parity for the 6810 women in the sample is 3.94. There are large differentials in
 

mean parity by educatiunal level, ranging from 2.30 for the higher educated group to 5.17 for
 

the group with no education.
 

The effects of a categorical regressor X on a response Y consist of the differences in the mean
 

of Y between categories of X.
 

There is no unique way of representing the effects of a categorical regressor; four common 

forms are shown in Table 2. l.c). The first alternative is to present all the pairwise differences 

between the category means in a triangle. This form has the merit a symmetry, but it is redun

dant since given any three pairwise differences involving all four categories the others can be 

calculated by addition or subtraction. The second and third methods of presentation express 

effects as deviations from the weighted and unweighted sample means. Note that the weighted 

mean depends on the distribution of the sample over the categories, and hence the effects 

deviations from the weighted mean are also sensitive to this distribution. This isexpressed as 
not entirely satisfactory when comparing the effects of X for two populations with different 

asdistributions of X. In the final form of presentation in Table 2.1.c), effects are calculated 

deviations from the mean of one category, the so-called reference category, here chosen as the 

group with no schooling. 

Note that all alternatives give the same information about the effects of X, and we shall use 

them interchangeably according to convenience. 



TABLE 2.1: Effects of a Variable from a One-Way Cladfiation: Mean Number of Children 

Ever Born, by Respondent's Level of Education 

Educational Level 

No 1-5 6-9 10 or Mean 
Schooling Years Years More Years 

a) Means 
b) Sample Sizes 

5.17 
1512 

4.24 
2686 

3.26 
1704 

2.30 
908 

3.94 

c) Effects of Education 
1. Expressed as Pairwise Differences: 

None 
Educational 
Level 

Primary 
Secondary 
Higher 

-0.93 
-1.91 
-2.87 

-
-0.98 
-1.94 

-
-0.96 -

2. Expressed as Deviations from the 
Sample Mean (3.94) 1.23 0.30 -0.69 -1.64 

3. Expressed as Deviations from the 
Unweighted Mean (3.74) 

4. Expressed as Deviations from 
Reference Category: No schooling 

1.43 

-

0.50 

-0.93 

-0.49 

-1.91 

-1.44 

-2.87 

Source: Sri Lanka Fertility Survey 1975. 

The term "effect" as applied here has potential dangers, since it carries an unwarranted causal 
connotation. It is tempting to conclude from the one way cross-classification that the "effect" 
of secondary education has been to reduce mean parity, from 5.17 to 3.26. However, such an 

could be attributed to compositionalinterpretation is cleardy mwaid, since the-difference 
effects of other factors correlated with education but unconnected with the educational pro
cess. The most easily recognisable of these are demographic factors such as age and age at 
marriage. Specifically, in developing countries more educated women tend to be younger and to 
marry later than average, and hence in a cross-sectional survey have had below average exposure 
to the risk of child-bearing. Thus the differentials in mean parity by educational level may be 
attributed to differentials in the distribution of marital duration between the education groups. 
These considerations lead naturally to higher way cross-tabulations which are the subjects of 
the next subsection. 

2.3 Two-Way Cross-Classifications 

We have noted that the effect of education in the one way classification of mean parities may 

be attributed to compositional effects of marital duration. To investigate this we cross-classify 

mean parity by Educational Level and Marital Duration. Table Dl* displays the results of a 

cross-classification of Mean Parity by Educational Level and Year%Since First Marriage in six 

categories (MGP6) 

MGP6 	 = 1 = 0-4 years 
2 = 5 - 9 years 
3 = 10 -14 years 
4 = 15 -19 years 
5 = 20 -24 years 
6 = 25+ years 

* Tables of raw data are labelled D and appear after the text. 
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The first entry in each cell is the mean, the second entry is the sample count, and the third 
entry is the sample standard deviation. 

2.3.1 Interaction and Asoclation 

Table DI illustrates two important concepts relating to two way and higher way cross.classifi
cations of means, namely, Interactionand association.The term interaction refers to the first 

entries in the cells of Table DI, the Cell means. Two cross-classifying factors A&B are said to 

interact in their effect on a response if the effects of one factor vary according to the levels of 

the other factor. If there is no interaction, that is the effects ofone factor are the same for all 

levels of the other factor, then the effects of A& B on the response are said to be additive.*
 

We denote this additive structure by the symbol [A + B].
 

It will be useful for later developments to express the additive structure in symbols. Suppose
 

that A has J levels and Bhas Klevels. Let Ilk and njk denote the mean and sample size for the
 
cell with levels A = j and B -k of the factors, forj = I to J, k = I to K. The effects of Aand B
 

are additive if and only if the means Jjk can be written in the form
 
(2.1)j= I to J; k= I toK,Pjk=m+rj+Ck, 

where m is a constant {r: j = I to J1 are quantities defined for each level of j of the row 

factor A, and (ck: k'= ?'to K) are quantities defined for each level kof the column factor B. 

To verify this equivalence, note that the effects of Bwithin level j of A,expressed as deviations 

from the first category of B,can be written as 

Pjk -j' k=2toK. 

Substituting the right hand side of equation (2.1), we obtain 

Pjk-Pjl = (p+rj+ck)-(+rj+cl) 

= ck-cl . 

Now ck - cI does not involve the row subscript j, and hence is the same for all levels of A. In 

other words, the effects of B within levels of A are the same for all levels of A, which is the 

definition of additivity. 

The terms on the right hand side of equation (2.1) are not unique, in that different sets of m, 

{ rj } and (ckl give the same set of means fkl. For example, if we add a constant 2d to m, 

and subtract d from all the values trj] and cilk , we obtain the same means: That is,ifwe 

define m* = m+2d , r = = -d 
j rji ,c%* ckd 

m* + r.+c = (m+2d) + (rj-d)+ (ck-d) = m+j+¢k = jk"then 
j k r.)(k) rJc 

Ick) uniquely. There are twoThus restrictions are required to define the values m, {rj} and 
m as the mean of the first cell of the common choices, corresponding to the definition of 

table, or as the overall (weighted) mean of the table. In the first case, we set m = P Iin equa. 

tion (2.1) and obtain 
(2.2)

jk -P ll + rj +ck ,j to J; k = to K. 

Settingj = k = I in this equation, we have 

All = l +r l +c l 

Strictly speaking, the definition of additivity is related to the scale of meusuerent. This definition 
corresponds to additivity on the linw scale, or linear additivity. Other scals ae discussed insection 

3.5. 
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FIGURE 2.1: plots of Mean Parity by Marital Duration and by Leve of Education 

b) Additive Effects: Table 2.2 
a- a) Observed Means: Table DI 
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TABLE 2.2: Fitted Mean Parities from Additive Model
 

Variable averaged ...NCEB.
 

Lved
 

1-5 6-9 10 OrNoFitted TotalYears More YenSchooling YearsMgp6 Mean 
(2) (3) (4)

Count (1) 
.920.711.31 1.07 0.86 

0-4 1 1280351
112 376 442 


2.33 2.18 2.44 
2 3.78 2.545-9 255 1231 

172 442 362 


3.46
3 4.06 3.82 3.61 3.76 

10-14 1118
145
482 293
197 

4.83
 

4 5.11 4.87 4.66 4.51 
15-19 95 1057
 

239 461 262 


5.41 5.78
6.01 5.77 5.56 

20-24 5 40 893377 184
292 

6.37 5.22

6 6.82 6.58 6.64 
25 + 22 1231548 161
501 


2.30 3.94
5.16 4.24 3.26

Total 908 68101704
1512 2686 


12 



and hee the quantities {rj] and {cJjare defined so that the first row and column effects are 
zero, that Is 

= = 0. (2.3)rI cI 

We have already noted that ick - caJ represent the effects of B within levels of A, expressed as 
deviations from the first category of B. Thus ifm is defined asin (2.2), cl 0 and (CJ have this= 
definition. Similarly {rj) represent the effects of A within levels of B, expressed as deviations 
from the first category of A. 

Ifwe set m a, the overall weighted mean of k, we obtain the alternative form 

= j = Pjk p'+ rj + ck, I to J ; k = I to K, (2.4) 

and then it is easy to show that {ril and (ckJ can be restricted so that they average to zero 
over their respective marginal distributions of counts in the sample. That Is, if Ini+,;j =I to J1 
Is the marginal distribution of factor A and |n+k; k = 1 to K) is the marginal ditribution of 
factor B, then 

J K
 
E nj+rj = n+kck = 0. (2.5)
 

j= k=l 

In this cas, the quantities {rj} and fcki still represent the effects ofone factor within levels of 
the other factor, but now the effects are expressed as deviations from the overall mean. 

For the data in Table Dl, the effects of education on parity are not the same for all levels of 
marital duration. For example, the difference in mean parities between LVED = I and LVED = 
4 is .96-.92 = 0.04 of MGP6 = I and 6.92-5.97 = 0.95 for MGP6 = 6. Table 2.2 presents hypo
thetical data where the effects are additive. For example, the difference in mean parities be
tween LVED = I and LVED = 4 Is 0.60 for all levels of marital duration. A visual check on 
additivity can be obtained by plotting the cell means and joining the means of one factor for 
each level of the other factor, as in Figure 2.1. If the effects are additive, as in Table 2.2, the 
result is a set of parallel piecewise linear curves (Figure 2.1.b). Deviations from parallel lines 
indicate interactions (Figure 2.l.a). 

The term asuociationrefers to the second entries in the cells of Table Dl, the cell counts or 
sample sizes. These reflect the joint distribution of the classifying factors in the sample. Two 
cross-classIfying factors are assoiatedif the distribution of one factor varies according to the 
level of the other factor. If there is no association, that is the distribution of one factor is the 

same for all levels of the other factor, then the two factors are said to be Independently dia

*ibuted,or orthogonaL 

For the data in Table Dl It is clear that MGP6 and LVED are associated. The distribution of 

education is not the same for all levels of marital duration, and reflects the historical increase 
in education between marriage cohorts. For example, 27 per cent of the cohort married less 
than five years have 10 or more years of education, compared with 2 per cent for women 
married 25 or more years. 

The concepts of interaction and association should be carefully distinguished. Confusion often 
conarises from variations in terminology. The term interaction is sometimes used in both 

texts. Also, the term independence is occasionally used to refer to what is described here as 
additivity. 

2.3.2 Direct Standardization 

We now concentrate on the variable educational level. The penultimate row of Table DI gives 
the one-way crooschs-ification of mean parities discussed in the previous section, unadjusted 
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TABIL 2.3: Effects of Education from Table DI Expemed a Deviatio from The Rawce 

catem, No Schooing 

Ftcatond LeYel 

No 1-5 6-9 10 or 
Schooting Years Yem More Years 

a) Unadjusted - -0.93 -1.91 -2.87 

b) Duration.Specific 
Effects 

0-4 - -0.08 -0.01 -0.04 
5-9 - -0.08 -0.15 -0.15 

Marriage 
Duration 

10-14 
15-19 
20-24 

-
-
-

-0.04 
-0.16 
-0.35 

-0.14 
-0.52 
-1.00 

-0.73 
-1.00 
-1.75 

25 + - -0.37 -0.69 -0.95 

c) Adjusted for MGP6 by - -0.16 -0.39 -0.71 
test factor standardization 

for marital duration. These are weighted aerages of the means in each column, with weights 

given by the distribution of MGP6 for each level of LVED. Since the factors are associated, the 

of weights varies between the columns. We can adjust for the different composition ofset 
marital duration of each educational group by averaging the means in each column with the 

set of weights. T-his technique is known as direct standardization.The choice of weights,swe 
or the standard distribution,is somewhat arbitrary. A simple choice is to give equal weights to 

each cell, obtaining the unweighted column means. Alternatively, we may weight proportional 

to the distribution of the adjusted factor (MGP6) in the whole sample, a variant of the method 

known as Test FactorStandardization.Other choices are also possible. 

In synr'hols, direct standardization involves calculating the standardized column means 

jk is the mean for row j and column k, and wj is thewhere the summation is over the row j, 
weight for row j. 

the data in Table Dl, giving the standardizedTest factor 	standardization can be applied to 
means in the last row of the table. These are interpreted as the predicted meaneducation 

parities for each level of education if women in that category had the distribution of marital 

duration in the entire sample. 

Effects of education, adjusted for marital duration, are obtained from the standardized means 

by subtraction. They are displayed in row c) of Table 2.3, in the form of deviations from the 

standardized mean for the reference category NO SCHOOLING. Row a) ofTable 2.3 gives the 

unadjusted effects of education as in the last row of Table 2.1, and the next six rows of the 

the effects 	 of education calculated separately within each marriage durationtable give 

Table 2.4 gives the corresponding estimates for the artificial data in Table 2.2.
 

We can use 	these tables to illustrate the consequences of aLsociation and interaction on the 

two-way table. Firstly, note that for both tables, additive and non-additive, theeffects in a 
adjusted effects in row c) in Tables 2.3 and 2.4 are different from the unadjusted effects in row 

a); in fact here the adjusted effects are considerably smaller, although in other examples they 

may be larger. This impact of adjustment occurs because the factors are asociated Turning 
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TABLE 2.4: Effects of Education from Table 2.2 Expressed as Deviations from the Reference 
Category, No Schooling 

Educational Level 

No 1-5 6-9 10 or 
Schooling Years Years More Years 

a) Unadjusted - -0.92 -1.90 -2.86 

b) Duration-Specific 
Effects 

0-4 - -0.24 -0.45 -0.60 
5-9 - -0.24 -0.45 -0.60 

Marriage 
Duration 

10-14 
15-19 
20-24 

-
-
-

-0.24 
-0.24 
-0.24 

-0.45 
-0.45 
-0.45 

-0.60 
-0.60 
-0.60 

25 - -0.24 -0.45 -0.60 

c) Adjusted for MGP6 by - -0.24 -0.45 -0.60 
test factor standardization 

this statement round, we obtain the following property: Propcrty1: If the factorsA and B are 

Independent (that is, not associated), then the unadjusted and adjustedeffects of eitherfactor 

are equal, Tis property is hardly surprising, since the point of standardization is to deal with 

the consequences of association on the unadjusted effects. 

concerns the effects in rows b) and c) and the consequence of interaction.The second property 
readily be shown that the adjusted effects in row c) can be obtained by averaging theIt can 

duration specific effects in row b) with respect to the standard distribution. For example, the 

adjusted effect for the 1-5 years category in Table 2.3 is 

-0.16 = [(..08) (1280)+(-.08) (1231)+(-.04) (1118)+(-.16) (1051)+ 

(-.35) (893)+(-.37) (1231)]/6810 

This property holds for any two-way table: 

Property 2: The effects of B adjustedfor A by standardizationare weighted averages of the 

with weightsgiven by the standarddistribution.effects ofB within each level ofA, 

In the presence of interaction, the effects of B vary according to the level of A, as seen in Table 

2.3. 	Hence Property 2 implies that the adjusted effects vary according to the choice of standard 
as in Table 2.4, the effects of B aredistribution. On the other hand, if the effects are additive, 

the same within each level of A, and the adjusted effects are obtained by averaging values which 

are all equal. Hence this averaging clearly is not affected by the choice of weights, that is, the 

standard distribution. Thus we obtain Property 3: If A and B are additive (that is, do not 

interactin their effects on Y) then the adjusted effects of B equal the effects ofB within any 

level ofA, for any choice ofstandarddistribution. 

for the cell with level j ofWe can prove Property 2 with a little algebra. Let t% be the mean 
factor A and level k of factor B.Then adjusting the means of B for factor A by standardization 

consists in chooting a standard distribution of factor A, 

Iw:j = 1,..., J1 	 (2.6) 

and aiaraging the means of A within each level of B using these weights; that is, forming 
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J 
Wj--jk (2.7) 

The argument (w)is used to emphasize the dependence of the adjusted mean on the choice of 

standard. The adjusted effects of B,expressed as deviations from the reference category k = 1, 

are given by 

{Pk (w).-~, (w): k =2...., KI 

Substituting equation (2.7), we obtain J J 

-1k(w)-l (w) E wj jjk =Zl wjijl 

J 

= :
j=l 

wJwijk -Pj1)3 

which is an average of effects of B within levels of Awith weights wj. This proves Property 2. 

Now suppose that the effects of A and B are additive. Then we showed above that the means 

I k can be written as 

and Ick) represent the effects of B within any level of A. Hence by Property 3, they also 

represent the effects of B adjusted for A, for any choice of standard. Thus if an additive table 

of means withfactors A, B is expressedin theform (2.1), then Irilare the effects ofA adust

ed for B and fc , are the effects ofB adlustedfor A. Furthermore, if the constantterm m s 

defined as p11, as in equation (2.2), then the effects are expressedas deviationsfrom the ffrst 

category.If m is defined as the overall mean, as in equation (2.4), the effects are expressedas 

deviationsfrom the overall mean. 

Some authors argue that standardization is an appropriate method of summary only if the 

effects are approximately additive. If large interactions are present, the adjusted effects depend 

the choice of standard, and the summarization of the effects within levels of the other on 
facto? involves a loss of information. In the present example, for instance, the degree of inter

action is considerable, as evidenced in Table 2.3.b). Substantively speaking, the educational 

differentials are small for the first two marriage cohorts. Reduced fertility of women with 10 

or more years of education emerges in the third marriage cohort and persists thereafter. The 
for the last three marriagedifferentials between the other education groups emerges only 

cohorts. All this information is lost if the adjusted effects of education are summarized by the 

single row of Table 2.3.c). 

Despite this loss of information, standardization still illustrates an essential feature of the data 

with or without the presence of interactions. The comparison of unadjusted and adjusted 
on the averageeffects demonstrates clearly the compositional effect of marriage duration 

are greatly reducededucation differentials. Specifically the differentials by educational level 
when marriage duration is controlled. 

To summarize, if the cross-classifying factors are independent then rows a) and c) are equal. If 

the effects of the cross-classifying factors are additive, then rows b)and c)are equal; otherwise 
row c) Isa weighted average, which varies according to thethe rows of b) are different and 

choice of standard. 

