AOENGY FOR INTERNATIONAL DEVELOPMENT FOR AID USE ONLY WABMINOTON, D. C. 20 B 2 s BIBLIOGRAPHIC INPUT SHEET		
1. sunject	A. PMIMAR Science and technology TC00-0000-000	
fication	D. serombartApplications	
2. TITLE AND SUETITIE Village technology handbook, sect.1,pt.3: Water storage and water power		
3. A'THOR(S) ${ }^{\text {(101) Volunteers for Int. Technical Assistance, Mt. Rainier, Md. }}$		
$\begin{aligned} & \text { 4. DOCUMEN } \\ & 1970 \end{aligned}$	DATE 5. NUMBER OF PAGES $31 p$.	6. ARC NUMBER ARC
7. REFERENCE ORGANIZATION NAME AND ADURESS VITA		

9. Abstract

10. CONTROL NUMEER	11. PRICE OF DOCUMENT
PN-AAE-657	
12. DESCRIPTORS	
Dams	
Hydroelectric power	
Water storage	
Intermediate technology	13. PROJECT NUMBER
A1D $\mathbf{~} 90.1(4-74)$	14. CONTRACT NUMBER
CSD-2795 GTS	

rivet 6行

Village

Technology

Handbook

SECTION 1：WATER RESOURCES
Part 3：Water Storage and Water Power

FOREWORD

Progress is the result of man's mastery of the world he lives in. The VILLAGE TECHNOLOGY HANDBOOK is aimed at helping villagers to master the resources available to them: to improve their own lives and to bring their villages more fully into the lives of the nations of which they form a basic and important part.

Village development takes on special importance in the light. of the fact that 80 percent of those who live in lessdevelnped countries live in villages. If progress is to come to nations, progress must come to villages.

Technical information is a basic factor in progress, along with other basic factors: political, social and economic. The VILLAGE TECHNOLOGY HANDEDOK was conceived by VITA Volunteers in 1962 as a means of bridging the "technical information gap" which keeps the world's villages from learning from one another's experience. The book's aim is to gather in one publication information from many sources which has been found helpful in villages.

This handbook was first published by the U.S. Agency for International Development in two volumes in 1963 and 1964. In the 1970 edition, the two earlier volumes are integrated into
one book, the editing has been made more uniform, some new information has been added and the illustrations have been improved. The entire handbook has been checked for accuracy by VITA Volunteer specialists. A new feature in this edition is the incorporation of information on other publications which cover in detail subjects which are discussed only briefly here. VITA plans to continue to improve the handbook in future editions to make it increasingly effective as a key to existing technology for village workers.

The information in the handbook has come from many sources. VITA hopes that criticism and new information will come from many of the same sources--and from other sources. The questionnaire on page ix was designed to stimulate this flow of criticism and information. VITA will test new information and then disseminate ic to those who need it.

VITA is grateful to the U.S. Agency for International Development for its financial support of the revision and for its help in reviewing the contents. Thanks are also due to the Federal Extension Service, U.S. Department of Agriculture, for its help in reviewing the section on "Home Improvement".

A NOTE ON USING THE HANDBOOK

This handbook describes techniques and devices which can be made and used in villages. Hopefully the book will generate new ideas ar well as pass on information which has already been tried.

Some of the practices suggested here can be adopted on an individual basis. Jthers, however, will require cooperation by many people and, perhaps, by government agencies. In many cases, it
would be well to seek out extension services existing in your area. If local government or university extension services are available, they will be able to give you information well suited to local conditions. In some cases, there may be a need for a credit union or a consumer, marketing, housing or service cooperative. Information on credit unions is available from:

CUNA International, Inc.
World Extension Department
Box 431
Madison, Wisconsin 53701 U.S.A.

Information on cooperatives is available from:

Agricultural Conperative Development international
Suite 1200
1430 K St., N.W.
Washingion, D.C. 20005
U.S.A.

When the materials suggested in the handbook are not available, it may be possible to substitute other materials; but be careful to make any changes in dimensions made necessary by such substitutions.

Dimensions are given in metric units in the text, with English units in parentheses. Only metrir units are given in the illustrations. Conversion tables are given in the Appendix.

Reference materials, along with information on where they can be obtained, are listed at the end of a specific entry when they pertain to that entry. When they refer more generally to the field covered in a section of the book, they are given at the end of the section. If you cannot get these publications, VITA may be able to help you.

