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SECTION ONE: INTRODUCTION

Human health is related to many factors, such as the
absence of disease vectors, social and economic institutions,
environmental stress, nutrition, exercise, employment,
genetic influences, preventative and curative health systems,
and the access of people to care. While access is but one
of many factors, it can be important to health outcomes.

Over the past eight years there have been significant
theoretical advances made by quantitative geographers and
applied mathematicians on problems relating to the organiza-
tion of public services [1) (11). There have also been numer-
ous projects to apply this th ' ry to real public sector
problems (21. The nature of these applications involve
logistics of providing public services which achieve public
objectives of access, utilization, cost, efficiency, and
distributional equity.

The logistical issues include:

---the location Lf facilities in time and space
---the routing of a service through time and space
---the creation of service districts for a public service

in time and space

This report describes methods to locate facilities with
respect to demand patterns for health services so as to
maximize the access of people to health care. This set of
methods is called covering techniques. They are termed
covering techniques because they try to cover people with
services within time or distance restrictions. These methods
are of interest because they require relatively small quanti-
ties of usually-available information, are relatively in-
expensive to use, and yield a rich variety of valuable results.
Some of these methods are simple enough to be used by a
motivated and patient individual, armed only with some basic
data on population and distances, a pad of paper, and a
pencil. Other methods require a computer to perform the
complicated calculations. This report explains what the
methods can and cannot do.

[1] Brackets, [#], denote footnotes which are listed at the
bottom of each page. Underscored numbers in parenthesis,
(1), refer to references listed at the end of this report.

[2] See references (1) through (24).
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Data Needs

The information needed for covering analysis is: (a)
the nature of demand for services [3]; (b) the nature of
supply of services; (c) a description of the geographical
relationships between demands; and (d) a statement of the
public objectives to be achieved. Table 1-1 illustrates the
data needs for a sample problem.

Table 1-1

DATA NEEDS FOR A SAMPLE PROBLEM

Category of Information Sample Information

nature of health service ambulance service for emergencies

nature of demand a call from a town that there is a need
for an ambulance

geographical relationships nine towns dispersed over a rural area

objectives of system minimize the number of ambulances
(quantity of service] that are required
to cover all the towns (access to service]
to meet the smallest response time (the
time from the call to the arrival of help)
[quality of servicel

Much of this report describes the variety of problems
which involve alternate conceptions of supply, demand,
objectives and geographical relationships. The second sec-
tion describes set covering. Section three discusses maximal
covering location (hereinafter known as MCL), the next level
of covering complexity. Section four shows many definitions

(31 The word demand can have several meanings. One meaning
is need, all those who could benefit from service. Another
concept is the number who sould present themselves for service
at a given price. A third notion is the number who do seek
service in a given place in a specified period of time.
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of geographical relationships that can be utilized with MCL
analysis. Section five describes alternate concepts of
services compatible with the MCL approach. Section six
extends MCL applicability to alternate notions of demand for
health services. Section seven is concerned with alternate
public objectives.

Results of Analyses

This report is designed to show a potential user the
wide applicability and utility of covering techique results.
The four outputs from covering analysis are numerical state-
ments about (a) the quantity of service; (b) the quality of
service [4]; (c) accessibility of service; and (d) maps
of geographical region served by each facility. Two forms
of the output - tradeoff curves and service maps - are of
particular interest, and will be used in later chapters.
Table 1-2 illustrates the results from such an analysis.

Table 1-2

RESULTS FROM A SAMPLE PROBLEM SOLUTION

Issues Sample Results

quantity of service Two ambulances can serve...

access of service ...an emergency call from any town...

quality of service ...within fifteen minutes maximum.

service districts the optimal service regions for the two
ambulances are:

ambulance 1: towns 1,2,3,4,5,6
ambulance 2: towns 4,6,7,8,9

location of service ambulance I located in town 3
ambulance 2 located in town 8

[4] If and only if quality of service can be defined solely

in terms of access.
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Tradeoff Curves

Between any set of objectives, there can exist a trade-

off surface describing how much of one goal must be sacri-

ficed to achieve given values for other goals [S. When

there are two objectives the tradeoff surface appears as a

curve as in figure 1-1 (6) [6). Figure 1-1 shows the trade-

off between two goals: access and quantity of service.
Access is defined as the fraction of the total population
covered by the health service within two time units. Quan-

tity of service is defined as the minimum number of facili-

ties that must be built in order that the access will be

achieved. A large number of facilities, twelve, can cover

100 percent of the population within the time limit. A

small number of facilities, one, covers 30%, a much smaller

fraction of the population. There is thub a tradeoff
between quantity of service and accessibility.

This tradeoff curve shows the limits of physical feasi-

bility. Any point to the left of the curve, for example
point A, is infeasible. Any point to the right and below the

curve, for example point B, is inferior to some point on the

curve, such as C. Thus the points on the curve and only those

points are of interest as policy alternatives.

The choice of one point on the curve implies the imposi-

tion of a set of preferences for one objective relative to

other goals. The implicit tradeoff can be made explicit by

drawing a tangent line to the curve at the point selected as

a 'best compromise' solution. For example, assume C is

selected as the best compromise solution. The slope of the

tangent line to the point is 600. This implies that the

decision maker is indifferent at the margin between the cost

of an additional facility and the increased coverage of 15%

of the population.

A tradeoff curve not only makes explicit the impli-

cations of any decision; it can help structure a decision.

