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BSTRACT
 

As ishown by Manne and Vietorisz (19b3) investment planning 

problems involving economies of scale and/or indivisibilities 

are conviently stated as zero-one mixed integer programning. 

This paper presents the results of experimentation by. 

Martin Weitzman, Ronald Davis, and the author on, the developmen

of an efficient branch and bound algorithm for the solution of'. 

zero-one mixed integer programming.problems. Two classes'of j 

algorithms (which are by no means mutually exclusive) are' 

discussed- (1) those for finding optimum solutions and 

(2) those for finding "good" solutions. The latter class:,of
 

algorithms are included in the discussion since it is frequently
 

prohibitively expensive to find the optimum solution to such
 

problems and the formulator of the problem is content to have 
a solution which is with a known percentage of the optimum. 

Algorithms.of -the first class which are discussed-'are 

(1) :iealy (i964), (2) Driebeek (1966) and i(3) Davisi,;Kendrick
 

and Weitzman (1967). Withiin the-second class two subgroups of'
 

.algorithms are discussed; :,those which provide upper bounds on
 

minimization problems, E(l) Round -off soluotins, (2), "Driebeek"' 

round-off solutions, and (3) Kendrick-Weitzman solutions;.and 

those.,Which provide lower bounds, Nea1 :s o"
 I 
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1. Introduc tornl,-

As: shown by Vietorisz and Manne (1963) investment planning
 

problems livolving economics of scale or indiviibilities are con.
 
-


veniently stated as- zero-one'_ mixed integer programmingiprobms. 

Inwork reported on elsewhere the. author .(1967) developed a 

modelfor"analyzing investment'plans for additions to capacity in
 

a -syster of plants. This study'was motivated by an interest in 

the.problem of how to plan for complementary capacity expansion
 

within a free trade area like the Latin-American free trade area.
 

In order to include the economies of scale and indivisibilities
 

that-are inherently a part of most heavy industries I found that
 

it was,necessary to-specify the model as ,a zero-one integer pro

graning model_ Then I'found rthat the .existing algorithms and 

Ths rgesearch has been supported.in part by the National Science 

Foundation under Grant GS1415 and in part by the Agencyfor: Inter
:national Development undera grant to-the Project for Quantitative
 

Research in Economic Development of Harvard University..
 

A zero-one mixed integer programming problem is a linear
programming problem in which a subset of the variables. are 
constrained to take on only the values zero or one.. 

Cf. Markowitz and Manne (1957). If the problem can be.specified
 
in the form of a fixed charge transportation type problem it can.
 
be solved efficiently with the Effroymson and Ray (1966) 'algorithm
 

or perhaps more efficiently still by an algorithm currently under
 

development by Graciano Sa (1967).. Our concern, however,ii,is'with
 

multi-product problems and others that donot seem to .perrmit 
specification in the transportation problem form.
 

Manne (1966) has developed a rather different and cornputation
ally more efficient approach to investment planning in industries 
where the plants are sufficiently numerous so that patterns. -of 
additions to capacity,may be repeated in time and space, 

http:supported.in
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computer programs for solving this 
class of problem limited sharply 

the n.rber of investment alternatives that could be considered .at, 

begarl work-along with Martin Weitzman and 
one; time.' Thus' I 

later with Ronald Davis as well on the development of more 
effi-1 

any .

cient algorithms and programs.:,,,
 

rather
 
This paper sketches' the algorithms themselves with a 

and reports in detail on our comparative 
experience

broad brush, 

of different approaches to the solution of this wit anumber 

class''of problems. 

matter how efficient out
 In particular ,wehave found that no 

are too large
algorithms, we continue to encounter problems 

that., 

to permit us to'.obtain the optimum solution with a 
reasonable 

amount of computation., Therefore, in.addition to our work on 

algorithms designed specifically to find 
the optimum solution,
 

find "good" solualso worked :'on algoritms designed to 
we have 


large problems,within.relative short periods of
tions to 


computation and to obtainupper and lower.'boundswhich'u,,
 
for
 

upper,-limit on the ,separation'between"
the objective valuie 


an 
the good.solution and the optimum solution.
 