If you want to use translations of material in the handbook, we ask you to let VITA know. The material you want may already be translated; if it is not, and if you translate it, VITA would like to make your translation available to others.

If you have questions on the material presented here, if you run into problems in implementing the handbook's suggestions, or if you have other technical problems, do not hesitate to ask for the personal help of a VITA Volunteer specialist. Write to:

VITA
3706 Rhode Island Avenue
Mt. Rainier, Md. 20822
U.S.A.

VITA's Volunteer Translation Service can translate letters in languages other than English, but correspondence moves much more quickly when carried on entirely in English. To help VITA Volunteers find a useful solution to your problem as quickly as possible, you should:

1. Be quantitative--give measurements, sketches or, when possible, photos.
2. Explain what materials are available and what limitations there are on cost.
3. Describe the best solution, if any, found so far in the area.
4. Explain any pertinent social or cultural conditions.
5. Indicate a deadline for action, especially if immediate attention is needed.
6. Don't expect miracles on the first reply. Successful problem-solving often takes a number of letters back and forth.

VITA (Volunteers in Technical Assistance) was established in 1959 as a private, nonprofit organization responding to requests for assistance in economic and social development. VITA mobilizes and coordinates the work of over 7,000 volunteer professionals representing 96 countries, 2000 corporations, universities, and other institutions. The VITA talent bank represents know-how in commerce and industry, agriculture and education, engineering and public health, in addition to mary other fields.

VITA provides the most appropriate knowledge to specific calls for assistance from individuals, organizations, small businesses and self-help development groups. In its brief history VITA has responded to over 25,000 requests. VITA meets people's needs through the mail, by telephone, and by on-site counselling. Requests have come from village councils, conmunity development volunteers, farmers, small business owners, and from members of national and international public and private insti tutions. VITA's unique method matches people with need and people with knowledge to give. This partnership increases the opportunity for the success of the requester's project.

One of the most effective ways that VITA shares its information with many people in through its Publications Program. The VILLAGE TECHNOLOGY HANDBCOK has played an important role in helping to disseminate that information. Supplementing this book is VITA's Technology Manual series, how-to-do-it booklets, which cover a wide spectrum of subject matter. A publications list is available on request.

In its OVERSEAS LIAISON PROGRAM, VITA encourages the formation of similar technical assistance programs throughout the world. Cooperation with these and other organizations working in the developing countries will give VITA access to on-the-spot background information on the technological aspects of international development.

VITA is financed by contributions from private individuals, foundations and industry, and by government grants.

SYMBOLS AND ABBREVIATIONS USED IN THIS BOOK

```
@ . . . . at
" . . . . inch
. . . . foot
C . . . . degrees Celsius (Centigrade)
CC . . . cubic centimeter
cm . . . centimeter
cm/sec . centimeters per second
d or dia. diameter
F . . . . degrees Fahrenheit
gm . . . gram
gpm . . . gallons per minute
HP . . . horsepower
kg . . . kilogram
km . . . kilometer
1 . . . . liter
lpm . . . liters per minute
1/sec . . liters per second
m . . . . meter
ml . . . milliliters
mm . . . millimeters
m/m . . . meters per minute
m/sac . . meters per second
ppm . . . parts per million
R . . . . radius
```


QUESTIONNAIRE

NOTE TO THE READER: VITA's publications are compiled by VITA Volunteers because they want to help people in developing areas. With your field experience, you are in a unique position of being able to increase the usefulness of this work by sharing what you have learned with the people who will use the publications in the future. You are strongly urged to complete the following questionnaire (using additional sheets if necessary), cut it out and send it to:

VITA
3706 Rhode Island Avenue
Mt. Rainier, Md. 20822
U.S.A.

Date \qquad
Name \qquad Agency \qquad
Address \qquad

1. Which items from the VILLAGE TECHNOLOGY HANDBOOK have you put into practice?
2. Have results been good or otherwise?
3. Have you made improvements or modifications in any of the devices or techniques? If so, please describe them, including onotographs or sketches if possible.
4. Have you devised any new equipment or techniques not described in the handbook which may be of use to others? If so, please describe them.
5. Did you find the handbook useful, too simple, too complex, incomplete?
6. Other comments and suggestions:

TABLE OF CONTENTS

Forward v
A Note on Using the Handbook v
What is VITA? vii
Symbols and Abbreviations Used in This Book viii
Questionnaire ix ix
SECTION 1: WATER RESOURCES 1
Part 1: Developing Water Sources 3
Getting Ground Water from Wells and Springs Tubewells Dry Bucket Well Drilling Driving Wells Dug Wells
Part 2: Water Lifting and TransportWater TransportWater LiftingPumps
Part 3: Water Storage and Water Power 107
Spring Development Cisterns Selecting a Damsite Reciprocating Wire Power Transmission
Part 4: Water Purification \quad Boiler for Drinking Water Chlorination for Polluted Water and Super- Chlorination of Wells, Spring Fncasements and Cisterns
Water Purification Plant Sand Filter
SECTION 2: HEALTH AND SANITATION 145
Part 1: Sanitary Latrines
Part 2: Bilharziasis
SECTION 3: AGRICULTURE 183
Part 1: Earth Moving Devices for Irrigation and Road-Building
Part 2: IrrigationPart 3: Poultry RaisingPart 4: Silage for Dairy Cows
SECTION 4: FOOD PROCESSING AND PRESERVATION 255
Part 1: Storing Food at Home
Part 2: Storing Yegetables and Fruits for Winter Use
Part 3: How to Salt Fish
SECTION 5: CONSTRUCTION 283
Part 1: Concrete ConstructionPart 2: Bamboo ConstructionPart 3: Glues
SECTION 6: HOME IFPROVEMENT 319
Solar Water HeaterWashing MachinesCookers and Stoves
Home Soap Making
Bedding
SECTION 7: CRAFTS AND VILLAGE INDUSTRY 353
SECTION 8: COMMUNICATIONS 365
Part 1: Bamboo or Reed Writing Pens
Part 2: Silk Screening
Part 3: Inexpensive Rubber Cement
APPENDIX
Temperature Conversion 377
Length Conversion Weight Conversion
Conversion Tables

Water Storage and Water Power

SPRING DEVELOPMENT

Springs, particularly in sandy soil, often make an excellent water source, but they should be dug deeper, sealed, protected by a fence and piped to the home. If fissured rock or limestone are present, get expert advice.

Tools and Materials

Hand tools for digging
Reinforced concrete
Screens
Pipes
Proper development of a spring will increase the flow of ground water and lower the chances of contamination from surface water.

Springs are usually either:

1. Gravity Seepage, where the waterbearing soil reaches the surface over an impermeable layer, or
2. Pressure or artesian, where the water, under pressure and trapped by a hard layer of soil, finds an opening and rises to the surface. (In some parts of the world, all springs are called artesian.)

Dig a small hole near the spring to learn the depth to the hard layer of soil and to find out whether the spring is gravity-seepage or pressure. Check uphill and nearby for sources of contamination. Test the water to see if it must t : purified before being used for drinling. A final point: Find out if the spring runs during long dry spells.

Usually the soil is dug to the hard, underlying part and a tank is made
with watertight concrete walls on all but the uphill side (see Figures 1 and 2). The opening on the uphill side should be lined with porous concrete or stone without mortar, so that it will admit the gravity seepage water. It can be backfilled with gravel and sand, which helps to keep fine materials in the water-bearing soil from entering the spring. If the hard soil cannot be reached easily, a concrete cistern is built which can be fed by a perforated pipe which is placed in the water-bearing layer of earth. With a pressure spring, all sides of the tank are made of watertight reinforced concrete, but the bottom is left open. The water enters through the bottom.

Read the section in this handbook on cisterns before developing your spring.

No matter how the water enters your tank, you must make sure the water is pure by:

- building a complete cover to stop surface pollution and keep out sunlight, which causes algae to grow.
- installing a locked manhole with at least a 5 cm (2") overlap to prevent entrance of polluted ground water.
installing a screened overflow which discharges at least 15 cm ($6^{\prime \prime}$) above the ground. The water must land on a cement pad or rock surface to stop the water from making a hole in the ground and to insure proper drainage away from the spring.
- arranging the spring so that sur-
face water must filter through at least 3 meters (10^{\prime}) of soil before reaching the ground water. Do this by making a diversion ditch for surface water about 15 meters (50^{\prime}) or more from the spring. Also, if necessary, cover the surface of the ground near the spring with a heavy layer of soil or clay to increase the distances that rainwater must travel, thus insuring that it has to filter through 3 meters (10^{\prime}) of soil.
making a fence to keep people and animals away from the spring's immediate surroundings. The suggested radius is 7.6 meters (25^{\prime}).
installing a pipeline from the overflow to the place where the water is to be used.