It is possible to read off from figure 1-1 the incremental

value (in terms of additional population covered) of one

extra facility. Moving from two to three facilities

[S The concept of tradeoff curves may or may not be useful

to the policy maker. A tradeoff curve is only a statement

of the change in the rate at which one objective is improved

and another goal suffers. It has meaning to some persons,

but may be irrelevant to others.

[6) Data from 30 node problem in (20).
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FIGURE 1-1:" A TRADE-OFF CURVE BETWEEN ACCESSIBILITY
AND NUMBER OF FACILITIES
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increases coverage from 46 to 57 percent. One additional

facility is worth eleven percent incremental coverage.

As might be expected, the first increments of popula-

tion coverage are less costly than the last. Moving from

one to two facilities, the incremental population covered

is 18% (28% to 46%). But moving from eleven to twelve

facilities, the coverage gained is only 2% (98% to 100%).

Thus it is possible to gain insight into the co:t-effec-

tiveness (in terms of population coverage) of a new facility.



Service Maps

Access analysis does more than calculate coverage;
these techniques can also site a facility and determine
its service district. Associated with any point in figure
1-1 is a service map, such as figure 1-2, which shows how
people and services are related in geographical space [7).

A service map provides information concerning the
location of facilities and the service districts of those
facilities. There are five facilities in figure 1-2. One
is located at each of the points surrounded by a circle -
nodes numbered 8, 10, 17, 27, and 36. There are two
different districts which are shown around each facility.
The districts denoted by the dashed lines include communities
served within ten time units from the facility. For example,
the facility at point 27 serves five communities within 10
time units - numbers 27, 14, 16, 38, and 54. A second type
of district, denoted by the continous line, shows the commu-
nities served within 15 time units. The facility at node 27
can serve points 27, 14, 16, 38, 54, and 39 within 15 time
units. The point 39 is outside the district for ten units,
but inside the district for 1S units.

Some of the points are not within the service districts.
For example, point SO cannot be served (is not enclosed in
a district) within either 10 or IS time units. This point is
said to be uncovered within 1S time units, even though it
can be shown that it is covered in 20 time units. The
meaning of the term 'covering techniques' is thus related to
the ability of designated facilities to cover demand within
a specified maximum time limit.

(71 Results from (6). Figures 1-1, 1-2, and tables 1-1
and 1-2 relate to s'veral problems; no relation between
illustrations is intended.
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FIGURE 1-2: A SERVICE MAP
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SECTION TWO: AN EXAMPLE OF COVERING REASONING -

THE SET COVERING PROBLEM

The purpose of this section is to show how to formulate

and solve a simple location problem - set covering. The

problem is to find the minimum number, the location, and the

service districts of facilities, such that all demand points

find service within some specified period of time.

This problem is solved here by drawing circles and

using common sense. The analytical procedures are physical

and intelligible. More complicated location problems are

solved by computer. When the computer solves these problems,

it is only following a comparable line of reasoning, termed

an algorithm.

Consider a region of nine separated communities, as

shown in figure 2-1. The numbered points in the diagram

represent the communities. The times of travel between

adjacent communities are attached to each link of the net-

work (enclosed by semi-circles). Facilities may be located

in any community. All communities must be served within a

maximum time.

Suppose the maximum time of service is three time units.

It is possible to begin at some point, select an arc leading

from it, and see which points can be reached within three

time units. For example, begin at community 1 and travel in

the direction of points 3 and 4. It is possible to serve

communities 1, 3, and 4 with a facility at point 1, since

each can be reached within three time units. There exist

only a finite number of arcs from any community. Search

along each arc leaving any point. Such searches identify the

complete set of all communities which can be served by a

facility if it were to be located at that given point. For

example, a facility located in community 9 could only serve

points 9 and 8. Only two arcs leave from 9, and 8 is within

three time units traveled along one of those arcs.

Assume that any point of demand can serve as a poten-

tial facility site. To find by construction the set of

communities which can be served by a facility at. some site,

identify the facilities which serve that community [1].

(1] A caution is needed here. These sets are identical by the

assumption that a facility could only be located in one of the

communities. See chapter 4 for cases where facilities can be

sited on arcs or at points on the plane but off the network.

8



FIGURE 2-1: A NETWORK OF NINE COMMUNITIES
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For example, a facility at 1 can serve communities 1, 2, 3,
and 4 since all these points are within three time units of
1. An equivalent statement is that a facility at sites 1, 2,
3, or 4 could serve community 1. This set of points {1,2,3,41
constitutes the potential sites that could cover community 1

with service within three time units. For community 8, the
set of potential covering sites is {6,7,8,91.

A search emanating from each network point (node) yields
table 2-1. The service set is the collection of communities
which can be served by a facility site. The facility sites
which cover each community within three time units are also
listed [2].

TABLE 2-1: THE RANGE OF SERVICE OF POTENTIAL FACILITIES

POTENTIAL SERVICE SET OF FACILITIES AT WHICH
FACILITY THAT FACILITY LOCATIONS COULD

SITE SERVE THIS SITE
[maximum time of servicc=3] [maximum time of service=3]

