
MUOGRAP C DATA OW PWAJ-147 ,IMo0",00o0oo..O"O* 

.,MaXomlikelihood estimation of the parameters of Coals's model nuptiality chsddzlei 

tfem _Mvov data
 
4MASONAL AUTHORS (100) 

Rodriguez, German; Trussells James 

" -5h5RAIo AUTHORS (io) 

Int. Statistical Inst. 

NMBE OF PAGES (120) 8,CNMER (170)6. DOCUMENT DATE (110) 17. 
| 312*5*R696
1980 | 65p0 


. REFER5E ORGANIZATION (1S0) 

10. SUPPLEMENTARY NOTES (500) 

(In World Fertility Survey tech. bull. no. 7/Tech. 1261)
 

11. ABSTRACT (950) 

I.PRQJCjr NUlUM (5ILDICRIPTORS (90) 

Marriage 
931054700Models 

14. D.NXI N 41)Statistical analysis 
O1. taatietice 
.oot 06 ---­..
... 








WORLD FE LITYSR 

TECHNICAL
 
BULLETINS
 
Maximum Likelihood 
Estimation of the 
Parameters of Coale's 
Model Nuptiality 

Schedule from Survey 
Data 

GERMAN RODRIGUEZ 

AND 
JAMES TRUSSELL 

Agency for International Development 
Library 
Room 105 SA-18 
Washington, D.C. 20523 

MAY 1980 NO. 7/TECH. 1261
 



CONTENTS 

ACKN3WLEDGEMENTS 5
 
INTRODUCTION 6
 

1. COALE'S MODEL NUPTIALITY SCHEDULE 
1.1 The Age Pattern of Marriage 8
 
1.2 Analytic Formulation of the Model 8
 
1.3 A Standard with Mean 0 and Variance 1 11
 
1.4 Relationship of the Model to a Gamma Distribution 12
 

2. ESTIMATION FROM HOUSEHOLD DATA 
2.1 The Data-Notation 14
 
2.2 Maximum Likelihood Estimation 14
 
2.3 Goodness of Fit of the Model 16
 
2.4 Standard Errors of the Estimates 17
 
2.5 Robustness of the Estimates 18
 

3. ESTIMATION FROM INDIVIDUAL DATA ON EVER-MARRIED WOMEN 
3.1 The Data-Notation 20
 
3.2 Maximum Likelihood Estimation 21
 
3.3 Goodness of Fit of the Model 24
 
3.4 Homogeneity of Cohorts 26
 

4. ESTIMATION FROM INDIVIDUAL AND HOUSEHOLD DATA 
4.1 The Data 31
 
4.2 Two-stage Estimation 31
 
4.3 Full Information Estimation 33
 
4.4 Fixing the Value of c 35
 

5. ESTIMATION FROM INDIVIDUAL DATA ON ALL WOMEN 
5.1 The Data-Notation 37
 
5.2 Maximum Likelihood Estimation 38
 
5.3 Goodness of Fit of the Model 40
 
5.4 Homogeneity of Cohorts 41
 
5.5 Fitting and Forecasting 43
 

6. ESTIMATION FROM UNGROUPED DATA 
6.1 • The Data 47
 
6.2 Estimation from All-women Samples 47
 
6.3 The Kaplan-Meier Estimate 48
 
6.4 Estimation from Ever-married Samples 49
 
6.5 The Product-limit Estimate for Truncated Data 51
 

7. FITTING THE MODEL TO FIRST BIRTH DATA 56
 

8. COMPUTATIONAL CONSIDERATIONS 
8.1 Optimization Procedures 58
 
8.2 Evaluation of the Incomplete Gamma Function 58
 
8.3 A Computer Program 59
 

REFERENCES 60
 
GLOSSARY OF SYMBOLS 61
 



62 APPENDIX TABLES 

Al Number of Ever-married and Never-married Women, by Age, in the Colombia Individual 
Survey (1976).

A2 Age at Marriage by Age at Interview for Women in the Colombia Individual Survey 
(1976).

A3 Summary of Estimates of the Model Fitted to Grouped Marriage Data from the Colombia 
National Fertility Survey (1976). 

A4 Summary of Estimates of the Model Fitted to Data on Numbers of Women Single and
Ever-married by Age at Interview Obtained from the Colombian National Fertility 
Suivey (1976).

AS G(z), Proportion Ever-married at Exact Age z in the Standard Schedule with Mean 0 and 
Standard Deviation 1. 



ACKNOWLEDGEMENTS 

The authors would like to express their appreciation to Michael C. Pearce, Roderick J.A. Little, 
Andrew Westlake and John N. Hobcraft of the WFS staff for useful discussion and comments. 

5
 



INTRODUCTION 

In this technical bulletin we develop procedures for fitting Coale's model nuptiality schedule to 
World Fertility Survey data, using the method of maximum likelihood. There are several 
reasons why one may be interested in fitting a model to WFS nuptiality data. 

Firstly, the model may be used as a tool for smoothing the data or as an aid in assessing the 
quality of data. For example, fitting the model to distributions of marital status by age such as 

those obtained from WFS household surveys leads to smooth estimates of the proportion ever 

married by single years of age and helps identify ages where reporting is deficient. 

Secondly, the model permits a succinct description of the marriage process in terms of three 
simple parameters, namely, the proportion of women in a cohort who will eventually marry and 
the mean and standard deviation of age at marriage for those who marry. If the model fits 

the data then these three parameters effectively capture all the information in the observed 
marriage schedules. In other words, the model permits parsimonious description without loss of 
information. 

Thirdly, the model permits extrapolation from the incomplete experience reported at a cross­

sectional survey by cohorts of women who are still undergoing the marriage process. This is 

perhaps the most important application in the context of distributions of age at marriage such 

as those obtained from WFS individual surveys, which are truncated or censored at the inter­

view. Fitting the model to these data permits estimation of the proportions who will eventually 
the mean and standard deviation of age at marriage, even for cohorts wheremarry as well as 

only half the women who will ever marry have done so by the date of the survey. 

Fourthly, the model itself is of interest to students of nuptiality, as it describes a complex 
process in terms of relatively simple mechanisms which have a behavioural basis or interpre­
tation. The development of estimation procedures for WFS data permits validation of the 
model on a much more extensive data base than has heretofore been possible. 

The procedures herein developed have been designed to estimate the parameters of the model, 
including mean age at marriage, making full use of the information available whilst properly 
taking into account the truncated or censored nature of the data. As such they represent a more 

refined analytic tool than the ad hoc procedures used to handle truncation in the estimation of 
mean age at marriage in WFS first country reports. 

Finally, an important feature of the maximum likelihood approach adopted here is that it leads 
not only to estimates of the parameters of the model, but also to large sample estimates of the 

standard errors of the estimates, and large sample tests of the goodness of fit of the model. 

This bulletin is organized in eight sections following this introduction. 

In Section 1 we describe Coale's model nuptiality schedule, introduce its standard density and 

cumulative distribution functions, propose a reparameterization of the model in terms of its 

mean and standard deviation, and relate the model to a gamma distribution. 

In Section 2 we consider estimating the parameters of the model for a synthetic cohort using 
data on marital status by age, of the type collected in the WFS household schedule. The basic 

features of the maximum likelihood procedures are described and illustrated, including esti­

mation, standard errors, goodness of fit and robustness. 

In Section 3 we discuss estimation of two of the parameters of the model for real cohorts, using 

data on age at marriage from a sample of ever-married women, of the type collected in the WFS 
individual interview. In addition to extending the estimation and goodness of fit procedures to 

this type of situation we introduce a test for homogeneity of cohorts. 

In Section 4 we consider estimating all three parameters of the model for a real cohort by com­
bining individual data on age at marriage with household data on marital status by age. We 
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propose two alternative procedures termed two-stage estimation and full information esti. 
mation. 
In Section 5 we describe procedures appropriate for cases where data on marital status and age
at marriage (of those ever-married) are available for the same sample ofwomen, as it is the case
in WFS surveys where all women in the reproductive ages, irrespective of marital status, are 
eligible for the individual interview. 
In Section 6 we turn our attention to estimation using ur.,roupee or continuous data from ever.
married or all-women sample, and discuss both parameti u'id non-parametric estimation of the 
nuptiality schedule from a truncated or censored sample. 
In S,-ction 7 we show that the model nuptiality schedule can also adequately replicate observed
first birth schedules. This application may be used as either a diagnostic device for smoothing
data or as a means of inferring the schedule of entry into cohabitation. 
In Section 8 we refer briefly to the numerical procedures used to calculate the estimates and
make some remarks concerning the evaluation uf the cumulative distribution function. Refer­
ence is made to a computer package specially suited to handle the different types of data 
available from the WFS. 
Throughout the paper the recommended procedures are illustrated using data from the
Colombian National Fertility Survey of 1976, conducted as part of the WFS. The data are used 
not only to illustrate the maximum likelihood procedures, but also to compare methods ofestimation, assess the robustness of the estimates, and compare results using grouped and un. 
grouped data. 
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1. COALE'S MODEL NUPTIALITY SCHEDULE 

1.1 The AePattern ofMariage 

has presented empirical evidence to the effect that the distribution of age at first 
Coale (1971) 
marriage in a female cohort takes the same basic form in a wide variety of populations, differing
 

only in the location and scale of age at marriage and the proportion of the cohort eventually
 

marrying.
 

Figure 1.1, reproduced from Coale (1971), illustrates vividly the existence of this common
 
populations, and

A shows proportions ever-married by age for five different 
pattern. Panel 
depicts clearly differences in location, scale and proportion ultimately marrying. Paiel B shows 

the same data adjusted to give a proportion eventually married equal to one, and plotted with 

age standardised for location and scale, and reveals a remarkable uniformity in the age pattern 

of marriage. 

type of uniformity is noted in observed schedules of first marriage frequencies, as 
The same 

Panel A shows first marriage fre­
illustrated in Figure 1.2, also reproduced from Coale (1971). 

quencies for two cohorts and two crosi-sections, differing in location and scale. Panel B shows 

the same data adjusted for location and scale, and reveals a common structure. 

To represent this underlying structure, a "standaid" schedule was constructed by making minor 

the schedule of first marriage frequencies recorded in Sweden from 1865 to 
adjustments to 
1869. The standard frequencies, as well as the corresponding proportions ever-married by age, 

in intervals of one-tenth of a year.
were tabulated by Coale (1971) 

The question naturally arose as to whether this underlying pattern could be represented by a 
to find a closed-form expression for 

mathematical function. Trial and error lead Coale (1971) 
analytic expres­

the risk of first marriage. Later, however, Coale and McNeil (1972) found an 
- and hence many

sion for the frequency of first marriages that fits the Swedish standard 
remarkably well. The mathematical model will be introduced -observed nuptiality schedules 

below. 

1.2 Analytic Formulation of the Model 

At this point we must introduce some notation. Let f(a) represent the frequency of first 

marriages at exact age a, so that a proportion f(a)da of a cohort marries between exact ages a 

and a+da. 

Our development of the model proceeds in three stages. The function f(a) may be related to the 

distribution of age at first marriage by writing 

f(a) = c g(a), (i.1) 

where c is the proportion of the cohort eventually marrying, and g(a) is the probability density 
so that a proportion g(a)da of those 

function of age at first marriage among those who marry, 

who eventually marry do so between exact ages a and a+da. 

a standard schedule of age at first marriage, by 
may in turn be related toThe function g(a) 


writing
 9(a) 0:k(12= k aa o)(1.2) 

as the age at which a consequential
where aois a location parameter which may be interpreted 

number of marriages first occur, k is a scale parameter which may be interpreted as the rate at 

which marriage occurs (relative to the standard), and g(Z) is the standard schedule derived from 

Swedish data by Coale (1971). 
to be very well approximated

Finally, the function gs(z) was found by Coale and McNeil (1972) 


by the following probability density function:
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FIGURE 1.1: Proportions evert-auied by age, selected countries. 
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FIGURE 1.2: Firstmarriage rates by agefor elected countries. 
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gs(z) = 0.1946 Exp (-O.174(z-6.06)-Exp [-0.288(z-6.06)]) (1.3) 
The function g(a) may now be written in full by substituting (a-a0 )/k for z and dividing through 
by k at (1.3). Multiplication of the result by c gives an analytic expression for f(a). Thus, we 
have expressed f(a) In terms of a standard schedule (1.3) by using three parameters: ao, k and c. 
A lucid account of developments leading to this analytic form for the standard schedule of first 
marriages may be found in Coale (1977), as well as the original and more technical paper by 
Coale Rnd McNeil (1972). 

The statistically inclined reader may be interested to know that the density at (1.3) represents 
the convolution of an infinite number of mean-corrected exponential random variables. This 
density, however, is in turn very closely approximated by the convolution of a normally dis­
tributed random variable and three exponential delays. Coale and McNeil (1972) have inter­
preted thes components in Western cultures as representing the age of entry into the marriage 
market and the delays involved in finding a suitable partner, getting engaged, and getting 
married. 

The conditional density given at (1.3) has mean and variance as follows: 

E(z) = 11.36, and Var(z) = 43.34. (1.4) 

Changing variables from z to a=ao+kz gives, for any values of ao and k, the mean and variance 
of age at marriage (for those who marry) as 

E(A) = ao + 11.36 k, 
and (1.5) 
Var(A) =43.34 k2. 

It now remains only to define the proportion ever-married by exact age x among all women in a 
cohort as: 

x 

F(x) - f f(a)da. (1.6) 

This function may be written as: 

F(x) = c G(x), (1.7) 
where G(x) is the cumulative distribution function of age at marriage for those who eventually 
marry, 

x 
G(x) = f g(a)da. (1.8) 

This function may, in turn, be expressed in terms of the standard schedule by writing: 
x-aG(x) = Gs (-k0 ),(.9 

where Gs(z) is the standard cumulative distribution function of age at first marriage obtained 

integrating (1.3), that is: 
z 

Gs(z) =f gs(t)dt. (1.10) 

The question of evaluating this integral will be considered in Section 1.4 below. 

1.3 A Standard with Mean 0 and Variance 1 
The choice of ao and k as the location and scale parameters of the model is certainly valid, but 
somewhat arbitrary. One objection that may be raised is that these parameters are not easily 
interpretable, and thus do not provide a convenient basis for comparisons across cohorts or 
populations. 

!!
 

http:0.288(z-6.06


The location parameter ao is not the minimum age at marriage, but rather the age at which a 
"consequential" number of marriages first occurs. More precisely, the model implies that aboutone per cent of the women who will eventually marry have done so by age a., so that ao isclose to the first percentile of the distribution. 

The scale parameter k is literally the number of years in the standard schedule into which one 
year of marriage in the actual population may be packed, and therefore represents the rate of 
marriage relative to the Swedish standard. For example, in the standard about five per cent of 
the women who will eventually marry have done so by the end of the first age of marriage. If in 
an actual population k=2 it would mean that it takes two years for the same five per cent to 
marry, Implying that the pace of marriage is slower than in the Swedish population of 1865­
1869. 
On the other hand, we have found that the statistic of greatest interest in fitting the model is 
usually the mean age at marriage, so that in actual practice one would translate a and k into a 
mean and, say, a standard deviation, using (1.5). It thus seems more natural and convenient to 
reparameterize the model in terms of the mean and standard deviation rather than a. and k. 
A new standard with mean 0 and variance I (analogous to the standard normal distribution), 
may be obtained from the existing standard (1.3) using (1.5) to find the values of ao and k 
that give the desired mean and variance. The required values are: 

ao = .11.36/6.583 = -1.726, 
and (1.11) 
k = 1/6.583 = 0.152. 

Substituting (a-a^)/k for z and dividing through by k at (1.3), using these values of ao and k 
gives, as the new standard density function: 

go(z) = 1.2813 Exp (-1.145(z+O.805).Exp [-1.896(z+0.805)]j (1.12) 
The probability density function of age at first marriage, g(a), may be related to this new 
standard by writing 

g(a) go (a) (1.13) 

where p is the mean age at marriage and a is the standard deviation of age at marriage, among
those who marry. 
Similarly, the cumulative distribution function of age at first marriage G(x) may be written as 

representing standard cumulative distributions of age at first marriage. These distributions, how. 

G(x) = Go ( xO ), (1.14) 

where Go isthe new standard cumulative distribution function 

Go(z) = f
z 

go(t)dt. (1.15) 

We now consider the question of evaluating this integral. 

