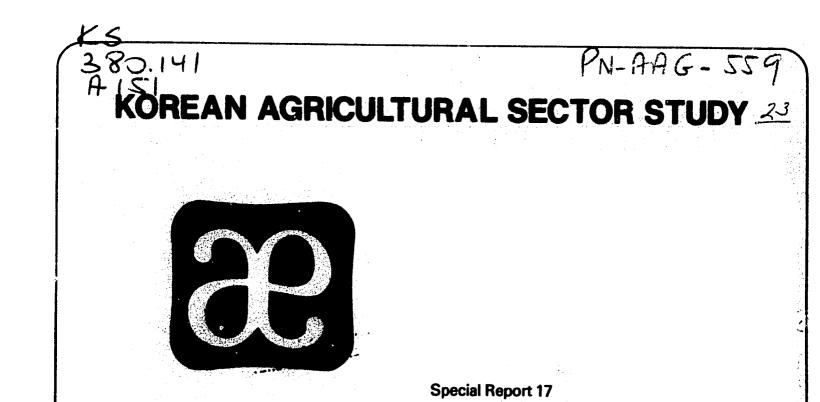
	AGENCY FOR INTERNATIC WASHINGTON, D. BIBLIOGRAPHIC IN	C. 20523		FOR AID USE ONLY
1. SUBJECT	Food production	and nutrition	1	AE70-0000G704
CLASSI- FICATION	Distribution and	marketingH	(orea	
3. AUTHOR(S) Abkin, N	м. н.			
4. DOCUMENT	DATE 5.	NUMBER OF PAGES	6. ARC N	UMBER
		222p.	ARC	KS380.141.A151
1977				
	E ORGANIZATION NAME AND ADD			
7. REFERENC			- -	


(Supported under contracts AID/csd-2975 and AID/ta-C-1322) (In KASS special report 17)

9. ABSTRACT

PN-AAG- 550	<u>]</u>	11. PRICE OF DOCUMENT
12. DESCRIPTORS Models	Simulation	13. PROJECT NUMBER 931053600: 931024400
Sector analysis Agricultural products	Demand Prices	14. CONTRACT NUMBER AID/csd-2975 Res.
Computer programs	International trade Korea Rep.	15. TYPE OF DOCUMENT

· •

AID 800-1 (4-74)

DEMAND-PRICE-TRADE MODEL OF KASM3: TECHNICAL DOCUMENTATION

Michael H. Abkin

National Agricultural Economics Research Institute Ministry of Agriculture and Fisheries Seeul, Korea Department of Agricultural Economics Michigan State University East Lansing, Michigan

DEMAND-PRICE-TRADE MODEL OF KASM3:

TECHNICAL DOCUMENTATION

Michael H. Abkin

KOREAN AGRICULTURAL SECTOR SIMULATION PROJECTS

KASS Special Report 17

'National Agricultural Economics Research Institute Ministry of Agriculture and Fisheries Seoul, Korea

Department of Agricultural Economics Michigan State University East Lansing, Michigan

June, 1977

TABLE OF CONTENTS

LIST OF TABLES LIST OF FIGURES FOREWORD vii Chapter 1. INTRODUCTION AND SUMMARY 1 Mathematical Model Data Base and Computer Program Personal en la Model Testing and Areas for Further Research 4 2. TECHNICAL DESCRIPTION 8 System Definition 8 Rationale . 8 KASM Interaction Other Inputs and Outputs 10 Consumer Behavior Parameters 12 16 Policy Inputs Carryover Stock Level 17 Producer Price . 192 Per Capita Consumption 19 21 Imports/Exports . . Imports/Exports and Bounded Consumer Price 21 Bounded Consumer Price 22 23 Consumer Price • . 21 Model Description Farm and Nonfarm Demand Models Compa 24 éd 25 Farm Demand Consumption Functions 30 30 Farm Demand Outputs Independent Variables and Elasticities 32 Price and Nonfarm Demand 33 Consumption Functions and Constraints 37 Price and Nonfarm Demand Outputs 38 41 Initialization of DEMAND Independent and Policy Variables and 43 Elasticities Reduced Form and Iterative Solution Algorithm 44 51

	\mathbf{v}_{i}	
	Pag	е
Chapt	er	
	rade Accounting and reprovidence viewerse	3
	Trade Accounting	4 6
		8
۰,	Concumption Expenditure Accounting	11
	Processed and Unprocessed Food Consumption . 6	2
3.	MODEL TESTING AND CREDIBILITY 6	3
		i3
	Time_Series Tracking	57
	Sensitivity Analysis	73
	Design of the Analysis	74 77 .
	Results of the Analysis	
4.	FURTHER RESEARCH AND PODEL DEVELOTTENT	31.
		31
	Data Development	35
5.	COMPUTER PROGRAM DOCUMENTATION	37
		37
	Program Structure	88
	Program Implementation	88
Appen	ndix	
Α.	VARIABLE DEFINITIONS	00
Β.	DEMAND COMPUTER PROGRAM	23
	DEMAND Routines	24
	Executive Routines	55
	Utility Routines	63
	DEMAND STANDARD RUN OUTPUT	65
С.		79
D.	COMPUTATION OF CROSS-FRICE LENGTED TO	
Ε.		86
		86
		87
	I duking refiou tine bettes t	88 89
· .		90
	IOGRAPHIC REFERENCES	- •

LIST OF TABLES

Table		Påge
2.1	Commodity Groups of the Korean Agricultural Sector System of Models	
2.2	Policy Instruments in DEMAND	1
2.3	Farm Household Expenditures on Food Consumption, Per- cent Cash and Percent to Total	27
3.1	DEMAND Time-Series Tracking Results of Per Capita Consumption (kg/person-year)	70
3.2	Results of DEMAND Sensitivity Tests	70
5.1	DEMAND Subprograms	90
5.2	Demand-Price-Trade Model Policy Inputs Worksheet: Base Run	94
E.1	Demand-Price-Trade Model Initial Conditions	191
E.2	Demand-Price-Trade Model Empirical Time Series	193
E.3	Demand-Price-Trade Model System Parameters	202
E.4	Demand-Price-Trade Model Substitution Proportions	205
E.5	Demand-Price-Trade Model Miscellaneous System Parameters	207
E.6	Projections of Export and Import Prices for Korean Commodities	
<u>E.</u> 7	Inputs to DEMAND from Other KASM Models	208 211

	LIST OF FIGURES	· · · · · ·	
Figure			Page
2.1	Major Linkages Between the Demand-Price-Foreign Trade Model and Other Components and Models of the Korean Agricultural Sector System of Models	•	13
2.2	Input-Output Diagram of the Demand-Price-Foreign Trade Model	•	14
2.3	Internal Structure of DEMAND	•	26
2.4	Computational Sequence of Farm and Nonfarm Demand .	•	29
3.1	DEMAND Time-Series Tracking Results	•	72
5.1	DEMAND Call Sequence	•	89
D.1	Submatrix of Grain Price Elasticities	•	181

FOREWORD

The Korean Agricultural Sector Model (KASM3) is a system of simulation models designed for use in the analysis of the agricultural sector and subsectors of the Republic of Korea. The primary objective of this system of models is to serve as an aid to national-level, public decision makers in the formulation and analysis of agricultural and rural development policies, programs and projects. However, KASM3 can also be useful to researchers and others interested in Korean agricultural sector analysis.

While the models have been developed specifically for Korea, the basic structures are general enough to have wider applicability, singly or in combination, in other countries as well. For this reason, and to emphasize the modularity of KASM3 and enhance the utility of its technical documentation to assist in implementing one or more component models in Korea or elsewhere, KASM3 is documented as a series of KASS Special Reports as follows:

Special Report 13:	Korean Agricultural Sector Model, Version KASM3: System Technical Documentation
Special Report 14:	Population and Migration Model of KASM3: Tech- nical Documentation
Special Report 15:	Crop Technology Change Model of KASM3: Techni- cal Documentation
Special Report 16:	Farm Resource Allocation and Production Model of KASM3: Technical Documentation
Special Report 17:	Demand-Price-Trade Model of KASM3: Technical Documentation
Special Report 18:	National Economy Model of KASM3: Technical Documentation

Work on the Korean Agricultural Sector Model, Version KASM3, has been supported by the U.S. Agency for International Development under contracts AID/csd-2975 and AID/ta-C-1322, and by the Ministry of Agriculture and Fisheries, Republic of Korea.

George E. Rossmiller Director Agriculture Sector Analysis and Simulation Projects Michigan State University East Lansing, Michigan Sung Ho Kim Director National Agricultural Economics Research Institute Ministry of Agriculture and Fisheries Seoul, Korea

CHAPTER 1

INTRODUCTION AND SUMMARY

As a whole, the Korean agricultural sector system of models (KASM) is designed to address a wide range of policy problems facing public agricultural decision makers in Korea. Each model of the system represents a major component of integrated agricultural sector analysis -population, crop technology change, farm resource allocation, demand and national economy. This report documents the demand-price-foreign trade model (DEMAND) of the KASM system.

and the and the second second

Mathematical Model

Chapter 2 documents in detail the mathematical model of DEMAND -its rationale, its linkages with other KASM models and its internal structure.

A key component of agricultural sector analysis in the context of a controlled market economy such as Korea's is projections of agricultural commodity prices and demands. Farm prices are important determinants of farm-level investment and production decisions, and farm and consumer prices are measures of rural and urban welfare. Finally, per capita consumption measures nutritional well-being, and total consumption levels when compared with domestic production, indicate likely import requirements and export potentials. DEMAND is designed to make these demandprice-trade projections within the Korean policy context for each of the agricultural commodity groups considered in KASM.

Within the KASM system, DEMAND is closely linked with the production models, from which DEMAND receives domestic supply and farm income and for which DEMAND determines producer prices. Also, DEMAND uses nonfarm income and the nonfood price index from the national economy model (NECON) and computes food and nonfood consumption, agricultural trade and food prices for use in NECON. Finally, farm and nonfarm population levels are determined in the population and migration model.

In addition to these inputs to DEMAND from other KASM models, also needed are projections of world food prices and a set of policy inputs. Food price and consumption policies in Korea have multiple and sometimes conflicting operational objectives. These include: 1) increasing farm incume, 2) increasing domestic production, 3) reducing food imports and, hence, foreign exchange requirements, and 4) reducing inflationary pressures.

Since DEMAND is intended for use in policy analysis, several relevant price and quantity control policy instruments are built into DEMAND. For each commodity:

- the consumption level over time may be specified to observe the consequent impacts on imports/exports and prices;
- imports/exports over time may be specified to investigate the implications for prices and consumption;
- the consumer price or bounds on consumer price movements over time may be specified to observe the resulting nonfarm consumption and imports/exports;
- producer price projections may be specified to investigate the effects on farm consumption and, when linked to a production model, production; and
- 5. carryover stock levels may be regulated to reflect the building of government reserves and to investigate the impacts on consumption, prices and imports/exports.

DEMAND is composed of three components: farm demand, price and nonfarm demand, and outputs of trade accounting and DEMAND performance measures.

The farm demand component projects per capita farm consumption of each of the food commodities of KASM based on lagged producer prices and income using linearized Cobb-Douglas consumption functions. Each commodity's demand equation is solved independently, and aggregate nonfood consumption is computed as a residual. Lagged producer prices are used in the consumption functions instead of concurrent consumer prices, in accordance with the implicit assumption that farm food consumption is basically subsistence.

The price and nonfarm demand component of DEMAND solves, in each time period, a simultaneous linear system of equations for 1) per capita nonfarm consumption of each of the food commodities of KASM, 2) per capita nonfarm consumption expenditures for the aggregate nonfood commodity, and 3) consumer prices for each food commodity. For each commodity, either the consumer price is specified exogenously and DEMAND solves for consumption, or consumption is predetermined by domestic supply and policyspecified imports/exports and DEMAND solves for the market-clearing consumer price. Bounds on the resulting consumer price may also be specified, in which case the solution algorithm iterates until all such bounds are satisfied. The solution obtained is also consistent with a total consumption expenditure constraint. This component also computes producer prices, either as specified by policy or related to consumer prices with constant marketing margins.

Both farm and nonfarm demand depend on price and income elasticity values as well as on price and income. In order to maintain a reasonable and mutually consistent set of direct-price and cross-price elasticities over time, DEMAND computes cross-price elasticities of each time period as functions of relative consumption levels and the direct-price elasticities. Appendix D discusses the theoretical and mathematical derivation of this computation.

Income elasticities also vary over time in the model in order to keep consumption 1) within reasonable limits as income increases in the long run and 2) consistent with reasonable expectations of long-run nutrition levels. Consumption targets are specified for each commodity, and, as actual consumption of that commodity approaches the target, the income elasticity goes to zero.

Finally, based on consumptions and prices determined in the other DEMAND components, foreign trade accounts and a number of other variables are computed which can be used as measures of how the DEMAND system responds to alternative policy assumptions. These include nutrition levels, self-sufficiency, price indices and consumption expenditure accounts.

Data Base and Computer Program

The data for the demand-price-trade model, as for any model, are classified into four categories: 1) initial conditions; 2) system parameters, i.e., constants which determine the strength of relationships among variables; 3) policy parameters; and 4) input variables. DEMAND's requirements and sources for these types of data are discussed in Appendix E. A listing of the current data file appears in Appendix B.

The computer program of DEMAND is also listed in Appendix B and a sample output in Appendix C. Variable definitions appear in Appendix A. Chapter 5 describes the structure of the computer program, its requirements in terms of machine core storage and execution time, and how to implement it. Also included is a sample worksheet to simplify the specification of policy inputs to DEMAND.

Model Testing and Areas for Further Research

Three types of tests have been conducted on DEMAND: internal consistency checks, time-series tracking tests and sensitivity analyses. Results of these tests are presented in Chapter 3, and their implications for further research and model development are discussed in Chapter 4.

The internal consistency checks revealed problems primarily in two areas. First, the linearization of the basic Cobb-Douglas demand-price model tends to be unstable when inverted to solve for price as a function of supply, particularly for price-inelastic commodities. It is not uncommon for market-clearing prices determined in this way to range from unreasonably large to even negative values. Therefore, it is advisable to use DEMAND only with bounded or exogenously specified consumer prices. An important area for further research and model development, then, would be to consider alternatives to the linearized Cobb-Douglas consumption functions. The problem is attributed to this functional form because 1) the linearization can be very inaccurate for relatively large changes, 2) it may be invalid to use the inverse of demand elasticities as price flexibilities, and 3) elasticities do not allow for

asymmetric consumption responses depending on the direction, magnitude and duration of price or income changes.

The second internal consistency problem in DEMAND is that the allcommodities consumer price index CPI does not remain 1.0 over time. All prices computed in DEMAND are real prices, with CPI as the implicit deflator. The aggregate index of all real prices, then, should be 1.0, essentially because it is deflated by itself. However, in DEMAND's standard run CPI drifts upwards from 1.0 to a value of 1.129 by 1985. It is suggested that an additional constraint equation be added to the simultaneous equations system which would determine the nonfood price index such that the aggregate CPI has unit value.

Time-series tracking tests compare DEMAND's projections of per capita consumption of each commodity and of aggregations of grains, meats and fruits/vegetables with the historical values of those variables for the period 1971-1975. Normalized sums of squared errors are used as measures of goodness of fit. For most commodities, particularly the major ones and the three aggregations, DEMAND tracks consumption reasonably well. In general, trends are captured much better than oscillations about the trends. Overall, the total of the 19 commodity-specific goodness-of-fit measures is 3.8763, with individual ones ranging from a '... of .0143 for rice to a high of 1.1174 for industrial crops. For reference purposes in evaluating this fit, zero would be a perfect fit, while 87.3313 would be the result if the model projected only zeroes for these series.

Finally, sensitivity analyses can be very useful in identifying those data requirements of the model which should receive relatively higher priority in allocating scarce resources for data collection and analysis. They can also indicate the policy instruments which are likely to be relatively more effective in influencing the system's behavior.

On the whole, elasticities do not appear too sensitive except for the commodities most directly affected. Therefore, it would not seem to be worthwhile to spend much more effort re-estimating demand elasticities, particularly if alternative consumption models are to be considered. The nonfarm average propensity to consume is by far the most sensitive model parameter of those tested. It may be desirable, therefore, to consider projecting this as a time-varying parameter rather than keeping it as a constant. Finally, the aggregate response to changes in the price bounds is relatively small, the sensitivity of these parameters primarily being confined to the commodities affected most directly.

CHAPTER 2

TECHNICAL DESCRIPTION

This chapter, divided in two sections, is a detailed technical description of the demand-price-foreign trade model (DEMAND) of the Korean Agricultural Sector system of Models (KASM). The first section, system definition, describes DEMAND from an external point of view. That is, we will look at the rationale for DEMAND (why it exists), its linkages with other models of KASM, and its inputs and outputs. In the second section, model description, we will go into the internal structure of DEMAND in some detail, including the major assumptions and equations and the policy options built into the model. The next chapter of this documentation discusses the results of time-series tracking and sensitivity tests of DEMAND.

System Definition

<u>Rationale</u>

A key component of agricultural sector analysis in the context of a controlled market economy such as Korea's is projections of agricultural commodity prices and demands. Farm prices, for instance, are important determinants of farm-level investment and production decisions. In addition, as essential elements of farm income, they are measures of rural social welfare insofar as they contribute to the ability of farm households to purchase such nonagricultural goods and services as bicycles, radios, electricity, health care, education, etc. Furthermore,

when compared with prices on the world market, they are indications of Korea's relative competitive position in the production of the various agricultural commodities. Therefore, agricultural sector policy analysis should provide information on the likely response of farm prices to various supply-demand conditions resulting from alternative production and consumption policies.

Similarly, consumer food prices affect nonfarm social welfare through their impact on the proportion of income spent of food consumption. In addition, they can indicate inflationary pressures arising from demand-pull factors.

Finally, for both farm and nonfarm sectors, levels of per capita consumption translate into measures of nutritional well-being, and changes in the relative consumption of various groups of commodities (e.g., grains compared with meats and vegetables) are an indicator of the progress of economic and social development. Furthermore, total consumption demand, when compared with domestic production, provides information on likely import requirements and export potentials for the various agricultural commodities.

DEMAND is designed to make these demand-price-trade projections within the Korean policy context for each of the 19 agricultural commodity groups considered in KASM (Table 2.1). However, its structure is general enough to have wider applicability in other countries. For sector analyses, DEMAND can be used as a component model of the Korean Agricultural Sector system of Models (KASM), which includes models of agricultural production, technology changes, population and the national economy. It may also be used independently

of KASM for consumption analyses which do not require all the information provided by the total sector model.

KASM Interaction

Figure 2.1 shows the linkages between DEMAND and other models of the KASM system. In this figure, the technology change and resource allocation models are shown together as "production."

Farm and nonfarm population projections, provided by the population and migration model (POPMIG) [1], are used by DEMAND to determine total consumption demand for food commodities. There is not now any feedback from DEMAND to POPMIG. However, DEMAND does provide information on nutrition levels, and at some later date POPMIG could be extended to, for example, make birth and death rates functions of nutrition.

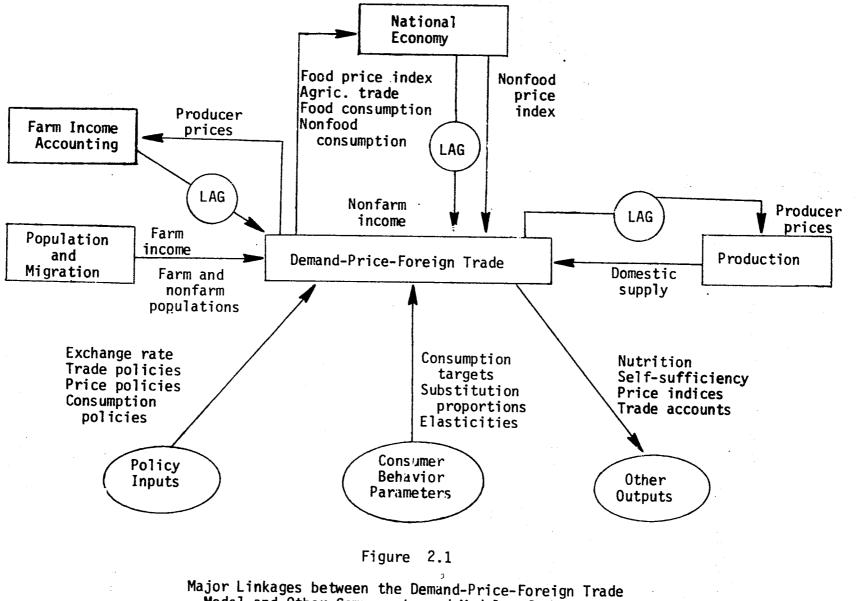
The farm income accounting component [4] combines producer prices from DEMAND with output and production costs from the production models to project farm income. Per capita farm income is lagged and fed back to DEMAND for use in the consumption functions.

The production models are driven, in part, by lagged producer prices. The production functions in the technology change model (CHANGE) [3] use producer prices to partially determine input application rates and, hence, yields. In addition, producer prices are used in the diffusion of innovations component of CHANGE. Producer prices are used in the resource allocation and production model (RAP) [4] for crop land allocation and livestock production decisions. In return, information on domestic supply is used by DEMAND in determining prices and imports/ exports.

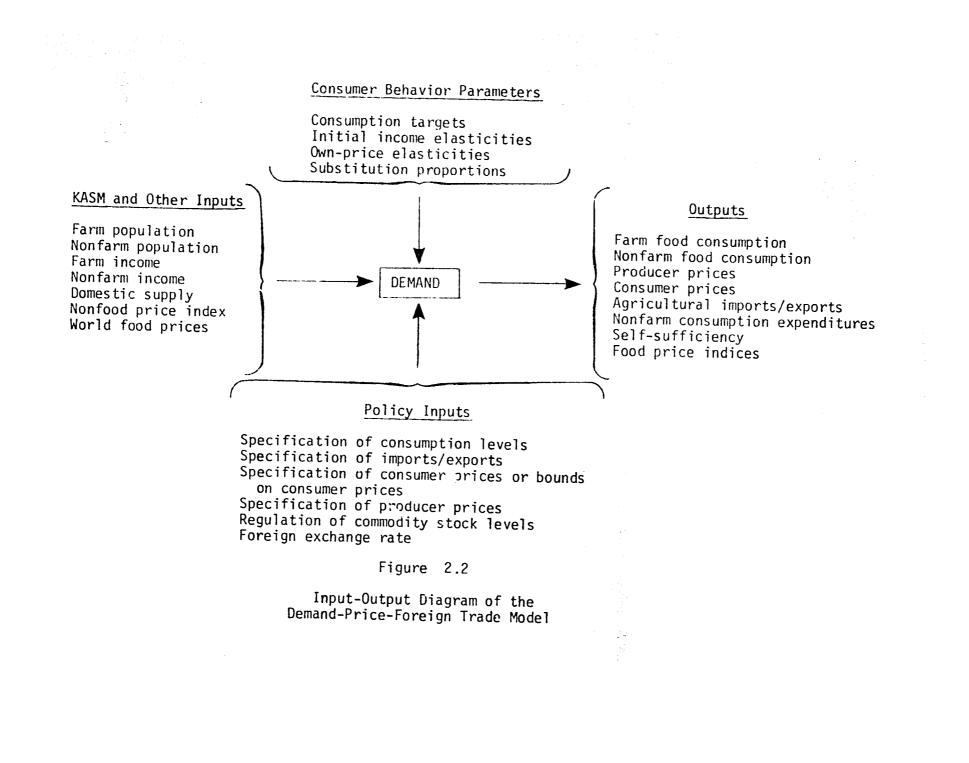
TABLE 2.1

Commodity Groups of the Korean Agricultural Sector System of Models

	Crops	Li	vestock
1.	Rice	13.	Beef
2.	Barle	14.	Milk
3.	Wheat	15.	Pork
4.	Other grains	16.	Chicken
5.	Fruit	17.	Eggs
6.	Pulses		
7.	Vegetables		neries
8.	Potatoes	18.	Fish
9.	Tobacco	<u>Resi</u>	dual
10.	Forage	19.	Agricultural residual
11.	Mulberry (silk)	Nona	gricultural
12.	Industrial crops	20.	Nonagricultural aggregate


.

The national economy model (NECON) links the agricultural sector with the rest of the Korean economy [5]. The aggregate price index of nonfood consumer goods and services, used in DEMAN[¬] as a price deflator, is determined in NECON. Also, nonfarm income, resulting from performance of the nonagricultural sectors in NECON, is lagged for use in DEMAND as a driver in the nonfarm consumption functions and as a constraint on total nonfarm per capita consumption expenditures. In return, the value of agricultural exports and food consumption expenditures used in NECON are components of final demand for agriculture's output. Nonfood consumption is disaggregated in NECON by sector. Agricultural imports are used in NECON to compute import coefficients for agriculture, and, finally, the food price index from DEMAND serves as the price index for the agricultural sector in NECON.


If DEMAND is to be run independently of the rest of KASM, then the inputs described above and shown in Figure 2.1 must be projected and supplied by the user. Next, we discuss the policy and other inputs and outputs of DEMAND and the behavioral parameters which, together with the structure of DEMAND, determine the model's response to its inputs.

Other Inputs and Outputs

Figure 2.2 is a simple input-output ("black-box") diagram of DEMAND. In this figure, inputs and outputs from and to other models of KASM, discussed above, are listed with other variables needed by DEMAND and computed by it.

Model and Other Components and Models of the Korean Agricultural Sector System of Models

An additional variable needed by DEMAND and not supplied by other KASM models is world food prices. Since these are not computed in KASM, the user must project them independently¹ and supply the data to DEMAND. Projections are needed on import prices and export prices for each of the 19 agricultural commodity groups considered in KASM (Table 2.1). Import and export prices constrain domestic prices in DEMAND (depending on policy specifications--see below) and are used to compute agricultural trade balances.

In addition to variables computed for use by other models of KASM, DEMAND outputs information on nutrition, food price indices, selfsufficiency requirements and self-sufficiency levels. Per capita daily protein and calorie intake is computed for farm and nonfarm populations and for the national average. Total intake of each nutrient by each group is further broken down by plant and animal sources.

Food consumer price indices are projected by DEMAND for all foods, for rice, for other grains and for meats. For eocnomic and national security reasons, self-sufficiency, particularly in the major food grains, is a major objective of Korean policymakers. Therefore, the relative impact of various policy options on self-sufficiency levels is essential information for policy analysis in Korea. Thus, DEMAND calculates for each commodity group domestic production requirements and, for crop commodities, land allocation requirements for 10% selfsufficiency. These calculations are based on consumption demand, crop

¹See Appendix E for a discussion of how these projections have been made for the current data in DEMAND. New projections should be made from time to time as new information warrants.

yields and assumed loss and seeding rates. If the production models of KASM are operating with DEMAND to supply information on domestic supply, then this is compared with total demand to determine actual self-sufficiency levels.

Consumer Behavior Parameters

Although behavioral parameters appear in Figure 2.2 to be inputs to DEMAND, they are instead part of the system itself. Along with the initial condition data.² they combine with the generalized structure of DEMAND described in the next section to form a model of Korean food demand and price. This model, composed of structure and data, responds to agricultural sector and policy inputs to generate output projections as indicated in Figure 2.2. There are four sets of behavioral parameters: consumption targets, initial income elasticities, own-price elasticities, and substitution proportions. Each of these sets is disaggregated by farm and nonfarm consumers and by the 20 commodities shown in Table 2.1.

Consumption targets in DEMAND serve to contrain long-run consumption (roughly the year 2000 and beyond) from increasing without bound as income increases and to keep consumption consistent with reasonable expectations of long-run calorie and protein intake. The model accomplishes this by assuming the income elasticity of each commodity goes to zero over time as consumption approaches the target. For stability, targets, initial consumption levels and initial income

²See the data documentation of the demand-price-foriegn trade model in Appendix E.

elasticities must all be mutually consistent in that commodities whose targets are higher (lower) than initial consumption levels must have positive (negative) initial income elasticities.

Price elasticities determine the changes in consumption resulting from price changes. In addition to own-price elasticities, crossprice elasticities are needed to determine the response of consumption to prices of substitute commodities. DEMAND uses substitution proportions along with own-price elasticities to determine cross-price elasticities consistent with changes in relative consumption levels over time.

Policy Inputs

Food price and consumption policies in Korea have multiple and sometimes conflicting operational objectives. These include: 1) increasing farm income through high producer prices, particularly for grains; 2) increasing domestic production, also with high producer prices as incentives (in addition to crop improvement research, land and water development programs and credit and subsidy programs); 3) reducing food import and, hence, foreign exchange requirements through import controls, production programs and nonprice measures (such as riceless days, release of mixed grains, etc.) to reduce consumption; and 4) reducing inflationary pressures by controlling consumer prices.

One major example of a conflict arising from the above policy goals is the fact that keeping consumer prices low not only encourages high demands, thus increasing pressures for imports (as has happened in Korea for beef), but also in some cases fuels inflation by creating

inflationary government deficits between high producer prices and low consumer prices for government-marketed commodities (as has happened for rice and barley).

Since DEMAND is intended for use in policy analysis, several relevant policy options, indicated in Figure 2.2, are built into DEMAND for each commodity:

- the consumption level over time may be specified to observe the consequent impacts on imports/exports and prices;
- imports/exports over time may be specified to investigate the implications for prices and consumption;
- the consumer price or bounds on consumer price movements over time may be specified to observe the resulting nonfarm consumption and imports/exports;
- 4. producer price projections may be specified to investigate the effects on farm consumption, and when linked to a production model, production; and
- 5. carryover stock levels may be regulated to reflect the building of government reserves and to investigate the impacts on consumption, prices and imports/exports.

In addition, alternative foreign exchange rates may be specified to investigate the effects on the dollar value of foreign trade in food and on domestic consumer prices and consumption.

These policy options³ can be classified in two dimensions (Table 2.2). One dimension categorizes them as quantity or price control policies. The other categorizes them according to how they are implemented in the model, i.e., optional independent policies and mandatory mutually exclusive policies.

³Except the foreign exchange rate. This affects DEMAND only indirectly in the current model formulation. Furthermore, it has broader implications for the national economy model and is, therefore, specified in that model as a policy assumption [5] and passed on to DEMAND.

Carryover Stock Level

Desired stock levels, in terms of the number of months' consumption in stock to be carried over each year, may be specified for each of the commodity groups considered. Following government statistics, stock levels are defined as quantities held at the start of the rice year (November) in farm and nonfarm households, by the government and at ports awaiting customs clearance [6]. An increase (decrease) in the desired stock level leads to a decrease (increase) in consumer supply for a given level of production. Thus, stock level changes affect prices and trade requirements. An important question which may be investigated with this policy is the building up of emergency reserves, apart from the government's ongoing price stabilization reserves, of the major food grains.

Producer Price

The producer price of a commodity (in W/MT, in constant 1970 won) may be projected over time by policy specification or may be determined by the model. In the latter case, the producer price is related to the consumer price with a constant marketing margin. If the producer price is to be set by policy, a real producer price (W/MT in 1970 won) must be supplied by the user for specified years. The model will then linearly interpolate producer prices between those years. As an example, both the producer and consumer prices of barley may be specified by policy to maintain the dual price system--that is, where the producer price is higher than the consumer price, representing a government subsidy.

	TA	BL	Е	2	•	2
--	----	----	---	---	---	---

Policy Instruments in DEMAND¹

Mu	Optional Independent ² Mandatory tually Exclusive ³	None	Quantity Regulation of carry- over stock levels ⁴	Producer price set by policy ⁵
ty	Per capita consumption set by policy	Х	X	X
	Imports/exports set by policy	Х	X	x
Quanti	Imports/exports set by policy as long as specified price bounds not violated	X	x	x
ce	Bounds on consumer prices set by policy	х	Х	X
Pri	Consumer price set by policy	Х	х	x

Notes:

¹These instruments are commodity specific; that is, a different policy may be specified for each commodity group. Each X in the table is a possible policy option.

²These are independent in that their selection is not conditional on the use of any of the other policy instruments. They are optional in that either one or both or neither of the two policy instruments may be specified. That is, for each commodity, any row in the table may have an X in the first column or in either or both of the second and third columns.

 3 These are mandatory in that one of them must be chosen and mutually exclusive in that not more than one may be chosen. That is, no column may have more than one X in it.

⁴If this is not specified, the model uses a default value which represents recent past behavior.

⁵If the producer price of a commodity is not specified by policy, DEMAND computes it as a function of the consumer price and assumed marketing margin.

Per Capita Consumption

National per capita consumption of a commodity may be projected exogenously over time by specifying national average consumption (MT/ person-year) for specified years. The model will then linearly interpolate consumption for years between these points. Given domestic supply and population, this policy in effect determines the level of imports/exports such that the specified consumption level is achieved, and DEMAND projects the consumer prices resulting from this policy.

For example, it may be desired to explore the consequences of increasing rice consumption to a certain level by a certain year as a substitute for imported wheat, under the assumption that Korea has achieved a stable self-sufficiency in rice. In reality, s h a target would be implemented through a combination of price controls and quantity restrictions such as mixing wheat with barley in bread and/or no wheat in alcoholic beverages. The model, however, would assume achievement of the target and would project the implied import/export requirements and the consequent consumer prices.

Imports/Exports

Imports/exports (or deficits/surpluses) of a commodity may be projected exogenously by providing values for imports/exports (MT/year) for specified years. The model will then linearly interpolate between these years. Given domestic supply from the production models, this policy determines total supply. DEMAND, then, determines the resulting market-clearing consumer prices.

For example, exports of pork may be projected independently of the model by tying them to projections of Japanese demand (essentially, Korea's only market for pork). The model would then project the domestic consumer prices of pork and of substitute meat commodities resulting from these exports.

In general, DEMAND's trade accounting treats deficits and surpluses as imports and exports, respectively. When DEMAND is run in conjunction with the resource allocation and trade model, exception is made for rice, barley and potatoes. Surpluses of barley and potatoes are first assumed to be fed to livestock to reduce feed grain import requirements, any remaining surpluses then being treated as exports (in the case of potatoes) or additions to stock (in the case of barley). All rice surpluses are treated as additions to stock.

Imports/Exports and Bounded Consumer Price

This option is implemented in two stages in DEMAND. First, projections of imports/exports for the commodity are specified by the user. At each point in time, then, DEMAND computes the consumer price consistent with clearing the given supply, after allowing for stock changes. This price is compared with its upper and lower bounds, also specified by the user (discussed below), and, if one or the other bound is violated, the second stage fixes the consumer price at the nearest bound and solves the model again, this time for consumption instead of price. In this case, imports/exports are a residual, overriding the value specified oy policy in the first stage.

As a practical matter, it is advisable to follow this combination policy rather than imports/exports or per capita consumption alone. Otherwise, it may easily happen that unbounded prices will take on unrealistically high or low (even negative) values. In general, the more price inelastic a commodity is the more widely will its price respond to exogenously specified changes in per capita consumption or imports/exports.

Bounded Consumer Price

To bound the consumer price of a commodity, the user specifies upper and lower bounds relative to world prices and/or relative to the domestic consumer price in the previous time period. At any time t, given domestic supply and assuming deficits/surpluses do not change from the previous time period, the model determines market-clearing prices. If any price so determined violates its bounds, it is set to the nearest bound and the process is iterated to determine the deficits/ surpluses consistent with the now-fixed price.

Either or both of two kinds of bounds may be specified--foreign trade bounds or price stabilization bounds. If only one type is desired, the upper and lower bounds of the other should be set very high and very low respectively. If both are to be considered, the more constraining one will, of course, be effective.

For example, a price stabilization policy may require that real beef prices neither increases by more than 10% nor decrease by more than 5% per year. In this case, parameters placing bounds on consumer

prices relative to world prices are set very high and low respectively, to make those constraints ineffective. As another example, fruit can be subjected to a combination trade and price stabilization policy where fruit prices will be bounded above by both 110% of the import price and 115% of its previous domestic price, and below by the export price and 90% of its previous domestic price.

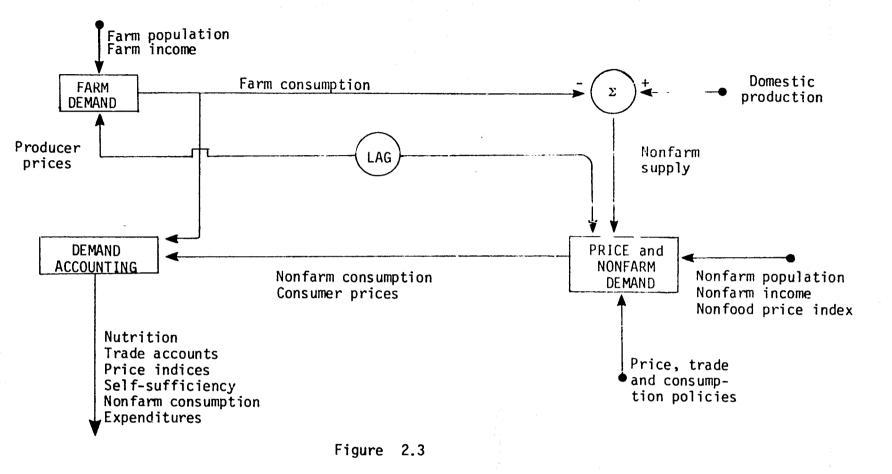
Consumer Price

The consumer price of a commodity (in W/MT, in constant 1970 won) may be exogenously projected over time by specifying its values for specified years. The model then linearly interpolates consumer prices between those years. With this price, consumption is determined, and, given domestic supply, deficits/surpluses are computed.

For example, the Korean government presently tries to control rice, barley and wheat flour prices. Alternative policy projections of these prices may be fed into DEMAND to examine the long-term consequences of achieving those target prices in terms of consumption, nutrition, deficits/surpluses and, when linked with the KASM production models, production, income, food grain self-sufficiency, etc.

Model Description

This section discusses in detail the equations of the demandprice-trade model (DEMAND) and their underlying assumptions and theoretical bases. A list of variable definitions for DEMAND appears in Appendix A, and a computer program list is included in Appendix B.


DEMAND is composed of three components: 1) farm demand, 2) price and nonfarm demand, and 3) outputs of trade accounting and performance measures of DEMAND. The structure of these components is shown in Figure 2.3, and each will be described in turn following a comparison of the farm and nonfarm demand models.

Farm and Nonfarm Demand Models Compared

Both farm and nonfarm demand for the food commodities and the aggregate nonfood commodity (see Table 2.1) are linearized Cobb-Douglas functions of price and income. Although the form of the consumption functions is the same, there are two basic differences between their implementation for farm and nonfarm demand.

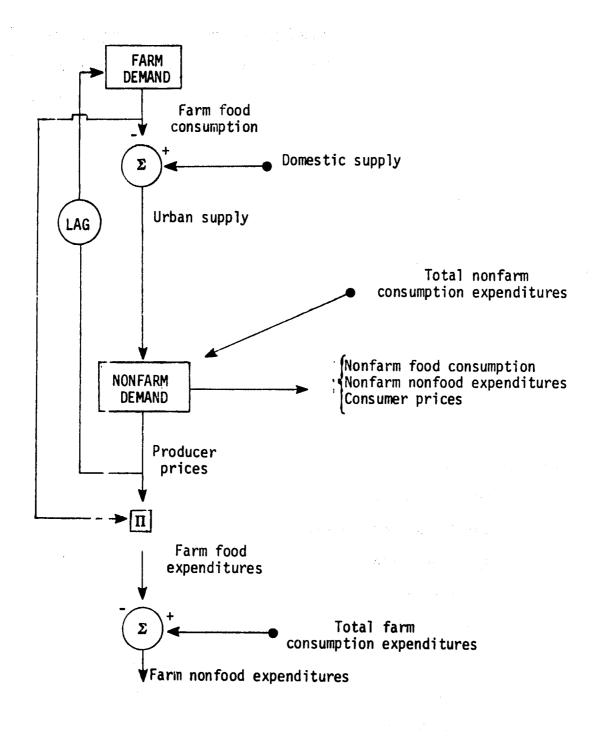
The first difference is the implicit assumption that farm consumption is basically subsistence. This assumption is implied by the use in the consumption functions of exponential averages of past producer prices rather than concurrent consumer prices. It is also implicit in that farm and nonfarm consumers do not compete, in DEMAND, for the available supply. That is, farm consumption is computed first and then subtracted from domestic supply to determine the supply to nonfarm consumers (Figure 2.3).

In the case of staples, this is not an unreasonable assumption, as evidenced in Table 2.3. Grains, pulses and potatoes have accounted for about 75% of the value of farm food consumption, only about 5% of which have been purchased, the rest coming from own production, wages in kind and gifts. Of the remaining 25%, however, including fruits and vegetables and livestock products, about 45% to 50% has been purchased in the market. For these commodities, therefore, concurrent

Internal Structure of DEMAND

TABLE 2.3

				•	
•.	Percent	to Total	Percent Cash		
Item	1970	1974	1970	1974	
Food	100.0	100.0	16.2	15.8	
Major Food Rice Barley and wheat Misc. grains Pulses	73.2 51.0 17.5 1.1 0.9	76.1 56.4 15.8 0.6 1.1	6.1 4.8 10.6 4.5 6.2	4.3 3.6 7.4 5.9 6.8	
Potatoes Side Food	2.7	2.3	1.3	1.2	
Side Food Fruits and vegetables Meats Milk and eggs Marine food	9.7 4.1 1.7 0.2	9.0 3.0 2.2 0.4	55.3 10.4 75.4 57.2	65.4 18.2 84.0 58.1	
Other"	3.7	3.5 14.9	95.9 37.3	95.1 44.3	


Farm Household Expenditures on Food Consumption, Percent Cash and Percent to Total

*Primarily alcoholic beverages, confectioneries, condiments and prepared foods.

Source: Ministry of Agriculture and Fisheries, <u>Report on the Results</u> of Farm Household Economy Survey, 1971 and 1975. consumer prices rather than past producer prices may be a better determiner of farm consumption behavior. Nevertheless, since the commodities purchased largely represent a relatively minor portion of total farm food consumption--indeed, only about 16% of the total has been purchased in recent years--in the interests of model and computational simplicity, DEMAND maintains the implicit assumption of farm subsistence consumption for all commodities. Therefore, farm consumption is independent of nonfarm consumption and concurrent prices.

This brings us to the second basic difference between the farm and nonfarm demand models. The system of nonfarm demand equations-one for each commodity, including the aggregate nonfood commodity-is solved simultaneously with a total consumption expenditure constraint for a set of per capita consumptions and a set of consumer prices. For any individual commodity either consumption or price must be prespecified, leaving the other to be solved for.

The farm demand equations, on the other hand, are computed singly and independently of one another, where all prices are prespecified in that they are lagged prices. After concurrent producer prices are computed in the price and nonfarm demand component, the farm expenditure constraint comes into effect when farm consumption of the aggregate nonfood commodity is computed as a residual. Figure 2.4 indicates the sequence of computations flowing from farm food consumption, to simultaneous determination of nonfarm food and nonfood consumption and consumer and producer prices, to calculation of farm nonfood consumption as a residual.

Computational Sequence of Farm and Nonfarm Demand

Farm Demand

The farm demand component of DEMAND projects per capita farm consumption of each of the food commodities of KASM based on lagged producer prices and income. This subsection 1) derives the linear form of the demand equation, and 2) describes the equations generating outputs of the farm demand component. In addition, there is a detailed discussion of the computation of independent variables and elasticities. This detailed discussion may be skipped, if the reader wishes, without loss of continuity.

Consumption Functions

The linearized consumption function for each commodity is derived from the Cobb-Douglas form:

(1) $PCCON_{ir}(t) = \alpha_{i} \begin{pmatrix} RFRMY_{r}(t) \\ CPUNF(t) \end{pmatrix} \stackrel{ELASIR_{i}(t)}{\underset{j=1}{\text{ELASIR}} \left(\frac{EPAVG_{jr}(t)}{CPUNF(t)} \right) \stackrel{ELASPR_{ij}(t)}{\underset{j=1}{\text{ELASPR}} \left(\frac{EPAVG_{jr}(t)}{CPUNF(t)} \right)$
where ⁴ for commodity i in region r:
PCCON = farm consumption (MT/person-year) RFRMY = exponential average of regional farm income (W/person-year) (equation (9))
EPAVG = exponential average of producer prices (W/MT) (equation (7))
CPUNF = index of nonfood price
ELASIR = income elasticity (equation (12))
ELASPR = price elasticities (equation (11))
<pre>n = NCOMAG = number of agricultural commodities</pre>
and where consumption is initialized (PCCON _{ir} (t ₀)) in equation (34).
The linearization is accomplished by first taking logarithms

 $^{^{4}\}mbox{See}$ Appendix A for a complete list of variable definitions for DEMAND.

(2) In PCCON_{ir}(t) = ln
$$\alpha_i$$
 + ELASIR_i(t) [ln RFRMY_r(t) - ln CPUNF(t)]
+ NCOMAG
+ $\sum_{j=1}^{NCOMAG}$ ELASPR_{ij}(t) [ln EPAVG_{jr}(t) - ln CPUNF(t)]

and then taking derivatives (assuming, as a simplifying approximation, that elasticities are constant)

2

(3)
$$\frac{dPCCON_{ir}}{PCCON_{ir}} = ELASIR_{i} \left(\frac{dRFRMY_{r}}{RFRMY_{r}} - \frac{dCPUNF}{CPUNF} \right) + \frac{NCOMAG}{j=1} ELASPR_{ij} \left(\frac{dEPAVG_{jr}}{EPAVG_{jr}} - \frac{dCPUNF}{CPUNF} \right)$$

and finally approximating the differentials with first differences, i.e., $dx \approx x(t) - x(t-DT)$, and rearranging terms to get the form used in the model

(4)
$$PCCON_{jr}(t) = PCCON_{jr}(t-DT) \left\{ 1 + ELASIR_{j}(t-DT) \left(\frac{RFRMY_{r}(t) - RFRMY_{r}(t-DT)}{RFRMY_{r}(t-DT)} \right) - \frac{CPUNF(t) - CPUNF(t-DT)}{CPUNF(t-DT)} \right\} + \frac{NCOMAG}{j=1} ELASPR_{jj}(t-DT) \left(\frac{E^{2}AVG_{jr}(t) - EPAVG_{jr}(t-DT)}{EPAVG_{jr}(t-DT)} - \frac{CPUNF(t) - CPUNF(t-DT)}{CPUNF(t-DT)} \right\}$$

Price and income are deflated by the nonfood price index in order to maintain the homogeneity condition in the demand equations. The homogeneity condition requires that the sum of all income, own-price and cross-price elasticities for each commodity be zero. Deflating by the nonfood price index is equivalent to computing the cross-price elasticity of demand for each commodity with respect to the nonfood price index as a residual in order for the sum to be zero.⁵

Farm Demand Outputs

Based on regional per capita farm consumption from equation (4), DEMAND computes for each commodity i regional and national consumption.

(5)
$$CON_{ir}(t) = PCCON_{ir}(t) POPR_{r}(t)$$

(6)
$$RDEM_{i}(t) = \sum_{r=1}^{NREGN} CON_{ir}(t)$$

where:

CON = total regional farm consumption of a commodity (MT/year) RDEM = total national farm consumption of a commodity (MT/year) NREGN = number of regions

Notice that consumption is determined only for agricultural commodities (i = 1, 2, ..., NCOMAG). Farm consumption of the aggregate nonfood commodity is assumed to be the residual of total consumption expenditures over expenditures on the agricultural commodities.

⁵This can be seen if we write equation (1) as $C_{i} = \alpha_{i} \left(\frac{Y_{i}}{P_{n}}\right)^{\epsilon_{i}} \prod_{j=1}^{\gamma} \left(\frac{P_{j}}{P_{n}}\right)^{\epsilon_{ij}} \equiv \alpha_{i} Y_{i}^{\epsilon_{j}} \prod_{j=1}^{n} P_{j}^{\epsilon_{ij}} \text{ where the}$ equivalence holds if $\epsilon_{in}^{P} = -(\epsilon_{i}^{Y} + \sum_{j=1}^{n-1} \epsilon_{ij}^{P}) \text{ so that } \epsilon_{i}^{Y} + \sum_{j=1}^{n} \epsilon_{ij}^{P} = 0.$ Equations (4) - (6) are essentially the farm demand component of DEMAND. Prior to computing (4), however, DEMAND computes the price and income variables and elasticities appearing on the righthand side of (4). The computation of price and income elasticities and exponential averages of recent past producer prices and farm income will be described below. The reader not interested in this detail may skip this discussion and proceed directly to the next subsection on the price and nonfarm demand component.

Independent Variables and Elasticities

Independent variables in the farm consumption functions (equation (4)) for each commodity in each region are exponential averages of recent past farm prices (EPAVG) and per capita farm household disposable income (RFRMY).

(7)
$$\frac{d}{dt} (EPAVG_{ir}(t) = \frac{1}{DELP} (PAVG_{ir}(t) VFPIX(t) - EPAVG_{ir}(t))$$

 $EPAVG_{ir}(t_0) = PAVG_{ir}(t_0-1)$

where:

EPAVG = exponential average of recent producer prices (W/MT) PAVG = producer price (W/MT) (equation (30)) VFPIX = ratio of the urban consumer price index to the index of prices paid by farmers DELP = exponential averaging time constant (years)⁶

⁶DELP being a time constant means (ignoring VFPIX) that, if the actual price $PAVG(t) = PAVG(t_1)$ for all $t > t_1$, i.e., it remains constant after time t_1 , then the average price DELP years later $EPAVG(t_1 + DELP) = .37(PAVG(t_1) - EPAVG(t_1)$, i.e., it takes DELP years for the average price to close 63% of the gap between it and the actual price.

Prices PAVG are adjusted by VFPIX for purposes of farm consumption response. For consistency, all prices in KASM are real prices implicitly deflated by the consumer price index for all cities and all commodities. For farm demand, however, prices should be deflated by the index of prices paid by farm households, not that of urban households. If the two change at the same rate, it doesn't make any difference, but farm consumer prices have been rising faster than urban consumer prices. Therefore, the factor VFPIX has been included in equation (7).

National average per capita farm income is also exponentially averaged and disaggregated by region for the farm demand equations. In addition, total per capita farm consumption expenditures are computed based on the previous period's income to be used later to determine nonfood consumption as a residual (equation (85)).

(8) $FRMY_{r}(t) = FPCI(t) TRPOP(t) PRFRMY_{r}(t)/POPR_{r}(t)$

(9)
$$\frac{d}{dt} (RFRMY_r(t)) = \frac{1}{YDEL} (FRMY_r(t) - RFRMY_r(t))$$

(10) EFRMY(t) = APCF · FPCI(t-DT) TRPOP(t-DT)/TRPOP(t)

where:

FPCI	per capita farm income (W/person-year) (from th	e
RFRMY	<pre>farm income accounting component of KASM) exponential average of recent past regional far income (W/person-year)</pre>	m
YDEL	exponential averaging time constant (years) (se discussion in footnote 6 above)	e
FRMY	regional farm income (W/person-year)	
TRPOP	total farm population (persons) (from the popul model of KASM)	ation
POPR	<pre>farm population, by region (persons) (from the population model of KASM)</pre>	

PRFRMY = proportion of total farm income earned in a region (from the farm income accounting component of KASM) EFRMY = farm consumption expenditures (W/person-year) APCF = average farm propensity to consume (proportion) r = indexes regions, r = 1, 2, ..., NREGN DT = simulation time increment (years)

Farm consumption behavior depends not only on the independent variables price and income but also on the price and income elasticities. In order to maintain a rease cole and mutually consistent set of direct-price and cross-price constituties, equation (11) computes cross-price elasticities as functions of relative consumption levels and the direct-price elasticities. Appendix D discusses the theoretical and mathematical derivation of equation (11). Equation (11) is used for the set of grain commodities. An identical equation computes cross-price elasticities for meat commodites (beef, pork, chicken and fish).

(11) $ELASPR_{ij}(t) = -PSUBCG_{ij1} PSUBTG_{j1} ELASPR_{jj} \frac{PCONVG_{j}PCCON_{jr}(t-DT)}{PCONVG_{i}PCCON_{ir}(t-DT)}$ where:

ELASPR	<pre>= cross-elasticity of farm demand for commodity i with respect to the price of commodity j = own-price elasticity of farm demand</pre>
ELASPR	<pre>= own-price elasticity of farm demand for commodity j = proportion of substitution for grain commodity j coming from grain commodity i</pre>
PSUBTGj	<pre>= proportion of change in demand for commodity j which is substituted</pre>
PCONVG	<pre>= conversion factor for grains (e.g., wheat to flour)</pre>
PCCON	
	<pre>= per capita consumption (MT/person-year) (equation (4)) = index grain commodities (rice, barley, wheat,</pre>
	miscellaneous grains and potatoes) = indexes regions

Notice that equation (11) implies that the larger consumption of commodity j (e.g., rice) is relative to that of commodity i (e.g., miscellaneous grains), the greater will be the proportional response of consumption of commodity i to changes in the price of j, and conversely.

Income elasticities also vary over time in the model in order to keep consumption 1) within reasonable limits as income increases in the long run and 2) consistent with reasonable expectations of long-run nutrition levels. Consumption targets are specified for each commodity, and, as actual consumption of a commodity approaches the target, the income elasticity goes to zero. Essentially this is saying that, if relative prices remain constant, consumption will increase (or decrease) asymptotice?', toward the target as income increases. If, in any year, the price response component of consumption causes the target to be passed, equation (12) will tend to bring consumption back toward the target in later years.

For example, assume current consumption is increasing over time below the target for a given commodity. Then, if price responses cause consumption to exceed the target level in some year, the sign on the income elasticity will change and cause consumption to decrease toward the target in succeeding years.

(12)
$$ELASIR_{i}(t) = ELASIR_{i}(t_{0}) \frac{PCT_{i}(t) - PCCON_{ir}(t)}{PCT_{i}(t_{0}) - PCCON_{ir}(t_{0})}$$

where:

ELASIR = income elasticity of consumption of farm consumers PCT = consumption target (MT/person-year) PCCON = farm consumption (MT/person-year) (equation (4))

For all commodities except rice, the target PCT_i is assumed to be constant over time (see Appendix 5 for data values). For rice, however, we assume Korea will ultimately follow Japan's pattern of declining rice consumption, although income elasticities will remain positive at least until the late 1970's [6, Chapter 5]. The target for rice, then, is assumed to decline linearly from its initial value to its final value over the twenty-year period 1980-2000.

Price and Nonfarm Demand

The price and nonfarm demand component of DEMAND solves, in each time period, a simultaneous linear system of equations for 1) per capita nonfarm consumption of each of the food commodities of KASM, 2) per capita nonfarm consumption expenditures for the aggregate nonfood commodity, and 3) consumer prices for each food commodity. The solution obtained is consistent with a total consumption expenditure constraint. This component of DEMAND also computes produce: prices, either as specified by policy or related to consumer prices with constant marketing margins.

The remainder of this subsection describes 1) the consumption functions and the constraints which make up the simultaneous equations system, and 2) the equations which generate other outputs of the price and nonfarm demand component. In addition, detailed discussions are given of 3) the initialization of DEMAND, 4) policy inputs and the calculation of independent variables and elasticities, and 5) the derivation of the reduced form of the system of equations and the

iterative solution alogrithm. These detailed discussions may be skipped, if the reader wishes, with no loss in continuity.

Consumption Functions and Constraints

There are 21 linear equations in the simultaneous system: 20 consumption functions, one for each KASM commodity currently considered (NCOM=20; see Table 2.1); and one for the expenditure constraint. In vector-matrix form, the equations are:

(13) PCCONU(t) = AINTER(t) + AE(t)CPU(t) + BDEM(t)S1(t)

(14)
$$CPU(t)^{T}PCCONU(t) = ALPHA \cdot EINCOM(t)$$

where the superscript "T" signifies the transpose of the vector or matrix, and where:

PCCONU	<pre>= a 20x1 vector of per capita nonfarm consumption (MT/person-year for the 19 agricultural commodities, and W/person-year for the nonfood commodity)</pre>
CPU	<pre>= a 20x1 vector of consumer prices in constant 1970 won (W/MT for the 19 agricultural commodities; and index for the nonfood commodity, with CPU₂₀(1970) = 1.0)</pre>
AINTER	= a 20x1 vector of intercepts
AE ·	= a 20x20 matrix of price slopes
BDEM	= a 20x1 vector of slopes with respect to S1
S1	<pre>= a scalar elasticity expansion parameter computed to insure the expenditure constraint (discussed below)</pre>
ALPHA	= a constant scalar parameter computed to insure consistency among the initial conditions (equation (27) discussed below)
EINCOM	= total per capita nonfarm consumption expenditures (W/person-year) (equation (22)).

Each of these equations will be discussed in turn, beginning with the demand equations (13).

The consumption functions are linearized from the Cobb-Douglas form for each commodity i:

(15)
$$PCCONU_{i}(t) = \alpha_{i} \left(INCOM(t) \stackrel{ELASI_{i}(t)}{\prod_{j=1}^{n}} CPU_{j}(t) \stackrel{ELASP_{ij}(t)}{\prod_{j=1}^{S1(t)}} \right)^{S1(t)}$$

where:

by first taking logarithms

(16) In PCCONU_i(t) = In
$$\alpha_i$$
 + SI(t) $\left[ELASI_i(t)InINCOM(t) + \sum_{j=1}^{n} ELASP_{ij}(t)InCPU_j(t) \right]$

and then differentiating, assuming as a simplifying approximation that the elasticities are constant,

(17)
$$\frac{dPCCONU_{i}}{PCCONU_{i}} = SI \left\{ E^{L}ASI_{i} \frac{dINCOM}{INCOM} + \frac{n}{\Sigma} ELASP_{ij} \frac{dCPU_{j}}{CPU_{j}} \right\} \left[ELASI_{i} \ln INCOM + \sum_{j=1}^{n} ELASP_{ij} \ln CPU_{j} \right]$$

Approximating the differential by $dx \approx x(t) - x(t-DT)$, rearranging terms, and using the homogeneity condition (equation (31)), guaranteed by equations (32) and (33) below, we get equation (13) in vector-matrix form, where the coefficients

(18) AINTER_i(t) = PCCONU_i(t-DT)
$$\begin{cases} 1 + S1(t-DT) \\ ELASIi(t-DT) \frac{INCOM(t)}{INCOM(t-DT)} - X(t) \\ \end{cases}$$
(19) AE_{ij}(t) = PCCONU_i(t-DT) S1(t-DT) \frac{ELASP_{ij}(t-DT)}{CPU_j(t-DT)}

(20)
$$BDEM_{i}(t) = PCCONU_{i}(t-DT) X(t)$$

(21)
$$X(t) = ELASI_{i}(t-DT) \ln INCOM(t-DT) + \sum_{j=1}^{n} ELASP_{ij}(t-DT) \ln CPU_{j}(t-DT).$$

Sl is an elasticity expansion parameter which is computed as part of the solution to (13)-(14). Looking at (15), (16) or (17) it becomes clear why Sl is called an elasticity expansion parameter: it multiplies all the elasticities for all commodities (i.e., expanding or contracting them) in such a way that the resulting consumptions and prices are consistent with the expenditure constraint. Nominally, Sl has unit value if no consumption adjustment is necessary to meet the constraint. If an adjustment is necessary, the use of Sl may be interpreted theoretically as saying those commodities which are more price and income responsive will be affected more by the adjustment.