Community 1 1,2,3,4 1,2,3,4

Community 2 1,2,3 1

Community 3 1,2,3,4,5 1,2,3,4,5

Community 4 1,3,4,5,6,7 1,3,4,5,6,7

Community 5 3,4,5,6 3,4,5,6

Community 6 4,5,6j7,8 4,5,6,7,8

Community 7 4,6,7,8 4,6,7,8

Community 8 6,7,8,9 6,7,8,9

Community 9 8,9 MI

Concentrate upon the third column, the set of potential

sites that could cover a given community. Certain patterns

[2] The service set and the set of potential facility sites

are identical for each community in this example through

the assumption that a facility can be placed at any demand

point. Under alternate assumptions, these sets can be

different.
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occur in the data. For example, the potential covering
sites for communities 1, 2, and 3 are

sites which could serve
community that community within

three time units

1 1,2,3,4

2 1,2,3

3 1,2,3,4,5

If a facility is not located at points 1, 2, 3, or 4, then

it will not be possible to serve community 1 within three

time units. If there is no facility in 1, 2, or 3, commu-
nity 2 will not be covered. Likewise, unless a facility is

located at either 1, 2, 3, 4, or 5, it will not be possible

to cover community 3 in three time units. Such sets of

potential covering sites restrict the set of points among

which at least one facility must be located. Notice that if

the restriction is satisfied for community 2 [one facility

at either 1, 2, or 31, then the restrictions for communities

I and 3 are automatically satisfied, since a facility will

be located at either 1, 2, or 3. Restriction 2 is said to

dominate restrictions 1 and 3, and is enclosed by a rectangle
in table 2-1.

A parallel analysis can be made for communities 8 and

9. The set (8,9) dominates the set {6,7,8,9). If a facility

must be located at either point 8 or 9, then by definition

one shall be located at one of the nodes 6, 7, 8, or 9. Each

of the sets which cannot be dominated by any other are en-

closed in rectangles in table 2-1.

The set covering problem is reduced in size by elimina-

ting from further analysis all those sets that are dominated.

If only the undominated restrictions are satisfied, then by

definition the dominated sets will be satisfied. When all

restrictions are satisfied, each community will be served by

a facility within three time units.

The undominated sets shall be labelled with the number of

their corresponding community: D2 - (1,2,3); DS - (3,4,5,6};

D7 - {4,6,7,8); and D9 - (8,9). Lines can be drawn around

each of these sets and labelled, as in figure 2-2.

11



FIGURE 2-2: LINES DRAWN AROUND THE DOMINATING DEMAND SETS
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There may be several sets of.optimal facility sites.
Although there are no alternate solutions for the above
problem with only two facilities, such sclutions are not
only possible but frequent. For example, set the maximum
time equal to four units. There is not an unique set of
sites, but rather six pairs of facility locations that can
serve all communities within four time units: 3,61, {3,8),
{3,9), {4,7), {4,8), and {4,9). There are six possible solu-
tions. Notice that even though the maximum time limit was
relaxed from three to four units, no reduction in the number
of facilities required is possible. Sites [3,8} are one of
the solutions for the [maximum time equal to four] problem -
the identical solution for a [maximum time equal to three]
problem.

What would happen if the maximum time was set equal to
two units? Four facilities are now required to serve all
communities within two time units. Alternate site configura-
tions exist, each of which solve this problem. As the
maximum time for access is reduced, more facilities are
needed to cover all the communities. The relationship be-
tween the maximum time restriction and the minimum number of
facilities needed to cover is the tradeoff curve of figure
2-3. Increased performance requires a larger number of
facilities.

FIGURE 2-3: THE TRADE-OFF BETWEEN MAXIMUM SERVICE
TIME AND THE NUMBER OF FACILITIES
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By visual inspection, we can determine which potential
facility site covers (is an element of) which D set. Site 1
covers set D2. Site 3 covers demand set D2 and D5. Table
2-2 is a list of the sets covered by each potential facility
site.

TABLE 2-2:

COVERAGE OF DEMAND SETS
BY POTENTIAL FACILITY SITES

Facility Site Demand Sets Covered

1 D2
2 D2
3 D2 and D5
4 D5 and D7
5 D5
6 D5 and D7
7 D7
8 D7 and D9
9 D9

Facility site 3 dominates facility sites 1 and 2 in
that it covers what they cover and more. Likewise facility
sites 4 and 6 dominate site S. Site 8 dominates sites 7 and
9, since it covers as much as they do, and more. We can
eliminate all the dominated sites from consideration, leaving
only sites 3, 4, 6, or 8 as candidate locations for a facility.

Consider set D2. There is currently only one site under
consideration to cover that demand, namely point 3. This
point must be included; it is essential to covering D2.
Note, however, it also covers demand set DS.

Consider set D9. Point 8 is the only remainiig commu-
nity that can serve D9. Point 8 must become a facility site
since it is essential to cover D9. Note, however, that 8also
covers demand surface D7.

All dominant demand sets are now covered, and hence all
communities are now covered. The selection of site 3 and 8
as the locations of the facilities will insure that all
communities can be served within 3 time units. The facility
located at community 3 will serve a region composed of com-
munities 1, 2, 3, 4, 5, and 6. The service region of the
facility at community 8 will be 4, 6, 7, 8, and 9. The
minimum number, the location, and the service districts of
facilities have been found. All communities have access to
service within three time units.

14



If this problem were to be solved for all values of the
maximum time to service, the trade-off curve would be con-
tinuous. When solved for zero through six time units by
integer, a finite number of points can be plotted as in
figure 2-3. To move from a [maximum of two time units] to
a [maximum of one time unit] increases the number of required
facilities from four to eight. A comparable improvement in
the time standard, from four units to three units, requires
no increase in the number of facilities, since in both cases
two facilities suffice. This tradeoff curve graphs the
number of incremental facilities needed to improve service
through reduction in the maximum time of service.

A flat portion exists between three and nearly six time
units in figure 2-3. The covering pattern of facility
locations need not change over the interval. In other words,
facility sites {3,8) are a solution over the range of three
to nearly six time units. Such sites might be natural ones
to select for a facility.