2.4 Three-Way Cros-lassifications 

The concepts and methods of the previous section can be readily extended to three-way cross

classifications. As an example, we analyze the table resulting from replacing the single demo

graphic control marital duration in Table DI by the two demographic controls respondent's 
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D2 gives the cross.classification of Mean 
age and respondent's age at first marriage. Table 

Parity by Educational Level, Current Age (AGP5) in five groups: 

AGP5: I = 15.24 years 
2 = 25-29 years 
3 = 30-34 years 
4 = 35-39 years 
5 = 40.49 years 

and Age at First Marriage (AMGP) in four groups: 

AMGP: 	 I = < 15 years 
2 = 15-19 yeas 
3 = 20-24 years 
4 = 25 + years 

The definitions of independence and additivity in the two way table were unambiguous, but for 
we denote the three variables of

the three way table various extensions are possible. Suppose 

the cross-classification by A, B and C. One possibility is to view the three way table as a set of 

one for each level of one of the factors. For example we might consider the 
two way 	tables, 
set of two way tables of B and C for each level of A. Then we apply definitions of additivity 

and independence to this set of two way tables. Thus, B and C are conditionallyadditivegiven 

A if the eff,.cts of B and Care additive for all these two way tables. That is, within each level of 
or 

A, the effects of C are the same for all levels of B. This structure is denoted by [A(B+C)] 


alternatively [AB + AC].
 

A second form of additivity is obtained by combining two of the three variables, say A and B,
 

into a single joint variable (AB) consisting of all combinations of levels of A and B. Then the
 

three way table of means can be considered as a single two way cross-classification by (AB)
 

and C. The definitions of the previous section can be applied to this table. Thus (AB) and C are
 

additive in their effect on the response if the effects of C aie the same for all levels of the joint
 

variable AB. This structure is denoted by LAB +C]. For example Table D2 might be regarded as
 
= LVED and AB = (AGP5. AMGP), the 

a two-way cross-classification of mean parity by C 

variable consisting of all combinations of AGP5 and AMGP, with 5 x 4 levels. Additivity in this 

means that the effects of education are the 
two-way table, denoted by [LVED+AGP5.AMGPI, 

for all levels of Age and Age at Marriage, an implausible structure for the present data. 
same cross-
The structure [AB+C] does not make any assumptions about the pattern of means 

classified by A and B within each level of C. If we assume in addition that the effects of A and 

B are conditionally additive given C, then we obtain a stronger form of additivity. We say that 

the effects of A, B and C are additive on the response, and denote this structure by [A+B+C]. 

are given in Table 2.5, for a 
Examples 	of the patterns [A (B+C)], lAB+C] and [A+B+C] 

jkikbe the mean response for 
2x2x2 table. The patterns can also be expressed in symbols. Let 

= 
level A = j, B = k, and C I of the cross.classifying variables. The three structures [A (B+C)] 

[AB+C] and [A+B+CJ correspond to the following forms for the cell means: 

for all j, k and 1 (2.2)[A (B+C)J : jk1 = mj +cjk + sj, 
for all j, k and 1 (2.3)[AB+C] : lujkt = m+ cjk + st 

(2.4)
[A+B+CJ : jkI = m+rj+ck+sl foralj, kand 1 

t and 1 of 
To illustrate the correspondence, consider the difference in means between levels 


variable C, for A = j and B = k.
 

Equation (2.2) gives 

j+ cjk +'j1 -mj + Cjk + "sjfijkt - Pjk" = 

and hence this difference depends on the level of A, J, but not on the level of B, k. Hence the 

17 



TABLE 2.5: Examples of Additive Data Patterns for a 2x2x2 Table of Means 

a) [A(BIC)] B and Cconditionally additive given A 
C 

21BA 
5 81 
7 101 2 

109
12 9
8
2 

b) [A B+C] AB and Cadditive 
C 

1 

2 

2
BA 

8
5
11 7 10
1 2 

12
9
12 11
8
22 

c) [A+B+C] A, B and C additive
 
C
 

21A B 
85
11 1021 9 

7 
12

2 1 
1211
2 2 

additive, as required by the model [A(B+C)].
effects of B and C within each level of A are 

Equations (2.3) and (2.4) both give 

Pjk .Pjkf = 

which implies that the effect of C is the same for all levels of A and B. However equation (2.4) 

also gives 
Pjkt' Pjk = rj-j' jk - jk'I =--Ck"-c 

which implies that the effects of A and B are also additive. This additional property is not 
n that 

shared by equation (2.3). There is clearly a hierarchybetween the three data pattem-. 


and [AB+C] implies [A(B+C)] .*
[A+B+C] implies [AB+C] 


The concept of association between the cell counts generalizes to tht .hree way table in much
 

Thus B and C are conditolIUY 
the same way as that of additivity between the cell means. 


independent given A if the distribution of B and C are independent within each level of A. The
 

Other patterns exist for a three-way table. The variables A. B,and Ccan be permuted. One or more 

effects can be assumed equal to zero, leadLg to one or two way tabulation&by summing over factos. 
Afull desmiption

Finally one model JAB +BC+CA], cannot be described in terms of two way table. 

of them models is given in another technical bulletin (ittle, 1978). 
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'TABLE 2.6: Distribution of Sample, by Ae and by Age at Mlage 

AMGP 

AGP$ <IS 15-19 20-24 25 + 

15-24 114 688 285 0 
25-29 165 474 520 138 
30-34 175 502 305 240 
35-39 199 455 331 218 
40-49 330 873 489 310 

TABLE 2.7: Standardizationon Age and on Age at Marriage 

Educational Level 

No 0-5 6-9 10 or 
Schooling Years Years More Years 

Mean Parity 4.13 3.96 3.78 3.10
 
Standardized for
 
AGP5 and AMGP
 

Effects of - -0.17 -0.35 -1.03
 
Education
 

joint variable AB and the variable C are independent if the distribution of C is the same for all 
levels of the joint factor AB. Finally, A, B and Care independently distributed if AB and Care 
independent and A and B are conditionally independent given C. These structures are important 
in the analysis of contingency tables, but are not considered in detail in the present context. 

The method of direct standardization can be applied to calculate the effects of one factor, 
adjusted for the other two. For our example we are interested in calculating education effects 
adjusted for age and age at marriage. We shall once again use test factor standardization, apply
lng the distribution of AGP5 and AMGP for the whole sample, given in Table 2.6, to the set of 
means for each educational level. 

The present application illustrates a practical r im of the method which also has analytical 
consequences. The distribution of the sample over the cells of the three way table is not uni
form, and some cells are empty. The four cells with AGP5 = 15-24 and AMGP = 25 +are empty 
because they are unobservable. Also two cells with LVED = 4, and AMGP = I are empty, 
because very few women with 10 or more years of education were married before age 15. In 
applying the standard in Table 2.6 to the data in Table D2, means are not required for the un

observable cells since they are given weight zero; however means are required for the empty 

cells with LVED = 4, AMGP = 1, since they are given positive weight in the standardized mean. 
Here the present values for the adjacent group with AMGF 2 were imputed for these cells. 
This procedure introduces a small bias into the final estimates. More generally, the method of 

standardization can give unduly large weights to cell means which are based on very few obser

vations, and hence have large variances. In more technical terms, it is a statistically inefficient 
method of calculating adjusted effects. Hence it should be used with caution when the sample 
sizes become small. In the next chapter we consider another method for calculating adjusted 
effects which is statistically optimal under certain conditions, namely multiple classification 
analysis. 
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tet factor standard-We conclude this Introductory section by presenting the results of applyin 
ization to the education meant. The adjusted means and effects expressed as deviations from 

the NO SCHOOLING group, are given in Table 2.7. 

We observe that the adjusted effects are quite similar to those standardized for marital duration, 

marital duration is a reasonable proxy 
given in Table 2.4.x). Hence it appears that in this case 

for the demographic control ofage and age at marriage. 

of one factor, say C, adjusted for the other two 
are the meansUnder what circumstances 

factors, say A and B, an adequate summary of the effects of C? As in the previous section, the 

standardized effects are weighted average of the effects within each level of A and B, which are 

constant if and only if the effects AB and C are additive. ence standardization is particularly 

appropriate when AB and C are additive (or, a fortiori, A, B and Care additive). 
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3. 	ADDITIVE MODELS BETWEEN FACTORS.-
ANALYSIS OF VARIANCE AND MULTIPLE 
CLASSIFICATION ANALYSIS 

3.1 	 Introduction 
is a simple and convenient method for calculating adjusted means and

Direct standardization 
effects. However if cell sample sizes are small, because of limitations in the total sample size or 

because of the degree of cro,;s-classification, the method is not entirely satisfactory; procedures 

are required to deal with emp	ty cells, and the large sampling variances of cell means based on 

are not taken into account in the final estimates. Also, as sample
small numbers of observation 

ignificance of effects may be called into question. Standardization
sizes diminish the statistical 
does not supply estimates of the statistical significance of effects, and although these can be 

calculated, a more satisfactory approach is available, namely, analysis of variance. 

In the first chapter we no:ed the decomposition of the observed values of the dependent 

model, and residuals representhg departures from the 
variable into fitted values under some 
model. Before proceeding further it is convenient to relate the particular methods of the 

previous chapter to this general conceptual framework. 

We began with the simplest model which summarizes the individual values of the dependent 

. The corresponding decomposition, given as equation
variable in a single numbtr, the mean 

(1.1), was
 

(3.1)
Yi = + (yi y) 

fit residualobserved = + 

The next step was to consruct a one way cross-tabulation of the means of y by the factor 

the corresponding decomposition, relabel the
LVED = Level of Education. To write down 
values so that Yij is the parity for individual i within category j of level of education. Then the 

fitted value under the model is TJ, the mean parity for education level j, and the decomposition 

is 
(3.2)Yij= + (YijJ)" 

observed = fit + residual 

We denote the model undelying this decomposition by [LVED]. The third step was-to further 

Marital Duration. The decomposition corresponding to this=cross-tabulate by the factor MGP6 

cross-tabulation is
 

Yijk = Y'jk + (yijk 	 Jk)' (3.3) 

observed = fit + residual 

Yijk denotes the parity for individual i within the celi with educational level j,
where now 
marital duration level k, and Yjk is the mean parity of individuals in this cel. We denote the 

The extension to three-way tables is
model underlying this cross-tabulation by [LVEDxMGP6]. 


clear.
 

how does the technique of standardization fall into this scheme? Let us consider the cae of the
 

two-way table. We have noted the strong relationship between standardization and an additive
 

structure for the cell means. Namely, if the means have an additive structure then the effects of
 

one factor within levels of other factor are equal and given by the adjusted effects from stand

ardization for any choice of standard. Moreover, the means inside the table can be constructed
 

from the adjusted means found by the method. In fact, dbect standrdztaon corresponde to 

ftting an underlying additfre model betwen thefactorz 
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To write the data decomposition, let Yjk be the mean for the cell with LVED =j and MCP6 -k. 

Suppose we form adjusted means for both factors by standardizing with respect to standard 
distributl6ns [wjl for education and (Vki for marital duration. That is, we form adjusted 
means 

Yk = wjYjk ; Yj = ZvkYjk
Jk 

Let m be the (weighted) average of the adjusted means of either factor, that is, 

m = Evkyk = . w-y'.
J j yk 

It is readily shown that both expressions for m are equal. Now let rj and ck be the adjusted 
effects of the factors, expressed as deviations from m. That is, 

= yj-m,ck = Y-m. 

Then the fitted values from direct standardization take the additive form 

I~jk = m+rj+ck" (3.4) 

What we have constructed is the additivestructure fikJ which would havegiven the adjusted 
effects and mean that we have obtainedby standardzTigthe observedmeansYjk. The decom
position corresponding to the method is 

Yijk = +(Yjk jk' (3.5) 

observed = fit + residual 

where Yiik is the individual parity defined as for equation (3.3), and PAk is given by equation 
(3.4). Tile decomposition corresponds to an additive model for the factors, which we write 
[LVED+MGP6]. 
Why should we construct fitted means { 'kJ by this elaborate procedure when the population 
means are readily estimated by the sampra means .'jk I ?There are three principal reasons. 
Firstly, the additive means are based on a small number of parameters, J+K-I for a JxK table, 
and hence are more stable than the observed means in the table, particularly when the sample 
sizes are small. That is, fitting the additive model effectively smooths the observed means and 
reduces sampling fluctuations. Secondly, the additive model provides a summary of the table, 
the adjusted means, which have an appealing substantive interpretation. Thirdly, the deviations 
of the fitted means jk under the additive model from the sample means Yjk are convenient 
quantities for studying the pattern of interactions in the table. If the residuals in (3.5) are 
further decomposed in the form 

Yijk "1jk = Yjk"-jk + Yijk Yjk (3.6) 

then the components yik -k, are the average residuals in each cell, and represent deviations 
from the additive struclure tor the cell means, and the components Yijk "jk measure within 
cell variations in the dependent variable. 

The results of constructing the fitted values for the data in Table Dl are given in Table 3.1. The 
first entries in the body of the table are the cell sample means,the second entries are the fitted 
values, and the third entries are the residuals. The last column gives the adjusted means of 
MGP6 and the last row gives the adjusted means of LVED. The final entry, 3.88, Isthe value of 
m, the weighted average of the adjusted means. Note that this does not equal the overall sample 
mean for the data, 3.84, an unfortunate characteristic of any form of standardization. The form 
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TABLE 3.1: Mean Number of Children Ever Dorm, by Marital Duration and by Lad of 

Education: A)ObservedMeans, B)Fitted Meansfrom Test Factor Standardiation, CA- rae 

Resduals 

Lved: Level of Education 

MGP6 
Marital 

Duration 
(Years) 

0-4 
(1) 

5-9 
(2) 

10-14 
(3) 

15-19
(4) 

No 
Schooling 

(1) 

.96 a)
1.18b) 
-. 2 2 c) 

2.54
2.71 
-. 17 

3.87 
4.01 
-. 14 

5.135.06 
.07 

1-5 
Years 

(2) 

.88
1.02 
-. 14 

2.46 
2.55 
-. 09 
3.91 
3.85 

.06 

4.974.90 
.07 

6-9 
Years 
(3) 

.95

.79 
-. 16 

2.39 
2.32 

.07 
3.73 
3.62 

.11 

4.61
4.67 
-. 06 

10 or 
More Years 

(4) 

.92 

.47 

.45 

2.39 
2.00 
.39 

3.14 
3.30 
-. 16 

4.13
4.35 
-. 22 

Adjusted 
Means of 

MGP6 

.92 

2.45 

3.75 

4.80 

20-24 
(5) 

6.225.86 
.36 

5.875.70 
.17 

5.22
5.47 
-. 25 

4.47
5.15 
-. 68 

5.60 

25+
(6) 

6.925.86 
1.06 

6.555.70 
.85 

6.235.47 
.76 

5.975.15 
-. 82 

6.47 

Adjusted Means 
of Lved 4.14 3.98 3.75 3.43 3.88 

chosen is as before test factor standardization; thus the last row is the same as the last row of 

Table DI. 
value for row j and column k, the adjusted means for row j and column k 

To obtain the fitted 
summed and then the overall mean is subtracted.* For example, for row 2, column 3 we 

are 
obtain the fitted value 

= 2.32.2.45 + 3.75 -3.88=AI23 

Finally, the average residuals are calculated by subtracting the fitted means from the observed
 

means in each cell.
 

If the data were exactly additive, the observed and fitted values would be equal and the average
 

residuals would all be zero. The average residuals thus represent interaction effects between the
 

factors. These show a systematic pattern; namely they tend to be negative in the north-west and
 

south-east portions of the table, and positive in the north-east and south-west portions. This
 

pattern arises from fitting average adjusted effects for education which are too large for low
 

marital durations and not large enough for high marital durations.
 

* This isclearly equivalent to addkg mto the gum of adjusted effects, rj+ck. 
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The average residuals aie subject to certain restrictions; that is each row or column average$ to 

zero over its respective standard distribution. Different standard distributions give different sets 

of residuals, although with similar patterns. 

3.2 Multiple Classification Analysis 

We now ask the question, is there a set of fitted values with an additive structure which fits the 

data better, in the sense of yielding smaller average residuals. The answer to this question is yes, 

and the method which finds (in fact, is defined to find) a best fitting additive structure is multi

ple classification analysis (MCA).
 

To define what is meant by "best", we need a criterion for measuring the fit. For MCA, this is
 

given by the sum of squares of the average residuals, weighted by the sample size in each cell,
 

that is J K
 
A 	 (3.7)ss = E E 

njk(yJk-Mjkj=l k=l 

Thus for the two-way table, MCA calculates fitted values 
A A 1 

(3.8)Pjk = m +rj + ck 

TABLE 3.2: Mean Number of Children Ever Born, by Marital Duration and by Level of
 
C)Average Residuals
Education; A) Observed Means, B) Fitted Means from MCA, 

Lved: Level of Education 

MGP6 
10 or AdjustedMarital No 1-5 6-9 

Years More Years Means ofDuration 	 Schooling Years 
(3) (4) MGP6(Years) (1) (2) 

.92.95 .92
0-4 .96 a) .88 
() 1.31 b) 1.07 .86 .71 

-. 3 5 c -. 19 +.09 .21 

2.492.39 2.39
5-9 2.54 2.46 

2.18 
(2) 	 2.78 2.54 2.33 


-. 24 -. 08 
 .06 .21 

3.773.73 3.143.87 3.91 
3.61 3.4610-14 4.06 3.82 

(3) 	 -. 19 .09 .12 -. 32 

5.13 4.97 4.61 4.13 4.82 
4.66 4.5115-14 5.11 4.87 


.10 -. 05 -. 38
(4) .02 
5.725.22 4.476.22 5.87 5.56 5.4120-24 6.01 5.77 

(5) .21 .10 -. 34 -. 94 

5.97 6.536.92 6.55 6.23 
25 + 6.82 6.58 6.37 6.22 

(6) .10 -. 03 -. 14 -. 25 

Adjusted Means 
3.943.99 3.78 3.63of Lved 4.23 
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TABLE 3.3: Stem and Leaf Plots* Comparing the Distribution of Absolute Residuals x 100 
from Test Factor Standardizationand from MCA 

Test Factor Standardization 6 100-109 Multiple Classification Analysis 
90-99 4 

5 2 80-89 
6 70-79 
8 60-69 

50-59 
5 40-49 

9 6 30-39 2 4 5 8 
5 2 2 20-29 1 1 1 4 5 

7 7 6 6 4 4 1 10-19 0 0 0 2 4 9 '9 
9 7 7 7 6 6 0-9 2 3 5 6 8 9 9 

* Note: A Stem and LeafPlot invented by J.W. Tukey, is a histogram on its side with the individual data values 

retained. The stem is a set of grouping invervals, here in the centre of the diagram, varying from 0-9 to 
100-109. The leaves are the values failing in each interval, ordered and represented by their last digits. 
Thus the leaf for MCA corresponding to the 10-19 group. 