Equation (14) says that the sum of expenditures on each commodity (price times consumption) must equal total consumption expenditures EINCOM times a constant adjustment parameter ALPHA. ALPHA is computed during the initialization phase of the model's execution in order to insure consistency among the initial conditions. The justification for ALPHA and its interpretation are discussed more

fully below. Total consumption expenditures are

(22) $EINCOM(t) = APCN \cdot UPCI (t-DT)POP_2(t-DT)/POP_2(t)$

where:

Price and Nonfarm Demand Outputs

In addition to per capita consumption and consumer prices, this component also computes total nonfarm consumption of each commodity and producer price. Total consumption is

(23)
$$Q_i(t) = PCCONU_i(t)POP_2(t)$$

where:

Q = nonfarm consumption (MT/year for agricultural commodities; W/year for the nonfood commodity) POP2 = nonfarm population (persons) (from the population model of KASM) = indexes commodities, i=1, 2, ..., NCOM

Actual time series of producer prices are used in DEMAND for the years 1970 to the most recent year recorded, called BASEYR in the model. The time series stored in the model are updated regularly with the latest empirical values, and BASEYR is incremented one. The projection period in the model is for $t \ge BASEYR + 1$. The period 1970 $\le t < BASEYR + 1$ is considered the tracking period, where actual stock changes and consumer,

producer and world prices are input to DEMAND and the model results in terms of consumption and imports/exports can be compared with recorded empirical values. This is discussed further in the next chapter of this documentation representing test results.

For the projection period, $t \ge BASEYR + i$, producer prices of each commodity are projected in either of two ways: 1) outside the model by policy specification (see Table II.2), or 2) related to the consumer price in the model by a constant marketing margin. In the first case, the user provides data to the model on the value of the commodity's producer price at certain years in the future. DEMAND then linearly interpolates between those years. In the second case, the model computes at each point in time

(24) $TPAVG_{i}(t) = CPU_{i}(t)/(1+MM_{i})$

where:

TPAVG	=	national average producer price (W/MT in 1970 constant
		won)
MM	Ξ	marketing margin as a proportion of producer price
i	Ξ	indexes agricultural commodities, i = 1, 2,,
		NCOMAG, where NCOMAG = 19

Conceptually, producer prices may be different in each farming region. As a simplification, however, KASM currently assumes prices in each region are the same as the national average, i.e.

(25) $PAVG_{ir}(t) = TPAVG_{i}(t)$

for each region r = 1, 2, ..., NREGN

The remainder of this subsection goes into some detail on the initialization of DEMAND, policy inputs and the computation of independent variables and elasticities used in the consumption functions, and

derivation of the reduced form and the iterative solution algorithm. If the reader wishes, he may skip these discussions and go directly, without loss of continuity, to the next subsection on trade accounting and performance measures of DEMAND.

Initialization of DEMAND

The constant coefficient ALPHA is computed at time zero in DEMAND to insure consistency among the initial conditions for prices, consumptions, total consumption expenditure and the proportion of total consumption which is food, especially since information on these various initial conditions comes from a variety of sources. In particular, household income and consumption expenditure information comes from urban household surveys for <u>all cities</u>, while consumer prices used initially and in the tracking period in KASM are for the city of Seoul, and per capita consumption in quantity terms is derived from food balance sheet data for 1970 [6, Chapter 3]. ALPHA could be interpreted as the ratio between Seoul prices and averages of prices for all cities, as can be seen if we rewrite (14) equivalently as

(26)
$$\sum_{i=1}^{NCOM} \frac{1}{ALPHA} CPU_i(t) PCCONU_i(t) = EINCOM(t)$$

ALPHA, then, is computed at time zero as

(27) $\sum_{i=1}^{\text{NCOMAG}} \text{PCCONU}_{i}(t_{0}) / (.405 \text{ EINCOM}(t_{0})) = \text{ALPHA}$

where 40.5% of consumption expenditures in all cities in 1970 was for food.

Consumption of each commodity is initialized (and used in (27)) for both farm and nonfarm consumers consistent with total supply available for human consumption at t_0 and with assumed ratios of farm-to-nonfarm consumption at t_0 [6, Chapter 4]. Supply is computed at time zero based on other 1970 data in KASM for yields, production and marketing losses, imports and exports, stock changes, feed use and industrial consumption and livestock production.

(28)
$$PCCONU_{i}(t_{0}) = \frac{SUPPLY_{i}(t_{0})}{FNR_{i}PDP_{1}(t_{0}) + POP_{2}(t_{0})}$$

(29)
$$PCCON_{ir}(t_0) = FNR_i PCCONU_i(t_0)$$

(30) $PCCONU_{NCOM}(t_0) = ALPHA \cdot EINCOM(t_0) - \sum_{i=1}^{NCOMAG} CPU_i(t_0) PCCONU_i(t_0)$ where:

Independent and Policy Variables and Elasticities

Cross-price and income elasticities for nonfarm demand are computed in the same way as those for farm demand. These are explained above so will not be repeated here. See equations (11) and (12) and the associated discussions there and in Appendix D.

The homogeneity condition states that, if all prices and income change in the same proportion, there will be no change in consumption. This condition is satisfied for each commodity i when the sum of all price and income elasticities for that commodity is zero. That is, we must have

(31) ELASI_i(t) +
$$\sum_{j=1}^{n} ELASP_{ij}(t) = 0$$

for all i and all t, where ELASI is the nonfarm income elasticity of demand, ELASP is the nonfarm price elasticity of demand, and n = NCOM is the number of commodities.

For each agricultural commodity (i = 1, 2, ..., NCOMAG), this is accomplished by assuming its cross-elasticity with respect to the nonfood price index is a residual, i.e.,

(32)
$$ELASP_{INCOM}(t) = -ELASI_{i}(t) - \sum_{j=1}^{NCOMAG} ELASP_{ij}(t)$$

For the nonfood commodity, given the income and own-price elasticities, the cross-price elasticities with food prices are apportioned according to consumption expenditures so that (31) holds.

(33)
$$ELASP_{nj}(t) = - [ELASP_{nn}(t) + ELASI_{n}(t)] \cdot \frac{PCCONU_{j}(t) CPU_{j}(t)}{\sum_{i=1}^{m} PCCONU_{i}(t) CPU_{i}(t)}$$

where n = NCOM indexes the nonfood commodity; j indexes the agricultural commodities; and m = NCOMAG, the number of agricultural commodities.

As in the farm demand component, consumption responds to an exponential average of recent past income levels (equation (16)). This average is the solution to the differential equation

$$(34) \frac{d}{dt} (INCOM(t)) = \frac{1}{YDEL} (UPCI(t) - INCOM(t))$$
$$INCOM(t_0) = UPCI(t_0)$$

where:

		exponentially averaged income (W/person-year)
UPCI	=	per capita income (W/person-year) (from the national
		economy model of KASM)
YDEL	=	exponential averaging time constant (see discussion in
		footnote (6) above)

DEMAND cannot determine both price and consumption of a given commodity simultaneously. One or the other for each commodity must be specified, and the system of equations (13)-(15) solves for the rest and for S1. In addition to income, therefore, other independent variables in the simultaneous system of equations are a subset of the prices and a subset of the consumptions. If NP of the prices are independent variables, then NCOM-NP of the consumptions (those associated with the remaining prices) are also independent variables. The solution gives the remaining NP consumptions and NCOM-NP prices, as well as S1.

In the tracking period, $1970 \le t < BASEYR + 1$, all prices are specified as the recorded empirical time series (i.e., NP = NCOM), and all the consumptions are determined by the model. In the projection period, $t \ge BASEYR + 1$, there are two ways the price of a commodity may be specified as an independent variable, both involving the policy instruments discussed earlier (Table 2.2).

First, the user supplies data to DEMAND on values the price of that commodity is to have at certain points in time. The model, then, linearly interpolates between those points each time period in the simulation and solves for per capita consumption.

The policy instruments specifying bounded prices for a commodity (Table 2.2) are implemented each time period in two stages. The first stage treats consumption of the commodity as the independent variable.

If in any time period the resulting consumer price lies outside the bounds, DEMAND sets it at the nearest bound for that time period. In this case, the second stage treats the price as the independent variable and solves the system again, this time for consumption.

The price bounds require that

(35)
$$CPUMIN_{i}(t) \leq CPU_{i}(t) \leq CPUMAX_{i}(t)$$

where:

```
CPUMIN = lower bound on price (W/MT) (equation (36))
CPUMAX = upper bound on price (W/MT) (equation (37))
i = indexes those commodities for which the policy instrument bounding prices is used
```

The upper and lower bounds in equation (35) can be related either to world prices as a foreign trade policy, to previous domestic prices as a price stabilization policy, or both. If it is both, the more binding constraint in each time period is used in (35). That is,

(36) $CPUMIN_{i}(t) = max [PWPMIN_{i}PWLDEX_{i}(t), (1-DT \cdot PCPMIN_{i})CPU_{i}(t-DT)]$ (37) $CPUMAX_{i}(t) = min [PWPMAX_{i}PWLDIM_{i}(t), (1+DT \cdot PCPMAX_{i})CPU_{i}(t-DT)]$ where:

The constant parameters PWPMIN, PWPMAX, PCPMIN and PCPMAX are specified by policy assumption. The import and export prices are not projected by DEMAND. The user provides the model with projected values at certain points in time, and the model linearly interpolates between those points.

There are four ways in which per capita consumption of a commodity may be specified as the independent variable (Table 2.2), in which cases the simultaneous system solves for the consumer price of that commodity. In all cases, consumption is assumed to equal the total supply available to the nonfarm market, and DEMAND finds the consumer price which clears that market. Total nunfarm supply is computed as domestic production plus net imports minus stock increases, losses and farm consumption.

(38) $SUPPLY_{i}(t) = TDSUP_{i}(t) + DEFCIT_{i}(t)$

where:

and where

(39) $TDSUP_i(t) = TOUTPT_i(t) [1-PFLOSS_i] - RDEM_i(t) - CHGSTK_i(t) - FEED_i(t) where:$

In addition, industrial consumption of wheat and inedible industrial crops are excluded from TDSUP.

With domestic production, feed use and farm consumption taken as given to the nonfarm demand component, total nonfarm supply and, hence, consumption are determined by the stock changes and imports/exports.

Changes in stocks carried over at the end of the rice year (see the discuss on above in the subsection on policy inputs to DEMAND) are a function of the difference between desired and actual stock levels. The desired stock level of a commodity i is:

(40)
$$DSTK_i(t) = STKRT_iTDEML_i(t)/12$$

where:

DSTK = desired carryover stock level (MT) STKRT = months of consumption desired to be carried over, a policy parameter TDEML = an exponential average of recent consumption requirements (MT/year)

The average TDEML is computed by

(41)
$$\frac{dTDEML_{i}(t)}{dt} = \frac{1}{3} (TDEM_{i}(t) - TDEML_{i}(t))$$

 $TDEML_{i}(t_{0}) = TDEM_{i}(t_{0})$

where TDEM is human consumption requirements (equation (69)), and the time constant 3 years is assumed. (See footnote (6) above for a discussion of the meaning of "time constant.") The actual stock level is

(42)
$$\frac{dSTK_{i}(t)}{dt} = CHGSTK_{i}(t)$$

$$STK_{i}(t_{0}) = STKO_{i}$$

where:

and where

(43)
$$CHGSTK_{i}(t) = \begin{cases} \frac{1}{2}(DSTK_{i}(t) - STK_{i}(t)) & \text{for } t \ge BASEYR + 1 \\ VCSTK_{i}(t) & \text{for } < BASEYR + 1 \end{cases}$$

For $t_0 \le t < BASEYR + 1$, recorded empirical stock changes VCSTK are used, while an exponential lag with time constant 2 years (this could be generalized) is assumed for $t \ge BASEYR + 1$.

Given stock changes, now, there are three ways net imports may be specified so that consumption of a commodity is an independent variable. (See the discussion above on policy inputs to DEMAND.) First, the user may project target per capita consumption levels of the commodity <u>for the nation</u> at various points in time in the future. DEMAND will linearly interpolate between those points and, given farm consumption, stock change, feed use, production and losses, compute net imports necessary to meet the targeted national average per capita consumption of the commodity.

(44) $DEFCIT_{i}(t) = TPOP(t)PCSUP_{i}(t) - TDSUP_{i}(t) - RDEM_{i}(t)$ where:

Secondly, net imports may be projected directly by the user and input to DEMAND, which linearly interpolates between the specified points in time and determines the market-clearing consumer price in each time period. This specification of imports may be combined with the specification of price bounds as in equations (35)-(37) above. In this case, if the price bounds are violated in the first solution iteration, the price is fixed at the bound and net imports are computed as a residual of the resulting consumption, essentially overriding the targeted net import level. Finally, nonfarm consumption of a commodity may be determined as an independent variable by assuming net imports do not change from the previous time period. That is,

(45) $DEFCIT_{i}(t) = DEFCIT_{i}(t-DT)$

This specification is combined in DEMAND with the price bounds so that net imports will change over time only if necessary to keep prices within the bounds.

Reduced Form and Iterative Solution Algorithm

Let's begin by reordering the vector of consumer prices CPU, putting all prices which are independent variables first in a subvector called P₁, followed by those prices which are to be market-determined in a subvector P₂. So now we have, instead of CPU, a reordered, partitioned vector $\binom{P_1}{P_2}$, where P₁ is of dimension NP x 1 and P₂ is of dimension (NCOM-NP) x 1. Similarly, let's reorder the vector of per capita consumptions PCCONU into a corresponding $\binom{C_1}{C_2}$, where C₁ is the reordered subvector of NP dependent variable consumptions, and C₂ is the reordered subvector of NCOM-NP consumptions treated as independent variables. Similarly, we can reorder and partition the coefficient vectors and matrices in equations (13)-(14) to correspond to P₁, P₂, C₁, and C₂. Thus, we can rewrite (13)-(14) as dropping the time subscripts)

$$(13') \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} AO_1 \\ AO_2 \end{bmatrix} + \begin{bmatrix} AI_{11} & AI_{12} \\ AI_{21} & AI_{22} \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} + \begin{bmatrix} A2_1 \\ A2_2 \end{bmatrix} S1$$

where:

AO = the reordered and partitioned intercept vector AINTER A1 = the reordered and partitioned matrix of price slopes AE A2 = the reordered and partitioned vector of S1 slopes BDEM

(14')
$$P_1^T C_1 + C_2^T P_2 = ALPHA \cdot EINCOM$$

The problem is to solve for the unknowns C_1 , P_2 and S1 in terms of the knowns P_1 and C_2 (and income, which has been included in the intercept terms--see equation (18)).

Before putting (13')-(14') into reduced form, the solution is simplified one step by substituting the equations for C₁ in (13') into (14') giving

(14")
$$P_1^T \left(AO_1 + [AI_{11}AI_{12}] \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} + A2_{13} \end{pmatrix} + C_2^T P_2 = ALPHA \cdot EINCOM$$

Finally, the reduced form can be written--putting all the unknowns on the left and the knowns on the right and combining (13') and (14')--as

(46) AY = X
where:

$$Y = \begin{pmatrix} P_2 \\ S_1 \end{pmatrix}_{N \times 1}$$

$$X = \begin{pmatrix} C_2 - AO_2 - AI_{21}P_1 \\ ALPHA \cdot EINCOM - P_1^T (AO_1 + AI_{11}P_1) \end{pmatrix}_{N \times 1}$$

$$A = \begin{pmatrix} A_{1_{22}} & A_{2_{2}} \\ C_{2}^{T} + P_{1}^{T} A_{1_{12}} & P_{1}^{A_{2}_{1}} \end{pmatrix}_{N \times N}$$

and where the dimension N = NCOM - NP + 2. Now the system (46) can be solved by

(47)
$$Y = A^{-1} X$$

If one or more prices are bounded, the solution is iterative. In the first iteration, market-clearing prices P_2 are determined consistent with the given consumption C_2 . If any price in P_2 lies outside its bounds, the price furthest outside is set to its nearest bound, that is, it is removed from P_2 and placed in P_1 , and its corresponding consumption is moved from C_2 to C_1 . A new reduced form is computed and the system solved again. This iteration continues until all bounded prices lie within their respective bounds.

Trade Accounting and Performance Measures

Based on consumptions and prices determined in the other DEMAND components, foreign trade accounts and a number of other variables are computed which can be used as measures of how the DEMAND system responds to alteranative policy assumptions. These include nutrition levels, self-sufficiency levels and requirements for self-sufficiency, price indices, consumption expenditure accounts, and government subsidies implied by the price policies. In addition, food consumption is apportioned to processed and unprocessed foods as outputs to the national economy model.

Trade Accounting

For accounting purposes, DEMAND treats all deficits and surpluses, except for rice, barley and potatoes, as imports and exports respectively. In reality, of course, stocks, for example, may be built up or depleted beyond the policy specifications in equations (40)-(43); or, in the case of surplus grains, feed grain import requirements can be at least partially offset by dowes it food grain surpluses, as KASM does do for barley and potatoes to the production model is running. Furthermore, surpluses or deficits of rice and barley are added to or subtracted from stocks instead of accounted as exports or imports, subject to stock level constraints.

Deficits for all commodities (negative deficits are surpluses) are computed by (48). Once a solution to (47) has been obtained for consumer prices and per capita nonfarm consumption and total nonfarm consumption Ω has been computed in (23), deficits computed in (48) are consistent with those computed in (44) or (45) or specified by policy directly.

(48) $\text{DEFCIT}_{i}(t) = Q_{i}(t) - \text{TDSUP}_{i}(t)$

where (48) is essentially an inversion of equation (38), i.e., $Q_i = SUPPLY_i$ and the market is cleared.

For tobacco exports (i=9), equation (48) is adjusted to account for the different forms of tobacco as sold by farmers, domestically consumed and foreign traded [6, Chapter 3]. Also, for all imports

 $(DEFCIT_{i}(t) > 0)$, the quantity imported is increased over the deficits computed in (48) by a proportional shrinkage loss, PILOSS.

For exported commodities (DEFCIT $_i(t) < 0$), the value of exports and export profits are

1.321

(49) $VALDEF_{i}(t) = DEFCIT_{i}(t) PWLDEX_{i}(t)$

(50) $PRFEXP_{i}(t) = -DEFCIT_{i}(t) [PWLDEX_{i}(t) - CPU_{i}(t)]$

where:

VALDEF = value of exports (if negative)(W/year)
PWLDEX = export price (W/MT)
PRFEXP = profits on exports (W/year)
CPU = domestic consumer price (W/MT)

In addition, total value of exports, VALDF1, is the negative sum of VALDEF for exported commodities.

For imported commodities $(DEFCIT_{i}(t) > 0)$,

(51) VALDEF_i(t) = DEFCIT_i(t) PWLDIM_i(t)/(1+TARIFF_i)

(52) TARREV; (t) = VALDEF; (t) TARIFF;

(53) $PRFIMP_{i}(t) = DEFICIT_{i}(t) [CPU_{i}(t) - PWLDIM_{i}(t)]$

where:

```
VALDEF = value of imports (if positive) (W/year)
TARIFF = import tariff rate
PWLDIM = import price (W/MT)
TARREV = tariff revenues (W/year)
PRFIMP = profit on imports (W/year)
```

Total value of imports, VALDF2, is also computed.

Finally, DEMAND computes the agricultural commodity trade balance and total trade profits.

(54) TVALDF(t) = VALDF1(t) - VALDF2(t)

(55) DVALDF(t) = TVALDF(t)/WOND(t)

(56) TRDPRF(t) =
$$\sum_{i=1}^{n} PRFIMP_i(t) + PRFEXP_i(t)$$

where:

TVALDF = agricultural commodities trade balance (W/year)
DVALDF = agricultural commodities trade balance (\$/year)
WOND = foreign exchange rate (W/\$)
TRDPRF = total trade profits (W/year)

Self-Sufficiency

In Korea, 100% self-sufficiency in rice, barley, soybeans and livestock products is a major policy objective for economic and political reasons. Given yields, total production and feed requirements from the production models of KASM, DEMAND computes what would be required in the way of production and, for crops, land allocations for 100% self-sufficiency. In addition, actual self-sufficiency levels are computed for comparison.

Three types of self-sufficiency requirements are calculated: 1) requirements for human consumption only; 2) requirements for human consumption and feed use; and 3) requirements for human consumption, feed use and stock changes. The second type is the one generally considered in Korea. That is, if imports (exports) equal carryover stock increases (decreases) for a commodity, then Korea considers itself 100% self-sufficient in that commodity.

For each crop, land area requirements depend on effective yield, defined as actual yields adjusted for farm and marketing losses and seed requirements.

(57) $EFFYLD_{i}(t) = ILD_{i}(t) [1 - PFLOSS_{i}] - SDPHA_{i}$

where:

Then, area planted to that commodity to meet the three types of selfsufficiency requirements are, respectively.

(58) $AREQH_{i}(t) = TDEM_{i}(t)/EFFYLD_{i}(t)$

(59) $AREQHF_{i}(t) = AREQH_{i}(t) + FEED_{i}(t)/EFFYLD_{i}(t)$

..

(60)
$$ARQHFS_{i}(t) = AREQHF_{i}(t) + CHGSTK_{i}(t)/EFFYLD_{i}(t)$$

where:

AREQH = crop area required to meet human consumption demand (ha) TDEM = total human consumption demand (MT/year) (equation (74)) AREQHF = crop area required to meet human and animal consumption demands (ha) FEED = feed use (MT/year) (from the production model of KASM) ARQHFS = crop area required to meet human and animal consumption demands and stock changes (ha) CHGSTK = stock change (MT/year) (equation (48))

Total land utilization requirements for each type of self-sufficiency are, respectively,

(61) TARH(t) =
$$\sum_{i=1}^{NCROP} AREQH_i(t)$$

(62) TARHF(t) =
$$\sum_{i=1}^{NCROP} AREQHF_{i}(t)$$

(63) TARHFS(t) = $\sum_{i=1}^{NCROP} ARQHFS_{i}(t)$

Total production in MT/year, required for each kind of self-sufficiency depends on the above land area requirements and the actual yields:

- (64) $QREQH_{i}(t) = YLD_{i}(t) AREQH_{i}(t)$
- (65) $QREQHF_{i}(t) = YLD_{i}(t) AREQHF_{i}(t)$
- (66) $QRQHFS_{i}(t) = YLD_{i}(t) ARQHFS_{i}(t)$

Finally, production requirements for each livestock commodity to meet human consumption demands are

(67)
$$QRQHLV_{i}(t) = TDEM_{i}(t)/(1-PFLOSS_{i})$$

where i indexes livestock commodities.

For each commodity, the actual self-sufficiency level is the ratio of domestic production to effective demand, where effective demand is exclusive of stock changes. That is, the second type of self-sufficiency is computed:

(68) SELFSU_i(t) =
$$\frac{\text{TOUTPT}_{i}(t)}{\text{TOUTPT}_{i}(t) + \text{DEFCIT}_{i}(t) - \text{CHGSTK}_{i}(t)}$$

where:

National Consumption and Nutrition

Farm and nonfarm consumption are combined to form total and per capita national consumption.

 (6^{c}) TDEM_i(t) = RDEM_i(t) + Q_i(t)

(70) $PCNCON_i(t) = TDEM_i(t)/TPOP(t)$

where:

Nutrition accounting is done for daily calorie and protein consumption of the farm and nonfarm populations as well as the national average. The nutrient intake is also broken down by source, plant sources, animal sources and total. Farm consumption of calories from plant sources is

(71)
$$CAL_{11}(t) = \sum_{k} CALPU_{k}(t) PCCON_{k}(t)/365$$

where:

CALL₁₁ = farm consumption of calories from plant sources (k cal/person-day) CALPU = calorie content of foods (k cal/MT) k = indexes crop commodities

Similarly, nonfarm and national average plant calorie consumption, CAL_{12} and CAL_{13} , respectively, are computed using PCCONU and PCNCON, respectively. In the same way, calorie consumption from animal sources CAL_{21} , CAL_{22} and CAL_{23} are computed for farm and nonfarm consumers and for the national average, respectively, where the index k in equation (71) represents livestock commodities. Total calorie consumption, i.e., from both plant and animal sources, is

(72) $CAL_{3j}(t) = CAL_{1j}(t) + CAL_{2j}(t)$

for j = 1, 2, 3, i.e., farm, nonfarm and national average. The percent of total calurie consumption coming from each source is also computed for each consumer group.

Finally, similar equations compute protein consumption PRO (grams/ person-day) from each source for each consumer group based on the protein content of foods PROTPU (grams/MT). Price Indices and Government Subsidies

If the marketing margin MM, used in equation (24) to compute producer prices, is assumed to represent normal marketing costs including returns to the entrepreneur and other value added, then, for those commodities whose producer prices are set by policy assumption, we can compute an implied government subsidy. Negative subsidies could be interpreted as additional taxes.

(73) $GOVSUB_i(t) = TPAVG_i(t)[1 + MM_i] - CPU_i(t)$ where GOVSUB is the implied subsidy in W/MT.

Six price indices are computed by DEMAND: an all commodities consumer price index; consumer price indices for all foods, for rice, for other grains (barley, wheat, pulses, potatoes and miscellaneous grains) and for livestock products (beef, milk, pork, chicken, eggs and fish); and a world price index for food commodities. Since all prices in KASM are in real terms (1970 won), price indices computed are deflated price indices. Therefore, the consumer price index for all commodities CPI, which is the implied deflator, should always be unity (i.e., it is deflated by itself--see discussion in Chapter 5).

(74) CPI(t) =
$$\sum_{i=1}^{NCOM} W_i \frac{CPU_i(t)}{CPU_i(t_0)} / \sum_{i=1}^{NCOM} W_i$$

where:

CPI = all commodities consumer price index, deflated CPU = real consumer prices (W/MT) W_i = price index weights

Whereas (74) is summed over all commodities, the food, rice, other grains and livestock price indices (CPFI, CRPI, COGPI, and CMPI,

respectively) are summed over only the appropriate commodities. The world food price index for Korea (WPFI) is based on import and export prices and weighted by trade volumes in 1970.

Consumption Expenditure Accounting

For nonfarm consumers, total, food and nonfood consumption expenditures and savings are computed by DEMAND. Total consumption expenditures, which are constrained to equal EINCOM in equation (14), are

(75) TEXPT(t) =
$$\sum_{i=1}^{n} CPU_i(t) Q_i(t) / ALPHA$$

where TEXPT is in W/year and n = NCOM, the number of commodities. Nonfood expenditures TEXNF, in W/year, are

(76) TEXNF(t) =
$$CPU_{NCOM}(t)Q_{NCOM}(t)/ALPHA$$

and food expenditures by nonfarm consumers TEXPF, in W/year, are

(77) TEXPF(t) = TEXPT(t) - TEXNF(t)

The food proportion of nonfarm consumption expenditures is

(78) RFTEX(t) = TEXPF(t)/TEXNF(t)

and the nonfarm savings rate is

.

where it is assumed consumption and savings in the current period are out of income from the previous period. Per capita values of the above variables, except RFTEX, are also computed. For farm consumers, per capita nonfood consumption expenditures (needed by the national economy model of KASM) are computed as a residual:

(80) FEXNFC(t) = EFRNY(t) -
$$\sum_{i=1}^{n} TPAVG_i(t)RDEM_i(t)/POP_1(t)$$

where EFRMY is total per capita farm consumption expenditures (equation (10)) and n = NCOMAG, the number of food commodities. The residual FEXNFC is constrained not to fall below a minimum level of nonfood consumption, where savings resources are used if necessary to stay above the minimum.

Processed and Unprocessed Food Consumption

Finally, the national economy model of KASM needs projection of farm and nonfarm food consumption expenditures broken down into processed and unprocessed foods. Constant proportions, based on 1972 survey data, are used to compute the breakdown. This is a gross simplification, especially for long run analyses, but it can serve as a first approximation for the purposes of KASM. For farm consumers,

(81) FCONU(t) =
$$\sum_{i=1}^{n} TPAVG_{i}(t)RDEM_{i}(t)PFU_{i}/POP_{1}(t)$$

(82) FCONP(t) = $\sum_{i=1}^{n} TPAVG_{i}(t)RDEM_{i}(t)(1-PFU_{i})/POP_{1}(t)$

where:

Similar equations compute UCONU and UCONP for nonfarm consumers.

CHAPTER 3

MODEL TESTING AND CREDIBILITY

There are four major tests a model must pass to be considered credible in the eyes of the ultimate users of its product [18, Chapter 1]. This is as true of intuitive mental models as it is of computerized mathematical models. These tests are:

- 1. coherence--a test of internal logical consistency;
- correspondence--a test of comparing the model's behavior with that of its real world referrent:
- clarity--a test of comprehensibility of the model and its results;
- 4. workability--a test of efficiency, i.e., the usefulness (value) of the model's results relative to the difficulty (cost) of obtaining them.

These credibility test of a model are continually applied not only during model development but every time it is used. The clarity and workability tests are of particular relevance and importance in model utilization. This chapter limits its discussion to the coherence and correspondence testing conducted during model development. These include internal consistency checks, time-series tracking tests, and sensitivity analysis.

Internal Consistency

The internal logical consistency of DEMAND, as for any computer simulation model, is tested every time the model is run. This involves verifying, for the the upper and lower bounds on variables are not violated, and generally that model behavior is consistent with basic assumptions. This process is frequently associated with debugging the computer program but also relates to verifying the mathematical model and its set of parameter values.

In early stages of model development and testing [9] it became apparent that the linearization of the basic Cobb-Douglas demand-price model (equation (15) in Chapter 2) tended to be unstable when inverted to solve for price as a function of supply, particularly for priceinelastic commodities. It was not uncommon for market-clearing prices determined in this way to range from unreasonably large to even negative values. At first, reserve prices wcre used as lower bounds to prevent low or negative prices, and the iterative solution process described in Chapter 2 was implemented [9]. Later, "EMAND was generalized to provide both upper and lower bounds related to foreign trade policies and/or domestic price stabilization policies.

Therefore, it is advisable to use DEMAND only with bounded or exogenously specified consumer prices. That is, the switch KFT_i (described in Table 5.2 in Chapter 5) should have value 3, 4 or 5 for each commodity i; values 1 and 2 specify unbounded price policy options.

In DEMAND's standard run (Appendix C), eight commodities, including the major grains rice, barley and wheat, have consumer prices projected exogenously (KFT=5) in the projection period beginning in 1976, and the remaining 12 are to be determined by the market subject to bounds (KFT=3 or 4). In 1976, the first year of the projection period, 11 iterations are required, with 10 commodities' prices hitting the bounds and only two being completely market determined. For the next four

years, 1977-1980, only six of the 12 are bounded, and Runs 7-9 are bounded during the last five years of the simulation. These results are, of course, dependent on the price bounds and exogenous production projections specified for the standard run; less restrictive bounds would tend to reduce the number of iterations (bounded prices) in the solution.

An important area for further model development, therefore, would be to consider alternatives to the linearized Cobb-Douglas consumption functions. The state-space modeling approach could be a useful point of departure.

Another, more minor, internal consistency problem encountered relates to the assumption that all prices in KASM are real prices, where the <u>implicit</u> deflator is Korea's all-cities, all-commodities consumer price index. This deflator does not appear explicitly in the model; however, it is used to deflate past prices input to the model. These time series of deflated prices are used in the model as a basis for projections into the future. Therefore, the projected prices implicitly have the same deflator. For consistency with this implicit assumption, then, the index formed from all the consumer prices, including that of the nonfood aggregate commodity, must be unity. That is, it is implicitly deflated by itself.

We can see this if we assume we can write each real consumer price CPU as

(83) $CPU_{i}(t) = P_{i}(t)/I(t)$ where:

P = the nominal consumer price (W/MT)
I = the all commodities consumer price index

and where the index I is defined as

(84) I(t) = $\prod_{i=1}^{n} W_{i} \frac{I^{(t)}}{P_{i}(0)}$

with $\Sigma W_i = 1$. To get an index CPI of the real prices CPU, then (assuming CPU_i(0)=P_i(0)),

(85) CPI(t) =
$$\sum_{i=1}^{n} W_{i} \frac{CPU_{i}(t)}{CPU_{i}(0)} = \sum_{i=1}^{n} W_{i} \frac{CPU_{i}(t)}{P_{i}(0)} = \sum_{i=1}^{n} W_{i} \frac{P_{i}(t)/I(t)}{P_{i}(0)}$$

$$= \frac{1}{I(t)} \sum_{i=1}^{\Sigma W} \frac{P_i(t)}{P_i(0)} = \frac{1}{I(t)} I(t) = 1$$

where we have substituted (83) and (84) into (85).

However, in DEMAND's standard run, CPI drifts upwards from 1.0 to a value of 1.129 by 1985. This happens because the nonfood price index is projected outside of DEMAND, by the user or by KASM's national economy model (NECON), independently of the food prices. Furthermore, the major food prices, especially rice with a price index weight of 169.7 out of 1000.0, are also projected exogenously in the standard run by policy assumption. While nominal prices could be independently projected in this way, real prices are not independent of one another since they are all part of the deflator. Therefore, a possible remedy we can suggest would be to add another equation to the simultaneous system (equations (13) and (14) in Chapter II) which would determine the nonfood price index as a dependent variable of DEMAND, rather than of NECON, so that CPI = 1.0.

Time-Series Tracking

Necessary, but not sufficient, for passing the correspondence test of credibility is the model's ability to track historical time series to an acceptable degree. What is "acceptable" depends on how the model is to be used. In addition to time-series tracking, decision makers typically require the model's behavior to correspond to their own conception of "how things work." This applies both 1) to simulating past behavior which may not be measured in recorded statistics but which the decision maker has some "feelings" about, and 2) to projecting future behavior under alternative assumptions.

This is not to say that a model's role is limited to confirming the preconceptions of the decision makers using it, although simply quantifying those preconceptions may be not without value in some circumstances. Rather, a model can also serve an educational function, leading to changes in those preconceptions, to the extent that unexpected or surprising behavior of the model can be satisfactorily explained.

National average per capita consumptions of the 17 food commodities (PCNCON -- equation (70) in Chapter 2) were selected for comparison of DEMAND's behavior with historical data. In addition, consumptions of three commodity groups -- grains, fruits and vegetables, and meats -were observed to examine the model's tracking ability at a more aggregate level. The model was run during the tracking period (1970-1975) using historical values of consumer and producer prices, nonfarm income and domestic production. Therefore, consumption was the only variable, other than trade and other performance variables, left for DEMAND to

determine. Essentially, then, given the form of the consumption functions, the time-series tracking tests boil down to a test of the elasticity values used. Although the tracking period available is relatively short -- 1971-1975 -- it is long enough to give a rough idea of DEMAND's tracking ability. (The year 1970 is excluded from the results since DEMAND is initialized to 1970 consumption data.)

A normalized sum of squared errors is used for each of the 20 variables to measure how well the model fits the historical series. In addition, since these measures are normalized, they can be added together as an overall measure of goodness of fit. The measures are:

$$SS_{i} = \sum_{\substack{t=1975\\t=1971}}^{1975} \left(\frac{Y_{i}(t) - Y_{i}(t)}{\overline{Y}_{i}} \right)^{2}$$
$$TSS = \sum_{\substack{i=1\\i=1}}^{17} SS_{i}$$

where SS_i is the goodness-of-fit measure of variable i; $Y_i(t)$ is the simulated value of variable i in year t; $\hat{Y}_i(t)$

Obviously, $SS_i=0$ would mean that DEMAND exactly reproduced the recorded series of variable i. In order to evaluate the goodness-offit, we need some idea of how large a value of SS_i would be considered "bad," or, conversely, how small a value is necessary to say that the model tracks well. A reasonable reference value is the bad case where the model produces only zero values for variable i; for example, zero rice consumption over the tracking period. This would not be a worse case, however, since negative values or simulated values more than twice the recorded values would be worse than zero. If DEMAND produced nothing but zeroes, then, calling $SS_i(0)$ the resulting goodness-of-fit measure, we would have:

$$SS_{i}(0) = \begin{pmatrix} 1975 & \hat{Y}_{i}(t) \\ \Sigma & \hat{Y}_{i}(t) \\ t = 1971 & \overline{Y}_{i} \end{pmatrix}^{2}$$

which can be shown to be equivalent to

$$SS_{i}(0) = 4 \left(\frac{S_{i}}{\overline{Y}_{i}} \right)^{2} + 5$$

where S_i is the sample standard deviation of the five historical data points of variable i and \overline{Y}_i is their mean.

The historical and simulated values of per capita consumption of each commodity and commodity group are shown in Table 3.1. Only the groups and rice consumption are graphed in Figure 3.1. Table 3.1 also shows the computed goodness-of-fit measures for each, their sum TSS, and the values these measures would have if DEMAND produced only zeroes for the 20 series.

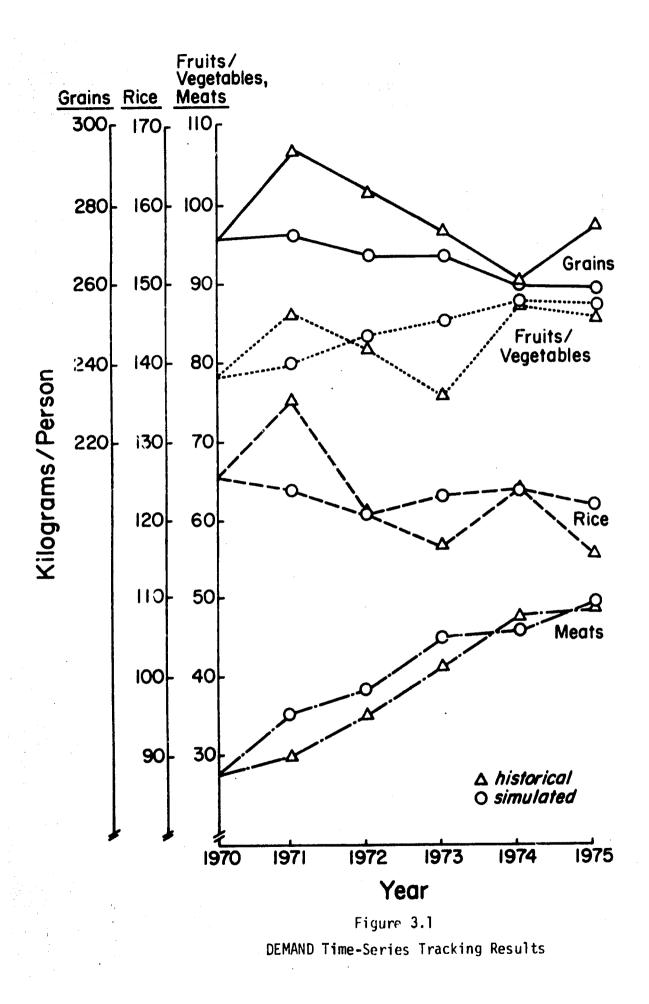
For most commodities, particularly the major ones and the three aggregations, DEMAND tracks consumption reasonably well. This is particularly remarkable for rice and barley, considering the Korean government has been heavily involved in quantity control programs for these commodities while DEMAND relies only on price and income to explain consumption. In the case of rice, for example, Figure 3.1 indicates that DEMAND seems to be able to pick up the trend but not the rather large oscillations historically observed (at least, as

derived from official statistics) about that trend.

Table 3.1

	rei	Capita	CONSUM	peron (kgi per s	on-year)		
Commodity		1971	1972	1973	1974	1975	ss ¹	ss(0) ²
1. Rice	н ³ 54	135.4	120.6 120.9	116.6 123.1	124.1 124.0	115.5	.0143	5.0171
2. Barley	H S	40.4	43.3	45.1	45.1 41.9	41.8 43.5	.0182	5.0091
3. Wheat	H S	50.9 43.5	56.5 46.9	56.7 45.3	40.1 40.7	46.6 42.5	.1162	5.0047
4.0. grains	H S	3.5 4.4	3.6 4.3	4.7 4.9	6.7 5.9	3.8 6.1	. 3755	5.3606
5. Fruits	H S	11.2	13.1 13.4	11.5 12.9	15.2 14.0	16.4 14.3	.0451	5.1142
6. Pulses	H S	7.9 8.2	7.2 8.1	7.5 8.0	7.9	9.6 8.1	.0549	5.0539
7. Vegetables	S	74.9 68.1	68.6 70.2	64.4 72.5	72.0 73.6	69.3 73.0	.0269	5.0126
8. Potatoes	H S	56.0 52.6	51.9 46.1	42.1 43.2	36.8 38.5	57.8 36.3	.2129	5.1384
9. Tobacco	H S	1.0	1.4 1.0	2.3	1.5 1.2	1.2	.8380	5.4511
10. Ind. crops	S	1.3	1.6	1.6	1.4 1.1	2.2	1.1174	5.1859
11. Beef	H S	1.2	1.2	1.3 1.4 3.2	1.5 1.6 3.9	2.0 1.9 4.7	.0275	5.2180
12. Milk	H S	2.4 4.1 2.4	4.0 3.8 2.5	3.2 4.7 2.5	4.0 2.6	4.7 3.3 2.7	.5469	5.2303
13. Pork 14. Chicken	H S H	2.4 2.3 1.5	2.5	2.5	2.0 2.7 1.5	2.1	.0508	5.0081
15. Eggs	S H	1.6	1.6 4.4	1.6 3.9	1.4 4.3	1.6 4.4	.0154	5.0035
16. Fish	S H	4.4	4.7 30.0	4.7 36.0	4.7 42.3	4.8 42.0	.0573	5.0106
17. Residual ⁵	S H	30.3 7.0	32.8 12.7	39.2 16.6	40.1	43.9 13.5	.0454	5.1876
174 NGSTUVAT	S	12.3	12.4	12.5	12.6	12.7	.3135	5.3256
		L					l	

DEMAND Time-Series Tracking Results of Per Capita Consumption (kg/person-year)


Table	9.1	(continued)	
			 2. 4.14

Commodity		1971	1972	197.3	1974	1975	ss1	SS(0) ²
Grain ⁵ Frt/veg ⁶ Meats ⁷	H S H S H S	294.1 272.3 86.1 80.0 30.0 35.5	283.1 267.5 81.7 83.6 35.3 38.1	272.7 265.6 75.9 85.4 41.3 44.8	260.7 259.0 87.2 87.6 47.9 45.8	275.1 258.5 85.7 87.3 48.2 49.5	.0136 .0193 .0343	5.0080 5.0124 5.1533
All commoditie	s						3.8763 ⁸	87.3313

Notes:

Г

- 1. Goodness-of-fit measure, normalized sum of squared errors.
- 2. Goodness-of-fit measure if simulated series were zero.
- 3. Historical time series from Alan R. Thodey, <u>Food and Nutrition</u> <u>in Korea, 1965-1974</u>, KASS Special Report 11, 1976.
- 4. Simulated time series, from standard run of DEMAND.
- 5. Rice, barley, wheat, other grains, pulses, potatoes.
- 6. Fruits, vegetables.
- 7. Beef, pork, chicken, fish.
- 8. Sum of the 17 SS values.
- 9. Sum of the 17 SS(0) values.

A similar observation can be made in general, that is, DEMAND fits the trends reasonably well. Indeed, this is not surprising since the elasticity values were "tuned" specifically to achieve these tracking results. Further tuning may improve the results, but the marginal improvements which may be obtained should be weighed against the efforts which would be required to obtain them. Furthermore, one should perhaps not expect or require a price-income demand model to capture more than the basic trends of a complex, dynamic process involving changing tastes, storage behavior and other economic and psychological factors.

A final observation we make here illustrates an important point to keep in mind when evaluating the time-series tracking performance of a model. That is, the historical series used for comparison are also subject to error. For example, the data indicate that potato consumption increased about 60% in 1975 alone. DEMAND, however, projects a continuation of the downward trend of recent years. Thus, it is not always clear, particularly when the simulated and historical series are relatively close, which one is closer to "reality."

Sensitivity Analysis

In sensitivity analysis we are interested in testing the responsiveness of a model to changes in parameter values. Usually, the value of a single parameter is changed by an appropriate amount, and the effect of this change on the behavior of the model variables is observed.

Sensitivity analysis provides important information for both

coherence and correspondence tests of credibility. That is, indications of the model's internal logical consistency as well as its consistency with its real-world referrent can be gotten by observing <u>and explaining</u> the behavioral changes arising from parameter value changes. Furthermore, sensitivity analysis provides insights into the workings of the model as a system and, by implication, of the real-world system as well, insights which are valuable in designing policy strategies. Finally, sensitivity analysis results indicate those parameters whose values are relatively more crucial to the model's behavior, information which can profitably be used in allocating scarce resources for data gathering and parameter estimation.

This section reports on a series of 23 sensitivity runs of the DEMAND model. First, we discuss the selection of parameters and response variables to be tested and of the sensitivity measure used. This discussion is then followed by a presentation of the results.

Design of the Analysis

In each of the 23 runs, a single parameter or set of interdependent parameters was changed by a standard 20% from its standard value or by an amount reflecting the subjective degree of confidence in the standard value.

The first twelve runs test the commodity-specific consumer behavior parameters -- own-price and income elasticities, and substitution proportions -- for farm and nonfarm consumers separately. Rice and fish were selected for these parameters since they account for the largest part of grains and meats consumption, respectively. Changes in their parameter

values can, therefore, be expected, partly through substitution behavior, to be relatively more sensitive than those of other commodities.

Own-price and income elasticities of rice and fish were increased 20% for farm and nonfarm consumers, except the fish income elacticities which were decreased 20% since their standard values were already high. Also tested were the total substitution proportions of rice and fish. These parameters indicate the proportion of a decrease (increase) in rice or fish consumption which is compensated by an increase (decrease) in the consumption of substitute commodities (see Appendix D). For rice, the values were increased from the standard .95 to 1.00, while for fish they were increased 20% from the standard value of .33.

The next four runs test the effect of changing the values of parameters which cut across all commodities. These include farm and nonfarm average propensities to consume and the time constants used in exponentially averaging producer prices and income. The average propensities to consume were raised from .85 to .90 and .80 to .90 for nonfarm and farm consumers, respectively. The exponential average delay for producer prices was raised 50% from 2 years to 3 years, which would tend to further smooth the price response of farm consumption to reflect more subsistence behavior. Conversely, the income averaging delay was decreased 50% from 2 years to 1 year for both farm and nonfarm consumers to provide a quicker consumption response to income changes.

Runs 17-19 test the model's response to changes in the exogenous

consumer price projections of rice, barley and wheat, respectively. Producer price projections remained unchanged. Remember that the standard run makes the policy assumption that prices of rice, barley and wheat are projected exogenously rather than by the model, i.e., $KFT_i=5$ and $KPAVG_i=1$ for i=1, 2 and 3 (see Table 5.2 in Chapter 5).

Finally, the last four runs test the sensitivity of the consumer price bounds of pulses, vegetables, potatoes and beef, respectively. The <u>set</u> of bounds for each commodity was increased 50%. That is, the maximum allowable percentage increases and decreases in domestic consumer prices for these commodities were increased 50%.

Also part of the analytical design is selection of the performance variables to be observed and the sensitivity measure to be used. In accordance with the testing of rice and fish elasticities and substitution proportions, per capita consumption of rice and fish is included among the response variables observed. Also included are consumptions of the main substitutes of these commodities, barley and beef, respectively. These four variables are those likely to be the most affected by these parameter changes. The remaining response variables all represent aggregate behavior to reflect the sensitivity of the tested parameters in the system as a whole rather than just on the variables most directly affected. These include per capitz daily calorie and protein consumption, total per capita food consumption expenditures of nonfarm consumers, the agricultural trade balance and the consumer price index of livestock products, including meats, milk and eggs. The price index of this commodity group was se ected since all of these prices are market-determined, subject to

bounds, of course. Finally, the total of the 17 time-series tracking measures, TSS, is included to reflect the impact of parameter value changes on the model's tracking ability.

The measure used to quantify the sensitivity is the elasticity, i.e., the percentage change in the performance variable per percentage change in the parameter value. The respective changes are measured relative to the standard run solution in 1985.

Results of the Analysis

The sensitivity elasticities of each of the 10 response variables with respect to each of the 23 test parameters are given in Table 3.2. For reference purposes, base run values for 1985 are shown in the first line of the table.

Of the elasticity parameters tested, by far the most sensitive is the nonfarm own-price elasticity of rice (Run 1). Its effect on own consumption (rice) and cross consumption (barley) is larger than other rice or fish parameters. It is noteworthy that, because of the way substitution behavior is modeled (Appendix D), the cross effects of changes in the own-price elasticities of rice and fish (Runs 1 and 7) on consumption of barley and beef, respectively, are stronger than the direct effects on rice and fish consumption.

Also notice that the farm elasticities tend to be much less sensitive than the nonfarm elasticities. Two factors explain this result. First, national average consumptions and the aggregate variables that depend on them are more heavily weighted toward nonfarm consumers, where the nonfarm population increases to 71% of the total by 1985.

		Table	3.Z	
Results	of	DEMAND	Sensitivity	Tests

.

•

Test Parameters						<u>Kespon</u>	se Vari	abies	Nonfarm	Agric.	Meat	Time Seri
							Calorie	Protein	Food	Trade	Consumer	Trackins
			Rice	Barley	Beef	Fish	Consump.		Consump,		Price Index	
	Cymbolic	Percent	Consump.	Consump.	Consump.	Consump.				TVALDF	CMPI	TSS
Definition	Name	Change		PURCON(2)	PCNCON(13)	PENCOATTO	Cal/cap-	g/cap-	th.won/	billion		
				кр/сај	p-year		day	day	cap-yr	won/yr	1970-100	
<u>.</u>			127.9	44.3	3.0	59.7	2707	84.7	56.2	1290	143.3	3.8661
Base run with standard data values	<u> </u>		127.9	44.5	sitivity El	acticity C				in Data)		
				• Sen	SILLVILY M	ascretcy ()	. onange 1	ii onipati		-		
		+20	070	.248	0	0	.015	.018	009	039	.003	.026
L. Nonfarm own-price elasticity rice	ELASP(1,1)	+20	020	.023	0 0	ő	004	0	0	- 004	0	001
2. Farm own-price elacticity rice	ELASPR(1,1)	+ 5.25	020	. 301	ő	õ	.049	.045	0	-,030	0	.008
3. Nonfarm rice substitution proportion	PSUBTG(1,2)	+ 5.25		.043	0	õ	.007	0	0	0	0	0
4. Farm rice substitution proportion	PSUBIG(1,1) ELISAV(1)	+ 3.23	.023	.011	ŏ	õ	.013	,006	0	.004	003	004
 Nonlarm rice initial income elasticity 	ELISVR(1)	+20	.020		0	0	.009	.006	0	0	0	.001
6. Farm rice initial income elasticity	ELASP(18, 18)	+20	0	011	.167	017	0	0	.027	019	.091	.004
7. Nonfarm own-price elasticity fish	ELASP(18, 18) ELASPR(18, 18)	+20	ő	0	0	008	0	0	0	0	.014	.001
8. Farm own-price elasticity fish	PSUBTM(4,2)	+20	l a	-,.011	.167	0	0	0	.036	031	.091	0
9. Nonfarm fish substitution proportion	PSUBTM(4,1)	+20	Ő	0	0	0	0	0	0	004	.014	.002
 Farm fish substitution proportion Nonfarm fish initial income elasticity 	ELISAV(18)	-20	0	0	0	.017	002	0	.018	008	.010	056
	ELISVR(18)	-20	i õ	ō	0	.067	.002	.012	0	050	.003	.007
2. Fara fish initial income elasticity	APCN	+ 5.88	.013	.307	.567	.028	.069	.060	.484	330	. 522	2.129
3. Nonfarm average propensity to consume	APCE	+12.5	0	υ	0	0	0	0	0	0	0	0
4. Farm average propensity to consume	DELP	+50	002	.005	0	0	001	0	· 0	.005	001	034
3. Producer price exponential average delay	YDEL	-50	003	.041	0	003	,004	.005	.025	003	.004	.095
 Income exponential average delay 	VCPUT(1)	- 5	031	.181	C	0	.015	. 024	.214	016	014	0
Projected rice consumer price	VCPUT(2)	-10	0	068	0	C	007	012	.036	.008	007	0
 Projected barley consumer price Projected barley consumer price 	VCPUT(3)	+ 5	0	.045	0	0	0	0	0	0	0	0
5. Projected wheat consumer price	PCPMAX/MIN(6)	+50	o	0	Ō	0	.004	.014	004		0	0
6. Consumer price bounds, pulses	PCPMAX/MIN(7)	+50	0	0	0	0		0	.004		0	0
Consumer price bounds, vegetables	PCPMAX/MIN(8)	+50	002	009	Ō	0	.006	.002	007	022	0	0
Consumer price bounds, potatoes	PCPMAX/MIN(13)		002	.009	.194	003	.002	.005	039	045	188	0
 Consumer price bounds, beef 	1.0000000000000000000000000000000000000	1	1									

Secondly, the price responsiveness of farm consumers is muted by the subsistence consumption assumption where exponentially averaged past prices are used instead of current prices.

It is interesting that there is a noticeable effect on barley consumption of changes in the fish own-price elasticity and substitution proportion for nonfarm consumers (Runs 7 and 9). This is attributable to the income effect, wherely the income constraint forces barley consumpt on (and possibly others, as well) down to allow for the increased beef consumption.

The most sensitive parameter tested is the nonfarm average propensity to consume APCN (Run 13). Changes in this parameter essentially shift all consumptions up or down by loosening or tightening the income constraint. Notice that tuning this one parameter can be extremely effective in improving the model's historical tracking ability -- the sensitivity elasticity of TSS is 2.129, i.e., a 10% decrease in APCN would achieve a better than 20% improvement in TSS (assuming, of course, linearity in the relationship between APCN and TSS). Looking at a more disaggregated level, most of that sensitivity is in livestock products, whose tracking measure has a sensitivity elasticity of 13.395, and most of that is in fish consumption tracking, with an elasticity of 66.414. By comparison, the tracking measures of grains and rice have sensitivity elasticities of .232 and 1.181, respectively.

The farm average propensity to consume APCF, by contrast, has virtually no effect on the response variables observed (Run 14). This

is due to the fact that no income constraint is built into the farm demand model. The only variable affected by a change in APCF is farm nonfood consumption expenditures, which is computed as a residual. This in turn would affect behavior in the national economy model (NECON) when DEMAND is linked to NECON.

The last seven runs test changes in parameters relating to the projection period only, i.e., after 1975. Therefore, these parameters have no effect on the model's tracking measure. Of the consumer prices projected, that of rice, naturally, is the most sensitive; rice alone accounted for 18% of nonfarm per capita food consumption expenditures in Korea in 1970.

Somewhat surprisingly, the price bounds appear relatively insensitive, those of beef showing the most sensitivity (Runs 20-23). Looking at the commodities directly involved, however, pulses, vegetables, potatoes and beef consumption have sensitivity elasticities of .105, -.002, .276 and .194, respectively, in Runs 20-23 (only beef's is shown in Table 3.2). The only aggregate variable examined in Table 3.2 which shows any appreciable sensitivity to the price bounds is the food trade balance TVALDF. This variable responds directly to the individual consumption changes (which are substantially sensitive as noted above) since domestic production is projected exogenously in these runs.

CHAPTER 4

FURTHER RESEARCH AND MODEL DEVELOPMENT

No model intended for practical use can ever be said to be complete. It must evolve with the evolving needs of its users. To accomplish this, the researchers and analysts responsible for developing, maintaining and applying DEMAND must work in close interaction with the decision makers who are the ultimate users of the product. Therefore, we can no more anticipate all future directions for model development than we can anticipate all future concerns of decision makers. Nevertheless, as a result of the development and tests conducted on DEMAND to this stage, we can identify some potentially fruitful areas for research and model development. These are discussed in terms of the model's structure and data base.

Structural Development

We noted earlier that the logical implication of DEMAND's assumption that all prices are real prices requires the all-commodities consumer price index computed by the model, which is the implicit deflator, to be identically unity, i.e., deflated by itself. (See the discussion in Chapter III deriving this conclusion.) In the standard run of DEMAND, however, its value rises to 1.129 by 1985.

This result is attributed to the fact that DEMAND projects real food prices independently of the nonfood price index. While this independence may be logically valid for nominal prices (although not necessarily economically valid), it is not valid for real prices since all

prices are included in the deflator used to convert from nominal to real prices. We can see this if we write mathematically,

RFP = FP/PI = FP/f(FP, NP) = g(FP, NP)

RNP = NP/PI = NP/f(FP, NP) = h(FP, NP)

where RFP and RNP are real food and nonfood prices, respectively, F2 and NP are the corresponding nominal prices, and PI = f(FP, NP)is the aggregate price index.

Therefore, one improvement that could be made in the model's structure would be to relate food and nonfood prices to each other so the aggregate price index (equation (74) in Chapter 2) remains unity. One suggested approach is to add a constraint equation to the simultaneous system (equations (13) and (14) in Chapter 2) which would insure that the aggregate price index would have a value of one, at the same time treating the nonfood price index as a dependent rather than independent variable.

We also discussed in Chapter 3 the instability of the pricenonfarm demand simultaneous equations model in the absence of exogenously imposed consumer price bounds. Unconstrained solutions tend to include unreasonably high or low (or even negative) prices, particularly for commodities with low price elasticities. Therefore, two of the policy options built into the model cannot be used since they do not include bounds on consumer prices.