Before using the spring, disinfect it thoroughly by adding chlorine or chlorine compounds. Shut off the overflow to hold the chlorine solution in the well for 24 hours. If the spring overflous even though the water is shut off, arrange to add chlorine so that it remains strong for at least 30 minutes, although 12 hours would be much safer. After the chlorine is flushed from the system have the water tested. (See section on "Chlorination and Superchiorination.")

Source:

> Manual of Individual Water Supply Systems, U.S. Department of Health, Education and Welfare, Public Health Service Publication No. 24.

> Water Supply for Rural Areas and Small Communities, E. G. Wagner and J. N. Lanoix, World Health Organization, Geneva, 1959.

> Acknowledgements

John M. Jenkins, III, VITA Volunteer, Marrero, Louisiana

Ramesh Patel, VITA Voluriteer, Albany, New York

William P. White, VITA Volunteer, Brooklyn, Connecticut

CISTERNS

Cisterns for family use are most practical in areas of adequate rainfall and where ground water is difficult to obtain or where it contains too many minerals. A sealed well usually requires no filtration, no chemical disinfection and little upkeep, while a cistern needs all of these. Cisterns cost more to build than wells. Cistern water has few minerals, however, and is ideal for washing clothes.

A cistern water supply has four basic parts: tank, catchment area, filter and a pump. (Pumps are discussed in the section on "Water Lifting.")

Cistern Tank

The tank described here can be used for sanitary storage of rainwater for family use.

Tools and Materials

Tools and materials for reinforced concrete

Asphalt sealing compound
Screening

Pipe

The cistern tank must be watertight to prevent surface contamination from polluting the supply. Reinforced concrete is the best material because it is strong, it has a long life and it can be made watertight.

A manhole and drain must be provided so the tank can be cleaned. (See Figure 1.) A vent and a place through which chlorine can be added easily for disinfection are also necessary.

The size of the cistern depends on the family's daily needs and the length of time between rainy periods. If a family needs 94.6 liters (25 U.S.
gallons) of water a day and there are 125 days between rainy periods, then the cistern must hold:

> 94.6 liters $\times 125$ days $=11,835$ liters
or
25 U.S. gallons $x 125$ days $=3,125$
U.S. gallons

A cistern with an inside size of 2 meters $x 2$ meters $\times 2$ meters (7 1/2' $\left.\times 71 / 2^{\prime} \times 71 / 2^{\prime}\right)$ holds 11,355 liters (3,000 U.S. gallons).

To be sure that the cistern is watertight, use about 28 liters of water per 50 kg sack of cement (5 1/2 U.S. gallons per 94 pound or one cubic foot sack when mixing the concrete. (See section on "Concrete Construction.") Tamp the concrete thoroughly and keep the surface damp for at least 10 days. If possible, oour the walls and floor at the same time. The manhole entrance must be $10 . \mathrm{m}$ (4") above the cistern surface and the cover should overlap by $5 \mathrm{~cm}\left(2^{\prime \prime}\right)$. Slope the bottom of the cistern, making one part lower than the rest, so that water can be more easily siphored or bailed out when the cistern is being cleaned. You can do this by scraping the bottom to the proper contour. Do not use fill dirt under the cistern because this may cause the cistern to setile unevenly and crack. A screened drain pipe and valve will make cleaning easier.

An overflow pipe is not needed if a roof-cleaning butterfly valve is properly used. If the overflow is installed, be sure to cover the outlet carefully with copper window screen. A screened vent is necessary if there is no overfiow, to allow displaced air to leave the cistern. The hand pump must be securely mounted to bolts cast into the concrete cistern cover. The flanged base of the pump should be

FIG.I CISTERN WITH SAND FILTER (PUMP INSTALLATION OPTIONAL)

Reproauced from US Public Health Service, Jomt Commitee on Rural Suntation (19S0) Indiudual nater supply sustems, Washington, $\rho 32$
solid, with no hoies for contamination to enter, and sealed to the pump cover, or the drop pipe must be sealed in with concrete and asphalt sealing compound.

A small pipe with a screwed-on cap is needed through which to measure the water in the cistern and to add chlorine solution after each rainfall. The amount of water in the cistern is measured with a stick marked in thousands of liters (or thousands of gallons). To disinfect after each rainfall, add a 5 parts per million dosage of chlorine (see section on "Chlorination").

A newly built or repaired cistern should always be disinfected with a 50 parts per million chlorine solution. The cistern walls and the filter shouid be thoroughly washed with this strong solution and then rinsed. A small-pressure system can be disinfected readily by pumping this strong solution throughout the system and letting it stand overnight.