1.4 Relationship of the Model to a Gamma Distribution 
Unfortunately no closed form expression exists for the integrals given at (1.10) and (1.15) 

ever, can be related quite easily to an incomplete gamma function, a result which greatly
simplifies calculations, as simple algorithms exist for the calculation of the latter. 
The deihsity function used by Coale and McNeil (1972), may be written in general form as: 

g(a) = X Exp[.a(a-0)-Exp[.,(a.0)j), (1.16) 
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where r denotes the ganma function and a, X,0 an three parameters. The mean of this dstri­
(aa), where =ur /r isthe digamma function.bution is WO.! 

set a-0.174, V=0.288 and 0=6.06, with the constant XI(a/k) resulting 0.1946 and the
If we , 
mean p=I 1.36, we obtain the Swedish standard given at (1.3). Alternatively, setting a-!.145 

Xl.896 and 0=0.805, with the resulting constant Afr(ak) equal to 1.2813, we obtain the new 

standard with mean 0 and variance I given at (1.12). 
and Ou-0.805o, we obtain adistribution with

More generally, setting a=1.145/a, ).=1.896/a 
mean p and variance o . Inall thee fomulations the ratio a/X isconstant at 0.604 so that the 

model has only two parameters. (The question of whether the model may be generalised by 

allowing a/W, to be arbitrarymay well de.erve further research.) 

The cumulative distribution function corresponding to (.16) is given by the integral 
x )iA 

G(x) = f g(a)da f" Exp [aa.O)-Exp[-W(a.-))da. (1.17) 

Consider the change of variables 

y = e" (a),so that a = 0 llogy. (1.18) 

Then 

y e dy, (1.19)G(x) -a/X f 

which, recalling the definition of the gamma function, may be writen as (Coale and McNeil, 

1972, p.748) 

-ye.X(x-0) Y.i 
(1.20)G(x) = am y?' e dy, 

0 

or more simply, as 

G(x) = . 1[ '(xe); 9 .1, (1.21) 

where l(w,p) denotes the incomplete gamma function 

(.22)l(w,p) = (p+l ) f yPe'Ydy. 
0 

Thus, for any values of the parameters a, ), and 0 (or p and a), the cumulative distribution 

function G(a) may be evaluated in terms of an incomplete gamma function with parameter 
used to evaluate the new standard cumulativedistribut­t=0.604. Inparticular, the result may '% 


ion function as
 
• (1.23)Go(Z) = I - I [e'i.896(z+0.805);'0.396] 

Approximations to the incomplete gamma function will be discussr. inSection 8.2.
 

This formulation shows, incidentall.:, that age at marriage a(with parameters a, ), 0or p and a)
 

is distributed as 0=4 log ywhere yhas astandard gamma distribution with parameterf0.604,
 

that is,age at marriage isdistributed as alinear function of the logarithm ofastandard ganuma
 

random variable.
 

A table of i'dues of the new standard cumulative distribution function G,(z) is given in
 

Appendix Table 5.
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2. ESTIMATION FROM HOUSEHOLD DATA 

2.1 The DataNotaten 

The household schd4ule used in the WFS collects data on age at the interview and current 

marital status for all females between the ages of 15 and 49 or a similar age range. These data 

are 	usually tabulated by single years of age. 

shows such a set of data from the household interview of the Colombian. National
Table 2.1 
Fertility Survey of 1976, with a total of 12905 usual female residents between the ages of 15 

and 49, ofwhom 7361 had been or were married legally or consensually. 

We now consider fitting a model nuptiality schedule to this type of data, treating the different 

ages as representing asynthetic coh~'t. 

The resulting parameter estimates will, of course, not apply to the experience of a real cohort 

unless nuptiality has been unchanging in the past. Our experience indicates, however, that the 

resulting fitted model may be used to smooth the data even in cases of changing nuptiality. 

Let us introduce the following notation with reference to Table 2.1: 

to x,, in our example 15 to 49 
x = age at interview in completed years, ranging from x0 


(Column I)
 

mx = number ofever-married women age x completed years at the interview (Column 2) 

= number 	of single (never married) women age x completed years at the interview (Columnsx 


3)
 

total number of women age x completed years at the interview (Column 4).
nx = mx+sx = 


In fitting the model we assume that age x completed years represents x+ exact years.
 

2.2 Maximum Ukelihood Estimation 

We 	shall treat the number mx married by age x completed years as having a binominal distri­
where H'x denotes the probability of being ever-marriedbution with parameters nx and lix ­

by age x completed years - independently for each age.
 

The likelihood of the data is then aproduct binominal distribution. The logarithm of the likeli­

hood function, except for aconstant representing the binominal coefficients, is 
x 

(2.1)log (l-11x)).log L = 2 (mx log Ix + s 
X:X0 

11 obtained byx , The unrestricted maximum likelihood estimators (m.l.e.'s) of the parameters 

maximising (2. 1), are simply the proportions ever-married in the sample, 

mx. (2.2) 

x nx 

These values are shown in Table 2.1 (Column 5) and present some obvious irregularities. Par­

ticularly noticeable are the low values at ages 35,40 and 45, suggesting that either ever-married 
who heap ages under-report marriage.

women are less likely to heap their ages, or that women 
One objective in fittinga model may be to smooth these proportions. 

Under Coale's model nuptiality schedule the probability of being married by age x, assuming 

that women age x completed years are on the average x+% exact years, is 

nx = F(x+%), (2.3) 

14 



TABLE 2.1: Obsemd and fitted proportions ever-maried by age. 
Colombia household suvey (1976). 

Number of Women Proportion Ever-mauled 

Ever Never 
Age Married Married Total Observed Fitted Difference 
(1) (2) (3) (4) (5) (6) (7) 

x Sx nx Px fx PxHxmx 


15 16. 656. 672. .024 .026 -. 002 
16 48. 662. 710. .068 .063 .004 
17 71. 584. 655. .108 .121 -. 013 
18 120. 559. 679. .177 .195 -. 019 
19 176. 398. 574. .307 .278 .029 
20 255. 379. 634. .402 .361 .042 
21 198. 270. 468. .423 A39 -.016 
22 267. 259. 526. .508 .509 -. 002 
23 287. 197. 484. .593 .571 .022 
24 275. 185. 460. .598 .623 -. 025 
25 340. 197. 537. .633 .666 -. 033 
26 292. 124. 416. .702 .702 -. 001 
27 274. 101. 375. .731 .732 -. 001 
28 303. 103. 406. .746 .756 -. 010 
29 242. 69. 311. .778 .776 .002 
30 332. 96. 428. .776 .792 -. 016 
31 145. 34. 179. .810 .804 .006 
32 261. 54. 315. .829 .815 .014 
33 215. 29. 244. .881 .823 .058 
34 201. 32. 233. .863 .830 .033 
35 344. 84. 428. .804 .835 -. 032 
36 255. 40. 295. .864 .840 .025 
37 211. 33. 244. .865 .843 .022 
38 262, 60. 322. .814 .846 -. 032 
39 177. 31. 208. .851 .848 .003 
40 306. 75. 381. .803 .850 -. 047 
41 119. 15. 134. .888 .852 .036 
42 209. 28. 237. .882 .853 .029 
43 148. 17. 165. .897 .854 .043 
44 152. 18. 170. .894 .855 .040
 
45 240. 56. 296. .811 .855 -.044
 
46 148. 25. 173. .855 .856 -.000
 
47 163. 21. 184. .886 .856 .030 
48 190. 35. 225. .844 .856 -. 012 
49 119. 18. 137. .869 .857 .012 

TOTAL 7361. 5544. 12905.
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FIGURE 2.1: Obsewved mad fittd pmpordons ever.maned;houaold mnuiy at 
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where F is the cumulative frequency function defined in Section 1.2 and depends on three para­

meters: u,u and c. 

The log-likelihood (2.1) under the model (2.3) becomes 

Log L = {mx log IF(x+)] +sx log [1-F(x+ )]). (2.4) 

x-xo 

,s j and the parameters p, a and c through F, and may
This function depends on the data lm 
be optimized numerically as noted in Section 8. 

Maximum likelihood estimators (m.l.e.'s) of the parameters obtained using this method for the 

Colombia, dtta are 
c = 0.858 (2.5)

= 22.44, , = 5.28, and 

The fitted mean age at marriage P is analogous to Hajnal's (1956) singulate mean age at 

marriage and may be interpreted in a similar way. 

The fitted proportions ever-married by age are 
(2.6)(x+%),x 


where F denotes the cumulative frequency function F evaluated at the m.l.e.'s p, a and c. 

shows fitted proportions ever.married for our example. Figure 2.1 
Table 2.1 (Column 6) 

compares the observed and fitted proportions.
 

2.3 Goodness of Fit of the Model
 

One advantage of the method of maximum likelihood is that it leads to a large sample test of
 

the goodness of fit of the model, which we now present.
 
are the
 

Under the product binomial model (2.1), the uriestricted ml.e.'s of the parameters 'x 


defined at (2.2), while thi restricted m.l.e.'s of the same parameters

sample proportions P 

X defined at (2.6), leading to the likelihood 
under the model (2.3t are 0d fitted proportions ll


ratio criterion
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___ 

2 x(2.7)
X1 = 2 Z {mAx log(Px/flx)+SX log[(-Px)/(l-lx)],. 

x=xo 

which is distributed in large samples as a chi-squared statistic with degrees of freedom 

v = x, -x0 - 2, (2.8) 

which is the number of ages or parameters in the unrestricted model (xl-xo+l) minus the 

number of parameters in the restricted model. 

An alternative test criterion is the more familiar Pear,,on chi-squared statistic, which in this case 
(29is given by 2 x, (Px'HxX)2 29 

Xp E- nx 1 

x=x0 x(l-fix) 

v degrees of freedom.and is also distributed in large samples as a chi-squared variate with 

For our example we obtain 
=X2 = 53.0, P-value .011 

y = 52.7, P-value = .012 

(2.10)v = 32, 

indicating a significant lack of fit. 

Differences between observed and fitted values are given in Table 2.1 (Column 7), and show 

at ages ending in 0 or 5 at the extremes of the range, a possible con­lack of fit particularly 
sequence of heaping. 

(As an alternative to raw residuals Px-Ix one may calculate standardized residuals 

lrii(P.fx)[Ix(l4 fix)]W (2.11) 

where a value greater than 2 indicates a significant departure from the model.) 

a plot of the data in Figure 2.1; the
These results confirm what was visually obvious from 

observed proportions ever-married at the older ages are so erratic that no model could be 

expected to replicate them. 

2.4 Standard Errors of the Estimates 

A further advantage of the method of maximum likelihood is that it provides large sample 

approximations to the standard errors of the estimates. 
A 

mre. of avector parameter 0 then, under certain regularity conditions, the
Briefly, if 0 is a 
large sampl- distribution of 0is normal with mean 0 and variance-covariance matrix I!(0) given 

by the inverse of the information matrix 

L aO a t, La (2.12) 

~VE[algL -EFve, 

Section 8) provide numerical estimates of theThe optimization procedures used here (see 
matrix of second derivatives of the likelihood function, which in large samples should be 

reasonably close to the negative of its expected value, the information matrix. 

For our example we obtain 

se;p = .146, s.e.c =.162 and s.e.c. = .006 (2.13) 
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These estimates are approximate and should therefore be interpreted with caution. The shape 

of the log-likelihood function is such that numerical estimates of the second derivatives in a 
errors, are unstable. Ourneighbourhood of the optimum, and hence estimated standard 

experience indicates, however, that the numerical results provide at least a rough indication of 
the precision of the estimates. 

A related question of interest is whether the estimated standard errors and the chi-squared 
statistics introduced earlier - which assume simple random sampling - are appropriate in 

stratified-clustered samples of the type used in the WFS. 

Experience from the WFS indicates that design effects for nuptiality variables such as proport­
ion ever-married and mean age at marriage are usually not far from unity, see Verma, Scott and 
O'Muircheartaigh (1980). Moreover, in later sections we shall be fitting the model to cohorts 
defined usually by five-year age groups, which are cross-classes and hence not likely to be 

seriously clustered. Under these circumstances we feel that treating the data as binomial should 
give a fairly good approximation to standard errors and chi-squared statistics. 

2.5 Robustness of the Estimates 

So far we have estimated the parameters of the model using all ages in the range 15 to 49, but 

clearly the procedure may be applied to any subset thereof. In theory four data points are re­
quired to estimate three parameters while reserving one degree of freedom for lack of fit, but in 

practice we would not recommend using less than 15 ages or data points. 

Table 2.2 (lines 2 to 6) shows estimates of the parameters, as well as standard errors and the 

goodness of fit criterion, obtained by selecting progressively younger subsets of the age range. 

Note that the estimates of the parameters remain fairly stable, even when only ages 15 to 29 

are used. One would expect this result if there had been no change in nuptiality in the recent 

past and if the data were of high quality. Note also that deleting the older ages increases the 

standard errors, as less data are used, but also improves the quality of fit, as the less reliable 

data points are ignored. 

One of the difficulties posed by the poor quality of data for the older ages is that it makes 
rather unreliable. In our example weestimation of c, the proportion eventually marrying, 

TABLE 2.2: Estimates of parameters of the model fitted to grouped marriage data from the 

Colombia household survey (1976). 

Ages Estimates Standard Errors Goodness of Fit 

(1) 
x0 xt 

(2) 
a 

(4) 
c s.epi 

(6) 
s.e.o 

(7) 
s.e.c 

(8) 
X 

(9) (10) 
p-value 

15-49 
15-44 
15-39 
15-34 
15-20 
15-24 

22.44 
22.49 
22.44 
22.61 
22.14 
21.79 

5.28 
5.33 
5.28 
5.44 
5.02 
4.74 

.858 

.861 

.858 

.872 

.830 

.794 

.146 

.160 

.167 

.230 

.290 

.539 

.162 

.174 

.179 

.234 

.272 

.452 

.006 

.007 

.009 

.015 

.023 

.057 

53.0 
46.5 
32.4 
23.8 
14.2 
11.1 

32 
27 
22 
17 
12 
7 

.011 

.011 

.071 

.126 

.286 

.135 

102.9 33 .000Fix c 15-49 23.17 6.07 .90 .115 .145 ­
- 53.2 23 .000Fix c 15-39 23.10 6.00 .90 .112 .140 
- 21.2 13 .069Fix c 15-29 22.95 5.76 .90 .040 .050 
- 13.7 8 .089Fix c 15-24 22.71 5.46 .90 .141 .170 
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have obtained values of c rather too low. An alternative is to set c at a fixed value and optimize
the log-likelihood function (2.4) letting only p and a vary. 
Table 2.2 (ines 7 to 9) shows estimates of j and a, as well as standard errors and goodness of
fit tests obtained by fixing c at 0.90, which we believe to be a more plausible figure. The
resulting estimates of mean age at marriage are quite stable, even when only ages 15 to 24 are used. Hence we have a strong indication that nuptiality patterns have not changed much in 
the recent past. 
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3. 	 ESTIMATION FROM INDIVIDUAL DATA ON 
EVER-MARRIED WOMEN 

3.1 	 The Data-Notation 
The individual Interview used in the WFS is usually applied to a sample of ever-married women 
between the ages of 15 and 49 or a similar age range, and collects information on age at mar­
riage and age at interview.These data are frequently tabulated in single completed years ofage. 
Table 3.1 presents such a set of data fer the cohort aged 25 to 29 in the individual interview of 
the Colombian National Fertility Survy. (Table 2 in the Appendix shows similar data for the 
cohorts aged 15 to 49.) 

An important feature of this type of data for a sample of ever-married women, where each 
cohort is represented only by those who have married as of the interview, is that the distri­
bution of age at marriage is truncated by age at the interview. This feature is qected in Table 
3.1 by the fact that there are no data below the main diagonal of the table. 
From the point of view of estimation, truncation requires that we work with conditional prob­
abilities of marriage - that is the probability of marrying at a certain age conditional on marry­
ing by the current age of the cohort - rather than marriage frequencies. The use of such con­
ditional probabilities underlies all developments in this section. 
TABLE 3.1: Tabulation of age at marriage by age at interview for women aged 25-29 at the 

time of the survey, Colombia (1976). 

Age at Marriage Age at Interview x 

(1) 
a 

(2) 
25 

(3) 
26 

(4) 
27 

(S) 
28 

(6) 
29 

11 0 1 1 1 1 
12 2 4 0 8 2 
13 4 4 4 6 3 
14 8 5 8 8 4 
15 14 10 7 13 8 
16 14 12 9 16 12 
17 8 10 15 13 7 
18 15 13 11 16 12 
19 17 19 9 10 16 
20 13 18 9 12 9 
21 12 8 12 15 11 
22 1 11 12 6 10 
23 10 8 4 7 5 
24 8 6 11 4 3 
25 (1) 7 6 3 4 
26 
27 
28 
29 

(1) I 
(2) 

4 
2 

(2) 

5 
4 
5 

(2) 

Total ever-married 127 137 121 146 123 
Ever-married by 
exact age x 126 136 119 144 121 

20
 



In fitting Coale's model nuptiality schedule this circumstance implies that we will be able to 
estimate two of the parameters of the model, namely p and a, governing age at marriage, but 

not c, the proportion of the cohort ultimately marrying. The use of additional information to 

estimate c will, however, be considered in Section 4. 