While the model is quite usable and even useful in its present form as long as price bounds are imposed, a worthwhile line of development would be, first, to investigate the causes of this instability and, then, to redesign the model to remedy the situation. Preliminary observations suggest the problem may lie in the use of linearized Cobb-Douglas consumption functions. Such linearizations can be reasonable approximations only when the perturbations are small. Thus, when solving for consumption in terms of price, as DEMAND's standard run does for rice, for example, relatively large changes in price would result in substantial inaccuracies. Indeed, the rice price in Korea has shown large annual increases in real terms --10.9% in 1971, 12.2% in 1972 and 16.7% in 1975. Conversely, similar inaccuracies would result when solving for price in terms of consumption, as DEMAND's standard run does for potatoes, for example, if large changes in consumption (per capita supply to be cleared) occur. Again, per capita supply of potatoes declined 18.9% and 12.6% in 1973 and 1974, respectively, and increased 57.1% in 1975.

A more basic problem, however, may lie in the Cobb-Douglas functions themselves to represent consumption behavior. The primary shortcoming of this functional form is that the price and income elasticities are generally assumed to remain constant with respect to price, income and quantity demanded, although DEMAND does not assume they are necessarily constant over time (see Chapter 2 and Appendix D). In particular, worthwhile benefits can be gained from further research into and modeling of asymmetrical consumer behavior. That is, the strength (or elasticity) of the response of consumption to price and income changes may depend on the direction, magnitude and duration of those changes.

Another shortcoming which may contribute to the instability of the price-demand simultaneous equations system is the use of inverted

consumption functions as price functions. That is, it may not be realistic to solve for price by simply inverting the consumption functions and using the inverse of demand elasticities as price flexibilities.

In sum, then, a good case can be made for investigating alternatives to the Cobb-Douglas consumption functions. A state-space modeling approach may be a useful point of departure, where rates of change of unknown consumptions and prices (C_1 and P_2 in equation (13') in Chapter 2) are expressed as functions of C_1 and P_2 and of known consumptions and prices C_2 and P_1 . That is, for example,

 $\frac{d}{dt}Y(t) = f(Y(t), X(t))$ where $Y(t) = \begin{pmatrix} C_1(t) \\ P_2(t) \end{pmatrix}$ is the state vector, and $X(t) = \begin{pmatrix} C_2(t) \\ P_1(t) \\ I \ (t) \end{pmatrix}$

is the input vering with income I.

Finally, the farm demand component follows the basic assumption that the consumption behavior of farm households is essentially subsistence in character. As discussed in Chapter 2, this assumption is implied by the use in the consumption functions of exponential averages of past producer prices rather than concurrent consumer prices and also by the independence of farm and nonfarm consumption rather than their competition for available supply. While these assumptions are reasonable for the staple commodities, farm consumption of other commodities, particularly meats, milk and eggs and marine products, is decidedly not subsistence (see Table 2.3 in Chapter 2). Improvements in the farm demand component could be achieved by developing a more market-oriented model, at least for these commodities.

Data Development

The data base of any model is always subject to revision as more information becomes available for re-estimation of parameters and exogenous projections. Here, let's consider briefly three classes of DEMAND data.

The sensitivity analysis reported in Chapter 3 indicates that the demand elasticities and substitution proportions are relatively insensitive except for the commodities directly affected and major substitutes. A great deal of effort was expended in trying to estimate these parameters using time-series and cross-section data [7]. At best, the results were useful as a starting point for further tuning of the model to track consumption over the period 1970-1975. In view of the above, therefore, it would probably not be worthwhile to devote much more time to further estimation of elasticities. This would be particularly so if alternative model structures are to be considered, as suggested in the last section.

The extreme sensitivity of the nonfarm average propensity to consumer, however (see Table 3.2 in Chapter 3), does suggest the value of updating the estimation of this parameter as new data become available. It may even be worthwhile to consider making this a timevarying parameter rather than a constant.

The second set of data we discuss here is the historical time series stored in the model. These are used during the tracking period in the model in place of model solutions (in the case of prices), to

compare model solutions with historical performance (in the case of per capita consumptions), and for exogenous model inputs (such as the nonfood price index and world food prices). Therefore, it is important that these series be updated each year as new data become available. Values currently stored for 1970-1975 are shown in Table E.2 in Appendix E.

Finally, DEMAND requires, as a major input, projections of import and export prices of food commodities. Periodic situation and outlook analyses should be conducted, bringing together information from IBRD, FAO, USDA, etc., to keep the projections as current as possible.

In general, we can say that sensitivity tests give guidelines on allocating scarce resources for data gathering and analysis. Those parameters which make more of a difference in model behavior should be those which receive more priority for refinement. We have seen this in regard to the sensitivity tests reported here, but it also applies to others which may (should) be conducted in the future as part of the continual process of model development and utilization.

CHAPTER 5

COMPUTER PROGRAM DOCUMENTATION

This chapter describes the computer program of DEMAND and how to implement it. DEMAND is one model of the KASM system of models. Job control input, plotting and changing data are managed by the KASM3 executive program. These operations will be referred to here as they relate to DEMAND. However, the reader is referred to KASS Special Report 13 [2] for detailed specifications of job control data input cards, the plot package and the data change routine. Variable definitions, computer program lists and sample output appear in Appendices A-C.

Machine Specifications

The following data pertain to the CDC CYBER 72 computer at the Korean Institute of Science and Technology (KIST). KASM3 is segmented for CDC loading and execution, and the data below are for the DEMAND segments only.

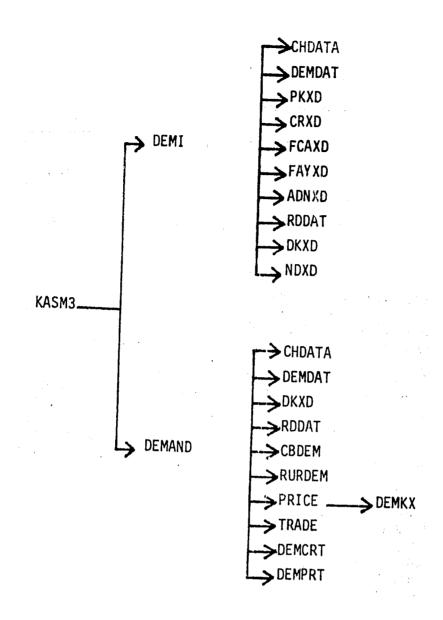
Machine: CDC CYBER 72

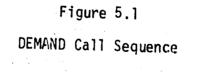
Operating System: KIST SCOPE 3.4.3 PSR 406, dated 11/17/76 Compiler: CDC FTN 4.5 + R406

Core Requirements

--DEMAND segment programs: 4454 decimal words --DEMAND segment commons: 3986 decimal words --KASM3 root segment commons: 2075 decimal words CP Compile time: 21.60 seconds CP Execution Time

-- base run (16 time cycles): 6.66 seconds
-- average per time cycle: .42 seconds


Program Structure


The KASM3 executive program calls DEMI before the time loop begins to initialize DEMAND, and it calls DEMAND each simulation time cycle, both calls taking place when the model switch KDEM > 0. Both DEMI and DEMAND call CHDATA to implement data changes when ICHDAT \neq 0. The call sequence is shown in Figure 5.1 and subprogram definitions in Table 5.1.

All communication within DEMAND and between DEMAND and other KASM programs (except CHDATA) is through common blocks. A parameter list is used for communication with CHDATA. DEMAND writes the values of its output variables on logical unit LUPLTI each time period if plotting or special livestock tables are desired.

Program Implementation

The DEMAND model is called by PROGRAM KASM3 when KDEM > 0. KDEM is a model indicator switch read during job control data input in SUBROUTINE CONTR of KASM3. KASM3 also manages the run loop, the time loop and print and plot control switches. See KASS Special Report 13 [2] for complete descriptions of these operations and of job control input requirements.

TABLE 5.1

DEMAND Subprograms

- KASM3 -- executive PROGRAM of KASM, Version 3.
- DEMI -- SUBROUTINE which initializes the DEMAND model, called each run prior to time loop.
- LEMAND -- executive SUBROUTINE of the DEMAND model, called each time period.
- CHEATA -- a utility SUBROUTINE of KASM used to change data, if desired, from standard values.
- DEMDAT -- BLOCKDATA which defines standard values of data internal to DEMAND.
- DKXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of producer prices and imports/exports.
- PKXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of population.
- CRXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of crop yields and input application rates.
- FCAXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of crop areas.
- FAYXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of livestock production and fruit tree plantings.
- ADNXD -- BLOCKDATA which defines standard values of data for past time series and exogenous projections of fisheries production and feed use of crop commodities.
- RDDAT -- BLOCKDATA which defines standard values of data for commodity-specific farm and market loss proportions and seed application rates.
- NDXD -- BLOCKDATA which defines standard values of data for part-time series and exogenous projections of nonfood price indices, farm and nonfarm per capita incomes, and foreign exchange rates.

TABLE 5.1 (Continued)

CBDEM		BLOCKDATA which orders DEMAND common blocks in proper sequence for plotting and changing data.
RURDEM		SUBROUTINE which computes farm consumption
PRICE		SUBROUTINE which computes prices and nonfarm consumption
DEMKX	•••	SUBROUTINE which exogenously projects producer prices and imports/exports.
TRADE		SUBROUTINE which computes imports, exports and other foreign trade accounts.
DEMCRT		SUBROUTINE which computes DEMAND performance criteria.
DEMPRT		SUBROUTINE which prints DEMAND annual output tables.

Data for DEMAND may be changed permanently by updating the appropriate BLOCKDATA subprogram, DEMDAT or DKXD. This should be done annually at least to update the historical time series stored in the model. See Appendix E, Table E.2, for a list of these time series data and their locations in the program. Temporary data changes, such as for sensitivity tests or to represent alternative policy options, may be made by specifying them on data cards read by SUBROUTINE CHDATA (see 121).

The types of policy options built into DEMAND are described in The present chapter provides information on detail in Chapter 2. how to implement those options in the computer program in the sample worksheet form and accompanying notes appearing in Table 5.2, which shows the standard values assumed for policy parameters in DEMAND.

Annual output tables for DEMAND are printed by SUBROUTINE DEMPRT whenever ITABPR \neq 0 and individual table switches KDPRT_i \neq 0. KDPRT is dimensioned 15, so up to 15 tables can be accommodated in DEMPRT. Currently 10 tables are programmed for DEMAND:

- 1. Price Indices
- 2. Supply and Disappearance of Agricultural Commodities
- 3. Per Capita Consumption and Consumption Targets
- 4. Urban Income and Expenditures
- 5. Calorie and Protein Consumption Per Capita
- 6. Marketing Prices and Costs
- Own-Price and Income Elasticities 7.
- 8. Cross-Price Elasticities
- 9. Agricultural Export-Import Balance
- 10. Agricultural Imports and Exports

In addition, print switches '4 and 15 control detailed printing, for debugging purposes, of intermediate computations in the simultaneous equations price adjustment loop in SUBROUTINE PRICE. Switch 13 controls printing of the time-series tracking measures of goodness-of-fit.

Special note should be made here concerning the operation of DEMAND when production is projected neither endogenously (by the farm resource allocation model when the model switch KRAP > 0) nor exogenously (by the production accounting component when KRAP < 0). That is, when DEMAND is executed independently of production (KDEM > 0 and KRAP = 0), then DEMAND automatically determines all nonfarm consumption based only on exogenous projections of consumer prices; the model cannot project prices itself without production information. Therefore, data for projecting consumer prices (VCPUT in Table 5.2) must be given for all commodities just as if KFT_i = 5 for all commodities i, i = 1, 2, ..., NCOM; i.e., any other values specified for KFT_i are overridden.

Finally, time-series data for DEMAND is stored in the program (see Table E.2 in Appendix E), giving the user the option of starting the simulation at any time during the tracking period. SUBROUTINE DEMI automatically initializes DEMAND at the specified initial year. The tracking period is defined as the period for which time-series data are stored, TTABI<TIMEI<BASEYR, where TTABI is currently 1970, TIMEI is the desired starting year, and BASEYR is the latest year for which data are stored, currently 1975. DEMAND uses actual prices for TIMEI< $T \leq BASEYR$, projecting the resulting consumption. If time-series tracking tests are to be conducted, the job control parameter KTRACK should be $\neq 0$. Otherwise, if KTRACK = 0, DEMAND automatically reinitializes consumption to recorded values in BASEYR before starting the projection period (T>BASEYR).

TABLE 5.2

Demand-Price-Trada Model Policy Inputs Worksheet1:

Base Run (run description)

	TARIFF ² STKRT ³ KPAVG ⁴	PWPMAX ⁶ PWPMIN ⁶ PCPMAX ⁷	Projected		Project	tion Period	<mark> </mark> 9	
Commodity	KFT ⁵	PCPMIN ⁷	Variables ⁸	BASEYR + 1	1981	1986	1991	2001
1. Rice	.16 1.5 1 5		VPP VCPUT VPCSUP VDFCT	120,000 123,022	20,000 123,022	120,000 125,000	120,000 125,000	120,000 125,000
2. Barley	.20 7.0 1 5.		VPP VCPUT VPCSUP VDFCT	60,000 65,000	60,000 65,000	60,000 65,000	60,000 65,000	60,000 65,000
3. Wheat ¹⁰	.20 2.0		VPP VCPUT VPCSUP VDFCT	45,000 43,881	45,000 43,881	45,000 45,000	45,000 45,000	45,000 45,000
4. Other grains	0 0 0 3,0	5.0 0 .1 .05	VPP VCPUT VPCSUP VDFCT	500,000	400,000	400,000	400,000	400,00 0
5. Fruit	0 0 0 4.0	3.0 1.65 4.0 1.0	VPP VCPUT VPCSUP VDFCT					

Commodity	STKRT ³ PWPMIN KPAVG ⁴ PCPMAX		PWPMAX ⁶ PWPMIN ⁶ PCPMAX ⁷ Projected		Projection Period ⁹						
		PCPMIN ⁷	Variables ⁸	BASEYR + 1	1981	1986	1991	2001			
6. Pulses	0 0 0 3	2.8 1.0 .05 .05	VPP VCPUT VPCSUP VDFCT	50,000							
7. Vegeta- bles	0 0 0 4	5.0 0 .05	VPP VCPUT VPCSUP VDFCT								
8. Pota ₁₁ toes	C 0 0 4	5.0 0 .15 .1	VPP VCPUT VPCSUP VDFCT								
9. Tobacco	0 0 1 5		VPP VCPUT VPCSUP VDFCT	700,000	700,000	700,000	700,000	700,000			
10. Forage ¹²	0 0 0 5		VPP VCPUT VPCSUP VDFCT	1	1	1	1	1			
	0 0 1 5		VPP V^PUT VPCSUP VDFCT	1,200,000	1,200,000 1	,200,000	1 200,000 1	,200,000			
	0	5.0 0 .3	VDPC1 VCPUT VPCSUP								

Table 5.2--continued

	STKRT ³	PWPMAX ⁶ PWPMIN ⁶		Projection Period ⁹						
Commodity		PCPMAX ⁷ PCPMIN ⁷	Projected Variables ⁸	BASEYR + 1	1981	1986	1991	2001		
13. Beef	0 0 0 3	1.0 .7 .1 .05	VPP VCPUT VPCSUP VDFCT	0	0	0	0	0		
14. Milk	0 0 0 3	1.0 .3 .1 .05	VPP VCPUT VPCSUP VDFCT	0	0	0	0	0		
15. Pork	0 0 0 3	5.0 .7 .1 .1	VPP VCPUT VPCSUP VDFCT	-4,000	-4,500	-5,000	-5,000	-5,000		
16. Chicken	0 0 0 3	5.0 0 .15 .1	VPP VCPUT VPCSUP VDFCT	0	0	0	0	0		
17. Eggs	0 0 0 3	5.0 0 .15 .1	VPP VCPUT VFCSUP VDFCT	0	0	0	0	0		
18. Fish	0 0 0 4	1.0 1.0 4.0 1.0	VPP VCPUT VPCSUP VDFCT							
 19. Residual ¹⁵	0 0 0 5		VPP VCPUT VPCSUP VDFCT	100,000	100,000	100,000	100,000	100,000		
· · · · · · · · · · · · · · · · · · ·										

Table 5.2.--continued

Notes for DEMAND-Price-Trade Model: Policy Inputs Worksheet

- 1. All data are set in DATA statements. All are in BLOCKDATA DEMDAT, except VPP which is in BLOCKDATA DKXDC. Attached is the set of policy input data for the standard, or base, run of KASM, representing Korea's Fourth Five-Year Plan.
- 2. TARRIFF -- import duties as a proportion of input price.
- 3. STKRT -- months of consumption in stock (carry out) at the end of the rice year, October 31.
- 4. KPAVG -- policy switch indicating whether the producer price is specified by policy assumption (KPAVG $\neq 0$) or determined by a marketing margin (KPAVG = 0). If KPAVG $\neq 0$, also give values for VPP (see note 8 below).
- 5. KFT -- policy switch indicating the manner in which consumer prices and nonfarm consumption are determined.
 - KFT = 1 -- National average per capita consumption is specified by policy assumption, and the market-clearing consumer price is determined by the model. Values for VPCSUP must also be given (see note 8 below).
 - KFT = 2 -- Imports/exports are specified by policy assumption, and the market-clearing consumer price is determined by the model. Values for VDFCT must also be given (see note 8 below).
 - KFT = 3 -- Imports/exports and bounds on the consumer price are specified by policy assumption. If the market-clearing price determined by the model violates a bound, the price is set to the nearest bound and the model is resolved for consumption with imports/exports computed as a residual, ignoring the policy-specified imports/ exports. Values for PWPMAX, PWPMIN, PCPMAX, PCPMIN and VDFCT must also be given (see notes 6-8 below).
 - KFT = 4 -- Bounds on the consumer price are specified by policy assumption, and the market-clearing price is determined by the model. If it violates a bound, the model is resolved with the consumer price set at the nearest bound to determine consumption. Values must also be given for PWPMAX, PWPMIN, PCPMAX and PCPMIN (see notes 6 and 7 below).

Table 5.2.--continued

- KFT = 5 -- The consumer price is specified by policy assumption, and consumption is determined by the model. Values for VCPUT must also be given (see note 8 below).
- 6. PWPMAX --- the propertion of the import price above which the domestic consumer price will not be allowed to rise. A large value, such as 5.0, is used when the price policy is unrelated to the world market, i.e., when this constraint is to be ineffective.
 - PWPMIN -- the proportion of the export price below which the domestic consumer price will not be allowed to fall. A small value, such as 0.0, is used when the price policy is unrelated to the world market, i.e., when this constraint is to be ineffective.

Values must be given to PWPMAX and PWPMIN for each commodity for which KFT is 3 or 4 (see note 5 above). Otherwise, no value need be specified, as indicated by the dashes in the attached base run data. In each time period, the product of PWPMAX and the import price must be greater than the product of PWPMIN and the export price.

- 7. PCPMAX -- the maximum proportional yearly increase allowed for the domestic consumer price. A large value, such as 5.0, is used when the price policy is unrelated to domestic price movements, i.e., when this constraint is to be ineffective.
 - PCPMIN -- the maximum proportional yearly decrease allowed for the domestic consumer price. A large value, such as 1.0 (a 100% decrease), is used when the price policy is unrelated to domestic price movements, i.e., when this constraint is to be ineffective.

Values must be given to PCPMAX and PCPMIN for each commodity for which KFT is 3 or 4 (see note 5 above). Otherwise, no value need be specified, as indicated by the dashes in the attached base run data. PCPMAX must be greater than PCPMIN.

 $e_{1} \geq e_{2} e_{1}$

- 8. These are variables which must be given values by policy assumption for each year shown, depending on values given the policy switches KPAVG and KFT (see notes 4 and 5 above).
 - VPP -- producer price in 1970 constant won/MT. It must be specified for each commodity for which KPAVG ≠ 0.

VCPUT -- consumer price in 1970 constant won/MT. It must be specified for each commodity for which KFT = 5.

Table 5.2.--continued

- VPCSUP -- national average per capita consumption in MT/personyear. It must be specified for each commodity for which KFT = 1.
- VDFCT -- imports/exports (exports are negative imports) in MT/year. It must be specified for each commodity for which KFT = 2 or 3.
- 9. Values of the projected policy variables (see note 8 above) must be given for each year shown in the projection period. The model interpolates values on a straight line for years in between. The first year of the projection period, BASEYR + 1, is the first year following the latest year of recorded empirical values, BASEYR. The remaining years of the projection period for which values are required -- 1981, 1986, 1991 and 2001 -- are specified in the array ARG (except for producer prices VPP and imports/exports VDFCT) in a DATA statement in BLOCKDATA DEMDAT. For VPP and VDFCT, these dates are specified in the array ARGPP in BLOCKDATA DKXD. These dates may be changed if desired.
- 10. Wheat: producer and consumer prices are in won/MT of whole grain equivalents, not flour; consumption and imports/exports are also in MT of whole grain equivalents, not flour.
- 11. Potatoes: prices and quantities are for fresh weight equivalents, not grain equivalents.
- 12. Forage: a KASM commodity for the production models of KASM, but no human food consumption is assumed.
- 13. Silk: no human food consumption is assumed. Only a producer price is needed for production decisions in the production models of KASM. Therefore, KPAVG≠O and producer prices VPP must be projected by policy assumption.
- 14. Industrial crops: c

only edible oils are considered for human consumption and, hence, consumer prices, imports/exports and per capita consumption. Producer prices are an average for all industrial crops for production decisions in the production models of KASM.

15. Residual: on the production side (i.e., for producer prices), this is taken to be edible offal from livestock products; on the consumption side, it includes, in addition to edible offal, imported sugar, coffee/tea/cocoa and vegetable oils. See Alan R. Thodey, Food and Nutrition in Korea 1965-1974, KASS Special Report II, Chapter 4.

APPENDIX A

Variable Definitions

This appendix defines the variables used in the demand priceforeign trade model of KASM. The variables are listed alphabetically, and the definitions have the following format:

NAME A, B. Dimensioned by (C). Located in /D/. Defined in E. Referenced in F.

where

B C	2 7 2 2	symbolic name of the variable definition of the variable unit of measure meaning of dimensions, if any name of labeled COMMON where the variable is located, or LOCAL if it is a local variable, or F.P. if it is a formal parameter
Ε	=	list of subroutines where the variable is defined, i.e., where it is given a value
F	=	list of subroutines where the variable is referenced, i.e., where it is used.

For some variables, some of the subroutines listed in E and F may not appear in the computer program list in Appendix B. Such subroutines belong to other KASM models or components, whereas Appendix B lists only DEMAND programs.

- AE Matrix of coefficients of the price vector in the nonfarm consumption functions, MT/person-year per won/MT. Dimensioned by (commodity, commodity). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- AINTER Intercept term vector in nonfarm consumption functions, MT/person-year. Dimensioned by (commodity). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- AINV Linear system coefficient matrix for demand-price function (also its inverse). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- ALPHA Income adjustment factor for initial condition consistency, no units. Located in /DEMSVC/. Defined in DEMI, PRICE. Referenced in DEMCRT, DEMI, FRICE.
- ANIMAL Index of animal sources of nutrients, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.
- APCF Average propensity to consume for farm consumers, proportion. Located in /DEMKC/. Defined in DEMKX. Referenced in RURDEM, FRMAC.
- APCFD Data for APCF. Located in /DKXDC/. Defined in DKXD. Referenced in DEMKX.
- APCN Average propensity to consume for nonfarm consumers, proportion. Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMAND, DEMCRT, DEMI, DEMPRT, PRICE.
- AREQK Crop area required to meet human consumption from domestic production, ha. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.
- AREQHF Crop area required to meet human and feed demand from domestic production, ha. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.
- ARG Table function independent variable, year. Dimensioned by (year). Located in /PPDEMC/. Defined in DEMDAT. Refer.nced in PRICE, TRADE.

- ARGPP Table function independent variable values, year. Dimensioned by (year). Located in /DKXDC/. Defined in DKXD. Referenced in DEMKX.
- ARQHFS Crop area required to meet human and feed demand and stock changes from domestic production, ha. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.
- BASEYR Year at which tracking period ends, year. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMKX, PRICE, TRADE.
- BDEM Vector of coefficients of the income constraint term of the nonfarm consumption functions, MT/person-year. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- CAL Calorie intake, calories/person-day. Dimensioned by (source, population group). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
- CALPC Percentage calorie intake, percent. Dimensioned by (source, population group). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
- CALPU Calorie content of foods, calories/MT. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT.
- CALRPC Per capita calorie requirements, calories/person-year. Dimensioned by (population group). Located in /POPKC/. Defined in POPMIG. Referenced in DEMCRT, POPPRI.
- CHGSTK Stock change, MT/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMAND, DEMCRT, TRADE.
- CMARKT Marketing margin, won/MT. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
- CMIN Minimum farm nonfood consumption expenditures, won/person-year. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.
- CMPI Consumer price index for livestock products, no units. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.

COGPI	Consumer price index for grains except rice, no units. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
CON	Farm consumption, MT/year Dimensioned by (region, commodity). Located in /DEMYC/. Defined in RURDEM. Referenced in FRMAC, RURDEM.
CPFI	Consumer price index for food, no units. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, DEMCRT, DEMPRT, NECPRT.
CP I	Consumer price index for all commodities, no units. Located in /CVDEMC/, Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
CPU	Urban consumer price, won/MT. Dimensioned by (commodity). Located in /DEMSVC/. Defined in PRICE. Referenced in DEMCRT, PRICE, RURDEM.
CPUL	Lagged urban consumer price, won/MT. Dimensioned by (commodity). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
CPUMAX	Maximum allowable urban consumer price, won/MT. Dimensioned by (commodity). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
CPUMIN	Minimum allowable urban consume: price, won/MT. Dimensioned by (commodity). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
CPUNF	Consumer price index of nonfood commodities, no units. Located in /NECDYC/. Defined in NECDYX, PRICN. Referenced in ASNEIF, PRICE, PRICN, RURDEM, NECPRT.
CPUO	Urban consumer price in base year of price index, won/MT. Dimensioned by (commodity). Located in /DEMSVC/. Defined in DEMI. Referenced in DEMCRT.
CRPI	Consumer price index for rice, no units. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
CVAL D	New value specified for DEMAND data variables, various units. Dimensioned by (variable). Located in /DCHDC/. Defined in CHDATA. Referenced in CHDATA, DEMAND, DEMI.
DCPUNF	Proportional change in nonfood consumer price index, proportion. Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.

- DEFCIT Surplus or deficit, MT/year. Dimensioned by (commodity). Located in /DEMKC/. Defined in DEMKX, DEMPRT, TRADE. Referenced in DEMCRT, DEMPRT, PRICE, TRADE, YSET.
- DELP Lag time for exponentially averaging producer prices, years. Located in /CPDEMC/. Defined in DEMDAT. Referenced in RURDEM.

DEMC Coefficient relating nonfarm income elasticity to consumption level and target, no units. Dimensioned by (commodity). Located in /DEMSVC/. Defined in DEMI. Referenced in DEMI, PRICE.

- DEMI Coefficient relating farm income elasticity to consumption level and target, no units. Dimensioned by (region, commodity). Located in /DEMSVC/. Defined in DEMI. Referenced in RURDEM.
- DP Population table function interval, years. Located in /PKXDC/. Defined in PKXD. Referenced in DEMI, POPKX, POPMIG.
- DSAVD Use of savings for additional consumption won/year. Dimensioned by (region). Located in /DEMYC/. Defined in DEMCRT, FRMAC. Referenced in FRMAC.
- DSTK Desired stock level, MT. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in TRADE.
- DT Simulation time increment, year Located in /CONTRC/. Defined in CONTRD. Referenced in PRICE, RURDEM, TRADE.
- DVALDF Value of agricultural deficit, dollars/year. Located in /VDEMC/. Defined in TRADE. Referenced in DEMPRT.
- E. ..V Effective livestock production, proportion. Dimensioned by (commodity). Located in /PRDDC/. Defined in CLOUT. Referenced in DEMCRT.
- EFFYLD Yield less losses and seed requirements, MT/ha-year. Dimensioned by (crop commodity). Located in /PRDDC/. Defined in CLOUT. Referenced in DEMCRT, PRDPRT.
- EFRMY Farm consumption expenditures, won/person-year. Located in /VDEMC/. Defined in RURDEM. Referenced in DEMCRT.

EINCML Lagged value of EINCOM, won/person-year. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.

- EINCOM Nonfarm consumption expenditures, won/person-year. Located in /DEMSVC/. Defined in DEMI, PRICE. Referenced in DEMCRT, DEMI, DEMPRT.
- ELASI Nonfarm income elasticity, no units. Dimensioned by (commodity). Located in /VDEMC/. Defined in PRICE. Referenced in DEMPRT, PRICE.
- ELASIR Farm income elasticity, no units. Dimensioned by (commodity). Located in /VDEMC/. Defined in RURDEM. Referenced in DEMPRT, RURDEM.
- ELASP Nonfarm own-price and cross-price elasticities, no units. Dimensioned by (commodity, commodity). Located in /VDEMC/. Defined in DEMDAT, PRICE. Referenced in DEMPRT, PRICE.
- ELASPR Farm own-price and cross-price elasticities, no units. Dimensioned by (commodity, commodity). Located in /VDEMC/. Defined in DEMDAT, RURDEM. Referenced in DEMPRT, RURDEM.
- ELISAV Initial nonfarm income elasticity, no units. Dimensioned by (commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI.
- ELISVR Initial farm income elasticity, no units. Dimensioned by (commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI.
- EPAVG Exponential average of producer price, won/MT. Dimensioned by (region, commodity). Located in /DEMSVC/. Defined in RURDEM. Referenced in OREDY, RURDEM.
- EPAVGL Lagged value of exponential average of producer price, won/MT. Dimensioned by (region, commodity). Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.
- EPAVGO Initial exponentially averaged farm prices, won/MT. Dimensioned by (commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI.
- FARM Index of farm population group, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.

- FCONP Farm consumption of processed foods, won/person-year. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, DEMCRT, NECPRT.
- FCONU Farm consumption of unprocessed foods, won/person-year. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, DEMCRT, NECPRT.
- FDFSHD Exogenous data of fish product used for feed, MT/year. Located in /ADNXDC/. Defined in ADNXD. References in CLOUT, DEMI.
- FEED Total amount of a commodity used for feed, MT/year. Dimensioned by (commodity). Located in /PRDDC/. Defined in CLOUT. Referenced in CLOUT, DEMCRT.
- FEXNFC Farm nonfood consumption, won/person-year. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, DEMCRT, NECPRT.
- FGIM Feed grain imports, MT/year. Located in /PRDDC/. Defined in CLOUT, TRADE. Referenced in TRADE.
- FGIVAL Value of feed grain imports, won/year. Located in /VDEMC/. Defined in TRADE.
- FNR Farm consumption as a proportion of nonfarm consumption, proportion. Dimensioned by (commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI.
- FPCI Farm household per capita disposable income, won/person-year. Located in /NECDYC/. Defined in ACCTG, FRMAC, NECDYX. Reference in ASNEIF, FRMAC, FYAPRT, NECPRT, RURDEM.
- FRMY Farm disposable income, won/person-year. Dimensioned by (region). Located in /VDEMC/. Defined in RURDEM. Referenced in RURDEM.
- FRMYA Adjusted regional farm disposable income, won/person-year. Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.
- GOVSUB Government market subsidy, won/MT. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.

- ICHDAT Switch indicating whether data values are to be changed, no units. Located in /CONTRC/. Defined in CONTR. Referenced in DEMAND, DEML.
- IGRAIN Array of indices of grain substitutes, no units. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- IMAX Index in price determination algorithm denoting commodity which exceeds price bounds by largest proportion, no units. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- IMEAT Array of indices of meat substitutes, no units. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- INAPA Index array denoting method of price determination, no units. Dimensioned by (commodity). Located in /VDEMC/. Defined in PRICE. Referenced in PRICE, RURDEM.
- INCOM Exponential average of nonfarm disposable income, won/personyear. Located in /DEMSVC/. Defined in PRICE. Referenced in PRICE.
- INCOML Lagged value of INCOM, won/person-year. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- INIV Index array used in matrix inversion algorith, no units. Located in (LOCAL). Referenced in PRICE.
- IPLT Switch indicating whether plotting is to be done, no units. Located in /CONTRC/. Defined in CONTR. Referenced in DEMAND.
- ISFLD Number of DEMAND data variables whose values are to be changed, no units. Located in /DCHDC/. Defined in CHDATA. Referenced in CHDATA, DEMAND, DEMI.
- ITABPR Switch indicating whether annual tables are to be printed, no units. Located in /CONTRC/. Defined in CONTR. Referenced in DEMAND.
- ITER Solution iterations counter in price adjustment loop, no units. Located in /VDEMC/. Defined in PRICE. Referenced in PRICE, DEMPRT.

ITIME Time cycle counter, no units. Located in /CONTRC/. Defined in KASM3. Referenced in DEMCRT, DEMPRT, PRICE, RURDEM, TRADE.

- JIN Array of indices of commodities with market-determined prices, no units. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- JRELD Relative location of DEMAND data variable whose value is to be changed, no units. Dimensioned by (variable). Located in /DCHDC/. Defined in CHDATA. Referenced in CHDATA, DEMAND, DEMI.
- KCHECK Switch set in price adjustment loop indicating whether some prices are out of bounds, no units. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- KDPRT Print switches for DEMAND annual output tables, no units. Dimensioned by (table). Located in /CONTRC/. Defined in PRTSWT. Referenced in CONTR, DEMCRT, DEMPRT, PRICE.
- KFT Consumer price policy indicator, no units. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE, TRADE.
- KNOR Number of data points in DEMAND table functions, no units. Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE, TRADE.
- KNP Number of data prints in population table functions, no units. Located in /PKXDC/. Defined in PKXD. Referenced in DEMI, POPKX, POPMIG.
- KPAVG Producer price policy indicator, no units. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.
- KPOP Population model indicator switch, no units. Located in /CONTRC/. Defined in CONTR. Referenced in DEMCRT.
- KPP Number of data points in projected producer price and imports/ exports table functions, no units. Located in /DKXDC/. Defined in DKXD. Referenced in DEMKX.
- KRAP Resource allocation and production model indicator switch, no units. Located in /CONTRC/. Defined in CONTR. Referenced in DEMAND. DEMCRT, DEMPRT, PRICE, TRADE.

KTABI Numbe	r of data	points in	tracking	period	table fund	tions, no
Locate	•	TRC/. De DEM, TRADE		CONTRD.	Reference	d in DEMI,

- LAB Label indicating type of price solution, no units. Located in (LOCAL). Defined in DEMPRT, PRPCON. Referenced in DEMPRT, PRPCON.
- LPR Label indicating type of price solution, no units. Dimensioned by (type). Located in (LOCAL). Defined in DEMPRT. Referenced in DEMPRT.
- LUPLTI Logical unit scratch file which stores values of variables to be lotted, no units. Loc led in /CONTRC/. Defined in CONTRD. Referenced in DEMAND.
- LVSTPR Switch indicating whether special livestock time-series tables Are to be printed, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMAND.
- MM Marketing margin, proportion of producer price. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT, PRICE.
- NCOM Number of commodities, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMI, DEMPRT, PRICE, TRADE.
- NCOMAG Number of agricultural commodities, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMKX, DEMI, DEMPRT, PRICE, RURDEM, TRADE.
- NCROP Number of crop commodities, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMI.
- NIN Number of commodities whose consumer prices are market determined, no units. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- NINT1 Number of equations in demand-price simultaneous system (=NIN+1), no units. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- NLVST Number of livestock commodities, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMI.

- NVARD Number of DEMAND plot variables, no units. Located in /PLOTK/. Defined in PLTPKG. Referenced in DEMAND, PLTPKG.
- OVALD Standard value of DEMAND data variable changed, various units. Dimensioned by (variable). Located in /DCHDC/. Defined in CHDATA. Referenced in CHDATA, DEMAND, DEMI.
- PAVG Average yearly producer price, won/MT. Dimensioned by (region, commodity). Located in /DEMKC/. Defined in DEMKX, PRICE. Referenced in RURDEM.
- PAVGA Adjusted producer price, won/MT. Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.
- PCAL Percentage of calorie requirements consumed, percent. Dimensioned by (population group). Located in /CVDEMC/. Defined in DEMCRT.
- PCCON Per capita farm consumption, MT/person-year. Dimensioned by (region, commodity). Located in /DEMSVC/. Defined in DEMI, RURDEM. Referenced in DEMI, RURDEM.
- PCCONF Farm per capita consumption, MT/person-year. Dimensioned by (commodity). Located in /VDEMC/. Defined in RURDEM. Referenced in DEMCRT, DEMPRT.
- PCCONT Nonfarm consumption target, MT/person-year. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in DEMI, DEMPRT, PRICE.
- PCCONU Nonfarm per capita consumption, MT/person-year. Dimensioned by (commodity). Located in /DEMSVC/. Defined in DEMI, PRICE. Referenced in DEMCRT, DEMI, DEMPRT, PRICE.
- PCMEAN Mean of historical per capita consumption time series, MT/person-year. Dimensioned by (commodity). Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.
- PCMIN Minimum farm nonfood consumption as a proportion of previous period's nonfood consumption, proportion. Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT.

- PCNCON National average per capita consumption, MT/person-year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
- PCONVG Grains conversion factor, proportion. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- PCPMAX Maximum allowable proportional increase in consumer price, proportion/year. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.
- PCPMIN Maximum allowable proportional decrease in consumer price, proportion/year. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.
- PCRT Farm consumption target, MT/person-year. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in DEMI, DEMPRT, RURDEM.
- PCRT1 Farm consumption target for rice, MT/person-year. Located in /PPDEMC/. Defined in DEMDAT. Referenced in DEMPRT, RURDEM.
- PCT1 Rice consumption target, MT/person-year. Located in (LOCAL). Defined in PRICE, RURDEM. Referenced in PRICE, RURDEM.
- PCUT1 Nonfarm consumption target for rice, MT/person-year. Located in /PPDEMC/. Defined in DEMDAT. Referenced in DEMPRT, PRICE.
- PEOLV Edible offal proportion of livestock product, proportion. Dimensioned by (livestock commodity). Located in /ADNXDC/. Defined in ADNXD. Referenced in DEMI, CLOUT.
- PFDIMX Feed grains import price, won/MT. Located in /DEMKC/. Defined in DEMCRT. Referenced in OREDY.
- PFLOSS Total loss rate on domestic production, proportion. Dimensioned by (commodity). Located in /RDDATC/. Defined in RDDAT. Referenced in ASET, CLOUT, DEMI, FRMAC, OREDY, PRODLV.

- PILOSS Loss rate on imported commodities, proportion. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMI, TRADE.
- PLANT Index of plant sources of nutrients, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.
- PLOSTD Processing loss on tobacco consumed domestically, proportion. Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT, DEMI, TRACE.
- POP Population, persons. Dimensioned by (location). Located in /POPKC/. Defined in POPKX, POPMIG. Referenced in DEMCRT, DEMPRT, PRICE.
- POPL Lagged value of POP. Located in /POPKC/. Defined in POPKX, POPMIG. Referenced in DEMCRT, PRICE, RURDEM.
- POPR Farm population, persons. Dimensioned by (region). Located in /POPKC/. Defined in POPKX, POPMIG. Referenced in DEMCRT, RURDEM.
- PPRO Percentage of protein requirements consumed, percent. Dimensioned by (population group). Located in /CVDEMC/. Defined in DEMCRT.
- PRFEXP Export profits, won/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMPRT, TRADE.
- PRFIMP Import profits, won/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMPRT, TRADE.
- PRFRMY Regional proportion of farm household disposable income, proportion. Dimensioned by (region). Located in /NECDYC/. Defined in FRMAC. Referenced in RURDEM.
- PRO Protein consumption, grams/person-day. Dimensioned by (source, population). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.

- PROPC Percentage contribution to protein consumption, percent. Dimensioned by (source, population). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
- PRORPC Per capita protein requirements, grams/person-year. Dimensioned by (population group). Located in /POPKC/. Defined in POPMIG. Referenced in DEMCRT, POPPR2.
- PROTPU Protein content of foods, grams/MT. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT.
- PSUBCG Commodity-specific grain substitution proportions, proportion. Dimensioned by (commodity, commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- PSUBCM Commodity-specific meat substitution proportions, proportion. Dimensioned by (commodity, commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- PSUBTG Total grain substitution proportions, proportion. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- PSUBTM Total meat substitution proportions, proportion. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- PWHTIC Industrial consumption of wheat, proportion. Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT, DEMI, TRADE.
- PWLDD World food prices, \$/MT. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in TRADE.
- PWLDEX Export price of food, won/MT. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMPRT, PRICE, TRADE.
- PWLDIM Import price of food, won/MT. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMCRT, DEMPRT, PRICE, TRADE.
- PWPMAX Maximum allowable ratio of domestic consumer price to import price, proportion. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.

- PWPMIN Minimum allowable ratio of domestic consumer price to export price, proportion. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.
- Q Nonfarm consumption, MT/year. Dimensioned by (commodity). Located in /DEMSVC/. Defined in PRICE. Referenced in DEMCRT, DEMPRT, PRICE, TRADE.
- QREQHF Domestic crop production required for self-sufficiency in human and animal consumption, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT.
- QRQHFS Domestic crop production required for self-sufficiency in human and animal consumption and stock changes, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT.
- QRQHLV Domestic livestock production required for self-sufficiency in human consumption, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT.
- RATIOI Proportional change in farm income, proportion. Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.
- RDEM Farm consumption, MT/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in RURDEM. Referenced in DEMCRT, DEMPRT, PRICE, RURDEM, TRADE.
- RFRMY Exponential average of farm disposable income, won/person-year. Dimensioned by (region). Located in /DEMSVC/. Defined in RURDEM. Referenced in RURDEM.
- RFRMYL Lagged value of RFRMY. Located in (LOCAL). Defined in RURDEM. Referenced in RURDEM.
- RFTEX Food proportion of nonfarm consumption expenditures, proportion. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.

۰.

_	
RTHS	Vector of independent variables (right-hand side) in demand- simultaneous equations system, various units. Dimensioned by (equation). Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
S1	Income constraint ccefficient for nonfarm consumption, proportion. Located in /DEMSVC/. Defined in DEMI, PRICE. Referenced in DEMPRT, PRICE.
SAVUPC	Nonfarm savings per capita, won/person-year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
SDPHA	Seed input, MT/ha-year. Dimensioned by (region, crop). Located in /RDDATC/. Defined in RDDAT. Referenced in CROPAC, CLOUT, DEMI, OREDY.
SELFSU	Self-sufficiency of domestic production for human food and animal feed, proportion. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
STK	Commodity stock levels, MT. Dimensioned by (commodity). Located in /DEMSVC/. Defined in TRADE. Referenced in TRADE.
STKO	Initial commodity stock levels, MT. Dimensioned by (commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in TRADE.
STKRT	Months of consumption desired in stock, months. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in TRADE.
SUPPLY	Total supply for human consumption, MT/year. Dimensioned by (commodity). Located in (LOCAL). Defined in DEMI. Referenced in DEMI.
т	Simulated time, year. Located in /CONTRC/. Defined in KASM3. Referenced in DEMI, DEMCRT, DEMPRT, PRICE, RURDEM, TRADE, DEMKX.
TARH	Total crop area required to meet human consumption from domestic production, ha. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.
TARHF	Total crop area required to meet human and feed demand from domestic production, ha. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.

- TARHFS Total crop area required to meet human and feed demand and stock changes from domestic production, ha. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT.
- TARIFF Tariffs on food imports, proportion. Dimensioned by (commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in TRADE.
- TARREV Tariff revenues on food imports, won/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in TRADE. Referenced in DEMPRT, TRADE.
- TDEM National food demand, MT/year. Dimensioned by (commodity). Located in /DEMSVC/. Defined in DEMCRT. Referenced in DEMCRT, TRADE.
- TDEML Exponential average of national food demand, MT/year. Dimensioned by (commodity). Located in /DEMSVC/. Defined in TRADE. Referenced in TRADE.
- TDISAP Total utilization, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
- TDSUP Total domestic supply for human consumption, MT/year. Dimensioned by (commodity). Located in /PRDDC/. Defined in CLOUT, TRADE. Referenced in CLOUT, PRICE, TRADE.
 - TEXNF Total nonfarm expenditure on nonfood consumption, won/year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.

 - TEXPF Total nonfarm expenditure on food consumption, won/year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
 - TEXPFC Nonfarm food consumption expenditures, won/parson-year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
 - TEXPT Total nonfarm consumption expenditures, won/year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.

- TEXPTC Total per capita nonfarm consumption expenditures, won/personyear. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMPRT.
- TIMEI Initial year of simulation, year. Located in /CONTRC/. Defined in CONTR. Referenced in DEMI, TRADE.
- TOTHER Total utilization other than for human consumption, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
- TOTPOP Index of total population, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.
- TOTSOR Index of total nutrient sources, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.
- TOUTPT Total domestic production, MT/year. Dimensioned by (commodity). Located in /PRDDNC/. Defined in CLOUT. Referenced in ASNEIF, CLOUT, DEMCRT, PRDPRT.
- TPAVG National average agricultural producer prices, won/MT. Dimensioned by (commodity). Located in /DEMKC/. Defined in DEMKX, PRICE. Referenced in ASNEIF, DEMCRT, DEMKX, DEMPRT, PRICE.
- TPOP Total population, persons. Located in /POPKC/. Defined in POPKX, POPMIG. Referenced in DEMCRT, PRICE, TRADE.
- TRDPRF Profits on agricultural foreign trade, won/year. Located in /VDEMC/. Defined in TRADE. Referenced in PRTRAD, TRADE.
- TKPOP Total farm population, persons. Located in /POPKC/. Defined in POPKX, POPMIG. Referenced in DEMCRT, FRMAC, POPKX, POPMIG, RURDEM.
- TSTD Time-series tracking measure of goodness-of-fit, normalized sum of squared errors, no units. Dimensioned by (commodity). Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.
- TSTDG Sum of TSTD for grains, no units. Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.

TSTDM	Sum of TSTD for livestock and fisheries products, no units. Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.
TSTDO	Sum of TSTD for fruits and vegetables, no units. Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.
TSTDT	Sum of TSTD for all commodities, no units. Located in /TSTDC/. Defined in DEMCRT. Referenced in DEMCRT.
TTABI	Initial year of tracking period table functions, year. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMI, PRICE, RURDEM, TRADE.
TTAREV	Tariff revenues from agricultural imports, won/year. Located in /DEMNC/. Defined in TRADE. Referenced in TRADE, ASNEIF, NECPRT.
TVALDE	Agricultural trade balance, won/year. Located in /VDEMC/. Defined in TRADE. Referenced in PRCSD, PRTRAD, SENS, TRADE, VARAC.
UCONP	Nonfarm consumption of processed foods, won/person-year. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, NECPRT, DEMCRT.
UCONU	Nonfarm consumption of unprocessed foods, won/person-year. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, NECPRT, DEMCRT.
UPCI	Nonfarm household per capita disposable income, won/person-year. Located in /NECDYC/. Defined in ACCTG, NECDYX. Referenced in ASNEIF, DEMCRT, FRMAC, FYAPRT, NECPRT, PRICE.
URBAN	<pre>Index of nonfarm population group, no units. Located in /CONTRC/. Defined in CONTRD. Referenced in DEMCRT, DEMPRT.</pre>
VALDEF	Value of agricultural imports/exports, won/year. Dimensioned by (commodity). Located in /VDEMC/. Defined in DEMPRT, TRADE. Referenced in DEMCRT, DEMPRT.
VALDF1	Total value of agricultural exports, won/year. Located in /DEMNC/. Defined in TRADE. Referenced in ASNEIF, DEMPRT, NECPRT, TRADE.
VALDF2	Total value of agricultural imports, won/year. Located in /DEMNC/. Defined in TRADE. Referenced in ASNEIF, DEMPRT, NECPRT, TRADE.

VAREA	Historical time series of crop area, ha. Dimensioned by (year, region, crop commodity). Located in /FCAXDC/. Defined in FCAXD. Referenced in CLOUT, DEMI, FRACAX, YINTAL, YSET.
VCF	Historical time series of nonfood price index, no units. Dimensioned by (year). Located in /NDXDYC/. Defined in NDXD. Referenced in DEMI, NECDYX, PRICN.
VCPU	Table function values of historical consumer food prices, won/MT. Dimensioned by (year, commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI, PRICE.
VCPUT	Table function values of projected consumer prices, won/MT. Dimensioned by (year, commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in PRICE.
VCSTK	Table function values of historical agricul+ural stock changes, MT/year. Dimensioned by (year, commodity). Located in /ICDEMC/. D&fined in DEMDAT. Referenced in DEMI, TRADE.
VDFC	Historical time series of agricultural imports/exports, MT/year. Dimensioned by (year, commodity). Located in /DKXDC/. Defined in DKXD. Referenced in DEMI, DEMKX.
VDFCT	Table function values of projected agricultural imports/exports, MT/year. Dimensioned by (year, commodity). Located in /DKXDC/. Defined in DKXD. Referenced in DEMKX, TRADE.
VECTOR	Variables to be plotted, various units. Dimensioned by (variable). Located in (LOCAL). Defined in DEM/ND. Referenced in DEMAND.
VEFRMY	Historical time series of farm consumption expenditures, won/ person-year. Dimensioned by (year). Located in /ICDECOL. Defined in DEMDAT. Referenced in RURDEM.
VEINCM	Historical time series of nonfarm consumption expenditures, won/person-year. Dimensioned by (year). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI.

- VFEED Historical time series of feed use of crop production, MT/year. Dimensioned by (year, crop commodity). Located in /ADNXDC/. Defined in ADNXD. Referenced in CLOUT, DEMI.
- VFPIX Table function values of historical ratio of consumer to farm farm price indices, proportion. Dimensioned by (year). Located in /ICDEMC/. Defined in DEMDAT. Referenced in RURDEM.
- VFSH Historical time series of fisheries production, MT/year. Dimensioned by (year). Located in /ADNXDC/. Defined in ADNXD. Referenced in CLOUT, DEMI.
- VLIVST Historical time series of livestock production, MT/year. Dimensioned by (year, livestock commodity). Located in /FAYXDC/. Defined in FAYXD. Referenced in DEMI, FRAAYX, `SET.
- VMAX Temporary storage for maximum deviation of a consumer price from a bound, won/MT. Located in (LOCAL). Defined in PRICE. Referenced in PRICE.
- VPCSUP Table function values of projected per capita consumption of food commodities, MT/person-year. Dimensioned by (year, commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in TRADE.
- VPCUFD Historical time series of food proportion of nonfarm consumption expenditures, proportion. Dimensioned by (year). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMI, PRICE.
- VPICF Historical time series of edible proportion of industrial crops production, proportion. Dimensioned by (year). Located in /ICDEMC/. Defined in DEMDAT. Referencec in DEMCRT, DEMI, TRADE.
- VPOP Table function values of population, persons. Dimensioned by (year, population group). Located in /PKXDC/. Defined in PKXD. Referenced in DEMI, POPKX, POPMIG.
- VPP Table function values of projected producer price, won/MT. Dimensioned by (year, commodity). Located in /DKXDC/. Defined in DKXD. Referenced in DEMKX.
- VPRICE Table function values of historical producer prices, won/MT. Dimensioned by (year, commodity). Located in /DKXDC/. Defined in DKXD. Referenced in DEMI, DEMKX.

VPSUP	Historical time series of per capita consumption, MT/person-year. Dimensioned by (year, commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in DEMCRT, PRICE.
VPWI	Historical time series of import price, dollars/MT. D'mensioned by (year, commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in TRADE.
VPWLDI	Table function values of projected agricultural import prices, \$/MT.
• 14 -	Dimensioned by (year, commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in TRADE.
VPWLDX	Table function values of projected agricultural export prices, \$/MT.
	Dimensioned by (year, commodity). Located in /PPDEMC/. Defined in DEMDAT. Referenced in TRADE.
VPWX	Historical time series of export price, dollars/MT. Dimensioned by (year, commodity). Located in /ICDEMC/. Defined in DEMDAT. Referenced in TRADE.
VYIELD	Historical time series of crop yields, MT/ha-year. Dimensioned by (year, region, crop commodity). Located in /CRXDC,. Defined in CRXD. Referenced in CHGI, CHGRX, CLOUT, CEMI.
W	Consumer price index weights, no units. Dimensioned by (commodity). Located in /CPDEMC/. Defined in DEMDAT. Referenced in DEMCRT.
WOND	Foreign exchange rate, won/\$. Located in /NECDYC/. Defined in FTPD, NECDYX. Referenced in DEMPRT, NECPRT, TRADE.
WPFI	World food price index, no units. Located in /DEMNC/. Defined in DEMCRT. Referenced in ASNEIF, DEMCRT, DEMPRT, NECPRT.
WWP	World food price index weights, no units. Dimensioned by (commodity). Located in /DEMSVC/. Defined in DEMCRT. Referenced in DEMCRT.
พา	Sum of price index weights of all commodities, no units. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.
W2	Sum of price index weights of all food commodities, no units. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.

- W3 Sum of price index weights of grains other than rice, no units. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.
- W4 Sum of price index weights of meat commodities, no units. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.
- W5 Agricultural trade volume in initial year of simulation, won/year. Located in (LOCAL). Defined in DEMCRT. Referenced in DEMCRT.
- XDIFF Nonfarm savings, won/year. Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.
- YDEL Lag time for exponential averaging income, years. Located in /CPDEMC/. Defined in DEMDAT. Referenced in PRICE, RURDEM.
- YEAR Simulated time, year. Located in /CONTRC/. Defined in KASM3. Referenced in DEMPRT, PRICE, RURDEM, TRADE.
- ZZ Total domestic supply, MT/year. Dimensioned by (commodity). Located in /CVDEMC/. Defined in DEMCRT. Referenced in DEMCRT, DEMPRT.

APPENDIX B

DEMAND COMPUTER PROGRAM

This appendix contains FORTRAN listings of the computer program program of the demand-price-foreign trade model (DEMAND). Within each of the first two sections of this appendix, programs are listed alphabetically following the executive program. The first section begins with the executive routine DEMAND and includes programs particular to the DEMAND model. The second section begins with the ove.all executive program KA\SM3 and includes "overhead" routines of the KASM3 superstructure into which all the KASM models fit. Finally, the third section lists alphabetically the utility routines used by DEMAND. DEMAND Routines

.