0 0 0 2 4 9 9, 

represents the set of absolute residuals 10, 10, 10, 12, 14, 19, 19. The outline of the plot gives the 
shape of the distribution. However, unlike a histogram the values are retained. For further details, see 
Tukey (1977). 

which minimize the weighted sum of squared residuals, ss. The fitted values from MCA are 
given in Table 3.2, and are in fact the means given earlier in Table 2.2. 

A comparison of the (average) residuals in Tables 3.1 and 3.2 reveals the improvement in the fit 
obtained by MCA. The distributions of the absolute residuals are compared in Table 3.3, and 
indicate six residuals with absolute values of more than forty frow standardization, compared 
with only one from MCA. 

The large residual from MCA illustrates an important property of MCA, and in particular the 
criterion sum of squares (3.7), namely that it weights the squared residuals by the sample size 
njk in each cell. Thus empty cells are given weight zero, that is are effectively ignored. Cells 
with small counts are given less weight than cells with large counts, which implies that the fitted 
values are allowed to deviate more from the observed means if the observed means are based on 
small samples and are thus subject to a high variance. This rather sensible property is not shared 
by the fitted values from standardization. 

Compare, for example, the residuals from the cell with MGP6=5 and LVED=4, with n5 4=40 
observations, with the cell with MGP6=6 and LVEDI, with 501 observations. Standardization 
yields residuals of -.68 and 1.06 respectively for these cells. Thus the fit is worse for the cell 
with a well determined mean. MCA yields residuals of -.94 and .10 respectively. Thus the fit is 
worse than that from standardization for the cell with 40 observations, but is very good for the 
cell with 501 observations. The conclusion is that if the sample sizes are small enough for 
sampling error to be substantial, then MCA is a much more sensible way of determining the 
fitted values, and hence of calculating adjusted effects. Finally, the abnormally large negative 
residual from MCA for the cell with MGP6=5, LVED-4, suggests that the population mean for 
that cell may be underestimated by the sample mean, 5.41. An estimate of about 4.9 may be 
more reasonable on the basis of neighbouring residuals. 

The adjusted means from MCA are presented in the margins of Table 3.2, and the last entry is 

their weighted average, m-3.84. Note that this equals the weighted mean of the sample. This no 

accident: it can be shown that the value of m which with the other parameters minimizes the 
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weighted sum of squares is always the weighted sample mean 7. Another way of saying this is 
average to zero. Comparison of thethat the adjusted effects, taken about the sample mean, 

adjusted means of MGP6 and LVED in Table 3.2 and 3.3 indicate quite small differences, the 

largest being the means for the last education group (3.63 for MCA, 3.43 for standardization). 

Thus the methods differ more in the fitted values and residuals inside the table than in the 

average effects in the margins. 

It is customary in MCA to present effects as deviations from the overall mean, rather than as 
as in Table 2.4. The output is given in the form of andeviations from a reference category 

MCA table. The table for the data in Table DI is presented in Table 3.4. The first column of the 

table gives the sample counts for each category of the cross-classifying factors. The second 

column gives the set of unadjusted deviations from the overall mean and the fourth column 

gives the set of deviations for each factor, adjusted for the other factor. The third and fifth 

columns give summary measures of the effects, Eta and Beta, which are discussed in more 

detail later. For the factor Educational Level the Eta value for the unadjusted deviations is .32 

and the Beta value for the adjusted deviations is much lower, .07, indicating the reduction in 

the effect of Educational Level when Duration is controlled. Note that by subtracting the devia

tions for LVED=2, 3 and 4 from the deviations for LVED=I, we obtain the unadjusted and 

adjusted effects in the form of Table 2.4 a) and c). 

3.3 Analysis of Variance: Introduction 

So far we have been concerned with estimating sets of effects for factors, unadjusted or adjust

ed for associated factors. We now describe a way of summarizing a set of effects in a single 

number, indicating the overall magnitude of the differences between the category means. There 

are two reasons for doing this. The first is to derive tests for the statistical significance of the 

effects, that is to find out whether the observed differences could be attributable to sampling 

fluctuations rather than real differences in the population means. The second reason is to allow 

a simple comparison of the effects of a particular variable when adjusted for a variety of the 

other factors. The first of these reasons is probably the more important of the two. The basic 

measures employed are the sum of squares(SS) for an effect, and a closely related quantity the 

mean square (MS). The method of calculation is called analysisof variance. 

Analysis of Variance is closely related to the decomposition of the observed values of the 

response into fitted values and residuals. That is, 

observed i = fit i + residual i , 

where I is again a subscript denoting the individual. Squaring this equation and summing over 

individuals i, we obtain 
= 2 (fit + residuali) 2 

E observed!i i 

Z fit2 + E residual! + 2 E fit i . residuali 

It can be shown that if the fit component is calculated so that the sum of squared residuals is 

minimized then the last term on the right hand side is equal to zero. That is, we have 

Z fit 2 + E residual2 
E observed 2 = 

i i i
iI 

we obtain theIf the observed and fitted values are measured around the overall sample mean, 

basic equation of analysis of variance. That is, if yi is the observed value, 91 is the fitted value, 

and yi - Ai is the residual, then 
Cy yii)_ (3.9)i(yiy)2 i~-)2 i 

of the variation of the individual values yiThe left hand side represents a summary measure 
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TABLE 3.4: Multiple Clasificatlon Analysis of Parity, by Marital Duration and by Level of 
Education 

Grand Mean = 3.94 Adjusted for 
Adjusted for Indeendet 

Unadjusted Independents +Covarates 
Variable +Category N Dev'n Eta Dev'n Beta Dev'n Beta 

MGP6 
10-4 1280 -3.02 -2.92 
25-9 1231 -1.51 -1.45 
310-14 1118 -. 19 -. 17 
4 15-19 1057 .90 .88 
5 20-24 893 1.84 1.78 
625+ 1231 2.71 2.59 

.70 .68 
LVED 

I NoSchooling 1512 1.23 .29 
2 1-5 Years 2686 .30 .05 
3 6-9 Years 1704 -. 69 -. 16 
4 10 + Years 908 -1.64 -. 31 

.32 .07 
Multiple R Squared .497 
Multiple R .705 

about the mean; in fact it is proportional to the variance. The first term on the right hand side 
summarizes the variation accounted for by the fitted values from the model, and the remainder 
summarizes the variation not accounted for in the model. All analysis of variance tables are con
structed from decompositions of this simple form. 

3.4 One-Way and Two-Way Analysis of Variance 

For a one-way classification by factor A let yij be the value of the dependent variable for 
individual i within category j of the classification. The fitted values for individuals in category j 
are all equal to Y, the sample mean for that category, and the decomposition of the data is 
given by equation f3.2). The analysis of variance decomposition is thus 

++yE(y Jy)E ( Y)2 

SST = SSA + SSRES 

The sum of squares SSA measures the variation of the response between the categories of the 
factor A, and hence is the sum of squares associated with the factor A. The sum of squares 
SSRES measures the variation of the response within the categories of the factor A, and is 
called the error or residual sum of squares. These statistics can be entered in a one-way ANOVA 
table, as in Table 3.5. 

The first column of the ANOVA table indicates the source ofvariation, and the second column 
presents the sum of squares associated with each source. The third column gives the degrees of 
freedom, which equals the number of independent parameters associated with each source. If 
there are N observations and the factor A has J levels, there are N-I degrees of freedom for SST 
(the number of observations less one degree of freedom for the grand mean), and this decom
poses into J-1 degrees of freedom for the effects of A and N-J degrees of freedom for the 
residual. The next column gives the mean square for each source, defined as the sum of squama 
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TABLE 3.5: One-Way ANOVA Table for a Factor A. 

SinificanceSource of 
SS df MS F ofFVariation 

A SSA J-1 MSA = SSA/(- 1) MSA/MSR P 

Residual SSRES N-J MSRES = SSRES/(N-J) -

Total SST N-1 MST = SST/(N-1) 

TABLE 3.6: One-Way Analysis of Variance of Parity, by Level of Education 

Sum of Mean SignificancSource of 
Variation Squares DF Square F of F 

Main Effects 5747.380 3 1915.793 261.694 .000 
LVED 5747.380 3 1915.793 261.694 .000 

Explained 5747.383 3 1915.794 261.694 .000 

Residual 49817.548 6805 7.321 

Total 55565.031 6808 8.162 

divided by the degrees of freedom. The magnitude of the effects of r"can be compared with the 
average within cell variability by comparing MSA with MSRES. 

Since the survey data are based on a sample of the population, the means for each category of 

A can differ when there is no difference in the means for the population from which the sample 

is drawn. Hence a test of statistical significance of the effects of A is desirable. This is achieved 

by the F-test in the last two columns of Table 3.5. If I) the data are a random sample from the 
the populationpopulation, ii) the variance of Y within each category of A is constant, iii) 

in fact equal, and iv) the cell means are normally distributed,means in each category of A are 
then 

F = MSA / MSRES 

has an F distribution with (J-l) and (N-J) degrees of freedom. The significance level of the. F 

statistic is given in the last column of Table 3.5. For example, if P > 0.05 then the effects of A 

are not significantat the 5%level. 

The one-way ANOVA for the data in Table 2.1 is presented in Table 3.6. The mean square for 

the effects of educational level is 1915.8, compared with a residual mean square of 7.32. These 

yields a highly significant F value of 261.7. That is, the difference in the unadjusted education 

means cannot be attributed to random fluctuations. 

For a two-way table with factors A and B more than one decomposition of the total sum of 
squares Ispossible. Treating AB as a single factor, we obtain as before 

SST = SSAB + SSRES 

where SSAB is the sum of squares for the joint factor (AB) and SSRES isthe residual sum of 
squares. Then SSAB can be decomposed into SSA+B,the sum of squares for main effectsofA 
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and B assuming an additive model, and SSA.B, the sum of squares for the interaction of A and 

B, adjusted for the main effects of A and B: 

SSA.
SSAB SSA+B 


Finally the sum of squares for the main effects, SSA+B can be distributed between the effects 

of A and B in two ways. 

+
SSA+B SSA SSBIA 

AIB + SSBSSA+B = 


of squares for the unadjusted effects of A and B, and SSA]B 
are the sumwhere SSA and SSB 
sum of squares for the effects of A adjusted for B and B adjusted for A. 

and SSBIA are the 


Hence the full decompositions are
 

+ SSBIA + SSAB + SSREs
SST = SSA 

residualAB
B, adjustedA, unadjusted 
interaction,for A 
adjusted for 

A+B 

SSRES
+ SSAIB + SSA.B + 
or SST = SSB 

residualABA, adjustedB, unadjusted 
for B interaction, 

adjusted for 
A+B 

Note that when A and B are not associated, the adjusted and unadjusted effects of A or B are 

of squares of these effects to be equal, and this is 
one would expect the sumequal. Hence SSBIA, and the two alternative decom-

That is, SSA = SSAIB and SSB = 
indeed the case. 

A special case of this is balancedanalysis of variance, where the 
positions of SST are the same. 
cell sample sizes are all equal. 

The sums of squares from these decompositions are presented in a two-way analysis of variance 

table. Two common modes of presentation, classical and hierarchical, are illustrated for the 

data of Table DI in the ANOVA Tables 3.7 and 3.8. Both tables present sums of squares for the 

the total explained by AB,SSAB, the residual, 
the interactions SSA.B,main effects, SSA+B, 


SSE, and the total, SST, in the rows as indicated. In a classicalanalysis of variance (Table 3.7),
 
and SSBIA.are 

of squares for each of the main effects A and B, SSAIB 
the adjusted sums MGP6, B = 
presented. Note that these do not add up to SSA+B. For example in Table 3.7, A = 

LVED and 
SSMGP6+LVED+ SSLVEDIMGP6SSMGP6ILVED 

+ 225.5 # 27628.2
218808 

sped-In a hierarchicalanalysis of variance (Table 3.8) the sums of squares for the first effect specified 

on the ANOVA control card is unadjusted, and the second effect is adjusted. Thus if A is 
are present

fled first, SSA and SSBIA are presented, and if B is specified first, SSB and SSAIB 


ed. In both cases the sums of squares do add up to SSA+B. For example, in Table 3.8,
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TABLE 3.7: Classcal Two-Way Analyas ofVariance of Parity, by Martal Duration nd by 
Level of Education 

Source of Sum of Mean Signicance 
Variation Squares DF Square F ofF 

Main Effects 27628.219 8 3453.527 845.017 .000 
MGP6 21880.840 5 4376.168 1070.770 .000 
LVED 225.538 3 75.179 18.395 .000 

2-Way Interactions 
MGP6 LVED 

206.965 
206.963 

15 
15 

13.798 
13.798 

3.376 
3.376 

.000 

.000 

Explained 27835.184 23 1210.225 296.121 .000 

Residual 27729.848 6785 4.087 

Total 55565.031 6808 8.162 

TABLE 3.8: Hierarchical Two-Way Analysis of Variance of Parity, by Marital Duration and by 
Level of Education 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Main Effects 27628.219 8 3453.527 845.017 .000 
MGP6 27402.684 5 5480.537 1340.990 .000 
LVED 225.535 3 75.178 18.395 .000 

2-Way Interactions 206.965 15 13.798 3.376 .000 
MGP6 LVED 206.963 15 13.798 3.376 .000 

Explained 27835.184 23 1210.225 296.121 .000 

Residual 27729.848 6785 4.087 

Total 55565.031 6808 8.162 

TABLE 3.9: Hierarchical ANOVA Table of Parity on Marital Duration and Level of Education, 
for British Data in Table D3. 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Main Effects 2714.299 7 387.757 239.473 .000 
MGP5 2641.761 5 528.352 326.303 .000 
LVED 72.538 2 36.269 22.399 .000 

2-Way Interactions 18.959 10 1.896 1.171 .305 

MGP5 LVED 18.959 10 1.896 1.171 .3C5 

Explained 2733.258 17 160.780 99.295 .000 

Residual 8100.891 5003 1.619 

Total 10034.148 5020 2.158 
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SSMGP6 + SSLVEDMGP6 = SSMGP6+LVED, 

27402.7 + 225.5 = 27628.2 

In SPSS, the hierarchical ANOVA is obtained by specifying OPTION 10 on the OPTIONS cards. 
We shall generally adopt the hierarchical form since the sums of squares add up correctly. Note, 
however, that for the two way table the classical ANOVA gives more information since both 
hierarchical ANOVAs can be derived from it by subtraction, but the reverse procedure is 
impossible. 

As noted above, the additive parts of the ANOVA table are based on the same model as that 
used for Multiple Classification Analysis. In fact the Eta and Beta measures in the MCA Table 

are derived from sums of squares in the ANOVA table. Specifically the squares of ETA and 
BETA for an effect A are 

ETA2 = S3A/SST BETA 2 = SSAIB / SST 

and are interpreted as the proportions of the total variance explained by the unadjusted and 

adjusted effects of A, respectively.
 

Two way analysis of variance again allows us to test the statistical significance of effects. A test
 

for the significance of the interactions is obtained by comparing the interaction mean square,
 

MSA.B, with the residual mean square, MSRES. Specifically, the F statistic, MSA.B/MSRES, is 

compared with the tabulated F distribution with the degrees of freedom of the interaction A.B 
in the numerator and of the residual in the denominator. In SPSS output, F values are given in 
the penultimate column of the table, and the last column gives the P-value, the probability of 
obtaining a value of F higher than that observed under the null hypothesis that the interactions 
are zero in the population. For example, in Table 3.8, the F-value for the interactions is: 

=13.798/4.087 3.376, 

which is highly significant, giving a P-value indistinguable from zero to three decimal places. 
Thus the additive model [A+B] does not fit the data, a result which confirms the visual inspect
ion of the data given in Section 2.2. 

Table 3.8 also gives F-values for the unadjusted effects of MGP6 (F=1340.990) and for the 
effects of LVED adjusted for MGP6 (F=18.395), both highly significant. The former confirms 
the obvious fact that differences in parity exist between duration groups. The latter the less 

obvious finding that significant educational differences persist after marital duration is con
trolled. 

An important objection can be raised to testing for the significance of the adjusted effects of 
education in this example. As we noted in Chapter 2, the adjusted effects are uniquely defined 
only if the additive model [MGP6 + LVED] holds for the population means. However, this Is 
never likely to be exactly correct in practice, and in the present example we have strong evi
dence that it is not the case, since the interactions are highly significant. Thus testing the signi

ficance of adjusted effects has little point when the interactions have been shown to be non
zero. 

Nevertheless, even in the presence of interaction, the statistics for the main effects in the 
ANOVA table still have some value, as summary measures of the size of an average of the 
adjusted main effects. The effect of the control of marital duration on the education different

= 
ials is illustrated by the reduction of the mean square for education from MSLVED 
(Table 3.6) to MSLVEDIMGP6 = 75.2 (Table 3.7). The latter compares with the interactions 
mean square of 13.8 and the residual mean square of4.09. Thus the average size of the adjust
ed main effects is considerably greater than the average size of the interactions, although the 
latter are statistically significant. 
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In general we would expect a significant interaction between these variables on a priori grounds, 

to the extent that differentials according to educational level emerge as marital duration in-

Equivalent data for the British survey (Table D3) 
creases. However this is not always the case. 
indicate an initial differential by educational level in the first marriage duration group which is 

maintained at a similar level for successive marisge duration groups. The resulting analysis of 

no evidence of a significant interaction effect. The issue of inter
variance, Table 3.9, reveals 
actions is considered further in Section 3.5.1. 

It should be pointed out that the assumptions underlying the F tests in this example are vio

lated, and hence the significance levels can be regarded as at best approximate. The tests assume 
are based on complex sampling designs

simple random sampling, whereas all WFS samples 
and clustering. The effect of this on significance tests is largely un

involving stratification 
known, although there are reasons to believe that for WFS data it is not critical. More import

ant for the present example is the assumption that the variance of the response within the cells
 

of the table Is constant, (the assumption known as homoscedasticity).This is clearly untenable
 

since the variance of parity clearly increases with marital duration.
 
for the present example, 
This is confirmed by the sample standard deviations in Table DI. Other situations where the 

variance is not constant are data on binary responses, such as Current Use of Contraception (1 = 

= No), where the cell means lie close to zero or one. In these cases the variances of the 
Yes, 0 
response decreases as the mean approaches the limiting values, zero and one. 

For the present example the lack of homoscedasticity seriously distorts the significance levels, 

and some weighting of the individual observations is desirable. This is described in Section 3.5. 

However even after allowance is made for gross departures from the assumptions, we are rarely 
mean that the statistical 

in a situation to interpret significance tests exactly. This does not 

analysis is rendered useless, but rather that the statistics should be regarded as useful diagnostic 

derived from the data, and should not be used to construct strict 5%/95% cut off 
measures 

points for deciding whether an effect is present or not.
 