Catchment Area

A catchment area of the proper size is a necessary part of a cistern water supply. Rainwater for a cistern can be collected from the roof of a house. The method given here for estimating catchnient size should be checked against the actual size of nearby catchment installations.

Tools and Materials

Galvanized iron roof or equivalent
Trough collectors
Downspout
The catchment or collecting area should be a smooth, watertight material, like a galvanized sheet-metal roof. Wood or thatch roofs may taint the water and retain dust, dirt and leaves; water from these roofs contains more organic matter and bacteria
than water from smooth surfaces. Stone, concrete and plastic film catchments are sometimes built on the ground. For fam ly use, roofs are usually best bec use humans and animals cannot contaminate them.

To estimate your required catchment area, estimate the minimum yearly rainfall and the amount of water required by the family during one year. Sometimes, the government meteorological section can give you the minimum rainfall expected. If they cannot, estimate the minimum rainfall at two-thirds of the yearly average. Take the average amount of water needed by the family for one day and multiply it by 365 to learn how much is needed for one year. Then use the chart to find how much roofspace is needed (Figure 2). Add 10 percent to the area given by the chart to allow for water lost by evaporation and by discarding water at the beginning of each rainfall. Example:

Suppose you have an average rainfall of 75 cm a year and a family needs 135 liters a day, then:
$2 / 3 \times 75=$ minimum annual rainfall of 50 cm
365×135 liters/day $=49,275$ liters a year.

Round this figure off to 50,000 liters a year. The example worked out on the chart shows that a catchment area of about 115 square meters is needed. Add 10 percent to this area to allow for water loss, giving a total required catchment area of about 126.5 square meters.
A collecting trough and downspout are needed. Be sure there is a good pitch to the trough so that the water flows freely and does not hold small puddles that can breed yellow-fever mosquitos and other insects. Troughs and downspouts need periodic inspection and cleaning. If you extend the trough, it increases the catchment area.

FIGURE 2

Cistern Filter

The sand filter described here will remove most organic matter from water but it will not produce safe drinking water by removing all harmful bacteria. Water collected in the cistern tank should be chlorinated after each rainfall.

Tools and Materials

Tools and materials for making reinforced concrete

Screen
Fine, clean sand
Graded gravel
Asphalt sealing compound
A catchment area always collects leaves, bird droppings, road dust and insects. A cistern filter removes as much of this material as possible before the water enters the cistern.

The sand filter is usually built at ground level and the filtered water runs into the cistern, which is mostly underground. The largest pieces, such as leaves, are caught in the splash plate. The splash plate also distributes the water over the surface of the filter, so that the water does not make holes in the sand. A piece of window screen forms the splash plate.

If a filter is made too small to handle the normal rush of water from rainstorms, the water will overflow the filter or dig a channel in the sand, ruining the filter. The filter area should not be less than one-tenth of the catchment area. A typical filter would be $122 \mathrm{~cm} \times 122 \mathrm{~cm}$ (4' \times 4') for a family-sized unit where rainfall intensity is average.

About every 6 months, remove the manhole cover and clean the filter. Remove all matter from the splash
plate and scrape off and remove the top $1.25 \mathrm{~cm}\left(1 / 2^{\prime \prime}\right)$ of sand. When the sand is down to 30 cm (12") in depth, rebuild it with clean sand to the original depth of 46 cm (18").

The first runoff from the roof, which usually contains a great deal of leaves and dirt, should be discarded. The simplest way to do this is to have a butterfly valve (like a damper in a stovepipe) in the downspout (see Figure 3). After the rain has washed the roof, the valve is turned to let the runoff water enter the filter. A semi-automatic filter is shown in Figure 4.

In building the filter, it is important to use properly-sized sand and gravel and to make sure the filter can be cleaned easily. The filter must have a screened overflow.

Sources:
Cisterns, State of Illinois, Department of Public Health, Circular No. 833.

Manual of Individual Water Supply Systems, U.S. Department of Health, Education and Welfare, Public Health Service Publication No. 24.

Water Supply for Rural Areas and Small Communities, by Edmund G. Wagner and J. N. Lanoix, World Health Organization, Geneva, 1959.

SELECTING A DAM SITE

A water reservoir can be formed by building a dam across a ravine. The preliminary evaluation described here will help to determine whether or not a particular site will be good for building a dam. If the information collected in this investigation shows that the site has good possibilities, consult an expert before starting to build.