Section 2 'discusses our experience with algorithms for
 

finding optimum solutions and:Section 
3,that with algorithms
 

for finding:god solutions.
 

Kendrick,and Weitzman (1966) andDavis, Kendrick and
See 

Weitzman (1967)for'descriptions 
of the algorithms developed.,
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. Exp erienice vldthAlgo~rithms 'for Fin i q theptium Solution 

Zero-one mixed integer programming problems are written in 

the' follo2wing form,, 

(1) minimize z = 0(x,y) = c x d'y 

subject to
 

'A 9.b-I' , 

(3) x i
 

(4), ' ly;'a o. 

where x is an n vector and y an m vector.
 

We call, the.;solutionp(x,Y).to the 'problem (1) (4),the 
"unconstrained" ,solution since theI zero-one constra'ints(5) are
 

notli active.,, Sincethe problem (l)-(4) tcontains a subst'fthe 
constraints of the: problem'(),(5) and -,!is otherwise.identical, A
 

the solution. cp(7) provides a lower bound on the solution to 
the,problem (l)-(5). ,We call the lower bound
 

An upper bound on the solution- to (1)-(SY can be obtained 

by setting x to any combinations of zeros and ones, x, and 

solving the resulting problem cp(,y) to obtain an upper bound 

I,So:we can immediately obtain upper and 'lower, bounds c~ 
and p'-on the optimumr solution. cp*, i.e, 

(6)A 
C p S P : A 

http:the.;solutionp(x,Y).to


The three, algorkithms, discussed here-are 'directed toward. 

tighte~ig the upper,*,or lower bound on cp= (x*,*y*). . The-Healy 

algcrithm iuses a.type. of lower~bounds that.. are more powerful 

tha, cpc3,v : and. attempts, to. progressively tighten these bourds 

until-cP'i,.obtained, The Driebeek algorit'hm uses the-loweris 

bound Vc,7.)F and an. upper .bound U to narrow an enumeration type 

of search for the: global ;optimum. The DKWalgorithm makes use ,2 

of both the .ealy type lower bounds and the Driebeek upper bound 

to narrow a ,,branch and bound type search for the,global optimum.-

Boththe Healy and Driebeek bounds make use of gradient; 

information, This gradient information enables one to compute: 

a lower bound on the increased cp which would result from commit

ting any x to zero or one. (Note that these lower bounds are 

specific to, a particular variablewhereas the previous -bounds.. 
.0 

discussed were specificto the entire problem.) Let q. be the 

lower'bound on C that would .result.from :ommitting integer 

variable i to zero and qi:be the corresponding lower bound 
for, committing the ith integer variable to one. 

2.1,_The Healy Algorithm . 

The Healy algorithm employs n additional.constraints4 

of the form -

1 0.
(7) .q+ (lx.) q.. all i, 

A series of linear programming problems of (1)-4),-' (7) arie 

solved with. the q. and q. recalculated after each problem"to 

progressively ,- tighten.;the 'constraints: (7)-. An.,ef f ective low.er, 

bobindcp.' On the problem: is~> 9
L
 

(8 i1 9 L.T max Cmin q., q i. 

Davis . Weitzman algorithm 
Vsee Healy 1964 or Dreibeek (1966) 



,
The problen is--solved when:xi:'= 0 or l for,,al iior.when all the
 

x.;approach to, within.a,specified. distance fom-zero or one..
 

-
The expMerience of M. Weitzm'n and myself wIth a variant of 

th~agoi~mwic w p~g~nned,for the IBM 7094, was that -

we had :difficulties with roud-off errors'and Other numerical prob

3ems, ar~d with the .loss of driving'force" which'!Iealy alludes to. 