3.5 Three-Way and Higher Tables 

The methods of multiple classification analysis and analysis of variance are particularly valuable 

or more factors. Simple techniques such as standardization 
for multiway tables involving three 

become awkward to apply because of empty cells, and it becomes increasingly advisable to use 

a statistical model to smooth the cell means. 

For a three.way table of means with factors A, B, and Cthe analysis of variance Is based on the 

decomposition 

= SSABC + SSRESSST 

SSSA+B+C + SSA.B+B.C+C.A + SSA.B.C + SSRES 

where SSRE S is the residual sum of squares, SSABC is the sum of squares for the joint variable 

the sum of squares for the main effects of A, B and 
(ABC), which decomposes into SSA+B+C, 

of squares for the two-way interactions adjusted for the main 
the sumC, SSA.B+B.C+C.A, 

the sum of squares for the three-way interactions adjiqsted for the main 
effects, and SSA.B.C. 

effects and the two-way interactions. Note the distinction drawn here between interactions of 

different orders. Two-way interactions measure differences in the effect of one factor between 

over the third factor. Three-way interactions measure differ
levels of a second factor, averaged 

in the two-way interactions between levels of the third factor. For higher way tables 
ences 
interactions between four or more factors are defined in a similar way. 

High order interactions are a problem in two respects; they are hard to interpret, and they are 

numerous, particularly for cross-tabulations involving factors with more than two or three 
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TABLE 3.10: Clicd Three-Way Andyns of Vrince of Purity by AV, by Ae at Nlag.,
and by Level of Education Treated as a Dichotomy 
Source of Sum of Mean Sgnificance 
Variation Squares DF Square F ofF 
Main Effects 

AGP5 
AMGP 
LVED 

27413.930 
17964.504 
7919.861 

105.523 

8 
4 
3 
1 

3426.741 
4491.126 
2639.954 

105.523 

834.409 
1093.586 
642.827 

25.695 

.000 

.000 

.000 

.000 
2-Way Interactions 

AGP5 AMGP 
AGP5 LVED 
AMGP LVED 

326.262 
210.000 
49.702 
53.307 

19 
12 
4 
3 

17.172 
17.500 
12.425 
17.769 

4.181 
4.261 
3.026 
4.327 

.000 
.000 
.017 
.005 

3-Way Interactions 
AGP5 AMPG LVED 

21.879 
21.879 

11 
11 

1.989 
1.989 

.484 

.484 
.914 
.914 

Explained 27762.070 38 730.581 177.896 .000 
Residual 27802.961 6770 4.107 
Total 55565.031 6808 8.162 

levels. For example, for a three-way table with factors A, B and C with J, K and L levels,
respectively, there are (J-1) (K-I) (L-I) linearly independent three.way interactions. Thus forthe data in Table D2 there are (5-1) (4-1) (4-1) =36 of them. In fact, a full analysis of variance
for these data was not possible in this analysis because of excessive space requirements in the 
computer. 
Two solutions to the analysis ofTable D2 are presented. The first is to group the factor level of
education into two levels, I = less than 6 years of education, 2 = Six or more years of education. This allows the full analysis of variance table to be calculated and it is given in Table
3.10. The second solution is to set the three-way interactions equal to zero and to calculate
only the main effects and two-way interactions. This is achieved in SPSS by specifying option 4
in the OPTIONS card, and results in the sum ofsquares SSA.B.C. being added to (or "pooled"
with) the error sum of squares, SSRES . The results from this analysis appear in Table 3.11. 

The sums of squares SSA+B+ C and SSA.B+B.C+C.A are again decomposed into components for 
the separate factors. The sum of squares for A.B, A.C and B.C are adjusted for main effects and
other two-way interactions. The sum of squares for A, B and C are prelented hi-.rarchirally, 

SSA, SSB1A, SSCIA+B, 

if OPTIONS = 10 Is specified, and otherwise in the classical manner, adjusted for other main 
effects: 

SSAIB+C, SSBIA+C, SSCIA+B 

Table 3.11 displays the ANOVA for the data in Table D2 in hierarchical form. 
The full ANOVA of Table 3.10 reveals a mean square of only 1.99 for the 3-way interaction
between AGP5, AMGP and LVED, compared with a residual mean square of 4.1. Hence there is no evidence of significant 3-way interactions and there is some justification in omitting them 
for the analysis of the original data. 
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TABLE 3.11: Hemrchical Thre-WaY Andyda of Variance of htity,by Ae, by AP at 
of Education in Four Groups, with 3-Way lnteections Fod6d with the

Mwmdge, and by LeIv 

Source of 
Varition 

Main Effects 
AGP5 
AMGP 
LVED 

2-Way Interactions 
AGP5 AMGP 
AGP5 LVED 
AMGP LVED 

Sum of 
Squares 

27468.961 
17267.563 
10040.844 

160.555 

381.930 
190.685 

87.205 
79.827 

DF 

10 
4 
3 
3 

33 
12 
12 
9 

Mean 
Square 

2746.898 
4316.891 
3346.948 

53.518 

11.574 
15.890 
7.267 
8.870 

F 

670.515 
1053.750 

816.987 
13.064 

2.825 
3.879 
1.774 
2.165 

S180lflcmnce 
of F 

.000 

.000 
.000 
.000 

.000 
.000 
.047 
.022 

Explained 27850.891 43 647.695 158.102 .000 

Residual 

Total 

27714.141 

55565.031 

6765 

6808 

4.097 

8.162 8.162 

= 3.88) and 
large interaction between AGP5 and AMGP (Fl 2,67 65 

indicates aTable 3.11 and between AMGP 
smaller but significant interactions between AGP5 and LVED (F= 1.77) 


and LVED (F= 2.17). The Multiple Classification Analysis for the data in Table D2 is presented
 

in Table 3.12. The adjusted effects for each factor in this table are based on fitting the additive
 

+ AMGP + LVED] to the data, and are adjusted for both the other factors. Thus 
model [AGP5 can be com
in particular the effects for LVED are adjusted for age and age at marriage, and 

pared with the adjusted effects from standardization given in Table 2.7. Also, a comparison of 

Table 3.12 and 3.4 indicates that the control of AGP5 and AMGP has a similar effect on the 

differentials by educational level as the control of MGP6. 

An alternative adjustment for Age and Age at Marriage which incorporates the two-way inter

actions between Age and Age at Marriage is to form the joint variable (AGP5*AMGP) and 
This is equivalent to 

on LVED and (AGP5.AMGP).
calculate the analysis of variance of NCEB 

The analysis of variance appears in Table 
fitting the additive model [AGP5.AMGP+LVED]. 
3.13 and the resulting MCA table is given in Table 3.14. This analysis is theoretically preferable 

to Table 3.12 since the included interactions are significant. However, the adjusted effects of 

Educational Level are not noticeably altered. 

3.6 Refinements 
for example, cross-tabular 

are often important and interesting in their own right -
Interactions an important interaction between Race and 
analysis of the Fiji Fertility Survey indicated 

Educational Level, namely that after adjusting for suitable demographic controls, differentials 

in fertility by educational level were evident for Fijians of Indian race but not for indigenous 

model between Education and Race wc-ld ignore this interaction and 
Fijians. An additive races. 
simply calculate an average adjusted effect of education for bno 


Nevertheless, sometimes interactions are an artifact of the way in which variables are measured.
 

A change of variable or the scale in which a variable is measured may eliminate interactions and
 

lead to a simpler interpretation of the data.
 

A common example of this occurs with dichotomous responses, taking values 0 and 1. Here the
 
= 1. If the proportions lie 

mean of Y in a cell corresponds to the proportion of cases with Y 
can conflict with the requirement that proportions lie 

near zero or one, then linear additivity 
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TABLE 3.12: Multiple Cldicatim Anayaluk Conupoed to ANOVA an Tabe 3.11 

Grud M w-3.94 

Vmbbe + Cateory 

AGP5
 
1 15-24 

2 25-29 

330-34 
4 35-39 
540-49 

AMGP 
I LTIS 
2 15-19 
320-24 
425+ 

LVED 
I No School 
2 1-5 Yeaw 
3 6-9 Years 
4 10 +Years 

Multiple R Squared 
Multiple R 

N 
Unadjusted

Dev'n Eta 

Adjusted for 
Independents
Dev'n Beta 

A4=ad for 
dTmkiht 

+ CoWiats 
Dev'n B 

1088 
1295 
1221 
1203 
2003 

-2.55 
-1.41 
-. 14 

.95 
1.81 

.56 

-2.92 
-1.29 

.03 
1.06 
1.76 

.58 

984 
2991 
1932 
903 

1.81 
.48 

-. 81 
-1.83 

.38 

1.45 
.63 

-. 61 
-2.38 

.40 

1512 
2686 
1704 
908 

1.23 
.30 

-. 69 
-1.64 

.32 

.25 

.04 
-. 13 

.29 
.06 

.494 

.703 

TABLE 3.13: Analysis of Variance with Age at Marriage and Age as a Joint Variable 

Source of 
Variation 

Sum of 
Squares DF 

Mean 
Square F 

Significance 
of F 

Main Effects 
AGP5.AMGP 
LVED 

27707.293 
27552.414 

154.879 

21 
18 
3 

1319.395 
1530.690 

51.626 

321.445 
372.923 

12.578 

.000 

.000 

.000 
Explained 27707.293 21 1319.395 321.445 .000 
Residual 27857.738 6787 4.105 

Total 55565.031 6808 8.162 
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TABLE 3.14: Multiple Chflcstlon Andyds Coanwuft to ANOVA in T&le 3.13 

Adjusted forGrand Mean - 3.94 
Adjusted for Independents 

Unadjusted Independents +Covariates 
Dev'n BetsN Dev'n Eta Dev'n BetsVad e +Cat goy 

AGP5AMGP1 114 -1.13 -1.19 
.412 	 165 .48 


175 1.56 1.47
3 
4 200 2.62 2.48
 
5 330 3.15 3.01
 
6 688 -2.47 -2.46
 

-. 637 	 473 -. 62 
.618 	 502 .64 


455 1.91 1.85
9 
10 874 2.55 2A8
 
11 286 -3.30 -3.20
 
12 521 -2.23 -2.14
 

-. 6513 	 306 -. 72 
.3614 330 .30 


15 489 1.35 1.34
 

17 136 -3.29 -3.14
 

18 239 -2.30 -2.14
 
19 218 -1.61 -1A6
 

310 -. 99 -. 9320 	 .70 .68 

LVED .25J No School 1512 1.23 

2 1-5 Years 2686 .30 .03
 

-. 123 6-9 Years 1704 -. 69 

4 10 + Years 908 -1.64 -. 29 .06
.32 

.499Multiple R Squared .706Multiple R 

TABLE 3.15: A2 x 2 Table of Proportions Additive on the Logit Scale 

b) logitsa) observed proportions 

Factor A
Factor A 

1 21 2 
Factor B 1 19 269 Factor B I -2.0 -1.0 

2 -4.0 -3.02 .018 .047 
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between the limits zero and one. Table 3.15a) shows a simple example for a 2x2 table. If the 

bottom left hand proportion is deleted, then the impossible value of -.103 (=.047+.119-.269) 

is required for the means to be additive on the linear scale. In fact the means in this table are 

the logit wale. That is, if the proportions are converted to logits by the trans
additive on 

= 
log [p/(1p)] ,formation logit p 

then the logits are additive, as in Table 3.15b). The logit transformation stretches the scale at 

zero and one, thus inflating small differentials near these limiting values. 

Hence a simple approach to the analysis of cross-tabulated proportions lying near zero or one is 

transform the observed proportions to logits and carry out a standard analysis of variance of 

these transformed values. A modification is required for observed proportions of zero or one, 

for which the logit is not defined: One possibility is to replace the observed zero proportions by
 
, where n is the cell sample count. A more sophisticated
"1(2n) , and unit proportions by l-(2ny
 
for contingency tables is described in Little (1978).


procedure based on log linear models 
= 	 we have noted that additiveParity of our illustrative examples,Returning to the response Y 

models between level of education and the demographic controls are unlikely because of the 

For the case of Sri Lanka there is clear-cumulative nature of the response over the life cycle 

evidence that interactions do exist. We now give two alternatives fertility measures for which 

additive models appear a priori more plausible. 

i) Y = log (parity) 

parity according to a background variable increase 
For countries where differences in mean 

parity, it may be plausible that percentage (or proportional)differences in mean 
with 	mean 

for all levels of marital duration. This is equivalent to differences in the 
parity are the same 
logarithm of mean parity being constant for all levels of marital duration, or additivity on the 

jk is the mean parity for marital duration level j, educational level k, and the 
log scale. For, if 

proportional differences
 

Pjk/gj k0k
 

are the same for all values of duration j, then the differences in the log means, 

log 1jk" log j 

are also the same for all values of duration j *. 

as the response. If logarithms are taken 
Thus interactions may be reduced by taking log (Parity) 

with 	zero parity, for
then some modification is required for women 

at the individual level, 
which logarithms cannot be taken. One possibility is jimply to restrict the analysis to women 

or more births. Another is to add a constant before taking logs (Hermalin and Mason, 
with one 
1979). A more sophisticated procedure based on log-linear models which avoids this problem 

is presented in Little (1978). 

ii) Y Parity /Marital Duration (P/D).= 


An alternative approach is to postulate that differences in mean parity between categories of a 

background variable are proportional to marital duration. Thus if the response is defined as 

Parity divided by Marital Duration (P/D)** an additive model is obtained. A detailed discussion 

of this measure is given in little (1977). 

Recall the basic property of the logarithm.* 

1 - log0P2 for all lul, 2"
 log ( 1 /P2) = Iog 

** 	 In fact, the variable is defined as 120xParity/(Months Since First Marriage), and, as such, measures 

births per ten years of marital duration. 
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TABLE 3.16: Weighted Analysis of Variance of Parity Divided by Marital Duration, by Marital 

Duration and by Level of Education 

Source of 
Variation 

Sum of 
Squares DF 

Mean 
Square F 

Sinificance 
of F 

Main Effects 
MGP6 
LVED 

1165.521 
1159.160 

81.090 

8 
5 
3 

145.690 
231.832 

27.030 

94.858 
150.944 

17.599 

.000 

.000 

.000 

2-Way Interactions 
MGP6 LVED 

61.361 
61.361 

15 
15 

4.091 
4.091 

2.663 
2.663 

.000 
.000 

Explained 1226.881 23 53.343 34.731 .000 

Residual 10313.412 6715 1.536 

Total 11540.293 6738 1.713 

We shall apply the second of these approaches to the Sri Lanka data. A straight analysis 
of 

variance of the mean values of P/D cross-classified by MGP5 and LVED isnot recommended, 

because itgives equal weight to observations with low or high marital durations.Intuitively we 

would expect the values of P/D with small values of D to be much less stable, since they are 

higlFly sensitive to the timing of the early births. In statistical terminology, the variance of P/D 

is not constant for all values of D, and hence one of the main statistical assumptions of Analysis 

of Variance is not satisfied. 

out a weighted analysis, with weights inversely proportional to theThe solution is to carry 
variance. Here we assume that the variance of P/D is inver'ely proportional to D, and hence the 

weights are proportional.to D. Thus each individual in tie sample is given a weight proportional 

to her marital duration. This choice of weighting is particularly appropriate for the chosen 

measure of fertility. It results in weighted means of P/D which are simply ratios of cumulated 

births divided by cumulated exposure. 

That is, 

E Di(Pi/D i) Z = (E Pi) / (E Di) 

Subclass Subclass Subclass Subclass 

The weighted two-way analysis of variance is presented in Table 3.16. Unfortunately in this 

case the transformation has not eliminated the interaction between marital duration and 

educational level; it yields a highly significant F-statistic of 2.663. Inspection of the weighted 

cross-classification of P/D by MGP6 and LVED, displayed in Table D4, reveals the reason. For 

low durations, the tempo of fertility (as measured by the response) is greater than average for 

highly educated women. At high durations, the reverse is the case. Hence here it appears that 

the interaction between duration and education is an inherent characteristic of the data rather 

than an artifact of the choice of response. 

One technical difficulty in the weighted analysis needs attention. The degrees of freedom for 

residual in the ANOVA table, ,nd hence the F statistics, are incorrect unless the weights are 

scaled so that they sum to the ue number of observations, in this case 6559. The scaling here 
asis not quite correct: the degrees of freedom for residual should be 6535 rather than 6715, 

shown in Table 3.16. This inaccuracy is not serious enough to change the substantive inter

pretation of the table, but the table should be corrected in practice. Some statistical packages 

automatically scale the weights so that the degrees of freedom are correct, but this was not the 

case in the version of SPSS used here. 
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4. ANALYSIS OF COVARIANCE 

4.1 Introduction 

So far the independent variables in our examples have all been categorical in nature. The 

analyses could all be calculated using only the means, variances and sample counts within the 
now on we consid methods which require individual levelcells of a cross-tabulation. From 

data. It should be stressed that this does not represent a change in the emphasis of the analysis 

from the "macro" to the "micro" level, since the statistics produced will still be averages or 

summaries based on the individual level data which lead to statements at the aggregate level. 

so far is that they require the groupingA common characteristic of the techniques considered 
of interval scaled regressors, such as age and age at marriage, into a small number of categories. 

Also the treatment of the categorical variables does not take into account any ordering between 

the categories. The effects of a grouped variable are estimated in a way which implies that the 

mean response is constant within the ranges of each grouping, and jumps suddenly between 

groups. For example consider the relationship between parity and marital duration for the Sri 

Lanka data. The mean parities by single years of marital duration are plotted in Figure 4.1. 

The step function represents the relationship implied by replacing marital duration by the six 
not ideal, since it is discontinuous and does notcategories MGP6. As a model this is clearly 

reflect the positive relationship between duration and parity within duration groups. A finer 

grouping would model the relationship more accurately, but this increases the number of 

parameters required to represent the effect (c-l parameters for a variable with c groups). We 

have already encountered difficulties in estimating the number of parameters required for the 

three-way analysis of variance of Section 3.3; increasing the number of categories of marital 

duration makes problems like this even worse, and conflicts with the need for a parsimonious 

representation of effects. 

A natural alternative treatment of the means in Figure 4.1 is to fit a smooth curve to the data. 

Two alternatives are shown. The first assumes a linear relationship. In symbols, the population 

parity p at duration YSFM (Years Since First Marriage) is assumed to take the formmean 

pi(YSFM) = c0 + cc, YSFM (4.1) 

FIGURE 4.1: Mean Number of Children Ever Born as a Function of Years Since First Marriage. 