THIS UPDATE REQUIRED 34100B WORDS OF CORE. SUBROUTINE DEMAND	DEMAND DEMAND DEMAND DEMAND DEMAND CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC
DEMAND - PRICE - TRADE MODEL	DEMAND
DECLARATIONS	DEMAND
COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA BI, IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, USTPR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUNIL LUIN2, LUOUT, LUPLOT(3), LURLP1, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KFPRT(15), KDPRT(15), KYPRT(15), KNPRT(15), NCC, NCOM, NCCMAG, NCRUP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, T, TIMEI, TIMEF, TTABI, YEAR, TOTSOR, TOTPOP, URBAN, TOTPOP, TOTSOR	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC
5 INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), (LUPLT3, LUPLOT(3))	CONTRC 1 CONTRC 1 CPDEMC
EQUIVALENCE (LUPLII, LUPLOT(I)), (LUPLIE), LUPLOT(3)) 1 (LUPLIE, LUPLOT(3)) COMMON /CPDEMC/ APCN, DELP, IGRAIN(5), IMEAT(5), MM(20), PILOSS(20), PLOSTD, PSUBCG(5,5,2), P CMI MM(20), PILOSS(20), PLOSTD, PSUBCG(5,2), PFU(2,2) 3 PSUFCM(5,5,2), PSUBTG(5,2), PSUBTM(5,2), PFU(2,2) 4 PCONVG(5), PWHTIC, YDEL, CALPU(20), PROTPU(20) 5 W(20)	CPDEMC O), CPDEMC , CPDEMC , CPDEMC , CPDEMC
<pre>PREAL_MM COMMON /VDEMC/ CP3STK(20), DSTK(20), DVALDF, EFRMY, ELASP(20,20), ELASPR(20,20), 1 ELASP(20), ELASIR(20), FRMY(1), INAPA(20), 1 FGIVAL, ITER, PCCONF(20), TARREV(20), 2 PRFEXP(20), PRFIMP(20), PWLDD(20), PWLDEX(20), 3 PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(20) COMMON /PLOTK/ NVARP, NVARC, NVARF, NVARA, NVARD, NVARY, NVA RN, 1 NVARK, NVAR, KMSW(7) 1 COMMON /DCHDC/ JRELD(100), GVALD(100), CVALD(100), ISFLD</pre>	DCHDC DEMAND
DIMENSION VECTUR(1) EQUIVALENCE (VECTUR(1), CHGSTK(1))	DEMAND DEMAND
EXECUTION	DEMAND
LINK = 3 IF(ICHDAT.NE.O) CALL CHDATA(APCN,JRELD,OVALD,CVALD,ISFLD,7)	DEMAND DEMAND DEMAND
FARM DEMAND CALL RURDEM	DEMAND DEMAND DEMAND
STOCK CHANGE, WORLD PRICES AND CONSUMPTION POLICIES CALL TRADEI	DEMAND DEMAND DEMAND
NONFARM DEMAND AND PRICES CALL PRICE	DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND DEMAND
FOREIGN TRADE IF(KRAP_NE_O) CALL TRADEC	DEMAND DEMAND DEMAND
OUTPUTS AND PERFORMANCE CRITERIA CALL DEMCRT	DEMAND DEMAND DEMAND
PRINT TABLES IF(ITABPR . NE. 0) CALL DEMPRT	DEMAND DEMAND DEMAND
RECORD DEMAND PLOT VALUES IF(IPLT: NE. 0 . OR. LVSTPR. NE. 0) WRITE(LUPLT1) (VECTOR(1), I=1, NVA	DEMAND
RETURN END	DEMAND DEMAND DEMAND

12	COMMON /ADNXD	C/ ARGFSH(5), KFSH, V RGFD(5), K	FSHT(5), V FD, VFEED(FSH(10), PEC)LV(5),		
DATA		VFEEDT(5	12), FDFS	HD	107 1271		ADNXDC	
	ATA TORLI /	4090444 /						
	ATA PEOLV /			· · · ·		$r = r^{-1} + r^{-1}$	ADNXD ADNXD	
E	ATA FDFSHD /	5000	166, .075,	0. /			ADNXD ADNXD	
	197		1070				ADNXD ADNXD ADNXD	
-	197		1972 1977	1973 1978	1974 1979			
1	ATA VESH / 735462.	, 1073733.	1343549	1404404				
5	5*2134979	/		1000483.	2026221.,		ADNXD	
D	ATA KESH / 5	1					ADNXD ADNXD	
1 D.	ATA ARGESH / 1975.	1001					ADNXD	
D	ATA VESHT /		1986.,				ADN XD ADN XD	
1	2500000.	, 3562000.,	5000000.,	4000000. ,	7000000. /			
	ATA KED 757						ADNXD ADNXD ADNXD	
1 1	TA ARGED / 1975.	1981	1986.,	1991.,	m =		ADNXD	
n	TA VEEDT /		1,00. 1	1771. 1	2001. /			
1	75000		:					
204	50000. 450000.	75000	100000, 75000,	100000.	100000.,		ADNXD ADNXD	
5 6		,	500000.,	500000.,	500000.,		ADNXD ADNXD	
5 6 7 8	500000	,	50000.,		50000. ,		ADNXD ADNXD	
*	20*0.	/ 500500.,	500000.,	500000.,	500000.,		ADNXD ADNXD	
	1970	1971	1972	1070			ADNXD ADNXD ADNXD	
11.4	1975	1976	1977	1973 1978	1974 1979	r	ADNXD ADNXD	
4	TA VFEED / 10+0.,					н н	ADNXD ADNXD	
ลงมอ	1:5000, 5#60000, 45000,				74000. ,		ADNXD ADNXD	
3 4	5+27000., 262000.,		43000.,		22000.		ADNXD ADNXD	
4 5 6	5#418000., 10#0.,	354000.,	413000.,	426000.,	413000.,		ADNXD	
6 6 7	18000 ; 5#46000 ;	27000.	24000. ,	34000. ,	32000.		ADNXD ADNXD ADNXD	
7 8 8	10#0., 382000 .	346000.,	251000.,	433000		· •	ADNXD	
8 *	5#495000, , 40+0		~~~~~~	433000. ,	495000. /		ADNXD ADNXD	
END					·		ADNXD ADNXD	;
6.1VL							ADNXD ADNXD	-
				t		•		
R 1 - 74						· .		
CUM	CKDATA CBDEM 10N /CPDEMC/	APCN, DELP,	_IGRAIN(5)	IMEAT(5)			CRDEM	
34		PSUBCM(5,5	2), PSURTO	LUSTD, PSU	BCG(5, 5, 2),	P CMIN,		
5 REAL	MM	W(20)	i witt 10, 1	DELI CALPU	(20), PROTPL)(2,20),)(2,20),	CPDEMC CPDEMC CPDEMC	*
	ION /PPDEMC/	ARG(5), KFT	(20), KNOR	KPAVG (20).			
	<u>.</u>	7677 6844.	FUERA (20)	A POPMIN(2), 0), PCRT(20) (20), STKRT(5,20),	1	PPDEMC	

1 2 3 4 5 6 COMMON /DEMS 1 2 3 REAL INCOM END	VPCUFD(10) 1C/ CHGSTK(20), ELASP(20,20) ELASP(20), E FGIVAL, ITER PRFEXP(20), PWLDIN(20), PWLDIN(20), EMC/ AREGH(12), PCAL(3), PP CALPC(2,3), GDVSUB(20), PROPC(2,3), GDVSUB(20), TARHF, TARH TEXPTC, TOT GVC/ ALPHA, CPU(DEMT(1,20), PCCONU(20), EINCOM, TDE	DSTK(20), D , ELASPR(20), ASIR(20), 20 PRFIMP(20), T AREGHF(12), CMARKT(20), T AREGHF(12), CMARKT(20), PCNCON(20), RFTEX, SAVU FS, TDISAP(HER(20), TE 20), CPUD(20) PCNCON(12), CPUD(20), PCNCON(12), CPUD(20), PCNCON(12), CPUD(20), CPUD(VALDF, EFR ,20), FRMY(1), I FRMY(1), I), TARREV(PWLDD(20) RDPRF, TVA ARQHFS(12 , CMPI, C0 , PRO(3,3) QREQHF(12 PC, SELFSU 20), TEXNF 20), TEXNF (0), DEMC(2), INCOM, MY(1), S1	<pre>MY, MY, 20), PWLDEX(20), LDF, VALDEF(), CAL(3,3), GPI, CPI, CR , GRGHFS(12 (20), TARH, , TEXPF, TEX F, ZZ(20) O), PCCON(1,20), STK(20),</pre>	,20) VD VD VD VD VD VD VD VD VD VD VD VD VD V	DEMC DEMC DEMC DEMC DEMC DEMC DEMC DEMMC DEMMC DEMMC DEMMC DEMMC DEMMC DEMMC DEMMC DEMC DE	54204547207454789204549
BLOCKDATA CI C DATA FOR SUBROU C DECLARATIONS C	TINE CHORX	מימי, אערו:). FYX2(1.1	(3), FXX3(1,1		RXD RXD RXD RXD RXD RXD RXDC	ณฑ4 ๖ ५ ७ ๙ ७ ५ ७ ५
COMMON /CRX 1 2 3	DC/ AARGCR(5), F ARGCRD(5), F VFERAP(5,1,1 VYPAS(5,1)	(CRD, ARGCR) (3), VYIELD	(5), KCR, F (10, 1, 12),	WCR, VYLDT (5, 1, 12), CI CI CI	RXDC RXDC RXDC RXD RXD RXD	3 4 5 9 10
C DATA	F /				Č	RXD RXD	11 12
C DATA KKCR / C DATA FLBX /					C	RXD RXD RXD	12 13 14 15
	381, 0. 281, 0. 260, 218, 1. 700, 0. 224, 190, 0. 330, 0. 250, 293, 0. 000, 0. 130, 793, 0. 594, 0. 424, 426, 2. 425, 0. 731,	0,020, 0,200,0,274 0,020, 0,869,3.756	4,0.126,0.3	357,0.103,0.2	00, C 31, C C	RXD RXD RXD RXD RXD RXD RXD	16
C DATA FXX2 / 1 3310., 2 4700., C	0., 0., 0., 8000 1930., 0. /	54., O., 400	62., 0., 21	760., 0.,	CCC	RXD RXD RXD RXD RXD RXD	1922222456
DATA FXX3 /	7940., 6180., 9 1590., 40520.,	40., 62890. 3360., 150	, 1590., 78 . /	202., 1505.,	CCCC	RXD RXD RXD RXD RXD	27 28 29 30
	//0., 19/6.,				CCC	RXD RXD RXD RXD	31 32 33 34
1	172, .299, 182, .286, 162, .256, 158, .223,	340, 330, 300, 240, 260, 110,	. 380, . 360, . 350, . 260, . 210, . 120,	. 400, 380, 370, 270, 200, 130,		RXD RXD RXD RXD RXD RXD RXD RXD	35 36 37 38 39 41 42
4 5 7 8 9 * A B	314, 319, 066, 093, 265, 418, 147, 220, 358, 615, 271, 407, 321, 464, 108, 170, 014, 014,	510, 270, 550, 500, 490, 200, 014,	. 610, . 300, . 510, . 520, . 510, . 210, . 014,	650, 320, 530, 530, 520, 220, 014 /		RXD RXD RXD RXD RXD RXD RXD	42 43 45 45 47 48
4 5 7 8 9 9 * A B C C DATA KCRD,	066, 093, 265, 418, 147, 220, 358, 615, 271, 407, 321, 464, 108, 170, 014, 014,	510, 270, 550, 500, 490, 200,	. 300, . 510, . 520, . 510, . 210,	. 320, . 480, . 530, . 520, . 220,		RXD RXD RXD RXD RXD RXD RXD RXD RXD	44 45 46
4 5 7 8 9 7 8 6 C C C DATA KCRD, C DATA AROCRI	066, .093, 265, .418, 147, .220, 358, .615, 271, .407, 321, .464, 108, .170, 014, .014, KCR / 5, 5 / 770, .1976,,	510, 270, 550, 500, 490, 200, 014,	. 300, . 510, . 520, . 510, . 210,	. 320, . 480, . 530, . 520, . 220, . 014 /		RXD RXD RXD RXD RXD RXD RXD CRXD CRXD CR	4456789012334
4 5 7 8 9 7 8 9 7 8 7 8 7 8 7 8 7 8 7 7 7 8 9 7 7 7 8 9 7 7 8 9 7 8 7 7 8 7 7 8 7 7 8 7 8	066, .093, 265, .418, 147, .220, 358, .615, 271, .407, 321, .464, 108, .170, 014, .014, KCR / 5, 5 / 770, .1976,,	510, 270, 550, 500, 200, 200, 014,	.300, .510, .520, .510, .210, .014,	. 320, 480, 520, 220, 014 /		RXD RXD RXD RXD RXD RXD RXD RXD CRXD CRX	4567890123 5555

•

	A VYLDT /						
23456789	4, 29, 2, 30, 2, 50,	4, 34, 2, 80, 3, 05,	4.88, 3.40, 3.58,	4.96, 3.59,	5. 17, 3. 95,	CRXD CRXD CRXD	
56	1.35, 8.60,	1.39, 8.90,	1. 87, 9. 20,	3.70, 2.41, 9.40,	4.37, 38,	ČŘÝD CRÝD	
78	1, 15, 11, 50, 16, 00,	1.25,` 13.50,	1.69, 16.00,	1.62, 18.00,	7.50, 1.90, 20.00,	CRXD	
9 *	2. 60, 25. 00,	16.50, 2.80, 25.00,	17.50, 2.90, 25.00,	18.00, 3.00,	19.00, _3.00,	CRXD CRXD CRXD	
B	. 50, . 85,	55, 1.00,	. 60, 1. 30,	25.00, .65, 1.50,	25.00, .65, 1.50 /	ČŘÝD CRÝD	
	1970 1975	1971	1972		1. 50 7	CRXD CRXD CRXD	
5 A 7 A		1976	1977	1973 1978	1974 1979	CRXD CRXD CRXD CRXD	7777777777777
1	((VYIELD(I, 1 3.301, 3.833,	(, J), I=1, 10 3. 386, 4#4 380), J≈1, 6) , 3. 350,	, 3. 594,	3. 690,	CRXD CRXD CRXD CRXD	8
227744556	3.301, 3.833, 2.178, 5*2.391,	4*4.290, 2.230,	2, 253,	2. 167,	1. 972,	CRXD CRXD CRXD	8
3	5 +2 . 220,	2. 263,	2. 371,	2. 310,	2.031,	CRXD CRXD	88
4 5	1.036, 5*1.302, _ 7.091,	1.128,	1.134,	1.160,	1.200,	CRXD	8
5	5+7.283,	7.368, .785,	8.329,	8.446,	7.748,	CRXD	8
6 JDATA	5#1.062 / ((VYIELD(1.1		.774,	. 772,	1.053,	CRXD CRXD CRXD	91
7 9 8 9 7	9,786, 5*11,531, 15,322,	11.4031	11.050,	10.361,	10.857,	CRXD	9 9 9
8 ?	5#17.845, 1.320.	15.379, 1.559,	15.975,	15.602,	15.558,	CRXD CRXD CRXD	9:
*	5#1.934, 10#25.,	1. 557,	2.010,	2. 026,	1.751,	CRXD CRXD CRXD	97 98
A A B	254, 5#. 397,	306,	. 345,	. 389,	. 422,	CRXD	95 100 101
B	820, 5#.807 /	919,	. 810,	. 816,	. 825,	CRXD CRXD	102
END						CRXD CRXD CRXD	104
							104
SURPO	UTINE DEMORT						
ECLARATI						DEMCRT	23
	V /CONTROL AN	IMAL, BASE	YR, DT, FA	RM. ITIME.	KTRACK, KTA BI,	DEMCRT	3 4 5
COMMO	14	STPR, MODE,	MODNAM (9		, ITABPR,	CONTRC CONTRC	ers.
Compion 1 1 1	L.V. KP		(RAP. KDEM	. "MALEC IV	NKI JPER.		4
1 1	LV KPI LU	GEN. LUDOR	,	0-201(3),	LURLP1,	CONTRE	~ ?
1 1	LV KP LU LU KP KP	PGEN, LUPOP PRT(15), KO	PRT(15), ((FPRT(15),	KAPRT(15).	CONTRC CONTRC CONTRC	36 7 A
COMMON 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LV KPI LU KPI KDI NC(NR)	PGEN, LUPOF PRT(15), KO PRT(15), KY C, NCOM, NO JN, NS, NAM	PRT(15), (PRT(15), (PRT(15), (OMAG, NCR(() () () () () () () () () () () () ()	AFPRT(15), (NPRT(15), DP, NLVST,	LURLP1,	CONTRC CONTRC CONTRC CONTRC CONTRC	204567890
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LU KP LU LU KPF KDF KDF NCC NRL T, TO	PGEN, LUPOF PRT(15), KC PRT(15), KY C, NCOM, NC JN, NS, NAM TIMEI, TIM SOR, TOTPO	PRT(15), (PRT(15), (OMAG, NCRO IE(20), PLA IEF, TTABI, P, URBAN	(SPRT(15), (NPRT(15), DP, NLVST, NT, YEAR,	LURLP1, KAPRT(15), NNC, NREGN,	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC	10
I 1 2 2 2 3 4 5 5 INTEGE EQUIVA 1 COMMON	LV KPI LU KDF KDF NCC NCC NRL TOT TOT LENCE (LUPLT1 (LUPLT2 (DEMUC) TOT	PGEN, LUPOF PRT(15), KC PRT(15), KY C, NCOM, NC UN, NS, NAM TIMEI, TIM TSOR, TOTPO MM, PLANT, LUPLOT(1) LUPLOT(3)	, T(15), (PRT(15), (OMAG, NCR(E(20), PL/ EF, TTABI, P, URBAN, TOT), (LUPLT2,)	(FPRT(15), (NPRT(15), JP, NLVST, NT, YEAR, TPOP, TOTS LUPLOT(2)	LURLP1, KAPRT(15), NNC, NREGN, OR),	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC	10 11 12 13 14
1 1 2 2 2 2 2 2 3 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 7 7 7 7 7	LV KPI LU KPI KDI KDI R ANIMAL, FAF LENCE (LUPLT1 (LUPLT3 /DEMKC/ APCF /DEMKC/ CPFI	PGEN, LUPOF PRT(15), KC PRT(15), KY C, NCOM, NC UN, NS, NAM TIMEI, TIM SOR, TOTPO IN, PLANT, LUPLOT(1) LUPLOT(3) DEFCIT(2) FCOMP.	, PRT(15), (PRT(15), (OMAG, NCR(16(20), PL, 16(20), PL, 16(20), PL, 16(20), PL, 16(20), PL, 16(20), PL, 16(20), PAVG(1) 00, PAVG(1)	(FPRT(15), (NPRT(15), JP, NLVST, NT, YEAR, (POP, TOTS, LUPLOT(2) (20), PFD	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAVG(2 0)	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC	10 11 12 13 14
1 1 2 2 2 2 3 3 4 5 5 1 NTEGE EQUIVA 1 COMMON 1 COMMON	LU KPI LU LU KDF KDF KDF KDF KDF KDF KDF COPE LENCE LUPLT3 CDEMKC/ APCF JDEMKC/ APCF JDEMKC/ CPFI JDEMYC/ CON(FYAKC/ LPER	PGEN, LUPOF PRT(15), KC PRT(15), KY C, NCOM, NC JN, NS, NAM TIMEI, TIM FSOR, TOTPO SOR, TOTPO SOR, TOTPO SOR, TOTPO , LUPLOT(1) , LUPLOT(2) , FCONP, F NP, UCONU, 1,20). DSA (1,4). PFP	, PRT(15), (PRT(15), (PRT((FPRT(15), (NPRT(15), DP, NLVST, NT, YEAR, (POP, TOTS) LUPLOT(2) , 20), PFD EV, TEXNF(ALDF2, WP	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAVG(2 0) C, FEXNFC,	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC DEMNC DEMNC DEMNC	10 11 12 13 14
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU KPI LU LU KDF KDF KDF KDF KDF KDF KDF TO COPT COPT COPT CON CON CON CON CON CON CON CON CON CON	PGEN, LUPOF PRT(15), KC PRT(15), KC PRT(15), KY C, NCOM, NC JN, NS, NAM TIMEI, TIM FSOR, TOTPO SOR, NAME SOR, NAME SOR SOR SOR SOR SOR SOR SOR SOR SOR SOR	, PRT(15), (PRT(15), (20MAG, NCR(12(20), PL4 12F, TTABI, P, URBAN URBAN, TOI), (LUPLT2, 0), PAVG(1 CONU, TTAR VALDF1, V VD(1) T(13), POI), FSAV(1)	(1), PPES1	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAVG(2 0) C, FEXNFC, F(1),	CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC DEMNC DEMNC DEMNC DEMYC FYAKC FYAKC	10 11 12 13 14
I 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU KPI LU LU LU KPI KDI KDI KDI KDI KDI KDI KDI KD	PGEN, LUPOF PRT(15), KC PRT(15), CPUNF, PRT(15), KC PRT(15), K	, PRT(15), (PRT(15), (PRT(15), (DMAG, NCR(IE(20), PL/ IEF, TTABI, P, URBAN, TOI), (LUPLT2,) 0), PAVG(1 CONU, TTAR VALDF1, V VD(1) T(13), POI), FSAV(1) FPCI, PR TYG, TYM	(FPRT(15), (NPRT(15), DP, NLVST, NT, YEAR, (POP, TOTS) LUPLOT(2) ,20), PFD EV, TEXNE(ALDF2, WP) (1), PPES FRMY(1), U	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAUG(2 0) C, FEXNFC, FI T(1), UPCI, WOND,	CONTRC CONTRCC CONTRCC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC DEMNC DEMNC DEMNC DEMNC DEMNC FYAKC FYAKC FYAKC NECDYC	10 11 12 13 14
I 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU KP LU LU LU LU KDF KDF NCC NRL TOT R ANIMAL, FAF LENCE (LUPLT1 (LUPLT1 (LUPLT1 /DEMKC/ APCF /DEMKC/ APCF /DEMKC/ CPFI /DEMYC/ CON(/FYAKC/ LPER WR PRDDNC/ TOU /PRDDNC/ TOU /PRDDNC/ AQID	PGEN, LUPOF PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), TOTPO M, PLANT, IDEFCIT(2) PEFCIT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(2) PRT(15), KC PRT(2) PRT(15), KC PRT(15), KC PRT(<pre>>, PRT(15), (PRT(15), (OPAG, NCR(E(20), PL4 EF, TTABI, P, URBAN, TOI), (LUPLT2,)), PAVG(1 CONU, TTAR VALDF1, V VD(1) T(13), POI), FSAV(1) FPCI, PR TYG, TYN</pre>	<pre>(FPRT(15), (NPRT(15), DP, NLVST, NT, YEAR, (POP, TOTS) LUPLOT(2) ,20), PFD (EV, TEXNE(ALDF2, WPF (1), PPES) FRMY(1), U AG</pre>	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAUG(2 0) C, FEXNFC, FI T(1), UPCI, WOND,	CONTRC CONTRCC CONTRCC CONTRC CONT	10 11 12 13 14
I 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU KPI LU LU LU KDF KDF KDF KDF KDF KDF KDF KDF	PGEN, LUPOF PRT(15), KC PRT(15), KC PRT(15), KC PRT(15), KC JN, NS, NAM TIMEI, TIM SOR, TOTPO SOR, TOTPO SOR, TOTPO M, PLANT, LUPLOT(1) , DEFCIT(2) , FCONP, F NP, UCONU, 1,20), DSA (1,4), PFR 1), YMIN(1 NTX, CPUNF, DIP, TPTAX, TPT(20) (12), EFFPL , FLOSS(20) A	, TAREA(1); PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PAVG(1), (FPCI, PR TYG, TYN V(7), EFF (, TAREA(1))	<pre>(FPRT(15), (NPRT(15), DP, NLVST, ANT, YEAR, (POP, TOTS) LUPLOT(2) ,20), PFD (20), PFD (1), PPES (1), PPES FRMY(1), L AG YLD(12), F 2), TDSUP(</pre>	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAVG(2 0) C, FEXNFC, F(1),	CONTRC CONTCC CO	10 11 12 13 14
I 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU LU LU LU LU LU LU LU LU KPF KDF KDF KDF KDF KDF KDF KDF KD	PGEN, LUPOF PRT(15), KC SOR, TOTPO MIN, PLANT, , LUPLOT(1) , LUPLOT(1) , LUPLOT(1) , LUPLOT(3) , DEFCIT(2) , FCONP, F NP, UCCONU, 1, 20), DSA (1, 4), PFR 1), YMIN(1 NTX, CPUNF, DIP, TPTAX, DIP, TPTAX, FLOSS(20) SS(20), SE PLOSS(20), SE SOL, PLOSS(20), SE	PRT(15), (PRT(15), (PRT(15),) PRT(15), PL/ PRT(15), PL/ PRT(15), PL/ PRT(15), PL/ PRT(15), PL/ PRT(15), PL/ PRAUE, NEW VALDF1, V VD(1) FSAV(1) FPCI, PR TYG, TYN V(7), EFF TAREA(1) PHA(1, 12) PAIN(5), PL/ PRT(15), PL/ PL/ PRT(15), PL/ PL/ PL/ PL/ PL/ PL/ PL/ PL/	<pre>(FPRT(15), (NPRT(15), DP, NLVST, YEAR, (POP, TOTS, LUPLOT(2) ,20), PFD EV, TEXNF(ALDF2, WPF (1), PPES) (1), PPES) FRMY(1), U AG YLD(12), F 2), TDSUP(IMEAT(5),</pre>	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAVG(2 0) C, FEXNFC, T(1), UPCI, WOND, DFSH, FEED(12), 20). TOUTRL ,	CONTRC CONTCC CONTRC CONTCC CO	10 11 12 13 14
I 1 2 2 2 2 2 2 2 2 2 2 2 2 2	LU LU LU LU LU LU LU LU KPF KDF KDF KDF KDF CON CON CON CON CON CON CON CON CON CON	PGEN, LUPOF PRT(15), KC PRT(15), KC PRT(1	PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PRT(15), (PAUG(1), (PRT(1, 12), (PHA(1, 12), (PRT(15), (PHA(1, 12), (PRT(15),	(FPRT(15), (NPRT(15), DP, NLVST, YEAR, (POP, TOTS, LUPLOT(2), 20), PFD EV, TEXNF(ALDF2, WPF (1), PPEST (1), PPEST FRMY(1), (AG YLD(12), F 2), TDSUP(IMEAT(5), 5TD, PSUBC	LURLP1, KAPRT(15), NNC, NREGN, OR), IMX, TPAUG(2 0) C, FEXNFC, FI T(1), UPCI, WOND,	CONTRC CONTCC CONTRC CONTCC CO	10

COMMON /ICDEMC/ ELISAV(20), ELISVR(20), EPAVGO(20), STKO(20), VCPU(10,20), VCSTK(10,20), VEFRMY(10), VFPIX(10,, VPSUP(10,20), VPWI(10,20), VPWX(10,20), FNR(20), VPICF(10), VEINCM(10), VPCUFD(10) COMMON /DEMSVC/ ALPHA, CPU(20), CPUO(20), DEMC(20), DEMT(1,20), EPAVG(1,20), INCOM, PCCON(1,20), PCCONU(20), G(20), RFRMY(1), S1, STK(20), EINCOM, TDEM(20), TDEML(20), WWP(20) ICDEMC ICDEMC ICDEMC ICDEMC ICDEMC DEMSVC DEMSVC DEMSVC 123 123 DEMSVC

 INCOM, TDEM(20), TDEML(20), WWP(20)

 REAL INCOM

 COMMON /TSTDC/ TSTD(20), PCMEAN(20), TSTDG, TSTDM, TSTDO, TS TDT

 COMMON /TSTDC/ CHOSTK(20), DSTK(20), DVALDF, EFRMY,

 ELASP(20,20), ELASPR(20,20),

 ELASP(20,20), ELASPR(20,20),

 FGIVAL, ITER, PCCONF(20), TARREV(20),

 PREEXP(20), PRFIMP(20), TARREV(20),

 PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(20)

 PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(20)

 PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(20)

 COMMON /CVDEMC/ AREGH(12), AREGHF(12), ARGHFS(12), CAL(3,3),

 PCAL(3), PPR0(3),

 COMMON /CVDEMC/ AREGH(12), GREGHF(12), GREGHF(12), GRGHFS(12),

 COMMON /CVDEMC/ AREGH(12), PROCONCEON, CAU, COMPI, COGPI, CPI, CR PI,

 GOVSUB(20), PCNCONC20), PR0(3,3),

 PROPC(2,3), GREGH(12), GREGHF(12), GRGHFS(12),

 GRGHLV(7), RFTEX, SAVUPC, SELFSU(20), TARH,

 TARHF, TARHFS, TDISAP(20), TEXNF, TEXPF, TEX PT,

 TEXPTC, TOTHER(20), TEXPFC, XDIFF, ZZ(20)

 COMMON /POPKC/ CALPC(2), POP(2), POPC(2)

 DEMSVC TSTDC VDEMC VDEMC VDEMC VDEMC VDEMC VDEMC VDEMC CVDEMC CVDEMC CVDEMC CVDEMC CVDEMC CVDEMC CVDEMC CVDEMC 1 123 1 1233 CVDEMC CVDEMC CVDEMC POPKC POPKC DEMCRT DEMCRT 4 5 ŏ 1 CCCC CALCULATION OF NATIONAL CRITERION VARIABLES DEMORT DEMCRT DEMCRT DEMCRT DEMCRT PFDIMX = PWLDIM(4) DD 50 J=1.NCOMAG TDEM(J) = RDEM(J) + Q(J) PCNCON(J) = TDEM(J) / TPOP CONTINUE CPT = 0.0 DEMCRT 50 DEMCRT CPI = 0 WPFI = 0 CPFI = 00. O DEMCRT WPFI = 0. CPFI = 0.0 CDGPI = 0.0 CMPI = 0.0 W1 = 0.0 W2 = 0.0 DEMCRT DEMCRT W1 W2 W3 DEMCRT DEMCRT 0. 0 0. 0 = DEMCRT **W**4 22 $\ddot{W}5 = 0$ DEMORT PRICE INDICES c c DEMCRT DD 50 J=1, NCOMAG CMARKT(J) = TPAVG(J) * MM(J) GDVSUB(J) = CMARKT(J) - (CPU(J) - TPAVG(J)) IF(ITIME.NE.0 . OR. KRAF.EQ.0) GD TD 60 W5 = W5 + ABS(VALDEF(J)) 60 CONTINUE DEMCRT DEMCRT DEMCRT DEMCRT .C DEMCRT CRPI = CPU(1)/CPUD(1) DO BO J=1,NCOM IF(KRAP.EQ.O DR. DEFCIT(J).EQ.O. OR. J.GT.NCOMAG) GO TO 65 IF(ITIME EQ. O) WWP(J) = ABS(DEFCIT(J)) / W5 WPFI = WPFI + WWP(J) * ABS(VALDEF(J)) / ABS(DEFCIT(J)) 65 CONTINUE CPI = CPI + W(J)*(CPU(J)/CPUD(J)) W1 = W1 + W(J) IF(J.GT.NCOMAG) GO TO BO CPFI = CPFI + W(J)*(CPU(J)/CPUD(J)) W2 = W2 + W(J) IF(J.EQ.1 OR. J.EQ.5 OR. J.EQ.7 OR. J.GE.9) GD TO 70 COGPI = COGPI + W(J)*(CPU(J)/CPUD(J)) W3 = W3 + W(J) 70 CONTINUE IF((J.LT.13).OR.(J.GT.18)) GD TO BO CMPI = CMPI + W(J)*(CPU(J)/CPUD(J)) W4 = W4 + W(J) BO CONTINUE CRPI = CPU(1)/CPUO(1)DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCAT DEMCRT DEMCRT DEMCRT DEMCR I DEMCRT С DEMCRT CPI = CPI/W1 CPFI = CPFI/W2 CDGPI = CDGPI/W3 CMPI = CMPI/W4 DEMCRT DEMCRT DEMCRT DEMCRT CCCC DEMCRT NONFARM CONSUMPTION EXPENDITURES AND PROCESSED/UNPROCESS ED DEMCRT FCONU = FCONP = 0 FCONU = 0. FCONP = 0. UCONV = 0. UCONV = 0. TEXPF = 0. D0 85 J=1,NCOMAG FCONV = FCONU + PFU(1,J)*TPAVG(J)*RDEM(J)/POP(1) FCONV = FCONP + (1.-PFU(1,J))*TPAVG(J)*RDEM(J)/POP(1) UCONU = UCONU + PFU(2,J)*CPU(J)*Q(J)/(POP(2)*ALPHA) DEMCRT DEMCRT DEMCRT DEMORT DEMORT DEMORT DEMCRT

:

128

3

456234562234567234567

423454547

48 49 50

5123455555556 55555555556 6

6666666667777777777788888

UCONP = UCONP + (1PFU(2, J))*CPU(J)*Q(J)/(POP(2)*ALPHA)DEMCRTTEXPF = TEXPF + CPU(J) * Q(J) / ALPHADEMCRTB5 CONTINUETEXPF = CFU(NCOM) * Q(NCOM) / ALPHADEMCRTTEXPF = TEXPF + TEXNFDEMCRTRFTEX = TEXPF / TEXPTDEMCRTNDIFF = POP(2) * UPCI - TEXPTDEMCRTIF(ITIME_EQ. 0) XDIFF = POP(2) * (EINCOM/APC:, - TEXPTDEMCRTCSAVUPC = XDIFF / POP(2)TEXPT / POP(2)IEXPTC = TEXPT / POP(2)DEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTDEMCRTSAVUPC = TEXPT / POP(2)TEXPTCTEXPTC = TEXPT / POP(2)TEXPTC	
TEXNF = CFU(NCOM) + Q(NCOM) / ALPHA DEMCRT DEMCRT DEMCRT	86 87 88
DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	89 90
C SAVUPC = XDIFF / POP(2) * (EINCOM/APC: / - TEXPT DEMCRT TEXPTC = TDIFF / POP(2)	91 92
TEXERC = TEXES (DEVE)	93 94 95
$\frac{1}{C} \frac{1}{1} \frac{1}$	96 97
IF(ITIME.NE.O) CMIN = PCMIN * FEXNFC DEMCRT FEXNFC = EFRMY - FCONU - FCONP DEMCRT IF(ITIME.EQ.O; GO TO BB DSAV = AMAX1(CMIN - FEXNFC, O.) * TRPOP DEMCRT DO B7 IR=1, NREGN DEMCRT, DEMCRT DSAVD(IR) = -DSAV * POPR(IR) / TRPOP DEMCRT B7 CONTINUE DEMCRT	98 99
DSAV = AMAX1(CMIN - FEXNEC, 0.) * TRPOP DEMCRT	100 101 102
$\begin{array}{rcl} DD & 87 & IR=1, NREGN \\ DSAVD(IR) &= -DSAV + POPR(IR) / TRPOP \\ 87 & CONTINUE \\ \end{array}$	103
$\begin{array}{cccc} \text{B7 CONTINUE} & \text{DEMCRT} & \text{DEMCRT} \\ \text{B8 CONTINUE} & \text{B9 CONTINUE} & \text{DEMCRT} \\ \text{B9 CONTINUE} & \text{DEMCRT} & \text{DEMCRT} \\ \text{C} & \text{SELF-SUFFICIENCY AND SELF-SUFFICIENCY REQUIREMENTS} & \text{DEMCRT} \\ \text{C} & \text{SELF-SUFFICIENCY AND SELF-SUFFICIENCY REQUIREMENTS} & \text{DEMCRT} \\ \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} \\ \text{TARH} & = 0 & \text{DEMCRT} \\ \text{TARHF} & = 0 & \text{DEMCRT} \\ \text{TARHFS} & = 0 & \text{DEMCRT} \\ \text{D0 110 J=1, NCRDP} & \text{DEMCRT} & \text{DEMCRT} \\ \text{AREQH(J)} & = \text{TDEM(J) / EFFYLD(J)} & \text{DEMCRT} \\ \text{IF(J) EQ 3) AREQH(3) = AREQH(3) / (1PWHTIC) & \text{DEMCRT} \\ \text{IF(J) EQ 12) AREQH(12) = AREQH(12) / TARE \\ \text{DEMCRT} & \text{DEMCRT} \\ \text{DEMCRT} & \text{DEMCRT} \\ \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} \\ \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} \\ \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} & \text{DEMCRT} \\ \end{array} \end{array}$	105
C DEMCRT DEMCRT C SELF-SUFFICIENCY AND SELF-SUFFICIENCY REQUIREMENTS DEMCRT	107 108 109
IF (KRAP EQ 0) GO TO 125	110
IARHF=DEMCRTIARHFS=0DD_110J=1, NCRDPDEMCRTDD_110J=1, NCRDPDEMCRT	112
$\begin{array}{llllllllllllllllllllllllllllllllllll$	114 115 116
	117
GREGH(J) = AYLD(J) + AREGH(J) / (1PLOSTD) TARH = TARH + AREGH(J) C	119 120
$\frac{\text{DEMCRT}}{\text{QREQHF}(J)} = \frac{\text{AREQH}(J)}{\text{AV}} + \frac{\text{EEED}(J)}{\text{DEMCRT}} = \frac{\text{DEMCRT}}{\text{DEMCRT}}$	121 122 123
C TARHE = TARHE + AREGHE (J) DEMCRT	124 125
ARGHFS(J) = AREGHF(J) + CHGSTK(J) / EFFYLD(J) DEMCRT QRGHFS(J) = AYLD(J) + ARGHFS(J) DEMCRT TARHFS = TARHFS + ARGHFS(J) DEMCRT 110 CONTINUE DEMCRT D0 115 J=13, 19	126
110 CONTINUE ARGHES(J) DEMCRT	128 127 130
III3 CONTINUE DEMCRT C DEMCRT	131 132
$\begin{array}{c} \text{DD} \text{ (15 J=13, 19} \\ \text{DC} \text{ (15 J=13, 19} \\ \text{DEMCRT} \\ \text{DEMCRT} \\ \text{113 CONTINUE} \\ \text{C} \\ \begin{array}{c} \text{DU} \text{ (120 } \text{(=1, NCOMAG} \\ \text{ZZ}(\text{J}) \text{ = TOUTPT(J) + DEFCIT(J)} \\ \text{IF}(\text{J} \text{ EG} \text{ (1) } \text{ZZ}(1) \text{ = TOUTRL + DEFCIT(1)} \\ \text{IF}(\text{J} \text{ EG} \text{ (12) } \text{ZZ}(1) \text{ = TOUTPT(12) * TABEL(VPICF, KTABI, TTABI, 1, 0, T)} \\ \text{DEMCRT} \\$	133
$\begin{array}{cccc} IF(J) & EG(1) & Z(1) & = TOUTRL + DEFCIT(1) & DEMCRT \\ IF(J) & EG(12) & Z(12) & = TOUTRL + DEFCIT(1) & DEMCRT \end{array}$	135 136 137
iF(J) = G (12) ZZ(1) = TOUTRL + DEFCIT(1) DEMCRT 1 TOTHER(J) = ZZ(J) = TOUTRL + DEFCIT(1) DEMCRT TOTHER(J) = ZZ(J) - TDEM(J) TOLEN (VPICF, KTABI, TTABI, 1. 0, T) DEMCRT TDISAP(J) = ZZ(J) - TDEM(J) DEMCRT	138 139
SELFSU(J) = 0 TE(77(J) = 0	140 141
	142 143 144
	145 146
DO 90 IP=1. TOTROD	147 148
CAL (IS, ID) TOTSOR	149 150 151
C PO CONTINUE DEMCRT 1	52 53
C DO 94 JC=1, NCOMAG DEMCRT 1	54
IF (JC. LE. NCROP) DEMORT	56 57 58
91 THEN FOR CALORIES AND PROTEIN FROM PLANT COURSES GO TO 92 DEMORT 1	59 60
CAL (PLANT, PARAN) = CAL (PLANT, URIAN) + CAL PULLION - CONTIN UE DEMORT	61 62
PRO(PLANT, FARM) = PRO(PLANT, URBAN) + PROTPU(JC) + PCCONU(JC)/ 365. DEMCRT 1	63 64 65
92 92 DEMONTES AND PRUTEIN FROM ANIMAL ODUDADE GU 10 93 DEMORT	56 57
CAL (ANIMAL, FARM) = CAL (ANIMAL, URBAN) + CALPU(UC) * PCCONULUE DEMORT	58 59 70
93 PRO(ANIMAL, FARM) = PRO(ANIMAL, URBAN)+ PROTPU(UC) + PCCONF(UC)/365. DEMCRT 1	71 1
94 CONTINUE DEMCRT 17	3
DEMCRT 17 DEMCRT 17	
,	

<pre>10 98 IS=PLANT, ANIMAL 10 98 IP=FARM, URBAN 98 PRO(IS, IP) = PRO(IS, IP) * 1.E6 NATIONAL AVERAGES 10 95 IS=PLANT, ANIMAL (AL(IS, TOTPOP) = (CAL(IS, URBAN)*POP(URBAN) + (AL(IS, TOTPOP) = (CAL(IS, URBAN)*POP(FARM)) / TPOP 1 PRO(IS, TOTPOP) = (PRO(IS, URBAN)*POP(FARM)) / TPOP 1 PRO(IS, FARM)*POP(FARM)) / TPOP 1 ONTINUE 10 96 IP=1, TOTPOP (AL(TOTSOR, IP) = CAL(PLANT, IP) + CAL(ANIMAL, IP) PRO(TOTSOR, IP) = PRO(PLANT, IP) + PRO(ANIMAL, IP) 96 (ONTINUE 1 ON TIME 1 ON TABLE 1 ON</pre>	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	181 182 183 184 185
PRO(15, TOTPOP) PRO(15, FARM)*POP(FARM)) / TPOP 95 (ONTINUE 100 04 18=1, TOTPOP	DEMCRT DEMCRT DEMCRT DEMCRT	186 187 188 188
(AL (TOTSOR, IP) = CAL (PLANT, IP) + CAL (ANIMAL, IP) (AL (TOTSOR, IP) = PRO(PLANT, IP) + PRO(ANIMAL, IP) PRO(TOTSOR, IP) = PRO(PLANT, IP) + PRO(ANIMAL, IP) 96 (ONTINUE	DEMCRT DEMCRT DEMCRT DEMCRT	190 191 192 193
96 CONTINUE COMPUTE PERCENTAGES FOR PLANT VS ANIMAL SOURCES JO 97 IP=1, TOTPOP DO 97 IS=PLANT, ANIMAL CALPC(IS, IP) = CAL(IS, IP) / CAL(TOTSOR, IP) * 100. PROPC(IS, IP) = PRO(IS, IP) / PRO(TOTSOR, IP) * 100. PROPC(IS, IP) = PRO(IS, IP) / PRO(TOTSOR, IP) * 100.	DEMCRT DEMCRT DEMCRT DEMCRT	194 195 196 197 198
PERCENTAGE OF CALORIE AND PROTEIN REQUIREMENTS CONSUMED	DEMCRT DEMCRT DEMCRT DEMCRT	199 200 201 201
LO 99 IP=1, TOTPOP FCAL(IP) = 0 FPRO(IP) = 0 99 CONTINUE IF(KPOP EQ 0) GO TO 105	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	203
DO 100 IP=FARM, ORBAN PCAL(IP) = 100 * CAL(TOTSOR, IP) /(CALRPC(IP)/365.) PRO(IP) = 100. * PRO(TOTSOR, IP) /(PRORPC(IP)/365.)	DEMCRT DEMCRT DEMCRT	201
<pre>DO CCNTINUE PCAL(TOTPOP) = 100. * CAL(TOTSOR, TOTPOP)/((CALRPC(FARM)*POP(FARM) +CALRPC(URBAN)*POP(URBAN)/(TPOP*365.)) 1 FPRO(TUTPOP) = 100 * PRO(TOTSOR, TOTPOP)/((PRORPC(FARM)*POP(FARM)) 1 +PRORPC(URBAN)*POP(URBAN))/(TPOP*365.))</pre>	DEMCRT DEMCRT DEMCRT DEMCRT	21 21 21 21
COS CONTINUE TIME-SERIES TRACKING MEASURES OF FIT IF(ITIME GT 0) GO TO 150	DEMCRT DEMCRT DEMCRT DEMCRT	21 21 21 21
L40 CONTINUE	DEMCRT DEMCRT DEMCRT DEMCRT	22222
GD TU 190 150 CONTINUE 1F(T_GT_BASEYR+ 0001) GD TO 190 DD 160 I=1,NCOMAG IF(I_EQ.10OR_I_EQ.11) GD TO 160 IF(I_EQ.10OR_I_EQ.11) GD TO 160 IF(I_EQ.10OR_I_EQ.11) GD TO 160	DEMCRT DEMCRT DEMCRT DEMCRT	ระการเรา การเรา การเรา
TSTD(I) = TSTD(I) + (PCRCOR(I) + (BELEVALUATION (DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	NANNU NANNUU NANNUU
IF(ABS(BASEYR-T), GT = 0001) G0 10 170 TSTDT = 0. D0 170 I=1, NCOMAG IC 10 00 170 I=1, NCOMAG	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	มนกนก มายานก
PCMEAN(I) = SCMEAN(I) / PCMEAN(I) **2' $TSTD(I) = TSTD(I) / (PCMEAN(I) **2')$ $TSTDT = TSTDT + TSTD(I)$	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	NNNN NNNNN
TSTDG = TSTD(1) + TSTD(2) + TSTD(3) + (SID(4) + ISID(4)) TSTD0 = TSTD(5) + TSTD(7) $TSTDM = TSTD(13) + TS^{-}D(14) + TSTD(15) + TSTD(16) + TSTD(17)$ + TSTD(18)	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	ณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณณ
IF(KLPRT(13), EQ. 0) GO TO 190 PRINT 180, TSTD, TSTDG, TSTDD, TSTDM, TSTDT 180 FORMAT(1H1,T5,36H)EMAND TIME-SERIES TRACKING MEASURES / 180 FORMAT(1H1,T5,36H)EMAND TIME-SERIES TRACKING MEASURES / 1 TB,13HBY COMMODITY,10F10 4/21X,10F10.4/	DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT DEMCRT	กับกับ กับกับกับ กับกับกับ
3 TB, 13HFOR FRT + VEG, F10. 4 / 4 TB, 13HFOR LVSTK/FSH, F10. 4 / 5 TB, 13HFOR ALL COMM , F10. 4) 190 CONTINUE	DEMCRT DEMCRT DEMCRT DEMCRT	กณฑฑ
	DEMCRT	22
	DEMBAT	
BLOCKDATA DEMDAT	DEMDAT DEMDAT DEMDAT	
DEMAND DATA DECLARATIONS	DEMDAT DEMDAT DEMDAT	

	234		MM(20), PSUBCM(5	PILOSSIZO	PLOSTD,	PSUBCG(5,	5-71		
	4 5 REAL N	1M	PCDNVG(W(20)	5), PWHTI(JUTG(5,2), , YDEL, (PSUBCG(5, PSUBTM(5, ALPU(20),	2), PFU(PROTPU((20), CPDEMČ	
	COMMON	I / I CDEMC	/ ELISAU/					CPDEMC	
	*234		VEPTYING	A DOGLES	AUDI VUDI	N(10,20).	VEFRMY (1	0), ICDEMC	
	ู้ 	/PPDEMC.	VPCUFD(1	20), FNR(2 C) VET/De)	20), VPICF	(10), VEIN	CM(10),	I CDEMC I CDEMC	
	23		PCCONT(20 PCRT1, PC), PCPMAX(UT1, PUPMA	20), PCPM	G(20), IN(20), PC	RT(20).	I CDEMC PPDEMC	
	4		190166150	›› VCPUT(5	. 201. UPC		TKRT(2 0), PPDEMC PPDEMC PPDEMC	
	1		ELASP (20,	DSTR(20), DVALDF. R(20,20).	EFRMY,		PPDEMČ VDEMC	
	1 2 3		ELASI(20), FGIVAL, I PREEXP(20)	ELASIR(2 ER, PCCON	0), FRMY(E(20), TA	L. TNAPA(2	c),	VDEMC VDEMC	
DA			PWLDIM(20)	RDEM(20	20), P'.CDI), T.DPRF,	(20), PWLD (20), PWLD TVALDF, V	EX(20), ALDEE(20	VDEMC VDEMC	
		PARAMETE						DEMDAT	
	1	.346F7.	, 338E7,	170				DEMDAT DEMDAT	
	2 3 4	382E7	330E6, 526E7,	273E7, 950E6, 266E7,	ō			DEMDAT DEMDAT	
	•	. 770E6,	. 142E7,	. 480E6,	590E6 219E7	, 10757			
	DATA DE	LP / 2.0	/					DEMDAT DEMDAT DEMDAT	
	5 540	· 17*0.,	17#0	0., -	. 2, 18+0			DENDAT	
	4 6+0.	- 85,	15¥0., 13#0	3*0 , 5*0 ,	- 25 16	*O.,		DEMDAT DEMDAT	
	5 8+0 5 12+(7 14+)	D., -1.4	31*0., 7*0.	7*0, 20*0, 13*0,	4, 12; 11* <u>0</u> .,	*0., ~1.10, 8#	0.,	DEMDAT	
	7 14*(8 16*(7 20*(-3	5*0, 3*0,	15+0,, 17+0,,	-1.2, 2	5*0,, }*0,, F0,,		DEMDAT DEMDAT DEMDAT	
	DATA ELA			19#0.,	- 2, 2; - 4 /	0. ,		DEMDAT DEMDAT	
•	40 2 2#0), 19#0. , - 4.	, 17#0.,	0.,	20, 18*0			DEMDAT DEMDAT	
4	6#0	· ~ 10.	15*0., 13*0.,	3*0., 5*0., 7*0.,	4, 14*	*O , Q.,		DEMDAT	
ļ	12#0	-1.8,	31*0., 7≭0.	20*0 13#0	11*0.	5, B+0.		DEMDAT DEMDAT DEMDAT	
9	16#()		5+0., 3+0.,	15*0, 17*0,	8, 4*	*O., O., D.,		DEMDAT	
	DATA IGR	AJN /		20*0.	/	5. 7		DEMDAT	4
1	DATA THE	1, 2,	3, 4, 8,	/				DEMDAT	44
1	DATA IME	13, 15, 1	6, 18, 19,	,				DEMDAT DEMDAT DEMDAT	4 5
1	DATA MM , .02,	06. 10	. 94 1 6					DEMDAT DEMDAT	5 5 5
1			· . 96, 1. 5 · 1. 09, . 5	18, 24, 2 17, - 19, .	29, 1.03, 24, 2.72,	2.36, 0.,		DEMDAT	55
		N 7.807						DEMDAT DEMDAT	5 5 5
1			=1,20),I=1 .921,	. 028,	1.000,			DEMDAT DEMDAT DEMDAT	50
1		.290, 0.0, 0.0,	. 952, 0.0, 1.000,	· 924, 0. 0.	0.0,	· 927, 0. 0, 0. 0,		DEMDAT DEMDAT	6
2020		. 986, . 290,	921, 922,	. 702, 028,	424, 1.000,	0.0, 927,		DEMDAT	- 60 - 64
5		0.0, 0.0,	0.0, 1.000,	924, 0.0, .702,	0.0,	0. 0, 0. 0,		DEMDAT DEMDAT	65 66 67
	ATA W 7			. /VE,	424,	0. õ/		DEMDAT DEMDAT DEMDAT	67 68
23		169.7, 13.5, 0.,	15.2, 82.7,	23.5, 6.8,	0.3, 54.6,	15.5,		DEMDAT	68 69 70 71
4	-	6.5,	8.5, 10.9,	25.5, 49.6,	3. 9, 7. 2,	0., 12.0, 494.1 /		DEMDAT	72
: 04	TA PCONV	1.00,	1.00,	80				DEMDAT	712 723 773 775 775 776 778
	TA PILOS	· · ·		. 80,	1.00,	. 277		DEMDAT DEMDAT DEMDAT	76 77
•		10, 006,	15,4+0.,	006, 02, 0	06, . 02, . 0	2, 02, 05,	03 .0 /	DEMDAT	79 79 80

с

с

с

C	DATA F	PLOSTD / 107 PROTPU / .067, .362,	094.	. 066,	. 092,	004,	DEMI DEMI DEMI DEMI
	ณช 4	0,1	015, 098, 113,	073	ÖB6,	. 112, 0. /	
С	DATA 1 1 3 4 5 1 1 1 3 4 5	128, (((PSUBCG(I, 05, 25, 05, 05, 00, 45, 30, 05, 00,	J, K), J=1, 5 55, 00, 35, 05, 55, 00, 45, 00,), I=1,5), K 55, 10, 35, 35, 55, 10, 55, 10, 35, 00,	=1,2) / 55, 30, 00, 55, 50, 15, 30, 00, 05,	15, 35, 50, 00, 15, 45, 40, 00,	DEM DEM DEM DEM DEM DEM DEM DEM DEM DEM
с	DATA 1 2 3 4 5 1 2 3 4	(((PSUBCM(I, 00, 25, 25, 25, 00, 45, 20, 35, 00,	J, K), J=1, 5 30, 30, 40, 00, 30, 20, 20, 50,), I=1,5), K 25, 00, 25, 00, 30, 40, 00, 30, 30,	=1,2)_/	00, 00, 000, 000, 000, 000, 000, 000,	
С	5 DATA	PSUBTQ / 95, 95,	. 95, . 55,		90.	50, 33/	DEM DEM DEM DEM
C	•	PSUBTM / 95, 95,	95, 95,	50, 50,	. 33, . 33,	00,	
с с с		PWHTIC / .C YDEL / 2.0 /			- 		DEM DEM DEM DEM DEM
0000	INITIAL	CONDITION I	ATA				dem Dem Dem
L	DATA 1 2 3 4	ELISAV / 20, 45, 00, 1 00,	- 25, 40, 80,	50, 60, 1. 40, 4. 00,	- 30, 1.20, 3.20, 00,	1.30, .00, .55, 1.03/	
Ċ	•	ELISVR / 10, 30, 00, 80,		- 50, - 50, 94, 2,00,		. 75, . 00, . 59, . 69/	
С)ATA 1 2 3 4	EPAVGD / 78500., 60000., 500700., 351763.,	41900 , 31000 , 154600 , 200300 ,	28100., 15255., 653024., 68000.,	42500., 207700., 58000., 65000.,	54300. / 1. / 165000. / 1. /	
C		FNR / 83, 61, 1.00, 20,	2, 33, , 76, , 32, , 06,	. 70, 2. 83, . 11, . 33,	1.70, 1.00, .01, .50,	.28, 1.00, .38, 1.00/	DEI DEI DEI DEI DEI DEI DEI
С		STKD / 8800		0. , 286000), 17+0. /		DE
CCCC		1970 1975	1971 1976	1972 1977	1973 1978	1974 1979	
Č	1122334455566	((VCPU(I, J) 79125., 5#114629., 48758., 5#55874., 30415., 5*41924., 60330., 5#88403., 5#88403., 133934., 5#139391., 98676., 5#112145./	8///5. (55622.) 29202. (66554.) 147189.) 96621.)	59174., 29728., 86461., 128161., 101984.,	99388., 59963., 33341., 90309., 147734., 107310.,	102168., 51773., 42014., 95720., 134646., 109726.,	DE DE DE DE DE DE DE DE DE DE DE DE DE D
	DATA	((VCPU(I,J)	, I=1, 10), v	J=7,12) /		н	ana ang ang ang ang ang ang ang ang ang

			133		
7 59777. Z 5+60421.	, <u>61616</u> .	45662.,	45218.	44040	
8 39667 8 5*45276	. 74457	1			DEMDAT
9 1201345 9 5+6434 30	1050464	947-123 ,			DEMDAT
1	1. /	1.,		, 850413. ,	DEMDAT
A 449100 A 1.2E6	1 78/	568300	943200.	1.1E6,	DEMDAT
B 356667 B 5#555846	ARENIO	1.2E6, 416666.,	1 777	1.2E6, 397704.	DEMDAT
DATA (CVCPUCT), I=1, 10).	J=13.20) /			DEMDAT DEMDAT DEMDAT
C 788333 ; C 5#783833 ; D 109301 ;	027002.1	862250.,	875382.,	825133.,	DEMDAT
C 5*783833. D 109301. D 5*147275. E 396667. F 263000. F 5*309769. G 5*26000.			110714.,	122605. ,	DEMDAT
E 5#535101., E 263000.,			447208. ,		DEMDAT
F 5+309769 , Q _ 286000 ,	266960., 236123.,	259464.,	292049. ,		DEMDAT
H 257100	271366.,	217666.,	246177.,		DEMDAT
1 5#257857	147920.	244326.,	270466. ,		DEMDAT
J 3#750 00 ,	0/7	76966., .963,	68075.,	92437. ,	DEMDAT
DATA VCSTK /			. 983,	. 972.,	DEMDAT DEMDAT DEMDAT
1 237000., 1 5#504000.,	69000.,		98000.,	-223000.	DEMDAT
1 5#504000;; 2 94000;; 2 5404000;; 3 52000;; 3 52000;;		137000. ,	53000.,	-84000. ,	DEMDAT
3 5*31000.; * 170*0.;	-100000.,	-22000. ,	-151000. ,	174000. ,	DEMDAT DEMDAT
					DEMDAT DEMDAT
DATA VEPIX /	1.011,	1.0/-	•		DEMDAT
2 5+.856 /	1.0111	1.012,	. 981,	. 857,	DEMDAT
DATA VEINCM / 1 65584 /	68468	67956.	788.5		DEMDAT DEMDAT
2 5#/4275. /		07700. j	72365.,	70832.,	DEMDAT DEMDAT DEMDAT
DATA VEFRMY / 1 35096., 2 54317	36944.,	42770. ,	45090. ,	47000	DEMDAT
2 54317() _DATA VPCUFD /	60000.	60000.	60000. ;	47320., 60000./	DEMDAT
1 . 436, 2 . 465,	. 443,		342.	. 461,	DEMDAT
DATA VPICE /	. 460,		. 342, . 450,		DEMDAT
1 576, 2 5# 539 /	. 688,	. 634,	. 631,	728.	DEMDAT
DATA ((VPSUP(I, J)					DEMDAT DEMDAT DEMDAT
1 1258, 1 5 * . 1155,	. 1354)	. 1206,	. 1166;	. 1241,	DEMDAT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0404,	. 0433,	. 0451,	. 0451,	DEMDAT
3 0398, 3 5#. 0466, 4 0040,		. 0565,		. 0401,	DEMDAT
4 0040, 4 5+ 0038, 5 0118,	. 0035,	. 0036,	. 0047,		DEMDAT
5 5+.0118, 5 5+.0164, 6	. 0112) . 0079,		. 0115,	. 0152,	DEMDAT
6 0086, 5*.0096 /		. 0072,	. 0075,	. 0079,	DEMDAT DEMDAT DEMDAT
DATA ((VPSUP(I,J)) 7 0663, 7 5*.0693,	I=1,10),J= .0749,	-7,12) /	. 0644,		DEMDAT
		. 0519,	. 0644,		DEMDAT
5+.0578, 0009, 5+.0012,	. 0010,	. 0014,		. 0368,	DEMDAT
0. 0,				0.0	DEMDAT
0.0, 0.0, 0.0,	U. U.	0.0.	0. 0, 0. 0, 0. 0,	0.0, 0.0, 0.0,	DEMDAT
0013, 5* 0022 /	0.0, 0013,	0016,	Q. Q,	0.0, 0.0, 0014,	DEMDAT
DATA ((VDCID/T I)	I=1; 10)	17.101		· · · · · · · · · · · · · · · · · · ·	VERUAL
0012, 5*.0020,	0012,	. 0012,	. 0013,	. 0015,	DEMDAT

						. 0039,	DEMDAT
	D	0031	. 0024,	. 0040,	. 0032,	. 0026,	DEMDAT
•	D E	5+.0047, 0025,	. 0024,	. 0025,	. 0025,	. 0015,	 DEMDAT
	HURFE GOIT	5#.0027 0014 5#.0015	. 0015,	. 0016,	. 0015,	. 0043,	DEMDAT
	F G	0041, 5#. 0044,	. 0041,	. 0044,	. 0039,	. 0423,	DEMDAT
	Н	0220,	. 0249,	, 0300,	0360,	. 0155,	DEMDAT
	H I	5#:0420; 0121; 5#:0135 /	. 0070,	. 0127,	. 0166,	. 01557	DEMDAT
:	ι ΠΑΤΑ Ι	((VPWI(I,J),	I=1,10), J=	1,6) /	191.	263. ,	
	1	190., 5#198.,	101.7	131. <i>i</i> 53. i	83.	105. ,	DEMDAT DEMDAT DEMDAT
		53., 5 #9 7.,	56. (55. 4	108. ,	138. /	DEMDAT
	10000044	54.) 5# <u>95</u> .	63. i	48. ,	57. ,	93. 7	DEMDAT
	4	72. 5#79	65. , 268. ,	519. /	359. /	202. ,	DEMDAT
	5	294. 5#238.	128. /	107.	174. /	176. ,	DEMDAT
	6	117. 5#129. /					DEMDAT
	DATA	((VPWI(I,J))	, I=1, 10), J= 1106. ,	=7,12) / 1367.,	1316. /	775. 1	DEMDAT
	7	1601. 5#680. 98.	121. ,	184. /	54. ,	66. ,	DEMDAT
	u au	5#50. 368.	1049.	946.	913. <i>i</i>	839. /	DEMDAT
	8 9 9	5#884 / 10#1 /			19408. ,	19402.	DEMDAT
	Ā	20688 · 5#11555. ·	18137. /	15871.	312. ,	384.	DEMDAT
	B	5#935. /	473. •	939. <i>•</i>	JIE. /		DEMDAT
С		((VPWI(I, J)	, I=1, 10), J	=13,19) /	462. ,	2503. •	DEMDAT DEMDAT DEMDAT
	Ċ	5+1846	1126 · 581. ·	A. 10	510. ,	74.,	DEMDAT
	00-11-11 11-11 1	1035. 5#601.	1312.	1280.	1988. /	1636. /	DEMDAT
	E E	943., 5#1514.,	775. 4	665. ,	740. ,	825. ,	DEMDAT
	F	5*665. ·	685	560.	625. ,	675. ,	DEMDAT
	G	925. , 5#560. ,	576. 4	544. ,	625. /	472	DEMDAT
	H H	550. 5#430. 115.	108.	120. /	143. /	222. 4	DEMDAT
с	i	5+227. /	/				DEMDAT
C	4	((VPWX(I,J) 146.,), I=1, 10), J 101. ,	101. ,	147. ,	202. •	DEMDAT
	į	5#152.	43. ,	41. ,	64.,	81. /	DEMDAT
	22	5#75. / 45. /	53. 4	46. 1	90 . ,	115. /	DEMDAT
	.3	5+79. 60.	54. ,	40. ,	48. ,	78. ,	DEMDAT
	4	245.	223. ,	433. /	299. 1	168. /	DEMDAT
	1000044000	5 * 198. 98.	107	91. /	145. ,	147.	DEMDAT
c	6	5#108.		(=7.12) /			DEMDAT
-	DATA 7 7	1334. /), I=1, 10), (922. ,	1139.	1097. /	646	DEMDAT DEMDAT DEMDAT
	7	5#567., 82.,	101. /	153. /	45. ,	55.	DEMDAT
	8877	5#42. 725. ,	874.	788. •	761. /	699	DEMDAT
	7	5+737. 10+1. 17:40.	15114.	13226.	16173. ,	16168. /	DEMDAT
	A	5+9630.		783. (260. ,	320. /	DEMDAT
r	B	5+779	1				DEMDAT
C	DATA	940.	(),I=1,10), 938.,	/ (1065 ب 1065 ب	385. ,	2086. ,	DEMDAT
	č	5#1538. / 863. /	484. ,	347. /	425. /	62. 1	DEMDAT
	CDDER:	5+501 · 786. ·	1093. /	1067. ,	1573. ,	1363. ,	DEMDAT
	ic)	5#1262. / 710. /	645. ,	555. /	615. /	690. i	DEMDAT