Let us introduce the following notation with reference to Table 3.1 

to x1 , (in our example 25 to 29)x = age at interview in completed years, ranging from x0 

a = age at marriage in completed years, ranging from ao to x (in our example 11 to x), for the 

cohort aged x 

m number of women married at age a completed years and now aged x completed years 

mx= total number of ever-married women aged x completed years at the interview. 

At this point we must note that truncation creates one further problem, namely the treatment 

of women marrying at their current age of mxx. The difficulty is that the cohort aged x com­

pleted years at the interview has experienced a full year of exposure to marriage at each age a 

< x completed yaars, but less than a year of exposure at age x itself. 

One possibility is to assume that women aged x completed years at the interview are on the 

average x+ exact years, treat women marrying at their current age as marrying between exact 

ages x and x+%, and work with probabilities of marriage conditional on marrying by exact age 

x+%. 

A simple altemative, which avoids any bias introduced by the above assumption and simplifies 

some further developments, is to ignore women marrying at their current age. For the cohort 

aged x completed years at the interview we simply truncate the experience at exact age x and 

work with probabilities of marriage conditional on marrying by exact age x. For this purpose 

we redefine 
xI 

rex= E max = total number of women aged x completed years at the interview who had 
a=ao married by exact age x. 

In the following discussion we will adopt this simpler alternative. Although extensions to use all 

data will be obvious in most cases, the details are cumbersome and will not be given. 

3.2 Maximum Likelihood Estimation 

Let us consider fitting the model to a real cohort aged x0 to x, completed years at the inter­

view. This may be a single-year cohort such as women aged 25 or a group of cohorts such as 

women aged 25 to 29. In all cases, however, we work with the data in single-year form. 

We shall treat the numbers Imax ] married at each age a <x for the cohort aged x as having a 

multinomial distribution with parameters mx and naix ,where 

haIx = Probability of marrying between exact ages a and a+l conditional on marrying by 
exact age x, 

Note that for each of the cohorts in the age group x0 to x, we have introduced a different set 
of conditional probabilities.
 

The likelihood of the data for the cohorts x0 to X, is then a product multinomial distribution.
 
The logarithm of the likelihood is, except for a constant representing the multiromlal co­
efficients,
 

xi x-1
 

log L = 	I E max log (falx)- (3.1) 
x=x o a=a o 

The unrestricted maximum likelihood estimators of the conditional probabilities (94ax J, ob­

tained maximising (3.1), are simply 
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Paix = max, (3.2) 

the sample proportions of women married between exact ages a and a+l among those married 
by exact age x. 

Under Coale's model nuptiality schedule, the probability of marrying between exact ages a and 
a+I conditional on marrying by exact age x is given by 

I = G(a+-G(a) (3.3) 
aix G(x) 

where G denotes the cumulative distribution function of age at marriage with parameters Aand 
a defined at (1.8). 

Expression (3.3) is simply the ratio of the probability of marrying between exact ages a and a+l 
conditional on ever-marrying, to the probability of marrying by exact age x conditional on ever­
marrying. 

Note that we have used the same cumulative distribution function G with parameters Aand a 
for all single-year cohorts in the age-group xo to xi; that is, we are fitting the same model 
schedule to all cohorts in the group. 

The log-likelihood function (3.1) under the model (3.3) becomes 
xi x-1
 

log L = 2; 2; max flog[G(a+l)-G(a)]-log[G(x)]I. (3.4) 
x=x a=aoo 

The function (3.4) depends on the data{raj and on the parameters (p,o) through the cumula­

tive distribution function G, and may be optimized numerically as noted in Section 8. 

Estimates obtained using this procedure for the cohort aged 25 to 29 in the Colombian individ­
ual survey are 

AA 

p= 21.22 and a = 5.98 (3.5) 

Note that although we have worked with conditional probabilities of marriage we have been 
able to estimate the mean and standard deviation of the complete distribution of age at mar­
riage. This result is possible because both the truncated distribution (3.3) and the complete 
distribution G depend on the same parameters p and a. 

It should be noted, however, that the estimates of the parameters p and a which fit the trun­
cated experience of a cohort still going through the marriage process may not necessarily fit the 
complete experience of the same cohort once it finishes marrying, a subject which will be dis­
cussed in more detail in Section 5.5. 

Approximate standard errors of the estimates, obtained from a numerical approximation to the 
information matrix, are 

A AA 

se.p =.362 and se.a =.303 (3.6) 

These estimates :re relatively unstable, depending somewhat on the optimization procedure 
used, but they provide at least a rough indication of the precision of the estimates. 

Estimates of the parameters and associated standard errors for six 5-year cohorts in the Colom­
bian individual survey are given in Table 3.2 (Columns I to 5). 

The results for the cohorts aged 20-24 to 35-39 indicate an increase in mean age at marriage of 
approximately one year over the past 10 to 15 years. For the youngest cohort the results are 
unreliable, as indicated by the large standard errors. For the cohorts 40-44 and 45-49 the 
relatively higher means may represent mis-statement cf age at marriage due to recall errors. 

22
 



TABLE 3.2: Estimates of the parameters of the model fitted to grouped marriage data from the 

Colombia individual urvey (1976). 

Goodness of Fit Homogeneity
Cohort Estimates St. Error 

(10) 011)
(1) (2 Q() (4). 15 (6) (7) (8) (9) 

0 s.e.U 	 p X2 1 p
a s.e4i X21 V 	 V 

xo-X t 

.121 40.7 38 .351 

20-24 21.51 5.94 .640 	 .479 59.6 48 
58 .222 

25-29 21.22 5.98 .362 	 .303 79.1 73 .292 65.9 
.212 120.9 98 .058 88.4 78 .197 

30-34 20.62 5.00 	 .247 
127 .188 108.9 102 .302

5.38 .21735-39 20.43 	 .251 141.0 
92.3 117 .939.263 122.140-44 21.21 5.74 .226 145 .917 

139 .638.320 .266 163.4 172 .669 132.6
45-49 21.69 6.12 

TABLE 3.3: Proportions marrying at each age among women 25-29 married by age at 

interview, Colombia (1976). 

Age at Age at Interview x 

25 26 27 28 29 Pooled Fitted Difference
Marriage 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

PaIx 	 3aix "aIx alx-ajxa 

.008 .006 .000
11 .000 .007 .008 	 .007 .006 

.016 .007
12 .016 .029 .000 	 .056 .017 .023 

.034 -. 003.034 .025.032 .029 .042 .030 
.056 .048 	 -. 00713 

.037 	 .067 .033 .05514 .063 
.074 .001

15 .111 .074 .059 	 .090 .066 .075 

16 	 .111 .088 .076 .111 .099 .091 .088 .003 

.090 .077 .095 -. 018
17 .063 .074 	 .126 .058 

18 .119 .096 .092 	 .111 .099 .097 .095 .002 

19 	 .135 .140 .076 .069 .132 .103 .090 .012 

.076 .074 .083 .006
20 .103 .132 	 .083 .088 

.091 .074 .010
21 .095 .059 .101 	 .104 .084 

22 	 .008 .081 .101 .042 .083 .058 .064 -. 006 

.034 .041 .055 -. 006
23 .079 .059 	 .049 .049 

.028 .046 	 -. 001
24 .063 .044 	 .092 .025 .047 

.021 .033 .037 .039 -. 003
25 .051 	 .050 

-. 008.025 .033.008 .028 .04126 .028 -. 006.014 .033 .02227 .018.041 .041 .023
28 

Number
 
of cases 126. 136. 119. 144. 121.
 

Fitted proportions married by exact age x among women who will eventually marry: 

27 28 29cohort 25 26 

G(x) .789 .825 .855 .880 .900
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3.3 Goodnes of Fit ofthe Model 
The unrestricted m.l.e.'s of the conditional probabilities (r ]under the product multinomlal 
model (3.1) are the obsered proportions of women marrgel between exact ages a and a+l 
among those married by exact age x, (PaIl defined at (3.2). 
The restricted m.l.e.'s of the same conditional probabilities, under the restrictions (3.3) impos.
ed by the model nuptiality schedule, are given by 

S VaxG(a+l)-G(aG(x) (3.7) 
A 

AA 

where G denotes the cumulative distribution function G evaluated at the m.l.e.'s (p,o). 
We shall refer to the {naI as the fitted proportions married between exact ages a and a+l 
among those married by exact age x. 
Table 3.3 shows observed proportions for the cohorts 25 to 29 (Columns 2.6), and fitted pro­
portions corresponding to the cohort aged 29 (column 8). Fitted proportions for the other 
cohorts may be calculated using the fitted values G(x) given at the bottom of the table, and the 
following relation, which follows from (3.7). 

A A G(x 
G(x-l) (3.8) 

The likelihood ratio and Pearson chi-squared statistics for testing the goodness of fit of the 
model are given by 

x X-1 
2 = 2 ± max log (Palx/lax) (3.9)= 
XI xx a=a°
° 


and 
xi x-1 

X2 = Z Z m (Palx'rax)2/;alx, (3.10)x 
p x=xo a=ao 
and are distributed in large samples as chi-squared statistics with degrees of freedom v given by 

x 
S= ' (x-l-ao).2 (3.11) 

x=x0 

which is the total number of independent cells, x-l.a0 for each cohort aged x, minus the num­
ber of parameters estimated; note that the last cell in each cohort contains truncated data 
which were ignored. 

(If there is an age a, such that no one in the cohorts xo to x1 has married after that age (i.e.
max=O for a>a ) we ignore such cells in calculating the chi-squared statistics and correct the
degrees of freedom accordingly. Other cells with zero entries (aoa <a,) are, however, included 
in the calculations.) 

For the cohort 25 to 29 we have, 

X = 79.1 , p-value = .292 
2 = 74.1 , p-value = .441 (3.12) 

v = 73 

indicating a fairly good fit to the data. 
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FIGURE 3.1: Adjusted observed and fitted proportions ever-married by each age amonh those 
who will ever marry in the cohort aged 25-29; Individual survey data. 
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Values of the likelihood ratio chi-squared statistic, as well as its degrees of freedom and associa­
ted p-value, are shown in Table 3.2 (Columns 6-8) for the six 5-year cohorts in the individual 
interview of the Colombian survey. In general the model fits the data fairly well. 

A visual impression of the goodness of fit of the model to each individual cohort x may be ob­
tained by plotting the observed and fitted proportions marrying at each age among all women 
married by exact age x. Alternatively, one may accumulate these data and plot observed and 
fitted proportions married up to each age, among all women married by exact age x. In either 
case, a separate plot is required for each individual cohort as the conditioning age varies. 

Another type of plot, which has certain advantages, may be obtained by calculating ad/usted 
sample proportions married up to each age among all women who will eventually marry 

A a-I 
Pax = G(x) Z Pax ,ao4a4 x (3.13) 

aa o 
A 

and plotting these together with G(a), the fitted cumulative distribution function. Note that an un­
cumulated adjusted sample proportion marrying at each age wotild be given by G(x)Palx; this 
uncumulated schedule is ordinarily more irregular than the cumulated version and thereby 
reveals distortions more readily. 

Figures 3.1 and 3.2 show both types of plots for the cohorts aged 25 to 29 in the Colombian 
survey. One advantage of this type of plot is that all single-year cohorts in the age group x0 to 
x, may be displayed on the same graph. 

Note, however, that the adjusted values defined at (3.13) are a mixture of observed and fitted 
proportions, and in particular must necessarily agree with the fitted distribution at exact age x, 
as is visually evident in Figure 3.1. 

3.4 Homogeneity of Cohorts 

As noted earlier, the model may be fitted to a single-year cohort, such as women aged 25, or to 
a group of cohorts, such as women aged 25 to 29, by assuming that they have all followed the 
same nuptiality schedule. 

In the latter case lack of fit of the model, as indicated by the tests introduced in the previous 
section, may be due to the fact that the different single-year cohorts in the group have not 
followed the same nuptiality schedule, or to genuine lack of fit of the model to their common 
schedule. 

In order to distinguish these cases we now introduce a test for homogeneity of collorts, by 
fitting a model where all single-year cohorts in the age group x0 to x, are assumed to follow the 
same schedule which is otherwise unrestricted. 

To do this we consider the product multinomial model (3.1) with parameters mx and falJ 
Recall that iralx is the probability of marrying between exact ages a and a+l conditional on 
marrying by exact age x, and that we introduced a different set of conditional probabilities for 
each cohort. 

We now write all sets of conditional probabilities in terms of a common set{lraix I , which for 
convenience will be taken to refer to the older cohort. 

iraix 
1 

(3.14)x<xaJx 

2,6alx| 
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aeand

Thus we have written wal a the ratio of the probability of marrying between exact 

conditional on nmarrTng by exact age x, >x, to the probability of marrying by exact ape x 
a~l 
conditional on marrying by exact age xi.
 

The likelihood of the data under the set of restrictions (3.14) becomes
 
x-I
x x-l 

Z m [log( I ,)4'1 g E 'a~x (3.15)log L = i 

x=x0 Aa0
 

Asano (1965) has derived m.l.e.'s for multinomial distributions 
supplemented by incomplete
 

sets of observations. A direct extension of his work to suit the truncated nature of our data 

shows that the estimates that maxiMise (3.15) may be calculated recursively as follows 

max , a--x,-l 

tmxI 

maxl+max. 
(3.16)
x,-2
) ( l i . "i ix l ) , a 

x I x'm
mx l m x 


x-l_
 
Wx'aI, 


x-max(xna+l) m ax (l-__.aix ) 
a 9, 

Z max 

xmax(xo,a+l) oa7=a


use this estimate to calculatc l-x .2 and carryon calcu-
Thus, we first calculate iFx.lxi 

ajxa-lating successively ix,31xl down to I 

The restdcted m.l.e.'s of the conditional probabilitieS+ialxIapplying to the cohort aged x, under 

the set of restrictions (3.14), are given by 

raIx x<x (3.17) 
i'a Ix I 

-a
o
 

(We use the notation frbar to distinguish these estimates from those obtained under Coale's 

model,which we denoted ivhat.) 

We shall refer to the F'Ixas the pooled estimates of the conditional probabilities of marry­

ing between exact ages a and a+l given marriage by exact age x. Pooled estimates pertaining to 

shown in Table 3.3 (Column 7). Pooled 
29 in the Colombian survey arethe cohort aged 


estimates for younger cohorts may be calculated using (3.17).
 

The unrestricted estimates of the same conditional probabilitics are, of course, the sample pro­

portions{PaIj defined at (3.2). 

The likelihood ratio and Pearson chi.squared statistics for testing the homogeneity of the co­

to xi are given byhorts aged xo 

27
 



xI 	 -1 
X = 2Z E max log (Patxix)' (3.18) 

x--x0 a--a0 

and 
x X-l 

x =E 2 mx (Paix. aix w'aix,3 
x=xo a=a o 

and are distributed in large samples as chi-squares with degrees of freedom v given by 
x 	-1 

P = 	E (x-l.ao) (3.20) 
x=xo 

which is the number of independent cells in the data, (x-l-a o ) for each cohort aged x, minus the 

number of independent parameters estimated, (xl -1-ao ).
 

(If there is an age a < x,-1 such that nobody in the cohorts aged xo to x i has married after age
 

a we substitute x-l by min (a ,x-l) in (3.18)(3.20), thus avoiding division by zero and correct­

ing the number of degrees of feedom.)
 

For the cohorts aged 25 to 29 in the Colombian Survey we have 
2 

x = 	65.9 p-value = .222 

Xp = 	60.1 p-value .400 

58 (3.21)v = 

indicating that the cohorts may be considered to have followed the same nuptiality pattern (a 

hardly surprising resuit, since the test in the previous section had indicated that the same 

model schedule did fit these five cohorts well). 

The likelihood ratio statistics for homogeneity of each of the six 5-year cohorts in the Colom­

bian sample, as well as the corresponding degrees of freedom and associated p-values, are shown 

in Table 3.2 (Columns 9-11). All 5-year cohorts appear to be homogeneous, a fact consistent 

with the general impression that nuptiality has not been changing very much in Colombia. 

may find that 5-In countries where age at marriage has been changing rapidly, however, one 

year cohorts are not homogeneous. In such cases a different model schedule should be fitted to 

each single year cohort in a heterogeneous group. 

It is also possible that a X2 test will reveal that cohorts are not homogeneous even where it can 

be confidently assumed that nuptiality has not been changing; this situation is likely to arise 

when the quality of data is poor. In particular nis-statement of age can lead to the appearance 

of non-homogeneity and of a poor fit of the model to the data. In this case, the model can best 

be viewed as a diagnostic and smoothing device (Trussell, 1980). 

Note that we have fitted two models to the same data, namely the model schedule defined by 

and the more general homogeneous schedule defined by the restrictionsthe restrictions (3.3) 

(3.14), and that these models are hierarchical, that is (3.3) is a subset of (3.14).
 