M Lanka Data 
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Where ccI is the dope, that is the increase in parity pr year of marital duration, and C0 is the 
intercept (which might be taken as zero). This equation does not model a decline in the slope as 
marital duration increases, which is expected on substantive grounds and also apparent in the 
observed means. Hence the second curve models a linear decline by including a quadratic term 
in marital duration. That is, 

p(YSFM) = oc0 + cc, YSFM + -2 YSFM2 . (4.2) 

Here the effects of duration are represented by two parameters, c1, the slope (or more precise
ly the tr.agent to the curve) at YSFM = 0 and o-2, the rate of change of the slope with marital 
duration. The parameters in equations (4.1) and (4.2) may be estimated by least squares, using 
a linear regression program; further details are deferred until Chapter 5. 

Inspection of Figure 4.1 indicates that the effects of duration are more closely modelled by the 
one or two parameters in the regression models (4.1) and (4.2) than by the five parameters of 
the grouped model. 

As in analysis of variance, the effect of a variable in a regression has an associated sum of 
squares, which measures the variation in the response attributable to that variable. The relative 
effectiveness of the grouped model and the regression models in capturing the effect of marital 
duration on parity can be compared via the sum of squares for the effects of duration obtained 
from each fit. These are as follows: 

Model Marital Duration Degrees of Freedom Sum of Squares 

5 27,403Grouped MGP6 
27,696(4.1) YSFM 1 

(4.2) YSFM and YSFM2 2 28,498 

The sum of squares for the grouped model is taken from Table 3.8 for the regression models 
they are taken from Tables 4.1 and 4.3. (Despite the appearance of LVED in these tables, the 
effects of duration are not adjusted by education.) The superiority cf the linear regression 
representation (4.1) over the grouped factor MGP6 is reflected by the greater sum of squares 
explained (27,696 as opposed to 27,403), achieved with four less degrees of freedom. The 
addition of the quadratic term in Model (4.2) further improves the fit by a significant amount. 

In conclusion, polynomial regression models often provide a parsimonious method for sum
marizing the effects of interval scaled regressors. 

4.2 Analysis of Covariance 

We now return to the problem of estimating the effects of education, adjusted for marital 
duration. The adjusted means of education from multiple classification analysis are imperfect 
in that they do not take into account differences in the distribution of marital duration be
tween education groups within each level of MGP6. In other words, they also may be distorted 
by the representation of marital duration as a grouped variable. What isrequired isa method of 
adjustment which adopts the superior polynomial representation of marital duration described 
in the previous section. The technique which achieves this isanalysisofcoyarlance. 

In the model of equation (4.1) a straight line was fitted to the plot of mean parity by marital 
duration for the whole sample. In analysis of covariance a separate straight line is fitted to the 
data for each education group. The results are plotted in Figure 4.2.a. The effects of education 
adjusted for marital duration are represented by the vertical displacements between the lines. 

As with multiple classification analysis, the effects of education and marital duration are 
assumed to be additive in this method. Thus the fitted curves in Figure 4.2.a are constrained so 
that the vertical displacements between the lines are constant for all values of marital duration; 
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FIGURE 4.2: Fitted Values from Analysis of Covarince of Mean Paity on Yem Since Fiat 
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a) Linear Fit to Marital Duration b) Quadratic Fit to Marital Duration 

in other words, the lines are parallel. The effect of marital duration adjusted for education is 

the (common) slope of the regression lines. The fitted lines are obtained by finding values of 
sum of squared

the common slope and the intercepts for each education group so that the 

deviations between the observed and fitted values is minimized. 

The alternative analysis of covariance diagrammed in Figure 4.2.b assumes a quadratic relation

ship between parity and marital duration for each education group. Note that again the curves 

are parallel, reflecting the additivity assumption. This Isachieved by constraining the linear and 

quadratic terms of the regression to be equal for each education group. Th adjusted effects of 

education are again represented by the vertical displacements between the cuves. Both the 

figures can be compared with the MCA representation in Figure 2.l.b. 

We can also write down equations for the fitted means in each model. The MCA of the previous. 

chapter was based on fitting a model where the mean parity tjk for marital duration group j, 

and level of education k takes the form 

+ (4.3)Pjk = cc, + k 

If the effect of marital duration is modelled by linear regression, as in Figure 4.2.a, we obtain 
parity for marital duration YSFM

the analysis of covariance model which expresses the mean 


and education level k in the form
 

(4.4)-
Ik (YSFM) = p +cc, YSFM + Pk 

If the effect of marital duration is modelled by a quadratic regresson, a in Figure 4.2.b, we 

obtain the more detailed model 

(4.5)
ok (YSFM) = p+=I YSFM+ =2 YSFM2 + k 
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Note the similarity between (4.3), (4.4) and (4.5). All three equations express the fact that the 

additive, that is, the effects of education are the same for all levels of marital dura
effects are 
tion. For example, under model (4.5) the difference in mean parity between educational levels 

k and k' for women with marital duration YSFM is 

+-1 YSFM + o2YSFM2 0 )pk (YSFM)4ike(YSFM) = Cp +01 YSFM + 2 YSFM2 + Pk) ( 

Pkk- Pk,, 

result. Thus the 
and this is the same for all values of YSFM. The other models give the same 

adjusted effects of education are given by the parameters Pk- If the parameter PI is set equal to 

zero, then Pk represents the difference between educational level k and educational level 1, 

adjusted for the effect of marital duration. The only difference between the methods is the way 

in which marital duration is controlled. 

Analysis of Covariance can be carried out using the SPSS Analysis of Variance program by
 

specifying covariates on the ANOVA card. The results of fitting the model (4.4) with factor
 

LVED and covariate YSFM are rpresented in Tables 4.1 and 4.2. The results for model (4.5)
 

are given in Tables 4.3 and 4.4. Various options are available 
with covarlates YSFM and YSFM 
for the presentation of the ANOVA and MCA tables according to whether covariates are adjust

ed before or after the main effects of factors, and whether the sums of squares for the effects 

are presented in a classical or a hierarchical form. 

Here the covariates are adjusted first, the default in SPSS. Thus in Tables 4.1 and 4.3 the sums 

of squares for the covariates are presented first and are not adjusted for the factor LVED. The 

of squares for LVED is presented next and is adjusted for the covariates. This sum of 
sum 
squares is slightly smaller (174.5) when the quadratic term YSFM2 is included than otherwise 

(193.0). The adjusted education effects are presented in the MCA tables, Table 4.2 and Table 

4.4. Finally Table 4.5 summarizes the adjusted and unadjusted effects of education on parity 

obtained by the various methods considered in this and the previous chapters. 

so far have been restricted to a single
The examples of Analysis of Covariance considered 

factor (LVED) and have not included interaction terms. Within the context of our Analysis of 
can becovariates and interactions between factors 

Variance program, interactions between 
are not allowed. .s an illustration,

included, but interactions between covariates and factors 

Tables 4.6 and 4.7 presents the results of a weighted analysis of covariance with response parity 

divided by marital duration (P/D), weights proportional to duration, factors respondents edu
with the same categories as 

cational level (LVED) and husband's educational level (HEDL), 


LVED, and covariates representing the effects of marital duration and age at first marriage. The
 

covariates consist of linear and quadratic terms in duration and age at first marriage (YSFM,
 

and the interaction represented by multiplying the individual 
YSFMSQ, AGFM, AGFMSQ), 

values of years since first marriage (YSFM) and age at first marriage (AGFM), that is,
 

YSFM x AGFM.YSFMAGFM = 

specified on the ANOVA card, which implies that i) Covariates are adjusted
OPTION 10 was 
first, ii) factors are adjusted after the covariates, and iii) the sums of squares for covariates and 

the main effects of factors are presented in a hierarchical form. Thus, for example, the sum of 

squares for LVED in Table 4.6 (22.667) is adjusted for the covariates, and the sum of squares 

for HEDL (22.231) is adjusted for the covariates and LVED. The latter yields a highly signifi

cant F of 5.03, suggesting that husband's education has an effect on fertility after adjusting for 

respondent's education and the demographic variables marital duration and age at first mar

riage. 

Two sets of interactions are presented in Table 4.6. The interactions between age at first mar

riage and marital duration are represented by the single product term YSFMAGFM, and have a 
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TABLE 4.1: Analysis of Vriance of Parity on Level of Education with Yem Since First 
Marrige u a Covarlate 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 

Covariates 27696.445 1 27696.445 6809.126 .000 
YSFM 27696.445 1 27696.445 6809.126 .000 

Main Effects 192.992 3 64.331 15.816 .000 
LVED 192.995 3 64.332 15.816 .000 

Explained 27889.438 4 6972.359 1714.143 .000 

Residual 27675.594 6804 4.068 

Total 55565.031 6808 8.162 

Covariate Raw Regression Coefficient 
YSFM .214 

TABLE 4.2: Multiple Classification Analysis Corresponding to Table 4.1 

Grand Mean = 3.94 Adjusted for 
Adjusted for Independents 

Unadjusted Independents + Covariates 
Variable + Category N Dev'n Eta Dev'n Beta Dev'n Beta 

LVED 
I No School 1512 1.23 .23 
2 1-5 Years 2686 .30 .07 
3 6-9 Years 1704 -. 69 -. 14 
4 10 + Years 908 -1.64 -. 32 

.32 .06 

Multiple R Squared .502 
Multiple R .708 

TABLE 4.3: Analysis of Variance of Parity by Level of Education with Linear and Quadratic 
Terms ofMarital Duration as Covaliates 

Source of Sum of Mean Significance 
Variation Squares DF Square F of F 
Covariates 28497.988 2 14248.994 3604.571 .000 

YSFM 5289.371 1 5289.371 1338.053 .000 
YSFMSO 801.545 1 801.545 202.767 .000 

Main Effects 174.547 3 58.182 14.718 .000 

LVED 174.547 3 58.182 14.718 .000 

Explained 28672.535 5 5734.507 1450.659 .000 

Residual 26892.496 6803 3.953 

Total 55565.031 6808 8.162 

Covadate Raw Regression Coefficient 
YSFM .343 
YSFMSQ -. 004 



TABLE 4.4: Multiple Classification Analysis Conesponding to Table 4.3 

Adjusted for
Grand Mean = 3.94 

Adjusted for Independents 
Unadjusted Independents + Covarlates 

Variable +Category N Dev'n Eta Dev'n Beta Dev'n Beta 

LVED .25I No School 1512 1.23 
.042 1-5 Years 2686 .30 

-. 153 6-9 Years 1704 -. 69 
-. 274 10 + Years 908 -1.64 

.06.32 
.516Multiple R Squared 
.718Multiple R 

TABLE 4.5: Summary of Effects of Education, Expressed as Deviations from Overall Mean 

Effects of Education Sam of 

1-5 6-9 10+ Squares SourceMethod of No 
Years Years Years Mean of Effect Tables

Control Adjustment Schooling 

- 1.23 .30 -. 69 -1.64 3.94 5747.4 D1,3.6
a. Unadjusted 

3.88 - D1,3.1b. MGP6 Test Factor .26 .10 -. 13 -. 45 

Standardization
 

-. 16 -. 31 3.94 225.5 3.2,3.4MGP6 ANOVA, MCA .29 .05 
-. 14 -. 32 3.94 193.0 4.1,4.2YSFM ANCOVA,MCA .23 .07 

.04 -. 15 -. 27 3.94 174.5 4.3,4.4YSFM, YSFM2 ANCOVA, MCA .25 

.16 -. 06 -. 74 3.84 - D2 
c. 	AGP5*AMGP Test Factor .29 


Standardization
 
.25 .04 -. 13 -. 29 3.S4 160.6 3.11,3.12AGP5, AMGP ANOVA,MCA 
.25 .03 -. 12 -. 29 3.94 154.9 3.13,3.14AGP5*AMGP ANOVA,MCA 

highly significant F value, 29.07. Indeed, note that all the covariates contribute significantly to 

the fit. The interactions between respondent's education and husband's education are repre

sented by the two-way interactions for LVED and HEDL, with 9 degrees of freedom. These 

yield a non-significant F value of 1.12, indicating no evidence of a significant effect. 

This is a fairly elaborate model, but it fals to encorporate one important feature of the data, 

namely the interactions between education and the demographic controls, as evidenced in Table 

3.16. Models which allow interactions between covariates and factors are treated in the next 

chapter. 
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TABLE 4.6: Weighted Analysis of Variance of Parity Divided by Duration by Respoident's 

Level of Education (LVED) and Husband's Level of Education (HEDL), with Linear and 

Quadratic Terms in Years Since First Marriage and Age at First Marringe and the Product of 

Years Since First Marriage and Age at First Marriage as Covariates 

SignificceMeanSum ofSource of 
Squares DF Square F of F 

variation 
5 317.018 215.281 .000

1585.090Covariates .0001 1098.046 745.6631098.046YSFM 
28,979 19.679 .000 

YSFMSQ 28.979 1 
.000356.166 241.865356.166 1AGFM .0001 59.088 40.12659.088AGFMSO 

59.088 1 42.812 29.073 .000 
YSFMAGFM 

7.485 5.083 .000 
Main Effects 44.909 6 

3 7.559 5.133 .00222.677LVED 
7.410 5.032 .00222.231 3HEDL 

9 1.650 1.120
2-Way Interactions 14.849 .344 

LVED HEDL 14.849 9 1.650 1.120 .344 

82.242 55.849 .000
1644.848 20Explained 

1.4739953.146 6759Residual 
1.71111597.994 6779Total 

Covariate Raw Regression Coefficient 

YSFM -. 049 
YSFMSQ .001
 
AGFM -. 059
 
AGSMSQ -.003
 
YSFMAGFM -. 004 

TABLE 4.7: Multiple Classification Analysis Corresponding to Table 4.6
 

Adjusted for
 
Grand Mean = 2.69 

Adjusted for Independents 

Unadjusted Independents + Covariates 
Beta Beta 

Variable + Category N Dev'n Eta Dev'n Dev'n 

LVED .07-. 03No School 2003 
-. 01

2 1-5 Years 2873 -. 00 
-. 07

3 6-9 Years 1394 .02 
.02

4 10 + Years 511 .09 
.04.02 

HEDL
 
1 No Schooling 681 -. 02 .04
 

.01
2 1-5 Years 3110 .00 

.04
3 6-9 Years 2214 .03 

-. 18
4 10 + Years 774 -. 08 

.05.03 
.141

Multiple R Squared .375
Multiple R 
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5. MULTIPLE LINEAR REGRESSION 

5.1 Introduction 

In chapter 3 analysis of variance and multiple classification analysis were introduced as methods 
for analysing the effects of categorical regressors (factors) on a response. In Section 4.1 multi
ple regression was introduced as a method for calculating the effects of an interval scaled 
regressor, years since first marriage, on a response. Then in subsequent sections an extension of 
analysis of variance to include factors and covarlates, analysis of covariance, was discussed. 

This terminology, which developed for historical reasons, is not entirely appropriate. Analysis 
of variance is a general method which can be applied to problems with interval-scaled regressors 
with or without factors, as well as to problems involving factors only. 

Indeed, ANOVA tables for Analysis of Covariance have been presented in Section 4.2. Further
more, all the models fitted can be viewed as special cases of multiple linear regression. Thus in 
this chapter analyses of the previous chapters are replicated using a multiple regression program. 

The perspective adopted in this chapter is more general and flexible than that of previous chap
ters, and includes models involving interactions between covariates and factors which lie outside 
the scope of Chapters 3 and 4. The basic me'hod of analysis is multiple linear regression, which 
can be used to fit models involving the main effects of categorical and/or interval-scaled regres
sors, and specified interactions between them. Analysis of variance and multiple classification 
analysis are viewed as optional outputs which can be calculated from the basic output of the 
regression program. Analysis of variance decomposes the variance in the response into com
ponents for each effect; the ANOVA table is derived from the regression sums of squares from a 
sequence of regressions. Multiple classification analysis presents the effects of a categorical 
regressor from a regression which is additive between that factor and the other factors and 
covariates. 

We begin by presenting the elements of multiple regression; this is sketched rather briefly and 
assumes some prior knowledge on the part of the reader. We then discuss how categorical 
regressors are treated within the context of the method, by the creation of dummy variables. 
Finally, we discuss how to encorporate interactions in the regression. 

5.2 Elements of Multiple Linear Regression 

The data for a regression analysis consist of values for each individual i of a response variable Yi 
and a set of k regressors, Xil, ... , Xk. Multiple linear regression calculates a fitted value Yi for 
each individual i which is a linear combination of the regressor values for that individual, that is 
takes the form k 

=Yi bo +Z b. Xij, (5.1) 
j=l 

and is as close as possible to the observed value, Yi. Specifically, values of the intercept b and 
the slopes b1 ... ,bk are chosen so that the fitted values minimize the sum of squared devia. 
tions 

i) 2(Y"-SS = 
i 

or more generally, the weighted sum 

SSW = w1 (Yi - i)2 (5.2) 

for some chosen set of weights, wj. Associated with this calculation is a decomposition of the 
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response Yi into the fttted value, li, and the reddua/, Yi - Ii. If Y ismeasured as a deviation 

from the sample mean Y, we have 

=,-Y(Y1 -Yi) + (Y1.-Y) 

Squarig and summing over the (weighted) observations, the cross-product terms (Yi " Y) 
(Yi- Yj) sum to zero and we obtain the analysis of variance decomposition 

(Y Y9 = E (YY ) (5.3) 

SST = SSREG + SSRES 

That is, the total corrected sum of squares, SST, with N - I degrees of freedom, decomposes 
into the sum of squares for the regression, SSREG, with k degrees of freedom, and the residual 
sum of squares, SSRES , with N-k-i degrees of freedom. The basic output of regression is the 
set of regression co ficients, bo, bI ....,bk, and the ANOVA table based on the decom
position given in eqwation (5.3). 

Note that according to equation (5.1), if a regressor Xi- is increased by one unit with the 
other regreors held fixed, the fitted value Yi is increased by b,. Thus b, is interpreted as the 
effect on Y of increasing X by one unit with the other regressors controlled. Sometimes 
regression coefficients are calculated after standardizing the response and regressors to unit 
variance by dividing by their standard deviations. The resulting coefficients b] are called stand
ardized, and are related to the coefficients bj by the forumla 

b! = bsd(X3./sd(Y), 

where sd stands for standard deviation. The standardized coefficient bj estimates the increase in Y, 
measured in standard deviations of Y,obtained by increasing X,by one standard deviation with 
the other regressors controlled. Standardized coefficients are'labelled BETA in SPSS output. 