This section has shown how a graphical technique solves
the problem of finding the minimum number, location, and
service C.stricts for facilities. A motivated and patient
individual can use this method -iven only the network of
communities and the times of travel between them (3].

The problem chosen for solution was quite simple. Only
a small number of communities were involved. The objective
was simply to cover all the communities within the maximum
time standard. Only a single service is involved. Know-
ledge of travel times is assumed. More complex problems
involving larger groups of communities may be tedious to
solve'by hand. This method can easily be computerized.
Different methods to solve larger, more complex problems are
almost always solved by computer.

one caution is that the graphical method may not always
solve. It is possible to arrive at forms which cannot be
further reduced, where inherent dominance relations do not
exist. Ninety percent of the problems have terminated with
an optimal solution; the remaining ten percent of the cases
are termed cyclic. Procedures for resolving cyclic cases
exist and are described elsewhere (22).

(3] ? aximal distance restrictions can be substituted for
maximum time units. The technique only requires numbers on
the network. Such numbers may be interpreted as either
time or distance units.

is



This section portrays the kind of reasoning that lies
behind computer algorithms for covering analysis. In the
following sections, we shall discuss more realistic access
problems.
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SECTION THREE: COVERING AND POLICY ANALYSIS -

USE OF THE MAXIMAL COVERING LOCATION METHOD

This section introduces maximal covering location

analysis (6). Maximal covering is similar to set covering

in terms oT three decisions - location of facilities, quality

of service (maximal time to service), and number of facili-

ties. Both set and maximal covering solutions produce a map

of the sites and service districts of facilities. Tradeoff

curves can be constructed from the sequence of solutions for

different maximal times.

The change from set covering to maximal covering permits

a modification in the definition of the nature of demand.

In set covering, demand was represented by points of human

settlement. In maximal covering the surrogate for demand

becomes population (or people requesting service) at a point

in space, rather than the point as such. Figure 3-1 can be

viewed as a representation of 55 towns on a map [1. Set

covering would treat demand as being the towns themselves.

Maximal covering treats the population of the towns, or more

generally the demand for services at those towns.

Associated with each town is a location and a popula-

tion. The location can be described as a point on a graph,

with x-axis and y-axis coordinates. Table 3-1 represents the

population and location data for figure 3-1, where

ai  the population of the town
x i  the x-coordinate of the town on a map
Yi = the x-coordinate of the town on a map

In maximal covering, there are four decision variables:

location, quality of service (maximal time), number of

facilities, and the percent of the total population covered.

Suppose that a decision maker is interested in covering

all demand within a particular time limit of 15 time units

with the fewest possible facilities (S). Assume that the

SS-node network of table 3-1 represents his particular prob-

lem. The decision maker is implicitly structuring the

location set covering problem for S=IS, where S stands for

the maximum service time. Solution will yield a minimum

number of facilities that cover all demand sites within the

specified maximum time. Figure 3-2 gives a location set

[1] Data f'rom (20).
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FIGURE 3-1: 55 TOWNS
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ABIE 3-I: GEOGRAPHIC AND POPULATION DATA FOR MAXIMAL COVERING

di Xi Yi i ai xi Yi

1 710 32 31 28 60 12 47

2 620 29 32 29 60 19 38

3 560 27 36 30 60 27 41

4 390 29 29 31 60 21 35

5 350 32 29 32 50 32 45

6 210 26 25 33 50 27 45

7 200 24 33 34 50 32 38

8 190 30 35 35 50 8 22

9 170 29 27 36 50 15 25

10 -170 29 21 37 50 35 16

11 160 33 28 38 40 36 47

12 150 17 53 39 40 46 51

13 140 34 40 40 40 50 40

14 120 25 60 41 40 23 22

15 120 21 28 42 40 27 30

16 110 30 51 43 40 38 39

17 100 19 47 44 40 36 32

18 100 17 33 45 30 32 41

19 90 22 40 46 30 42 36

20 90 25 14 47 30 36 26

21 90 29 12 48 30 15 19

22 80 24 48 49 30 19 14

23 80 17 42 50 30 45 19

24 80 6 26 51 30 27 5

25 80 19 21 52 20 52 24

26 70 10 32 53 20 40 22

27 60 34 56 54 20 40 52

55 20 42 42

19



covering solution for a service limit of S-1S on the SS-node
network. In this case five facilities are required to cover
all nodes within a limit of 15 minutes.

The circled nodes on the graph given in figure 3-2
represent the five sites chosen to house facilities. The
nodes on the graph are partitioned into sets, each node
being assigned to its closest facility. In figure 3-2 there
are two kinds of partitions: those enclosed by solid lines
and those indicated by dashed lines. The solid line parti-
tions indicate which nodes are covered within S=lS. The
dashed line partitions denote which nodes are covered within
S=10.

For example, node 42 is in the solid line partition
surrounding a facility located at node 25. This means that
the closest facility to node 42 is located at node 25 and
that the time of travel from node 42 to that facility is
less than 1S. Furthermore, node 42 is not in the dashed
line partition for the facility located at node 25,
indicating that node 42 lies at location greater than 10
time units from its closest facility, node 25. Figure 3-2
also shows, for this particular location set covering
solution, that 201 of the total population are covered within
10 time units; the rest of the nopulation (439) is located
between 10 and the maximal service time of 15.