This nesting property permits us to compare the two models by simple subtraction of the chi­

squared statistics and the corresponding degrees of freedom for each model. In the cas. of the*
 

likelihood ratio X2 the resulting statistic is the same that would be obtained directly from the
 

observed and pooled proportions, namely
 

= 	 2 E max log (7[x/rax). (3.22) 
x--x, a=a, 
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FIGURE 3.3: Adjusted pooled and fitted proportion ever-makred by each age among those
 
who will ever-many for the cohort aged 2S-29; Individual survey data.
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FIGURE 3.4: Adjusted pooled and fitted proportions marrying at each age among those who 
will ever-many for the cohort aged 25-29; individual survey data. 
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For the cohorts aged 25 to 29 in the Colombian survey we have 

X = 13.2 p-value = .588 

X' = 14.1 p.value = .522 

P = 15 (3.23) 

indicating that the model schedule agrees fairly well with the pooled estimates. 

A visual impression of the goodness of fit may be obtained by plotting the pooled and fitted 
proportions, or by calculating the adlusted pooled values 

- A a-I
 

a = G(xi) ]P f'aIx
 
a-ao (3.24) 

and plotting these together with the fitted cumulative distribution function G(a), as discussed 
in Section 3.4. An example ofsuch a plot is given in Figure 3.3, and the uncumulated version is 
displayed in Figure 3.4. 



ESTIMATION FROM INDIVIDUAL AND4. 
HOUSEHOLD DATA 

4.1 	 The Data 

now consider estimating all three parameters of the model schedule by combining house-
We 
hold data on marital status and age at interview for all women, with individual data on age at 

marriage and age at interview for ever-married women. 

The basic data are as given in table 2.1 for the household interview and Appendix Table 2 for 

the individual interview in the Colombian National Fertility Survey. Inthis case the individual 

interview was conducted in a sub-sample of the household survey.
 
It will only be
 

The notation to be used has already been introduced in Sections 2.1 and 3.1. 


necessary to distinguish household and individual data by adding a prime to identify the latter.
 

Thus, m_ represents the number of ever-married women aged x completed years in the house­

hold survey, while m' represents the number of ever-married women aged x completed years in
 

the individual survey.
 

We now discuss two methods of combining these data, which we term "two-stage estimation"
 

and "full information estimation". These methods differ in the extent to which they use house­

hold data.
 

4.2 Two-stage Estimation 

Suppose that at stage 1the parameters p and o have been estimated using individual data by the 

procedures described in Section 3. 

completed years at the ipterview, let p and a denote the maxi-
For a real cohort aged x0 to x, 
mum likelihood estimators of the parameters, and let G denote the cumulative distribution 

function evaluated at the m.l.e.'s. 

At stage 2 we consider the likelihood of the household data given at (2.1). Recall that we treat 

as having a binomial distribution with parameters nx and 1x.Under the model 
mx 


(4.1)1lx = F(x+ ) = cG (x+lh). 

We now treat G as known by substituting G.This reduces the log-likelihood function to 

(4.2)log L = 2 mxlog[cG(x+lh)] +(nx.mx)log[ l.cG(x+h)]}. 
xx 0 

ADifferentiating with respect to c we obtain 

alogL x1t mx . (nx-mx)G(x+ ) ]. 
(4.3)ac -= E c l-cIt(x+%) 

x=x 0 

cohort (xo=Xl),setting this derivative to zero leads to the maxi-
In the case of a single-year 

mum likelihood estimator
 

.	 mx/nx Px 

G(x+%) G(x+ ) 

Thus, the estimate of the proportion c who will ultimately marry for the cohort aged x is 

simple the ratio of P.,the proportion ever-married at exact age x+% among all women, estimat­

G(x+%), the proportion ever-married at exact age x+% among
ed from household data; to 

women who will eventually marry, estimated from individual data.
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TABLE 4.1: Estimates of c obtained by treatingp and a as known. 

age x Px=mx/nx G(x+-) CX 
(1) (2) (3) (4) 

25 .633 .808 .784 
26 .702 .841 .835 
27 .731 .868 .842 
28 .746 .891 .838 
29 .778 .909 .856 

Table 4.1 shows details of the application of this procedure to each single-year cohort in the 
age-group 25 to 29 in the Colombian survey, including values of Px obtained from the house­
hold data in 2.1, values of G evaluated at the m.l.e.'s p=21.22 and a=5.98 obtained from 
individual data in Section 3.2, and the corresponding ratios or estimates of c. 

In the case of a group of cohorts (x0< x ), setting the derivative (4.3) of the log-likelihood 
function to zero does not lead to an anaytic expression for the m.l.e. of c. It is possible, how­
ever, to derive a recursive relationship for this estimator. 

Let Cx denote the estimate of c obtained from a single-year cohort age x by applying (4.4). 
Since m. has a binomial distribution with parameters nx and Rx given at (4.1), and G(x+%) 
is assumed known, we have 

E(cx)=c, (4.5) 

and l 

Var( c[-cG(x+) (4.6) 

Consider now combining the different estimates of cX by calculating a weighted average 

xI
 

SX=X (4.7) 
cEw 

x 

with weights equal to the reciprocals of the variance of X, 
A 

= nx(x+ ) (4.8) 
c-cG(x+%)) 

where in practice c must be replaced by its estimate C. 

The resulting estimate c is a minimum variance unbiased estimator of c, and hence a maximum 
likelihood estimator of c under the binomial model. 

Recalling the definition of cx given at (4.4), the weighted average (4.7) with weights (4.8)
becomes x 

.mx
 
=C = I-c (4.9)A X=X 0 1-cGx 

EXI nxGx 

x=xo l-cGx 
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TABLE 4.2: Two-stage estimates of c obtained by treating p and a a known. 

ax to LA 

6),(2) s.e.c. (no. of Iterations)(3) (4) (s) 

20-24 .785 .015 1 (2)25-29 .830 .012 1 (2)
30-34 .854 .010 1 (2)
35-39 .845 .010 1 (2)
40-44 .866 .011 1 (2)
45-49 .851 .011 1 (2)


*Number of iterations needed until there was no change in the third decimal place, initial
 
value = average Afor the 5 individual ages. The number of iterations when the initial value was 
1.0 is given in parentheses. 

where G is shorthand for G(x+ ). The expression (4.9) has c on both sides of the equation,but mayxbe used to obtain the estimate iteratively. Starting with a value of c=l we have found
that only 2 or 3 iterations using (4.9) are needed. 
Note from (4.7) that since wx=l/var(x), the variance of the m.l.e. c is simply 

- i n G 
Var(c) = I/Z Xx (4.10) 

x-xo c(l- cx) 

and may be estimated by substituting ; for c in (4.10). 
For the cohorts aged 25 to 29 in the Colombian survey we have 

A 

c = .830 and s.. c. = .012 (4.11)
In many practical applications we have found that a simple unweighted average of the x givesa reasonable estimate of c, and that a single iteration using (4.9) with the unweighted average asthe starting value is sufficient to obtain the m.l.e. Results for the other cohorts are given in
Table 4.2. 

4.3 Full Information Estimation 
In the case of a single-year cohort the household data contain no iniformation atiout the shapeof the nuptiality schedule, but only about its level. In this circumstance the proceduredescribed in the previous section extracts all available information fror ".he dstta. 
In the case of a group of cohorts, however, the household data contain some information aboutthe shape of the schedule which is not used by the two-stage procedure. We now consider an
alternative method which uses all available information. 
The basic idea is to fit the model schedule simultaneously to the household and individual data 
by combining the procedures described in Sections 2 and 3. 
Thus, for each real cohort aged x (xo<X<Xl ) we treat the household data {mx} as having a bi­nomial distribution with parameters nx and Iix defined in Section 2.2, and the individual data 
as having a multinomial distribution with parameters m' and haix defined in Section 3.2,
independently for each age. 
The joint likelihood of the data is then a product bnomial/multinomial distribution, and the 
log likelihood is simply the sum of (2.1) and (3.1), namely 
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-logL = , fmxlognx+Sl -x)+ m xiog(raix). (4.12) 
x=xo a=ao 

Under the model nuptiality schedule we introduce the joint restrictions (2.3) and (3.3), 

fll=F(x+=) and 	 f - G(a+l)-G(a) (4.13)
aix G(x) 

The log-likelihood under the model becomes the sum of(2.4) and (3.4), 
xt 	 x-1 

El {mxlog[F(x+ )] +sxlog[l.F(x+ )] + E max(log[G(a+l).G(a)] -logG(x))}. 
x=x° a=a° (4.14) 

This function depends on the two sets of data 1mrxsx) and Im.x as well as the parameters p, 
o and c, through F and G, and may be optimized numerically. 
For the cohort aged 25 to 29 in the Colombian survey we obtain 

/u=21.40,a= 6.11 and c=.838 	 (4.15) 

Comparison of these estimates with those obtained using individual data only shows that the 
household information has changed slightly the estimates of/p and o. The estimate of c, on the 
other hand, is practically the same as that obtained earlier. 

All the developments in Sections 2 and 3 extend naturally to the combined estimation pro­
cedure. Observed and fitted values pertaining to the household and individual data are defined 
as in (2.2), (2.6), (3.2) and (3.7), and the likelihood ratio goodness of fit criterion becomes 
simply the sum of (2.7) and (3.9), namely 

P I.P x-l2 x I 
Xl = 2E mxlog( x)+Sxlog(l. .. maxlog(Pa-- x) (4.16) 

I-x aao iralxX=Xo 

with degrees of freedom given by 
x1
 

v = (x1-xo+1)+ 	 E (x-l-ao).3 (4.17) 
x=xo 

The chi-squared statistic may easily be partitioned into components reflecting the contributions 
from the household and individual data. In assigning degrees of freedom to these components it 
would seem reasonable to consider the parameter c as estimated from the household data and 
the parameters/p and a as estimated from the individual data. 

For the cohort aged 25 to 29 we obtain the following results 

2 
XI V p-value 

h 4.2 4 .383 
i 79.4 73 .283 
hi 83.6 77 .284 (4.18) 

indicating a good fit to both the household and the individual data. 

The test for homogeneity of cohorts developed in Section 3.4 may still be applied to the in­
dividual data, but no analogous test exists for the household component. 

Table 4.3 shows estimates of p, oand c obtained by applying these procedures to the six 5-year 
cohorts in the Colombian survey. 

34 



TAIE 4.3: Fimates of parameters of the model fitted to grouped manlae data from both 
do Cas household and individual surveys (1976). 

Aps Estimates Standard Errors Goodness of Fit 
(1) )) ( (4) 1,) 6) 7) (8 9 10) 

xo-xI 	 c 514 s.e.u s.e.c. X2 1 p 

20-24 21.80 6.14 .808 .524 .398 .046 60.0 52 .106 
25-29 21.40 6.11 .838 .376 .314 .021 83.6 77 .284 
30-34 20.70 5.07 .856 .250 .216 .012 130.4 102 .031 
35-39 20.44 5.38 .846 .253 .213 .010 148.3 131 .143 
40-44 21.23 5.76 .866 .265 .224 .011 135.9 149 .771 
45-49 21.69 6.12 .851 .306 .254 .011 168.9 176 .636 

TABLE 4.4: Estimates of the parameters of the model fitted to grouped marriage data from
 
both the Colombia household and individual surveys (1976), when c is fixed at a preassigned
 
level.
 

Age c Fixed Estimates Standard Errors Goodness of Fit 

(1) (2) (3) (4) (5) (7), (8) (9) (00) (11) 
x0o -x 1 U c s.e.t s.e.o s.e.c X2 1 , p 

15-19 	 No 41.39 15.18 14.192 8.276 3.910 16.553 32.3 32 .450 
Yes 24.18 7.10 .90 .346 .317 - 45.3 33 .075 
Yes 23.88 6.93 .85 .342 .316 - 46.4 33 .060 

20-24 	 No 21.80 6.14 .808 .524 .398 .046 65.0 52 .106 
Yes 22.77 6.84 .90 .157 .170 - 68.6 53 .073 
Yes 22.24 6.46 .85 .!S0 .181 - 66.1 53 .107 

25-29 	 No 21.40 6.11 .838 .376 .314 .021 83.6 77 .284 
Yes 22.34 6.89 .90 .215 .193 - 91.6 78 .139 
Yes 21.57 6.26 .85 .217 .188 - 84.1 78 .298 

4.4 Fixing the Value of c 
Examination of the results shown in Table 4.3 reveals that the estimates of c are quite low,
specially for the younger cohorts. Because of previous work on the data from the Colombia 
National Fertility Survey, we know that there are mis-statements of marital status in the house­
hold survey which result in under estimation of proportions ever-married by age. To reduce the 
error introduced into the estimates of the mean and standard deviation of age at marriage by 
errors in the household data, the value of c can be fixed as it was in Section 2.6. Results of this 
exercise are shown in Table 4.4 for two values of c, .85 and .90. 
For the age group 20-24 raising the value of c from its unconstrained estimate of .81 to .85 and 
then .90 raises the estimate of the mean from 21.8 to 22.2 to 22.8. Raising the value of c 
effectively rotates the fitted cumulative schedule about the current age of the cohort in 
question; it increases fitted proportions at older ages and depresses fitted proportions at younger 
ages, thereby raising the mean (and standard deviation). The range of the estimates of p for 

different values of c (in this case a range of u of one year produced by changing c by .1) is large
enough so that one cannot place too much faith in the estimates unless one is fairly confident 
about the value of c. 

35 



The option of fixing c dramatically improves the estimate of p and a for the youngest cohort 

aged 15-19 at the time of the survey. 	As is shown in Table 4.4, the unconstrained estimates 
a proportion ever-marrying of 14.2. Fixing c at either 

are quite absurd: a mean of 41.4 and 

.90 produces estimates of p which are much more reasonable, 23.9 and 24.2, respect­
.85 or 
ively. 

Note that for the cohort 15-19 the range in estimates of I produced by a range in c of .05 

(from .85 to .90) is only .3 year while for the cohorts aged 20-24 and 25-29 the ranges are .5 

year and .8 year respectively. This result is due to the rotation effect produced on the fitted 

on the mean will be greater for Alder 	 than 
cumulative curve mentioned earlier; the effect 	

are depressed infrequences at youngest ages 
younger cohorts since for older cohorts more 

at the oldest ages being raised. The magnitude of the range in 
addition to more frequencies 
estimates of p, and hence the degree of uncertainty about the estimate, when c is changed will 

in c and on the data. For some data sets, the 
depend both on the magnitude of the change 

can be rather small. Hence, the option of fixing c can be valuable, but its value cannot be 
range 

determined with precision in advance.
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5. 	 ESTIMATION FROM INDIVIDUAL DATA ON 
ALL WOMEN 

5.1 	 The Data-Notation 

The WFS individual interview is sometimes applied to an all.women sample; that is, a sample of 
women between the ages of 15 and 49, or a similar age range, selected irrespective of marital 
status. This has often been the case in WFS surveys in Latin America. 

In such cases data on marital status by age at interview for all women and data on age at mar­
riage by age at interview, are available for the same sample ofwomen, a feature which simplifies 
estimation procedures. These data are often tabulated in completed years. 

Table 5.1 presents such a set of data for the cohorts aged 25 to 29 in the Colombian individual 
survey. For each cohort the numbers marrying at each age are the same as shown earlier in 
Table 3.1, but this information has now been complemented by the numbers remaining single 
at the date of the interview. (Appendix Table I shows such data for all cohorts in the survey.) 

TABLE 5.1: Tabulation of age at marriage by age at interview for women aged 25-29 at the 
time of the survey, Colombia (1976). 

Age at Marriage Age at Interview x 

(1) (2) (3) (4) (5) (6) 
a 25 26 27 28 29 

10 0 0 0 0 0 

11 '0 1 1 1 1 

12 2 4 0 8 2 
13 4 4 4 6 3 
14 8 5 8 8 4 
15 14 10 7 13 8 
16 14 12 9 16 12 
17 8 10 15 13 7 
18 15 13 11 16 12 
19 17 19 9 10 16 
20 13 18 9 12 9 

21 12 8 12 15 11 
22 1 11 12 6 10 
23 10 8 4 7 5 

24 8 6 11 4 3 
25 1 7 6 3 4 

26 1 1 4 5 
27 2 2 4 
28 2 5 
29 2 

Total ever-married 127 137 121 146 123 
Total never married 57 42 31 35 23 

Total ever married by 
exact age x 126 136 119 144 121 
Total never married by 
exact age x 58 43 33 37 25 

37
 



all-women sample is that although the exper-
An important feature of.this type of data for an 

ience of each cohort is incomplete, the cohort itself is complete, in the sense that it is repre­

sented by a sample of all its members. In this case the distribution of age at marriage is said to 

be censored(rather than truncated) by age at the interview. 

From the point of view of estimation censoring does not present any special problems, and we 

shall be able to work directly with marriage frequencies, and thus estimate all three parameters 

of the model schedule. 