F	5#555.,			•				
T O O	770., 5#465.,	570. ,	465.,	520.,	565. ,		DEMDAT DEMDAT	
H I	458., 5#358., 96.,	480. ,	453. ,	521.,	393. 1	•1	DEMDAT	
I	5 # 189. /	90. ,	100.,	119, ,	185, ,	*	DEMDAT	
POLICY	PARAMETERS						DEMDAT DEMDAT DEMDAT	
DATA I 1 5	KFT / Σ, Σ, 3, 4	3, 4, 4,					DEMDAT	
2 5,	4,3,3,3		5, 5, 5, 5/				DEMDAT	
1 1,	(PAVG / 1, 1, 0, 0 0, 0, 0	0, 0, 0,	1, 0,			• • • • • • • • • • •	DEMDAT DEMDAT DEMDAT	
	0, 0, 0, 0, 0, CCONT /	ö; ö; ö;	0, 0/				DEMDAT DEMDAT	creaca
1 2 3	.150, .018,	025,	. 055, . 020,	. 002,	. 040,	:	DEMDAT	
54	1.E-8, .005,	004, 015,	005,	0025, 035, 030,	1. E-8, 010.		DEMDAT DEMDAT DEMDAT	CIUT
DATA P	. 0 . 0 0	1. 4.0.0			200000.7	•	DEMDAT	entar.
2 0. _ DATA P	, 0, , 0, 0 0, 0, 3, 0 1,	0, 1, 0, 1,	0. 15, 0, 1, 0	0.15,0.0, 15,4.0,0	0.0,		DEMDAT DEMDAT DEMDAT	00
1 2		. 0. 0	5, 1, 0	\S 05		0	DEMDAT DEMDAT	333
DATA P	CRT /	1, 05 0	5, 1, 1		1, 0, , 1, 0, ,	0., 0./	DEMDAT DEMDAT	33
- 23	130, 012, 1.E-8,	.040, 100,	. 045, . 050,	.004, 0025,	. 030,		DEMDAT DEMDAT DEMDAT	0000
4	. 0025,	. 003, 005,	. 002, . 040,	. 007,	1.E-8, 005, 200000./		DEMDAT	តិតិតិ
ДАТА Р (CRT1 / 110 CUT1 / 100						DEMDAT DEMDAT DEMDAT	30
DATA PL	PMAY /						DEMDAT	39
1 0.0 2 0.0	0.0,00.	5 0, 3.0, 1.0, 5.0,	2.8, 5.0,	5. 0, 0. 0,	0.0,		DEMDAT DEMDAT DEMDAT	39
DATA PW	PMIN /			1.0,0,0,	0.07		DEMDAT	39 40 40
	0.0, 0.0, 0.0, 0.7,	0.3, 0.7,	1.0,0,0,0, 0.0,0,0,0,	0.0, 0.0, 1.0, 0.0,	0.0, 0.0/		DEMDAT	40 40
PATA ST	KRT / 1.5, 7.0,						DEMDAT DEMDAT DEMDAT	40 40 40
1/ATA TA	RIFE /						DEMDAT	40
	0.07/10/ DR / 5 /						DEMDAT DEMDAT DEMDAT	40
							DEMDAT	41 41 41
DATA ARC		981.,	1986. ,	1004			DEMDAT DEMDAT	414
DATA (()	CPUT(I, J), I:	=1,5),J=1,1	(2) /	1991.,	2001. /		DEMDAT DEMDAT DEMDAT	417
2 -	65000 / 65 43881 / 43		5000, 12		25000.		DEMDAT DEMDAT	419
5 1	03600, 92 40000, 14e	400., 92 000., 148	400 9	5400., 4	50CO., 26400 .		DEMDAT DEMDAT DEMDAT	421 422 423
7	39900., 31 51600., 45	700., 109	100., 109 700., 31	7800, 10 700, 3	8000 ; 9800 ; 1700 ;		DEMDAT DEMDAT	424
9 7 * A	00000, 700	000 / 700 1 /			2100., 0000.,		DEMDAT DEMDAT DEMDAT	427 427 428
B 4:	50400 501	2E6, 1 500, 501,	2E.6, 1 600, 501	2Ê6,	1.2E6, 1600.7		DEMDAT	429
CATA (VO	CPUT(I, J), I=	4 F () ,					DEMDAT	431 432
	7200 123	700., 123 300., 579	900., 1324 900., 123 900., 576	000., 132, 900., 12 800., 57	4000.		DEMDAT DEMDAT DEMDAT	433 434 435
G 26	33700 , 287 0000 , 310	00. 411	100 , 287	400. 28	7800., 100., 7400.,		DEMDAT	436 437
1 10	0000 , 1000	00., 1000	000., <u>310</u>	000., 310			DEMDAT	438 439
	CSUP(I,J), I= .1250, 1 .0500, 6	<u> </u>	250,	1250.	1250,		DEMDAT DEMDAT	440 441 442
3		200, C	500,	2500,	0500, 0500,		DEMDAT	443 444 445

	4557 87* 87* 813	0050, 0150, 0750, 0350, 0350, 0020, 0.0, 0.0, 0.0,	0050, 0150, 0750, 0350, 0020, 0, 0, 0, 0, 0, 0,	0050, 0150, 0750, 0350, 0020, 0.0, 0.0, 0.0,	0050, 0150, 0080, 0350, 0350, 0020, 0.0, 0.0, 0.0, 0015,	0050, 0150, 0750, 0350, 0020, 0.0, 0.0, 0.0, 0015/		1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT	447 447 449 451 453 455 455 455 455 455
с	DATA C D F F G H J	((VPCSUP(1) 0015, 0050, 0030, 0015, 0045, 0450, 0150,	0050,	0015, 0015, 0050, 0030, 0015, 0045, 0450, 0150.	0015, 0050, 0030, 0015, 0045, 0450, 0150,	0015, 0050, 0030, 0015, 0045, 0450, 0150/	DEN DEN DEN DEN DEN DEN DEN DEN	1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT	457 458 459 460 461 462 462 463
c	DATA 1 2 3 4 5 6 7 8 8 9 * 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(VPWLDI(I) 237.13, 70.73, 33.61, 90.09, 170.00, 140.26, 93.65, 78.49, 716.79, 15510.00, 830.00,	<pre>J), I=1, 5), 136.57, 97.95, 82.57, 185.00, 125.43, 87.47, 132.68, 763.72, 135.10.00, 830.00,</pre>	J=1,12) / 136.57, 97.97.57, 62.57, 67.03, 185.00, 135.56, 87.47, 164.49, 767.11, 1.00, 15510.00, 830.00,	136.57, 97.95, 82.57, 67.03, 185.00, 145.00, 87.47, 200.88, 700.80, 1.00, 15510.00, 830.00,	136 57, 97 95, 82 57, 67 03, 185 00, 150 00, 87 47, 200 88, 770 00, 1 00, 15510 00, 830 00 /	DEI DEI DEI DEI DEI DEI DEI DEI DEI DEI	1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT 1DAT	465 466 466 465 465 465 465 477 477 477 477 477 477 477 477 8 4 7 8 4 7 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10
С	DATA D E E G H 1	((VPWLD1(I) 2521,53, 800,00, 1354,28, 664,79, 561,70, 578,70, 5*268,92	2680, 65, 300, 00, 1557, 16, 685, 41, 592, 63, 739, 26,	J=13,19) 3201 57, 800.00, 1724,53, 695,72, 613.25, 802.20,	, 800.00, 1810.00, 705.03, 623.56, 805.00,	3201.57, 800.00, 1810.00, 706.03, 623.56, 805.00,	DE DE DE DE DE DE DE DE DE	MDAT MDAT MDAT MDAT MDAT MDAT MDAT MDAT	479 480 481 482 483 484 485 485 485 485
c	DATA 12 34 5 5 5 7 8 7 * A B	((VPWLDX(I) 212.13, 455.73, 458.61, 455.07, 175.00, 115.28, 83.44, 706.79, 1.500.00, 820.00,	J), 1=1,5), 111.57, 72.95, 57.57, 42.03, 170.00, 100.43, 77.47, 122.68, 753.72, 1.22.68, 753.72, 1.00, 15500.00, 820.00,	J=1,12) / 111.57, 72.95, 57.57, 42.03, 170.00, 111.56, 77.47, 154.49, 757.11, 1.00, 15500.00, 820.00,	111.57, 72.95, 57.57, 42.03, 170.00, 120.00, 77.47, 190.88, 760.00, 15500.00, 820.00,	111 57, 72 95, 57 57, 42 03, 125 00, 77 47, 190 88, 760 00, 1 00, 15500 00, 820 00/	DE DE DE DE DE DE DE DE DE DE DE DE DE D	MDAT MDAT MDAT MDAT MDAT MDAT MDAT MDAT	489 4491 4492 4991 4992 4992 4992 4992 499
с СС	DATA C D F G H I I	((VPWLDX (I: 2511, 53, 785, 00, 1354, 28, 654, 79, 551, 70, 593, 70, 258, 92,	, J), 1=1, 5), 2870 65, 785 00, 1547 16, 675 41, 582, 63, 734, 26, 258, 92,	J=13 19) 319 57, 78,00, 171,03, 603,25, 767,20, 253,92,	/ 3191.57, 785.00, 1800.00, 695.03, 613.56, 800.00, 258.92,	3191.57, 785.00, 1800.00, 694.03, 613.56, 800.00, 258.92/	DE DE DE DE DE DE DE DE	MDAT MDAT MDAT MDAT MDAT MDAT MDAT MDAT	502 503 504 505 506 508 507 508 509 510 511
C	END						DE	MDAT	512
CCCCC	INITIALI DECLARAT		EMAND ANIMAL, B IRUN, ITT LVSTPR, M KPOP, KCH LUIN1, LU LUPGEN, L KPPRT(15) NCC, NCOM NRUN, NS, T, TIMEL	DDE, MODNA G, KRAP, M IN2, LUOUT UPOP, , KCPRT(15 , NCOMAG, NAME(20)	M(9), DEM, KNEC, , LUPLOT(3), KNPRT(1) NCROP, NLV PLANT ABI, YEAR,	ME, KIRACK, M PLT, ITABPR, LINK, JPER,), LURLP1, 5), KAPRT(15) 5), NNC, NREC	DE DE DE CI CI CI CI CI CI CI CI CI CI CI CI CI	MI MI MI DNTRC DNTC DNTC DNTC DNTC DNTC DNTC DNTC DNT	2045070901120

÷

INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), (LUPLT3, LUPLOT(3)) COMMON /CPDEMC/ APCN, DELP, IGRAIN(5), IMEAT(5), MM(20), PILOSS(20), PLOSTD, PSUBCG(5,5,2), P CMIN, PSUBCM(5,5,2), PSUBTC(5,2), PSUBTM(5,2), PFU(2,20), PCONVG(5), PWHTIC, YDEL, CALPU(20), PROTPU(20), CONTRC 1 CONTRO à CPDEMC 4 CPDEMC REAL MM REAL MM COMMON /ICDEMC/ ELISAV(20), ELISVR(20), EPAVGD(20), STKO(20), VCPU(10.20), VCSTK(10,20), VEFRMY(10), VFPIX(10), VPSUP(10,20), VPWI(10,20), VPWX(10,20), FNR(20), VPICF(10), VEINCM(10), VPCUED(10) CPDEMC CPDEMC CPDEMO ICDEMC 2 ICDEMC
 VPWX(10,20), FNR(20), VPICF(10), VEINCM(10),

 VPCUFD(10)

 COMMON /PPDEMC/ ARG(5), KFT(20), PCPMAX(20), PCPMIN(20), PCRT(20),

 PCCONT(20), PCPMAX(20), PUPMIN(20), STKRT(2 0),

 PCCT1, PUPMAX(20), PUPMIN(20), STKRT(2 0),

 YPULDI(5,20), VCPUT(5,20), VPCSUP(5,20),

 VPWLDI(5,20), VPWLDX(5,20)

 COMMON /DEMSVC/ ALPHA, CPU(20), STKRT(2 0),

 DEMT(1,20), EPAV3(1,20), INCOM, PCCON(1,20),

 PCCONU(20), G(20), RFRMY(1), S1, STK(20),

 PCCONU(20), TDEML(20), TDEML(20)
 34 ICDEMC ICDEMC ICDEMC PPDEMC 33 PPDEMC PPDEMC 4 PPDEMC PPDEMC DEMSVC а DEMSYC REAL INCOM COMMON /PKXDC/ COMMON /DKXDC/ DEMSVC DEMSVC PKXDC DKXDC DKXDC NDXDYC 12 NDXDYC NDXDYC 123 CRXDC CRXDC CRXDC CRXDC 1 FAYXDC FAYXDC 12 ADNXDC ADNXDC ADNXDC RDDATC FCAXDC RUN INITIALIZATION DEMI DEMI 1F(ICHDAT.NE O) CALL CHDATA(APCN. JRELD, OVALD, CVALD, ISFLD, 7) DEMI DEMI - ÷ - () XX = 0 CPUD(NCL!I) = 1 0 DD 50 JC=1, NCDMAC IF(JC .GT. NCRDP) GD TD 20 SUPPLY = 0 DD 10 TP-1 NDFON DEMI DEMI DEMI DEMI DEMI SUPPLY = 0. DO 10 IR=1, NREGN IF (JC NE 1) * TABEL (VYIELD(1 IR, JC), (TABI, TCABI, TTABI, 1. 0, T IMEI) * TABEL (VYIELD(1 IR, JC), (TABI, TTABI, 1. 0, T IMEI) - PFLOSS(JC') - TAB'L (VAREA(1, IR, JC), KTABI, TTABI, 1. 0, T IMEI) TIMEI)* SDP.HA(IR, JC) VEC FQ 1) DEMT DEMT DEM DEMI 23 DEMT DEMI Ā TIMEI)* SDPHA(IR, JC) IF(JC = EQ, 1) SUPPLY = SUPPLY - TABEL(VAREA(1, IR, JC), K1ABI, TTABI, 1, 0, T IMEI)* SDPHA(IR, /C) $I^{(JC)} EQ, 1, AND TIMEI, GT TTABI+, 9999)$ SUPPLY = SUPFLY + 1ABEL(VAREA(1, IR, 1), KTABI, TTABI, 1, 0, T IMEI - 1, 0) * TABEL(VYIELD(1, IR, 1), KTABI, TTABI, 1, 0, T IMEI - 1, 0) * (1, -PFLOSS(1)) TTABI, 1, 0, TIMEI - 1, 0) * (1, -PFLOSS(1))I. 1. 0, DEMT DEN1 DEMI DEMI DEMI DEMT 33 DEMI DEMI 10 CONTINUE UNTINUE I (JC. EG. 1 AND. TIMEI LT. TIABI + 9999) SUPPLY = SUPPLY + SUPPLY = SUPPLY + TABEL(VDFC(1, JC), KTABI, TTABI, 1.0, TIMEI) - PILOSS (JC) * AMAX1(0, TABEL(VDFC(1, JC), KTABI, TTABI, 1.0, TIMEI) - PILOSS TABEL(VFEED(1, JC), KTABI, TTABI, 1.0, TIMEI) - TABEL(VCSTK(L, JC), KTABI, TTABI, 1.0, TIMEI) - TABEL(VCSTK(L, JC), KTABI, TTABI, 1.0, TIMEI) L(JC EG. 3) SUPPLY = (1 - PWHTIC) * SUPPLY IF(JC EG. 10 OR, JC EG. 11) SUPPLY = 0 IF(JC EG. 12) SUPPLY = TABEL(VPICF, KTABI, TTABI, 1.0, TIMEI) * GO TO 40 DEMI DEMI 1 DEMI DEMT DEMI DEMI Ŝ. DEMI DEM DEMI DEMI DEMI 1 GO TO 40 CONTINUE IF(JC.GT.NCROP+NLVST) GO TO 30 LC = JC - NJROP SUPPLY = 0 DO 25 IR=1,NREGM SUPPLY = SUPPLY + TABEL(VLIVST(1, IR, LC), KTABI, TTABI, 1. 0, TIME I) * (DEMI XX = XX + PEDLV(LC) * TABEL(VLIVST(1, IR, LC), KTABI, TTABI, 1. 0, TIMEI) DEMI DEMI DEMI DEMI DEMI GO TO 40 ČĚQ. 18) SUPPLY = TABEL(VESH, KTABI, TTABI, 1. Ú TIMEI) - FDESHD ĎĚMÍ

C C C

Ċ

14562345

6723

45

62345

40045400000004004

ณฑฑฑระหน้ายพลายคาย ตั้งรายคายคายคระคายคาย

33.

34

35

36

37

39

4Ó

41

42

43 44

45

46 47

40

ĠÓ

51

53

54 55

56 57

5556665565678

				· · · · · · · · · · · · · · · · · · ·
· · · · · ·	TIF(JC EG. 19) SUPPLY = XX 35 CONT(NUE SUPPLY = SUPPLY + TABEL(VDFC(1, JC), KTABI, TTABI, 1 O, TIMEI) (JC) # AMAX1(0, TABEL(VDFC(1, JC), KTABI, TTABI, 1 O, TIMEI) - TABEL(VCSTK(1, JC), KTABI, TTABI, 1 O, TIMEI)	PILOSS IMEI))	DEMI DEMI DEMI DEMI DEMI DEMI	71 72 72 72
	4 CONTINUE PCCONU(JC) = SUPPLY / ((FNR(JC)*TABEL(VPOP(1,1),KNP,TTABI,DP TIMF1) + TABEL(VPOP(1,2),KNP,TTABI,DP,TIMEI))*1 10 45 IR=1,NREGN PCCON(IR,JC) = FAR(JC) * PCCONU(JC)	000)	DEMI DEMI DEMI DEMI DEMI DEMI	77 78 79 81 81 81
	<pre>4% CONTINUE CPUD(UC) = VCPU(1,UC) x = X + PCCONU(CC) * TABEL(VCPU(1,UC),KTABI,TTABI,1.0,TIMEI) 5% CONTINUE EINCOM = TABEL(VEINCM,KTABI,TTABI,1.0,TIMEI) ALPHA = X / (EINCOM * TABEL(VPCUFD,KTABI,TTABI,1.0,TIMEI)) ALPHA = X / (EINCOM * TABEL(VPCUFD,KTABI,TTABI,1.0,TIMEI)) PCCONU(NCOM) = (ALPHA * EINCOM - X) / TABEL(VCP,KTABI,</pre>		DEMI DEMI DEMI DEMI DEMI DEMI	81 84 81 81 81
	t = 1 0 $D(160 = 0) = 0$		DEMI DEMI DEMI DEMI DEMI DEMI	81 81 91 91 91 91 91 91 91
3	<pre>TF(PCCDNT(DC) = FCLDAV(JC) / (PCCDNT(JC) = PCCDNU(JC)) TF(JC = EQ = P) T = DEMC(2) = DEMC(2) * (PCCDNT(2)-PCCDNU(2)) / (PCCDNT(2)) FF(JC = GT = NCDMA3) GD TO 60 FD 55 IR=1,NREGN EPAVG(IR,JC) = EPAVGD(JC).</pre>	0465)	DEMI DEMI DEMI DEMI DEMI DEMI	9 9 9 9 9 9 9 9
	<pre>TF(TIMEI GT TTAB1+ 9999) TF(TIMEI GT TTAB1+ 9999) TE(FAVG(IR, JC) = TABEL(VPRICE(1, JC), KTABI, TTABI, 1, 0, TIMEI- DEMT(IR, JC) = 0 TF(FCFT(JC)-PCCON(IR, JC) NE 0.) TE(FCFT(JC)-PCCON(IR, JC)) T DEMT(IR, JC) = ELISVR(JC) / (PCRT(JC)-PCCON(IR, JC)) 55 CONTINUE</pre>	1.)	DEMI DEMI DEMI DEMI DEMI	10 10 10 10
	RETURN END		DEMI DEMI DEMI DEMI	10 10 10 10
E	SUBROUTINE DEMKX XOGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS		DEMKX DEMKX DEMKX DEMKX DEMKX DEMKX	
E D	COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUINI, LUINP, LUDUT, LUPLOT(3), LURLP1,	BI,	DEMKX DEMKX DEMKX DEMKX CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC	
ED	XOGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), LVSTPR, MODE, MODNAM(9), LUN1, LUNP, LUOUT, LUPLOT(3), LURLP1, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KAPRT(15), KAPRT(15), KDPRT(15), XYPRT(15), KNPRT(15), KAPRT(15), NCC, NCCM, NCCMAG, NCROP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, T, TIMEL, TIMEF, TTABL, YEAR, TOTEORE, LUPARA	BI,	DEMKX DEMKX DEMKX DEMKX CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC	1 1 1
	EXOGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUIN1, LUIN2, LUOUT, LUPLOT(3), LURLP1, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), XYPRT(15), KNPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, NEUN, NS, NAME (20), PLANT,	0)	DEMKX DEMKX DEMKX DEMKX CONTRC CONTCC CONTRC CONTC CONTC CONTC CONTC CONTRC CONTRC CONTRC CONTRC CONTRC CON	
	<pre>XDGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), LVSTPR, MODE, MODNAM(9), LUSTPR, MODE, MODNAM(9), LUNI, LUIN2, LUOUT, LUPLOT(3), LURLP1, LUPGEN, LUPOP, KCPRT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), ZYPRT(15), KMPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(3)), (LUPLT2, LUPLOT(2)), LUPLT3, LUPLOT(3)) COMMON /DEMKC/ APCF, DEFCIT(20), PAVG(1,20), PFDIMX, TPAVG(2 COMMON /DEMKC/ APCF, DEFCIT(20), PAVG(1,20), VDFCT(5,20), VPRICE(1 VPP(5,20), APCFD EXECTTION DO 20 JC=1, NCOMAG IF(1, GT, BASEYR+ 9797) GO TO 4 TEAUCY(C) = TABEL (VPRICE(1, JC), KTABI, TTABI, 1, 0, T)</pre>	0)	DEMKX DEMKX DEMKXX DEMKXX CONTRCC CONTCC CONTRCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTRCC CONTRCC CON	
C D	EXOGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MDDE, MDDNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUINI, LUINP, LUOUT, LUPLOT(3), LURLP1, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KNPRT(15), KAPRT(15), NCC, NCOM, NCOMAG, NCCPO, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, TOTSOR, TOTPOP, URBAN INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), (LUPLT3, LUPLOT(3)) COMMON /DEMKC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 VPP(5, 20), APCFD EXECTTION DO 20 JC=1,NCOMAG IF(1, GT, BASEYR+, 9999) GO TO 4 TPAVG(JC) = TABEL(VPRICE(1, JC), KTABI, TTABI, 1.0, T) DEFCIT(JC) = TABL(VPP(1, JC), KPP, ARGPP, T) DEFCIT(JC) = TABUL(VPP(1, JC), KPP, ARGPP, T) DEFCIT(JC) = TABUL(VDFCT(1, JC), KPP, ARGPP, T) DEFCIT(JC) = TABUL(VDFCT(1, JC), KPP, ARGPP, T) DEFCIT(JC) = TABUL(VDFCT(1, JC), KPP, ARGPP, T)	0)	DEMKXX DDEMKXX DDEMKXX DDEMKXX DDEMKXX DDEMKXX DDECCOD CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
COC	EXOGENOUS PROJECTIONS OF DEMAND INPUTS TO CHANGE AND RAP DECLARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUINI, LUINP, LUDUT, LUPLOT(3), LURLPI, KPORT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), KCPRT(15), KIPRT(15), KAPRT(15), KDPRT(15), KCPRT(15), KIPRT(15), NNC, NREGN, NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, T, TIMEI, TIMEF, TTABI, YEAR, TOTSOR, TOTPOP, URBAN INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), (LUPLT3, LUPLOT(3)) COMMON /DEMKC/ APCF, DEFCIT(20), PAVG(1,20), PEDIMX, TPAVG(2 COMMON /DKXDC/ ARGPF(5), KPP, VDFC(10,20), VDFCT(5,20), VPRICE(1 VPP(5,20), APCFD EXECTTION DO 20 JC=1, NCOMAG IF(1 GT, BASEYR+, 9999) GO TO 4 TPAVG(JC) = TABEL(VPRICE(1,JC), KTABI, TTABI, 1.0, T) DEFCIT(JC) = TABEL(VPRICE(1,JC), KTABI, TTABI, 1.0, T) GO TO 6 4 CONTINUE IFOND IN TOTAL AND INTERPOP, INTABINAL, INTABIN, INDIPERCIPACIAL AND INTABINAL AND INTABIL AND INTABINAL AND INTABINAL AND INTABINAL AND INTABINAL AND INTABINAL AND INTABINAL AND INTANAL AND INTABINAL AND INTAKINAL AND INTAKINAL AND INTABINAL AND INTAKINAL AND INTAKINA	0)	DEMKXXX DDEMKXXX DDEMKXXX DDEMKXXX DDEMKXXX DDECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	

SUBROUTINE DEMPRT C PRINT DEMAND OUTPUT TABLES DEMPRT CCCC DEMPRT DECLARATIONS DEMPRT COMMON /CPDEMC/ APCN, DELP, IGRAIN(5), IMEAT(5), MM(20), PILOSS(20), PLOSTD, PSUBCG(5,5,2), P CMIN, PSUBCM(5,5,2), PSUBTG(5,2), PSUBTM(5,2),PFU(2,20), PCONVG(5), PWHTIC, YDEL, CALPU(20), PROTPU(20), DEMPRT 33 CPDEMC CPDEMC Ă CPDEMC 5 CPDEMO REAL 2/ ARG(5), KFT(20), KNOR, KPAVG(20), PCCDNT(20), PCPMAX(20), PCPMIN(20), PCRT(20), PCRT1, PCUT1, PWPMAX(20), PWPMIN(20), STKRT(2 0), TARIFF(20), VCPUT(5,20), VPCSUP(5,20), VPWLDI(5,20), VPWLDX(5,20) / CON(1,20), DSAVD(1) 2/ ALPHA, CPU(20), CPUO(20), DEMC(20), DEMT(1,20), EPAVG(1,20), INCOM, PCCON(1,20), PCCONU(20), G(20), RFRMY(1), S1, STK(20), EINCOM, TDEM(20), TDEML(20), WWP(20) CPDEMC COMMON /PPDEMC/ 672045622045 CPDEMC 1 PPDFMC PPDEMC 3 PPDEMC ă COMMON /DEMYC/ PPDEMC PPDEMC DEMYC DEMT(1,20), EPAVG(1,ECV, 1000, STK(20), PCCONU(20), G(20), RFRMY(1), SI, STK(20), EINCOM, TDEM(20), TDEML(20), MMP(20) (OMMON /POPKC/ CALRPC(2), POP(2), POPL(2), POPR(1), PRORPC(2), COMMON /POPKC/ CALRPC(2), POPPC(2), POPL(2), POPR(1), INAPA(20), ELASP(20), STK(20), DVALDF, EFRMY, ELASP(20), STK(20), DVALDF, EFRMY, ELASP(20), ELASPR(20,20), TARREV(20), PGIVAL, ITER, PCCONF(20), TARREV(20), PWLDEMC/ AREGH(12), REPM(20), PWLDEX(20), PWLDEM(20), PPF(12), AREGHF(12), ARGHFS(12), CAL(3,3), COMMON /CVDEMC/ AREGH(12), GREGHF(12), GRGHFS(12), CAL(3,3), PCL(3), PPO(2), GTARHT(20), CMPI, COGPI, CPI, CR PI, CALPC(2,3), GREGH(12), GREGHF(12), GRGHFS(12), GRGHLV(7), RFTEX, SA'UPC, SELSU(20), TARREV, TARACK, KTA BI, TARRH, TARHFS, TDISAP;20), TEXNF, ZI(20), TARRH, TARHFS, TDISAP;20, TEXNF, ZI(20), COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, INDE, KTRACK, KTA BI, LUSTPR, MODE, MODNAM(9), IPLI, ITABPR, LUSTPR, MODE, MODNAM(9), IPLI, ITABPR, LUSTPR, MODE, MODNAM(9), IPLI, ITABPR, KPOP, KCHG, KRAP, KDEM, KUEC, LINK, JPER, LUPGEN, LUPOP, KCHG, KRAP, KDEM, KUEC, LINK, JPER, LUPGEN, LUPOP, KCHG, KRAP, KDEM, NUEC, LINK, JPER, LUPGEN, LUPOP, KCHG, NCGMAG, NCGOP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, TOTSOR INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, UTSOR I (UPLT3, LUPLOT(3)) (OMMON /DEMNC/ CPI I, FCONP, FCONU, TARREV, FEXNFC, UUPTALENCE (LUPLT1, LUPLOT(3)), PAGE, FEXNFC, UUPTALENCE (LUPLT3, LUPLOT(3)), PAGE, PEIMX, TPAVG(2 0) (OMMON /DEMNC/ CPI I, FCONP, FCONU, TAREY, TEXNFC, COMMON /NECDYC/ AGINT, CONP, FCONU, TARREV, TEXNFC, I (DMMON /NECDYC/ AGINT, CONP, FCONU, TAREY, TARGU, WOND, TAGDIP, TPTAX, TYG, TYNAG)IMMENSION VALDEFM(20), DEFCTM(20) DEMSVC DEMSVC DEMSVC ŝ DEMSVC DEMSVČ POPKC POPKC 6202045 VDEMC VDEMO VDEMC VDEMC VDFMC 572345 VDEMO CVDFMC CVDEMC C VDEMC CVDEMC CVDEMC CVDEMC CVDEMC CONTRC CONTRO CONTRC CONTRC CONTRC CONTRC CONTRC CONTRO CONTRO CONTRO CONTRO CONTRO CONTRC DEMKC DEMNC NECDYC NECDYC DEMPRT .C DIMENSION VALDFM(20),DEFCTM(20) DIMENSION 2(20) DIMENSION LPR(4) DATA LPR / 1HU, 1HL, 1HM, 1HF / DEMPRT DEMPRT DEMPRT 00000 EXECUTION DEMPRT UTILITY FORMAT DEMPRT 1 | ORMAT(1H) 2 | ORMAT(1H1) 3 | ORMAT(1H0) 4 | ORMAT(////) DEMPRT DEMPRI DEMPRT 30 1c DEMPRT DEMPRT SECT = GHDEMAND DEMPRT 33 34 DEMPRT 00000 DEMPRT PRICE INDICES 35 36 37 38 DEMPRT DEMPRT DEMPRT ITAB = ITAB + 1 IF(KDPRT(1) EQ 0) GD TD 191 FRITE(LUDUT,2) FRITE(LUDUT,1006) ISECT, ITAB, YEAR FRITE(LUDUT,1007) CPI,CPU(20),CPFI,CRPI,COGPI,CMPI,WPFI DEMPRT 39 DEMPRT ãò DEMPRT 41 42 43 DEMPRT DEMPRT ¦C DEMPRT 44 1006 [DRMAT(T2,6HTABLE, A6,1H, 12,1H, 2X,14HPRICE INDICES, F5.0) DEMPRT 1007 FORMAT(T2,49(1H-),/,T2,5HINDEX,T46,5HVALUE,/,T2,49(1H-),/, DEMPRT 1 T43, 8H1970=103,//,T2,2OHCONSUMER PRICE INDEX,T41,+2 PF10.1 DEMPRT 1 //T4,7HNONFOOD,141,+2PF10.1 47 48 ۵Ö 50

ļ

34

6723

T4, 4HF00D, T41, F10, 1, //, T6, 4HRI(E, T41, F10, 1, / T6, 12H0THER GRAINS, T41, F10, 1, //, T6, 4HMEAT, T41, F10, 1, T2, 22HWORLD F00D PRICE INDEX, T41, F10, 1, //, T2, 49(1H-) 51 DEMPRI 52 DEMPRT DEMPRT 3 54 55 4 DEMPRT CONTINUE DEMPRT 56 57 191 SUPPLY AND CONSUMPTION OF AGRICULTURAL COMMODITIES DEMPRI 58 59 DEMPRT ITAB = ITAB + 1 IF(KDPRT(2) EG 0 OR KRAF.EQ.0) GU TO 193 WR ITE(LUOUT, 2) WR ITE(LUOUT, 100B) ISECT, ITAB, YEAR WR ITE(LUOUT, 101D) NAME(I), Z(I), DEFCIT(I), ZZ(I), RDEM(I), G(I), WR ITE(LUOUT, 101D) NAME(I), Z(I), DEFCIT(I), ZZ(I), RDEM(I), G(I), WR ITE(LUOUT, 101D) NAME(I), Z(I), DEFCIT(I), ZZ(I), RDEM(I), G(I), WR ITE(LUOUT, 101D) NAME(I), Z(I), DEFCIT(I), ZZ(I), RDEM(I), G(I), WR ITE(LUOUT, 101D) S CONTINUE WR ITE(LUOUT, 101D) 100B FORMAT(T2, 6HTABLE, A6, 1H, 12, 1H, 2X, 24HSUPPLY AND DISAPPEARA NCE, 29H OF AGRICULTUMOUT, 10 1009 FORMAT(T2, 104(1H-), /, T24, 15HDOMESTIC SUPPLY, A5, 13HDISAPPEAR RANCE 1009 FORMAT(T2, 104(1H-), /, T24, 15HDOMESTIC SUPPLY, A5, 13HDISAPPEAR RANCE 1009 FORMAT(T2, 104(1H-), /, T16, 30HPRODUCTION IMPORTS TOTA L, 2 T199, 7HSUFFIC-, /, T16, 30HPRODUCTION IMPORTS TOTA L, 3 T2, 104(1H-), /, T16, 34(1H), 1X, 5HTH MT, 1X, 34(1H,), T99, 3 THPERCENT, // 3 1010 FORMAT(T2, 104(1H-), /, T2, 34H*NOTE: OTHER INCLUDES FEED, SEED, , 1011 FORMAT(T2, 104(1H-), /, T2, 34H*NOTE: OTHER INCLUDES FEED, SEED, , 193 CONTINUE DEMPRT ъò DEMPRT 61 62 DEMPRT DEMPRT 63 DEMPRI 64 65 DEMPRT DEMPRT 66 67 DEMPRI DEMPRT 68 69 70 72 73 74 75 77 78 78 78 DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMURT έό DEMPRT 81 DEMPRI 82 DEMPRI 83 DEMPRI DEMPRT 84 85 DEMPRT 193 CONTINUE 86 87 DEMPRT PER CAPITA CONSUMPTION AND CONSUMPTION TARGETS <u>Socioni</u> DEMPRT ឨ៓ឨ 87 DEMPRT (NATIONAL, URBAN, FARM) BY COMMODITY DEMPRT 90 91 92 93 95 95 95 97 97 98 DEMPRT ITAB = ITAB + 1 IF(KDPRT(3) EQ. 0) GO TO 991 WRITE(LUOUT, 2) WRITE(LUOUT, 1012) ISECT, ITAB, YEAR WRITE(LUOUT, 1015) DO 2016 I=1,NCOMAG X = PCCDNT(I) XX= PCRT(I) IF(YEAR.LT. 1980. OR. I.NE. 1) GO TO 2010 X = PCUT1 XX= PCRT1 CONTINUE DEMPRT DENPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT 99 100 101 102 103 DEMPRT DEMPRT DEMPRT DEMPRT XX= PCR(1)
2010 CONTINUE
WRITE(LUDUT, 1014) NAME(I), PCNCON(I), PCCONU(I), X, PCCONF(I), XX
IF(MOD(I, 5), EQ. 0) WRITE(LUDUT, 1)
2016 CONTINUE
WRITE(LUDUT, 1015) DEMPRT DEMPRT DEMPRT 104 105 106 107 108 109 DEMPRT DEMPRT 1012 FORMAT(T2,6HTAB'E, A6,1H, 12,1H, 2X,23HPER CAPITA CONSUMPTIO N, 34HAND CUNSUMPTION TARGETS (NATIONAL, /,T16,12HURBAN, FAR) 1 3HBY COMMODITY, F5.0) 1013 FORMAT(T2,80(1H-),/,T18,8HNATIONAL,T37,9HU R B A N,T67,7HF A 1 1,T2,9HCOMMODITY,T15,11HCONSUMPTICN,T30,24(1H-),4X, 1,T2,9HCOMMODITY,T15,11HCONSUMPTICN,T30,24(1H-),4X, 2,24(1H-),/,T30,11HCONSUMPTION,T48,6HTARGET,4X, 3,11HCONSUMPTION,T76,6HTARGET,/,T2,80(1H-),/,T17,26(1H,.), 4,3X,9HKG/CAP-YR,1X,26(1H,),//) 1014 FORMAT(T2,45,T16,+3PF10.1,2X,2(3X,3PF10.1),2X,2(3X,3PF10.1)) 1015 FORMAT(T2,80(1H-)) 991 CONTINUE ιC FARM) 110 111 DEMPRT A R M DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT 112 113 114 115 DEMPRT DEMPRT DEMPRT DEMPRT URBAN INCOME AND EXPENDITURES CCCC DEMPRT DEMPRT ITAB = ITAB + 1 IF(KDPRT(4) .EG. 0) GD TO 993 X = POP(2) * EINCOM / APCN XX = EINCOM / APCN WRITE(LUOUT, 2015) ISECT, ITAB, YEAR WRITE(LUOUT, 2015) ISECT, ITAB, YEAR WRITE(LUOUT, 2015) X, XX, XDIFF, SAVUPC, TEXPT, TEXPTC, TEXPF, WRITE(LUOUT, 1016) X, XX, XDIFF, SAVUPC, RFTEX TEXPFC, TEXNF, TEXNFC, RFTEX DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT 130 131 132 133 134 135 136 137 138 DEMPRT 2015 FORMAT(T2,6HTABLE,A6,1H.,I2,1H.,2X,23HURBAN INCOME AND EXPE ND, 7HITURES,F5.0) 1016 FORMAT(T2,41(1H-),/,T2,4HITUM,T25,18HTOTAL PER CAPITA,/, 12,41(1H-),/,T24,19HII WOU TH WON/CAP // 1 T2,41(1H-),/,T24,19HII WOU TH WON/CAP // 1 T2,6HINCOME,T20,-9PF10.0,3X,-3PF10.1 ,4(/), 3 T2,6HSAVING,T20,-9PF10.0,3X,-3PF10.1 ,4(/), 4 T2,11HEXPENDITURE,T20,-9PF10.0,3X,-3PF10.1,//, 5 T5,4HFODD,T20,-9PF10.0,3X,-3PF10.1,//, 6 T5,8HNON-FODD,T20,-9PF10.0,3X,-3PF10.1,3(/), 7 T36,7HPERCENT,//,T2,10HFOOD/TOTAL,T33,2PF10.1, DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT C 139 DEMPR 140 141 DEMPRI

	993 CONTINUE	/, T2, 41(1H-)			DEMPRT 142
	CALORIE ANI	PROTEIN CONSUMPTION	PER CAPITA	4 1.1	DEMPRT 142 DEMPRT 143 DEMPRT 144 DEMPRT 145
	ITAB = ITAB + IF(KDPRT(5) .E TPC = 100.0	1 G. 0) GO TO 995			DEMPRT 146 DEMPRT 147 DEMPRT 149 DEMPRT 149 DEMPRT 150
	(WILLELEOUOT, BI) ISECT, ITAB, YEAR)			DEMPRT 151 DEMPRT 152 DEMPRT 153 DEMPRT 153
	3 CALPC 4 CAL (A 5 CALPC 6 CALPC 7 PRO(T 8 PRO(C 7 PROC 9 PROPC * PRO(C)) CAL (TOTSOR, TOTPOP), OTSOR, FARM), TPC, TPC, T LANT, URBAN), CAL (PLANT (PLANT, TOTPOP), CALPC(NIMAL, TOTPOP), CALCAL (ANIMAL, TOTPOP), CALCAL (ANIMAL, TOTPOP), CALCC (ANIMAL, FARM), PRO(TOT OTSOR, FARM), TPC, TPC, T LANT, URBAN), PRO(PLANT (PLANT, URBAN), PROPC(P NIMAL, URBAN), PROPC()	PLANT, URBAN), CALPC MAL, URBAN), CAL (ANI (ANIMAL, URBAN), SOR, TOTPOP), PRO(TO PC, PRO(PLANT, TOTPO , FARM), PROPC(PLANT, LANT, FARM), PRO(ANI (ANT, FARM), PRO(ANI	(PLANT, FARM) MAL,FAR M), TSOR,UR BAN), DP), TOTPOP).	DEMPRT 155 DEMPRT 156 DEMPRT 157 DEMPRT 157 DEMPRT 159 DEMPRT 160 DEMPRT 160 DEMPRT 161 DEMPRT 163 DEMPRT 165 DEMPRT 165 DEMPRT 165 DEMPRT 167
	80 FORMAT (T2, 6HTA)			7 <i>TT</i> 7 1 1	DEMPRT 168 DEMPRT 169 DEMPRT 170
	BI FURMAT(T2,88(1) 1 T19,32() 2 T47,4HF/ 3 T2,88(1) 4 T5,88(1)	<pre>H-), /, T30, BHQUANTITY, H-), T56, 34(1H-), /, T1 ARM, T58, BHNATIONAL, T7 4-), /, T17, 11(1H-), 1X1 H-), 1X, 7HPERCENT, 1X, ORIES, T17, 3(F10, 1, 2X) NT</pre>	769,7HPERCENT,/,72, 7,8HNATIONAL,T34,54 3,5HURBAN,T86,4HFAR LHCAL/CAP-DAY,1X,1C L3(1H.),//)	BHNUTR IENT, HURBAN,	DEMPRT 171 DEMPRT 172 DEMPRT 172 DEMPRT 173 DEMPRT 174 DEMPRT 175 DEMPRT 176 DEMPRT 177 DEMPRT 177 DEMPRT 177 DEMPRT 177
	4 12,7HPRC 5 T5,5HPLA 6 T5,6HANI 83 FORMAT(12,88(1) 975 CONTINUE	MAL , T17, 3(F10. 1, 2) MAL , T17, 3(F10. 1, 2) HAL , T17, 3(F10. 1, 2)	, 3X, 3(F10, 1, 2X), , 3X, 3(F10, 1, 2X), , 3X, 3(F10, 1, 2X)	// / /	DEMPRT 179 DEMPRT 180 DEMPRT 181 DEMPRT 182 DEMPRT 183 DEMPRT 184 DEMPRT 185
	MARKETING PR	ICES AND COSTS IN CON	ISTANT 1970 WON BY	COMMOD ITY	DEMPRT 186 DEMPRT 187
	ITAB ⇒ ITAB + 1 IF(KDPRT(6) EG WRITE(LUDUT,2)				DEMPRT 188 DEMPRT 189 DEMPRT 190 DEMPRT 191 DEMPRT 192 DEMPRT 193
ļ	DO 19 JC=1, NCOM LAB = LPR(INAPA WRITE(LUOUT, 93)	(JC)+3) NGME(JC), TPAVG(JC), C	MARKT (JC), GOVSUB (J	C),CPU (JC),	DEMPRT 194 DEMPRT 195 DEMPRT 196 DEMPRT 196 DEMPRT 199
<u>ا</u>	IS CONTINUE	0) WRITE(LUDUT, 1)	m(JC)		DEMPRT 199 DEMPRT 200 DEMPRT 201 DEMPRT 202
	92 FURMAT(T2, 100(1) 1 T61, BHCOM 2 T2, 9HCOM 3 T64, 6HPR1 4 T2, 100(1) 93 FORMAT(T2, A6, T17 1 7(2) 1	-E, A6, 1H., I2, 1H., 2X, IN CONSTANT 1970 WON H-), /, T19, 22HPRODUCER VSUMER, T82, 6HEXPORT, T0 10DITY, T22, 5HPRICE, T32 CE*, T83, 5HPRICE, T97, H-), /, T19, 36(1H.), 11H (3(-3PF10.1, 4X), -3PF1 1.4X))	MARKETING, 150, 76, 6HIMPORT, / 5, 5HCOSTS, T48, 7HSUB 5HPRICE, / TH WON/MT, 36(1H.) 10, 1, 61, 82,); 5HGOV T., 8SIDY, (//)	DEMPRT 203 DEMPRT 204 DEMPRT 205 DEMPRT 205 DEMPRT 207 DEMPRT 208 DEMPRT 209 DEMPRT 210 DEMPRT 210 DEMPRT 212
i ic	94 FORMAT(12,100()) 1 32HITERATI 95 FORMAT(1H,30HL 1 1H,30HU 2 1H,30HM 3 1H,30HM	1.4X)) I-),/,T2,22H*COMPUTATI ONS TO OBTAIN CONVERG - PRICE AT LOWER BOUN - PRICE AT UPPER BOUN - PRICE DETERMINED BY - FIXED PRICE	ONAL NOTE 0 , 12, 1X ENCE, /, T24, 5H51 =	;F6.2)	DEMPRT 213 DEMPRT 214 DEMPRT 215 DEMPRT 216 DEMPRT 216 DEMPRT 216 DEMPRT 216 DEMPRT 216 DEMPRT 218 DEMPRT 219
ດັດດັດດີ	997 CONTINUE ELASTICITI	ES URBAN AND DUDAL			DEMPRT 220' DEMPRT 221 DEMPRT 221
ic Cic Cic		ES URBAN AND RURAL BY			DEMPRT 223 DEMPRT 224 DEMPRT 224
		.OR. ITIME.EQ.O) GO ISECT, ITAB, YEAR NAME(JC),ELASP(JC,JC			DEMPRT 226 DEMPRT 227 DEMPRT 228 DEMPRT 229 DEMPRT 230 DEMPRT 231 DEMPRT 232

2334 234 235 235 235 DEMPRT ELASIR (JC) F(MOD(JC, 5), EQ. 0) WRITE (LUDUT, 1) 1 DEMPRT DEMPRT 173 (ONTINUE URITE(LUOUT, 272) 270 FORMAT(T2,6HTABLE, A6,1H.,12,1H.,2X,23HELASTICITIES URBAN AN D, 19HRURAL BY COMMODITY, 50,7,T2,77(1H-),7,T36,5HURBAN,T65,5HRURAL,7, 51,9HCOMMODITY,T28,2(23(1H-),5X),7,T26,12HDIRECT PRICE, 51,9HCOMMODITY,T28,2(23(1H-),5X),7,T26,12HDIRECT PRICE, 51,145,6HINCOME,T54,12HDIRECT PRICE,T73,6HINCOME,7, 51,14ELASTICITY*,2X,10HELASTICITY,5X,11HELASTICITY*, 52,10HELASTICITY*,2X,10HELASTICITY,5X,11HELASTICITY*, 62,10HELASTICITY*,77(1H-),77(1H-),77(1H-),77, 271 FORMAT(T2,A6,T25,2(3X,F10,2)) 272 FORMAT(7,T2,77(1H-),7T2,"*CONSTANT VALUE DURING RUN",) 97 CONTINUE DEMPRT DEMPRT 238 239 С DEMPRT 240 241 242 DEMPRT DEMPRT DEMPRT 243 DEMPRT 244 245 246 DEMPRT DEMPRT DEMPRT 247 248 DEMPRT DEMPRT CONTINUE 249 250 251 252 DEMPRT CUCC PRINT URBAN CROSSELASTICITES DEMPRT DEMPRT DEMPRT TAB = ITAB + 1]F(KDPRT(B) EG.O . DR. ITIME.EG.O) GD TD 999 WRITE(LUOUT,2) WRITE(LUOUT,180) ISECT, ITAB, YEAR DEMPRI 253 DEMPRT DEMPRT DEMPRT DEMPRT Ċ DO 1334 I=1,NCOM 1JC = 0 DO 1332 J=1,NCOM IF (I.NE.J.AND. ELASP(I,J).NE.O.) DEMPRT DEMPRT DEMPRT DEMPRT DEMPRT GO TO 1331 GO TO 1332 DEMPRT CONTIN UE THEN ۰C 264 WRITE(LUDUT, 181) NAME(I), NAME(J), ELASP(I,J) 1331 DEMPRT DEMPRT QO TO 1332 IJC = IJC + 1(ELSE 1332 CONTINUE C DEMPRT DEMPRT (ELSE) DEMPRT ENDIF IF (IJC. GE. 1) WRITE(LUOUT, 1) 1334 CONTINUE DEMPRT DEMPRT C DEMPRT DEMPRT 278 279 280 DEMPRT DEMPRT 281 282 283 DEMPRT DEMPRT DEMPRT c DO :338 I=1, NCOM 284 DEMPRT D0 .336 J=1, NCOM J0 1336 J=1, NCOM IF(I_EG.J_OR_ELASPR(I,J), EG.O.) G0 T0 1336 WRITE(LUOUT, 181) NAME(I), NAME(J), ELASPR(I,J) IJC = IJC + 1 285 DEMPRT 286 287 DEMPRT 288 289 DEMPRT 1JC = IJ 1336 CONTINUE IF(IJC .GT. 1) WRITE(LUDUT, 1) DEMPRT 291 292 292 293 293 DEMPRT DEMPRT С DEMPRT 999 CONTINUE 295 00000 AGRICULTURAL EXPORT-IMPORT BALANCE 296 DEMPRT DEMPRT DEMPRT DEMPRT ITAB = ITAB + 1 IF(KDPRT(9).EG.O. OR. KRAP.EG.O) GO TO 310 WRITE(LUOUT,2) WRITE(LUOUT,1004) ISECT, ITAB, YEAR WRITE(LUOUT,1005) VALDF1,VALDF2,WOND,TVALDF,DVALDF,TRDPRF DEMPRT 301 DEMPRT DEMPRT 302 303 DEMPRT 304

 1004
 FORMAT(T2, 6HTABLE, A6, 1H., I2, 1H., 2X, 20HAGRICULTURAL EXPORT-, 15HIMPORT BALANCE, F5.0)
 DEMPRT

 1005
 FORMAT(T2, 70(1H-), /, T2, 4HITEM, T39, 5HUNITS, T67, 5HVALUE, /, T2, 70(1H-))
 DEMPRT

 1005
 FORMAT(T2, 70(1H-), /, T2, 4HITEM, T39, 5HUNITS, T67, 5HVALUE, /, T2, 70(1H-))
 DEMPRT

 1
 //, T2, 20HAGRICULTURAL EXPORTS, T39, 6HBI WON, T62, -9PF1 0.0, // DEMPRT
 DEMPRT

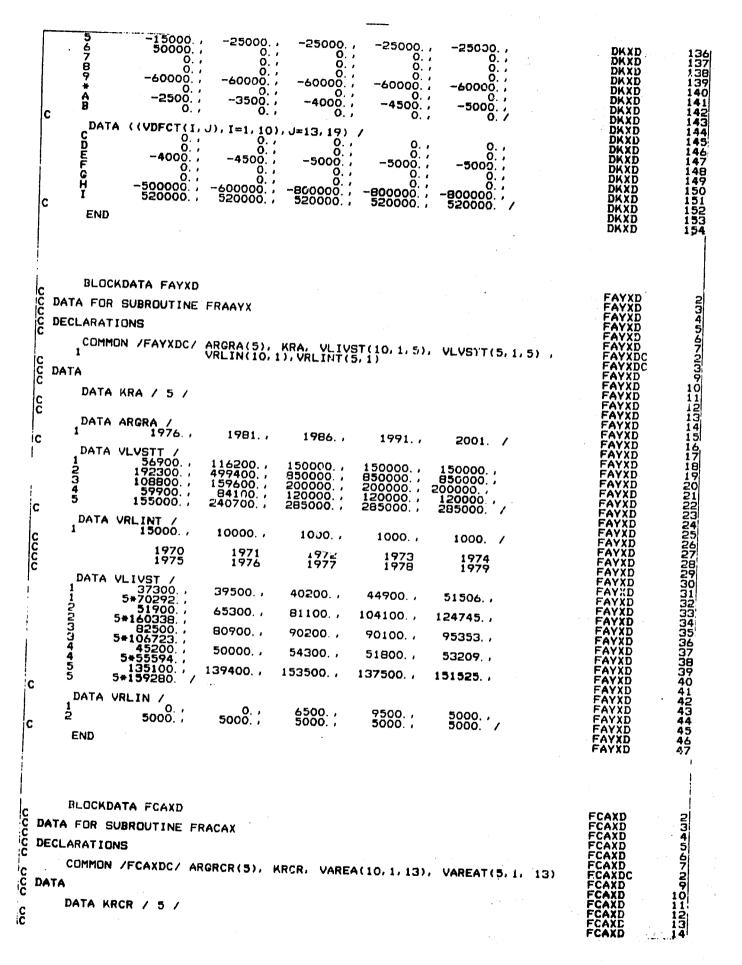
 2
 T2, 20HAGRICULTURAL IMPORTS, T39, 6HBI WON, T62, -9PF1 0.0, // DEMPRT
 DEMPRT

 3
 T2, 13HEXCHANGE RATE, T39, 10HWON/DOLLAR, T62, 0PF1 0.0, // DEMPRT
 DEMPRT

 5
 T2, 32HAGRICULTURAL BALANCE OF PAYMENTS, 139, 6HBI WON, T62, -9PF10.0, // DEMPRT
 DEMPRT

 6
 T39, 6HBI WON, T62, -0PF10.0, // DEMPRT
 DEMPRT

 7
 T2, 30HPROFIT FROM AGRICULTURAL TRADE, 139, 6HBI WON, T62, -0PF10.0, // DEMPRT
 DEMPRT


 9
 T2, 30HPROFIT FROM AGRICULTURAL TRADE, 139, 6HMI WON, T62, -0PF10.0, // DEMPRT
 DEMPRT

 9
 T39, 6HMI WON, T62, -6PF10.0, //, T2, 70(1H-))
 DEMPRT

 DEMPRT 305 306 307 IC: 308 309 310 311 312 313 314 315 315 316 317 318 319 320 321 322 322 322 323 DEMPRT C 310 CONTINUE DEMPRT DEMPRT AGRICULTURAL IMPORTS AND EXPORTS BY COMMODITY 00000 DEMPRT . DEMPRT ITAB = ITAB + 1