This particular optimal solution is but one of many
alternate optima, each characterized by a minimum number of
facilities (five) which cover all communities within fifteen
time units maximum. The maximal covering location method
can be used to choose among the alternative optima of the
location set covering problem to achieve the best coverage
for some more "desirable" inner distance. The outer maximum
time limit is S=lS. Let there also be an inner maximum time

limit of T=10. By solving the maximal covering location
problem with S=l5, T=10, and still using five facilities, it

is possible to determine the solution which provides the
best coverage within T-10 while maintaining complete coverage
within S=lS.

It is entirely possible that the decision maker may

feel it desirable to cover as much population as possible
within 10 if he can still provide complete coverage within

15. After all, he is giving up nothing. The maximal covering
location problem was solved for this network, with S-15 and

T-10 and the solution is presented in figure 3-3. Essen-

tially, figure 3-3 depicts the alternative optimum of the

location set covering problem for S=15 which covers the maxi-
mum population within 10. Notice that the coverage within 10

for this solution amounts to 354 out of 640. By the nature
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FIGURE 3-2: SET COVERING SOLUTION FOR MAXIMUM TIME OF 15 MINUTES
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of the maximal covering problem, it is possible to state that
no more than 354 can be covered within 10 time units while
maintaining complete coverage within 15, given no more than
five facilities. The solution in figure 3-3 is clearly a
better solution than the one given in figure 3-2, for the
coverage within 10 time units is 75 percent better than the
solution given in figure 3-2. Therefore, by using maximal
covering, it is possible to determine the most desirable
location set covering solution.

We know that it is impossible to cover more than 354

within 10 while maintaining complete coverage within 15
time units using five facilities. Thus, it would be futile
to try to cover more than 3S4 within 10 unless either more
facilities were allowed or the outer maximum travel time
limit (of 15) were relinquished.

In the example problem it is in fact possible to
achieve a very large maximal cover within S=10 using five
facilities if one relaxes the mandatory constraint that all

persons be served within 15 time units. From the viewpoint
of the decision maker, achieving maximal coverage by five
facilities within a time limit of 10 could be desirable.
The tradeoff is whether the improvement of coverage within 10

can justify some number of people who will now be more than

15 time units from a facility.

Figure 3-4 gives a maximal covering solution for S-10.

A node in the graph which is not covered within S=IS is not

included in any partition. Notice that the population
covered within S=10 has reached 609 out of a total population

of 640. In this case, only four nodes with a combined

population of 12 cannot be reached within 15 time units from

their closest facilities.

In order to cover all demand within 15 time units, the

amount covered within 10 must decrease from 609 (given by

maximal covering with S=10) to 354 (with T=10, S=lS). The

r duction of 255 in the population covered within 10 can be

iewed as one of the costs of maintaining that all demand

must be serviced within 15. That is, the requirement S=10

forces 12 persons of 640 (at four out of 55 communities)

to be more than 15 time units distant from service. At the

same time, 255 persons experience reduced access time, from

15 to 10 time units to service.
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FIGURE 34: MAXIMAL COVERING SOLUTION WITH

MAXIMUM SERVICE TIME OF 10 UNITS (S - 10)
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SECTION FOUR: NOTIONS OF GEOGRAPHICAL RELATIONS

FOR USE IN HEALTH ACCESS ANALYSIS

The sole notion of geographical relations used in
previous sections is a set of points on a network. These
networks - points connected by line segments - implicitly
assumed that demand is expressed only at nodes. Each point
is located in relation to others by its coordinates on a
Cartesian plane. Travel occurs along the line segments
connecting adjacent points. Associated with each line seg-
ment is a known time of travel between a point and its
adjacent neighbor. These assumptions are listed in table
4-1.

TABLE 4-1: ALTERNATE GEOGRAPHICAL ASSUMPTIONS

Subject Strict Assumption Relaxed Alternative Assumptions

possible demand location only at nodes location on line segments
locations on a network

location at any point in the plane

possible health location only at nodes location on line segments
service locations

location at any point in the plane

gcographical relation known travel time estimated travel time
bctween service between points
and demands

known travel distance

estimated travel distance

single set of time/ travel time or distance depends
distance relations upon mode

25



This conceptualization of geographical relations is not

the only approach that is consistent with location access

analysis. The purpose of this section is to describe the

alternate notions of geographical relations which can be

used with covering methods. This discussion is not intended

to be all inclusive. This section will use the words 'health

service' and 'demand for the health service' without defining

them; different concepts of service and demand are discussed

in sections five and six.

Three strict assumptions have been implicit in previous

sections - demand expressed at nodes, services located at

network points, and one set of nodes for services and demands.

In a real problem any or all three of these assumptions
might be relaxed. Reference to figure 4-1 will often he
made during this section to illustrate the modifications of

assumptions.

Possible Demand Locations

In previous sections demands for health services had

been assumed to be located strictly at the points (nodes) of

a defined network. Points 1 through 9 in figure 4-1 are an

example. Demand exists at those points, and at those points

alone. No demand was permitted at points on the line seg-

ments (the arcs) or at other unidentified points on the

general plane. This network conception of geographical

space is realistic for many problem settings. Many rural

areas are well represented by a set of discrete towns

(points), inter-connected by roads (line segments), along

which travel between adjacent towns can occur.

However, for many other problems this geographical

structure of demand - as existing at points in space - is

unrealistic. For example, a nearly continuous string of

settlements along a highway may be represented by a line

segment. A dense city or isolated rural region may be thought

of as population spread over a plane. One planar example

would be evenly distributed population over the area in

figure 4-1 bounded by the line segments 1-3, 3-4, 4-5, 5-6,

6-8, 8-9, 9-7, 7-2, and 2-1.