Materials

Maps
Rainfall data
Building a dam takes time, labor, materials and money. Furthermore, if a dam which holds more than a few acrefeet of water breaks, a great deal of damage could be caused. Therefore it is important to choose a dam site carefully, to guard against dam collapse. and to avoid excessive silting, porous soil, polluted water and lack of water because of a small catchment area.

One acre-foot of water equals 1 foot of water covering an acre of land (30 cm of water covering 0.4 hectares). One acre-foot equals 1233.49 cubic meters.

Six factors are important in site selection:

1. Enough water to fill the reservoir.
2. Maximum water storage with the smallest dam.
3. A sound, leakproof foundation for the reservoir.
4. Reasonable freedom from pollution.
5. A storage site close to users.
6. Available materials for construction.

The annual rainfall and type of catchment (or natural drainage) area
will determine the amount of water which the reservoir will collect.

Catchment Area

A catchment area with steep slopes and rocky surfaces is very good. If the catchment area has porous soil on a leak-proof rock base, springs will develop and will carry water to the reservoir, but more slowly than rocky slopes. Trees with small leaves, such as conifers, will act as windbreakers and reduce loss of water from evaporation.

Swamps, heavy vegetation, permeable ground and slight slopes will decrease the yield of water from a catchment area.

Rainfall

The average catchment area will, in a year, drain 5 acre-feet ($6167.45 \mathrm{cu}-$ bic meters) into a reservoir for every inch (2.5 cm) of annual rainfall falling on a square mile (2.59 square kilometers); that is, about 10 percent of the rainfall.

Location

The best lo.ction for building a dam is where a bra: valley narrows with steep sides and a firm base on which to build the dam (see Figure 1). Ground which contains large boulders, weathered or fissured bedrock, alluvial sands or porous rock is not good. The best bases for building a dam are granite or basalt layers at or near the surface or a considerable depth of silty or sandy clay.

Location of a dam upstream from its point of use can lower pollution and may allow for gravity feed of the water to its point of use.

It is best if stone is nearby when building a masonry dam. When building

an earthen dam, rock will still be required for the spillway. The best soils to use for earth dams contain clay with some silt or sand. There should be enough of this soil close to the dam site for building the entire dam of reasonably uniform material.

Careful selection of the dam site will save labor and material costs ard help insure a strong dam.

Source:

Water Supply for Rural Areas and Small Cormunities, by E. G. Wagner and J. N. Lanoix, World Health Organization, Geneva, 1959.

A reciprocating wire can transmit power from a water wheel to a point up to $0.8 \mathrm{~km}(1 / 2 \mathrm{mile})$ away where it is usually used to pump well water. These devices have been used for many years by the Amish people of Pennsylvania. If they are properly installed, they give long, troublefree service.

The Amish people use this method to transmit mechanical power from small water wheels to the barnyard, where the reciprocating motion is used to pump well water for home and farm use. The water wheel is typically a small undershot wheel (with the water flowing under the wheel) one or two feet in diameter. The wheel shaft is fitted with a crank, which is attached to a triangular frame which pivots on a pole (see Figure 2). A wire is used to connect this frame to another identical unit located over the well. Counterweights keep the wire tight.

FIGURE 1

The wire is mounted up on poles to keep it overhead and out of the way. If the distance from stream to courtyard is far, extra poles will be needed to help support the wire. Amish folks use a loop of wire covered with a small piece of garden hose attached to the top of the pole. The reciprocating wire slides back and forth through this loop. If this is not possible, try making the pole 1-2 meters higher than the power wire. Drive a heavy nail near the pole top and attach a chain or wire from it to the power wire as shown in Figure 3.

Turns can be made in order to follow hedgerows by mounting a small triangular frame horizontally at the top of a pole as shown in Figure 4.

Water Wheel

Figures 5, 6 and 7 show how to build and install a small water wheel made from wood and bamboo.

Source:

New Holland, Pennsylvania VITA Chapter.

APPENDIX

Simple methods are given here for converting English and metric units of measurement. Following these is a series of useful conversion tables for units of area, volume, weight, pressure and power.

LENGTH CONVERSION

The chart in Figure 3 is useful for quick conversion from meters and centimeters to feet and inches, or vice versa. For more accurate results and for distances greater than 3 meters, use either the tables in Figure 2 or the equations.