Other statistics commonly presented are multiple R2 , defined as the proportion of the variance 
explained by the regression, SSREG/SST, and the multiple R, the square root of this measure. 

Also, of interest are the F statistic for the regression sum of squares, that is, the ratio of the 
regression mean square to the residual mean square, and standard errors for the regression co
efficients. Statistical tests and confidence intervals based on these quantities are available under 
the following statistical model. The response values Yi are assumed independently normally 
distributed with a mean linear in the X's, that is 

E (i) = Po i+ •• + kXik, (5.4) 

and variance inversely proportional to the weight wi. If this model is true, then the overall 
statistical significance of the regression coefficients can be tested by comparing the F-statistic 
for the regression sum of squares with the tabulated F distribution with k and N-k-I degrees of 
freedom. Also the significance of individual coefficients can be tested by comparing the in
dividual F values with the tabulated F distribution with I and N-k-I degrees of freedom. 
Alternatively, 95% confidence intervals may be obtained by subtracting plus or minus two 
standard errors from the estimated coefficients. 

Table 5.1 gives the SPSS output for the regression of NCEB on YSFM and YSFM2, discussed 
in Section 4.1 and plotted ki Figure 4.1. The important quantities in this output can be identi
fled as follows: 
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TABLE 5.1: Quadratic Regresson of Farity on Years Since First Marriage 

FVARIABLE(S) ENTERED ON STEP NUMBER 2.. YSFMSQ 
DF SUM OF SQUARES MEAN SQUARE 3 FMULTIPLE R .71630 ANALYSIS OF VARIANCE 

2. 28516.43333 14258.21666 3586.42834
.51309 REGRESSIONR SQUARE 6807. 27061.93227 3.97560ADJUSTED R SQUARE .51294 RESIDUAL 

ASTDR SAER198 ........ VARIABLES NOT IN THE EQUATION .......
 

.......
 

STANDARD ERROR 1.99389 

..............
............. VARIABLES IN THE EQUATION 

PARTIAL TOLERANCE F

F VARIABLE BETA IN 
B BETA STD ERROR BVARIABLE .00939 1317.513

1.12240
.3408267
YSFM 195.559.00028-. 43242-. 3940649E02YSFMSQ 

(CONSTANT) 
 .1311261 

TABLE 5.2: Regression of Parity on Level of Education Represented as a Set of Dummies 
REGRSSION LIST 1 

REGRESION LIST 1 
REGRESSIONS ON NCEB 

DEPENDENT VARIABLE.. NCEB 
PRIM 

F 
VARIABLE(S) ENTERED ON STEP NUMBER 1.. 

RSEC 

HIGH 

FDF SUM OF SQUARES MEAN SQUARE
ANALYSIS OF VARIANCE.32154MULTIPLE R 

3. 5746.02924 1915.34308 261.59370 
.10339 REGRESSIONR SQUARE 6806. 49832.33636 7.32182
.10299 RESIDUALADJUSTED R SQUARE 

2.705 89STANDARD ERROR IN............ACE
. ........ VARIABLES NOT IN THE EQUATION.........
 ............ VARIABLES IN THE EQUATION 


VARIABLE 
 B BETA STD ERROR B F VARIABLE BETA IN PARTIAL TOLERANCE F 
5444.731.68196 .66669 .85690

.08700 113.151 YSFM 
PRIM -. 9254233 -. 15832 -. 20829 -. 21796 .98180 339.397MG19.09560 399.150 3.541RSEC -1.909992 -.28959 MG14 -. 02162 -. 02281 .99659.11361 635.143HIGH -2.863278 -. 34068 .12150 .12809 .99659 113.5157MGI9 .98224 353.794MG24 .21234 .22231
(CONSTANT) 5.167174 .92989 1256.992M25P .38773 .39486 



N=6810, k=2. 
Coefficients: b0 = .1311, bI = .3408, b2 = -.00394 
Standard Errors: se(b 1) = .00939, se (b2) = .00028 
Standard Coefficients: bI = 1.122, b' = -.4324 

= 2 851 6 4 = ANOVA: SSRE G . , SSRES 27061.9, R2 =.5131, R =.7163 

F - value for regression sum of squares = 3586.4 

5.3 Treatment of Factors in Regression 

5.3.1 ASingle Factor 

Interval scaled covariates, such as YSFM and AGFM, are introduced directly into a regression 
without recording. On the other hand, the treatment of categorical variables, and the inter

pretation of the regression coefficients obtained for them, requires more care. 

We first consider a simple regression on a dichotomous variable, that is, a variable with two 

categories. For example, suppose that the response Yi is the parity for individual I and X1 is a 
with formal education and zero otherwise. The fittingvariable taking the value one for women 

equation (5.1), specifies that predicted mean parity 1i takes the form 

A 
=Yi + b, Xi , (5.5)b0 

where bI is the slope and b0 is the intercept. Hence the predicted mean parities for women 
with no education and for women with formal education are obtained by substituting X, = 0 

and Xi = I respectively in equation (5.5): 

AA 

(YI Xi =0) = b0 ;(Yi JXiff 1) = b0 +b1 . (5.6) 

Hence b0 is the predicted mean for individuals with Xi = 0 and bI is the difference in predicted 

means between individuals with X, = 1 (that is, educated women) and individuals with Xi = 0 
(that is, uneducated women). Note that the original interpretation of regression coefficients still 

= 
remains. The slope b1 represents the increase in the fitted mean obtained by changing X 0 to
 

X = 1, which is equivalent to switching from the uneducated to the educated group.
 

It comes as no surprise that in practice the fitted values (5.6) calculated by regression to mini
mize (5.2) are simply the weighted sample mean parities for the two groups. That is,
 

bo =YO, b0 + bl = Y1 , 

where Yj is the (weighted) mean parity for women with Xi =j, a = 0,1). Hence in a sense the 
regression is equivalent to a simple cross-tabulation of the mean parities for the two groups. 

Now consider a factor with k>2 groups. For example, let us consider the factor LVED with k = 
4 groups, NO EDUCATION, 1-5 YEARS, 6-9 YEARS and 10 OR MORE YEARS. Suppose that 
these levels are coded I to 4 and the variable introduced into the regression as a covariate. Then 
the regression model wi!l predict means for the four groups which are equally spaced. That is, if 
the intercept and slope are b0 and b I respectively, the predicted means for the four groups are 
b0 +bl, b0 +2bl, b0 +3b1 and b0 +4b I , and thus adjacent groupsall differ by the quantity b 1. 

This procedure effectively assumes an ordering between the categories, which Is justified for 
this variable but does not make sense for unordered factors such as, say, Religion. The imposit. 
ion of equal spacing between the category means is often less desirable, and implies that the 
regression is not analogous to the cross-tabulation of mean parities, as was the case for a binary 

factor. We now give an alternative treatment of factors which does correspond to cross-tabu
lation in the simple case when a single factor is included in the regression. 
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TABLE 5.3: Regreuion of Parity on Marital Duration and Level of Education, Represented as Sets of Dummy Variables 

VARIABLE LIST 1 
REGRESSIONS ON NCEB REGRESSION LIST 1 

DEPENDENT VARIABLE.. NCEB 
".. M25PVARIABLE(S) ENTERED ON STEP NUMBE'2 

MG09 
MG14 
MG19 
MG24 

DF SUM OF SQUARES MEAN SQUARE F 
MULTIPLE R .70505 ANALYSIS OF VARIANCE 

27627.74499 3453.46812 840.30466 
6801. 27950.62061 4.10978R SQUARE .49710 REGRESSION 8. 

.49650 RESIDUALADJUSTED R SQUARE 

STANDARD ERROR 2.02726
 

VARIABLES NOT IN THE EQUATION .........
 .....................
............. VARIABLES IN THE EQUATION 

F VARIABLE BETA IN PARTIAL TOLERANCE F
B BETA STI) ERROR BVARIABLE YSFM .64841 .17774 .03779 221.833 

PRIM -. 2380297 -. 04072 .06604 12.991 
RSEC -. 4495334 -. 06816 .07456 36.350 

0 HIGH -. 5951281 -. 07081 .09067 43.078 
.08596 4111.369M25P 5.511676 .74246 


MG09 1.465360 .19737 .08122 325.517
 
MG14 2.742686 .35560 
 .08410 1063.598
 
MG19 3.796765 .48123 .08602 1948.337
 
MG24 4.695667 
 .55494 .09138 2640.312
 
(CONSTANT) 1.311514
 



For a k-category variable, one category is selected and called the reference category. For each 
of the (k. ,q other categories, a dummy or indicatorvariable is defined, taking value one for 
individuals falling in that category and zero otherwise. Here we choose NO SCHOOUNG as the 
reference category, and define k-i = 3 variables 

PRIM = 
I , 

0, 
1-5 Years Education;
Otherwise 

RSEC = 
11

0 
,6-9 Years of Education
,Otherwise 

HIGH= 1 ,10 or More Years of Education 

1 0 ,Otherwise 

The factor is represented in the regression by the set of dummy variables defined thus, in this 
case PRIM, RSEC and HIGH. 

To see the effect of this, note that the fitted values from this regression are 

Yi = b + bl PRIMi + b2 RSECI + b3 HIGHi,0 

where PRIMI, RSECi and HIGHi are the values of PRIM, RSEC and HIGH for respondent I. For 
individuals with no education, PRIMI = RSECi = HIGH, = 0. Hence the predicted mean is 

=(Yi ILVED 1) = b0 , 

the intercept of the regression. For individuals with 1-5 years education, PRIM = 1and RSEC = 
HIGH = 0. Hence the predicted mean is 

(Yi ILVED = 2) = b0 +b 1 , 

Similarly for the other categories of education we obtain predicted means 

A 

(Yi LVED = 3) = bO +b 2 , (YilLVED =4) = b0 +b 3. 

Hence the intercept b0 is the fitted mean for the reference category, and the slope by is the. 
difference in the fitted mean between category/+I and the referencecategory. These propert
ies are of central importance in the interpretation of regressions with factors. 

Once again, the fitted mean obtained from the regression are simply the (weighted) sample 
means within each category of the factor, and hence regression is here a rather unwieldy way 
of obtaining the cross-classification of means. 

Table 5.2 gives the results of the regression of NCEB on the three dummy variables PRIM, 
RSEC and HIGH. The cross-tabulation of mean parity by Level of Education, given in Table 
2.l.a), is reconstructed from the regression coefficients as follows: 

b0 = 5.167,
 
bo+b I = 5.167-0.925 = 4.242,
 
bo+b 2 = 5.167-1.910 = 3.257,
 
bO + b3 = 5.167-2.863 = 2.304.
 

Note that the ANOVA table corresponds to the analysis of variance of NCEB on LVED, given 
in Table 3.3. The two tables differ only because of rounding error. This correspondence is 
inevitable, because both analyses are based on the same fitted model. 
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S.3.2 Two or More Factors
 

Now suppose we add another factor to the regression. Following the procedure in Chapter 3,
 

we include the factor marital duration with six levels, MGP6. As with LVED, this is represented 

in the regression by a set of dummy variables. A reference category, 04 years, is chosen, and 

defined for the other five year marriage groups, MG09, MG14, MGl9,
dummy variables are 
MG24 and M25P. If these are added to the regression equation, we obtain the output given in 

Table 5.3. The regression model here is 

b0 + b1 PRIM + b2 RSEC + b3 HIGH + b4 MG09 + b5 MG14 + b6 MG1 9 
Y = 

(5.7)+ b7 MG24 + b8 M25P. 

Substituting the coefficients in Table 5.3 we obtain the equation 

Y 
A 

= 1.31 -. 24 PRIM - .45 RSEC - .60 HIGH 

(5.8)
+ 1.47 MG09 + 2.74 MG14 + 3.80 MG19 + 4.70 MG24 + 5.51 M25P A 

From this expression we can derive fitted means for each level of LVED and MGP6. Let Yjk
 

denote the fitted mean for respondents with LVED j and MGP6 =k. The reference categories
 

1, and 0-4 years since first marriage, MGP6 = 1. Hence
= 

zero for all the variables In (5.8), we obtain the fitted value for women with nocorrespond to no education, LVED 

substituting
education married less than five years: 

Y = 1.31 

with 6-9 years of education married 15-19 years, we set
To obtain the fitted value for women 

RSEC = MG19 = 1 and the other variables equal to zero, obtaining
 

Y34 = 1.31 -. 45 +3.80=4.66 

are derived in a similar manner. The fitted values obtained are identical to 
Other fitted values 
those obtained from the multiple classification analysis of NCEB with factors LVED and 

MGP6, given in Table 2.2. This can be verified by comparing the values of Y11 and Y3 4 with 

the corresponding values in that table. The correspondence arises because both models fit the 

same additive model for the two factors. To demonstrate it rigorously, note that the regression 

equation (5.7) can be re-written in the same form as the MCA model,
 
=
Y-k 1+ ofi + Pk , "~j44, 14k-46, 

by setting 

1 =b 0 , *,1 = 0, o2=b1 , "3=-b2 , 0(4 = b2 

= b
7 , P6 = " 

P1 = 0,P2 = b4, 3 = b5 , 4 b6 , 5 b8 

have the interpretation as deviations between the dummy variable 
The coefficients in (5.7) = 


category and the reference category, adjusted for the other factor. For example, b, 


estimates the difference in mean parity between respondents with 1-5 years of schooling and 

respondents with no schooling, adjusted for marital duration. Thus the adjusted effects of edu
= -.24, b2 = cation, expressed as deviations from the NO SCHOOUNG group, are simply b1 


..45 and b3 = -.60. (Cf Table 2.4).
 

Suppose we wish to express these effects as deviations from the overall mean, p = 3.84, as in the 
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-.24 

http:3.80=4.66


MCA table. If dI is the deviation for the NO SCHOOLING group, then the deviations for the 
other groups are dI + b1, dI + b2 and dI + b3 respectively. To calculate d1 , we exploit the fact 
that the average over the distribution of the factor in the sample of the category deviations is 
zero. That is, if Pj is the (weighted) proportion of the sample in category j, then 

4 
0 = 1 Pjd. = dl + 223bl + 03 b2 + , 4 b3 ,j=l 


and hence d1 = 2 b , - P3 b2 - 04 b3 " 

If the means of the regressor variables are requested as part of the regression output, then these 
include the values of 0 2, 0'3 and 04. For example, the mean of the dummy variable PRIM is 
simply 0 2, the (weighted) proportion of individuals with primary education. In SPSS the 
means are obtained by specifying 

STATISTICS 2 

after the regression card. From this output, we obtain the weighted proportions. 

02 = .3944, i03 = .2502, P4 = .1333. 

Hence the deviation for the NO SCHOOLING category is 

d= -.3944 (-.24)- .2502 (-.45)-.1333 (-.60) =.29, 

and hence d1 = .29, d2 = .05, d3 = .16, d4 = -.31. These are identical to the adjusted devia
tions of LVED from multiple classification analysis, as given in Table 3.4. Finally, adjusted 
means for each category can be calculated by adding the overall mean to each deviation di . 

It remains to draw analogies between the analyses of variance in Table 5.3 and Tables 3.7 and 
3.8. Since the regression fits the additive model [MGP6 + LVED], the regression sum of squares
(27627.7) corresponds to the sum of squares for the main effects in Table 3.7 and 3.8, the 
difference being rounding error. In the notation of Section 3, this Is SSMGP6 + LVED. The 
unadjusted sum of squares for LVED, SSLVED is given by the regression sum of squares from, 
Table 5.2, viz 5746.0. Hence the amount a ded by introducing MGP6 is 

SSMGP61LVED = SSMGP6+LVED - SSLVED = 27627.7-5746.0 =21881.7, 

which corresponds to the adjusted sum of squares for MGP6 in Table 3.7 (21880.8). The un
adjusted sum of squares for MGP6 and the adjusted sum of squares for LVED cannot be ob
tained from thd existing regressions, requiring a further regression of NCEB on MGP6 alone. 
Also the interaction sum of squares cannot be found without fitting a regression including the 
interactions between the factors. This involves calculating all the product terms between the 
dummy variables in each group, 

PRIMMG09 = PRIM x MG09, PRIMMG14 = PRIM x MG4,..., 

HIGHM25P = HIGH x M25P 

and adding them to the regression. The addition to the regression sum of squares when the 
terms are added will then be SSLVED.MGP6 =206.96. 
This reconstruction of the ANOVA table by a regression program is not recommended in 
practice, since forming the product terms is tedious and the calculations are automatically
presented in the desired form by the ANOVA program*. However it Is instructive, and luatrat-

Not a ANOVA programs, however, present sufficient output of the effects of the mode, and hm 
regression can have an advantage. 
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TABLE 5.4: Analysis of Covariance Using Regression Program. Regression of Parity on Years Since First Marriage and Level of Education 

Represented as a Set of Dummy Variables 

VARIABLE LIST 1 
REGRESSIONS ON NCEB REGRESSION LIST 2 

DEPENDENT VARIABLE.. NCEB 
VARIABLE(S) ENTERED ON STEP NUMBER 1.. YSFM 

PRIM 
RSEC 
HIGH 

DF SUM OF SQUARES MEAN SQUARE 
MULTIPLE R .70846 ANALYSIS OF VARIANCE 

F 

4. 27895.38699 6973.84675 1714.30350
REGRESSIONR SQUARE .50191 

6805. 27682.97861 4.06804
.50162 RESIDUALADJUSTED R SQUARE 

STANDARD ERROR 2.01694 

VARIABLES NOT IN THE EQUATION .........
 ..................... 
............. VARIABLES IN THE EQUATION 


BETA IN PARTIAL TOLERANCE 
 F
F VARIABLEB BETA STD ERROR RVARIABLE .07422 19&186-. 43582 -. 168245444.731 YSFMSQ

YSFm .2071711 .68196 .00281 

PRIM -. 1666822 
 -. 02852 .06566 6.445
 

RSEC -. 3788385 
 -. 05744 .07422 26.054 
.09027 37.995HIGH -.5564369 -. 06621 

(CONSTANT) 1.135904 



es the sort of calculations that are done to construct the analysis of variance. The main advan
tages of the regression program occur when interval-scaled covariates are present, as discussed 
in the next section. 

S.4 Covariates and Factors 

If the dummy variables representing the factor MGP6 are replaced by the interval-scaled vari
able YSFM in the regression, we obtain the analysis of covariance model, 4.4. The addition of 
the quadratic term YSFMSQ gives the fit for the model 4.5. Output from these regressions are 
given in Tables 5.4 and 5.5, and corresponds to the output obtained from the ANOVA program 
given in Tables 4.1 to 4.4. The adjusted effects of education are again contained in the regres
sion coefficients for PRIM, RSEC and HIGH. The coefficients for YSFM and YSFMSQ, on the 
other hand, give the effects for marital duration adjusted for education. 