It is possible for covering methods to utilize either

of these alternate views of demand. If demand were viewed

as spread upon the line segments, the problem is known as

the arc-covering problem. If demand is viewed as spread

uniformiy over a plane, the problem becomes infinite solution

space covering. There is a rich literature in both the
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FIGURE 4-1: A NETWORK OF NINE COMMUNITIES
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arc-covering and infinite solution space areas. The best
summary of arc-covering techniques is a book by Berlin,
Liebman, and Male that is in preparation (2). There are many
sources of information for infinite solution space methods
(2, 11, 14).

While methods exist to solve non-network problems, it
does not follow that a user should automatically opt for
their use. These methods have limitations too. For example,
infinite solution space methods require explicit solution
using calculus - something that requires sophisticated
analysts. Many solutions are complicated enough to be prob-
lems at the boundary of applied mathematics research. As
tools for operational use in day-to-day planning, they are
not as practical as network methods. Network formulation
also accomodates a wider variety of objective functions
(11, 14).

Possible Health Facility Locations

In previous sections only points on a network could be
potential sites for health facilities. In section 2, the
same set of points (nos. 1 through 9 in figure 4-1) are the
potential sites and the sources of demand. The question
naturally arises whether analytical techniques exist to solve
problems where this restriction that facilities be built at
network nodes is relaxed.

Two relaxations of this 'facility on nodes' constraint
are that a facility be permitted at (a) any point on any
of the line segments connecting the points of the network or
(b) at any point at all on the plane. In a recent paper
Church and Meadows demonstrated that maximal location
covering could solve these relaxed problems (4). Thus, it
is possible to allow the set of potential site-s for health
facilities to include any point on the plane, whether at a
node or on an arc of a network or not.

Geographical Relation Between Service and Demands

Known travel times between the points of a network have,
up to this section, been assumed. A single set of known
travel time relations may not always exist or be appropriate.
An example is travel between points a and b, where car takes
10 minutes, burro requires 40 minutes and by foot, 60
minutes. The alternate notions of geographical relations
include known distances and estimates of time or distance.
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time vs. distance

Time and distance are treated in an identical fashion
in analysis. In figure 4-1, numbers are listed in semi-
circles on the line segments between adjacent points. In
section 2 these were interpreted as 'the times of travel
between adjacent communities'. Analytically, it would be
perfectly acceptable to view these numbers instead as the
distance of travel between communities. The covering methods
require numbers as data; it is up to human interpretation as
to whether the numbers stand for time or distance relation-
ships.

estimation

Times of travel from one point to another have been
assumed to be known in advance - perhaps through measurement.
Approximation is an alternative to measurement.

One way to generate information concerning the times or
distances of travel between points is by measurement.
Distance between points can be read from a map. Times of
travel can be measured by stop watch. In a recent access
study of the-Baltimore Fire Department, actual times of
travel between facilities (the fire stations) and demand
points (fires) were measured with stop watches (17). Measure-
ment yields travel time or distance information aTong only the
arcs measured. Analytical methods called shortest path tech-
niques can calculate the shortest arc between any two points
given coordinates, as in table 3-2.

Measurement of travel times or distances may be diffi-
cult. In such cases, estimation methods, such as the x-y
method, the x-y-z method; and Delphi estimation may be helpful.
X-y estimation requires the placing of points on a map. The
map is placed on graph paper, and the x and y coordinates of
each point are read from it; table 3-2 could be an example of
such data. Using a shortest path technique, the complete set
of time/distance relations can be generated in terms of the
x-y coordinate system. These values can then be transformed
into realistic data by multiplication by the scale factor.
This x-y method implicitly assumes that the real geographic
relationship between points is not distorted by reduction to
two dimensions and that travel is by the most direct route.
The x-y-z method refers to any of several techniques for
estimating distances from information concerning longitude,
latitude, and altitude. These are analogous to the x-y method,
but using three dimensions. Delphi estimation is accomplished
by using perceived distances by asking people how long it
takes them to travel (or how far is the distance) between
points.
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The use of any measurement or estimation method involves
assumptions. Measurement assumes that a single sample of
'the time that one vehicle requires from one point to another'
can be generalized to all vehicles at all times. Different
travel times for rush hours and for off-hours introduce fur-
ther complexity. Use of x-y or x-y-z graph estimation
approaches must assume that shortest path calculations do not
distort geographical relationships. Delphi estimation pre-
sumes some correspondence between perceived time/distance and
the measurable time/distance of travel. The user should be
careful in selecting the method that is most effective within
the given problem context.

multi-modal travel

Another assumption is that only one mode of travel
exists, implying one time or distance measurement between
any two points. What if this assumption is relaxed, and
multiple means of travel between health facilities and demand
points can exist?

For example, when an emergency arises in Maryland,
either of two parellel emergency health systems can come to
the rescue: a helicopter system and an ambulance system.
The helicopter travels by air. Time and distance between
any two points in the state is defined in terms of its ground-
air-ground travel. The ambulances travel by land; time and
distance are defined by the road network in the state.
Between any two points there exist two different shortest
times of travel.

The addition of an extra set of time/distance relation-
ships between all points on a network is only a minor compli-
cation to the solution techniques. Each point will be
represented by two points, creating an air network and a
land network. A developing nation example might be travel
by foot, pack animal, or automobiie.