Let us introduce the following notation with reference to Table 5.1: 

= number of women married at age a completed years and aged x 
max 

completed years at the interview 

Mx= E max = number of ever-married women aged x completed years at the interview
x 

0aao
 
n Sx = number of single agedaged xx completedcompleted yearsyears atat thethe interviewinterview
nx~mx+Sx =total number of womenwomen 

mairied at 
We now consider briefly a minor difficulty that arises in the treatment of women 

As noted earlier the cohort aged x completed years has experienced a 
their current age, mxx. 

full year of exposure to marriage at each age a<x but less than a year at age x.
 

One possibility is to assume that women aged x completed years are on the average x+ Ayears,
 

and to treat the number married at age x as married between exact ages x and x+%, and the
 

number single at age x as not married by exact age x+ 
 . 

A simple alternative, which avoids any bias introduced by the above assumption, is to combine 
x completed

women married at age x completed years with women remaining single at age 

years, and to treat the sum as the number remaining single at exact age x. 

For this purpose we redefine
 
x-l
 

number of women married by exact age x among women
mx=E max (=old mx-mxx) 

now aged x completed yearsa=ao 
number of women remaining single at exact age x among

sx=nx"mx (=old sx+mxx) 
women now aged x completed years. 

have just reclassified observations.
Note that the number of cases remains nx , as we 	 mxx 

In the following discussion we adopt this simpler procedure. Extensions to treat mxx as married 

by exact age x+lA are relatively simple, although details are cumbersome and will not be given. 

5.2 	 Maximum Likelihood Estimation 

to a real cohort aged x0 to x , completed years at the inter-
We now consider fitting the model 
view. 

We shall treat the numbers [max) marrying at each age a<x and the number[Sx} single at exact 

age x, for the cohort aged x. as having a multinomial distribution with parameters {1ax} 
a--a ..... x-l where 

for the cohort aged x. nax =probability of marrying between exact ages a and a+l 

Only x-ao parameters are required for each cohort, as the remaining parameter is 
X-!
 

1ax=probability of remaining single at exact age x for the cohort aged x. 

a=a 
l- 7 

o 

have introduced a different set of marriage probabilities for each single year
Note that we 

cohort in the age group x0 to xI .
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Assuming that the cohorts are mutually independent, the likelihood of the data is given by a 
product multinomial distribution, with log-likelihood 

xi x-1 x-I 
logL= Z ( E max log(fax)+sxlog(1. E fax)l (5.1) 

x=xo a=a a=a 

The unrestricted m.I.e.'s of the fllax) are the sample proportions married at each age. 

Pax = max, (5.2) 
n

X
 

with the proportion single estimated by Sx/n x . 

Under Coale's model nuptiality schedule we have 

vax=F(a+l)-F(a), (5.3) 

with the probability of remaining single at age x given by l-F(x), where F is the cumulative 
frequency of first marriages with parametersju, a and c introduced in Section 1.2. 
Note that we are fitting the same model schedule F to all the single-year cohorts in the age 
group xo to x1 . 

The log-likelihood (5.1) under the model (5.3) becomes
 
x1 x-I
 

logL = Z [ 2; max log[F(a+l).F(a)]+sxlog[1.F(x)]} (5.4) 
x=xo a=ao
 

This function depends on the data {max ! and {s I , and on the parameters p, a and c through 
F, and may be optimized numerically in the usuarfashion. 

Applying this procedure to the cohort aged 25 to 29 in the CO1ombian individual survey we 
obtain the estimates 

A ^ A 

p21.27, o6.02 and c=.910 (5.5)
 
with estimated standard errors, based on anAAapproximation to the information matrix,
AA 
 AA 

s.e.p=.363, s.e.a=.304 and s.e.c.=.025 (5.6) 

TABLE 5.2: Estimates of parameters of the model fitted to grouped marriage data from the 
Colombia individual survey (1976). All-women sample. 

Ages Estimates Standard Errors Goodness of Fit Homogeneity of 
Cohorts 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)~~A A IXo-Xi A a c s'e.p s.e.8 12A sle. x21 , p ×2! v p 

20-24 21.62 6.01 .887 .609 .459 .064 61.6 52 .170 44.0 42 .388 
25-29 21.27 6.02 .910 .363 .304 .025 80.3 77 .376 67.3 62 .302 
30-34 20.64 5.02 .915 .238 .205 .014 124.7 102 .063 90.9 82 .235 
35-39 20.44 5.38 .885 .252 .217 .013 143.5 132 .233 111.2 106 .346 
40-44 21.22 5.75 .919 .270 .221 .013 127.6 152 .926 99.5 122 .932 
45-49 21.66 6.12 .908 .305 .252 .015 166.9 182 .783 136.1 146 .710 
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We note that although the estimates of p and o are similar to those obtained earlier using the 
individual data for the ever-married women, the estimate of c Ismuch more reasonable than 
that obtained using the household data (even though there are many fewer observations in the 
individual data), a clear indication of the better quality of the individual data. Results for all
5-year cohorts in the Colombian survey are summarised in Table 5.2 and confirm the above 
conclusion. 
Another indication of the better quality of these data is shown by the results of fitting the 
model just to data on single and ever-married women by ag, at interview as was done in Section 
2. Results, which are shown in Appendix Table 4, are much more stable. 
The option of fixing c at a value believed to reflect the proportion of women who will eventual. 
ly marry and re-estimating p and a can be used to advantage even with an all women sample.
The unconstrained estimates for the cohort aged 15-19 are 1=29.8, -10.3, and 862.7; these 
values are clearly absurd. If c is fixed at the value .90, the estimates of p and u fall to 1=23.7 
and 07.0; if c is fixed at .85 the estimates are slightly lower: " 23.4, 0-6.8. Although the 
range of estimates of the mean produced by fixing c at .85 and .90 is not so small that we could 
predict with confidence a precise value of the ultimate mean, either choice of c (or any other 
plausible one) produces estimates which are far more plausible than those obtained when c is 
not fixed. 

5.3 Goodness of Fit of the Model 
The unrestricted m.l.e.'s of the parameters 17rax) are the observed proportions married at each 
age defined in (5.2). 
The restricted m.l.e.'s of the same parameters under the model, or fitted proportions marrying 
at each age, are given by i'xF ra+l)-Fa), (5.7) 

with the fitted proportion single given by I-P(x), where P denotes F evaluated at the m.l.e.'s , 

o and c.
 

Observed and fitted proportions marrying at each age and remaining single at their current age

for the cohorts aged 25 to 29 in the Colombian survey are given in Table 5.3 (Columns 2-6 and 
8). 
The likelihood ratio and Pearson chi-squared statistics for testing the goodness of fit of the 
model are given by 

2 x, x-l , sm/ns 

1= 2x 2; Max iog[Pax/l'ax]+xlg ] (5.8)x=xo a=a0 Fx 

and 
X X-! A 2 x 

Xp= Z nxfE (Pax'ffax)+[x/nx I+F(x)] 2 (5.9) 
x=xo 
 a=ao "ax l-F(x) 

In large samples both criteria are distributed as chi-squared statistics with degrees of freedom v, 
given by 

X1
 

V = Z (x-a o )-3, (5.10) 
x=x0 

which is the total number of independent cells less the number of parameters estimated. 
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TABLE 5.3: Proportions marrying at each qe among all women 25-29, Colombia (1976). 
All-women sample. 

Age at Ae at Isterview x 

Marriage 25 26 27 28 29 Pooled Fitted Diffemce 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

a Paix 1Taix lfaIX i&IxCWaIX 

11 .000 .006 .007 .006 .007 .005 .005 .000 
12 .011 .022 .000 .044 .014 .019 .013 .006 
13 .022 .022 .026 .033 .021 .025 .027 -. 003 
14 .043 .028 .053 .044 .027 .039 .045 -. 005 
15 .076 .056 .046 .072 .055 .062 .060 .001 
16 .076 .067 .059 .088 .082 .075 .072 .003 
17 .043 .056 .099 .072 .048 .063 .077 -. 014 
18 .082 .073 .072 .088 .082 .080 .077 .002 
19 .092 .106 .059 .055 .110 .084 .074 .011 
20 .071 .101 .059 .066 .062 .072 .068 .005 
21 .065 .045 .079 .083 .075 .069 .060 .009 
22 .005 .061 .079 .033 .068 .048 .053 -. 005 
23 .054 .045 .026 .039 .034 .040 .045 -. 005 
24 .043 .034 .072 .022 .021 .038 .039 --.001 
25 .039 .039 .017 .027 .031 .033 -. 001 
26 .007 .022 .034 .022 .027 -. 006 
27 .011 .027 .019 .023 --.004 
28 .034 .035 .019 .016 

Probability of 
remaining 
single at 
exact age x .315 .240 .217 .204 .171 .175 .183 
Number of 
cases 184. 179. 152. 181. 146. 

For the cohort aged 25 to 29 we obtain 

X, = 80.3 p value = .376 
= 74.9 pvalue = .547 

v= 77 

indicating an excellent fit to the data.
 

Results of the likelihood ratio goodness of fit test for all cohorts in the Colombian survey are
 
given in Table 5.2.
 

5.4 Homogeneity of Cohorts 

We now introduce a test for homogeneity of cohorts for all-women samples which is analogous 
to that introduced for ever-married samples in Section 3.4. 

We assume that all cohorts have followed the same nuptiality sche~ule 1fs.which is otherwise 
unrestricted, so that the probability of marrying between exact ages a and a+l is 
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KaxWa for all cohorts x, x<X 1 (5.12) 

with the probability of remaining single at exact age x being simply. 

x-I 
IZ Wa. 
a-a0 

The likelihood function (5.1) under the homogeneous model (5.12) isgiven by 
x x-I x-! 

logL = I Z maxlogiir)+Sxlog(l.2 1ra) (5.13) 
x-x a=ao aa 0o 


It can be shown that the estimates which maximise the likelihood are given by 

xi

Z- Max 

X=Xo ,a<x o (5.14) 
xlxi n 

xl 

Z max a-I
 
x=a+l [l.Z 'FaJxo~a<xi (5.15)
 
xi x-! a7ao(
 

1- 1I; max+x] 
x=a+l a=a 

The expression for a<xo,where there is no censoring, follows from a straightforward binomial 
argument. The expression for a~xo follows from a conditional probability argument. Note that 
(5.15) estimates the probability of marrying between ages a and a+las the product of two 
quantities: (1)the number married between ages a and a+l divided by the number single at 
exact age a, which estimates the conditional probability nf marrying between ages a and a+l 
conditional on being single at age a, and (2) a previously obtained estimate of the probability of 
being single at exact age a. 

The estimates given at (5.14)-(5.15) are identical to those that would be obtained by construct­
ing a life table where x 

z Max
 
x=max(x o ,a+l) 

represents the number married between exact ages a and a+l, and s represents the number 
censored at exact age x. We refer to these estimates as the pooled (or life table) estimates of the 
first marriage frequencies. Pooled estimates for the cohorts aged 25 to 29 in the Colombian 
survey are shown in Table 5.3 (Column 7). 

The likelihood ratio and Pearson chi-squared statistics for testing he hypothesis that all cohorts 
in the group have followed the same nuptiality schedule are given by 
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http:5.14)-(5.15


x x 'fix 
s


=2i [; maxiog(lh)xlo (5.16) 
x-xo a=ao fra x-I 

1-Z'F
 
a7-%a 

and -1 
.x- 1
 2' = 0x fix [x- (P "t-)x a~a 

k2P x;x=x° ,[I;aaafa° naa 2+ -nxa-a,1Y a (5.17) 

a-a
o
 

and are distributed in large samples as chi-squared statistics with degrees of freedom 
xi -l 

v = 2; (x-ao), (5.18) 
x=xo 

which is the number of independent cells, x-ao for each cohort aged x, less the number of para­
meters in the homogeneous model which isx, -ao. 
For the cohort aged 25 to 29 we obtain 

= 
2 67.3 pvalue = .302 
X = 61.3 p value = .501 
v = 62 (5.19) 

indicating, as we would have expected from the good fit found earlier, that the cohorts are 
fairly homogeneous.
 
Results of the likelihood ratio test for other cohorts are given in Table 5.2.
 
Since Coale's model (5.3) is a restricted case of the homogeneous model (5.12), we can obtain
 
a chi-square test comparing the two models by direct subtraction of the goodness of fit chi­
squares and the degrees of freedom corresponding to each model.
 
For the cohort aged 25 to 29 we obtain from (5.11) and (5.19)
 

X1 = 13.1 p value = .598 

2 = 13.6 pvalue =.558 
v= 14 (5.20) 

The likelihood ratio chi-square statistic is the same that would be obtained by direct use of the 
ratio i/;a. 

5.5 Fitting and Forecasting 
In fitting a model schedule to acohort still undergoing the marriage process we obtain estimates 
of p and a which best reproduce the experience of the cohort up to the date of the interview. 
The goodness of fit criteria considered so far pertain only to this incomplete experience. 
As noted earlier, a model that fits the experience of a cohort to date well will not necessarily
forecast its future behaviour accurately. Yet one of the purposes of fitting the model may be to 
estimate the mean age at marriage, which involves an element of forecasting for allbut the 
oldest cohorts. 
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TABLE 5.4: Estimates of the mean age at fhit marriage and the proportion ever marrying 
obtained by artificially censoring the available data. 

Current Age of Cohort 
35-39 40-44 

Cohort Last 
Observed When Estimate SE Estimates p Estimates SE Estimates 

Aged x -x 1 
(13 (2) 

p 
(3) 
c 

4).
s.e4p 

$) 
s.e.c 

(6) (7)
/ 

(8) 
c 

(9)
s.e4L 

( (0 
s.e.c 

20-24 
25-29 

20.16 
20.00 

.875 

.852 
.507 
.315 

.051 

.023 
.256 
.727 

22.58 
21.87 

1.090 
.981 

.929 

.554 
.113 
.041 

.9 

.9 
30-34 
35-39 
40-44 

20.13 
20.44 

.864 

.885 
.256 
.255 

.017 

.014 
.592 
.233 

21.40 
21.17 
21.22 

.935 

.917 

.919 

.365 
.298 
.284 

.019 

.015 

.013 

.8 
.8 
.9 

If the model is true, of course, and there are no errors in the data, the procedures descrit 
herein will produce estimates of the parameters which will be correct within the limits of sam 

aing variability. In fitting the model to data generated from the standard with A=21.36 
0=6.58 we have been able to recover the correct parameter values by truncating or censor: 
the data as early as ages 15 to 19. 

It is therefore interesting to examine whether we would have obtained the same estimates 
the parameters for the cohort now aged for example 40-44, if we had observed them at 
arlier point in time. To accomplish this task we assume that women now aged, for exam: 

40.44, who reported an age at marriage of 20 would have reported the same age at marriage 
10 or 15 years ago. In short, we must assume that dates (both of birth and of marriage) 
reported correctly. We then re-estimate the parameters for a cohort by utilizing data wh 
would have been gathered 5, 10, 15, .... years earlier. Results for two cohorts are presented 
Table 5.4. 

Consider first the cohort aged 35-39 at the time of the survey. Estimates of the mean age 
marriage and proportion ever-marrying are 20.44 and .885 respectively. If the same women t 
been interviewed five years earlier, when they were aged 30-34, their reports would hi 
produced estimates of j and c of 20.13 and .864 respectively. Even 15 years earlier tlh 
experience to date would have produced quite similar estimates of 20.16 and .875. Figi 
5.1 shows the pooled estimates for this cohort, as well as the fitted schedules based on i 
experience of the cohort up to date, and based on the experience censored at ages 20-: 

We conclude that in this case, estimates which would have been produced earlier are rema 
ably similar to those actually resulting from the survey. The biggest difference arises betw 
estimates based on the current data and those which would have resulted had the cohort bf 
interviewed 10 years earlier, when aged 25-29; the mean would have been underestimated 
.44 and the proportion ever-marrying underestimated by .033. The implication of this findinj 
that while the model would have predicted well in this example, the actual prediction er 
is higher than the estimatcd standard errors of the estimates. Hence, one must expect rat] 
less precision in the estimates of the eventual mean age at first marriage and proportion ei 
marrying for young cohorts than would be implied by the estimated standard errors. 