The F-statistics for the individual coefficients deserve some comment. In Table 5.4, the F
statistic for YSFM (5444.7) indicates the obvious fact that the adjusted linear effect of marital 
duration is highly significant. The standard errors and F-statistics for the dummy variables 
estimate the precision with which the corresponding effects are measured, and are not without 
Interest. However, note that for variables with more than two categories the set of values pre
sented depends on the choice of reference category. Also the F-values of pairwise differences do 
not present a reliable picture of the overall significance of the factor. It is possible for an 
isolated pairwise difference to be significant even through a simultaneous test for equality of 
the category means is not significant. Conversely, a simultaneous test may yield a significant
result even though none of the pairwise differences are significant for the choice of reference 
category adopted. A sensible strategy here is to test for equality of the category means, and to 
avoid interpreting individual differences unless this test is significant. The simultaneous test is 
based on the change in the regression sum of squares when the factor, represented by its set of 
dummies, is entered. Specifically, let SSadded and dfadded be the sum of squares and degrees 
of freedom added by the factor, and let mSRE S and dfRES be the residual mean square and 
residual degrees of freedom after the factor is added. Then the statistic 

F SSadded/dfadded
msRES 

is compared with an F distribution on dfadded and dfRES degrees of freedom. The test is 

illustrated in Section 5.6. 

Finally, in Table 5.5 the F-statistic for YSFMSQ is 198.19, again highly significant, indicating 
that it improves the fit and is worthy of inclusion. 

5.5 Controlling the Order of Adjustment by Stepwise Regression 

In the ANOVA program, covariates are controlled before or after the factors, according to an 
option specified by the user. It is not possible to interleave covariates and factors. A more 
flexible way of ordering controls is to fit a set of regressions using a stepwise regression pro
gram. The basic approach is illustrated with an application from the WFS illustrative Analysis 
on Socio-Economic Determinants of Contraceptive Use in Thailand (Cleland, Little, and 
Pitaktepsombati, 1979). 
The response variable is a binary variable indicating current use of contraception (CUSE),
taking values one for users and zero for non-users. The regressors consisted of two interval 
scaled variables, respondent's age at survey (AGE) and a standard of living index (STANDLIV); 
one binar factor, type of place of residence (TYPE OF PLACE) taking values one for urban 
and zero for rural; and four factors with more than two categories, number of living children 
(LIVCHILD), with nine categories, region (REGION), with five categories, husband's edu
cation (HEDUC), with four categories, and husband's occupation (HOCCUP), with five cate
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TABLE S5: Repeson of Poity on Linear and Quadratic Terms of Years Since First Marriage and Level of Education Reprelsented 2a Set Of 
Dmumy Variab 

VARIABLE LIST IREGRESSONS ON NCED 
REGRESSION LIST 2 

DEPENDENT VARIABLE.. NCEB 
VARIABLE(S) ENTERED ON STEP NUMBER 2.. YSFMSQ 

ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARE F 
R SQUARE 
MULTIPLE R .71834 

.51601 REGRESSION 5. 28678.90879 5735.78176 1450.81960 
ADJUSTED R SQUARE .51565 RESIDUAL 6804. 26899.45681 3.95348 
STANDARD ERROR 1.98834 

............. VARIABLES IN THE EQUATION ...................... VARIABLES NOT IN THE EQUATION .........
 

F VARIABLE BETA IN PARTIAL TOLERANCE FVARIABLE B BETA STD ERROR B 

YSFM .3349421 1.10256 .00949 1246.024 
PRIM -. 2129170 -. 03643 .06481 10.793 
RSBC -.4020727 -.06096 .07319 30.182 
HIGH -. 5188914 -. 06174 .08903 53.967 
YSFMSQ -. 3977706E-02 -. 43582 .00028 198.186 
(CONSTANT) .4882426 

ALL VARIABLES ARE IN THE EQUATION 



rarpuawu ,, . . 
gores. An analysis of particular interest concerned the eiect on un 

adjusting for the other regressors. The analysis was band on the following set of regressions. 

(1) 	 CUSE ON REGION 
(2) 	 CUSE ON REGION, UVCHILD 
(3) 	 CUSE ON REGION, UVCHILD, AGE 

(4) 	 CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE 

(5) 	 CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE, HEDUC 

(6) 	 CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE, HEDUC, HOCCUP 

(7) 	 CUSE ON REGION, LIVCHILD, AGE, TYPE OF PLACE,HEDUC,HOCCUP, STANDUV. 

The aim was to monitor the effects of region at each step and hence determine the impact of 

factors and covarates. The factors were represented by blocks of dummy vari
the correlated 
ables, as in the previous section. The factor REGION is introduced first so that the first regres-


The order of introduction of the other variables is
 
sion gives the unadjusted regional means. 

detail in the report of the analysis. Strategies for 
somewhat arbitrary and is discussed in more 


determining the order of adjustment are reviewed in Chapter 6 of this paper.
 

These regressions can be carried out in a stepwise regression program in a single run, by forcing 

the covariates or factors into the equation in the following order: 

REGION, UIVCHILD, AGE, TYPE OF PLACE, HEDUC, HOCCUP, STANDLIV. 

In SPSS this is achieved by giving the variables in each block even priority levels, 14, 12, 10,8, 

6, 4, 2, respectively. This use of stepwise regression should be contrasted with the more familiar 

form where the regressor included or rejected at each step is determined by levels of significance. 
factor needs to be included or 

This is not appropriate here, since the set of dummies for a 

excluded as a block. 

From the resulting output, the coefficients for REGION are identified and converted to adjust

ed category means using the procedure of the previous section. The resulting summary of the 

TABLE 5.6: Per Cent of Currently Married, Non-Pregnant, "Fecund" Women Currently Using 

An Efficient Method, by Region. Adjusted for Indicated Variables by Linear Regression 

Region of Residence 

Northeast South Central Mean Added R 
Step Controls Bangkok North 

54.9 52.8 32.5 18.9 53.7 42.6 .253 
1 -	 .25919.1 53.6 42.655.6 53.4 31.82 	 LIVCHILD 42.6 .26319.1 53.9 
3 	 LIVCHILD, AGE 56.2 53.8 31.2 

44.4 54.6 32.4 19.2 54.8 42.6 .253 
4 	 LUVCHILD, AGE, 


TYPE OF PLACE
 42.6 .24555.3 32.2 21.1 53.5
5 	 LIVCHILD, AGE, 43.5 

TYPE OF PLACE, 
HEDUC 51.8 .22133.5 21.5 42.6 

6 	 LIVCHILD, AGE, 43.2 54.9 

TYPE OF PLACE,
 
HEDUC, HOCCUP 

34.9 22.1 50.1 42.6 .208 
7 LIVCHILD, AGE, 40.1 55.0 


TYPE OF PLACE,
 
HEDUC, HOCCUP,
 
STANDLIV
 

SAMPLE SIZE = 2141
 
6.7 25.8 35.3 9.9 22.3 

PER CENT DISTRIBUTION = 

Source: Little, Cleland and Pitaktepombat (1979). 
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effects of region is presented in Table 5.6. For a dichotomous response, the fitted means are 

interpreted as the proportion taking value 1, that is in this case the proportion currently using 

contraception. In the table these proportions are converted to percentages by multiplying by 

100. The first rdw of the table is unadjusted, and is simply a cross.tabulation of the regional 

means. As variables are introduced, the adjusted means tend to converge towards the overall 

mean of 42.6 indicating the effect of the composition of other variables on the regional differ

entials. However, even after all the other controls are included, the effects of region are still 

large and statistically significant, suggesting that other unmeasured factors are contributing to 

the regional disparity of contraceptive use. A fuller interpretation of the table is given in the 

original paper. 

The last column of Table 5.6 deserves comment. The proportion of additional variance explain

ed by region at each step is found as 

Added R 2 = (SSREGION +OV - SSov) / SST 

where SSov is the sum of squares for the other variables, excluding region, SSREGION +OV 
is the sum of squares for region and the other variables, and SST is the total sum of squares 

about the mean. The square root of this measure is presented in the last column of the table; it 

is equivalent to the BETA measure in Multiple Classification Analysis. According to this meas

ure, the effects of Region are reduced from .253 to .208 by the inclusion of the other controls, 

a reduction of some 205. Such summary conclusions are of some interest, but cannot replace 

the detailed information in the body of the table. 

5.6 Interactions Between Factors and Covariates 

The last example of analysis of covariance in Section 4.2 involved the weighted regression of 

parity divided by marital duration (P/D) on factors LVED and HEDL and covariates consisting 

of linear and quadratic terms in years since first marriage (YSFM, YSFMSQ) and age at first 

marriage (AGFM, AGFMSQ), znd the interaction formed by the product of the linear terms 

In that section it was pointed out that interactions between covariates and(YSFMAGFM). 
factors could not be modelled within the ANOVA procedure. Ift this section we model these 

interactions using the more general REGRESSION program. 

shall restrict ourselves to one factor, LVED, represented in the regression byFor simplicity we 
the three dummy variables PRIM, RSEC and HIGH, as before. The covariates for marital dura

tioh and age at first marriage are defined as above, that is 

YSFM, YSFMSQ, AGFM, AGFMSQ, YSFM. AGFM. 

are defined by forming productsVariables for the interactions between factors and covariates 
of the covariates and dummy variables. The following are defined: 

LVED.YSFM, LVED.YSFMSQ, LVED.AGFM, LVED.AGFMSQ, LVED.AGFM.YSFM. 

Each of these terms involves three variables; for example, LVED.YSFM is represented by the 
YSFM, and HIGH x YSFM. The list of interactionsthree products PRIM x YSFM, RSEC x 


thus formed is not exlaustive, since it does not include three way interactions involving LVED
 

and the quadratics YSFMSQ or AGFMSQ.
 

The data are analyzed by a stepwise regression, with variables added in the following steps:
 

1. LVED; 2. YSFM, YSFMSQ; 3. AGFM, AGFMSQ; 4. YSFM.AGFM; 

5. LVED.YSFM; 6. LVED.YSFMSQ; 7. LVED.AGFM; 8. LVED.AGFMSQ; 

9. LVED.YSFM.AGFM. 
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TABLE S.7: Analysis of Variance of Regression of PBYD with Interactions Added Hierarchicaiy 

() (k) (I) (in)(9) (h)(d) (e) (f)
(a) (b) (c) 

R2 Added at Step 
Step Variables Added Regression Residwu4 

ISum ofSqwes iDFI Sumof uares I DF IMeanSquare' IsumofSqu I DF I R2 I F 

3 .0006 1.205 
6.19 3 11,230 6556 1.713 .0006 6.19 

I LVED 1.536 .1041 1163.36 2 .1035 395.16 
2 YSFM,YSFMSQ 1169.55 5 10,066 6554 

2 .0302 115.38.1343 339.68 
3 AGFM, AGFMSQ 1509.23 7 9,726 6552 1.485 

1 .0026 27.64.1369 40.68 
4 YSFM.AGFM 1549.91 8 9,686 6551 1.479 

3 .0023 3.2714.431.477 .1392 
5 LVED.YSFM 1564.34 11 9,671 6548 

3 .0029 7.1731.681.473 .1421 
6 LVED.YSFMSQ 1596.02 14 9,640 6545 

3 .0006 1.566.871.472 .1427 
7 LVED. AGFM 1602.89 17 9,633 6542 

1.90 3 .0001 .43 
20 9,631 6539 1.473 .1428 

8 LVED.AGFMSQ 1604.79 9.79 3 .0009 2.221.472 .14371614.58 23 9,621 65369 LVED.YSFM.AGFM 



The analysis of variance from the regression at each step Is presented in columns (c) to (g) 

of Table 5.7. The regression sum of squares and degrees of freedom appear in columns (c) and 

(d), and the sum of squares, degrees of freedom and mean square for the residual are given in 

columns (e), (f) and (g). From these values, the sum of squares and degrees of freedom added 

at each step can be derived by subtraction, and are given in columns (3)and (k). For example, 
1549.91 = the sum of squares added by LVED.YSFM at Step 5 is 1564.34 - 14.43. Other 

statistics presented in the table are the regression R2 , in column (h), and the R2 added at each 
The final column gives the F-statistic for the net effect of 

step (or partial R), in column (1). 
each term when it Is added to the regression, obtained by dividing the mean square added at 

each step by the residual mean square 1.472 at-the final step, viz, Step 9. This test differs 

slightly from that described in Section 5.4, in that the residual mean square is taken from the 

final step rather from the step at which Jhe variable is added. Both tests are valid; in the chosen 

mean square is the same for the tests at each step, and thus the F-statisticsmethod the residual 

are more directly comparable.
 

The following points emerge from this summary table:
 

1. 	 The percentage of variance explained by all the variables is 14.4%. This is less than that 
response, but the comparison is'misleading: theobtained by regressions with parity as 

response PBY D encorporates a partial control for marital duration in its definition, and 
on NCEB is discounted by the choice of

hence a large explanatory factor in regressions 
response. 

1 is not significant. However, the interpretation of
2. 	 The introduction of LVED at Step 

adjusted for marital duration.differentials in PBYD is not clear unless these effects are 

Although this is not evident from the table, educational differentials emerge after Step 

2, when this control is implemented. 

controls YSFM, YSFMSQ, AGFM, AGFMSQ and YSFM.AGFM are
3. 	 The demographic 

highly significant, from Steps 3, 4 and 5. Inspection of the individual coefficients indicat

es that the quadratics YSFMSQ and AGFMSQ add significantly to the fit. 

4. 	 Significant interactions between education and marital duration emerge at Steps 5 and 6. 

Taken together, LVED.YSFM and LVED.YSFMSQ add a mean square of 

(14.4 + 31.7)/6 = 7.69, 

compared with the residual mean square of 1.472. The nature of these interactions are 

described below.
 

The last three steps of the regression, taken together, do not add significantly to the fit,
5. 	
although the three-way interaction yields an F-value of 2.22. We shall not interpret these 

effects in subsequent analysis. 

We now concentrate on the adjusted effects of educational level. These -are presented in Table 

5.8 for the first six steps of the stepwise regression, in the form of deviations from the mean. 

The first four steps involve models which are additive with respect to LVED (that is, involve no 

interactions with LVED). Thus the effects of education are found from the means and regres

sion coefficients for the dummy variables PRIM, RSEC and HIGH, using the method described 

in Section 5.3.2. 

Steps 5 and 6 include interactions between education and marital duration, and as a result the 

effects of education depend on the level of marital duration. The adjusted effect for each 

education category is obtained by subtracting two functions of marital duration and age at 

marriage, the fitted mean for the whole group obtained by substituting mean values for PRIM, 
RSEC and HIGH in the equation, and the fitted mean for the education category, obtained by 

for the dummy variables as appropriate. For example, in Step 5 the
substituting one or zero 

fitted equation is:
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TABLE 5.8: Effects of Education from Repeidon of PBYD Including Intemactions,Expremd 
as Devistions From Mean 

Variables No 1-5 6-9 10 or 
Step Added Schooling Years Years More Years 

I LVED -. 031 -. 001 .016 .089 
2 
3 
4 

YSFM,YSFMSQ 
AGFM, AGFMSQ 
YSFM.AGFM 

.128 

.083 

.083 

-. 022 
-. 008 
-. 002 

-. 119 
-. 088 
-. 087 

-. 301 
-. 039 
-. 074 

5 YSFM.LVED -. 011 -. 037 -. 009 .274 
+.0048 YSFM +.0024 YSFM -. 0034 YSFM -. 0230 YSFM 

6 YSFMSQ.LVED -. 310 
+.0403 YSFM 
-. 0009 YSFM2 

-. 096 
+.0142 YSFM 
-. 0004 YSFM2 

.320 
-. 0427 YSFM 
+.0010 YSFM2 

.883 
-. 1208 YSFM
+.0031 YSFM2 

FIGURE S.1: Fitted Effects of Education as Quadratic Functions of Marital Duration, from 
Step 6 of Regression 
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Y= - .026 PRM +.002 RSEC + .285 HGH..0024 YSFM.PRIM -.0081 YSFM.RSBC 

-.0278 YSFM.HIGH + o.t, 

HIGH, which cancel in thewhere o.t. represents other terms not involving PRIM, RSEC or 
subtraction. The effect for the 1-5 Years Schooling Group isobtained by subtracting the fitted 

HIGH from the fitted mean with PRIM = man with PRIM =RIM, RSEC = RSEC and HIGH = 

1, RSEC = HIGH = 0. Substituting the observed means PRIM = .425, RSEC = .206 and HIGH =
 

.075, we obtain for the adjusted effect
 

{-.026 -. 0024 YSFM + o.t.) 

[(-.0024) (.425){(.026) (.425) +(.002) (.206) + (.285) (.075) + YSFM 

+ (-.0081) (.206) + (-.278) (.075)1 +o.t.} 

=..037 +.0024 YSFM, 

seen in the table. The calculation in effect repeats the procedure for calculating the main a 
for the interactions terms which include

effects of education, described in Section 5.3.2, 
education. 

We conclude by giving a substantive interpretation of Table 5.8. The unadjusted effects in Step 

1 are relatively small and of limited substantive interest. When marital duration is controlled 

(Step 2), we note that the NO SCHOOLING group has the largest adjusted fertility tempo P/D, 

and the highest education group has the smallest, differing from the no schooling group by 

nearly one half a birth per ten years marriage duration. The intermediate education groups rank 

in the expected way. In Steps 3 and 4, we learn that a large part of the differential in fertility 

tempo isattributable to the quadratic effect of Age at Marriage, namely that the more educated 

marry later and hence have a lower average tempo of fertility. Finally, Steps 5 and 6 women 
indicate that the residual effects of education after adjusting for age at marriage and marital 

duration are specific to marital duration. Step 5 shows that recent marriage cohorts, the tempo 
associated with education. Thereafter the differentials decline withof fertility Is positively 

marital duration, and for cohorts married ten or more years the pattern is reversed. Step 6 

estimates quadratic relationships between the effects and marital duration. Effects from this 

plotted in Figure 5.1, which shows very clearly the cross-over between low and high
step are 

durations of marriage.
 

Aihe interpretation of these results is not easy for the present example since fertility in Sri 

Lanka is declining, and it is not possible to distinguish life cycle effects and trends in fertility. 