IF (KUPRT(10), EQ. 0. DR. KRAP. EQ. 0) GD TO 320 WRITE (LUDUT, 2)	DEMPRT	. 3
WRITE(LUDUT, 160) ISECT, ITAB, YEAR WRITE(LUDUT, 161)	DEMPRT	333
$\begin{array}{l} DO 162 JC=1, \text{ NCOMAG} \\ \overline{DEFCTM}(JC) = 0. \end{array}$	DEMPRT DEMPRT	3
TECTM(JC) = _DEFCIT(JC)	DEMPRT	3
$\frac{\text{DEFCIT(JC)}}{\text{165 VALDFM(JC)}} = 0$	DEMPRT	3
IF(VALDEF(JC) = VALDEF(JC) VALDFM(JC) = -VALDEF(JC)	DEMPRT DEMPRT	3
	DEMPRT	3
	DEMPRT	3
WRITE(LUOUT, 163) NAME(JC), DEFCIT(JC), PWLDIM(JC), TARREV(JC), 1 VALDEF(JC), PRFIMP(JC), DEFCTM(JC), FWLDEX(JC), 2 VALDFM(JC), PRFEXP(JC)	DEMPRT	3
	DEMPRT	3
162 CONTINUE	DEMPRT	3
WRITE(LUOUT, 164)	DEMPRT	3
160 FORMAT(T2, 6HTABLE, A6, 1H., 12, 1H., 2X, 24HAGRICULTURAL IMPORTS AN 1 21HEXPORTS BY COMMODITY, F5.0)	DEMPRT DEMPRT ND, DEMPRT	3
1 12, 126(1H-), /, T36, 13HI M P D R T S, T96, 13HE X P D P T	DEMPRT	3
3 BUDGY 1796, 6HEXPORT // T14, BHQUANTITY, 730, SHIPPICE		3
5 5HTH MT, 129, 4HTH UCH, 1122, 6HPROFIT, /, 12, 126(1H-), /, 11, 7	DEMPRT	3
		3
163 FORMAT(T2, A6, T12, -3PF10. 3, 3X, -3PF10. 1, 3(3X, -6PF10. 1), 5X, -3PF 10 1 164 FORMAT(//, T2, 126(1H-), /, T2, 26H* INCLUDES TARIFF REVENUES)		3
	DEMPRT DEMPRT	3
RETURN END	DEMPRT	36
	DEMPRT DEMPRT	36 36
BLOCKDATA DKXD DATA FOR SUBROUTINE DEMKX	DKXD	
DATA FOR SUBROUTINE DEMKX	DK XD DK XD DK XD DK XD	
DATA FOR SUBROUTINE DEMKX DECLARATIONS	DKXD DKXD DKXD	
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 1 VPP(5, 20), APCFD	DKXD DKXD DKXD DKXD DKXD 20), DKXDC DKXDC DKXDC	
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 ^{COMMON} /DKXDC/ ARGPP(5),KPP,VDFC(10,20),VDFCT(5,20),VPRICE(1 0,2 1 VPP(5,20),APCFD DATA	DKXD DKXD DKXD DKXD DKXD 20), DKXDC	
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 1 VPP(5, 20), APCFD	DKXD DKXD DKXD DKXD DKXD DKXD DKXDC DKXD DKXD	
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 1 DATA DATA KPP / 5 / DATA APCFD / 80 /	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / 1975 1974 1972 1973 1974	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	11 12 13 14
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(3, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / B0 / 1975 1974 1972 1973 1974 1975 1976 1977 1978 1979 1077 1978 1979	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	11 12 13 14 15 16 17
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / 1970 1971 1972 1973 1974 1975 1976 1977 1973 1974 1979 1979 1979 DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / 1 54113990 / 82289. , 95639. , 97111. , 112914	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 123 14 154 154 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / 1970 1971 1972 1973 1974 1975 1976 1977 1973 1974 1979 1979 1979 DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / 1 54113990 / 82289. , 95639. , 97111. , 112914	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 123 14 154 154 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 DATA ((VPRICE(I,J), I=1, 10), J=1, 6) / 1 74689. / 82289. / 95639. / 97111. / 112914	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 12 13 15 15 15 15 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 DATA ((VPRICE(I,J), I=1, 10), J=1, 6) / 1 74689. / 82289. / 95639. / 97111. / 112914	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 12 13 15 15 15 15 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / B0 / DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / 1 5*113989, 82289, 75639, 97111, 112914, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 40610, 49636, 56800, 36758, 57622, 5899, 29912, 31669, 38992, 40610, 49636, 56800, 45730, 49295, 584052, 60739, 57118, 63875, 68605, 68605, 584052, 75118, 75118, 63875, 68605, 75118, 7	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 123 14 154 154 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / DATA APCFD / 80 / DATA ((VPRICE(I,J), I=1,10), J=1,6) / 1 5*113989; 4 40610; 49636.; 56800.; 36758.; 57622.; 23939; 25899.; 29912.; 31669.; 38992.; 3 5*64950; 239375; 40263.; 41883.; 45730.; 49295.; 5 408264.; 5 408264.; 54189; 57118.; 63875.; 68605.; 5 54027; 25899.; 57118.; 63875.; 68605.; 5 54027; 60739.; 57118.; 63875.; 68605.; 5 54024; 74159.; 79079.; 89060.; 70041.;	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 133 14 15 16 17 18 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS ^{COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / ¹⁹⁷⁰ 1971 1972 1973 1974 1978 1979 DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / ¹ 5*113969, 82289, 95639, 97111, 112914, 4 40610, 49636, 56800, 56758, 57622, 4 23939, 25899, 29912, 31669, 38992, 4 3 5*40027, 25899, 29912, 31669, 38992, 4 4 33375, 40263, 41883, 45730, 49295, 4 5 5*64950, 57118, 63875, 68605, 5 5 5*75582, 60739, 57118, 63875, 68605, 5 82634, 74159, 79079, 89060, 90041, 7 DATA ((VPRICE(I, J), I=1, 10), J=7, 12) /}	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 133 14 15 16 17 18 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / DATA (VPRICE(I, J), I=1, 10), J=1, 6) / 1 5*113969, 82289., 95639., 97111., 112914., 2 5*64950, 82289., 95639., 97111., 112914., 2 5*64950, 49636., 56800., 56758., 57622., 23939, 25899., 29912., 31669., 38992., 3 5*40027, 25899., 29912., 31669., 389792., 3 5*40027, 25899., 57118., 63875., 68605., 82634., 74159., 79079., 89060., 90041., DATA ((VPRICE(I, J), I=1, 10), J=7, 12) /	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 133 14 15 16 17 18 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / B0 / DATA (VVPRICE(I,J), I=1,10), J=1,6) / 1 5*113989', B2289', 75639', 77111', 112914', 4 0610', 49636', 56800', 36758', 57622', 3 5*64950', 25899', 29912', 31669', 38972', 3 5*40027', 25899', 29912', 31669', 38972', 3 5*40027', 25899', 57118', 63875', 68605', 5 5*5582', 60739', 57118', 63875', 68605', 5 5*5582', 60739', 57118', 63875', 68605', 5 5*88964', 74159', 79079', 89060', 90041', DATA (VVPRICE(I,J), I=1,10), J=7,12) / 7 5*44635', 9 Jack display a state of the	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	112 123 14 154 154 19
DATA FOR SUBROUTINE DEMKX DECLARATIONS ^{COMMON /DKXDC/ ARGPP(5),KPP,VDFC(10,20),VDFCT(5,20),VPRICE(1 0,2 VPP(5,20),APCFD DATA DATA KPP / 5 / DATA APCFD / 80 / ^I9775 1977 1978 1979 DATA ((VPRICE(I,J),I=1,10),J=1,6) / ^T74689, 82289, 95639, 97111, 112914, 5*113989, 82289, 95639, 97111, 112914, 5*64950, 49636, 56800, 96758, 57622, 3 5*64950, 49636, 56800, 96758, 57622, 3 5*64950, 49636, 56800, 96758, 57622, 3 5*64950, 49636, 36800, 96758, 57622, 3 5*64950, 49636, 41883, 45730, 49295, 5 546492, 60739, 57118, 63875, 68605, 5 5*75582, 60739, 57118, 63875, 68605, 6 82634, 74159, 79079, 89060, 90041, DATA ((VPRICE(I,J),I=1,10),J=7,12) / 7 44115, 44722, 35204, 36287, 37474, 8 15079, 18134, 19333, 23860, 29277, 9 5*25501, 242291, 344639, 360856, 353010,}	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	11 12 13 14 15 16 17 18
DATA FOR SUBROUTINE DEMKX DECLARATIONS 1 COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA DATA KPP / 5 / DATA APCFD / B0 / DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / 1 5*113989; B2289, 95639, 97111, 112914, 5*464950; B2289, 97912, 31669, 38992, 3 5*40027; 25899, 29912, 31669, 38992, 5 5*75522; 60739, 57118, 63875, 68605, 5*40522; 60739, 57118, 63875, 68605, 5*85954, 74159, 79079, 89060, 90041, 5*888964, 74159, 79079, 89060, 90041, 5*888964, 44722, 35204, 36287, 37474, 5*888964; 44722, 35204, 36287, 37474, 13079; 18134, 19333, 23860, 29277, 205001, 242291, 344639, 360856, 353010, 5*8285715; 504491, 568244, 943119, 849692, 5*678552; 504491, 568244, 943119, 568244, 943119, 568244, 943119, 568244, 943119, 568244, 943119, 568244, 943119, 568244, 943119, 568244, 943119, 568924, 943119, 568244, 943119, 5689492, 56856, 56856, 56856,	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	11111111111102000000000000000000000000
DATA FOR SUBROUTINE DEMKX DECLARATIONS COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 2 VPP(5, 20), APCFD DATA DATA KPP / 5 / DATA APCFD / .80 / DATA ((VPRICE(I, J), I=1, 10), J=1, 6) / 1 5*113989, B2289, 95639, 97111, 112914, 40610, 49636, 56800, 36758, 57622, 5*64950, 25899, 29912, 31669, 38792, 3 5*6027, 25899, 29912, 31669, 38792, 4	DKXD DKXD DKXD DKXD DKXD DKXD DKXD DKXD	11 12 13 14 15 16 17 18

			-					
	C 659575	715122.,	862390.	911580.,	793192.	DK		45
	č 5*678218 ·		50473	57330. /	52375. 4	DK		47 48
	D 5+54001.	281650.	228525. 4	313720 /	291323. /	ND		49 50
	E 5*342642	054040	293557	338853. /	391851. /	NG NG		51 52 53
	F 5*431132 , C 216364 ,	189027.	170534. +	207117. /	230347.)	DM		54 55
	G 5*240933.	72256. /	63547 ,	84898. /	62898. /	DH		56 57
	D 54987., D 5*54001., E 261115, E 5*342642., F 5*431132, G 216364, G 5*240933., H 70190., H 5*72654., I 68413., I 5*70000.,	109570. i	57012. /	50425. /	68472. ,	DM		58 59
;	I 5#70000., J 10#1./	/				DM		60 61
Ċ	DATA ((VDFC (I, J)),I=1,10),J 907000./	=1,6) / 584000.,	437000. ,	206000. ,	Dł		62 63
ļ	1 5+481000 ; 1 5+481000 ;	0. 4	254000	350000. /	299000. ,	Dł		64 65
1	2 0, 2 5*354000. 3 1254000. 3 5*i703000. 4 279000. 4 5*554300.			1835000 ,	1592000.	ומ		66 67
1	3 1254000 3 5*1703000	378000.		576000. ,	56900	ום		68 69
	4 279000. 4 5#554300. 5 1000.	5000	1000	-1000. •	4000	וס	AXD AXD	70 71
	5 1000., 5 $5*-700.,6$ $35000.,$	61000. /		73000. ,	66000. <i>i</i>		KXD KXD	72 73
:	6 5*56500 /					D		74 75 76
c	DITA ((VDFC(1, J), i=1,10), -4000.,	-B000.	-22000. /	-27000. ,	D	KXD KXD	77 78
i	7 5+-27900	4000.	4000. ,	4000. /	4000. ,	מ	KXD	79 80
	B 4000, 9 5*68700, 9 -27400, 9 5*-61700,	-20900. 4	-9300.,	-27600. ,	-54000. ,	Ď	KXD KXD KXD	81 82
	* 10*0.	-2319.4	-3244. /	-3743.	-2528. /	D	RXD KXD	83.
!	A -2126 - A 5*-703 -	2200. ,	-1900.	14500. /	8700. /	ם	KXD KXD	84 85 86
1	B -200.+ B 5*-235./					ם	KXD KXD	87 88
С	DATA (VDFC(I, J), I=1,10), 600.,			0.,	ם	KXD KXD	89 90
	C 0., D 54400.,	0. ,	0., 60400.,	0., 8700.,	14600.	Ē	KXD KXD	91 92 93
	Ď 5+10400.↓ F −100.↓		-4200.,	-1 700. <i>i</i>	-3700. /	Ľ	KXD KXD	94:
!	C 500., C 0., D 54400., D 5*10400., E -100., E 5*-8100., F 0., G -1500., G 0.,	Q. /	0. /	0., 0.,	0., 0.,	Ē	OKXD	95 96 97
	G -1500.	-600. 1	-1300. ,	-1200.	0.,	I	NKXD NKXD NKXD	98 99
	H181000. ·	- 194000	-248000. /	-355000.,	-407000.	I	KXD	100
ł	I 374800.	207200.	406900. 1	550900.	517700. ,	1	OKXD	102 103
c	I 3*445500.7	, ,				1	DKXD DKXD	104. 105
L	EATA ARGPP / 1 1976.	, 1981. ,	1986. ,	1991. /	2001. /		DKXD	106
С	DATA ((VPP(I,J), I=1, 5), J=	1,10) / 120000.,	120000. /	120000.			108 109 110
	1 120000	, <u>120000</u> , ,	120000	60000. /	60000. / 45000. /		DKXD DKXD DKXD	111
I	2 60000 3 45000 4 48000 5 70000 6 70000 7 40000	, 48000.,	48000. /	48000. /	70000. /		DKXD	112 113 114
	5 70000. 6 90000.	, 90000.	90000. /	90000. /	90000. / 40000. /		DKXD	115 116 117
	B 30000.	, 30000.	30000.	30000. 4	400000.		DKXD	118 i
	9 400000. # 1000. DATA ((VPP(I), J	1000 /	1000.	1000. ,			DKXD DKXD	119
		, 355000.	200000	2000000.1	200000. /		DKXD	120 121 122
	A B35000. B 2000000 C B000000 D 55000. E 3000000 F 4000000. G 2500000	, 800000.	B00000. 55000.	, 55000.	55000.		DKXD	123 124 125 126
	E 300000.	, 300000. 400000	, <u>300000</u> . , <u>400000</u> .	, 400000.	400000.		DKXD	125 126 127
	G 250000. H 70000.	, 250000. , 70000.	, 70000.	, 70000.	, 70000.		DKXD DKXD DKXD	128 129
	1 74074. J 1.	, 74074.	, 74074. , 1.			/	DKXD DKXD DKXD	130
Ċ	DATA ((VDFCT(I	(, J), I=1, 10), J=1, 12) , 0.	/ <u>o</u> .	, <u>o</u> .,		DKXD DKXD DKXD	132 133
	1 200000.	, 0.	0. 1900000	0. 1900000.	1700000		DKXD	134 135
ł	2 100000. 3 1900000. 4 500000.	400000.	; 400000.	; 400000.	, 400000.,			

ΠΔΤΔ							15
1	ARGRCR /	:981.	1986. ,	1991. /	2001. /	FCAXD FCAXD FCAXD	16 17 1日
-	VAREAT /		1275000	1275000 .	1275000. /	FCAXD	19
	1212400.		123000.1	120000.1	725000.	FCAXD	20
, S	33100 / 92500 /	108000.	150000	150000.	90000. /	FCAXD FCAXD	
4 5	73400.	133400.1	155000.	155000.	155000.	FCAXD FCAXD	25
67	370000.	. 273800.	280000	280000. 185000.	280000.	FCAXD	227
123456789*	156100. / 59900 /	64000.	75000.	75000.	75000. <i>i</i> 0. i	FCAXD	28
÷	, 0 90000		100000.	100000. /	100000.	FCAXD	ភ្លី
A B P	100000. /	112700.	125000. 750000.	125000. / 750000. /	750000. /	FCAXD FCAXD	3
Р	840000.7	, , , , , , , , , , , , , , , , , , , ,			1074	FCAXD FCAXD	ด้อยอยอยอออออออออออออออออออออออออออออออ
	1970	1971 1976	1972 1977	1973 1978	1974 1979	FCAXD FCAXD	3
	1975			,		FCAXD	3
. 1	1203330	, 1, J), I≕1, 1 , 1190449. ,	1191101 ,	1181718. /	1204416. /	FCAXD	334
1-2	5*1218012. 730269.	•	710174.		703690. 1	FCAXD FCAXD	4
1 223334455	5 #7 11010 96740	-	62735	43218 /	36477. /	FCAXD	444
3	5#43710. 129721		89950.	95092.	86021.)	FCAXD FCAXD	444
4	5*79270. 60185	,		65679. 1	75129. ,	FCAXD FCAXD	- 4
	5 * 88448.		340115 ,	369710 ,	349392.	FCAXD FCAXD	4
6	365182 5*341492		-	1		FCAXD	
7	254279	, <u></u>	247915.	254213.	274055. 1	FCAXD	50
7 8 8 9 9	5*276460 180403	, 163291.,	147432	138241.,	123372. ,	FCAXD	ក្រមាយមាន
ê	5*147271. 43002.	1	58147. /	55542. /	54306. /	FCAXD	1000
9 *	5*53897. 0.	'	Q.,	0. ,	0. ,	FCAXD FCAXD	
*	0. 84977.	, 0. ,		0., 80267.,	88006	FCAXD	54
A	5+90955			83288. ,	107036. ,	FCAXD	E E
<u>n</u>							
BB	89212. 5 +1000 80.			560000. /	735000.	FCAXD	é
A B B P P	5*100080. 250000. 570000.	315000.	415000.	560000., 625000.,		FCAXD	ě
A B P P END	5 *10008 0. 250000.	315000.	415000.			FCAXD	ě
•	5 *10008 0. 250000.	315000.	415000.			FCAXD	e e
•	5 *10008 0. 250000.	315000.	415000.			FCAXD	ě
END	5#100080. 250000. 570000.	315000., , 690000.,	415000.			FCAXD FCAXD FCAXD FCAXD	ě
END	5+100080. 250000. 570000.	315000., , 690000.,	415000.			FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD	
END	5#100080. 250000. 570000.	315000., , 690000.,	415000.			FCAXD FCAXD FCAXD FCAXD NDXD	
END BLOG DATA FOF DECLARA	5+100080. 250000. 570000. CKDATA NDXI R SUBROUTIM	315000., 690000., NE NECDX	415000., 530000.,	625000. <i>,</i>	715000. /	FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD	
END BLOG DATA FOR DECLARA COM	5+100080. 250000. 570000. CKDATA NDXI R SUBROUTIM	315000., , 690000., NE NECDX	415000., 530000., , ARGND(5), VFI(10), VF	625000. ,	715000. /	FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOF DECLARA	5+100080. 250000. 570000. CKDATA NDXI R SUBROUTIM	315000., , 690000., D NE NECDX	415000., 530000., , ARGND(5), VFI(10), VF	625000. ,	715000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOC DATA FOR DECLARAT COMM	5+100080. 250000. 570000. CKDATA NDXI R SUBROUTIM	315000., , 690000., NE NECDX	415000., 530000., , ARGND(5), VFI(10), VF	625000. ,	715000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARA COM 1 2 DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX	315000., ; 690000., NE NECDX (/ ARGFX(4) VCPT(5), VWOND(10) / 5, 4 /	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4)	625000., KFX, KND, IT(5), VUI	715000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARA COM 1 2 DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX	315000., , 690000., NE NECDX C/ ARGFX(4), VCPT(5), VWOND(10)	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4)	625000., KFX, KND, IT(5), VUI	715000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARA COM 1 2 DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 3	315000., 690000., NE NECDX C/ ARGFX(4) VCPT(5), VWOND(10) / 5, 4 / 1976., 1977	415000., 530000., VFI(10), VF VFI(10), VF VFXR(4)	625000., KFX, KND, IT(5), VUI	715000. / VCF(10), ((10), VUIT(5	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARA COM 1 2 DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX	315000., , 670000., , 670000., , 670000., , 670000., , 70000., , 70000., , 70000., , 70000., , 70000., , 70000., , 70000., , 70000., , 700000., , 7000000., , 700000., , 70000., , 700000., , 7000000., , 700000., , 700000000000000000000000000000000000	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4) ., 1981., 1	625000., KFX, KND, IT(5), VUI	715000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOF DECLARAT COMP 1 2 DATA DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 3 197(197)	315000., , 690000., , 690000., , 690000., , 690000., , 790000., , 790000., , 790000, , 79000, , 79000, , 79000, , 790000, , 79000, , 790000, , 79000, , 7900, , 7000, , 700	415000., 530000., VFI(10), VF, VFI(10), VF, VFXR(4) ., 1981., 1 1972 1977	625000., KFX, KND, IT(5), VUI .986. / 1973 1978	715000. / ((10), VUIT(5) ((10), 1974 1979	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARAT COMM 12 DATA DATA DATA	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 3 1970 1977 A VCP / 1.000	315000., , 670000., NE NECDX C/ ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0 1971 5 1976 0,959	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4) ., 1981., 1 1972 1977 , 946	625000., KFX, KND, IT(5), VUI 986. / 1973 1978 . 952.	715000. / (VCF (10), ((10), VUIT(5) 1974 1979 , <u>92</u> 2,	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOF DECLARAT COMP 1 2 DATA DATA DATA 1 2	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS 10N /NDXDY(A KND, KFX A ARGFX / 3 1970 1977 A VCP / 1.000	315000., , 670000., NE NECDX C/ ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0 1971 5 1976 0,959	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4) ., 1981., 1 1972 1977 , 946	625000., KFX, KND, IT(5), VUI 986. / 1973 1978 . 952.	715000. / ((10), VUIT(5) ((10), VUIT(5) 1974 1979 , 922, , 95 /	FCAXD FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOG DATA FOR DECLARAT COM 12 DATA DATA DATA 12 DATA	5+100080 250000 570000 570000 CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 3 1977 A VCP / 1.000 1.000 9 A VFI / 44028	315000., 690000., NE NECDX (ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0 1971 1976 0, 959 5, 959 5, 959	415000., 530000., VFI(10), VF VFI(10), VF VFXR(4) ., 1981., 1 1972 1977 ., 946, ., 95	625000. , EIT(5), KND, EIT(5), VUI .986. / 1973 1978 . 952 . 952 . 952	715000. / VCF (10), ((10), VUIT(5) 1974 1979 . 922, . 95 / 45000. /	FCAXD FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOC DATA FOR DECLARA COM 12 DATA DATA DATA 12 DATA DATA 12 DAT	5+100080. 250000. 570000. 570000. CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 197(197) A VCP / 1.000 1.000 2.50000	315000., 690000., NE NECDX (ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0 1971 1976 0, 959 5, 959 5, 959	415000., 530000., VFI(10), VF VFI(10), VF VFXR(4) ., 1981., 1 1972 1977 ., 946, ., 95	625000. , EIT(5), KND, EIT(5), VUI .986. / 1973 1978 . 952 . 952 . 952	715000. / VCF (10), ((10), VUIT(5) 1974 1979 . 922, . 95 / 45000. /	FCAXD FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOC DATA FOR DECLARA COMM 12 DATA DATA DATA 12 DATA 2 DAT	5+100080 250000 570000 570000 CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 3 1977 A VCP / 1.000 1.000 9 A VFI / 44028	315000., 690000., NE NECDX (/ ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0 1971 1976 0, 959 5, 95 52950 , 70000.	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4) ., 1981., 1 1972 1977 ., 946 ., 95 ., 56534. ., 70000.	625000. , KFX, KND, IT(5), VUI .986. / 1973 1978 .952. .955. .95	715000. / (VCF (10), ((10), VUIT(5) 1974 1979 , 922, 95 / , 65000. /	FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	
END BLOC DATA FOR DECLARA COM 12 DATA DATA DATA 12 DATA DATA 12 DAT	5+100080 250000 570000 570000 CKDATA NDXI R SUBROUTIN TIONS MON /NDXDY(A KND, KFX A ARGFX / 1 1977 A VCP / 1.000 1.000 1.000 2.9000 A VFI / 44028 70000 A VUI /	315000., 670000., NE NECDX C/ ARGFX(4), VCPT(5), VWOND(10) / 5, 4 / 1976., 1977 0, 959 5, 95 5, 95 6, 52950 70000. 83735.	415000., 530000., VFI(10), VF VFI(10), VF , VFXR(4) ., 1981., 1 1972 1977 ., 946 ., 95 ., 56534. ., 70000.	625000. , KFX, KND, IT(5), VUI .986. / 1973 1978 .952. .955. .95	715000. / (VCF (10), ((10), VUIT(5) 1974 1979 , 922, 95 / , 65000. /	FCAXD FCAXD FCAXD FCAXD FCAXD NDXD NDXD NDXD NDXD NDXD NDXD NDXD N	

304.5, 5+494.07 12 316.7, 373. 3. 398. 9, 399. 0, NDYD S 33333334444444445555 333334444444445555 NDXD LATA ARGNO / NDXD NDXD 1981. , NDXD lc 1986. , 1991. . 2001. / LATA VCP1 / NDXD . 95. NDXD С . 95, . 95. . 95 / NDXD 1 103000. 151000. , NDXD C 193000. , 314000. / DATA VUIT / 94118., NDXD 1 118244., C C C 150912. , NDXD 192606. 313735. NDXD 1976 1977 1981 NDXD DATA VFXR / 485.0, 1986 NDXD NDXD 1 500.0, C 500. 0, NDXD 500.0 / NDXD END NDXD NDXD 54 BLOCKDATA PKXD 00000 PKXD PKXD PKXD PKXD PKXD 20745472901207454789012074547890 1111111111112202012074547890 DATA FOR SUBROUTINE POPKX DECLARATIONS COMMON /PKXDC/ DP, DPOPRD(1), KNP, VPOP(31,2) CCCC PKXDC DATA PKXD PKXD DATA DP, DPOPRD(1), KNP / 1.0, 1.0, 31 / PKXD c PKXD DATA VPOP PKXD 14335., 13089., 12280., 11628., 123 14568. , 14063., 12893., 12072., 11514., 10863., 13547., 12543., 11848., 11273., 10553., 13800. , 13309. 12685., 11959., 11396., PKXD 2395: , PKXD 4567 11739 11006. ; PKXD 10386. 10712.; PKXD PKXD PKXD PKXD PKXD PKXD 10216. , 10042 9866. 9687. 1234567 766. 20358., 24297., 27620., 31344., 35188., 18619. , 21190., 25010., 28344., 32114., 35947., 39628., 19501. 1994. 22772; 26457; 29821; 33696; 37443; 19501, 23527, 26906, 30579, 34424, 38179, 25743 32885. , 36699. , 40342. / PKXD PKXD PKXD PKXD PKXD 38907. c END SUBROUTINE PRICE COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA BI, IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTFR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), KVPRT(15), KNPRT(15), KDPRT(15), KVPRT(15), KNPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, NRUN, NS, NAME(220), PLANT, T, TIMEI, TIMEF, TTABI, YEAR, INTEGER ANIMAL, FARM, PLANT, URBAN, 1277OP, TOTSOR EGUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), COMMON /DEMKC/ APCF, DEFCIT(20), PAVG(1,20), PFDI'4X, TPAVG(2 0) COMMON /NECDYC/ AGINTX, CPUNF, FPCI, PRFRMY(1), UPCI, WOND, COMMON /POPKC/ CALRPC(2), POP(2), POPL(2), POPR(1), PRORPC(2), COMMON /POPKC/ CALRPC(2), FTOFPC(2) COMMON /PRDDC/ AYLD(12), EFFFLD(12), FDFSH, FEED(12), FGIM, FLOSS(20), TAREA(12), TDSUP(20), TOUTRL FGIM, FLOSS(20), TAREA(12), TSUP(20), TOUTRL COMMON /CPDEMC/ APCH, IGRAIN(5), IMEAT(5), MM(20), PILOSS(20), PLOST, SUBDC(5,5,2), P CMIN, PSUBCM(5,5,2), FSUBTG(3,2), PSUBTM(5,2), FFU(2), PCONVQ(5), PWHTIC, YDEL, CALPU(20), PROTPU(20), SUBROUTINE PRICE PRICE CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRC CONTRO CONTRC CONTRO CONTRC CONTRC DEMKC NECDYC NECDYC 1 POPKC 12 PRDDC PRDDC 3

5	W(20)		
REAL MM COMMON /ICDEMC/	ELISAV(20), ELISVR(20), EPAVGO(2), STK0(20), VCPU(10,20), VCSTK(10, VFPIX(10), VPSUP(10,20), VPWI(10, VPWX(10,20), FNR(20), VPICF(10),		ICDEMC ICDEMC ICDEMC
COMMON /PPDEMC/	VPCUFD(10) ARG(5), KFT(20), KNDR, KPAVG(20)	ά ρερτ(20).	ICDEMC PPDEMC PPDEMC PPDEMC
2	PCRT1, PCUT1, PWPMAX(20), PWPMIN(PCRT1, PCUT1, PWPMAX(20), PWPMIN(TARIFF(20), VCPUT(5,20), VPCSUP(5 VPWLDX(5,20), VPWLDX(5,20)	20), STRATE 0//	PPDEMC PPDEMC DEMSVC
COMMON /DEMSVC/ 1 2	VPWLDI(5,20), VPWLDX(5,20), DEMC(2 ALPHA, CPU(20), CPU0(20), DEMC(2 DEMT(1,20), EPAVG(1,20), INCOM, PCCONU(20), Q(20), RFRMY(1), S1, EINCOM, TDEM(20), TDEML(20), WWF	516(207)	DEMSVC DEMSVC DEMSVC DEMSVC DEMSVC
1	CHGSTK(20), DSTK(20), DVALDF, EFF ELASP(20,20), ELASPR(20,20), ELASP(20,20), ELASPR(20,20),	(MAPA (20))	VDEMC VDEMC VDEMC VDEMC
7	ELASI(20), ELASICONF(20), TARREV FGIVAL, ITER, PCCONF(20), TARREV PRFEXP(20), PRFIMP(20), PWLDD(20) PWLDIM(20), RDEM(20), TRDPRF, TV		VDEMC VDEMC PRICE
DITAL THOUSH),20), AINTER(20), AINV(21,21), BI X(20), CPUMIN(20), CPUL(20), INI	CH(20) RTHS (21)	PRICE PRICE PRICE PRICE
INAPA CODES	IS AT UPPER BOUND		PRICE PRICE PRICE PRICE
	IS AT LOWER BOUND IS DETERMINED BY MARKET MECHANIS IS FIXED BY GOVERNMENT	5 m	PRICE PRICE PRICE
ITER = 0 DD 2 I=1, NCDM IF(ITIME . GT. C)) CPUL(I) = CPU(I)	· · ·	PRICE PRICE PRICE PRICE
INAPA(I) = 0 IF(KFT(I).EG.5 IF(KRAP.EG. 0) 2 CONTINUE	.OR. T.LT.BASEYR+.9999) INAPA(I)) INAPA(I) = 1	= 1	PRICE PRICE PRICE PRICE
	DNSUMER PRICES (CPU(J), J≖1,19)		PRICE PRICE PRICE
	YR+, 9997) ABEL(VCPU(1,J), KTABI,TTABI, 1.0, + 9999 AND. INAPA(J).EQ.1) + 9909 AND. INAPA(J).EQ.1) ABUL(VCPUT(1,J), KNOR, ARC, T)	T)	PRICE PRICE PRICE PRICE PRICE PRICE PRICE
POLICY-SPE	CIFIED BOUNDS ON PRICES	· · ·	PRICE PRICE PRICE
DD 35 J=1, NCUM IF(KFT(J) . NE.	AX1(PWPMIN(J)*PWLDEX(J), (1DT*F INI(PWPMAX(J)*PWLDIM(J), (1. +DT*F	CPMIN(J))#CPU L(J) CPMAX(J))#CPU L(J)	PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE
	E(I,J) AND B(I)		PRICE
DO 49 $J=1,5$ JC = ICRAIN(J) JM = IMEAT(J) DO 48 $I=1,5$			PRICE PRICE PRICE
IF(I EG. J)GL IG = IGRAIN(I) IM = IMEAT(I)		ELASP(JG,JG) VG(J) / PCONVG (I))	PRICE PRICE PRICE PRICE
AR CONTINUE	PCCONU(JG) / PCCONU(IG) + (PCON 	ELASP (UM, JM)	PRICE
49 CONTINUE	LAQED (TANGON (ABCH) & BOB(2) / POPL(2)	PRICE PRICE PRICE
	LAGGED 1) INCOM = (EINCOM/APCN) + POP(2) M + UPCI + POPL(2) /POP(2) + (DT/YDEL) + (UPCI - INCOM)		PRICE PRICE PRICE PRICE PRICE PRICE
INCOME EL	STICITIES		PRICE PRICE PRICE PRICE
DO 55 I=1, NCO ELASI(I) = DEI	C(I) + (PCCONT(I) - PCCONU(I))		PRIČE

IF(I.NE.1 OR, YEAR.LT.1980.) GD TO 55
PCT1 = AMAX1(PCUT1, PCCONT(1)-(YEAR-1980.)*(PCCONT(1)-PCUT1)/ 20.)
PRICE
ELASI(1) = DEMC(1) * (PCT2 - PCCONU(1))
THE HOMOGENEITY POSTULATE FROM DEMAND THEORY +
 "THE SUM OF INCOME PLUS OWN-PRICE PLUS CROSS-PRICE
 ELASTICITIES FOR EACH COMMODITY MUST EQUAL ZERO
DO 80 I=1,NCOM
IF(I.GT.NCOMAG) GD TO 60
NON-AGRICULTURAL CONSUMPTION IS TREATED UNIQUELY
ELASP(NCOM, I) = -(ELASP(NCOM, NCOM) + ELASI(NCOM))*G(I)*CPUL(I)/
ELASP(I, NCOM) = -ELASI(I)
ELASI(I) CCCCC C С C DO 50 J#1, NCOMAG ELASP(I, NCOM) = ELASP(I, NCOM) - ELASP(I, J) 50 CONTINUE PRICE C 60 CUNTINUE DD 70 J=1,NCDM AE(I,J) = PGCONU(I) * S1 * ELASP(I,J) / CPUL(J) 70 CUNTINUE 80 CUNTINUE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE C DO 100 I=1,NCOM X = ELASI(I) * ALOG(INCOML) DO 90 J=1,NCOM X = X + ELASP(I,J) * ALOG(CPUL(J)) 90 CONTINUE AINTER(I) = PCCONU(I) * S1 * (ELASI(I) * (INCOM/INCOML) - X) BDEM(I) = PCCONU(I) * X 100 CONTINUE PRICE PRĪČĒ PRICE CCCC BEGIN PRICE ADJUSTMENT LOOP 40 CONTINUE ITER = ITER + 1 ł IC NIN = 0 DO 46 I=1,NCOM IF(INAPA(I) .NE. 0)GO TO 46 NIN = NIN + 1 JIN(NIN) = I 46 CONTINUE NINTI = NIN + 1 PRICE i İc IF(NIN . EQ. 0) GD TO 191 00000 MECHANISM TO CHANGE PRICES PRIČĒ PRICE DEFINE PRICE RESPONSE MATRIX DD 130 I=1,NIN K = JIN(I) FTHS(I) = (TDSUP(K) + DEFCIT(K)) / POP(2) - AINTER(K) IO 120 J=1,NCOM IF(INAPA(J) .EG. 0)GC TO 120 RTH3(I)=RTHS(I)-CPU(J)#AE(K,J) 120 CONTINUE UD 130 JEL NIN 120 (CMTINUE LD 130 J=1,NIN L = JIN(J) AINV(I,J) = AE(K,L) 130 CONTINUE RTHS(NINT1) = ALPHA # EINCOM NN = 0 PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE C C C COMPLETE THE MATRIX FOR JOINT DETERMINATION OF CPU AN D S DD 160 N=1, NCOM IF(INAPA(N) NE. 0)GD TD 150 NN = NN + 1AINV(NN, NINT1) = BDEM(N) AINV(NIN 1, NN) = (TDSUP(N) + DEFCIT(N)) / POP(2) 150 CONTINUE 160 CONTINUE AINV(NINT1, NINT1) = 0. PRICE PRIČE С DO 166 I=1, NCOM IF(INAPA(I) EQ. 0)GO TO 166 AINV(NINT1, NINT1) = AINV(NINT1, NINT1) + CPU(I) + BDEM(I) DO 162 L=1, NIN K=JIN(L) AINV(NINT1,L) = AINV(NINT1,L) + CPU(I) + AE(1,K) X = 0.3 DO 164 J=1, NCOM PRICE PRICE PRICE PRICE PRICE PRICE PRICE

101 102

103 104 105

106 108 109

138

<u> </u>

38 159

IF(INAPA(J) EQ. 0)GD TO 164 X = X + AE(I,J) * CPU(J) 164 CONTINUE C C CALL MATINV(AINV, INIV, NCOM+1, NINT1) C C DG 180 I=1,NINT1 DD 180 J=1,NINT1 180 AINV(I,J) = AINV(I,J) + (2**15) IF(KDPRT(15) .EG. 0) GD TO 184 PRINT 1090,ITER 184 CONTINUE DD 200 I=1,NIN K = JIN(I) CPU(K) = 0.0 DD 200 J=1,NINT1 CPU(K)=CPU(K)+AINV(I,J)*RTHS(J) 200 CONTINUE ŧ 1 200 CONTINUE CONVERGENCE MECHANISM WITH BOUNDED PRICES CCC CONVERGENCE MECHANISM WITH BUDDLE THEORY KCHECK = 0 IMAX = 0 VMAX = 0 DD 320 I=1.NIN K = JIN(I) IF(KDPT(15) EG. 0) GD TD 204 PRINT 1000.K.CPU(K), PCCONU(K), G(K) 204 CONTINUE IF(KFT(K) LE. 2)GD TD 315 IF(CPU(K) GE. CPUMIN(K) AND. CPU(K) LE. CPUMAX(K))GD TD 3 15 KCHECK = 1 IF(CPU(K) GE. CPUMIN(K))XX = (CPUMIN(K) - CPU(K)) / CPUMIN(K) IF(CPU(K) GT. CPUMAX(K))XX = (CPU(K) - CPUMAX(K)) / CPUMAX(K) IF(CPU(K) GT. CPUMAX(K))XX = (CPU(K) - CPUMAX(K)) / CPUMAX(K) IF(CPU(K) GT. CPUMAX(K))XX = (CPU(K) - CPUMAX(K)) / CPUMAX(K) IF(CPU(K) GT. CPUMAX(K))XX = (CPU(K) - CPUMAX(K)) / CPUMAX(K) IF(CPU(IMAX) GT. 315 VMAX = XX IMAX = K 315 CONTINUE 320 CONTINUE IF(KCHECK EG. 0)GD TD 322 IF(CPU(IMAX) GE. CPUMIN(IMAX))GD TD 321 INAPA(IMAX) = -1 CPU(IMAX) = CPUMIN(IMAX) GD TD 40 321 INAPA(IMAX) = -2 CPU(IMAX) = CPUMAX(IMAX) GD TD 40 322 CONTINUE S1 = 0. ļ 1 C $\begin{array}{l} S1 = 0\\ D0 & 190 & J=1, NINTI\\ S1 = S1 + AINV(NINT1, J) + RTHE(J)\\ 190 & CONTINUE\\ G0 & T0 & 193\\ 191 & X = 0\\ Y = 0\\ J = 0\end{array}$: 191 X = 0. Y = 0. Z = 0. DD 192 I=1, NCOM X = X + CPU(I) * AINTER(I) Y = Y + CPU(I) * BDEM(I) DD 192 J=1, NCOM Z = Z + CPU(I) * AE(I, J) * CPU(J) 192 CONTINUE S1 = (ALPHA * EINCOM - X - Z) / Y 193 CONTINUE IF(KDPRT(15) .EQ. 0) GD TO 194 PRINT 1090, ITER 194 CONTINUE DO 310 I=1, NCOM IF(ITIME .EQ. 0) GD TO 302 Z = 0. DO 300 J=1, NCOM Z = Z + AE(I, J) * CPU(J) 300 CONTINUE PCCONU(I) = AINTER(I) + Z + BDEM(I)*S1 302 CONTINUE PCCONU(I) = PI(I) = P(2) 302 CONTINUE G(I) = PCCUNU(I) * POP(2) IF(KDPRT(15) EQ. 0) GD TD 304 PRINT 1030, I, CPU(I), PCCONU(I), G(I) 304 CONTINUE 310 CONTINUE 310 CONTINUE IF(KDPRT(14) NE. 0) PRINT 1200, YEAR, S1, ITER IF(KDPRT(14) NE. 0) PRINT 1200, YEAR, S1, ITER END OF PRICE ADJUSTMENT LOOP. I .C

178 179 180

181 182

183

184 185

186 187

188 189

195 196 197

198

203

205

206 207

224

122222890120345478

261

PRICE

PRICE

PRICE PRICE

PRICE PRICE PRICE PRICE PRICE

PRICE

PRICE

PRICE

PRICE

PRICE PRICE PRICE

PRICE PRIČE

PRICE

PRICE

PRICE

PRICE

PRICE

PRICE

PRICE PRICE PRICE PRICE PRICE PRICE PRICE

PRICE PRICE

PRICE PRICE PRICE PRICE PRICE PRICE PRICE

PRICE PRICE PRICE PRICE PRICE

PRICE PRICE

PRICE

.

PRICE PRICE PRICE PRICE PRICE PRICE

PRICE PRIČE

1 410 450	IF (ABS(BA) X = 0 DO 410 I=1 PCCONU(I) X = X + CF G(I) = PCC CONTINUE ALPHA = V	I, NCOMAG = (TABEL(VF - RDEM(PU(I) * PCCE CONU(I) * PE ((EINCOM - 7)	0001 . UR SUP(1, 1), (1)) / PDF DNU(1) DP(2)	KTRACK. NE.	BI, 1.0,	T) # TPOF		PRESE PRESE	266 266 266 266 266 270 277 277 277 277
330 CR 340 CR 1090 F 1100 F 1200 F	FARM P CALL DEMKX DO 340 J=1 IF(J.GT.NC TPAVG(J) = DO 330 IR= PAVG(IR,J) CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE	, NCOM DMAG . DR. K CPU(J) / (1, NREGN = TPAVG(J) , I4, 3(4X, E1 14K, 11X, 3HC	0,4)) PU,8X,6HP		G. 44. LUT			PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE PRICE	274 2779 2289 28934 28934 28934 28934 28934 28934 28934 28934 28934 28939 28939 28934 28934 28934 28939 28939 28934 299444 29944 29944 29944 29944 29944 29944 29944 29944 299
						•		PRICE	295
DATA DECLAI CO DATA D/ 12	RATIONS OMMON /RDD ATA PFLOSS ATA SDPHA 0288, 0.0,	BOTH RAP AN DATC/ PFLOSS . 07, . 07, . . 01, . 03, .	(20), SDP	PHA(1,12) 10, 03, 1 02, 02, 0 0270, 0200,	5; 14; 5; 05; 0.0; 0.0;	0540		RDDAT RDDAT	23454729011234547890 111234547890 111234547890
1 1 1 2 2 2 2 3 4 5 1 1 1 2 2 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEGER ANIM JIVALENCE MON /DEMK MON /NECD MON /POPK	<pre>(RC/ ANIMAL, IRUN, I LVSTPR, KPOP, K LUIN1, KPPRT(1 KDPRT(1 NCC, NC NRUN, N T, TIME TOTSOR, AL, FARM, P (LUPLT1, LUP (LUPLT3, LUP (LUPLT3, LUP (LUPLT3, LUP (LUPLT3, LUP C/ AGINTX, TAGDIP, C/ CALRPC(2) TPOP, TRI C/ APUD(12),</pre>	MODE, MC CHG, KRAP LUIN2, LU 5), KCPRT 5), KCPRT 5), KCPRT 5), KCPRT 6), ROMA CM, NCOMA S, NAME(2) I, TIMEF, TOTPOP, LANT, URB LOT(1)), (I LOT(3)) FCIT(20), CPUNF, FI TPTAX, T), POP(2), POP, TPOP(2), FEFEIV(KDEM, KNE(KDUT, LUPLOT((15), KFPRT(G, NCROP, NL O), PLANT, TTABI, YEAR URBAN AN, TOTPOP, LUPLT2, LUPLO PAVG(1,20), PCI, PRFRMY(YG, TYNAG	IPLT, IT , LINK, 3), LURL 15), KAP 15), VST, NNC , TOTSOR T(2)), PFDIMX, 1), UPCI OPR(1), I	ABPR, JPER, P1, RT(15), , NREGN, , NREGN, PRORPC(2)))	RURDEM CONTRC CONTC CONTRC CONTRC CONTRC CONTC CONTC CONTCC CONTC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CONTC	NNUN45678901110456NN9N94

		CPDEMC	4]
	3 PSUBCM(5,5,2), PSUBTG(5,2), PSUBTM(5,2),PFU(2,20), 4 PCONVG(5), PWHTIC, YDEL, CALPU(20), PROTPU(20), 5 W(20)		5
	REAL MM CDMMON /ICDEMC/ ELISAV(20), ELISVR(20), EPAVGO(20), CDMMON /ICDEMC/ ELISAV(20), VCPU(10,20), VCSTK(10,20), STKO(20), VCPU(10,20), VCSTK(10,20), VCPU(10,20), VPUI(10,20), VPUI(10,20), VPUX(10,20), VPUX(10,20), FNR(20), VPICF(10), VEINCM(10), VPUX(10,20), FNR(20), VPICF(10), VPICF(10), VPICF(10), VPUX(10,20), FNR(20), VPICF(10), VPICF(10), VPICF(10), VPUX(10,20), FNR(20), VPICF(10), VP	ICDEMC ICDEMC ICDEMC ICDEMC ICDEMC ICDEMC	134562
1	4 COMMON /PPDEMC/ ARG(5), KFT(20), KNOR, KPAVG(20), PCRT(20), PCCONT(20), PCPMAX(20), PCPMIN(20), PCRT(20), 1 PCRT1, PCUT1, PWPMAX(20), PWPMIN(20), STKRT(2 0), 2 PCRT1, PCUT1, PWPMAX(20), VPCSUP(5,20),	PPDEMC PPDEMC PPDEMC PPDEMC PPDEMC PPDEMC	01456
•	3 (ARTEF(20), VPWLDX(5,20) 4 (VPWLDI(5,20), VPWLDX(5,20) 4 (VPWLDI(5,20), DSAVD(1) COMMON /DEMSVC/ ALPHA, CPU(20), CPU0(20), DEMC(20), 1 (1,20), EPAVG(1,20), INCOM, PCCON(1,20), 1 (1,20), G(20), RFRMY(1), S1, STK(20), 2 (1,20), G(20), TDEML(20), WWP(20) 3 (1,20), TDEM(20), TDEML(20), WWP(20)	DEMYC DEMSVC DEMSVC DEMSVC DEMSVC DEMSVC	<u>67 M 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 </u>
1	REAL INCOM COMMON /VDEMC/ CHGSTK(20), DSTK(20), DVALDF, EFRMY, COMMON /VDEMC/ ELASP(20,20), ELASPR(20,20), 1 ELASP(20,20), ELASPR(20), FRMY(1), INAPA(20), 1 ELAST(20), ELASIR(20), FRMY(1), INAPA(20), 1 FGIVAL, ITER, PCCONF(20), TARREV(20), 2 PRFEXP(20), PRFIMP(20), PWLDD(20), PWLDEF(20), 3 PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(20)	I O I D C I	3 4 5 6 7 14
'c	DIMENSION EPAVGL(20)	RURDEM	16
С	DO 40 JC=1, NOMAG RDEM(JC) = 0		18
,	40 CONTINUE TECTTIME OF ON DEPUNE = (CHARAN COPU(20)) / CPU(20)	RURDEM RURDEM	20 21 22
'C	IF(ITIME EQ O) EFRMY = TABEL(RMY, KTABI, TTABI, 1.O, TI MEI) IF(ITIME NE O) EFRMY = APCF # rPS; * POPL(1) / TRPOP	DUDDEM	23 24 25
	DO 100 IR=1,NREGN IF(ITIME,EQ. 0) GO TO 82	RURDEM RURDEM	26 27 28,
บ้อกออื่อ	RURAL DEMAND COMPONENI TIME-VARYING PER CAPITA CONSUMPTION FOR RURAL SECTOR (COMPUTED YEARLY)	RURDEM RURDEM RURDEM RURDEM RURDEM	29 30 31 32
с	<pre>IF(KRAP EG 0) FRMY(IR) = FPCI IF(KRAP NE 0) FRMY(IR) = FPCI * TRPOP * PRFRMY(IR) / POPR(IR) IF(ITIME EG 1) RFRMY(IR) = FRMY(IR) / 1.05 FRMYA = FRMY(IR) * TABEL(VFPIX, KTABI, TTOBI, 1.0, T-DT) RFRMYL = RFRMY(IR) RFRMYL = RFRMY(IR) + (DT/YDEL) * (FRMYA - RFRMY(IR)) DO 75 J=1, NCOMAG PAVGA = PAVG(IR, J) * TABEL(VFPIX, KTABI, TTABI, 1.0, T-DT) EPAVG(J) = EPAVG(IR, J) + (DT / DELP) *</pre>	RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM	33 34 35 36 37 38 37 38 39 40 41 42
	1 (PAVGA - EPRVG(10,0)) 75 CONTINUE DD 78 J=1,5 JC = IG9AIN(J) JM = IMEAT(J) DO 77 J=1,5	RURDEM RURDEM RURDEM RURDEM RURDEM RURDEM	43 44 45 46 47 48 49
	IF(I EQ J)GD TO 77 IG = IGRAIN(I) IM = IMEAT(I) ELASPR(IG,JG) = -PSUBTG(J,1) * PSUBCG(I,J,1) * ELASPR(JG,JG) * PCCDN(IR,JG) / PCCDN(IR,IG)	RURDEM RURDEM RURDEM RURDEM RURDEM	50 51 52 53
•	$ \begin{array}{rcl} & & & \\ 2 & & & (PCONVG(J)) & / PCONVG(I)) \\ 2 & & & (PCONVG(J)) & / PCONVG(I)) \\ & & & ELASPR(IM, JM) & = -PSUBTM(J, 1) & + PSUBCM(I, J, 1) & + ELASPR(JM, JM) \\ & & & PCCON(IR, JM) & / PCCON(IR, IM) \\ \end{array} $	RURDEM RURDEM RURDEM	54 55 56
	77 CONTINUE 78 CONTINUE	RURDEM	57 58
С	RATIOI = (RFRMY(IR) - RFRMYL) / RFRMYL - DCPUNF	RURDEM RURDEM RURDEM	59 60 61
	$\frac{100}{10} \frac{79}{79} J=1, NCOMAG$ $\frac{100}{10} \frac{79}{10} J= DEMT(IR, J) + (PCRT(J) - PCCON(IR, J))$ $\frac{100}{10} \frac{100}{10} \frac{100}{1$	PURDEN RURDEM	62 63
1	PCT1 = AMAX1(PCRT1, PCRT(1)) + (PCT1 - PCCON(IR, 1)) $ELASIR(1) = DEMT(IR, 1) + (PCT1 - PCCON(IR, 1))$ $B2 CONTINUE$ $D = P5 T=1. NCOMAG$	RURDEM RURDEM RURDEM RURDEM	64 65 66 67
1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	RURDEM RURDEM RURDEM	68 69 70
l	$ \begin{array}{rcl} x &= x + ELASPR(I, J) + (EPAVG(IR, J) - EPAVG(IR, J) \\ 1 &- ELASPR(I, J) + DCPUNF \end{array} $		71 72 73
	BO CONTINUE PCCON(IR,I) = PCCON(IR,I) # (1. + X + ELASIR(I) # RATIOI) B4 CONTINUE D008(IR)	RURDEM RURDEM RURDEM	74 75
	<pre>G4 CONTINUE CON(IR, I) = PCCON(IR, I) # POPR(IR) RDEM(I) = RDEM(I) + CON(IR, I) 85 CONTINUE 100 CONTINUE</pre>	RURDEM RURDEM RURDEM	76 77 78

DO 120 I=1, NCOMAG PCCONF(I) = RDEM(I) / TRPOP 120 CONTINUE RURDEM 79 RURDEM 80 81 82 83 RETURN END RURDEM 84 SUBROUTINE TRADE STOCK CHANGES, WORLD PRICES, AND AGRICULTURAL TRADE TRADE TRADE TRADE 2345 DECLARATIONS LARATIONS COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA BI, IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), KYPRT(15), KNPRT(15), KAPRT(15), KDPRT(15), KYPRT(15), KNPRT(15), KAPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, T, TIMEI, TIMEF, TTABI, YEAR, INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, IOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 20), COMMON /DKXDC/ ARGPP(5), KPP, VDFC(10, 20), VDFCT(5, 20), VPRICE(1 0, 20), COMMON /DEMKC/ APCF, DEFCIT(20), PAVG(1, 20), PFDIMX, TPAVG(2 0) COMMON /DEMKC/ AGEN, COUND, VALDFI, VALDF2, WPFI COMMON /NECDYC/ AGINTX, CPUNF, FPCINU, TTAREV, TEXNFC, FEXNFC, COMMON /NECDYC/ AGINTX, CPUNF, FPCI, PRFRMY(1), UPCI, WOND, COMMON /POPKC/ CARPC(2), POPR(2), POPR(1), PRORPC(2), COMMON /PRDDC/ AYLD(12), EFFPLV(7), EFFYLD(12), FDFSH, FEED(12), FGIM, FLOSS(20), TAREA(12), TDSUP(20), TOUTRL , COMMON /CPDEMC/ APCN, DELP, IGRAIN(5), IMEAT(5), TRADE TRADE 67234567890123 TRADE CONTRC CONTRC CONTRO CONTRO CONTRC CONTRC CONTRO CONTRO CONTRO CONTRO 14 15 CONTRO CONTRO DKXDC DKXDC DEMNC DEMNC 1 NECDYC NECDYC POPKC 1 POPKC PRDDC PRDDC APCN, DELP, IGRAIN(5), IMEAT(5), MM(20), PILOSS(20), PLOSTD, PSUBCG(5,5,2), P CMIN, PSUBCM(5,5,2), PSUBTG(5,2), PSUBTM(5,2),PFU(2,20), PCONVG(5), PWHTIC, YDEL, CALPU(20), PROTPU(20), W(20) PRDDC CPDEMC ā CPDEMC CPDEMC CPDEMC 5 672345 CPDEMC ICDEMC ICDEMC ICDEMC ICDEMC ICDEMC PPDEMC 000456004560034567 PPDEMC PPDEMC DEMSVC ã DEMSVC DEMSVC CHGSTK(20), DSTK(20), DVALDF, EFRMY, ELASP(20,20), ELASPR(20,20), ELASI(20), ELASIR(20), FRMY(1), INAPA(20), FGIVAL, ITER, PCCONF(20), TARREV(20), PRFEXP(20), PRFIMP(20), PWLDD(20), PWLDEX(20) PWLDIM(20), RDEM(20), TRDPRF, TVALDF, VALDEF(DEMSVC VDEMC VDEMC VDEMC VDEMC VDEMC VDEMC з VALDEF (20) ENTRY TRADEI TRADE 201223456789 COMPUTE STOCK CHANGES DD 30 J=1, NCDMAG IF(ITIME.EG. 0) STK(J) = STKD(v) IF(TIMEI.LT.TTABI+.0001.OR. ITIME.NE.0) GD TD 15 INITIALIZE STOCK LEVES TO TIMEI IF TIMEI.GT. TTABI X = TTABI S CONTINUE TRADE TRADE TRADE TRADE INITIALIZE STOCK LEVES TO TIME! NE. 0) GO TO 15 X = TTABI S :ONTINUE HOSTK(J) = TABEL(VCSTK(1, J), KTABI, TTABI, 1.0, TX) IX = TX + DT STK(J) = STK(J) + DT + CHOSTK(J) IF(TX LT. TIMEI-.0001) GO TO 5 IF(TY LT. TIMEI - 0001) GO TO 5 TRADE TRADE TRADE Эò TRADE 31 32 TRADE 15 CONTINUE IF(ITIME .EQ, 0) GD TD 25 STK(J) = STK(J) + DT * CHGSTK(\) IF(ITIME .F(A, 1) TDEML(J) = TDEM(J) 20 TDEML(J) = TDEML(J) + (DT/3.)*(TDEM(J)-TDEML(J)) 33 TRADE TRADE TRADE 36 37 TRADE TRADE 30

c

C

DSTK(J) = STKRT(J)*TDEML(J)/12 CHGSTK(J) = (DSTF(J)-STK(J))/2 25 CONTINUE IF(T LE BASEYR+ 9999) 1 (HGSTK(J) = TABEL(VCSTK(1,J), KTABI, TTABI, 1.0,T) 1 (HGSTK(J) = TABEL(VCSTK(1,J), KTABI, TTABI, 1.0,T) 1 (HGSTK(J) = TDSUP(3) * (1.-PWHTIC) 1 F(J EQ 3) TDSUP(3) = TDSUP(3) * (1.-PLOSTD) 1 F(J EQ 7) TDSUP(3) = TDSUP(9) * (1.-PLOSTD) 1 F(J EQ 12) TDSUP(9) = TDSUP(9) * (1.-PLOSTD) 1 F(J EQ 12) TDSUP(9) = TDSUP(12)* TABEL(VPICF, KTABI, TTABI, 1.0,T) 1 TDSUF(J) = TDSUP(J) - CHGSTK(J) - RDEM(J) 30 CONT: NUE TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE IF(K(AP EQ 0) G1 T0 46 D0 4(J=1, NCOM IF(T GT BASEYR+ 9999) GD T0 35 PWLD1M(J) = TABEL(VPWI(1,J), KTABI, TTABI, 1.0, T) * WOND PWLDD(J) = TABEL(VPWX(1,J), KTABI, TTABI, 1.0, T) G0 T0 38 35 CONT(NUE PWLD(M(J) = TABUT (J) TRADE TRADE TRADE c TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE í 35 CONT(NUE PWLD(M(J) = TABUL(VPWLDI(1,J),KNOR,ARG,YEAR) * WOND PWLDI(J) = TABUL(VPWLDX(1,J),KNOR,ARG,YEAR) 38 CONT(NUE PWLDIX(J) = PWLDD(J) * WOND 0 CONT(NUE IF(T LE BASEYR+ 9999) GO TO 4 > IF(T LE BASEYR+ 9999) GO TO 4 > IF(K:T(J) GT 3) GO TO 4 > IF(K:T(J) GT 3) GO TO 4 5 IF(K:T(J) EG 2)DEFCIT(J) = TABUL(VDFCT(1,J),KNOR,ARG,YEAR) IF(K:T(J) EG 1)DEFCIT(J) = TPIDP * IF(K:T(J) EG 1)DEFCIT(J) = 1 TRADE TRADE TRADE TRADE TRADE 40 TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE RETURN TRADE С ENTRY TRADEC TRADE TRADE C BALANCE OF PAYMENTS CALCULATIONS
 UAL')F
 0.0

 VALDI1
 0.0

 VALDI1
 0.0

 VALDI2
 0.0

 TRDPHF=0.0

 TTARLV
 0.0
 TRADE TRADE TRADE TTARLY = 0. ()FFSET FEED GRAIN IMPORTS WITH SURPLUS BARLEY AND POTATO ES IF(KMAP LE. 0 OR. ITIME.EQ.C) FGIM = Q(4) - TDSUP(4)IF(T_LE_BASEYR+ 9999) GO TO 60 DEFC:T(2) = AMAXI(0., TDSUP(2)-Q(2)) DEFC:T(3) = AMAXI(0., TDSUP(8)-Q(8)) X = FGIM IF(D)FCIT(2, LE. 0.) GO TO 50 FGIM = AMAXI(0., FGIM-DEFCIT(2)) DEFC:T(2) = DEFCIT(2) - (X-FGIM) CHGSTK(2) = CHGSTK(2) + DEFCIT(2) TDSUP(2) = Q(2)X = FGIM 5(. CONT:NUE IF(D)FCIT(B) LE. 0.) GO TO 60 FGIM = AMAXI(0., FGIM-DEFCIT(8)) DEFC(T(8) = DEFCIT(8) - (X-FGIM) TDSUP(4) = Q(6) + DEFCIT(8) 6(. CONT(NUE TDSUP(4) = Q(4) - FGIM FGIM = FGIM / (1.-PILOSS(4)) FGIVAL = FGIM * PWLDIM(4) DD 110 J= 1.NCOMAG TRADE TRADE TRADE c TRADE DD 110 J= 1, NCOMAG DEFCIT(J) = Q(J) - TDSUP(J) IF(J.EQ. 9) DEFCIT(9) = DEFCIT(9) / (1. -PLOSTD) IF (DEFCIT(J)) 90,90,80 TRADE lC TRADE TRADE TRADE BO CONTINUE IF(YEAR, LE, BASEYR+, 9999, OR, J, GT, 2) GO TO B5 IF(YEAR, LE, BASEYR+, 9999, OR, J, GT, 2) GO TO B5 X = AMAX1(O, CHGSTK(J)) + STK(J)/4, CHGSTK(J) = CHGSTK(J) - AMINI(DEFCIT(J), X) DEFCIT(J) = AMAX1(O, DEFCIT(J)-X)TRADE TRADE TRADE TRADE TRADE DEFCIT(J) = AMAX1(0., DEFCIT(J)-X) CONTINUE DEFC(T(J) = DEFCIT(J) / (1.-PILOSS(J)) IF(J) EQ. 3) DEFCIT(3) = DEFCIT(3)*(1.-PILOSS(3)) VALDEF(J) = DEFCIT(J)*PWLDIM(J)/(1.+TARIFF(J)) THESE COMMODITIES ARE IMPDRTED TARREV(J) = VALDEF(J) * TARIFF(J) PRFIMP(J) = DEFCIT(J) * (CPU(J -PWLDIM(J)) PRFEXP(J) = 0.0 VALDF2 = VALDF2 + VALDEF(J) GD TD 100 TRADE 85 TRADE 1 TRADE TRADE TRADE C 1 TRADE TRADE TRADE VALDE2 = VALDE2 + VALDEF(0) GO TO 100 THESE COMMODITIES ARE EXPORTED 90 CONTINUE IF(YEAR. LE. BASEYR+, 9999, OR. J. NE. 1) GO TO 95 CHGSTK(1) = CHGSTK(1) - DEFCIT(1) DEFCIT(1) = 0. TRADE 1C TRADE TRADE 95 CUNTINUE