The cohort aged 40-44 reveals a more disnmal picture. Estimates of the parameters based on 
current data are almost identical to those which would have been obtained five years earl 
After this point however, estimates of both the mean age at marriage and the proportion ei 
marrying rise monotonically the further back in time one assumes the survey was taken. I 
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FIGURE 5.1: Pooed estimates of proportions marrying at each age for the cohort aged 35-39and fitted schedules boed on the experience up to ages 20-24 and up to ages 35-39; all.women umple. 
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estimates based on oata which would have been collected 20 years earlier are clearly incon­
sistent with the current estimates; the mean is over-estimated by nearly 1.4 years and the
proportion ever-marrying over-estimated by .171. We conclude that in some cases the model 
may not predict well. 
It must be emphasized that if the data do conform to the model, artificial censoring or trun­
cation will not affect the estimates of the parameters. The problem with the data for the 
cohort aged 40-44 at the time of the survey (and to a much lesser extent with the data for
the cohort aged 35-39) is that they simply do not conform well to the model. This lack of 
conformity is evident in a plot of the pooled estimates for the cohort aged 40-44, shown in
Figure 5.2. The data are clearly irregular and do not form a smooth curve with a single peak.
There are big positive outliers at ages 18, 21, 25 and 27 and big negative outliers at ages 23,
26 and 28. When the experience of the cohort up to ages 40-44 is used the fitted schedule is 
anchored at the upper tail by a large number of points which conform to the model. As one
successively discards the points at ages 35-39, 30-34 and 25-29, the outliers acquire more
prominence and the best fitting curve (in a maximum likelihood sense) moves steadily to the 
right, thereby implying a larger mean, as clearly seen from Figure 5.2. 
The lesson to be learned is straightforward. If one is fitting the model to a series of points
which are highly erratic (due to random or non-random variations in age reporting such as 
caused for example by digit preference) especially in the central age groups, then the predictive 
power of the model is likely to be small indeed. One can best use the model in such a case as a
diagnostic or smoothing device. If, on the other hand, the data form a series which is smooth 
and single-peaked, then one can place more faith in the predictive power of the model. Never­
theless, period effects can modify the predictive power even when the model to date fits well.
The model cannot foresee war, famine, social change or revolution; its predictions are limited 
by the assumption that past behaviour reveals something about future behaviour. 
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6. ESTIMATION FROM UNGROUPED DATA 

6.1 The Data 

In Sections 3 and 5, dealing with estimation using individual data from ever-married or all. 
women samples, we have used age at marriage and age at interview tabulated in completed 
years. We refer to this type of data as grouped data. 

In WFS individual surveys these ages are calculated from three dates - namely date of respond. 
ent's birth, date of first marriage and date of interview - all available or imputed in month/ 
year form. Thus the ages under reference are 'known' to the nearest month and may be taken 
to represent exact years. We refer to this type of data as ungrouped data. 

We now consider fitting the model using ungrouped data or exact ages, and discuss estimation 
and goodness of fit procedures appropriate for ever-married and all-women samples. 

6.2 Estimation fom All-women Samples 

Consider first a , mple or cohort of n respondents, of whom m are ever-married. For con­
venience let il,...,m index those ever-married and let i=m+l,...,n index those single. For the 
i-th respondent let 

xi = age at interview in exact years (i=1,...,n) 

ai = age at marriage in exact years (i= ....m) 

Note that in an all-women sample the distribution of age at marriage is censoredby age at the 
interview (ai~xi for im but ai is undefined for i>m). 

Under Coale's model nuptiality schedule the probability of marrying between exact ages a 
and a+da is f(a)da, where f(a) is the frequency of first marriages defined at (1.1). Hence, the 
contribution to the likelihood of a women married at exact age ai is simply 

f(ai), i=1,...,m (6.1) 

On the other hand, the probability of remaining single at exact age x is l-F(x), where F(x) 
denotes the cumulative frequency of first marriages defined at (1.6). Hence, the contribution to 
the likelihood of a women single at exact age xi is simply 

l-F(xi), i=m+l,...,n (6.2) 

The logarithm of the likelihood function under the model is then 
m n 

logL = E log (f(ai)] +2 log [Il-F(xi)] (6.3) 
i=l i=m+l 

This function depends on the data Iai,x i ) and the parameters p, o and c through f and F, and 
may be optimized numerically using the procedures mentioned in Section 8. 

For the cohort aged 25 to 29 completed years in the Colombian individual survey we obtain 
A A 

p=21.17, o5.97 and 2=.904 (6.4) 

which are similar to the estimates obtained from grouped data at (5.5). 

Estimates of the standard errors of the estimates, obtained from a numerical approximation to 
the information matrix, are 

AA A A A 

s.e.=.332, s.e.-.276 and s.e.c.=.023 (6.5) 

which are also comparable to those obtained using grouped data at (5.6). 
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TABLE 6.1: Estimates of the parametersof the model fitted to ungrouped nmiae data from 

the Colombia individual survey (1976). Al-women sample. 

Standard Errors Goodness of FitCohort Estimates 

(1) (2) (3) (4) 	 (S) 6)^ (7) (8) 
xo p a c s.e~j s.e.o s.e.c. D 

- x  

.895 .480 .363 .050 .02420-24 21.57 6.01 
.276 .023 .02h25-29 21.17 5.97 .904 .332 

30-34 20.61 5.06 .917 .253 .211 .014 .020 
.04135-39 20.45 5.42 .889 .244 .212 .014 

.919 .269 .233 .013 .03340-44 21.15 5.75 
.014 .04245-49 21.69 6.40 .913 .333 .273 

Our experience indicates that estimates of standard errors obtained from ungrouped data are 

generally more stable and reliable than those obtained from grouped data. 

Estimates of all three parameters and their standard errors for the six 5-year cohorts in the 

Colombian individual survey are given in Table 6.1. 

Let F(a) denote the fitted nupt~ality schedule obtained by evaluating the function F(a) at the 

m.l.e.'s P, a and 8. Note that F(a) is a maximum likelihood estimator of the cumulative fre­

quency of first marriages under the assumption that the latter has the parametric form intro­
duced in Section 1.2. 

6.3 The Kaplan-Meier Estimate 

We now consider a procedure for assessing the goodness of fit of the model which is based on 

a comparison of the fitted nuptiality schedule with a non-parametric estimate ot the cumulative 

frequency of first marriages, which maximizes the likelihood of the data over the class of all 

distribution 	functions. 

which will be denoted F(a), is the product-limitThe non-parametric estimate in question, 

estimate of a distribution function from censored data developed by Kaplan and Meier (1958),
 
and represents an extension to continuous data of basic life table concepts.
 

Let a(i)<a(2)< ...<a(k) denote the distinct ages at marriage observed in the sample, with
 

k~n and define a(0)=- and a(k+1)=. Let m,. denote the number of women married at exact
 

age a(i), and let i denote the number of single women at exact age x where a(i) x-a(i+l )
 
for i=!,...,k.
 

In life table terminology mi represents the number of "deaths" at exact age a(i) , and Ii repre­

sents the number of "losses" or observations censored between exact ages i) and a(i+l), 

including losses at a(i) but not at a (i+1). 

For each age a(i) define the risk set 
k 

R i = Z (mj+lj) 
j=i
 

This set comprises all women remaining single just before age a(i) and thus "at risk" of first 

marrying at exact age a(i). 

The product-limit estimate of the probability of marrying by exact age a(i) is then 
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i 

Ffa(,)] = 1 - I [I_ (6.7) 
j=l Rj
 

Note that m-/Rj estimates the probability of marrying at exact age a(j) conditional on being 
single just before that age; the quantity in brackets estimates the probability of remaining single 
at age a(j); the product from j= to i estimates the probability of remaining single from ages 
a(l) to a(i); and thus F [a(i)] estimates the probability of marrying by exact age a(i). 

The estimate may be extended to any age a<x(n), the largest censoring age, and other than the 
sample points a(i), by setting F [a(o)J =0 and 

F(a) = F[a(i)] for a(i)< a < a(i+l ) (6.8) 

Details of the derivation of F using a maximum likelihood argument may be found in Kaplan 
and Meier (1958, p.475). 

In the grouped data case the estimate (6.7) turns out to be the same as the pooled estimate 
introduced in Section 5.4, which is also based on a life table argument. 

Note that we have two estimates of the cumulative frequency of filst marriages, an estimate 
F(a) from the class of all distribution functions, and an estimate F(a) from the subclass of 
functions having the parametric form proposed by Coale and McNeil (1972). 

Since the two estimates are m.l.e.'s one might expect these developments to lead to a likeli­
hood ratio test of the goodness of fit of the model. Unfortunately such is not the case, because 
the ratio of the likelihoods does not give a fair comparison between a discrete function such as 
F(a) - which assigns positive probability to the actualobserved values and zero probability to 
any other value - and a continuous function such as F(a) - which assigns positive probability 
density to any possible value whether observed or not. 

Since the two estimates are consistent however, it is possible to assess the goodness of fit of 
the model by a direct comparison of F(a) and F(a) for all ages a. In particular, a summary 
measure of the goodness of fit of the model is given by the largest difference between the two 
estimates. 

D = supremum 
a(l)<a<a(k) 

I F(a F(a) I. (6.9) 

It can be show
D 

n that 
= 
th

max 
i' 

e max
[max (IF[a(i)] -F[a(i)][ I F[a(i)]-F [a(i.1)] 
imum must occur at one of the sample poi

1} 
nts, so that 

(6.10) 

The statistic D is a censored-sample analog of Kolmogorov-Smimov's goodness of fit statistic. 
The distribution of D is known for complete samples, but its properties under censoring have ­
to our knowledge - not been established. Thus D may be used as a descriptive measure of good. 
ness of fit but not as a formal test. 

Figure 6.1 shows the parametric and non-parametric estimates F(a) and F(a) of the cumulative 
frequencies of first marriage for the cohort age 25 to 29 in the Colombian survey. 

The closeness of the two curves indicates a good fit of Coale's model nuptiality schedule to the 
data. The largest distance between the curves is D=.023. There are two problems in interpreting 
this statistic, one of a general nature and one specific to WFS data. First, it is affected by the 
proportion who ever marry; if the cumulative curve reached only half the level shown in Figure 
6.1, then ceteris paribus, D would be only half as big. The second problem, specific to WFS 
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FIGURE 6.1: Kaplan-Meier [F(a)] and fitted [F(a)I proportionsever-married among women
 
aged 25-29 at the time of the survey; all-women sample.
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data, is that the :-ges at marriage are not really distinct since thgy are all expressed in twelfths 
of a year. P':cce heaping on these fractions is inevitable. Since F(a) is continuous and F(a) is a 
step function. more heaping will invariably increase D. Thus, both the plot and the statistic 
tend to make the goodness of fit appear worse than it would be if exact ages were used. 

6.4 Estimation from Ever-married Samples 

We now adapt these procedures to the case of an ever-married sample. 

For the i-th respondent in a sample or cohort of m ever-married respondents let 

xi = age at interview in exact years 

ai = age at marriage in exact years 

Note that in a sample of ever-married women the distribution of age at marriage is truncated 
by age at the interview (aixi). We therefore argue in terms of conditional probabilities of 
marriage. 

The probability of marrying between exact ages a and a+da conditonal on marrying by exact 
age x, under Coale's model nuptiality schedule, is given by g(alx)da where 

g(alx) = A , (6.11) 
G(x) 

where g(a) and G(x) denote the probability density and the cumulative distribution functions 
of age at marriage, defined at (1.2) and (1.8). 

The logarithm of the likelihood function under the model is then 
m 

logL = 	Z {log[g(ai) ] -log[G(xi) ]J. (6.12) 
i=l 
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TABLE 6.2: Estimates of the pammeters of the model fitted to ungrouped mariage datafrom 

the Colombia Individual survey (1976). Ever-married women sample. 

Cohort Estimates Standard Errors Goodness of Fit 

(1) 
xo -x 1 

(2) (3) 
aa 

(4)^) 
s.e./ s.e.a 

(6) 
D 

20-24 21.51 5.97 .517 .395 .053 
25-29 21.10 5.91 .327 .274 .037 
30-34 20.60 5.05 .245 .207 .028 
35-39 20.45 5.42 .253 .216 .038 
40-44 21.15 5.74 .282 .232 .037 
45-49 21.69 6.40 .342 .277 .047 

This function depends on the data (aixi) and the parameters p and a through g and G, and may 
be optimized numerically as noted in Section 8. 

For the cohorts aged 25 to 29 completed years in the Colombian individual survey, we have 
A A 

/t=21.10 and o=5.91, (6.13) 

which are fairly similar to those obtained from grouped data. 

Estimates of the standard errors of p and a for this cohort, obtained from a numerical approxi­
mation to the information matrix, are 

sx.e=.327 and s."e.^=-.274, (6.14) 

which are comparable to those obtained using grouped data. 

Estimates of the parameters, as well as associated standard errors, for six 5-year cohorts in the 
Colombian individual survey are given in Table 6.2. 

For each cohort the maximum likelihood estimate of the conditional probability of marrying 
by exact age a given marriage by exact age x>a is given by 

A A A 

G(alx)=G(a)/G(x), (6.15) 
A AA 

where G denotes the cumulative distribution function G evaluated at the m.l.e.'s p and a. 

6.5 A Product-limit Estimate for Truncated Data 

In order to assess the goodness of fit of the model to a sample of ever-married women we now 
develop a non.parametric estimate of the cumulative distribution function from a truncated 
sample, which maximizes the likelihood of the data over the class of all distribution functions. 

The estimate, which will be denoted C(alx), is analogous to the Kaplan-Meier product-limit 
estimate for censored samples, and hence will be referred to as the product-limit estimate for 
truncated samples. We first introduce the notation and the estimate and then proceed to its 
derivation. 

<a(k) denote the distinct ages at marriage in the sample and define a0)=­
and a(k+l)=-. Let mi denote the number of women mairied at exact age a(i) and let tidenote 
the number of women interviewed at exact age x for a(i)x<xa(i+l). 

Let a(1)<a(2)< ... 

Here tirepresents the number of observations truncated at ages between a(i) and a(i+l), includ­
ing those truncated at a(i) but not at a(i+l). Note that since all women in the sample are ever­
married and interviewed 
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kk 
(.6=mEtl = n 

Let us now define the quantity 

(6.17)Mi= E (mi.t)j=l °
 

which can be seen to be the number of women married at age a(i) or earlier and interviewed at 

age a(i+l) or later. 
probability of marrying by age a(i) conditional on

Then the product-limit estimate of the 
marrying by age x(m), the largest observed age at interview in the sample, is 

k-I mj6.8
 
G[a(i) IX(m)] = kl (6.18) 

ji J .1 

T)and inter-
The ratio Mj/(Mj+mj+l) is the ratio of the number of women married by age 

or later, to the number of women married by age a(j+l) andinterviewed
viewed at age a(I+l) 
at age a(j+l) orlater, and thus estimates the probability of marrying by age a(j) conditional on 

marrying by age ao+l). 

The product of these probabilities from j=i to k-I gives an estimate of the probability of marry­

on marrying by age a(k). Since there are no marriages in the sample
ing by age a(i) conditional 
between ages a(k) and X(m), these probabilities may also be considered conditional on marrying 

by age X(m). 
The estimate may be extended to any age a<x(m) other than the sample points a(i) by letting 

G(a(o)lx(m))=O 
and 

a<a0+l) (6.19)G(ajx(m))=G(a(i)lX(m)) for a(i) 

We now show that G is a maximum likelihood estimator of the conditional distribution funct­

ion in the class of all distribution functions. 

Let Gm(a) denote the probability of marrying by exact age aconditional on marrying by exact 

an arbitrary function to be determined so as to maximize the likeli­
age x(m), considered as 

hood.
 

For a sample of m women, where the ith woman married at age ai and was interviewed at age 

xi, [aixigx(m)], the likelihood isgiven by
 

m Gm(ai)Gm(ai-0)
 
L =II
 (6.20)i=l Gm(Xi) 

where Gm(ai-O) denotes the value of Gm(a) immediately at the left of ai. 

Let a(i), mi and ti be as defined earlier, and let x(ij) for j=l ...,ti denote the exact ages at inter­

view of the tiwomen whose experience was truncated between a(i) and a(i+l), including those 

truncated at a(i) but not at a(i+l). 

The likelihood function may then be written as 

(6.21)
L = k {Gmta(i)1Gmta(i -Olf' (I] Gm[X(lj)}-

j=Ii=l 
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Note that (6.21) is just a restatement of (6.20) since 

m k 
N] [Gm(ai)Gm(ai'0)1 = [] (Gi [a(i)] -Gm[a(i)O J}I i 

1=1 1=1 

and 
m k ti -1 
R] Gm(xl ) I = [] 11 Gm [X(ij)] 
i=l i=l j=1 

To maximize the likelihood we would like to make Gm[a(i)] as large as possible, and Gm 
[a(i)-0] and Gm[x(ij)] as small as possible, under the restriction that Gm is non-decreasing. 

Since a(i)<x(ij)ya(i+l)-O, we require for monotonicity 

Gm[a(i)1 Gm [x(ij)I <Gm[a(i+l)-O] (6.22) 

Subject to this constraint, the first term will be as large as possible and the other two as small as 
possible when they are all equal. Denoting the common value as Pi we have 

Gm [a(i)] =Gm [x(ij)] =Gm [a(i+ ).0] =Pi (6.23) 

with Po=0 and Pk-l. 

Note that Pi is the probability of marrying by exact age a(i) conditional on marrying by exact 
age a(k) or X(m), as there are no marriages after age a(k). 

The likelihood function (6.21) may then be written as 
k m. -t
i
 

L = 11 [pi.li J [pi] (6.24)
i=1 

Let us now write 

'Pi - ,i=1,...,k 1 (6.25) 

Pi+1 

with po=O and pk=l. 