The separation of these components requires alternative measures of fertility, such as are used 

in the Sri Lanka Illustrative analysis of cumulative fertility (LIttle and Perera, 1980). Neverthe. 

less, the example does illustrate the formation and interpretation of interactions within a 

regression model. 
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6. 	STRATEGIES FOR DETERMINING THE CHOICE OF 
VARIABLES IN THE REGRESSION 

6.1 Introduction 
We have presented a flexible collection of methods for calculating adjusted effects of interval
scaled and categorical regressors, and for assessing their statistical significance. Given a set of 
regressors*, the most important issue facing the analyst applying these techniques systematic
ally to data is which variables to control when calculating the effects ofa regressor, and how to 
interpret the results substantively. A brief introduction to this topic is presented in this final 
chapter. Parts of the discussion are based on Little (1979). 
Two extreme strategies encountered in the literature are: 
a) to calculate the effects of all the regressors unadjusted, in the form of one.way cross

tabulations ofmeans or univarlate regressions, and 
b) to calculate the effects of each variable adjusted for all other regressors in the study,

using a single regression equation with all variables included. 
The former method is clearly unsatisfactory, as noted in the early chapters of this bulletin. The

latter method is not uncommon, but can lead to considerable problems when highly associated
 
regressors are included. For example, it is quite possible that the adjusted effects ofhusband's
 
and respondent's education are not significant when both are included in the regression, even

though the effect of education as measured by either one alone is highly slgnificant.Suppress
ing effects of this type are described in Gordon (1968).
 
A more illuminating approach is to consider what adjusted effects represent in the context of a
 
causal ordering between the variables.
 
The definition of an adjusted effect is at first glance straightforward - it represents the average

effect on the regressand of increasing the regressor by one unit, holding other variables in the

regression fixed. Such statements have a descriptive value for the population under study, but
 
they should not be regarded as a basis for causal inference. That is, it does not follow that if a

policy maker was in fact able to create conditions in the population which led to an increase in

the average value of a regressor, holding other regressors constant, then this increase would
 
necessarily result in the increase in the mean regressand predicted by the model.
 
The potential absurdity of causal inferences of this kind is easily demonstrated. For example,

the relationship between fertility and contraceptive we may be explored by a regression of
 
number of children ever born on current use of contraception, adjusted for demographic and

socio-economlc controls according to taste. For many developing countries the resulting adjust
ed effect of contraceptive use is positive, that is the man parity increases with level of use. The
 
reason is that at early stages of a family planning program contraceptive use tends to be con
centrated among women with large families. The implied causal inference is that the result of

increasing the level of contraceptive use is to increase fertility, which is clearly absurd. Correct
 
causal inferences about the relationship between contraceptive use and fertility require infor
mation about the timing of births and contraception for individuals in the sample.
 
A more subtle example concerns the relationship between education and fertility. Many coun
tries show a negative relationship between level of formal schooling and fertility, after adjust
ment for controls for exposure to risk of childbearing. The extent to which this observed
 
relationship can be used to infer than an emphasis on increasing education facilities will yield

the predicted fertility decline is questionable. In the past education might be restricted to an

elite group, and as education spreads, it affects different groups of the population. It is not
 

The choke of rerewsn to be included in the study s an important ibm which Me outside ths nope
of this technical bulletin. 
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necemarily true that the relationship between education and fertility will be the rne for 

different cohorts of the populatiqn. It is not clear that formal schooling Is a factor which 

directly affects the level of fertility, since the observed relationship between formal education 

and fertility could be caused by other factors which are associated with formal schooling, but 

increase in the level of formal schooling. Finally, the effect of
would not be affected by an 

education would presumably depend on the specific policies introduced to bring
increasing 
about the change. 

Despite the evident difficulty in making direct causal inferences from the data, any analysis 

which goes beyond simple reporting of the means of variables is presumably trying to provide 

is ultimately causal in nature. Furthermore, causal analysis providesinformation which a 

valuable conceptual framework for deciding the specific question of which variables to control 

when analysing the effect of a variable in a regression. The most important aspects of this 

framework are now presented. 

6.2 The Causal Ordering and Total Effects 

We suppose that the regressor and regressand variables can be placed in a causal ordering 

XI ...	 X2 0...X3...-- o - . __-*y, (2.1) 

such that changes in the values of any variable can affect a variable later in the chain, but do 

not affect variables earlier in the chain. Two points require special emphasis here: 

a) The causal ordering cannot be decided by an empirical analysis of the data, but must be 

based on prior theoretical knowledge of the population; 

b) The specification of a causal ordering in effect rules out the possibility of circular causat

ion between variables, where one variable both affects and is affected by another variable 

in the series. In the examples, we shall proceed under the assumption that at least a pre

dominant direct of causal ordering can be established. In cases where this is not possible 
complex analyticalthe interpretation of the data is much more difficult, and more 

required 	to disentangle relationships between thetechniques than those discussed are 
variables. See, for example, the non-recursive models discussed by Hood and Koopmans 

(1953). 

Two general rules stem from this causal ordering: 

Rule I 	 The regressand variable Y, must be the last variable in the causal chain. In other words, 

variables causally posterior to the response should not be included. 

Rule 2 	 In assessing the effect of any regressor variable X on a response, Y, all variables causal

ly prior to X should be controlled. 

To clarify these rules, consider a particular regressor variable X. We can represent the position 

of X in the causal chain as follows: 

Xb -- X -- a.Xa ---- Y, 

are the set of regressor variables 
where Xb are the set of regressor variables prior to X, Xa 
posterior to X, and the response Y is by rule 1 the last variable in the chain. Then Rule 2 states 

that the variables Xb should be controlled when calculating the effect of X on Y. 

con.Rule 2 does not specify whether the regressor variables posterior to X, Xa , should be 

trolled. If none of these are controlled, the resulting effect of X is called the total effect. The 

total effect of a variable X on a response Y is the effect calculated with all regressor variables 

prior to X controlled and all regressor variables causally posterior to X not controlled. For a 

given causal ordering the total effect Is the effect with the clearest substantive interpretation. 
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Th rational is that changes in the distribution of X will not affect variables prior to X in the 
chain, but will affect variables posterior to X. 

In addition to calculating the total effect, it is also possible to assess the extent to which the 
effect operates through changes in the intervening variables Y. in the causal chain. If the 
variables X, are controlled, as well as Xb, we obtain the so-called dfrect effect of X on the 
response. The difference between the total effect and the direct effect is called the indbect 
effect of X on Y through X and represents the effect of X on Y operating through changes in 
the distribution of Xa . The most developed form of these decompositions occurs in the tech
nique of recursive path analysis, which Is described in another technical bulletin (Kendall and 
O'Murcheartaigh, 1977). 

6.3 Examples 

If a predominant direction of causation can be established, then the total effects of variables 
can be calculated for this ordering. In addition, the total effects can be decomposed into direct 
and indirect components if this the decomposition is of substantive interest. The following 
examples illustrate the method. 

Example 1: X1 = Respondent's age, X2 = Education, X3 = Age at marriage, Y = Parity. One 
plausible causal ordering is: 

Age -- Education --- Age at marriage -* Parity 

Age Is a cohort marker and fully exogenous to the other variables. To the extent that children 
are born after marriage, the response variable Parity does not affect the respondent's history up 
to marriage and hence can be considered causally posterior to education and age at marriage. 
The placement of education prior to age at marriage is less certain, and in some populations 
might reflect a predominant direction of causation. Although in some cases a respondent may 
terminate her education to get married, for the most part education has the effect of delaying 
age at marriage, and this is reflected in the chosen direction of causation between these vari
ables. Given the ordering, the total effect of age on parity is unadjusted, the total effect of 
education on parity is adjusted for age, and the total effect of age at marriage on parity is 
adjusted for age and age at marriage. In practice, the effect of education often calculated is the 
direct effect adjusted for age and age at marriage. One practical reason for this is that with an 
ever-married sample the total effect is biased because of selection effects. However, the direct 
effect does not take into account the indirect effect of education operating through changes in 
age at marriage. 

Example 2: X1 = Marital duration, X2 = Education, Y = Parity. Here the predominant causal 
ordering is: 

Durition -v Education - Parity 

However the causal relationship between duration and education is not clear, because marriage 
duration includes components of age and age at marriage which, according to the previous 
example, are respectively prior and posterior to education. The total effect of education on 
parity in this system is obtained by controlling marital duration. 

Example 3: X1 = Age, X2 = Age at marriage, X3 =Current use of contraception, X4 = Parity. 
Consider two causal orderings, with (a) Y = X4 , i.e. parity, as response and (b) Y = X3 , i.e. 
contraceptive use, as response: 

(a) Age -v Age at marriage -- Contraceptive use -- Parity 

(b) Age -- b Age at marriage -- Parity -- Contraceptive use 

7h- - usal ordering between contraceptive use and parity in (a) seems plausible, as one expects 
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that contraceptive use affects the number of live births a woman has. However, In practice the 
predominant causal ordering is more likely to be (b), particularly in countries where family 
planning is of recent origin. That is, women with high parities are more likely to use contra
ception, and consequently parity is a major determinant ofcontraceptive use; although contra
ceptive use may have an inhibiting effect on parity, this effect is smaller in the initial stages of a 
family planning programme. The consequences of this circularity were noted in Section 6.1. 

Example 4: XI = Age, X2 = Age at marriage, X3 = Education, X4 = Desired family size, Y = 
Parity. Here the causal ordering is: 

Age -- Education -. Age at marriage - Desired family size -in) Parity 

seems plausible. However, in a real population the relationship between the last two variables is 
complicated to the extent that women tend to rationalize their stated desired family size on the 
bass of how many children they in fact have had. Thus, again, circular causation is a possibility 
which obscures the interpretation of the data. 

6.4 A Compromise Strategy 

As can be seen from the examples of the previous section, the principal difficulty of the pro
posed strategy is that in practice it is often hard to justify even an approximate causal ordering 
between the variables. Consequently a more flexible approach may be desirable, where the 
effects of a variable are calculated with a variety of controls. The extreme version of this 
strategy would be to calculate effects for all possible subsets of controls, but this soon produces 
an unpalatable amount of data. A compromise solution, which relies to some extent on a causal 
ordering but calculates a range of effects for each variable, has been adopted in two WFS 
Illustrative Analyses (Cleland, Uttle and Pitaktepsombati, 1979; Little and Perera, 1980). An 
ordering 

X1 --- X2 ..- tX k Y---.. 


is decided on causal or substantive grounds. For each variable Xi, the unadjusted effect is cal
culated first. Then other variables are added in (K-i) steps, according to the ordering obtained 
by moving Xi to the beginning of the sequence. At each step the adjusted effects of Xi are cal
culated. The results of this strategy for a single variable are shown in Table 5.6, and discussed in 
Section 5.5. The output is still dependent on the choice of ordering, but the method does 
provide information on the effects of each variable with a variety of controls, and as such 
illuminates some of the consequences of association between the regressors which is the prin
cipal motivation of these methods. 
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TABLE DI: Mean Number of Children Ever Born, by Marital Duration (MGP6) and by Level of 

Education (LVED). a) Means, b) Sample Sizes, c) StandardDeviations 

LVED 

No 1-5 6-9 104 
Years RowSchooling Years Years 

(3) (4) Total
MGP6 (1) (2) 

.92 .92.96&) .88 .950-4 1280442 351112 b) 376(1) .77 .78.84c) .76 .78 

2.442.46 2.39 2.392.54 1231
362 255
172 442 
 1.23
(2) 1.24 1.28 1.21 1.19 

3.763.73 3.143.87 3.91 
145 1118
293
197 482
10-14 


(3) 1.67 1.72 1.49 1.47 1.64 

4.844.97 4.61 4.135.13 95 1057239 461 262
15-19 
(4) 2.35 2.34 2.18 2.10 2.30 

5.795.87 5.22 4.476.22 40 893292 377 184
20-24 
(5) 2.62 2.38 2.64 2.11 2.54 

5.97 6.656.92 6.55 6.23 
22 1231
25 + 501 548 161 

(6) 3.16 2.99 2.70 1.98 3.02 

2.30 3.945.17 4.24 3.26
Total 908 6810
1704
1512 2686 


2.862.47 1.853.10 2.85 
3.43 3.884.14 3.98 3.75

Standardized Means 

Source: Special Tabulation Sri Lanka Fertility Survey 1975. 
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TABLE D2: Mean Number of ChildM Ever Born, by Ae (AGP$), by Ap at First Murbg 

(AMGP), and by Level of Education (LVED). a) Means and b) Sample Sizes 

<15 
AGPS (1) 

IS-24 2.838 ) 

(1) 2 9 b) 
25-29 4.39 

(2) 43 

30-34 5.32 
(3) 67 

35-39 6.84 
(4) 111 

40-49 7.34 
(5) 173 

Total 6.28 
423 

<IS 
AGPS (1) 

15-24 2.93 
(1) 66 

25-29 4.56 
(2) 94 

30-34 5.99 
(3) 80 

35-39 6.31 
(4) 73 

40-49 6.85 
(5) 132 

Total 5.54 
446 

LVED = I NO SCHOOLING 

AMGP 

15-19 20-24 25+ Row 
(2) (3) (4) Total 

1.65 .64 .00 1.75 
101 19 0 149 

3.26 1.91 .57 3.05 
103 55 7 207 

4.88 3.41 2.30 4.66 
101 38 9 215 

6.01 4.68 1.90 5.96 
139 41 13 304 

6.77 5.86 2.95 6.45 
293 121 51 637 

5.18 4.18 2.50 5.17 
736 274 79 1512 

LVED =2 I TO S YEARS 

AMGP 

15-19 20-24 25+ Row 
(2) (3) (4) Tota 

1.41 .56 .00 1.49 
311 78 0 456 

3.30 1.90 .45 3.00 
213 134 25 466
 

4.61 3.43 1.66 4.30 
258 105 48 490
 

5.86 4.50 2.64 5.23 
197 112 47 430 

6.46 5.30 2.82 5.88 
425 202 85 844
 

4.44 3.54 2.22 4.24 
1404 632 204 2686
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TABLE D2: Man Nuuber ofCbdlkuu EeM, Boeen, by Ap, by Agp At Fknt -I, nd by 

LeWe of Educatiou (comt'd.) 
LVED- 3 6-9 YEARS 

AMGP 

AGPS 
<15 
(I) 

15-19 
(2) 

20-24 
(3) 

25+ 
(4) 

Row 
Told 

15-24 
(I) 

2.62 
14 

1.53 
234 

.69 
It5 

.00 
0 

1.31 
364 

25-29 
(2) 

3.97 
28 

3.47 
125 

1.6S 
184 

.68 
43 

2.31 
380 

30-34 
(3) 

4.52 
26 

4.34 
126 

3.23 
82 

1.ss 
68 

3.43 
302 

3S-39 
(4) 

5.82 
Is 

5.66 
106 

4.28 
113 

2.26 
58 

4.46 
292 

40-49 
(S) 

6.74 
23 

6.09 
143 

S.03 
110 

3.11 
90 

5.08 
366 

Total 4.78 3.83 2.79 2.11 3.26 
106 735 604 259 1704 

LVED -4 10 OR MORE YEARS 

AMGP 

<IS 15-19 20-24 25+ Row 
(2) (3) (4) TotdAGmS (1) 

.00 .89IS-24 1.58 1.24 .64 
73 0 119(I) 5 42 

1.56 .72 1.5525-29 .00 3.15 
(2) 0 33 147 63 242 

2.3330-34 4.71 4.11 2.86 1.64 
80 115 214(3) 2 17 

35-39 .00 5.42 3.48 2.29 2.95 
100 177(4) 0 13 65 

40-49 5.55 5.88 4.59 2.91 3.79 
84 iss2 12 56(s) 


2.35 1.96 2.30Total 3.35 3.14 
9 117 421 361 908 

Source: Special Tabulation. Sri Lanka Ieflility Survey 1975. 
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TABLE D3: Mean Number ofChildmn Ever DoM,* by Maital Duration (MGPS) and by Levd 

of Education (LVED). a)Means, b) Sample Size 

LVED 

Lower Upper 
Higher RowSecondary Secondary 

Total
MGPS (1) (2) (3) 

.64.81 a) .58 .350-4 
147 850

(1) 365 b) 338 

1.36 1.601.71 1.505-9 1047555 371 121 
(2) 

10-14 2.27 2.07 2.08 2.20 
95 927'(3) 560 272 

2.27 2.502.56 2.4015-19 948
(4) 651 213 84 

2.672.75 2.32 2.7920-24 
56 779151572(5) 

2.762.83 2.44 2.45
25 + 11 470391 68(6) 

1.992.22 1.66 1.53Column Total 
514 5021
1413
3094 


Source: Special Tabulation from U.K. Family Formation Survey, 1976. See Dunnell (1976). 

$Note that the sample base isrestricted to ever-marrled women. Consequently the last two marriage groups 

are biased towards women who marry early. 
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TABLE D4: Means of Parity Divided by Marital Duration (PBYD), WeIoted by Marital 
Duration, Crog-Clanfled by Marital Duration (MGP6) and by Level of Education (LVED) 

a) Means, b) Yeas of Exposure, c) Standard Deviations 

LVED 

MGP6 

No 
Schooling 

(1) 
3.53 2) 

1-5 
Years 

(2) 
3.58 

6-9 
Years 

(3) 
4.08 

104 
Years 

(4) 
4.18 

Row 
Total 
3.90 

0-4 
(1) 

303 b) 
2.26C) 

897 
2.19 

1028 
2.15 

765 
2.26 

2993 
2.22 

(2)
(2) 

3.42 
1274 

1.63 
3.15 

3.38 
3219 

1.64 
3.12 

3.33 
2596 

1.52 
2.99 

3.32 
1837 

1.50 
2.55 

3.36 
8927 

1.58 
3.02 

10-14 2419 6038 3660 1784 13901 

(3) 1.29 1.35 1.18 1.20 1.29 

15-19 
2.95

4153 
2.87

7969 
2.67 

4513 
2.41 

1633 
2.80 

18268 

(4) 1.30 1.34 1.20 1.19 1.29 

20-24 
(5) 

2.77
6562 

1.14 

2.61
8467 

1.06 

2.35
4093 

1.19 

2.00
899 

.92 

2.58 
20020 

1.13 

25+ 
(6) 

2.36 
14700 

1.08 

2.27 
15805 

1.04 

2.16 
4634 

.94 

2.16 
598 

.76 

2.29 
35738 

1.04 

Total 2.66 
29411 

1.24 

2.69 
42395 

1.30 

2.70 
20525 

1.35 

2.78 
7515 

1.51 

2.69 
99846 

1.31 

Source: Special Tabulation, Sri Lanka Fertility Survey 1975. 
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