39

40

41 42 43

44

45

46 47 48

49

51

52355

56 57

58

ЪÓ

61 62 63

64 65

66

68 69 70

έó

81 82

83

89 87

90 91

ý2

93 94

99

100 101 102

103

105 106 107

109 109

110

111

113 114 115

 $\frac{116}{117}$

118 119

VALDEF(J) = DEFCIT(J) * F TARREV(J) = 0.0 PRFIMP(J) = 0.0 PRFEXP(J) = DEFCIT(J) * (PRFEXP(J) = DEFCIT(J) * (VALDF1 = VALDF1-VALDEF(J) VALDF1 = VALDF + VALDEF(J) 100 TVALDF = TVALDF + VALDEF(J) TRDPRF=TRDPRF+PRFIMP(J)+F TTAREV = TTAREV + TARREV(J) 110 CONTINUE	(PWLDEX(J)-CPU(J))) (J)	TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE TRADE	
TVALDF = -TVALDF DVALDF = TVALDF/WOND RETURN END		TRADE TRADE TRADE TRADE TRADE TRADE TRADE	14(14) 142 142 142 142
	Executive Routines		
2 TAPE27=512, TAPE8=65, TA		Kasm3 Kasm3 Kasm3 Kasm3	- 23454789
A COMPONENT OF AGRICULTURA EXECUTED ALONE OR IN COMBI FOR PARTIAL ANALYSIS	M, RCH 1977 S FOR , GRICULTURAL SECTOR DECISION DISTS OF FIVE MODELS, EACH REPRESEN TING L SECTOR ANALYSIS. EACH MODEL MAY BE NATION WITH ONE OR MORE OTHER MODE LS HEN ALL MODELS ARE RUN TOGETHER, F OR SIS. THE FIVE MODELS ARE	Kasm3 Kasm3 Kassm3 Kassm3 Kassm3 Kassm3 Kassm3 Kassm3 Kassm3 Kassm3 Kassm3	10 11 12 13 14
1. POPULATION AND MIGR 2. TECHNOLOGY CHANGE 3. RESOURCE ALLOCATION 4. DEMAND - PRICE - TR 5. NATIONAL ECONOMY IN ADDITION, KASM3 HAS A F	ATION (POPMIG) (CHANGE) AND PRODUCTION (RAP) ADE (DEMAND) (NECON) ARM_INCOME ACCOUNTING COMPONENT (F RMAC)	Kasm3 Kasm3 Kasm3 Kasm3 Kasm3	15 16 17 18 19 20 20 20
K GT. O THE MODE K GT. O THE MODE K GT. O THE MODE KRAP.LT. O RESOU(C EXDGENDU3)	ARM INCOME ACCOUNTING COMPONENT (F RMAC) KDEM, AND KNEC ARE SET BY THE USE R PERATION OF EACH MODEL DEL IS TO BE IGNORED, AND THE MODEL WHICH ARE INPUTS TO OT HER TO BE PROJECTED EXOGENOUSLY DEL IS TO BE EXECUTED WITH ONE OR MORE LS, OR INDEPENDENTLY L'ALLOCATION IS TO BE PREJECTED LY, BUT THE PRODUCTION ACCOUNTING AP IS TO BE EXECUTED	Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3	100100345678901003 00100345678901003 001003000000000000000000000000000
MOST OF KASM3 IS PROGRAMMED WHERE KOREA IS DIVIDED INTO ROUTINES ARE SO GENERALIZED REGUIRE REGIONAL DATA INPUT	TO BE RUN IN A REGIONAL MODE, I. E. ONE OR MORE REGIONS. NOT ALL OUT PUT	Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3	34 35 36 37 38 39
LVSTPR, MOD KPOP, KCHG, LUIN1, LUIN1, LUIPGEN, LUP KPPRT(15), I KOPRT(15), I NCC, NCOM, I NRUN, NS, NA T, TIMEI, T INTEGER ANIMAL, FARM, PLANT, EQUIVALENCE (LUPLT1, LUPLOT(1) (LUPLT3, LUPLOT(2)) COMMON /POPKC/ CALRPC(2), PC	KCPRT(15), KFPRT(15), KAPRT(15), KYPRT(15), KNPRT(15), NCOMAG, NCROP, NLVST, NNC, NREGN, AME(20), PLANT, IMEF, TTABI, YEAR, POP, URBAN URBAN, TOTPOP, TOTSOR 1)), (LUPLT2, LUPLOT(2)), 3)) DP(2), POPL(2), POPR(1), PRORPC(2))	KASM3 KASM3 KASM3 CONTRC CONTCC CONTRC CONTCC CONTC CONTC CONTC CONTC CONTCC CONTCC CONTCC CONTCC CONTCC CONTCC CO	4443234547890123454 112345478901123454
1 NUARK, NUAR, NVARC,	TPOPPC(2) NVARF, NVARA, NVARD, NVARY, NVA RN, OVALKX(100), CVALKX(100), ISFLK X	POPKC POPKC PLOTK PLOTK DCHKXC KASM3	พององ

CALL SECOND(T1) JOB INITIALIZATION (JI) BLOCKDATA CONTRD CALL CONTRJ ITIME = -2LINK = 0 CALL SECOND(T3) IF(KPOP GT. 0) CALL POPSTR CALL SECOND(T2) TIMEP = T2 - T3 IF(KRAP. GT. 0) CALL FRAJI CALL SECOND(T3) TIMER = T3 - T2 IF(KNEC GT. 0) CALL NECJI CALL SECOND(T2) TIMEN = T2 - T3 IF(IPLT.NE.0. OR. L(STPR.NE.0) CALL PLTPKG CALL SECOND(T3) TIMPL = T3 - T2 NUMER TIMEC = 0. TIMEA = 0. TIMED = 0. TIMEY = 0.RUN LOOP DO 600 IRUN=1, NRUN RUN INITIALIZATION (RI) INITIALIZATION (RI) YEAR = TIMEI ITIME = -1 LINK = 1 IF(ICHDAT .NE. 0)CALL CHDATA(ANIMAL, JRELKX, OVALKX, CVALKX, ISF LKX, 1) IF(KPOP. GT. 0) CALL POPSET CALL SECOND(T2) TIMEP = TIMEP + T2 - T3 IF(KCHG GT. 0) CALL CHGI CALL SECOND(T3) TIMEC = TIMEC + T3 - T2 IF(KRAP GT. 0) CALL FRARI CALL SECOND(T2) TIMER = TIMEC + T2 - T3 IF(KRAP .NE. 0) CALL FRARI CALL SECOND(T2) TIMER = TIMEC + T3 - T2 IF(KRAP .NE. 0) CALL PRDAC CALL SECOND(T3) TIMEA = TIMEC + T3 - T2 IF(KRAP .NE. 0) CALL DEMI CALL SECOND(T3) TIMEA = TIMEC + T3 - T2 IF(KRAP .NE. 0) CALL FRMAC CALL SECOND(T3) TIMEA = TIMEC + T3 - T2 IF(KRAP .NE. 0) CALL FRMAC CALL SECOND(T3) TIMEY = TIMEY + T3 - T2 IF(KNEC .GT. 0) CALL NECRI CALL SECOND(T2) TIMEN = TIMEN + T2 - T3 IF(IPLT. NE. 0. OR. LVETPR. NE. 0) CALL POSIT(LUPLOT(2), 1, 5) NTIME = 1.0001 + (TIMEF - TIMEI) / DT

DIMENSION VECTOR(1) EQUIVALENCE (VECTOR(1), CALRPC(1))

C

0000

c

ł

1

:C

C C C

000

i

TIME LOOP

lc

'c

lc

C CC

CCC

1

C

NTIME = 1.0001 + (TIMEF - TIMEI) / DT T = TIMEI - DT DD 500 ITER=1,NTIME ITIME = ITER - 1 T = T + DT YEAR = T CALL CONTRT IF (IPLT, NE. 0 . OR. LVSTPR. NE. 0) WRITE (LUPLTI) YEAR NATIONAL ECONDMY INPUTS TO AGRICULTURE IF (KNEC . GT. 0) GD TO 10 KNEC EG. O -- NATIONAL ECONOMY EXOGENOUS IF (KCHC. GT. O DR. KRAP. NE. O) CALL NECCRX IF (KDEM. GT. O DR. KRAP. NE. O) CALL NECDYX GD TD 20 KNEC . GT. O -- NATIONAL ECONOMY ENDOGENOUS

Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 Kasm3 49 551 555 555 555 557 557 559 60 KASM3 KASME KASM3 KASM3 KASM3 KASME KASMO KASMS KASM3 KASME KASM3 KASMO KASM3 KASMB KASM3 KASM3

607890123456789

80

81 82

83 84 85

99

ÒÒ

03

Ō5 106 107

Ô8 107

114

116

iiė

129 130 131

132 133

134

KASM3 KASM3

KASM3 KASM3

KASM3

KASM3

KASM3

KASM3 KASM3

KASM3 KASM3

KASM3

KASM3 KASM3 KASM3 KASM3

KASM3

15

104

10 CONTINUE KASM3 KASM3 KASM3 140 141 142 143 144 145 146 147 148 149 CALL SECOND(T3) LINK = 0 CALL NECON CALL SECOND(T2) KASM3 CALL SECOND(T2) TIMEN = TIMEN + T2 - T3 KASME 10.75 KASM3 C C C KASM3 POPULATION AND MIGRATION MODEL KASM3 KASM3 KASM3 20 CONTINUE IF (KPOP . GT. O) GO TO 30 150 CCC KASM3 KPOP . EQ. O -- POPULATION EXOGENOUS 51 52 KASM3 IF(KRAP.NE.O. DR. KDEM.GT.O. DR. KNEC.GT.O) CALL POPKX GO TO 50 CALL POPRX 153 KASM3 155 156 157 CCC KASM3 KPOP . GT. O --POPULATION ENDOGENOUS KASM3 57 30 CONTINUE CALL SECOND(T3) CALL POPMIG CALL SECOND(T2) TIMEP = TIMEP + T2 - T3 KASM3 159 KASM3 160 161 162 163 KASM3 KASM3 KASM3 KASM3 lc 165 C SECHNOLOGY CHANGE MODEL KASMR 166 KASM3 50 CONTINUE IF (KCHG. GT. 0 . AND. ITIME. GT. 0) GO TO BO KASM3 168 !c 169 170 KASMB KASM3 KCHG . EG. O --- TECHNOLOGY CHANGE EXOGENOUS Ċ KASM3 171 172 173 IF(KRAP NE. 0) CALL CHGRX IF(KRAP GT. 0) CALL CHGFX IF(ITIME.EG.0 AND. (IPLT.NE.0 DR. LVSTPR.NE.0) AND. KCHG. GT.0) GD TD 80 GD TD 100 KASM3 KASMA 74 KASM3 175 1 KASM3 76 C C KASM3 KASM3 KCHG . GT. O --TECHNOLOGY CHANGE ENDOGENOUS 78 iĈ 179 KASM3 BO CONTINUE 180 i CUNTINUE CALL SECOND(T3) CALL CHANGE CALL SECOND(T2) TIMEC = TIMEC + T2 - T3 KASM3 KASM3 182 KASM3 83 184 184 187 FARM RESOURCE ALLOCATION AND PRODUCTION MODEL KASMR KASM3 KASM3 100 CONTINUE 88 KASM3 IF (KRAP. GT. O . AND. ITIME. GT. O) GO TO 120 189 KASME CCC KASMO KRAP . LE. 0 -- FARM RESOURCE ALLOCATION AND PRODUCTION EXOGE NOUS CALL FRACAX IF(KRAP EQ. 0) GO TO 150 CALL FRAAYX IF(ITIME.EQ. 0 AND. (IPLT.NE. 0 DR. LVSTPR.NE. 0) AND. KRAP. G1.0) GO TO 120 GO TO 140 KASMA KASM3 194 KASM3 **9**5 KASM3 196 197 KASM3 1 98 198 199 200 KASM3 00 KASM3 KRAP . GT. 0 ---FARM RESOURCE ALLOCATION AND PRODUCTION ENDOG ENDUS KASM3 201 KAShi3 202 120 CONTINUE KASM3 CALL SECOND(TO) CALL FRESAL(NONOPT) CALL SECOND(T2) TIMER = TIMER + T2 - T3 203 KASM3 204 KASM3 205 KASM3 206 CCC KASM3 208 209 210 211 KRAP . NE. 0 -- PRODUCTION ACCOUNTING KASM3 KASM3 KASM3 140 CONTINUE CUNTINUE IF(ITIME EG. 0) CALL DE CALL SECOND(T3) CALL PRDAC CALL SECOND(T2) TIMEA = TIMEA + T2 - T3 KASM3 0) CALL DEMKX KASME KASM3 KASM3 KASM3 KASM? 000 KASMB DEMAND - PRICE - TRADE MODEL KASM3 KASME 150 CONTINUE KASM3 IF (KDEM . GT. O) GO TO 180 KASM3 000 KDEM . EQ. O --PRODUCER PRICES EXOGENOUS KASM3 KASM3 IF (KCHG, ST. O . OR. KRAP, NE. O) CALL DEMKX KASM3 KASM3 KASM3 Ç KDEM . GT. O -- DEMAND - PRICE - TRADE ENDOGENOUS 1C KASM3 KASMO KASM3

231 232 233 234 KASM3 180 CONTINUE CALL SECOND(13) CALL DEMAND CALL SECOND(12) TIMED = TIMED + T2 - T3 KASM3 Kasm3 Kasm3 Kasm3 KASM3 KASMB CCC KASM3 FARM INCOME ACCOUNTING KASM3 KASM3 200 CONTINUE 15 (KRA2 EQ. 0) GD TO 250 KASM3 KASM3 CUNITINGE 1F(KRAP EQ. 0) GO TO 25 CALL SECOND(13) CALL FRMAC CALL SECOND(T2) TIMEY = TIMEY + T2 - T3 243 KASM3 244 KASM3 KASM3 245 246 KASM3 247 247 2248 250 251 252 253 253 CCC KASM3 NATIONAL ECONOMY MODEL KASM3 KASM3 250 CONTINUE IF(KNEC . FQ. 0) GD TO 300 KASM3 KASM3 0000 KASM3 KNEC . GT. O --NATIONAL ECONOMY ENDOGENOUS KASM3 KASM3 KASM3 CALL SECOND(T3) KASM3 LINK = 1 CALL NECON CALL SECOND(T2) TIMEN = TIMEN + T2 - T3 KASM3 KASM3 KASM3 KASM3 260 RECORD SYSTEM PLOT VALUES AND MERGE PLOT RECORDS c KASM3 261 593 595 KASM3 CONTINUE IF(IPLT.EQ.O.AND.LVSTPR.EQ.O) GO TO 350 WRITE(LUPLT1) (VECTOR(I),I=1,NVARK) CALL SECOND(T3) LINK = O CALL PLTPKG CALL SECOND(T2) TIMPL = TIMPL + T2 - T3 ē KASME 300 CONTINUE 264 KASM3 265 266 267 268 KASM3 KASM3 KASM3 KASM3 KASM3 269 270 271 i KASM3 C END RUN IF LP SOLUTION NON-OPTIMAL 272 KASM3 273 KASM3 Ċ KASM3 350 CONTINUE IF (KRAP. GT. O . AND. ITIME. GT. O . AND. NONOPT. NE. 0) GD TO 510 275 276 277 278 KASM3 KASM3 С KASM3 500 CONTINUE KASM3 KASM3 CC 279 END TIME LOOP 280 281 KASM3 ٠Ĉ GD TD 520 510 CONTINUE WRITE(LUGUT, 515) IRUN, T 515 FORMAT(/35H *** NONOPTIMAL LP SOLUTION -- RUN, I2, 11HTERMINA TED, 15HFOLLOWING TIME, F5. 0, 4H ***) 1 1TIME = ITIME - 1 520 CONTINUE KASM3 KASM3 282 283 KASM3 284 KASM3 285 286 KASM3 287 KASM3 CALL PLOT PACKAGE FOR PLOTTING AND/OR LIVESTOCK TIME SERIES TA BLES KASM3 288 CCC 289 KASM3 290 291 AND. LVSTPR. EQ. 0) GD TO 600 IF(IPLT.EQ.O.AND. LVSTF CALL SECOND(T3) LINK = 1 CALL PLTPKG CALL SECOND(T2) TIMPL = TIMPL + T2 - T3 KASM3 KASM3 KASM3 KASM3 KASM3 292 293 294 295 KASM3 KASM3 C 298 299 KASM3 600 CONTINUE KASM3 CCC 300 END RUN LOOP 301 CALL SECOND(T2) TIMEK = T2 - T1 NTIMEL = NTIME - 1 PRINT 700, TIMEK, TIMPL, TIMEP, TIMEC, TIMER, TIMEA, TIMED, 1 700 FORMAT(1H1, T10, 27HEXECUTION TIMES IN CP SECS / 1 20. BHKASM , F8. 2/ 1 20. BHKASM , F8. 2/ 3 T20. BHPDPMIG , F8. 2/ 4 5 T20. BHPDPMIG , F8. 2/ 5 T20. BHFRESAL , F8. 2/ 6 T20. BHFRESAL , F8. 2/ 7 T20. BHFRMAC , F8. 2/ 8 T20. BHFRMAC , F8. 2/ 9 T20. BHRMAC , F8. 2/ 9 T20. BHRMAC , F8. 2/ 9 T20. BHRMAC , F8. 2/ 9 T10, BHRMAC , F8. 2/ 9 T10, 36H TIME CYCLES FOR CHANGE AND FRESAL.)) KASM3 302 KASM3 KASM3 304 KASM3 305 KASM3 KASMO 306 KASM3 KASM3 KASM3 KASM3 307 308 309 310 311 312 313 314 315 KASM3 KASM3 KASM3 KASM3 KASM3 316 317 318 319 320 KASM3 KASM3 KASM3 KASH3 KASM3 C 321 KASM3 STOP END

ſ

SUBROUTINE CHDATA (VECTOR, JREL, OVAL, CVAL, ISFL, KMOD) MAKES USER-SPECIFIED DATA CHANGES FOR SENSITIVITY AND POLICY RUN S DECLARATIONS	CHDATA CHDATA	
DECLARATIONS	CHDATA	
COMMON /CONTRC/ ANIMAL, BASEYR, DT, FARM, ITIME, KTRACK, KTA BI, IRUN, ITTY, ICHDAT, ISENPR, IPLT, ITABPR, LVSTPR, MODE, MODNAM(9), KPOP, KCHG, KRAP, KDEM, KNEC, LINK, JPER, LUIN1, LUIN2, LUDUT, LUPLDT(3), LURLP1, LUPGEN, LUPOP, KPPRT(15), KCPRT(15), KFPRT(15), KAPRT(15), KDPRT(15), KVPRT(15), KNPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN, NRUN, NS, NAME(20), PLANT, T, TIMEI, TIMEF, TTABI, YEAR, TOTSOR, TOTPOP, URBAN INTEGER ANIMAL, FARM, PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(3)) DIMENSION VECTOR(1), (LUPLT2, LUPLOT(2)),	CONTRC	
DIMENSION IDESC(3), TTL(B)	CHDATA CHDATA CHDATA CHDATA	
EXECUTION	CHDATA	
REST TO OLD VALUE AT STARL OF RUN	CHDATA	
IF(LINK . EQ. 3) G() TO 300 IF(IRUN EQ. 1 (R) TO 300	CHDATA	
IF(LINK EG. 3) G() TO 300 IF(IRUN EG. 3) G() TO 300 IF(IRUN EG. 1 OR. ISFL EG.0) GD TO 60 DO 50 I=1,ISFL VECTOR(JREL(I)) = OVAL(I) 50 CONTINUE 60 CONTINUE	CHDATA	
50 CONTINUE 60 CONTINUE	CHDATA	
	CHDATA	
IF (LINK . EQ. 2) GO TO 200	CHDATA	
TABLE HEADING IF(MODE GT. 1) PRINT 105	CHDATA CHDATA	
IF(MODE GT. 1) PRINT 105 105 FORMAT(/38H ENTER DATA CHANGE TITLE IN FORMAT 8A9 / 2H *) READ(LUIN1,110) TTL	CHDATA CHDATA	
TTO FURMAT(8A9)	CHDATA	
120 FORMAT (1H1, T10, BA9 7/T20, 31HINTER-RUN DATA CHANGES FOR RUN , 12/	CHDATA CHDATA	
<pre>WRITE(LUDUT, 120) TTL, 1RUN 120 FORMAT(1H1, T10, BA9 //T20, 31HINTER-RUN DATA CHANGES FOR RUN , 12/ 1 T5, 11HDESCRIPTION, T43, 9HOLD VALUE, 6X, 9HNEW VALUE) MAKE CHANGES AS SPECIFIED ON INPUT AT START OF RUN 200 CONTINUE WRITE(LUDUT, 210) MODNAM(KMOD) 210 FORMAT(//T5, A1 // MODNAM(KMOD)</pre>	CHDATA CHDATA	
200 CONTINUE WRITE(LUDUT, 210) MODNAM(KMOD)	CHDATA	
	CHDATA CHDATA	
220 $1SFL = 0$ IF(MDDE, GT = 1) PRINT 225, MODNAM(KMOD) READ(LUIN1,230) JREL(ISFL), CVAL(ISFL), IDESC 225 FORMAT(/24H ENTER DATA CHANGES FOR , A6/ 2H *) 230 FORMAT(I5, E15, 5, 3A10) IF(JREL(ISEL) = 0 00 00 10 2/0	CHDATA CHDATA	2
READ(LUIN1, 230) JREL(ISFL), CVAL(ISFL), IDESC	CHDATA CHDATA	4
230 FORMAT(15,E15,5,3A10) TERMAT(15,E15,5,3A10)	CHDATA	
	CHDATA	- 4
WRITE(UNDUI 250) IDEEC DUAL(ISFL)	CHDATA CHDATA	4
	CHDATA CHDATA	4
260 ÎSFL = ÎSFL - 1 GO TO 400	CHDATA CHDATA	. 5
SET TO NEW VALUE EACH TIME PERIOD	CHDATA	532059
	CHDATA	CT CD
VECTOR(JPELITY) - CUALITY	CHDATA CHDATA	
350 CONTINUE	CHDATA CHDATA	555
100 CONTINUE	CHDATA CHDATA	й 6
RETURN	CHDATA	6
	CHDATA	6
SUBROUTINE CONTR	CONTRA	
PECIFICATION OF VALUES FOR JOB, RUN, TIME AND PRINT/PLOT CONTRO L	CONTRT CONTRT CONTRT	
ECLARATIONS	CONTRT	
	CONTRT	7

	TOTAL TOTAL TOTAL TOTAL	CONTRC
٢		
	KPOP, KCHG, KRAP, KDEH, KULOT(3), LURLP1,	
	KOPRT(15), KYPRT(15), KNPRT(15), KOPRT(15), KYPRT(15), KNPRT(15), NCC, NCOM, NCOMAG, NCROP, NLVST, NNC, NREGN,	CONTRC
	READER NOTING NG, NAME (20), PLANIC,	CONTRO
	TOTSOR, TUTPOP, URBAN, TOTSOR	CONTRC
•	INTEGER ANIMAL, FARM, PLAND, UNLIE, LUPLOT(2)), FOUTVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)),	CONTRC
	T, TIMET, TIMEF, TTABI, YEAR, TOTSOR, TUTPOP, URBAN INTEGER ANIMAL, FARM. PLANT, URBAN, TOTPOP, TOTSOR EQUIVALENCE (LUPLT1, LUPLOT(1)), (LUPLT2, LUPLOT(2)), (LUPLT3, LUPLOT(3)) COMMON /LPCNTR/ NFIX(30), TOL(5), ERR(4), IOUT(4), TOBJ, TIMLP	LPCNTR
		LPCNTR
I	1 (NFIX(2),NL) 2 , (NFIX(3),NL) 3 , (NFIX(3),NL)	LPCNTR LPCNTR
-	(NFIX(4),N) (NFIX(5),INBAGE)	LPCNTR LPCNTR
1	4 , (NFIX(4), N) 5 , (NFIX(5), INBAGE) 5 , (NFIX(15), MLE) 5 , (NFIX(15), NCDST)	LPCNTR
	1 (NF1X(1),NL) 2 ,(NF1X(2),NL) 3 ,(NF1X(3),M) 4 ,(NF1X(5),INBAGE) 5 ,(NF1X(15),MLE) 5 ,(NF1X(15),MLE) 6 ,(NF1X(16),NCOST) 8 ,(NF1X(16),NCOST) 8 ,(NF1X(18),HDRTXT) 4 ,(NF1X(24),MSUB) 5 ,(NF1X(25),NSUB) 5 ,(NF1X(25),NSUB) 6 ,(NF1X(25),NSUB) 6 ,(NF1X(25),NSUB) 8 ,(NF1X(28),NADD)	
	4 , (NFIX(25), NSUB) 5 . (NFIX(25), NSUB)	LPCNTR
	6 , (NFIX(26), NAGREF) 7 , (NFIX(27), MADD) 7 , (NFIX(27), NADD)	LPCNTR
с		LPCNTR
C C	DIMENSION IPYR(5), IPPRT(15), ICPRT(15), IFPRT(15), IAPRT(15), IVPRT(15), INPRT(15)	
		CONTRT
ŗ	DATA MLAB /5HBATCH, SHITT-W, SHITT W	CONTRT
000	JOB CONTROL ENTRY	
Ċ	ENTRY CONTRJ	
C	CALL DATE(IDAT) CALL TIME(ITIM)	CONTRT CONTRT
,C	READ(LUIN1, 90) MODE	
	ITTY = 0 IF(MODE . GT. 2) ITTY = 1	
С	TE (MODE GT 1) PRINT (200	
	IF (MODE .GT. 1) PRINT (200 READ(LUIN1, 100) NRUN, KTRACK, ICHDAT, ISENPR, IPLT, ITABPR LUSTPR	CONTRT
	IF (MODE GT 1) PRINT 201 READ(LUIN1,100) KPOP, KCHG, KRAP, KDEM, KNEC	CONTRT
	IF (MODE GT 1) PRINT 202 READ(LUIN1, 120) ITI, ITF	CONTRT
	TIMEI = FLOAT(1)	CONTRT
1	IF(ISENPR, NE, O) $ICHDA1 = 1$	CONTRT
ļ	IF (ITABPR EQ. 0) CO TO 20	CONTRT
i	IF(KPOP EQ. 0) GO TO 2 IF(MODE GT. 1) PRINT 205, MODNAM(2)	
	READ(LUIN1, 100) IPPRT 2 IF(KCHG EG. 0) GD TD 4 IF(MODE GT. 1) PRINT 205, MODNAM(3)	CUNTRT
	DEATVIITNI, 100) ICPRI	CONTRT
	4 IF ($kRAP$ LE. 0) GO TO 6 NFIX(26) = NREGN DOE NOTNAM(5)	CONTRT
i	IF(MODE, GT. 1) PRINT 205, MODNAM(5) READ(LUIN1,100) IFPRT	CONTRT
	6 IF(KRAP .EQ. 0) GU TU 8 TE(MODE GT 1) PRINT 205, MODNAM(6)	CONTRT
ļ	$\begin{array}{ccc} READ((J) IR, 100) & IRFIN \\ IE(MODE & GT & 1) & RENT & 205, & MODNAM(B) \end{array}$	CONTRT
	DEAD/LUTNI, 1003 LYPRI	CONTRT
1	IF (MODE GT. 1) PRINT 205, MODNAM(7)	CONTRT
	10 IF (KNEC EG. 0) GD TO 12 IF (MODE GT. 1) PRINT 205, MODNAM(9)	CONTRT
l	READ(LUINI, 100) INPRT 12 IF (10 DE GT. 1) PRINT 205	CONTRT
-	REAL UINI, 120) IPDT, IPVE	CONTRT
c	20 CONTINUE IF (MODE, GT. 1) PRINT 208	CONTRT
	IF (MODE GT. 1) PRINT 208 IF (MODE GT. 1) READ(LUIN1, 130) ICMMT	
¢	IF(MODE GT. 1) GO TO DU WRITE(LUDUI, 140) MODEAN(1), IDAT, ITIM, MLAB(MODE), ITI, ITF WRITE(LUDUI, 140) MODEAN (19017 150) MODEAM(2)	
ļ	WRITE(LUDUT, 140) HDDNAHLUDUT, 150) MODNAM(2) IF(NPDP, GT. 0) WRITE(LUDUT, 150) MODNAM(2) IF(NCHG, GT. 0) WRITE(LUDUT, 150) MODNAM(3)	CONTRT
·	IT INCHE OF WIATED AND A CONSTRUCT OF	

345678901234562856789012345678901234567123456739012345678901234567

.

IF (KRAP GT 0) WRITE (LUDUT, 150) MODNAM(4), MODNAM(8) IF (KDEM GT 0) WRITE (LUDUT, 150) MODNAM(6), MODNAM(8) IF (KNEC GT 0) WRITE (LUDUT, 150) MODNAM(7) WRITE (LUDUT, 170) 25 READ(LUINI, 130) ICMMT IF (ICMMT(1) EQ 3HEND) GD TD 40 WRITE (LUDUT, 180) ICMMT GO TD 25 30 PRINT 140, MODNAM(1), IDAT, ITIM, MLAB(MODE), ITI, ITF IF (KCHQ GT 0) PRINT 150, MODNAM(2) IF (KCHQ GT 0) PRINT 150, MODNAM(2) IF (KCHQ GT 0) PRINT 150, MODNAM(3) IF (KRAP QT 0) PRINT 150, MODNAM(4), MODNAM(8) IF (KRAP GT 0) PRINT 150, MODNAM(4), MODNAM(8) IF (KNEC GT 0) PRINT 150, MODNAM(4), MODNAM(8) IF (KDEM GT 0) PRINT 150, MODNAM(7) PRINT 180, ICMMT 40 CONTINUE	CONTRT	72 73
25 READ(LUINI, 130) ICMMT IF(ICMMT(1), EQ. 3HEND) GD TD 40	CONTRT CONTRT CONTRT CONTRT	74 75 76
$\begin{array}{c} \text{WRITE}(LUDUT, 180) \text{ICMMT} \\ \text{GOTO} \text{TO} \text{SO} \\ \text{30} \text{PRINT} \text{140, } \text{MODNAM(1), IDAT ITIM } \\ \ \ \text{MODNAM(1), IDAT ITIM } \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	CONTRT	77 78 79
IF(KCHG GT O) PRINT 150, MODNAM(2) IF(KCHG GT O) PRINT 150, MODNAM(2) IF(KRAP GT O) PRINT 150, MODNAM(3)	CONTRT CONTRT CUNTRT	80 81 82
IF(KRAP LT 0) PRINT 150, MDDNAM(4), MDDNAM(8) IF(KNEC GT 0) PRINT 150, MDDNAM(6), MDDNAM(8) IF(KDEM GT 0) PRINT 150, MDDNAM(9)	CONTRT CONTRT CONTRT CONTRT	83 84 85
PRINT 170 PRINT 180, ICMMT	CONTRT CONTRT CONTRT	86 87 88
C RETURN	CONTRT CONTRT CONTRT	89 90
C PRINT CONTROL ENTRY	CONTRT	91 92 93
ENTRY CONTRT	CONTRT CONTRT CONTRT	94 95
IF(ITABPR EG. 0) GO TO 40 IT = T + .0001 IF(KPOP GT 0) CALL PRISHT(IPPRT (PRDT)	CONTRT	96 97 98
IF(KPOP GT 0) CALL PRTSWT(IPPRT, KPPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KCHG GT 0) CALL PRTSWT(ICPRT, KCPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KRAP GT 0) CALL PRTSWT(IPPRT, KFPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KRAP NE 0) CALL PRTSWT(IAPRT, KAPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KRAP GT 0) CALL PRTSWT(IAPRT, KAPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KRAP NE 0) CALL PRTSWT(IAPRT, KAPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KRAP NE 0) CALL PRTSWT(IAPRT, KAPRT, IPDT, IPYR, IT, ITI, ITF, 15) IF(KNEC GT 0) CALL PRTSWT(IAPRT, KYPRT, IPDT, IPYR, IT, ITI, ITF, 15)	CONTRT CONTRT CONTRT	99 100 101
IF (KDEM GT. O) CALL PRISWT (IDPRT, KAPRT, IPDT, IPYR, IT, ITI, ITF, IS) IF (KRAP NE O) CALL PRISWT (IDPRT, KDPRT, IPDT, IPYR, IT, ITI, ITF, IS) IF (KNEC GT. O) CALL PRISWT (IYPRT, KYPRT, IPDT, IPYR, IT, ITI, ITF, IS) IF (KNEC GT. O) CALL PRISWT (INPRT, KNPRT, IPDT, IPYR, IT, ITI, ITF, IS)	CONTRT CONTRT CONTRT	102 103 104
NEIX(11) = KERRETO TO TO TO	CONTRT	105
GD TO 70 60 CONTINUE	CONTRT CONTRT CONTRT	107 10日 109
IF(KRAP, LE, O) GU TO 70 NFIX(11) = 0	CONTRT CONTRT CONTRT	110
70 CONTINUE	CONTRT	112 113 114
90 FORMAT(11) 100 FORMAT(2012) 120 FORMAT(615)	CONTRT CONTRT CONTRT	115 116 117
130 FURMAT(7A10, A2) 140 FURMAT(1H1////1H 22/1H=)	CONTRT CONTRT CONTRT	118
2 IH, 32(1H=)// 3 IOH VERSION ACCOUNTINAL SECTOR MODEL /	CONTRT	120 121 122
S 30 PALE RUN, A10//	CONTRT CONTRT CONTRT	123 124 125
B SIN FINAL YEAR, 16//	CONTRT CONTRT CONTRT	126 127 128
150 FORMAT(10X, A6) 170 FORMAT((10X, A6)	CONTRT	129
200 FURMAT (/49H ENTER NRUN, KTRACK, ICHDAT, ISENDO TOT	CONTRT CONTRT CONTRT	131 132 133
1 SUNHITY SON ENTER KPOP, KCHG, KRAP, KNEM, KNEM	CONTRT CONTRT CONTRT	134
LUE FURMAT (742) ENTER INITIAL TIME TTI AND ETNAL	CONTRT	136 137 138
1 15H IN FORMAT 1512 / 2H +)	CONTRT CONTRT CONTRT	139' 140; 141
209 FORMAT//ADU ENTEDRIAL 615 / 2H *)	CONTRT	142' 143
END	CONTRT	144 145 146
	CONTRT	147 148
		-
BLOCKDATA CONTRD	CALTOR	
DECLARATIONS	CUNTRD CUNTRD CUNTRD	23
COMMON /CONTRC/ ANIMAL BASEVE DT TAR	CONTRD	15-47-20
IRON, ITTY, ICHDAT, ISENPR. THET TTARRY ATA BI,	ONTRO ONTRO ONTRO	2

LVSTPR, MODE, MODNAM(9),	CONTRC
1 KPOP, KCHG, KARL, LUPLOT(3), LURLP1,	
LUPGEN, LUPUP, KCPRT(15), KFPRT(15), KAPRT(15),	
S KDPRT(15), NORMACL NCROP, NEVST, NNC, NREGN,	CONTRC
A NRON, MEY, TIMEE, TTABI, YEAR,	CONTRC
	CONTRC
	CONTRC
COMMON /LPCNTR/ NFIX(30), TOL(5), ERR(4), IOUT(4), TOBU, THEF	LPCNTR LPCNTR
EQUIVALENCE (NFIX(1) ML) (NFIX(2), NL)	
4 , (NFIX(4), N) 4 , (NFIX(5), INBASE)	
5 (NFIX(15), MLE) 5 (NFIX(16), NCDST) 6 (NFIX(16), NCDST)	LPCNTR LPCNTR
5 , (NFIX(25)), NSOB/ 5 (NFIX(25)), NSOB/ 5 (NFIX(25)), NSOB/	LPCNTR
6 (NFIX(27), MADI)) 7 (NFIX(28), NADD)	LPCNTR
COMMON /PMCNTR/ DTP, IALT, KMIG, NTIME, YEARO	CONTRD
	CONTRD
DATA FARM, URBAN, TOTPOP / 1, 2, 3 /	CONTRD
DATA PLANT, ANIMAL, TOTSOR / 1, 2, 3 /	CONTRD
C NICT NC NCC / S	
	CONTRD CONTRD
C DATA BASEYR, DT, KTABI, TTABI / 1975., 1.0, 10, 1970. /	
	CONTRD
1 6HRICE' 6HBARLEY' 6HVEGTAB, 6HPOTA TO	CONTRD
S SHTOBACO, SHEORAGE,	, CONTRD
5 6HEGGS , 6HFISH , 6HRESAGR, 8HNUNA GN	CONTRD
DATA MODNAN / , 6HPOPMIG, 6HCHANGE, 6HRAP , 6HFRESAL,	CONTRD
2 GHPRDAC, GHDEMAND, GHPRMAC, BHRECON,	CONTRD
DATA JPER /5/	CONTRD
C DATA LUIN1, LUIN2, LUDUT, LURLP1 / 5, 10, 6, 21 / DATA LUPLOT, LUPGEN / 26, 27, 8, 28 / DATA LUPLOT, LUPGEN / 26, 27, 8, 28 /	
DATA LUPOP, DTP, KMIG / 11, 1.0, 2 /	CONTRD
C DATA NFIX / 1 00, 61, 60, 61, 1, 400, 120, 100, 1, 0, 0, 0, 1, 0, 1 00, 61, 60, 61, 1, 400, 120, 100, 1, 57, 61, 1, 3, 0, 0, 0	CONTRD
2 62,61,1,6HN, 11UN, 0,0,0,0,1,0,1,0,0	CONTRD
DATA TOL / 1 1. E-7, -1. E-4, 1. E-4, 1. E-10, 1. E6/	CONTRD CUNTRD
	CONTRD
END	
	PRTSWT
SUBROUTINE PRTSWT (IPRT, KPRT, IPDT, IPYR, IT, ITI, ITF, K)	PRTSWT
	PRTSWT
C SET PRINT SWITCHES EACH TIME PERIOD	PRTSWT
DIMENSION IPRT(K), KPRT(K), IPYR(5)	PRISWT
C EXECUTION	PRTSWT PRTSWT
DD 90 I=1,K	PRTSWT
$V_{\text{PRT}} = 0$	PRTSWT
GO TO (90, 40, 50, 60, 70, 80) J 40 CONTINUE IF(IT.LE.1976 .OR. IT.EQ.ITF) KPRT(I) = 1 IF(IT.GT.1976 .AND. MOD(IT-1976, 5), EQ.O) KPRT(I) = 1	PRTSWT
4m/4m 1m 4074 DR 11 HA 1127 BERINA/ ** A	PRTSWT

60 70 80 80 85 90	IF(IT.EG.ITI OR. IT.EG.ITF) $KPRT(I) = 1$ IF(MUD(IT-ITI, IPDT) EG. O) $KPRT(I) = 1$ GO TO 90 CONTINUE IF(IT.EG.ITI OR. IT.EG.ITT) HERE	PRTPWT PRISWT PRISWT PRISWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT PRTSWT	19 201 202 202 202 202 202 202 202 202 202
	Utility Routines		

•	SUBROUTINE MATINV(A, INIV, M, N)			
	DIMENSION A(M,M), INIV(N)		MATINV	2
C			MATINV	3
C	THIS ROUTINE INVERTS A MATRIX USING THE ROW		MATINV	4
C	HEDUCITON METHOD AND RETURNS THE DESITE AND		MATINV	5
С			MATINV	6
С	NO LONGER BE DIMENSIONED M X 2M.)	MATINV	7
С	The second of a second se		MATINV	B
	DATA EPSIL/.1E-15/		MATINV	9
С	RECORD SEQUENCE CE DOUD TH THE		MATINV	10
	RECORD SEQUENCE GF ROWS IN THE ORIGINAL MATRI		MATINV	11
1	INIV(I) = I		MATINV	12
•	$N_1 = N - 1$		MATINV	
С				13
C	BEGIN MAIN LOUP		MATINV	14
	DO DO TESIT		TINV	15
	IM = IP		MATINV	16
	IST = IP + 1	· · · · · · · · · · · · · · · · · · ·	ATINV	17
	IF(IST.GT.N) GO TO 10		ATINV	18
С	FIND LARGEST ELEMENT OF KEV COLUMN	1	ATINV	19
	DO 0 1=151.N	ł	ATINV	20
	IF(ABS(A(I,1)) - ABS(A(IM,1)))8,8,7	4	ATINV	21
7	IM = I	4	ATINV	22
3	CONTINUE	- E	ATINV	23
2	CHECK FOR SINGULARITY		ATINV	24
10	IF(ABS(A(IM, 1)) - EPSIL)80, 11, 11		ATINV	25
2	TE OFF-DIACONAL NOUR DAY		ATINV	26
1	IF OFF-DIAGONAL, MOVE ROW TO DIAGONAL IF(IM.EQ.IP)GO TO 20		ATINV	27
•	IT = INIV(IP)		ATINV	28
	$\frac{1}{1} = \frac{1}{1} $		ATINV	
	INIV(IP) = INIV(IM)		ATINV	29
	INIV(IM) = IT			30
	DO 15 J=1,N		ATINV	31
	AL = A(IP, J)		ATINV	32 ;
	A(IP,J) = A(IM,J)		ATINV	33
5	A(IM,J) = AL	,	ATINV	34
0	CONTINUE	· M.	ATINV	35 :
	DIVIDE ROW BY DIAGONAL ELEMENT	M	ATINV	36
	AL = A(IP, 1)	M	TINV	37'
	DO 25 J=1,N1	M	TINV	381
5	A(IP,J) = A(IP,J+1) / AL		TINV	39
	A(IP,N) = 1. / AL	M		40
	2FRO OUT OTHER FOUR TH THE		TINV	411
1	ZERO OUT OTHER ROWS IN THE COLUMN DO 40 I=1,N		TINV	42
	NO HOTEL'N		TINV	43
	IF(I.EQ.IP)GO 10 40		TINV	
	AL = A(I, 1)		TINV ::	44

	MATINV	
	MATINV	
$\begin{array}{c} DO & 35 & J=1, N1 \\ 35 & A(I,J) = A(I,J+1) - AL + A(IP,J) \end{array}$	MATINV	
A(I,J) = A(I,J+T) -	MATINV	
	MATINV	
40 CONTINUE 50 CONTINUE	MATINV	
50 CONTINUE C REORDER COLUMNS TO ORIGINAL SEQUENCE	MATINV	
DO 75 I=1,N	MATINV	
T = T + 1	MATINV	
IF(INIV(I).EQ.I)GO TC 75	MATINV	
DO 70 K=II.N	MATINV	
IF(INIV(K).NE.I)GO TO 70	MATINV	
INIV(K) = INIV(I)	MATINV Matinv	
DO 65 J=1,N AL = A(J,I)	MATINV	
AL = A(J, I) A(J, I) = A(J, K)	MATINV	
65 A(J,K) = AL	MATINV	
GO TO 75	MATINV	
70 CONTINUE	MATINV	
75 CONTINUE	MATINV	
RETURN	MATINV	
80 PRINT 1001,EPSIL	MATINV	
SIOP 1001 FORMAT(1H0,5%,45HMATRIX IS SINGULAR OR HAS PIVOT SMALLER THAN ,	MATINV	
1001 FORMAT(1H0,5X,45HMATRIX IS SINGOLAR OR AND TOTAL	MATINV	
1 E12.4)	MATINV	
END		
·		
	MOD	
FUNCTION MOD(1,MODE)	MOD	
L=1/MODE	NOD	
M=L MODE	MOD	
MOD = I - M	MOD	
RITURN	MOD	
END		
SHALL DIFF. XARG)	TABEL	
FUNCTION TABEL(VAL, K, SMALL, DIFF, XARG)	TABEL Tabel	
DELLARATIONS DIMENSION VAL(K)	TABEL	
	TABEL	
C C EXECUTION	TABEL	
C	TABEL	
DIIM = XARG - SMALL	TABEL	
	TABEL	
IF(DUM.GT.FLOAT(K-1)*DIFF) DUM = FLOAT(K-1)*DIT	TABEL	
I = 1. + DUM/DIFF	TABEL	
IF(I.EQ.K) I = K-1 TABEL = VAL(I) + ((VAL(I+1)-VAL(I))/DIFF)*(DUM-FLOAT(I-1)*DIFF)	TABEL	
	TABEL	
	TABEL	
RETURN	TABEL	
END	•	
	TABUL	
FUNCTION TABUL (VAL, K, ARG, XARG)	TABUL	
DIMENSION VAL(K), ARG(K)	TABUL	
DUM = XARG	TABUL	
IF (DUM .GT. ARG(K)) DUM = ARG(K) IF (DUM .GT. ARG(1)) DUM = ARG(1)	TABUL	
IF(DUM .LT. ARG(1)) DUM = ARG(1)	TABUL	
DO TO TEC'N	TABUL	
IF (DUM .GT. ARG(I))GO TO 10 TABUL = VAL(I-1) + ((VAL(I) - VAL(I-1))/(ARG(I) - ARG(I-1)))*	TABUL	
+ (DUM - ARG(I-1))	TABUL	
RETURN	TABUL	
10 CONTINUE	TABUL	
	TABUL	
RETURN		
RETURN		÷ .

APPENDIX C DEMAND STANDARD RUN OUTPUT

This appendix contains a listing of the output generated by the standard run of DEMAND. The standard run simulates the years 1970-1985, with output printed only for 1970 and 1985 for illustrative purposes. In addition to these annual output tables, the user has the option of specifying output in the form of plots and/or time-series tables generated by the KASM3 plot package.

KCREAN AGRICULTURAL SECTOR MODEL VERSION KASH3 GATE RUN 05/09/77 TIME RUN.23.44.07. MODE EATCH INITIAL YEAR 1970 FINAL YEAR 1985 COMPONENT MODELS RUN PRDAC FRMAC DEMAND

JOB DESCRIPTION

DEMAND MODEL STANDARD RUN

TABLE DEMAND. 1. PPICE INDICES 1970.

INDEX	VALUE
· · · · · · · · · · · · · · · · · · ·	1970=100
CONSUMER PRICE INDEX	100.0
NONFCCD	100.0
FOCC	100.0
RICE Other grains	
MEAT	100.0
WCRED FCCD PRICE INCEX	100.0

CCHHCOITY	DCM	DCHESTIC SUPPLY			DISAFFEAFANCE			
	ADITOUCORS	INFCOTS	7074	E Lo M	UPBAN	OTHER+	TOTAL	SELF SUFFIC- IENCY
	•••••	• • • • • • • • • • •	••••••	• TH MT	••••••	••••••	•••••••	PERCENT
RICE EARLEY Wheat Cgrain Fruits	4 19 7 . 159 1 . 21 9 . 17 4 . 42 1 .	541 • 1257 • 273 • 8 •	4631. 1591. 1476. 413. 428.	1648. 813. 467. 52. 72.	2422. 425. 812. 59. 313.	561. 352. 19E. 273. 43.	5831. 1591. 1476. 413. 428.	93. 106. 15. 33. 98.
PULSES VEGTAB FOTATO TOBACO INDUST BEEF PILK FORK	279. 2539. 27744. 42. 352. 83.	36 5 -27 -3 54 -0	315. 2544. 2768. 29. 428. 306. 82.	90. 330. 1274. 12. 8. 3. 1. 19.	17	46. 3326. 1. 2. 2.	315. 2544. 2768. 29. 42. 38. 106. 82.	85. 100. 193. 100. 98. 100. 98. 100.
CHICKN EGGS FISH R ESA GK	45. 135. 935. 29.	0. -1. -134. 376.	45. 134. 801. 495.	6. 6. 160. 114.	3 { • 125 • 59 C • 27 9 •	1. 3. 52. 12.	45. 134. 801. 405.	100. 101. 117.

TABLE LEMAND. 2. SUFFLY AND DISAPPEARANCE OF AGRICULTURAL COMMODITIES 1970.

COMMCEITY	NATIGNAL CONSUMPTION	URTAN		F A R	r
		CONSUMPTION	THRGET	CONSUMPTION	TARGET
	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	KSZCAP-YR	• • • • • • • • • • • • • • • • • •	• • • • • • • • • • •
RICE BARLEY WHEAT OGRAIN FRUITS	125.9 38.3 39.6 4.4 11.9	136.3 23.9 45.9 3.3 17.6	150.0 25.0 55.0 2.0 40.0	11 3 • 1 5 5 • 8 3 2 • 0 5 • 6 4 • 9	130.0 40.0 45.0 4.0 30.0
PULSES VEGTAB POTATC TOBACO FORAGE	9 • 3 66 • 5 56 • 4 • 8 0 • 0	10.1 75.0 30.9 .8 C.0	13.9 110.0 20.0 2.5 .9	6.1 57.0 37.4 .8 0.0	12.0 100.0 50.0 2.5 .0
CCCOCN INDUST PEEF PILK PORK	0+0 1+3 1+1 3+2 2+5	0.0 1.8 1.9 5.8 3.5	•0 4•0 5•0 35•0 10•0	0.0 .6 .2 .1 1.3	0 3 .0 2 .0 7 .0 5 .0
CHICKN Eggs FISH RESAGF	1 • 4 23 • 2 12 • 1	2 • 1 7 • 0 3 3 • 2 15 • 7	5.0 15.0 70.0 30.0	.4 .4 11.0 7.8	2.5 5.0 40.0 15.0

TARE E DEMAND. AN REAL AND A CHARMERTICK

ITEN	TCTAL	PER CAPITA
	PI WON	
INCOME	1371.	77.2
SAVING	206.	11.6
EXPENDITURE	1165.	65.6
FOCE	503.	23.6
NON-FOOD	657.	37.0
		PERCENT
FOCD/TCTAL		43.6

NUTRIENT		GUANTITY			FERCENT	
	NATIONAL	URFAN	FARM	NATIGNAL	URBAN	FARI
	•••••	CAL/CAP-DAY	•••••	• • • • • • • • • • • • • •	PERCENT	•••••
CALCRIES PLANT ANIFAL	2392.2 2223.7 163.5	2443.E 22114.9 234.7	2325.5 2246.5 83.0	100.0 93.0 7.0	100.0 90.2 9.8	100.1 96.4 3.0
FROTEIN PLANT ANIFAL	66+0 55+2 10+9	71.2 55.4 15.8	55.7 54.8 4.9	100.0 83.5 16.5	100.0 77.8 22.2	10C.(91.8 8.2

RICE 74.7 BAPLEY 40.6 WHEAT 23.9 CGRAIN 33.4 FRUITS 54.1 PULSES A2.6 VEGTAB 44.1	1.5 2.4 22.4 32.0 65.2	-2.9 -5.7 -4.1 5.1 -10.7	1 WCN/MF	44.5 13.7 13.7	57.9 17.7 16.4
BAPLEY 40.6 NHEAT 23.9 CGRAIN 33.4 FRUITS 54.1 PULSES A2.6 VEGTAB 44.1	2.4 2.4 32.0 69.2	-5.7 -4.1 5.1	48.8F 30.4F 60.3F	13.7 13.7	17.7
VEGTAB 44.1			133.9F	13.3 74.6	21.9
FOTATC 15.1 TOBACO 205.0 FORAGE 1.0	15.9 12.8 15.5 483.8 0.0	3.8 -2.5 -9.1 -512.5 1.0	+8.7F 59.8F 39.7F 1241.3F .0F	29.8 406.2 25.0 220.2 .3	35.6 487.5 26.9 264.3 .3
CCGOCN 449.1 INDUST 146.9 EEEF E59.6 MILK 55.0 FORK 261.1	₽.₽ 176.3 46.2 55.3 148.3	- 33.5 - 32.6 5.6 13.3	449.1F 356.7F 738.3F 149.3F 396.7F	5249.6 224.1 286.2 262.8 239.3	6299.5 268.9 343.5 315.2 237.1
CHICKN 366.1 EGGS 216.4 FISH 70.2 RESAGR 63.4	-69.6 51.9 190.9 23.9	33.5 -17.7 4.0 .0	263.0F 236.0F 257.15 42.4F	216.2 234.5 139.5 29.2	258.8 231.7 167.5 35.0

F - FIXFO PRICE

TABLE DEMAND. 9. AGRICULTURAL EXPO	RT-IMPORT BALANCE 1970.	
ITEN	UNIT3	VALUE
AGRICULTURAL EXPORTS	ST HON	137.
AGRICULTURAL IMFORT	GT WCN	85.
EXCHANGE RATE	HCNZCOLLAR	305.
AGRICULTURAL HALANCE OF FAYMENTS	BI WON MI DELLAR	52. 171.
PROFIT FROM AGRICULTURAL TRADE	MI WCN	110727.

TABLE CEMAND.10. AGRICULTURAL IMPERTS ANDEXEDRTS BY COMMODITY 1970.

CCMMCDITY			H F O R T S	EXFCRTS					
	GUANTITY	TMECET Polue	TARIFF REVENUES	VALUE-	PRCFIT	CUANTITY	EXFC=T PRICE	VALUE	FROFIT
•	TH MT	TH WON	MI HON	MON IN	MI HON	тн мт	TH WON	FI WCN	454 IN
ICE ARLEY HEAT GRAIN RUITS	541.000 .000 1257.153 274.000 8.132	57.3 17.7 15.4 21.5 85.5	4317°2 •0 3445°2 9•0 •0	263 82 . 4 9 17226 . 1 6116 . 3 7 33 . 4	11507.1 .0 17564.5 10715.3 .563.5	0.0C0 0.0C0 0.0C0 C.000 C.000	44.5 13.7 13.7 13.3 74.6	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0 - 1 0 - 1 0 - 1 0 - 1 0 - 1
ULSES EGTAR OTATO OPACO ORAGE	36 • 000 5 • 000 4 • 000 8 • 000 8 • 000	35.6 487.5 264.5 264.3	9.0 0.0 0.0 0.0 0.0	1232.5 2437.5 113.4 0.0 0.0	2265.2 -2130.6 30.3 0.0 0.0	0.000 C.000 0.000 27.400 0.000	25.8 406.2 25.0 220.2 3	6.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 -26884.6 0.0
CCCON NDUST EEF Ilk DRK	0.000 0.000 .600 54.400 0.000	6299.5 268.9 343.5 315.2 287.1	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0.0 C.0 206.1 17144.6 0.0	0.0 0.0 266.9 -11195.6 0.0	21.368 115 0.000 C.000 .100	5249.6 224.1 296.2 262.8 255.8 235.3	112174.7 25.8 0.0 0.0 23.9	102570.2 -15. 0.1 -15.
HICKN GGS ISH ESAGR	.000 0.000 0.000 375.701	253.3 261.7 167.5 35.0	0 • 0 7 • 9 0 • 0 9 • 0	0 0.0 13156.1	.0 0.0 21542.5	0.000 1.500 134.227 0.000	216.2 234.5 139.5 29.2	0.0 351.7 12719.4 0.0	0.(-77.3 -15790.3 0.(

	DEMAND TIME-SEPIES EY COMMODITY	•0115 0•0000 •2600	154SURFS •0171 •2896	•1030 •0200	•1036 •3915	•0218 •0036	•0189 •0093	.0245 .048€	• C209 • C430	•3261 •3099	0.0000 C.0000
•••	FOR FRT + VEG FCR LVSTK/FSH FCR ALL CCHM	.0464 .5165 2.2706						,	а		
											· · · · · ·

TABLE CEMAND. 1. PRICE INDICES 1935.	
INCEX	VALUE
	197 0= 190
CONSUMER PRICE INCEX	116.0
NONFCCO	95.0
FOOD	100-4
RICE Other grains	157.5 120.5
MEAT	143.5
NORLD FOOD PRICE INFEX	156-4

.