We empl6oyed a sys tem of periodically omitting variables to 

ine~r4eeisradten releasing them)' in order-toabrogate 
the di iculties f the "',loss of driving'force" problem. With
 

this procedure we .were able .to solve a,number of problems ,but
 

,were stcpped short of the solution .on a number of others.
 

Since :Pseems '.to increase rapidly from = cp(3,V).toward 'cp*
 

- uses of the Healy constraints and then to 
I 

with the first few 


slowdown , we found this algorithm usefui fIor" narrowing the
 

inequality ..
 

2.2 The Driebeek Algorithm
 

The Driebeek algorithm begins by: solving: theuncon

strained problem.:to obtain q and.the q. and sq. that correspond 

to this solution. Then each x. is set to zero 'or 'one. 
1
 

according to the rule,
 

0 if q.~q 

3. if q'?> 1i 

The".problem is"then solved'again with the--integer'variables
 

committed to these values. We call this solution th'e "Driebeek

round" solution and denote the value of the objective function
 

at this solution as CPD. CPD then'provides anupper..bound on cp*..
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.since any.othermr soiut'cn obtained must..b. le, thani:r,
 

2
ifif.it is -to be Che.optimal solution.,.
D
 

Driebeek uses cpD to'apply the following bounding rule
 

x.=O i > cp 

- 0
 
if, qi>q,. 

rhat is,the optimal value of any x. is known if the lower bound.:
 

Dn the value of the objective function implied by committing it

to ione or the other. integer,level is above the 'mixed integer 

30lution obtained 

With some of the variablesthus bounded-out, a complete
 

enumeration is made of,,,the remaining lattice poi.ts.
 

.
2.3- The DKW.(Davis-Kendrick-Weltzman) Algorithm, 


'The DKW,algorithm also begins by "solving the unconstrained
 

problem to cbtain ?. Thenthe Driebeek-round solution D and 

the" ordinary-round solution cpR are 'obtained.>The ordinary-round 

solution is'. obtained, by 'committing each z'ero-oIne integer variabi 

to .the integer level closest to its value in the unconstrained.
solutior, R. Then the effective upper bound on cp"kis'3


"min( 'J R 

'..en a branch'and bound search fthdecision tree isegun 

Figure 1-provides a diagramatic description of this procedure for,,, 

a,.pr6b erm with four zero-one variables. The node at X represents 

.Th program also provides the-use with the option of, accom-fi., 

plishi~ng IHealy iterations until the change in cp from",one itera

tion: to.the next is less than.some arbitrarily specified constant. 

This procedureprovides a lower 'bound of"pL"t'
 



the:unconstrained solution,"and-the nodes along the line between 

node G and node H represen't the lattice*points of the solution, 
space, i.e., solutions at which all of ,the zero-onevariables are 

committed to :either zero or one. Nodes within the tree between
 

the level of node A and the level of nodes and. H repre

sent solution at which some, but not all, of the zero-one.
 

variables are committed to integer levels. The four levels in
 

the tree represent decisions to commit each of the zero-one
 
-
variables; .moving to the repres c
 

a variable to,one and moving to the left represents the decision
 

to commit a variable to zero... Thus the node B represents a

solution at which x is committed to zero and x2, x3, and x 

are free to. take on only vaJies in the interval £0, 1). Node; 'C 

represent x1 = O, x 2 and x 3, x4 

a~ A (,J,4 

'I-

Y. 

E
 

Figure l 

ATree Diagramj,
 



The DRV algorithm accomplishes a branch and bound search of
 

a tree, similar to Figure 1 except that the level of the.variables
 

x1," , x3, and x is not the, same in all branches of the tree.
 

Rather, two .decisions are made at each node. (1)whichvariable
 

to commit to zero or one among those not already.committed, and.
 

(2) whether to commit the selected variable- to zero or. to one.
 

The choice.of which variable to set depends on the magnitudes
 
of.the q.01and q,. That Variable isnset whichhas the'maximum
 
0 1' i"
 

q. or qi among the variables not already set. .If q. > q., the
 

variable is set to one and vice versa.
 