The chart in Figure 3 has metric divisions of one centimeter to three meters, and English units in inches and feet to ten feet. It is accurate to about plus or minus one centimeter.

Example:

An example will explain how to use the tables. Suppose you wish to find

FIGURE 1

Equations:

$$
\begin{aligned}
1 \text { inch } & =2.54 \mathrm{~cm} \\
1 \text { foot } & =30.48 \mathrm{~cm} \\
& =0.3048 \mathrm{~m} \\
1 \text { yard } & =91.44 \mathrm{~cm} \\
& =0.9144 \mathrm{~m} \\
1 \mathrm{mile} & =1.607 \mathrm{~km} \\
& =5280 \text { feei } \\
1 \mathrm{~cm} & =0.3937 \text { inches } \\
1 \mathrm{~m} & =39.37 \text { inches } \\
& =3.28 \text { feet } \\
1 \mathrm{~km} & =0.62137 \mathrm{miles} \\
& =1000 \text { meters }
\end{aligned}
$$ how many inches are squal to 66 cm . On the "Centimeters into Inches" table lool: down the leftmost column to 60 cm and then right to the column headed 6 cm . This gives the result, 25.984 inches.

Inches in'o centimeters
$(1 \mathrm{in} .=2539977 \mathrm{~cm}$)

Centimetrrs into inches
$(1 \mathrm{~cm} .=03937 \mathrm{~m}$.

crn.	0	1	2	3	4	0	6	7	8	9
0	inches	0394	0787							
10	3.937	4331	4724	5118	5.512	1909	2362	2756	3150	3.543
20	7.874	8268	8661	9055	5.612 9.449	6980 9843	6 10 10	6693 10630	7087	7480
30	11.811	12205	12698	12982	9.448 13	9843 13.780	$\begin{array}{ll}10 & 238 \\ 14 & 173\end{array}$	10630 14.587	11024	11.417
40 50	15748	$\begin{array}{lll}16 & 142 \\ 20 & 070\end{array}$	$\begin{array}{lll}16 & 535 \\ 20\end{array}$	18929	17323	17717	-8.110	14.587 18504	$\begin{array}{ll}14 & 961 \\ 18 & 898\end{array}$	15 354
60	$\begin{array}{ll}19 & 685 \\ 23 & 622\end{array}$	$\begin{array}{lll}20 & 078 \\ 24 & 016\end{array}$	20472	20866	21260	21654	22047	22.441	22835	23228
70	27.559	27953	24 28 346	24803	$\begin{array}{lll}25 & 197\end{array}$	25691	25984	26.378	26772	27.166
80	31498	31890	$\begin{array}{lll}28 & 348 \\ 32\end{array}$	28.740 32877	$\begin{array}{lll}29 & 134 \\ 33 & 071\end{array}$	29.528	29921	30315	30709	31.102
90	35433	35827	32 38 280	32.671 36.614	$\begin{array}{lll}33 & 071 \\ 37 & 008\end{array}$	33.465 37	$\begin{array}{ll}33 & 858 \\ 37 & 795\end{array}$	$\begin{array}{ll}34 & 252 \\ 38 & 189\end{array}$	34648	$\left\lvert\, \begin{array}{ll} 35 & 039 \\ 38.976 \end{array}\right.$

FIGURE 3

WEIGHT CONVERSION

The chart in Figure 5 converts pounds and ounces to kilograms and grams or vice versa. For weights greater than ten pounds, or more accurate results use the tables (Figure 4) or conversion equations. See "Length Conversion," Figure 2, for an example of the use of the tables.

On the chart, notice that there are sixteen divisions for each pound to represent ounces. There are 100 divisions only in the first kilogram, and each division represents ten grams. The chart is accurate to about plus or minus twenty grams.

Equations:

```
1 ounce \(=28.35\) grams
pound \(=0.4536\) kilograms
1 gram \(=0.03527\) ounce
1 gram \(=2.205\) pounds
```

FIGURE 4
Kilograms into pounds
($1 \mathrm{~kg}=2.20463 \mathrm{lb}$.)