	. 2. SUFFLY	STIC SUPPLY			DISAPPEA	RANCE		SELF SUFFIC-
CHMCDITY	PRODUCTION		TOTAL	FARM	UREAN	OTHER-	TOTAL	IENO
		-		TH MT		•••••	•••••	PERCEI
ICE ARLEY MEAT GRAIN	5932. 2365. 459.	0. 9. 1753. 1.	5932. 2366. 2250. 159.	1379. 580. 510. 55. 139.	3302. 1151. 1490. 125. 345.	751 • 634 • 250 • -20 • 156 •	5932. 2366. 2250. 159. 140.	10 9 2 10 13
RUITS ULSES EGTAE DTATO DEACO NDUST EEF ELK	1563. 633. 4321. 3187. 210. 82. 143. 780.	- 423 . - 67 . - 203 . - 232 . - 123 . - 17 . - 266 . - 5	1140. 552. 4117. 2954. 114. 126. 754. 147.	ç6 .	365. 2595. 753. 103. 1143. 1143.	91. 648. 1270. 9. 3. 28. 4.	552. 4112. 2954. 82. 114. 124. 754. 187.	11 10 25 7 11 10
ORK HICKN GGS ISH ESAGR	192. 113. 276. 4712. 37.	-3. -3. -3. -2031. 515.	113. 276. 2621. 692.	16. 10. 430. 92.	95. 261. 2010. 492.	2. 6. 241. 18.	113. 276. 2631. 602.	11 11 17

COMMCC114	NATICNAL Consumption	URPA	14	F A F N		
		CCNSUMFTICN	TARGET	CONSUMPTION	TAPGE	
		•••••••	KG/FAE-YR	•••••••••	••••••	
RICE BARLEY NHEAT OGPAIN FRUITS	1 26 . 9 42 . 4 49 . 1 24 . 1	130.8 39.6 51.3 4.3 29.1	100.0 25.0 55.0 40.0	117.4 49.4 43.5 4.6 11.8	110 • 40 • 45 • 40 •	
PULSES VEGTAB POTATO TOBACO FORAGE	11.3 84.5 41.3 1.8 0.0	12.6 55.4 25.9 1.7 0.0	18.0 110.1 20.0 2.5 .0	8.2 73.7 79.3 2.0 0.0	12. 100. 50. 2.	
CCCOON INDUST BEEF MILK FORK	0 • ŋ 2 • 7 3 • ¶ 17 • £ 4 • 5	0.0 3.6 24.2 5.3	• 0 4 • 0 5 • 0 3 5 • 0 4 0 • 0	0.0 .7 .8 2.0 2.5	3.2.7.5	
CHICKN Eggs Fish Resagr	2.7 6.6 59.8 14.3	3.3 5.0 69.1 16.9	5.0 15.0 70.0 30.0	1.3 9 36.7 7.8	2 • 5 • 40 • 15 •	

TABLE CENARD. 3. PER CAPITA CONSUMPTION AND CONSUMPTION TARGETS (MATTONA)

	EI WCN	TH WON/CAP	
INCOME	3907.	134.4	
SAVING	586.	20.2	
EXPENDITURE	3321.	114.2	
FOCC	1489.	51.2	
NCN-FOOD	1832.	63.0	
		PERCENT	
FOCD/TCTAL		44.8	

NUTRIENT		CUANTITY			RCENT		(
	G				LRCAN	FARM	
CALCHIES PLANT ANIPAL	2703.2 397.1 306.1	2793.9 2422.2 371.E	2478.7 2334.3 143.9	10C.0 83.7 11.3	100.0 00.1 13.3	100.0 94.2 5.8	
PROTEIN PLANT ANIMAL	44.4 61.7 22.7	90.4 63.1 27.3	69.5 58.2 11.3	100.0 73.1 26.9	100.0 69.5 30.2	10C. 83. 16.	
·		. ~	e ^{den} ent			· \/	
		1				. 1	
		N.					
TABLE CEMANC.	6. MIRKETING						
COMHC01TY	FRICE	MARKETING COSTS		CONSUMER PRICE+		EXFORT PRICE	IMF(FR
RICE	120.0	2:4	-2.2	124.6F 65.0F		55.5 36.5	e l 4
WHEAT OGRAIN FRUITS	45.0	4.5 52.1 78.7	4.7 0 .0	44.8F 167.6U 140.3L		28.8 21.0 85.0	43.9
PULSES VEGTAB FOTA TO	72.€ 73.8 9.9	17.4 21.4 10.2	-:0 0.0	90.1L 95.2M 20.2L		54.7 33.7 74.1	6
FORACE	400.0	944.0 0.0	644.0 0.0	700.0F .0F		378.2	38
CCCOCN INDUST BEEF MILK	455.0 153.7 1023.0 56.3	0.0 190.5 71.6 61.4	-345.0	1200.0F 349.2L 1094.6L 117.8L		7750.0 410.0 1563.7 392.5	775 41 156 40
FORK	485.2 553.8 130.3	-105.2 31.3	0 0.0 .0	761.8M 448.5M 161.5M		842.5 341.8 259.6	341 341 30
EGGS	105.5	2*6.3	0	392.3L 100.0F		392.3	39

174

.

CCHHCDITY	LPE2	-UPAL		
	DI-ECT PRICE	INC CME	EIRECT FRICE	INCOME
	FLASTICITY•	ELASTICITY	ELASTICITY	ELASTICITY
RICE BARLEY VHEAT CGRAIN FRUITS	30 20 70 60 85	•08 - •16 •20 - •43 •66	- •41 - •20 - •60 - •35	•05 •12 •11 •05 •56
PULSES	75	• 32	40	•21
VEGTAD	10	• 26	10	•13
FOTATC	40	• 42	70	•35
FORACO	50	• 52	21	•37
FORAGE	0.00	0•00	0.00	0.00
COCOON	0.00	0.90	€.0	0.00
Indust	-1.10	.18	50	.29
Beef	-1.40	.54	-1.50	.64
Milk	-1.50	1.31	-1.50	2.31
Pork	-1.00	.4 <u>1</u>	50	.41
CHICKN	-1.20	•66	80	•46
EGGS	30	•31	40	•37
FISH	20	•10	30	•27
RESAGF	0.00	0•00	0.00	0•00
NONAGR	40	•71	0.00	0•00

TABLE DEMAND. 3. GPOSS ELASTICITIES, UPBAN AND FARM 1985. OUANTITY WITH PRICE

•

TABLE DEMAND.	A. GPOSS ELASTICITIE	
QUANTITY WITH	PRIGE	ELASTICITY
URBAN CONSUMPT		
RICF RICF RICF RICF RICF	BARLEY WHEAT Ograin Potato Nonagr	• 03 • 05 • 01 • 00 • 09
BARLEY BARLEY BARLEY BARLEY BARLEY	RICE WHEAT OG 44IN PCTATC NONACR	。 64 。 05 。 01 。 01 - 。 35
WHEAT WHEAT WHEAT WHEAT WHEAT	RICF EARLEY OGRAIN PottIO HON2GP	• 27 • 03 • 02 • 01 • 12
OGRAIN Ograin Cgrain	RICE Wheat Nonase	.43 1.81 -1.26
FRUITS	NONAGR	.19
PULSES	NONAGR	• 43
VEGTAB	NONAGR	16
FOTATC Potato	OGRAIN Nonage	• 01 • 80
TOEACO	NONAGR	12
INDUST	NONAGR	• 92
BEEF BEEF BEEF BEEF	PORK Chickn Fis⊨ Non∸gr	.39 .15 .36 03
FILK	NON4GR	•19
FORK Fork Fork Fork	BEEF Chirkn Fism Nun1gr	• 44 • 14 • 44 - • 43
CHICKN Chickn Chickn Chickn	REEF Pork Fish Nonge	• 33 • 32 • 29 • 40
EGGS	NONAGE	01
FISH FISH FISH FISH	REEF Pork Chickn Nonagr	• 03 • 04 • 01 • 03
NONAGE	RICF	06

NONAGE	BARLEY	01
NÓNA GR NÓNA GR	OGRAIN FRUITS	01 C(G2
NONA GF NONA GF NONA GP	PLLSES VEGTAR	01
NONAGR	POTATO TOBACO INDUST	0C 0C
NONAGE NONAGE	ĒĒĒĒ MĪLK	01 02 01
NONA GR NONA GF	PORK Chickn	01
NONA GR NONA GR NONA GR	EGËË FISH RES4GE	
FARM CONSUL		01
RICF	BARLEY	.04
RICE RICE RICE	MHEAT Ograin Fotato	
BARLEY	RICE	.01 .52
BARLEY	NHĒĀT Ograin	.01
EARLÊY WHEAT	POTATO RICE	• 05
WHEAT WHEAT WHEAT	OGRAIN	• 32 • 10 • 02
WHEAT OGRAIN	POTATO RICE	• 10
CGRAIN CGRAIN	BARLEY	• 46 • 10 • 70
FOTATC	RICE BARLEY	. 11
FOTATO	OGRAIN	• 02 • 01
BEEF BEEF	PORK Chickn	• 44 • 17
BEEF FORK	FISH BEEF	• 91
PORK	CHÍCKN FISH	• 27 • 11 • 8ô
CHICKN CHICKN	BEEF	• 26 • 27
CHICKN	FISH	• 27 • 55
FISH FISH FISH	BEEF Pirk Chickn	• 01 • 01 • 00

TABLE DEMAND. 9. AGRICULTUPAL EXPO	CET-IMPORT HALANC" 1985.	
ITEM	UNITS	VALUE
AGRICULTURAL EXFORTS	SI KON	1395.
AGRICULTURAL IMFORTS	BI WGN	143.
EXCHANGE RATE	WCN/COLLAR	500.
AGRICULTURAL BALANCE OF FAYMENTS	ƏI WON Mı dellar	1252. 2504.
PROFIT FROM AGRICULTURAL TRACE	NON IM	309746.

		1	M P O R T S				EXPCR	<u>TS</u>	
OMNCDITY	QUANTITY	INPCPT FRICE	TARIFF REVENUES	VALUE*	PPOFIT	GUANTITY	EXFORT FRICE	VALUE	FROFIT
	 TH NT	TH WON	MI WON	MI NON	MI WON	TH MT	TH WCN	MI WCN	PI WON
ICE ARLEY HEAT GRAIN RUITS	0.001 0.000 1758.305 0.000 0.000	63.3 49.0 41.5 33.5 92.5	0.0 0.0 12053.6 0.0 0.0	0.0 0.0 60495.0 0.0 0.0	0.0 0.0 6133.E 0.0 0.0	0.000 0.000 0.000 423.231	55.8 36.5 28.8 21.0 25.0	0.0 0.0 0.0 35974.6	0.0 0.0 0.0 -23333.5
PULSES VEGTAB POTATO TOBACO FCRAGE	0.003 0.001 0.001 0.001 0.000 0.000	67.2 43.7 75.1 383.2 .5	0 • 0 0 • 0 0 • 0 7 • 0 0 • 0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	0 • 0 0 • 0 0 • 0 0 • 0 0 • 0	8::.904 20::.471 232:.444 127:851 0:000	54 • 7 3 d • 7 7 4 • 1 3 7 8 • 2 • 5	4750.8 3075.1 17215.7 48355.3 0.0	-3075.6 -11778.6 12524.6 -41140.4 0.0
CCCOON INCUST EEEF MILK FORK	0.000 32.533 0.000 0.000 0.000 0.000	7755.0 415.0 1564.7 400.0 647.5	0.0 0.0 0.0 0.0 0.0	0.0 12503.5 0.0 0.0 0.0	0.0 -2135.2 0.0 0.0 0.0	57.242 6.000 16.957 25.556 4.900	7750.0 410.0 1563.7 392.5 542.5	443624.0 0.0 26359.3 10137.8 4128.4	374933.1 0,1 7507.1 7131.1 395.1
CHICKN EGGS FISH RESAGR	.000 0.000 0.000 515.614	34E.8 394.5 394.3 134.5	0 • 0 3 • 0 6 • 0 0 • 0	.0 G.0 Q.0 E9330.0	.0 0.0 0.0 -17768.2	0.000 .000 2031.065 0.000	341+8 299+6 392+3 129+5	0.0 .0 796798.9 0.0	0 • 0 • 0 •

APPENDIX D

COMPUTATION OF CROSS-PRICE ELASTICITIES

DEMAND computes cross-price elasticities for grains and for meats and for farm and nonfarm consumers based on own-price elasticities, assumed substitution proportions and relative consumption levels. Since relative consumption changes over time in DEMAND, so do the cross-price elasticities. The development of these computations, discussed below, was motivated by two factors: 1) the need for a way to more easily utilize "soft" data, such as informed judgements of knowledgeable people familiar with Korean consumption patterns and behavior, to estimate demand elasticities; and 2) the desirability of maintaining consistency between proportional changes in consumption, represented by the elasticities, and realistic quantity changes.

First, enormous difficulties were encountered in trying to estimate price elasticities from time-series data only [7]. Hundreds of computer runs of statistical packages, eating up computer time and staff time, had little to show except bad signs, statistically insignificant results and low, even negative, R²s. The decision was made to take as much as we reasonably could from these "hard" data results and to rely for the rest on "soft" data, i.e., informed guesstimates. The reasonableness of elasticity estimates made in this way could then be measured by :ime-series tracking tests of the model, as reported in the main body of this documentation.

It was felt that it would be easier to elicit elasticity estimates from "soft" data sources indirectly through such reasoning as illustrated below, i.e., in quantity terms rather than proportional terms, than it would be to ask directly for elasticity values. Indeed, the workability of this approach was verified in the case of substitution behavior for meats (beef, pork, chicken and fish). Reasoning in this way, officiais of the Livestock Bureau were able to come up with substitution proportions (see below) which gave very good results when used in the model.

The second factor motivating development of this approach was the obvious observation that cross-price elasticities measure the strength of substitution behavior between pairs of commodities. For any pair of commodities, this strength depends on the relative importance of, or preference for, those two commodities, a relative importance which can be measured by the relative consumption levels. In long-run analyses, relative consumption levels can change substantially, especially for developing countries. Therefore, constant price elasticities would not be consistent with changing consumption patterns over time.

In DEMAND, the farm and nonfarm demand components each have a 20x 20 matrix of price elasticities. For each, two submatrices are estimated in the following manner. One, of dimension 5x5, is for the grains, rice, barley, wheat, other grains and potatoes; the other, of dimension 4x4, is for the meats, beef, pork, chicken and fish. Rows and columns for the other commodities are assumed to have only the direct-price

elasticity on the diagonal. Income elasticities are estimated separately and are assumed to neither effect nor depend on the price elasticities. The homogeneity condition is insured by computing, as a residual, the cross-price elasticity of demand for each commodity with respect to the nonfood price index.

First, own-price elasticities are assumed given, and assumptions are made about quantity substitutions. Then, cross-price elasticities are derived consistent with those assumptions. Since grains and meats are handled in exactly the same way, only cross-price elasticities for grains (Figure D.1) will be derived in detail here.

Assume a change occurs in the price of rice, with all other prices (and income) remaining unchanged. Then, only the first column of the matrix in Figure D.1 is effective.

	·····		•	Prices	;	
		Rice	Barley	Wheat	Other Grains	Potatoes
s	Rice	^ε 11	٤ 12	^ε 13	^ε 14	^ε 15
Quantities	Barley	^ε 21	· 22	^ε 23	^ε 24	^ε 25
uan	Wheat	^ε 31	[£] 32	^٤ 33	^ε 34	ε ₃₅
0	Other grains	² 41	^E 42	^ε 43	^ε 44	[€] 45
j	Potatoes	^ε 51	[€] 52	[€] 53	^ε 54	^ε 55

Figure D.1. Submatrix of Grain Price Elasticities

Further, assume the price change and direct elasticity ϵ_{11} (taken as given) are such that rice consumption decreases 10 kg per capita. That is,

(1)
$$dC_1 = \frac{\partial C_1}{\partial P_1} dP_1 = \epsilon_{11} \frac{C_1}{P_1} dP_1 = -10$$

or in difference equation form

(2)
$$\Delta C_1 = C_1(t) - C_1(t-1) = \epsilon_{11} \frac{\Delta P_1}{P_1(t-1)} C_1(t-1) = -10$$

These equations follow from the definition of the elasticity as shown in equation (3) below.

Now, what will happen to total grain consumption as a result of consuming 10 kg less rice? We would expect a substitution of other grains for rice, but how much? Suppose our best information (including judgement) tells us 9 kg. That is, there will be a net decrease in total grain consumption of 1 kg per capita resulting from the assumed rice price change (increase). Thus, we set the value of the parameter α to .9. That is,

(3)
$$\Delta C_2 + \Delta C_4 + \Delta C_5 = -\alpha_1 \Delta C_1 = .9 \times 10 = 9$$

= $-\alpha_1 \varepsilon_{11} \frac{\Delta P_1}{P_1(t-1)} C_1(t-1)$

where we have used equation (2) to replace ΔC_1 . Next, we need to know how much of the 9 kg will be barley, wheat flour, and other grains and potatoes (in grain equivalents), respectively. Suppose our data tells us 5 kg, 2 kg, 1 kg, and 1 kg, respectively. Thus, we set the values of β_{21} , β_{31} , β_{41} and β_{51} to 5/9, 2/9, 1/9 and 1/9, respectively, and

(4)
$$\Delta C_2 = C_2(t) - C_2(t-1) = -\beta_{21} \alpha_1 \epsilon_{11} \frac{\Delta P_1}{P_1(t-1)} C_1(t-1) = 5$$

$$\Delta C_{3} = C_{3}(t) - C_{3}(t-1) = -\beta_{31} \alpha_{1} \epsilon_{11} \frac{\Delta P_{1}}{P_{1}(t-1)} C_{1}(t-1) = 2$$

$$\Delta C_{4} = C_{4}(t) - C_{4}(t-1) = -\beta_{41} \alpha_{1} \epsilon_{11} \frac{\Delta P_{1}}{P_{1}(t-1)} C_{1}(t-1) = 1$$

$$\Delta C_{5} = C_{5}(t) - C_{5}(t-1) = -\beta_{51} \alpha_{1} \epsilon_{11} \frac{P_{1}}{P_{1}(t-1)} C_{1}(t-1) = 1$$

The cross elasticities in the first column of Figure D.1 can now be computed.

(1,2,2)

(5)
$$\epsilon_{11}(t-1) = \frac{\Delta C_i}{C_i(t-1)} / \frac{\Delta P_1}{P_1(t-1)} = -\beta_{11} \alpha_1 \epsilon_{11} \frac{C_1(t-1)}{C_i(t-1)}$$
 for $i = 2, 3, 4, 5$

Through similar reasoning, we can estimate α_2 , β_{12} , β_{32} , β_{42} and β_{52} for the barley column (a change only in barley price); α_3 , β_{13} , β_{23} , β_{43} and β_{53} for wheat; α_4 , β_{14} , β_{24} , β_{34} and β_{54} for other grains; and α_5 , β_{15} , β_{25} , β_{35} and β_{45} for potatoes. From these, the full set of cross elasticities is easily computed as in (5). Actually, (5) is modified to (6) in order to convert from wheat grain to wheat flour and from potatoes as potatoes to potatoes in grain equivalents. (The conversion ratios for rice, barley and other grains (α_1 , α_2 and α_4) are taken as 1.0.)

(6)
$$\epsilon_{ij}(t-1) = -\beta_{ij} \alpha_j \epsilon_{jj} \frac{C_j(t-1) \cdot \gamma_j}{C_j(t-1) \cdot \gamma_j}$$
 for i, j = 1, 2, 3, 4, 5 and i $\neq j$

The same procedure is followed for meats (although no conversion ratios are used) and for farm and nonfarm consumers. In the linearized, difference equation demand model, then, consumption at time t depends on elasticities at time t-DT, where DT=1 in the above equations. Notice that the cross elasticities now change over time as relative consumptions change.

Also, notice that with this method we now have <u>more</u> parameters than we had before. For n commodities (here, n=5), instead of n^2 direct and cross-price elasticities, we have n direct elasticiites, n α s and n^2 -n β s for a total of n^2 +n. However, through the type of reasoning illustrated above, we can more confidently use soft data to arrive at reasonable and mutually consistent cross elasticities by first estimating the substitution proportions α and β .

In addition, basic changes in consumption patterns can be projected (or assumed) by projecting changes in the α s and β s over time. We must remember in doing so, however, that we are talking here only of changes in <u>price substitution</u> behavior. Change in consumer behavior associated with rising incomes is the subject of <u>income</u> elasticities, not <u>price</u> elasticities, although income could indirectly affect price responses if the α s, β s and/or direct-price elasticities were made functions of income in later model refinements.

A final point can be made relating the substitution proportions (the α s and β s) to partial derivatives. As noted above, the elasticity of demand for commodity i with respect to the price of commodity j can be defined as

(7)
$$\varepsilon_{ij} = \frac{\partial C_i}{\partial P_j} \cdot \frac{P_j}{C_i}$$

or the partial derivative of C_i with respect to P_j as

(8)
$$\frac{\partial C_i}{\partial P_j} = \epsilon_{ij} \frac{C_i}{P_j}$$

From equation (6)

$$(9) \quad \frac{\partial C_{i}}{\partial P_{j}} = -\beta_{ij} \alpha_{j} \epsilon_{jj} \frac{\gamma_{j}C_{j}}{\gamma_{i}C_{i}} \cdot \frac{C_{i}}{P_{j}}$$
$$= -\beta_{ij} \alpha_{j} \frac{\partial C_{j}}{\partial P_{j}} \frac{P_{j}}{C_{j}} \frac{\gamma_{j}C_{j}}{\gamma_{i}P_{j}}$$
$$= -\beta_{ij} \alpha_{j} \frac{\gamma_{j}}{\gamma_{i}} \frac{\partial C_{j}}{\partial P_{j}}$$
$$= -\beta_{ij} \alpha_{j} \frac{\gamma_{j}}{\gamma_{i}} \frac{\partial C_{j}}{\partial P_{j}}$$

where $\mu_{ij} = -\beta_{ij} \alpha_j \gamma_j / \gamma_i \leq 0$ is constant. Thus, the cross-price partial derivative of i with respect to j is proportional to j's own-price partial derivative. That is, the slope of the curve of C_i plotted against P_j is proportional to that of C_j plotted against P_j and of opposite sign.

APPENDIX E

DATA DOCUMENTATION

The data for the demand-price-foreign trade model (DEMAND), as for any model, can be classified into four categories: 1) initial conditions, 2) system parameters, 3) policy inputs and 4) other inputs. Some initial conditions and constant parameters are computed within the model at the start of a simulation to insure consistency among them and with the real world at time zero. These are described in the technical description of DEMAND--for example, the constant coefficient ALPHA of the nonfarm consumption expenditure constraint (equation (14) in Chapter 2) is computed in equation (27), and initial per capita consumption levels are computed in equations (28)-(30). We shall describe here only the numbers that must be supplied to the model.

The model is currently programmed so that all DEMAND data, with exceptions as noted in the tables, are entered as data statements in BLOCKDATA DEMDAT (see Appendix B, Program List). These data may be easily changed for policy runs, sensitivity testing or updating.

Initial Conditions

Three categories of data are needed to initialize DEMAND: 1) initial conditions of state variables, 2) data used to insure initial consistency in consumption, and 3) time series values of certain variables to be used in the tracking period of the model.

State Variable Initialization

Five state variables in DEMAND must be initialized at 1970: 1) stock levels STKO₁, 2) exponentially averaged producer prices EPAVGO₁, 3) farm income elasticities ELISVAR₁, and 4) nonfarm income elasticities ELISAV₁ for each commodity i, and 5) the income constraint parameter S1. Data for STKO, EPAVGO, ELISVAR and ELISAV are shown in Table E.1. Since the coefficient ALPHA is computed within the model to insure initial consistency among income, per capita consumption and prices, S1 is initialized at its nominal value 1.0 by a replacement statement in subroutine DEMI. Other state variables of DEMAND are initialized either within the model (e.g., per capita consumption) or as tracking data (e.g., prices). If a simulation is to begin at a time later than 1970 (i.e., TIMEI > 1970, where TIMEI is the desired starting time), tracking period values of stock changes and producer prices are used by the model instead of STKO and EPAVGO to initialize stock levels and lagged producer prices.

Initial Consistency Data

Per capita consumption is initialized by the model to be consistent with the food balance data for 1970 (or later initial year if desired). This means consistency with total supply for human consumption and with ratios of farm per capita consumption to nonfarm per capita consumption (FNR_i) for each commodity i. Total supply is production plus imports minus losses minus animal feed minus stock increases minus seed requirements minus industrial consumption (for wheat) minus nonfood

portions (for industrial crops). All of this data is considered a part of the production models of KASM and is not shown here; Table E.1 shows the initial ratio of farm to nonfarm per capita consumption.

Tracking Period Time Series

In KASM as a whole, simulations begin in 1970. Empirical time series data is stored in the model, however, for selected variables from 1970 to the latest year available (called BASEYR in KASM). At the time of this writing, data has been compiled up to 1975 (i.e., BASEYR = 1975), although storage is reserved in the data arrays for new values to be added as they become available up through 1979. When simulating, the period 1970 through BASEYR is called the cracking period, and the period BASEYR + 1 to the end of the simulation is called the projection period.

The tracking period data included in JEMAND is shown in Table E.2. The variables shown in Table E.2 fall into four categories, depending on how the model uses the time series data.

1) First are variables computed by DEMAND in the projection period but whose empirical values are used during the tracking period. These include farm and nonfarm consumption expenditures VEFRMY and VEINCM, producer and consumer prices VPRICE and VCPU, and stock changes VCSTK.

2) Next are DEMAND inputs (discussed below) and time-varying parameters. These include a) variables computed in other models of KASM but projected exogenously if DEMAND is run independently of those models (farm and nonfarm income VFI and VUI, and the nonfood price index VCP); and b) v riables and parameters exogenous to KASM (import and

export prices VPWI and VPWX, the foreign exchange rate VWOND, the food proportion of nonfarm consumption expenditures VPCUFD, the edible proportion of industrial crops VPICF, and the ratio of nonfarm to farm consumer price indices VFPIX).

3) Third are variables computed by DEMAND in both the tracking and projection periods but whose simulated and empirical tracking period values may be compared as a verification test. Included in this group are per capita consumption VPSUP and imports/exports VDFC.

4) Finally, time series data on the all-cities all-commodities consumer price index VCPI is included for reference purposes only. It is not used directly in KASM, but it is the implicit deflator for all prices and price indices used in the model.

System Parameters

The system parameters of DEMAND are constants which determine the strength of behavioral and technical relationships among variables. The user may want to experiment with the model to investigate the effects of making these parameters time-varying. This could be done without too much difficulty by modifying the computer program. One might want to do this for, for example, direct-price elasticities or substitution proportions.

The values of commodity-specific system parameters are displayed in Tables E.3 and E.4. Table E.3 shows, for all commodities, ownprice elasticities, consumption targets, marketing margins, nutritional contents of foods, import losses, proportions consumed unprocessed, and price index weights. For grains and meats, Table E.4 shows the substitution proportions used by the model to determine cross-price elasticities. Finally, Table E.5 lists other, miscellegeous parameters.

Policy and Other Inputs

Policy inputs to DEMAND are discussed in detail in Chapters 2 and 4 of this documentation. No further discussion will be made here. The reader is referred to Chapter 5 for a table of base run values of policy parameters (Table 5.2); those values produced the sample output of Appendix C.

Other inputs to DEMAND include those projected exogenously in table functions and those which are computed elsewhere in the sector model (KASM). Here we will present only data for those inputs (import and export prices) projected exogenously (Table E.6). Table E.7 lists those variables which are input from other components of KASM. These include population (farm, nonfarm and total), per capita income (farm and nonfarm), the foreign exchange rate, and total supply of domestically produced agricultural commodities for human consumption.

tert on the transferrer					•
	STKO ⁽¹⁾ (MT)	EPAVGO ⁽²⁾ (W/MT)	ELISVR ⁽³⁾	ELISAV ⁽³⁾	_{FNR} (4)
 Rice Barley Wheat Other grain Fruit Pulses Potatoes Tobacco Ind. crops Beef Milk Pork Chicken Eggs Fish (5) Residual (5) Nonfood 	88,000 103,300 286,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78,500 41,900 28,100 42,500 54,300 60,600 31,000 15,255 207,700 154,600 653,024 58,000 165,000 351,763 200,300 68,000 65,000	$ \begin{array}{r} .10\\19\\ .90\\10\\ .75\\ .30\\50\\ 1.20\\ .30\\ .94\\ 3.00\\ .59\\ .80\\ .40\\ 2.00\\ 0\\ .69\\ \end{array} $	$\begin{array}{r} .20\\25\\ .50\\30\\ 1.30\\ .45\\ .40\\60\\ 1.20\\ .80\\ 1.40\\ 3.20\\ .55\\ 1.00\\ .40\\ 4.00\\ 0\\ 1.03\end{array}$.83 2.33 .70 1.70 .28 .61 .76 2.83 1.00 .32 .11 .01 .38 .20 .06 .33 .49

Demand-Price-Trade Model Initial Conditions

Notes and Sources:

(1) Stock level, defined as carry-in as of November 1, 1969 (beginning of Rice Year 1970), including stocks held in farm and urban households, in customs clearance and by the government; it does not include stocks held in private market channels. The model currently considers stocks only for rice, barley and wheat.

Source: MAF Food Bureau, Grain Statistics.

- (2) Exponential average of recent producer prices (in 1970 constant won/MT), initialized as 1969 producer prices inflated to 1970 prices by the all-cities consumer price index for 1969 of .862 (1970 = 1.000).
 - Source: Crops, milk and fish--value of production divided by quantity produced, MAF, <u>Yearbook of Agriculture and</u> <u>Forestry Statistics</u>; other livestock products--surveyed prices received by farmers, NACF, <u>Monthly Review</u>.

Table E.1 (continued)

(3) Initial values of farm (ELISVR) and nonfarm (ELISAV) income elasticities.

Source: Based on cross-section analyses by Alan R. Thodey et al. ("Demand Relationships for Food in Korea, 1965-1974," KASS Special Report 12, 1976) and then adjusted in tuning the model to track the 1970-74 period.

(4) Farm per capita consumption as a proportion of nonfarm per capita consumption.

Source: Alan R. Thodey, "Food and Nutrition in Korea, 1965-1974," KASS Special Report 11, December 1975.

(5) The residual food commodity includes edible offal from doemstic meat production; and sugar, tea/coffee/cocoa, animal fat and vegetable oil, which are largely imported.

Demand-Price-Trade Model Empirical Time Series¹

Variable	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
VCPI ² VFPIX ³ VCP ⁴ VWOND ⁵ VEINCM ⁶ VEFRMY ⁷ VPCUFD ⁸ VFI ⁹ VUI10 <u>Commodities</u>	$ \begin{array}{r} 1.000\\ 1.000\\ 304.5\\ 65,584\\ 35,096\\ .436\\ 42,075\\ 80,551 \end{array} $	1.135 1.011 .967 316.7 68,468 36,944 .443 52,801 79,948	1.268 1.012 .963 373.3 67,956 42,770 .440 58,247 85,136	1.308 .981 .983 398.9 72,365 45,090 .442 62,852 83,881	1.626 .857 .972 399.0 70,832 47,320 .461 71,699 87,382	2.037 .856 .918 484.0 74,275 54,317 .465 74,355				
1. Rice VPRICE VCPUI2 VPSUP13 VCSTK14 VDFC15 VPW116 VPW17	74,689 79,125 .1258 237,000 541,000 190 146	82,289 87,775 .1354 69,000 907,000 131 101	95,639 102,318 .1206 219,000 584,000 131 101	97,111 99,388 .1166 98,000 437,000 191 147	112,914 102,168 .1241 -223,000 206,000 263 202	113,989 114,629 .1155 504,000 481,000 198 152				
2. Barley V°RICE VCPU VPSUP VCSTK VDFC VPWI VPWX	40,610 48,758 .0383 94,000 0 58 45	49,636 55,622 .0404 -134,000 0 56 43	56,800 59,174 .0433 137,000 254,000 53 41	56,758 59,963 .0451 53,000 350,000 83 64	57,622 51,773 .0451 -84,000 299,000 105 81	64,950 55,894 .0418 367,000 354,000 97 75				

١	/ariable	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
3.	Wheat VPRICE VCPU VPSUP VCSTK VDFC WPWI VPWX	23,939 30,415 .0398 52,000 1,254,000 54 45	25,899 29,202 .0509 -100,000 1,532,000 63 53	29,912 29,728 .0565 -22,000 1,881,000 55 46	31,669 33,341 .0567 -151,000 1,835,000 108 90	38,992 41,014 .0401 174,000 1,592,000 138 115	40,027 41,924 .0466 31,000 1,703,000 95 79				
4.	O. Grain VFRICE VCPU VPSUP VDFC VPWI VPWX	33,375 60,330 .0040 279,000 72 60	40,263 66,554 .0035 378,000 65 54	41,883 86,461 .0036 460,000 48 40	45,730 90,309 .0047 575,000 57 48	49,295 95,720 .0067 569,000 93 78	48,884 88,403 .0038 554,293 79 . 66				
5.	Fruit VPRICE VCPU VPSUP VDFC VPWI VPWX	54,052 133,934 .0118 1,000 294 245	60,739 147,189 .0112 5,000 268 223	57,113 128,161 .0131 1,000 519 433	£3,875 147,734 .0115 -1,000 359 299	68,605 134,646 .0152 4,000 202 168	75,582 139,391 .0164 -932 238 198				
6.	Pulses VPRICE VCPU VESUP VDFC VPWI VPWX	82,634 98,676 .0086 36,000 117 98	74,159 96,621 .0079 61,000 128 107	79,079 101,984 .0072 31,000 109 91	89,060 107,310 .0075 73,000 174 145	90,041 109,726 .0079 66,000 176 147	88,964 112,145 .0096 56,450 129 108				

Table E.2--continued

Vi	ariable	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
7.	Vegetables VPRICE VCPU VPSUP VDFC VPWI VPWX	44,115 59,777 .0663 5,000 1,601 1,334	44,722 61,616 .0749 -4,000 1,106 992	35,204 45,662 .0686 -8,000 1,367 1,139	36,287 45,218 .0644 -22,000 1,316 1,097	37,474 44,050 .0720 -27,000 775 646	44,635 60,421 .0693 -27,888 680 567				
8.	Potatoes VPRICE VCUP VPSUP VDFC VPWI VPWX	15,079 39,667 .0547 4,000 98 82	18,134 36,652 .0560 1,000 121 101	19,333 44,111 .0519 0 184 153	23,860 40,571 .0421 6,000 54 45	29,277 44,568 .0368 63,000 66 55	25,041 45,296 .0578 68,681 50 42				
9.	Tobacco VPRICE VCPU VPSUP VDFC VPWI VPWX	205,001 1,201,345 .0009 -27,400 868 723	242,291 1,058,454 .0010 -20,900 1,049 874	344,639 947,433 .0014 -9,300 946 788	360,856 821,103 .0023 -27,600 913 761	353,010 650,913 .0015 -54,000 839 699	285,715 643,430 .0012 -61,717 884 737				
11.	Silk VPRICE VCPU VPSUP VDFC VPWI VPWX	449,099 - -2,126 20,688 17,240	504,491 -0 -2,319 18,137 15,114	568,244 0 -3,244 15,871 13,226	943,110 0 -3,743 19,408 16,173	849,692 - -2,528 19,402 16,168	678,252 - -703 11,556 9,630		- -		

~_`

.

١	/ariable	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
12.	Ind. Crops VPRICE VCPU VPSUP VDFC VPWI VPWX VPICF ¹⁸	146,898 356,667 .0013 -200 883 736 .576	148,522 455,213 .0013 2,200 473 394 .688	176,244 416,666 .0016 -1,900 939 783 .634	349,335 415,392 .0016 14,500 312 260 .631	204,025 397,704 .0014 8,700 384 320 .728	207,580 555,846 .0022 -235 935 779 .539				
13.	Beef VPRICE VCPU VPSUP VDFC VPWI VPWX	659,575 788,333 .0012 600 1,128 940	715,122 829,662 .0012 600 1,126 938	862,390 862,250 .0012 200 1,278 1,065	911,580 875,382 .0013 600 462 385	793,192 825,133 .0015 0 2,503 2,086	678,218 783,833 .0020 -3 1,846 1,538				
14.	Milk VPRICE VCPU VPSUP VDFC VPWI VPWX	54,987 109,301 .0031 54,400 1,035 863	52,869 104,590 .0024 18,900 581 484	50,473 112,912 .0040 60,400 416 347	57,330 110,714 .0032 8,700 510 425	52,375 122,605 .0039 14,600 74 62	54,001 147,275 .0047 10,441 601 501				
15.	Pork VPRICE VCUP VPSUP VDFC VPWI VPWX	261,115 396,567 .0025 -100 943 786	281,650 455,213 .0024 -100 1,312 1,093	228,525 412,723 .0025 -4,200 1,280 1,067	313,720 447,208 .0025 -1,900 1,888 1,573	291,323 438,704 .0026 -3,700 1,636 1,363	342,642 535,101 .0027 -8,053 1,514 1,262				

Table E.2-- continued

Variable	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
16. Chicken						1				
VPRICE VCPU	366,070	354,943	298,557	338,853	391,851	431,132				
VPSUP	263,000	266,960	259,464	292,049	325,953	309,769				
VDFC	.0014	.0015	.0016	.0015	.0015	.0015				
VPWI		0	0	0	0	0				
VPWX		_	-	- 1	-	-				
		-	-	-	-	-				
l7. Eggs										
VPRICE	216,364	189,027	170,634	207,117	230,347	240,933				
VCUP	286,000	236,123	217,666	246,177	265,683	265,096	1			
VPSUP	.0041	.0041	.0044	.0039	.0043	.0044		1		
VDFC	-1,500	-600	-1,300	-1,200	0	0				
VPWI VPWX	-	-	-	-	-	-			ļ	
ALMY		-	-	-	-	-				
8. Fish									1	
VPRICE	70,190	72,256	63,547	94 000	CO 000		1 1			
VCUP	257,100	271,366	244,326	84,898 270,466	62,898	72,654				
VPSUP	.0220	.0249	.0300	.0360	259,156	257,857				
VDFC	-181,000		-248,000		-407,000	-546,439		ļ		
VPWI	550	576	544	625	472	430			1	
VPWX	458	480	453	521	393	358				
9. Residual ¹⁹									1	
VPRICE	60 412	100 570	F7 010			}				
VCUP	68,413 92,357	109,570	57,012	50,425	68,472	70,000				
VPSUP	.0121	147,920 .0070	76,966 .0127	68,075	92,437	95,000			1	
VDFC	374,812	207,216	406,862	.0166 550,908	.0155	.0135				
VPWI	115	108	120	143	517,6£5	445,525		1		
VPWX	96	90	100	143	222 185	227 189			1	

•

Notes and Sources:

- 1. These are recorded data used by DEMAND for the tracking period in the model. Each year, as new data become available, they will be added to the table and to the DATA statements in the computer program of KASM.
- VCPI = all-cities, all-commodities consumer price index. Located in BLOCKDATA DKXD. Source: EPB, Results of Annual Price Survey.
- 3. VFPIX = ratio of VCPI to index of prices paid by farmers for household goods. Located in BLOCKDATA DEMDAT. Source: VCPI and NACF, Monthly Review.
- 4. VCP = all-cities consumer price index of all commodities except food and tobacco, defiated by VCPI. Located in BLOCKDATA NDXD. Source: VCPI and EPB, <u>Results of Annual Price Survey</u>.
- 5. VWOND = won-dollar exchange rate, won/dollar. Located in BLOCKDATA NDXD. Source: BOK, Economic Statistics Yearbook.
- VEINCM = total nonfarm household consumption expenditure, won/person-year, deflated by VCPI. Located in BLOCKDATA DEMDAT. Source: VCPI and EPB, Annual Report on the Family Income and Expenditure Survey.
- 7. VEFRMY = total farm hosuehold consumption expenditure, won/person-year, deflated by VCPI. Located in BLOCKDATA DEMDAT. Source: VCPI and MAF, <u>Report on the Results of Farm</u> Household Economy Survey.
- 8. VPCUFD = food and tobacco proportion of nonfarm consumption expenditures. Located in BLOCKDATA DEMDAT. Source: EPB, <u>Annual Report on the Family Income</u> and Expenditure Survey.
- 9. VFI = farm household disposable income won/person-year, deflated by VCPI. Located in BLOCKDATA NDXD. Source: VCPI and MAF, <u>Report on the Results of Farm Household Economy Survey.</u>
- 10. VUI = nonfarm household disposable income, won/person-year, deflated by VCPI. Located in BLOCKDATA NDXD. Source: VEINCM at t + 1 divided by an assumed average propensity to consume of .85.

VPRICE = annual average producer price, won/MT, deflated by VPI Located in BLOCKDATA DKXD. Source: VCPI and for
<pre>crops: value of production/quantity produced; MAF, Yearbook of Agriculture Statistics. beef: prices received by farmers; females weighted .5 and males weighted .5; meat</pre>
pork: prices received by farmers; meat content of 52 kg/head; NACF, <u>Monthly Review</u> . chicken: prices received by farmers; hens and roosters both weighted .5; meat content of 1.4 kg/head; NACF, <u>Monthly Review</u> . eggs: prices received by farmers; 55 grams/egg; NACF, <u>Monthly Review</u> .
fish and seaweed: value of total catch/total catch; Office of Fisheries, Yearbook of Fisheries Statistics.
VCPU = annual average consumer price, won/MT, deflated by VCPI. Located in BLOCKDATA DEMDAT. Source: VCPI and Seoul retail prices from EPB, unpublished; commodities included are other
fruit: 1970-1972 weighted by 1970 quantities produced: apple (.52), pear (.14), peach (.19), grape (.08), persimmon (.07). Since 1973 weighted by 1973 quantities produced: apple (.53), pear (.10), peach (.16), grape (.10), persimmon (.06), orange (.05). pulses: weighted by 1970 quantities consumed: soybeans (.85), red beans (.08), green
beans (.07). vegetables: weighted by 1973 quantities produced: radish (.31), Chinese cabbage (.31), cabbage (.02), Welsh onion (.03), onion (.04), spinach (.01), cucumber (.04), pumpkin (.05), tomato (.02), red pepper (.03), garlic (.04), sweet melon (.04), watermelon (.06).
potatoes: weighted by 1970 quantities consumed: white potatoes (.25), sweet potatoes (.75). tobacco: using 1970 Seoul price and published all-cities price index for cigarettes. silk: no price is given; it is not a food commodity. industrial crops: sesame. milk: fresh milk.
fish and seaweed: using 1970 Seoul price and published all-cities price indices for fresh fish, dried and pickled fish, and seaweed.

- 13. VPSUP = national average per capita consumption, MT/person-year. Located in BLOCKDATA DEMDAT. Source: derived as a residual from food balance sheet analyses considering domestic production,
 - imports and exports, farm and marketing losses, stock changes, seed and feed use, and industrial consumption.
- 14. VCSTK = stock change for rice, barley and wheat, MT/year. Located in BLOCKDATA DEMDAT. Source: carry-out minus carry-in on a rice-year basis (November 1 to October 31) considering stocks held on farms, in urban households, by the government and at ports awaiting customs clearance.
 - but not including stocks held in private market channels; MAF Food Bureau, Grain Statistics.
- 15. VDFC = net imports (imports minus exports), MT/year. Located in BLOCKDATA DKXD.
 - Source: for rice, barley and wheat, imports based on port arrivals; MAF, Food Bureau, <u>Grain Statistics</u>. for fish, Office of Fisheries, <u>Yearbook of Fisheries Statistics</u>. for other commodities, imports based on customs clearance; Bureau of Customs Administration, Statistical Yearbook of Foreign Trade.
- 16. VPWI = annual average import price for commodities primarily imported, \$/MT, deflated by VCPI. For other commodities, a 20% spread is assumed between import and export prices (30% for rice and barley).

Located in BLOCKDATA DEMDAT.

- Source: VCPI and value of imports/quantity imported, Bureau of Customs Administration, <u>Statistical</u> <u>Yearbook of Foreign Trade</u>.
- 17. V^cWX = annual average export price for commodities primarily exported, \$/MT, deflated by VCPI. For other commodities, a 20% spread is assumed between import and export prices. Located in BLOCKDATA DEMDAT.
 - Source: VCPI and value of exports/quantity exported; Bureau of Customs Administration. <u>Statistical</u> <u>Yearbook of Foreign Trade</u>; and Office of Fisheries, <u>Yearbook of Fisheries Statistics</u>.

- VPICF = edible proportion of industrial crops. Located in BLOCKDATA DEMDAT. Source: MAF, <u>Yearbook of Agriculture Statistics</u>.
- 19. The residual food commodity includes edible offal from domestic meat production; and sugar, tea/ coffee/cocoa, animal fat and begetable oil, which are largely imported.

Demand-Price-Trade Model System Parameter.

	ELASP ¹	ELASPR ²	PCCONT ³ (PCUT1)	PCRT ⁴ (PCRT1)	мм ⁵	CALPU ⁶	PROTPU ⁷	PILOSS ⁸	PFU ⁹	w ¹⁰
1. Rice	3	4	.150	.130	.02	3460	.067	.006	.986	169.7
2. Barley	2	2	.030	.050	.06	3380	.094	.006	.921	15.2
3. Wheat	7	4	.055	.045	.10	2730	.066	.006	.028	23.5
4. Other grain	6	6	.002	.004	.96	3620	.092	.006	1.000	.3
5. Fruit	85	35	.040	.030	1.28	740	.004	. 100	.927	15.5
6. Fulses	75	4	.018	.012	.24	3820	.362	.006	.290	13.5
7. Vegetables	1	1	.110	.100	.29	330	.015	. 150	.962	82.7
8. Potatoes	4	7	.020	.050	1.03	950	.016	0	.924	6.8
9. Tobacco	5	2	.0025	.0025	2.36	0	0	0	0	54.6
12. Ind. crops	-1.1	5	.004	.003	1.20	5260	.098	.005	0	8.5
13. Beef	-1.4	-1.8	.005	.002	.07	2660	.180	.020	0	25.5
14. Milk	-1.5	-1.5	.035	.007	1.09	590	.029	.006	.227	3.9
15. Pork	-1.0	5	.010	.005	.57	4820	.112	.020	0	12.0
16. Chicken	-1.2	8	.005	.0025	19	700	.126	.020	0	6.5
17. Eggs 18. Fish	3	4	.015	.005	.24	1420	.113	.020	1.000	10.9
19. Residual	2 0	3	.070	.040	2.71	480	.073	.050	.702	49.6
20. Nonfood	4	0	. 303	.015	. 35	2190	.088	.030	.424	7.2
20. NUITUUU	4	-	-	-	-	-	-	-	-	494.1

Table E.3--continued

Notes and Sources:

- 1. Nonfarm direct-price elasticities.
 - Source: Time-series regressions produced few usable results (Alan R. Thodey et al., "Demand Relationships for Food in Korea, 1965-1974," KASS Special Report 12, 1976). Mostly based on discussions with knowledgeable puople in MAF, NAERI and universities, and adjusted in tuning the model to track consumptions over the 1970-1974 period.
- 2. Farm direct-price elasticities. Source: See note 1 above.
- Nonfarm consumption targets (MT/person-year). For rice, the target changes, beginning in 1980, from PCCONT to PCUT1 over a 20-year period. Source: Alan R. Thodey, "Food and Nutrition in Korea, 1965-1974," KASS Special Report 11, December 1975.
- 4. Farm consumption targets (MT/person-year). For rice, see note 3 above. Source: Alan R. Thodey, <u>op.</u> cit.
- 5. Marketing margins (proportion). Five-year averages of 1970-1974 values (the ratio of consumer to producer prices, Table E.2) are used as constants in the model. Marketing margins must be interpreted with care; they are a poor representation of the pricing behavior of the complex dynamic and speculative marketing system. Some of the factors causing exceptionally large, small or even negative margins in any year (see Table E.2) are:
 - a) Time lags

Rice is an example of a crop produced in one year but largely consumed in the next. A better margin to consider might be consumer price in time t relative to producer price in t-1.

b) Government intervention

In the case of barley, small or negative margins are the result of the government's dual price policy, where the government sells barley at prices lower than the purchase price plus storage and handling costs. This is also true to a lesser extent for rice.

Table E.3--continued

c) Commodity definitions

Perhaps the biggest problem interpreting margins is due to commodity definitions and weights which differ for producers and consumers. For crops, all commodities produced in a given crop category (e.g., fruits, vegetables) are included in value of production to get producer prices. Only commodities consumed, however, are included in the average price of a category. Major differences arise, then, in fruits where imported fruits are included in consumption, and in industrial crops where only a fraction of industrial crop production is edible.

d) Location

Consumer prices are based on retail prices for Seoul, while producer prices are national averages.

e) Chicken

It is not clear why there appears to be an inconsistency between producer and consumer prices for chicken meat. It could be a problem of converting national average of farm prices for live hens and roosters as surveyed by NACF to Seoul retail prices of chicken meat surveyed by EPB.

- 6. Calorie content of food (Kcal/kg). Source: Alan R. Thodey, <u>op. cit</u>.
- 7. Protein content of food (proportior). Source: Alan R. Thodey, <u>op. cit</u>.
- 8. Losses on imports (proportion). Source: Alan R. Thodey, op. cit.
- 9. Proportion of food consumed unprocessed. Source: Figures shown are for urban consumers, derived from EPB, <u>Annual Report on the Family Income</u> and <u>Expenditure Survey</u>. The same values are assumed for farm consumers for lack of further information.
- 10. Price index weights (total = 1000.0). Source: EPB, <u>Results of Annual Price Survey</u>.

Demand-Price-Trade Model Substitution Proportions

A. Grains

IGRAIN ¹	Rice	Barley	Wheat	Other <u>Grain</u>	Potatoes
PSUBTG ²	1	2	3	4	8
Farm Nonfarm PSUBCG ³	.95 .95	.95 .95	.70 .70	.90 .90	.50 .33
Farm Rice				1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	· · ·
Barley Wheat	- .65 .25	.55 - .35	.55 .10	.55	.15 .35
Other grain Potatoes	.05	.05 .05	- .35 0	.30	.50 0
Nonfarm Rice				.05	•
Barley Wheat	- .65 .30	.55 - .45	.55	.50 .15	.15 .45
Other grain Potatoes	.05	.45 0	- .35 0	.30	.40 0
PCONVG ⁴	1.00	1.00	.80	.05 1.00	.27

B. Meats

IMEAT ¹ PSUBTM ²	Beef 13	Pork 15	<u>Chicken</u> 16	<u>Fish</u> 18
Farm Nonfarm PSUBCM3	.95 .95	.95 .95	.50 .50	.33 .33
Farm Beef Pork Chicken	- .50 .25	. 30 _ . 30	.25	.20
Fish Nonfarm	.25	.40	.25	.20
Beef Pork Chicken	- .45 .20	. 30 - . 20	. 30 . 40	.30
Fish	.35	.50	.30	.20 -

Table E.4--continued

- 1. Commodity subscript indicator.
- 2. Total substitution proportions, i.e., the proportion of the change in consumption of a commodity, due to a price change in that commodity alone, which is made up with substitute commodities.
 - Source: Discussions with knowledgeable people in MAF and NAERI; adjusted in tuning the model to track consumption over the 1970-1974 period.
- 3. Commodity substitution proportions, i.e., allocates total substitutions to specific commodities.

Source: See note 2 above.

4. Conversion ratios for grains. Essentially converts wheat to flour and potatoes to grain equivalents.

Demand-Price-Trade Model Miscellaneous System Parameters

Variable	Value	Variable	Value
APCFD ¹ APCN2 DELP3 YDEL4	.80 .85 2.0 2.0	PWHTIC ⁵ PLOSTD6 PCMIN7	.05 .107 .80

Note: and Sources:

. .

- Average propensity to consume, farm. Lncated in BLOCKDATA DKXD. Source: An average of 1970-1975 values from MAF, <u>Report on the Results</u> of Farm Household Economy Survey.
- Average propensity to consume, nonfarm.
 Source: Guesstimate based on indications from EPB, <u>Annual Report on</u> the Family Income and Expenditure Survey.
- 3. Mean lag time used for exponentially averaging producer prices (years). Source: Guesstimate.
- Mean lag time used for exponentially averaging income (years). Source: Guesstimate.
- Industrial consumption of wheat as a proportion of domesticallyproduced wheat available for both human and industrial consumption. Source: Alan R. Thodey, "Food and Nutrition in Korea, 1965-1974," KASS Special Report 11, December 1975.
- Loss in tobacco in converting from tobacco as produced to tabacco as consumed (proportion). Source: Alan R. Thodey, <u>op. cit</u>.
- Minimum farm nonfood consumption expenditures as a proportion of initial such expenditures. Source: Guesstimate.

Projections of Export and Import Prices for Korean Commu 'ities¹

Commodity	<u>1975</u> 2	<u>1976</u> ³	<u>1981</u> ³	<u>1986+</u> ³
1. Rice Export Import	152.00 198.00	174.10 226.33	100.02 130.02	100.02 130.02
2. Barley Export Import	75.00 97.00	44.62 58.01	48.17 62.62	48.17 62.62
3. Wheat Export Import	79.00 95.00	69.94 83.92	69.07 82.88	69.07 82.88
4. Other grain Export Import	66.00 79.00	74.22 89.07	55.22 66.27	55.22 66.27
5. Fruit Export Import	198.00 238.00	270.42 324.50	256.90 308.28	256.90 308.28
6. Pulses Export Import	108.00 129.00	117.06 140.47	106.54 127.85	115.82 138.98
7. Vegetables Export Import	576.00 680.00	570.00 680.00	570.00 680.00	570.00 680.00
8. Potatoes Export Import	42.00 50.00	58.33 70.00	58.33 70.00	58.33 70.00
9. Tobacco Export Import	737.00 884.00	706.37 847.64	754.59 905.51	757.99 909.58
11. Silk Export Import	9,630.00 11,556.00	10,000.00 10,000.00	10,000.00 10,000.00	10,000.00 10,000.00
12. Ind. crops Export Import	779.00 935.00	258.63 310.36	151.57 181.88	165.10 198.12

Commodity	<u>1975</u> ²	<u>1976</u> ³	<u>1981</u> ³	<u> 1986+</u> 3
13. Beef	1			
Export Import	1,538.00 1,846.00	2,007.56 2,409.07	2,344.58 2,813.50	2,600.09 3,120.11
14. Milk				
Export Import	501.00 601.00	416.67 500.00	416.67 500.00	416.67 500.00
15. Pork				
Export Import	1,262.00 1,514.00	1,312.26 1,574.71	1,532.56 1,839.08	1,699.58 2,039.49
16. Chicken				
Export	-	-	-	_ .
Import	-	-	-	_
17. Eggs				
Export	· –	-	-	••••••
Import	-	-	-	-
18. Fish & seaweed				
Export	358.00	351.90	442.67	479.98
Import	430.00	422.28	531.21	575.97
19. Residual ⁴				
Export	189.00	189.00	189.00	189.00
Import	227.00	227.00	227.00	227.00

Notes and Sources:

- 1. All prices are in 1970 constant \$/MT. Export prices are VPWLDX and import prices are VPWLDI, set in DATA statements in BLOCKDATA DEMDAT.
- 2. Values for 1975 are actual prices from Table 5.2 with an exchange rate of W484/\$1.00.
- 3. Where possible, projections are based on percent changes (from the 1974 base) in constant dollar commodity prices projected by the IBRD, Commodities and Export Projections Division, November 1974. In all cases, a margin of 20% is assumed between export and import prices (rice and barley, 30%).

Table E.6--continued

```
Rice--IBRD
Barley--IBRD, wheat
Wheat--IBRD
Other grain--IBRD, corn
Fruit--IBRD, citrus
Pulses--IBRD, soybeans
Vegetables--assumed to remain essentially unchanged
Potatoes--assumed increasing trend continues to 1976, then
          remain unchanged
Tobacco--IBRD
Silk--assumed to remain essentially unchanged
Industrial crops (edible oils)--IBRD, peanut oil
Beef--IBRD
Milk--assumed to remain essentially at a past average
Pork--IBRD, beef
Chicken--not traded
Eggs--not traded
Fish--IBRD, fish meal
Residual--assumed to remain essentially unchanged
```

4. The residual food commodity includes edible offal from domestic meat production; and sugar, tea/coffee/cocoa, animal fat and vegetable oil, which are largely imported.

Inputs to DEMAND From Other KASM Models

Variable	Definition	Where Computed ¹
FPCI	Per capita farm disposable income (W/person-year)	FRMAC or NECDYX (if RAP not linked)
UPCI	Per capita nonfarm disposable income (W/person-year)	NECON or NECDYX (if (NECON not linked)
WOND	Foreign exchange rate (W/\$)	NECON or NECDYX (if NECON not linked)
CPUNF	Nonfood price index (1970 = 1.000)	NECON or NECDYX (if NECON not linked)
POPR	Regional farm population (persons)	POPMIG or POPKX (if POPMIG not linked)
TRPOP= POP(1)	National farm population (persons)	POPMIG or POPKX (if POPMIG not linked)
POP(2)	Nonfarm population (persons)	POPMIG or POPKX (if POPMIG not linked)
ТРОР	Total national population (persons)	POPMIG or POPKX (if POPMIG not linked)
TDSUP	Supply of domestically produced food commodities for human consumption (MT/year)	PRDAC or ignored (if RAP not linked)
PRFRMY	Regional farm disposable income as a proportion of national farm disposable income	FRMAC or ignored (if RAP not linked)

Notes:

PRDAC	 resource allocation and production model farm income accounting component of RAP production accounting component of RAP national economy model population and migration model
-------	---

BIBLIOGRAPHIC REFERENCES

- [1] Carroll, Tom W., and Sloboda, John E. <u>Population and Migration</u> <u>Model of KASM3: Technical Documentation</u>. KASS Special Report 14. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.
- [2] Abkin, Michael H.; Ingvaldson, Gary R.; Carroll, Tom W.; de Haen, Hartwig; and Lee, Jeung-Han. Korean Agricultural Sector Model, Version KASM3: Introduction to Technical Documentation. KASS Special Report 13. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.
- [3] Lee, Jeung-Han. Crop Technology Change Model of KASM3: Technical Documentation. KASS Special Report 15. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.
- [4] de Haen, Hartwig. Farm Resource Allocation and Production Accounting Model of KASM3: Technical Documentation. KASS Special Report 16. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.
- [5] Abkin, Michael H. National Economy Model of KASM3: Technical Documentation. KASS Special Report 18. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.
- [6] Thodey, Alan R. Food and Nutrition in Korea, 1965-74. KASS Special Report 11. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, n.d. (circa 1976).
- [7] Thodey, Alan R.; Kim, Chul Ho; and Han, Won Hee. <u>Demand Relationships</u> for Food in Korea, 1965-1974. KASS Special Report 12. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, June, 1977.

- [8] Rossmiller, George E., ed. <u>A Systems Approach to Agricultural</u> <u>Sector Development Decision-Making: Building and Insti-</u> <u>tutionalizing an Investigative Capacity</u>. State-of-the-Art Series, International Institute for Applied Systems Analysis, Laxenburg, Austria (forthcoming).
- [9] Teigen, Lloyd D. "The Annual Price Determination Mechanism." KASS Working Paper 74-2. Seoul: National Agricultural Economics Research Institute; and East Lansing: Department of Agricultural Economics, Michigan State University, July, 1974.