The search proceeds in this manner except that.no.branch is
 
searched 'if the qi in the direction of search is greater than . .
 

the upper bound PiU on the solution. Any time that an integer
 

solution is reached it is compared to the upper bound :and the
 

bound i?'s set' to the"lower of the two values,4 When all branches
 

have ,been.searched he problem is completed and the solution whic
 

is the current upper bound' is proven to be the optimal mixed
 

integer solution.
 

A:23Comparison .of the Driebeek and DKW Algorithm's
 

Under the.sche:.of Figure'.1 the'Driebeek algorithm 

involves thesolution of the problem at node A' and all the 

unbounded the line between nod& G and node: H. "Thus 

an enumeration: of .2n solutions at most is required. .The DKW 

algorithm, on the other hand, ,may require as-many.as" 

solutions' Cleariy the relative efficiency of the
 

two search methods will vary from.problem to problem.; on the,7 

one large problem on which we have been,.able to make the,'com-i 

parison the Driebeek algorithm required the enumeration of 13t 

Solutions, while..the DRW algorithm required 36,solutions.(see 

cdlumn' 9.of Table 1). it!may'be,.that -it will prove to be 

2 

http:sche:.of
http:choice.of
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TABLE 1
 

Computational-Experience with Algorithms -for Finding the Optimal Solution
 

- Number of Total 
 .TotalSotinTms
Problem :Problem AigO- - Integer, Number of Number of- -Matrix
Number
Name . Number rithm of' PIVOT
Variables Variables constraints Entries Minutes 
 's Iterations: STEPS 
-nu_ 

_ PIS ____iogSEP'
Kendrick - 111 I.V ./-
 ,,: i 1412 116 ' •" 1767 - - ; 2'.- .:
 
Healy 


37. - 58 
 876.
-.. ebeek 

5 *: 130" NA
 

-D. 

10. 3 36 433 653MarkoWitz 21
-Manhe 1 -33 285 .DKW. 


5. 6241 
Davias 3- 100 317
_100 I.V. 

-

197' -1261 
5.51: 
 JBl 277 

Balas 1- 4 a 
 6 5. 
 -
DKW - 1 "0. 
 3;:
3
 
Balas 2, 
 a 10 29' -22 119 
 3 

DKW.-

0.2 6Balas 


Balas 3v , 
5
 

9 25 1.99 
-, *DKW0 


.1 3 '~ 1N ABalaS 4_7 12- '34 .25 143 
DKW, 

0.4- 15, 82 
 96
B a l a s 
 . .3 9
 
IBM.Test. 8 
 -15 68 56Problem2 9 DK-- 253. 

'128 657-80 
-; LIPi1 


69,95
 

(See next page for FoAotnotes and- Notes) 



ruunores, ana.,.Notes cr,.Table I'1 

on an IBM 7094, that was re
aTh rquired ito ,Obtain the!!,. 

soptiumrixed integer sc,lution, inc !hd-igL theA'csouon toto 
unconstrained" problem. 

2 After 24 minutes.,all. but. 4 of,' the variables cculdhave !been 
bounded off 'from-'anupper b o.a nd obtained fror, oter:SOution.--s 
off the problem. Though such a. bound' is not available inthe
Healy .1gorithm-it is used hre for comparative purposes., it
is" assumed,- that .enumeratonof -the 'remaining 16 :lattice pointf s
would have required 10-minutes., The same type of adjustment is 
made for, the 'number of L ' s and i-terations. 

Driebeek s 	program was halted after enumera 100 of the
'.128 "unbounded" lattice points in 44 minutes..: Enurmeration of 

he'remaining 28 lattice points is assumed to have required

12 minutes. The same type of adjustment is made for the number
 
of .LP's and iterations.
 