Pounds into kilograms
(1 1b. $=045359 \mathrm{~kg})$

Ib.	0	1	2		4	5	6	7	8	9
0	kg	0454	0907	361						
10	4536	4990	5443	5897	1 6	${ }^{2} 288$	2722 $7 \quad 257$	3175	3629	4082
20	9072	9525	9979	10433	6888 10	11340	$\begin{array}{r}71257 \\ \hline 1\end{array}$	7711	8185	8618
30	13608	14061	14515	14909	15422	15870	11793	12.247	12.701	13154
40	18144	18597	19051	19504		15876	16329 2085	16783	17.237	17690
50	22680	23133	23587	24040	19 24 198	20 24 24 948	20.865	21319	21772	22.226
60	27216	27669	28123	$28 \quad 576$		24948	25401	25855	26308	26762
70	31751	32205	32659	38112	293030	29 34 34 019	29 34 34	30391 '30	30844	31298
80	36287	38741	37195	37648	38 102	$\begin{array}{lll}34 & 019 \\ 38 & 555\end{array}$	34 39 173 0	34 927	35380	?, 834
90	40823	41277	41.730	42184	$\begin{array}{ll}38 & 102 \\ 42 & 638\end{array}$	$\begin{array}{lll}38 & 555 \\ 43 & 091\end{array}$	$\begin{array}{ll}39 & 009 \\ 43 & 545\end{array}$	39.463 43998	49 916	40 370

TEMPERATURE CONVERSION

The chart in Figure 1 is useful for quick conversion from degrees Celsius (Centigrade) to degrees Fahrenheit and vice versa. Although the chart is fast and handy, you must use the equations below if your answer must be accurate to within one degree.

Equations:

Degrees Celsius $=5 / 9 \times$ (Degrees Fahrenheit -32)

Degrees Fahrenheit $=1.8 \times$ (Degrees Celsius) +32

Example:

This example may help to clarify the use of the equations; 72F equals how many degrees Celsius?

```
\(72 F=5 / 9\) (Degrees \(F-32\) )
\(72 F=5 / 9(72-32)\)
\(72 F=5 / 9(40)\)
\(72 \mathrm{~F}=22.2 \mathrm{C}\)
```

Notice that the chart reads 22 C , an error of about 0.2C.

Conversion Tables

Units of Area

1 Square Mile	$=640$ Acres	= 2.5899 Square Kilometers
1 Square Kilometer	$=1,000,000$ Square Meters	$=0.3861$ Square Mile
1 Acre	$=43,560$ Square Feet	
1 Square Foot	$=144$ Square Inches	$=0.0929$ Square Meter
1 Square Inch	$=6.452$ Square Centimeters	
1 Square Meter	$=10.764$ Square Feet	
1 Square Centimeter $=0.155$ Square Inch		
Units of Volume		
1.0 Cubic Foot	$=1728$ Cubic Inches	$=$ 7.48 U.S. Gallons
1.0 British Imperial Gallon $=1.2$ U.S. Gallons		
1.0 Cubic Meter	$=35.314$ Cubic Feet	$=264.2$ U.S. Gallons
1.0 Liter	$=1000$ Cubic Centimeters	$=0.2642$ U.S. Gallons
Units of Weight		
1.0 Metric Ton	$=1000$ Kilograms	$=2204.6$ Pounds
1.0 Kilogràm	$=1000$ Grams	$=2.2046$ Pounds
1.0 Short Ton	$=2000$ Pounds	

Conversion Tables

Units of Pressure

1.0 Pound per square inch	$=144$ Pounds per square foot
1.0 Pound per square inch	$=27.7$ Inches of Water*
1.0 Pound per square inch	$=2.31$ Feet of Water*
1.0 Pound per square inch	$=2.042$ Inches of Mercury*
1.0 At:losphere	$=14.7$ Pounds per square inch (PSI)
1.0 Atmosphere	$=33.95$ Feet of Water
1.0 Foot of water $=0.433$ PSI	$=62.355$ Pounds per square foot
1.0 Kilogram per square centimeter	$=14.223$ Pounds per square inch
1.0 Pound per square inch	$=0.0703$ Kllogram fer square centimeter
* at 62 degrees Fahrenheit (16.6 degrees Celsius)	
Units of Power	
1.0 Horsepower (English)	$=746$ Watts $=0.746$ Kilowatt (KW)
1.0 Horsepower (English)	$=550$ Foot Pounds per second
1.0 Horsepower (English)	$=33,000$ Foot Pounds per minute
1.0 Kilowatt (KW) $=1000$ Watts	$=1.34$ Horsepower (HP) English
1.0 Horsepower (English)	$=1.0139$ Metric Horsepower (cheval-vapeur)
1.0 Metric Horsepower	$=75$ Meters \times Kilogram/Second
1.0 Metric Horsepower	$=0.736$ Kilowatt $=736$ Watts