Note that pi is the probability of marrying by exact age a(i) conditional on marrying by exact 
age a(i+l). 

We can then write 
k 

Pi = []  Pj (6.26)
j=i 

k
 
and Pi-Pi.1 = ] P(l-Pi.1).
 

j=i
 

The likelihood function (6.24) now becomes 

L = 
k 
R 
i=1 

k 
R 
j=1 

pj(l-pi.l)) m 
k 
1 
j1 

t 
pjti (6.27) 
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Collecting powers of pi we obtain 
i 

k (m.-t ) 
k j=1 

L 11 Pi (i'il)i (6.28) 
i= 

The log.likelihood function is then 
k i 

(6.29)logL = Z JE (mj.tj)log Pi+milg(I-pI.I)1 
1=1 j=l 

Differentiating with respect to pi for i- 1,...,k
i 

gives 

E (mi-tj) Mi+l 
(6.30)alogL = Jf= ­

aPi Pi -Pj 

and setting the derivative to zero gives the ne.I.e. 

(6.31)Pi Mi , i=l,...,k!
Mi+mi+l 

where Mi is as defined at (6.17). 

FIGURE 6.2: Product-limit [6(a)] and fitted [G(a)I proportions ever-married among women
 

married by age 29. 167, ever-married women sample.
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By the invariance property of m.l.e.'s and (6.26) we then obtain 

A k-I MI i=l,...,k-1 (6.32) 
Pi = 

j=il Mj+mj+I 

is also the me. of Gm[a(i)]. This step completes the derivation.which in view of (6.23) 

In the case of grouped data the product-limit estimate just developed reduces to the pooled 

estimate introduced in Section 3.4. 

In order to assess the goodness of fit of the model to data truncated at age x(m) we can now 
of Section 6.4 with the non-parametric estimate compare the parametric estimate G(alx(m)) 

G(alx(m)), for all ages a' X(m). 

A summary measure of the goodness of fit of the model is given by the statistic 

D=max [max (I G[a(i)lx(m) ] Z' [a (i) lx(m) ] I , IG[a(i)x(m) ] "G[a(i.1 ) Ix(m)I I] 
(6.33) 

which is a truncated-Iample analog of the Kolmogorov-Smirnov statistic. 

Figure 6.2 shows the two estimates G and G,for the cohort aged 25-29 completed years in the 
at marriage is 29.167 both curvesColombian individual survey. As the largest observed age 

represent cumulative probabilities of marriage conditional on marrying by exact age 29.167. 

The closeness of the two curves indicates a fairly good fit of Coale's model nuptiality schedule 
same reservationsto the data. The largest difference between the two curves is D=.037. The 

stated earlier about the tendency of D to reflect an understatement of the goodness of fit since 

are confined to twelfths of a year apply in the ever-married sample as well. ages at marriage 
not affected by the proportion who can marry, since theHowever, the statistic is obviously 


sample is of ever-married women only.
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7. FITTING THE MODEL TO FIRST BIRTH DATA 

Recall that the standard probability density function which forms the basis of the model 
nuptiality schedule very closely approximates the convolution of a normal and three exponent­
lals. Suppose that the risk of pregnancy leading to a live first birth were constant over time 
and across women. Then, the waiting time from initiation of intercourse to first birth would be 
distributed exponentially. If oue regards marriage as the entry into the risk of exposure to 
pregnancy, then the above discussion would imply that a model first birth schedule could be 
constructed as the convolution of a normal vnd four exponentially distributed delays, or 
equivalently as the convolution of the age at first marriage and an exponential delay till the 
first birth. However, since Coale and McNeil found that a convolution of a normal and four 
exponential delays could be very closely approximated by a convolution of a normal and 
only three exponential delays, it follows that the marriage model should itself replicate first 
birth schedules adequately. 

An initial analysis conducted by Trussell (Trussell, Menken and Coale, 1979) confirmed both 
that the marriage model fits first birth (and even second and third births) schedules well, and 
that the four parameter model (i.e. the marriage model and another parameter for the exponen­
tial delay) fits the data no better than the three parameter model. This analysis showed that 
period first birth schedules were replicated more closely than cohort schedules (at least for 
American data), because period effects appeared to be considerable. In recent extensions of 
this preliminary investigation in a Ph.D. Thesis, David Bloom (1980) has confirmed that the 
model does fit well when applied to data from a variety of countries and that period effects are 
indeed important. 

The model has been fitted to the first birth data from the Colombia individual survey, and the 
parameter estimates are presented in Tables 7.1 and 7.2. In Table 7.1, the results for data on 
women who ever had a first birth are pref-ated, while Table 7.2 extends the analysis by pre­
senting estimates of the proportion ever having a first birth as well. Perusal of these tables 
indicates that the model does not fit the first birth data as well as the marriage data. This result 
could be due to the fact that first births (if we extrapolate from experience in other countries) 
appear to display more period effects than marriages, or could be attributed to errol in the 
dating of the first birth, or could be a consequence of genuine lack of fit of the model. Examin­
ation of the pooled estimates for each 5-year cohort reveals that the first birth schedules are 
very irregular, thus tending to lend heavier support to the first two explanations. Nevertheless, 
we are encouraged by these results, since poor overall fits are usually accompanied by a finding 
that the cohorts (20-24, 25-29, 35-39) are not homogeneous. 

TABLE 7.1: Estimates of the parameters of the model fitted to grouped first birth data from 

the Colombia individual survey (1976). Women who had a first birth. 

Ages Estimates Standard Errors Goodness of Fit Homogeneity of Cohorts 

(1) (2) (3) 4) 5) (6 (7) (8) (91 (10) (11) 
xo -x I A a s.e. s.e.o X P P X V p 

20-24 24.04 6.69 .904 .615 76.8 48 .005 58.1 38 .019 
25-29 22.40 6.00 .375 .308 119.5 73 .000 94.1 58 .002 
30-34 21.59 4.96 .247 .211 104.6 93 .194 82.0 74 .245 
35-39 21.70 5.58 .263 .226 159.4 122 .013 134.2 98 .009 
40-44 22.02 5.60 .271 .220 159.9 153 .335 116.1 122 .633 
45-49 22.51 6.51 .321 .260 168.4 168 .476 112.0 136 .934 
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TABLE 7.2: Estimates of peramters of the model fitted to grouped first birth data from the 

Colombia Individual survey (1976). All-women smple. 
Homogeneity of 

CohptoGoodness of FitStandard Error.Ages Estimates 

(1) ( ( 5 6) J)7) (8) (9) (10) (11) (12) (13)
A 2 2 

xo -x, 11 a c s.e4i s.e.o s.e.c X1 v p X1 V p 

.090 59.6 42 .03820-24 23.49 6.36 1.06 .655 .468 81.2 52 .006 
.373 .307 .029 121.6 77 .001 96.2 62 .00325-29 22.43 6.02 .925 

.176 87.2 78 .22430-34 21.62 4.98 .936 .244 .209 .014 109.9 97 
5.57 .899 .261 .221 .013 161.4 127 .021 136.1 102 .01335-39 31.69 

.014 162.9 167 .358 119.6 126 .64440-44 22.02 5.61 .909 .272 .220 

.014 117.345-49 22.51 6.15 .924 .319 .263 173.7 182 .657 146 .961 

TABLE 7.3: Estimates of the average delay between first marriage and first birth in Colombia. 

CalculatedCohort c Not c 
DirectlyXoX Estimated* Estimatedt 

(3) (4)(1) (2) 

,1.1820-24 2.53 1.87 
1.16 1.1025-29 1.18 
0.98 0.8630-34 0.07 

1.0835-39 1.27 1.25 
0.80 0.8640-44 0.81 
0.83 0.6945-49 0.82 

*Based on Tables 3.3 and 7.1.
 

"[Basedon Tables 4.1 and 7.2.
 

In Table 7.3 we present the implied average delay between first marriage and first birth ­
mean age atobtained by subtracting the estimated mean age at first birth from the estimated 

first marriage. For these results to be meaningfully interpretable, it must be the case that 

marriage is a true signal of initiation of exposure to the risk of childbearing. With the exception 

of the cohort 35-39 (which was already identified as an outlier), these results seem to indicate 

a lengthening over time of the delay between first marriage and first birth, a finding which is 

internally consistent with the raw data (shown in the fourth column of Table 7.3) and consist­

ent with the observed fall in fertility. 

raw data shows clearly that they are affected by mis-statement of date ofComparison with the 
birth of respondent or date of the respondent's first birth; the low values at ages 30-34 and 45­

49 are clearly inconsistent with the other mean intervals. If there has been no change in age at 

marriage or age at first birth one would expect to see a declining trend (steeper at first) in the 

mean intervals calculated from the raw data due to the truncated nature of the data; women at 

older ages can, ceterisparibus, have longer intervals from marriage to first birth. Undoubtedly, 

this truncation partially explains why the estimate of the interval based on the model (which 

corrects for truncation) is higher. Although we could not recommend fitting the model to both 

sets of data in order to compute the mean dealy, we feel that the estimates based on this pro­

cedure are quite reasonable for Colombia. 

57
 



8. COMPUTATIONAL CONSIDERATIONS 

8.1 Optimization Procedures 
no analytical

Maximization of the log-likelihood function requires numerical techniques, since 

available for the m.l.e.'s. We employed two algorithms, the Davidon-Pletcher­
expressions are 
Powell (DFP) method (Powell, 1971), and a quadratic hill climbing algorithm (GRADX) 

developed by Goldfeld and Quandt (1972). 

1971), comerged in almost every case, the only exceptions
The first algorithm, DFP (Powell, 
being for the age group 15-19 when the option to fix c was chosen. This algorithm is relatively 

fast and always converged to the same parameter estimates (when it converged). Furthermore, 

the estimates of the standard errors obtained from the inverse of the negative of the matrix of 

second partial derivatives (the inverse of the information matrix) seemed to be relatively stable. 

This finding was encouraging since DFP does not calculate second derivatives directly but builds 

up a matrix, initially the identity matrix, which eventually converges to the inverse of the 

information matrix if enough iterations occur. Bad estimates of the standard errors will result if 

to the m.l.e., but one experience showed that starting values 
the starting values are too close 

me. still gave very reasonable estimates of their 
that differed by as little as .05 from the 


standard errors.
 

The second algorithm GRADX (Goldfeld and Quandt, i972) was used whenever DFP (rarely)
 

failed. GRADX used alone proved to fail more often than DFP, though fortunately we never
 

found a case where both failed to converge. GRADX is (about 20%) faster than DFP, but 

errors proved to be unstable. GRADX employs directly the matrix 
estimates of the standard 

errors are obtained even when the starting
of second derivatives, so estimates of standard 


values are the m.l.e.'s.
 
to be flat near the
 

We found that the likelihood function, though it appears in many cases 
In no case did at least one algorithm fail to con­

maximum, was nevertheless easy to maximize. 

verge, even when the starting values were far from the m.l.e.'s.
 

our work we used as default starting
The choice of starting values did not prove critical. In 

values p=20, u=6 and c=.9. When fitting the model to the six 5-year cohorts in Colombia we 

used the default starting values for the cohort 20-24, and the final estimates of the previous 

cohort as starting values for each of the cohorts 25-29 to 45-49. 

8.2 	 Evaluation of the Incomplete Gamma Function 

was discovering a way to compute the 
The main problem we had in computing the fu.!ction 


cumulative distribution function G(a). Recall that
 

Go(z) = l.I(e'?(z'0);a/-l) = l-l(w,p) 	 (8.1) 

"	 aged (x-t)/a, and l(w,p) is the incomplete
where w=e x(z'0 ), p=a/X-1, z is the standardized 
gamma function. 

several methods for evaluating the incomplete gamma function. We
We experimented with 

a table of the values of 
finally settled on an extremely fast version which involves creating 

at regular intervals of z (of .005) and interpolating quadratically for values of z in be­
Go(z) 

tween tabulated values. This procedure was modified slightly for very small or large values of z
 

as will be explained below.
 
2
To calculate l(w,p) we employed the well known series first derived by Pearson (1922): 

- WW
 
[l+--- 2 

I(w,p) = e-w E wP+lJ - wP+l + W + 

r (p 2) (p+2) (p+2Xp+3)j=0 r(p+2 +j) 

= csI +s2+s3 +. ••) (8.2) 
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In practice we considered the series to have converged when c.si<10 " . One problem with this 
series expansion is that the number of terms required for convergence becomes very large as z 
becomes small (w becomes large), as the following table shows: 

z -2.4 -2.0 11.5 -1.0 -0.5 0 .5 1.0 1.5 2 2.5 3 3.5 
No. of terms 54 35 21 15 11 8 7 6 5 4 4 4 3 

This consideration is not so important if one wants to evaluate a table only once and inter­
polate thereafter, but it is overwhelming if one wanted to calc,'ate I(w,p) directly for each 
value of z. 

The main problem for very small values of z, say as z becomes more negative than -2.37, is that 
the individual members (the si) of the series (both numerators and denominators and their 
ratios) become so huge and the constant c(=e-wwP+l /'(p+2)) becomes so small that all precis­
ion is lost from the computed answer. 

Here we employed another approximation to the cumulative gamma function I(w,p), due to 
Gray, Thompson and McWilliams (1969), 

Go(z) = l-l(w,p) = wP+1 ew 1W I /w-p) (8.3) 
I(p+l) (w-p) 2 +2w 

We found that the two approximations (8.2) and (8.3) could be joined when z=2.1. For very 
large values of z, say z above 1.9 we found that the series (8.2) could be used directly, as only 
4 terms are needed for convergence. Hence, GO(z) was calculated by interpolation for values of 
z such that -2.1 <z<1.9; the simple formula was used for z -2.1; and the first four terms in the 
series were employed for z>1.9. It should be noted that the same parameter estimates were 
obtained in extensive trials regardless of whether the expensive or cheap method of calculating 
Go(z) was used. 

8.3 A Computer Program 

All estimates in this paper were computed using the computer package NUPTIAL, which was 
written by the present authors. The numerical optimization routines are contained in a separate 
package developed by S.M. Goldfeld and R.E. Quandt. This package, which contains not only the 
algorithms GRADX and DFP but also several others, is available from the Econometric Re­
search Program, Department of Economics, Princeton University, Princeton, N.J. 08544, USA. 

The package NUPTIAL contains several options from which the user may choose, among which 
are 

(a) maximize the likelihood function or minimize the sum of squared differences between 
the observed and fitted schedules, 

(b) discard individual data on age at marriage for women marrying at their current age, 

(c) fix the value of c, and estimate only 1 and o, 

(d) use household data, individual data, or both, or an all-women sample, 

(e) print data, observed and fitted values, and steps in the optimization, 

(f) plot observed and fitted values. 

This package, and the manual which accompanies it, are available from the World Fertility 
Survey, 35-37 Grosvenor Gardens, London. SWI. 
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GLOSSARY OF SYMBOLS 

The following is a summary of the notation used in the paper. Symbols used only in a particular 
section are not included. 

Data Section Reference 

x age at interview 1.1/2.1/3.1/5.1 
a age at marriage 1.1/2.1/3.1/5.1 
max number of women married at age a and now aged x 3.1/5.1 
mx number ofever-married women aged x 2.1/3.1/5.1 
sx number ofsingle women aged x 2.1/5.1 
n total number of women aged x 2.1/5.1x 
Px proportion of ever-married women at age x 2.1 
Paix proportion of women married at age a among ever-married women aged x 3.2 
pax proportion of women married at age a among all women aged x 5.2 

Model 

f(a) frequency of first marriages 1.2 
F(a) cumulative frequency of first marriages 1.2 
g(a) probability density function (p.d.f.) of age at first marriage 1.2 
G(a) cumulative distribution function (c.d.f.) of age at first marriage 1.2 
gs,G Swedish standard p.d.f. and c.d.f. 1.2 
go R standard p.d.f. and c.d.f. with mean 0 and variance 1 1.3 
c proportion of women in a cohort who eventually marry 1.2 
a9 ,k parameters of the standard nuptiality schedule 1.2 
11,o mean and standard deviation of age at marriage 1.3 
z standardized age (x-ao )/k or (x-,p)/o 1.2/1.3 
iaix probability of marrying at age a conditional on marrying by age x 3.2/4.3 
ir unconditional probability ofmarrying at age a for cohort aged x 5.2 
[x probability of being ever-married by age x 2.2/4.2/4.3 

Estimates and Tests 
A denotes maximum likelihood estimates under the model 2.2/3.2/4.2/4.3/5.2/6.2/6.4 

- denotes pooled or product-limit estimates 3.4/5.4/6.3/6.5 
X1 likelihood ratio chi-squared statistic 2.3/3.3/3.4/5.3/5.4 
Xp Pearson's chi-squared statistic 2.3/3.3/3.4/5.3/5.4 
P degrees of freedom 2.2/3.3/3.4/5.3/5.4 
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APPENDIX TABLES
 

TABLE 1: Number of ever-married and never-married women, by age, in the Colombia 
individual survey (1976). 