Sources of.rProblems 

Problem 
 7 7. 
Number :source 

1 Kendrick (1967.) 
2 Markowitz.and Manne, .(1957).
 

SRonald 
 I E. Davis, B.A. Thesis, Committee on.Appiied. 
Mathematics, Harvard University, .1967 

4 thru 7 Balas,',E., "An Additive;,Algoritbm for Solving Linear 
Programs with Zero-.One Variables," Operations 
Research, Volume 13, #4, Problems 1 through 4. 

8 .. ,Haldi, John;,-"Twenty-Five Integer-Programming .Te
 
Problems," Working Paper #43, Graduate Schol of
 
Business, Stanford University, December 1964, Ten'
 
Problem #9. The LIP1 algorithm is reported on in
 
Haldi, John and Leonard M. Isaacson, "A Computer

Code for integer Solutions to Linear Programs,
Oiiratic'ns Research, Voltvme 13, #6, :November 3.965, 
p, 946. 
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.puzo-w Lou rn ciauses of problems on which the DKW or the 

Driebeek search is most efficient. Table 1 shcws the solution 
time, the number of linear programs, the number of iterations, 

and the number of pivot steps required with the DKW, Healy, and' 
Driebeek algorithms for a numJer of problems. 

3. Experience With Algorithms for Finding Good Solutions
 

Since many mixed integer programming problems are too large
 
to permit the determination of the optimal solution we have,,.. 
done some experimentation with a relatively quick method for 
obtaining "good" solutions to these problems. Cf. Kendrick! and 

Weitzman, (1966) -

The procedure followed is.
 

. Solve, the,unconstrained 'problem
 
0 1
2. ,Compute the. qi and qi-for all i 

3., Select from those not already committed a zero-one 

variable i* to commit,-to'zero.or one by the rule 

max (~
 
,,*j=o,1 3
 

4 Commit the chosen varlaxe%,o,,zero,*or one according 

. to,,,the r le' esaL
 
00 

if q
<
 

0 1
if q. >q.
 

and solve he. probl~em agafi
 
5 op if allthe zero-onezvariables'havebeen committed; 

otherwise, 'return to 2, .. 

The_/ algorithm also inclu'des.,a "'back-up" procedure which is,'not discussed here, wbu is'e a
hi .'in,.th

above. , . : - "" . .. ' 

http:commit,-to'zero.or


This procedure in its unadulterated:-form requires the-soluti;on 

of no mhore than n .linear programming problems -in ordertoobtain 

a mixed integer solution .to the. problem. 

Table 2 gives a comparison of the round-off solution the ;. 
Driebeek round-off solution, and the solution obtained with 

this algorithm for an eleven-integer problem. It,also gives the 
round-off and the.,.Driebeek round-off solution for several other.

problems.
 



TABLE 2
 

Computational Experience with Algorithms for Finding "Good" Solutions
 

-Problem 
Name 

jUnconstrained" 
;Problem- Objective 
Numbe : ValueV 

Optimal 
Mixed 
Integer 
Solution 

Percentage Difference Between the Optimal
Integer Solution and the "Gobd" Solution 
Round- Driebeeck :Kendrick-: 
off Round-off Weitzman 

.Kendrick 1 799.929 803.719 4.19 1.10 0.00 
11 I.V. 

(0.2) (0.2) .(3.8),, 
Markowitz "2 594,402 540.000 infeasible infeasible NA : 
-Manne 

(5.0) 
-Davis 3 . 52.054 52.608 0.80 infeasible NA 
100 I.V. 

- (5.0) (0.2) 
Balas 1 4:- 1.000 NA 0.O00- NA, 

Balas.3.:6
 

B-4 7 6.850 infeasible infeasible, NA 

(0.4) 

ITest :8 5...5333 infeasible infeasible NA.
 
Problem 9
 

_____ _ (3;3) 
-

-. Time elements in-this column are for, solution with 'the DKW algorithm.. -. 

The number-In parenthesis beneath, each element-in.the tableis the'-time_ in minutes-required on our IBM 7094 to reach the solution indicated. 

NA - Not available. 
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