One complication of multi-mode travel is that the costs
of solving a problem will rise more than proportionately.
Any time the size of a problem doubles, the time and effort
needed for solution more than doubles (5).
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the fringe problem

The fringe problem arises where a complete set of geo-
graphical relations exist but are not necessary. For example,
a matrix of shortest distance of travel may exist between
the nine points of figure 4-1. However if concern over
access is relevant only when travel time exceeds some mini-

mum, some of the data may be unnecessary. Procedures have

been developed to have the computer ignore certain time or

distance data if it is irrelevant (5). Such data reduction

can be quite cost-effective, since a smaller problem can be

solved for a greater-than-proportional savings versus a
larger problem.
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SECTION FIVE: ALTERNATE DEMAND ASSUMPTIONS

Demand for health services is a reflection of the inter-
action between health needs, incomes, and health delivery
institutions. Access methods usually treat demand as a
known or estimated parameter. This section explores the
geography, timing, and assumption structure of demand infor-
mat ion.

Geography

Four alternate geographical representations may be
used to describe demand - weighted or unweighted points on
a graph, and points along an arc or in continuous space
(see table 5-1). While much of the section is written with
weighted network points in mind, the reader may extend the
discussion in a parallel fashion to continuous space.

TABLE 5-1: GEOGRAPHICAL REPRESENTATIONS OF DEMAND

set covcring discrete network uniform weights at points
on a graph

maximal covcring discrete network weighted points on a graph
on a graph

arc covering discrete network uniform weights over arcs

infinite solution continuous two uniform distribution over
space dimensional space a plane

Static Demand Surrogates

Real demand for services is unknown. Policy makers
often use some surrogate for demand. Table 5-2 lists alter-
nate concepts of demand for the siting of a defined set of
facilities on a defined network of points with respect to
demand at one moment in time.
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TABLE 5-2: ALTERNATE DEMAND SURROGATES

Surrogatc Type of Estimate Methodology Degree of Effort

estimate sample sta'tistic population sample great effort

expressed demand observed statistic count bodies intermediate
effort

a community assumption identify a community very easy

population assumption use census data easy

population assumption use census data minor effort

cross-sect ion

What is demand? A clinician's notion of demand may be
need or some measure of the people who actually require
treatment. To identify the needy, survey a small sample of

a population; sample information can be used to make

inferences concerning the population. In some cases,

information will already exist in'health records concerning

the frequency of a health condition. Sampling provides

excellent information, but can be expensive and time

consuming. Information based upor small, biased, or irrele-

vant samples can be misleading. For example, demand data

based upon a population sample in one local area may have no

relationship to demand in a community somewhere else.

An economist's notion of demand might be all those who

present themselves for treatment. Such expressed demand is

countable at existing facilities. If such information is

not already available, it may be costly to collect. If

available, such data may be biased because those who do not

have access will not present themselves for treatment.

Two surrogates noted previously in section two are

a community as a point of demand or some measure of popu-

lation. It is possible to use census data to weight the

points representing human habitation, and locate facilities

to cover these weighted population nodes. It is also possible

to take various cross sections of the population, and use

these numbers to weight the nodes. Cross sections can be

made by age, sex, income class, employer, race, or other

factors.

Many health planning problems involve certain sectors

of a population. Maternal and child care involves women

within a certain age group. Heart attacks occur primarily
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among people of particular ages. Persons without access to

health care can often he classified by level of income,
place of residence, race, occupation or other factors in-

cluded in census data.

Location analysis can site facilities to cover such
racial, income, occupation, sex, or age groups by using such

data to weight the nodes. If a hierarchy of needs exists
(e.g., treat the indigent first, next the poor, etc.), then
it is possible to weight various cross-sections of populations
and thus arrive at a composite weight for a point on a net-
work.

Dynamic Demands

The location of facilities to cover demands that change

over time is amenable to access analysis. Age stratification,
social group populations, and income distribution will vary
with time. However a facility site, once determined, may be

difficult to change. Dynamic location of facilities is

possible, but rests upon some definition of what will be the

service demand in the future.

Several strategies of dynamic location can be employed to

weight the future versus the present. One procedure is to
find the best locations with regard to present demands and

then determine the implications for the future. Alternately,

each time period, such as today, S years from now, 10 years

from now, etc., can be designated with a weight/significance.
The siting problem becomes determination of locations with

respect to the distribution of demand over time. For example,

future demand may be discounted in a manner similar to dis-

counting future benefits or costs in a traditional cost-

benefit analysis. Such discounting could reflect a social

time preference, in that service to a person today is worth

more than serving someone in ten years. Future demands could

also be discounted for uncertainty; presumed demand of ten

years hence may or may not materialize. A final strategy to

demand over time is to determine tradeoffs between locations

that optimize coverage today and those that optimize coverage

at some point in the future. Tradeoff curves similar in

spirit to those previously displayed can show what present

degree of coverage must be sacrificed to achieve greater

coverage in the future.

All these methods of dynamic location require some

information concerning future demand. Typical sources of

such information are population projections, government
planning documents, or estimates of experts.
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Summary

This section has discussed the variety of definitions
of demand that can be used with access/covering methods to
locate facilities. The solution techniques only require
some weighting factor. Whether this factor is survey data,
expressed demand statistics, uniform weights (communities),
population, cross-sections of population, or expert guess-
timates is of no difference to the algorithms. It is up to
the policy maker in any particular application to define
what is the nature of the demand which he hopes to cover
through facility location. This discussion has used net-
works and points as the representation of geographical
relationships. The reader may extend the results of this
chapter to other spatial relationships, including arcs and
the continuous plane.
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SECTION SIX: ALTERNATE ASSUMPTIONS CONCERNING

FACILITIES AND HEALTH SERVICES

This section discusses different notions of health
services and health facilities, given prior assumptions of
spatial relationships and demand [1). Three issues relating
to the definition of health service will be explored: loca-
tion vs. relocation; single vs. multiple services; and one-
level covering vs. heirarchical covering. The implicit
assumption of previous sections and their relaxed alterna-
tives are listed in table 6-1.