Age 
(1) 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 


Ever-mauled 
(2) 

7. 
26. 
37. 
71. 
74. 

117. 
102. 
124. 
138. 
108. 
127. 
137. 
121. 
146. 
123. 
129. 
87. 

109. 
100. 
106. 
110. 
119. 
101. 
89. 
89. 

120. 
77. 
83. 
76. 
78. 
95. 
71. 
77. 
65. 
61. 

Never-Maried 
(3) 

318. 
280. 
227. 
230. 
153. 
145. 
84. 
99. 
81. 
53. 
57. 
42. 

'31. 
35. 
23. 
19. 
14. 
16. 
12. 
7. 

21. 
13. 
15. 
10. 
12. 
17. 
10. 
4. 
5. 
6. 
8. 
9. 
6. 

11. 
5. 
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TABLE 2: Age at mariage by age at interview for women in theColombia individual survey (1976). 

Apat Age at Marrisp 
Intu.
 
view 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 

15. 0. 0. 1. 1. 4. 1.
 
16. 0. 0. 1. 2. 2. 6. 15. 
17. 1. 1. 1. 3. 6. 7. 13. 5. 
18. 0. 0. 4. 3. 7. 14. 9.25. 9. 
19. 0. 1. 3. 2. 7. 9. 12. 13. 15. 12. 
20. 0. 0. 3. 8. 7. 16. 15. 15. 20. 18. 15. 
21. 0. 0. 1. 6. 1. 8. 11. 16. 13. 13. 17. 6. 
22. 0. 2. 1. 5. 8. 11. 17. 15. 19. 18. 12. 10. 6. 
23. 0. 3. 1. 1. 3. 9. 16. 17. 21. 21. 19. 14. 7. 6. 
24. 0. 1. 1. 6. 1. 12. 10. 18. 13. 15. 10. 8. 2. 9. 2. 
25. 0. 0. 2. 4. 8. 14. 14. 8. 15. 17. 13. 12. 1. 10. 8. 1. 
26. 0. 1. 4. 4. 5. 10. 12. 10. 13. 19. 18. 8. 11. 8. 6. 7. 1. 
27. 0. 1. 0. 4. 8. 7. 9. 15. 11. 9. 9. 12. 12. 4. 11. 6 1. 2. 
28. 0. 1. 8. 6. 8. 13. 16. 13. 16. 10. 12. 15. 6. 7. 4. 3. 4. 2. 2. 
29. 0. 1. 2. 3. 4. 8. 12. 7. 12. 16. 9. 11. 10. 5. 3. 4. 5. 4. 5. 2. 
30. 0. 0. 1. 5. 2. 16. 13. 9. 16. 14. 11. 8. 7. 9. 9. 3. 4. 1. 1. 0. 0. 
31. 0. 0. 0. 3. 2. 7. 10. 8. 8. 9. 5. 4. 10. 4. 7. 2. 4. 0. 1. 1. 0. 2. 
32. 0. 1. 2. 0. 4. 8. 12.11. 10. 12. 9. 9. 8. 2. 6. 0. 5. 0. 4. 2. 1. 3. 0. 
33. 0. 0. 0. 0. 3. 6. 11. 12. 13. 6. 4. 9. 14. 4. 5. 3. 1. 4. 2. 0. 0. 0. 2. 1. 
34. 0. 1. 1. 0. 6. I1. 12. 9. 13. 6. 11. 7. 5. 7. 3. 2. 3. 2. 3. 1. 0. 1. 1. 1. 0. 
35. 0. 0. 1. 5. 4. 14. 12. 6.13.11. 7. 8. 6. 2. 3. 2. 4. 3. 2. 3. 1. 0. 1. 1. 0. 1. 
36. 0. 1. 2. 1. 4. 8. 6. 13. 10. 12. 14. 8. 6. 5. 2. 5. 6. 1. 1. 0. 2. 1. 2. 2. 5. 1. 1. 
37. 0. 1. 3. 0. 8. 18. 9. 11. 9. 9. 7. 3. 4. 6. 3. 2. 2. 0. 2.0. 1. 0. 2.0. 0. 1. 0. 0.
 
38. 0. 0. 1. 4. 7. 6. 10. 11. 13. 7. 5. 3. 2. 4. 4. 2. 1. 2. 3. 0. 0. 0. 1. 1. 0. 0. 0. 2. 0.
 
39. 1. 0. 1. 2. 3. 4. 9. 8. 9. 13. 7. 5. 3. 4. 3. 1. 3. 2. 1. 2. 2. 1. 2. 0. 2. 0. 0. 0. 0. 1. 
40. 0. 1. 1. 2. 6. 7. 7. 10. 15. 10. 7. 8. 8. 7. 8. 5. 4. 5. 1. 1. 2. 1. 1. 1. 0. 0. 1. 1. 0. 0. 0.
 
41. 0.0. 1.0.5.4.7.6.7.9.7.9.3.6.2.1.0.2.2.1.0.0.1.0.0.2.0.0.1.1.0.0.
 
42. 0. 2. 1. 2. 5. 4. 6. 9. 10. 5. 8. 7. 6. 0. 3. 3. 1. 4. 1. 1. 0. 2. 0. 1. 0. 0. . . 1. 1. 0. 0. 0.
 
43. 0. 0. 1. 3. 1. 3. 8. 8. 5. 5. 6. 7. 6. 2. 2. 7. 2. 3. 1. 0. 1. 1. 2. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 
44. 0. 0. 2. 2. 4. 5. 5. 5. 7. 7. 7. 7. 6. 2. 3. 7. 2. 2. 1. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 
45. 0. 1. 1. 2. 8. 3. 11. 6. 6. 11. 7. 9. 3. 4. 9. 2. 3. 1. 0. 1. 2. 1. 0. 1. 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 
46. 1.0. 1. 1. .5.2.2.10.8.8.7. 5.3. 1.4. 1. 1. 1.2.1. 1.0.0.0. 1.0.0.0.0.0. 0.0. 0.0.0.0.
 
47. 0. 1. 0. 1. 4. 3. 4. 4. 8. 4. 7. 4. 5. 6. 5. 5. 1. 1. 2. 2. 1. 0. 2. 3. 0. 2. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 
48. 0.0.1.1.3.2.4.7.4.8.8.2.7.0.2.3.3.0.0.4.0.2.1.0.2.0.0.0.0. 1.0.0.0.0.0.0.0.0.0. 
49. 0. 0. 1. 1. 1. 4. 2. 9. 6. 4. 4. 3. 6. 1. 3. 1. 2. 2. 4. 3. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 



TABLE 3: Summary of estimates of the model fitted to grouped marriage data from the 
Colombia National Fertility Survey (1976). Numbers in italics indicate results when all dataare 
induded. Numbers in roman type indicate results when data on age at marriage equal to the age 
at interview were omitted. 

Age Sample Estimates Standard Errors p-Value 

(1) (2) (3) (4) (5) (6) J7). J8 (9) 
xo-x1 c s.eUt s.e.o s.e.c 

20-24 I 21.507 5.938 .640 .479 .121 
I 21.626 6.005 .566 .427 .143 
B 21.798 6.135 .808 .524 .398 .046 .106 
B 21.859 6.161 .813 .505 .389 .045 .129 
A 21.620 6.012 .887 .609 .459 .064 .170 
A 21.614 5.996 .891 .501 .381 .053 .215 

25-29 1 21.224 5.980 .362 .303 .292 
1 21.176 5.946 .353 .300 .343 
B 21.396 6.112 .838 .376 .314 .021 .284 
B 21.337 6.070 .835 .366 .307 .021 .328 
A 21.272 6.017 .910 .363 .304 .025 .376 
A 21.250 6.003 .906 .352 .296 .024 .400 

30-34 1 20.623 5.003 .247 .212 .058 
1 20.649 5.026 .245 .211 .042 
B 20.697 5.068 .856 .250 .216 .012 .031 
B 20. 721 5.089 .856 .245 .211 .011 .022 
A 20.643 5.021 .915 .238 .205 .014 .063 
A 20.669 5.043 .917 .273 .232 .016 .058 

35-39 1 20.434 5.377 .,5I .217 .188 
I 20.510 5.448 .51 .218 .182 
B 20.441 5.383 .846 .253 .213 .010 .143 
B 20.517 5.455 .846 .254 .219 .009 .139 
A 20.440 5.383 .885 .252 .217 .013 .233 
A 20.516 5.453 .890 .252 .218 .012 .209 

40-44 1 21.207 5.740 .263 .226 .917 
1 21.194 5.727 .280 .237 .929 
B 21.232 5.763 .866 .265 .224 .011 .771 
B 21.218 5.750 .866 .271 .234 .011 .794 
A 21.219 5.752 .919 .270 .221 .013 .926 
A 21.205 5.738 .919 .269 .224 .013 .955 

45-49 1 21.685 6.117 .320 .266 .669 
1 21.677 6.109 .318 .264 .683 
B 21.692 6.124 .851 .306 .254 .11 .636 
B 21.684 6.116 .851 .305 .252 .011 .651 
A 21.683 6.115 .908 .035 .252 .015 .783 
A 21.675 6.108 .908 .304 .251 .015 .849 

Notes: I = Individual data on ever-married women only.
 
B = Both household data and individual data.
 
A a All-women sample.
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TABLE 4: SunM of estimates of the model fitted to data on numbers of women ingle and 

eve-mared by age at interview obtained from the Colombian National Fertility Sunvy (1976). 

Age Sample Estimates Standard Enrs p-Value 

(1) 
x0 -x 

(2) (3 4) 
a 

(5) 
c 

JQ 
s.eC 

7) 
s.e.o 

£) 
s.e.c 

(9) 

15-49 

15-44 

15-39 

15-34 

15-29 

15-24 

HH 
1 
HH 
I 
HH 
1 
HH 
I 
HH 
1 
HH 
I 

22.439 
21.922 
22.489 
21.928 
22,437 
21.842 
22.612 
22.080 
22.138 
21.622 
21.791 
21.034 

5.284 
4.976 
5.334 
4.983 
5.281 
4.896 
5.442 
5.122 " 
5.022 
4.706 
4.738 
4.219 

.858 

.907 

.861 

.907 

.858 

.901 

.872 
.921 
.830 
.878 
.794 
.810 

.146 

.193 

.160 

.206 

.167 

.220 

.230 

.276 

.290 

.367 

.539 

.592 

.162 

.224 

.174 

.234 

.179 

.241 

.234 

.297 
.272 
.359 
.452 
.509 

.006 

.008 

.007 

.009 

.009 

.012 

.015 

.020 

.023 

.030 
.057 
.068 

.011 

.816 

.011 

.771 

.071 

.867 
.126 
.884 
.286 
.930 
.135 
.891 

Notes: HH =Household survey. 
I = Individual (al-women) survey. 
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TABLE 5: G(Z), proportion ever.mared at exact ag Z in the standard schedule with 

men 0 and standard deviation 1. 

ApeZ 0 1 2 3 4 5 6 7 8 9 

-1.9 .0001 .0001 .0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000 
-1.8 .0004 .0004 .0003 .0003 .0002 .0002 .0002 .0002 .0001 .0001 
-1.7 .0014 .0012 .0011 .0010 .0009 .0008 .0007 .0006 .0005 .0005 
-1.6 .0038 .0035 .0031 .0029 .0026 .0023 .0021 .0019 .0017 .0015 
-. 5 .0088 .0082 .0075 .0070 .0064 .0059 .0054 .0050 .0045 .0042 
-1.4 .0179 .0167 .0157 .0146 .0137 .0127 .0119 .0110 .0103 .0095 
-1.3 .0323 .0306 .0289 .0273 .0258 .0243 .0229 .0216 .0203 .0190 
-1.2 .0532 .0508 .0485 .0462 .0440 .0419 .0398 .0379 .0359 .0341 
-1.1 .0810 .0779 .0749 .0719 .0690 .. 0662 .0635 .0608 .0582 .0557 
-1.0 .1155 .1118 .1081 .1045 .1009 .0974 .0940 .0907 .0874 .0841 

-. 9 .1560 .1517 .1475 .1433 .1392 .1351 .1310 .1271 .1232 .1193 
-. 8 .2014 .1966 .1920 .1873 .1827 .1782 .1736 .1692 .1647 .1604 
-. 7 .2502 .2452 .2402 .2352 .2303 .2254 .2205 .2157 .2109 .2061 
-. 6 .3010 .2959 .2908 .2856 .2805 .2754 .2703 .2653 .2602 .2552 
-. 5 .3526 .3475 .3423 .3371 .3320 .3268 .3216 .3165 .3113 .3062 
-. 4 .4038 .3987 .3937 .3886 .3834 .3783 .3732 .3681 .3629 .3578 
-. 3 .4537 .4488 .4438 .4389 .4339 .4290 .4240 .4189 .4139 .4089 
-. 2 .5015 .4968 A921 .4874 .4826 .4779 .4731 .4683 .4634 .4586 
-. 1 .5468 .5424 .5380 .5335 .5290 .5245 .5200 .5154 .5108 .5062 
-. 0 .5893 .5852 .5810 .5769 .5727 .5684 .5642 .5599 .5555 .5512 
.0 .5893 .5852 .5810 .5769 .5727 .5684 .5642 .5599 .5555 .5512 
.1 .6288 .6250 .6211 .6173 .6133 .6094 .6055 .6015 .5974 .5934 
.2 .6652 .6617 .6582 .6546 .6510 .6474 .6437 .6400 .6363 .6326 
.3 .6986 .6954 .6922 .6889 .6856 .6823 .6789 .6756 .6721 .6687 
A .7292 .7262 .7233 .7203 .7173 .7143 .7112 .7081 .7050 .7018 
.5 .7569 .7542 .7516 .7489 .7461 .7434 .7406 .7378 .7349 .7321 
.6 .7820 .7796 .7772 .7748 .7723 .7698 .7673 .7647 .7621 .7595 
.7 .8048 .8026 .8004 .7982 .7760 .7937 .7914 .7891 .7868 .7844 
.8 .8252 .8233 .8213 .8193 .8173 .8153 .8132 .8111 .8090 .8069 
.9 .8437 .8419 .8401 .8384 .8365 .8347 .8329 .8310 .8291 .8272 

1.0 .8602 .8587 .8571 .8555 .8538 .8522 .8505 .8488 .8471 .8454 
1.1 .8751 .8737 .8723 .8708 .8694 .8679 .8664 .8649 .8633 .8618 
1.2 .8884 .8872 .8859 .8846 .8833 .8820 .8806 .8793 .8779 .8765 
1.3 .9004 .8992 .8981 .8969 .8957 .8946 .8934 .8921 .8909 .8897 
1.4 .9110 .9100 .9090 .9080 .9069 .9058 .9048 .9037 .9026 .9015 
1.5 .9206 .9197 .9188 .9178 .9169 .9159 .9150 .9140 .9130 .9120 
1.6 .9291 .9283 .9275 .9267 .9258 .9250 .9241 .9233 .9224 .9215 
1.7 .9368 .9360 .9353 .9346 .9338 .9330 .9323 .9315 .9307 .9299 
1.8 .9436 .9429 .9423 .9416 .9409 .9403 .9396 .9389 .9382 .9375 
1.9 .9497 .9491 .9485 .9479 .9473 .9467 .9461 .9455 .9448 .9442 
2.0 .9551 .9546 .9540 .9535 .9530 .9524 .9519 .9513 .9508 .9502 
2.1 .9599 .9595 .9590 .9585 .9581 .9576 .9571 .9566 .9561 .9556 
2.2 .9643 .9638 .9634 .9630 .9626 .9622 .9617 .9613 .9608 .9604 
2.3 .9681 .9678 .9674 .9670 .9666 .9662 .9659 .9655 .9651 .9647 
2.4 .9716 .9712 .9709 .9706 .9702 .9699 .9695 .9692 .9688 .9685 
2.5 .9746 .9743 .9741 .9738 .9735 .9731 .9728 .9725 .9722 .9719 
2.6 .9774 .9771 .9769 .9766 .9763 .9760 .9758 .9755 .9752 .9749 
2.7 .9798 .9796 .9794 .9791 .9789 .9786 .9784 .9781 .9779 .9776 
2.8 .9820 .9818 .9816 .9814 .9812 .9809 .9807 .9805 .9803 .9801 

3. .9857 .9872 .9886 .9899 .9909 .9919 .9928 .9936 .9943 .9949 
4. .9954 .9959 .9964 .9968 .9971 .9974 .9977 .9980 .9982 .9984 
5. .9986 .9987 .9988 .9990 .9991 .9992 .9993 .9994 .9994 .9995 
6. .9995 .9996 .9996 .9997 .9997 .9997 .9997 .9998 .9998 .9998 
7. .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 
8. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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