TABI.E6-1: AI.TERNATE NOTIONS OF SERVICE AND FACILITIES

Issue Previous Assumptions Related .Itemate Assumptions

location vs. relocation location of all new facilities location of some new facilities; others
previously located cannot be relocated

locatiun of some new facilities;
relocation of old facilities possible

a relocation of facilities problem

service/facility equality one set of faclities to provide one set of facilities to provide many
vs. divergence one health service health services

several sets of facilities to provide many
health services

several parallel sets of facilities to
provide a single health service

hierarchy of covering one level of service and a hierarchy of levels of service and
facilities facilities. For example:

(I) the lowest level of facilities should
cover demand (population)

(2) secondary facilities should cover
referrals from the primary ones

(3) a pattern of higher levels covering
the next lower level referrals.

[I] An implicit assumption in this section is that demand is
represented by populations at points in a network. However,
analysis can also proceed with alternate geography and demand

assumptions.
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Location vs. Relocation

In sections two and three, the location technique impli-
citly found a set of new facility sites where none before
existed. In practice this situation of all new facilities
rarely arises. Usually some facilities already exist which
are providing health services. The planning problem may be
where to locate an incremental facility or two, with the
sites of the previous facilities as fixed. Or, perhaps one or
more old facilities may he relocated over time.

The procedure for treating an existing facility which
cannot move is to assure its continued existence through a
constraint. If there exists an old facility which can be
relocated, it is possible to solve once with a constraint
that the facility remain at its site and once without such a
requirement. The comparison of solutions shows the impli-
cations of relocating the facility. Location/relocation
implies slight data modifications which are not burdensome.

Single Vs. Multiple Services

Another implicit assumption in previous sections has

been that each facility shall provide one and only one health

service. This may be an accurate description of the policy
problem; for example, the siting of centers to disperse
family planning information and perform no other service.
For other problems, a 'one service' assumption is too

restrictive. One facility may house several services.
Several parallel facilities could provide one service. The

following paragraphs will discuss these and other notions.

One facility may be called upon to provide several
health services. For example, a rural health post in an

isolated area might be called upon to provide information
about health, first aid services for emergencies, primary

care for endemic diseases, etc. A facility which is sited

to provide access to one set of users may or may not provide
optimal access for a different clientele. For example,

imagine that a rural health post is called upon to provide

first aid for a large region and pre-natal care for a smaller,

more compact region. The optimal set of locations for access

to pre-natal services may diverge from the best sites to

cover first aid. One strategy is to show the degree of

coverage of pre-natal needs which must be sacrificed to pro-

vide a designated level of first aid services, or vice-versa.

Results are not expressed as a single set of optimal sites,

but rather as a tradeoff curve. The selection of the best

compromise solution will be up to the decision makers.
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Another case is when many facilities provide a single
service in pzrallel. An example is the emergency medical
system of Maryland. Two parallel systems, ambulances and

helicopters, can bring victims from wherever the emergency

occurs to a hospital. Both helicopter pads and ambulance
stations need to be sited with respect to a single form of
demand (emergceicy calls) and to each other. This category
of problem was treated in section four. The analytical
approach is to construct augmented networks including both

sources of service.

A final type of problem is the case where services are
offered in sequence. Some facilities cover demand; others
provide access only to referrals from another level. The
problem is how to cover a demand with a first rung of faci-
lities, how to cover this first rung of facilities with

referral centers, and so on, up a ladder of increasing com-

plexity. An example of such a problem is the health

regionalization plans in Colombia. There the intention is

to site a lowest level of facility, the rural health posts,

so that a large fraction of the population can be covered.

Each health post in turn is to be covered by a first level of
local clinics. Each local clinic is covered by a regional
clinic, and so on, up to university hospital centers in

urban areas. This area of hierarchical covering is cur-

rently a very fertile area of research.
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SECTION SEVEN: ALTERNATIVE OBJECTIVES

OF HEALTH FACILITY PLANNING

The definition of objectives is central to tt'* ;ask
of site selection. Some typical goals which are used in
location analysis are listed in table 7-1. Multiple objec-
tives imply solutions that show tradeoffs between goals.
An improvement in one objective (e.g., population covered)
can only be obtained by a decrease in another. More coverage
can only be purchased by a larger number of facilities.

TABLE 7-1: ALTERNATE PUBLIC ACCESS OBJECTIVES

Minimization of maximum time or distance

Minimization of total (or. equivalently,
average) time/distance

Minimization of number of facilities

Minimization of cost

Maximization of population/demand covered

Maximization of utilization of service

Analysis in section three implicitly considered three
objectives, population coverage, number of facilities, and
maximum time/distance. Varying the value of S (the maximum
time/distance permitted) from small to large generates a
tradeoff curve between a time dimension (maximal service time
or distance), the number of required facilities, and popu-
lation coverage.

Given a cost function, (a statement of how costs in-
crease with the number of facilities) costs can be traded
off. P-median techniques locate p (a number) of central
facilities so as to minimize average or total time/distance
traveled in a health delivery system (6, 14). Use of
p-median methods allow tradeoffs of average distance objec-
tives versus others. One issue is determining whether
average time/distance better represents the public purpose of
health facility than maximal time to service. Other tech-
niques attempt to maximize the utilization of services through
the location of facilities (11, 14).
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