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Foreword 

Several major cooperative research programs of the International Rice Research 
Institute (IRRI) are planned and implemented in collaboration with rice scientists 
in national agricultural research organizations of developing countries. In these 
areas, financial and trained manpower resources for research are limited. Generally, 
the majority of the research is field based, and thus, permits the assessment of 
improved technologies under varied ecological conditions where rice and associated 
crops are grown. Sound statistical techniques are essential if the limited resources 
available are to be used effectively for such field experiments to provide the desired 
evaluations of new rices and associated technology. 

Most field trials are planned and implemented by agricultural subject matter 
specialists with limited training in statistics. Furthermore, these researchers may not 
have ready access to trained statisticians for consultation during the planning and 
action stages of their experiments or for the analysis and interpretation of the 
resultant data. Obviously, there is a need for a guide and ready reference to help 
agricultural researchers who specialize in a scientific discipline to use to full advan­
tage the science of statistics in designing, conducting, and analyzing experiments. 

This book is written primarily for agricultural scientists who should apply cor­
rect statistical techniques in their experiments, but who have sparse training and 
experience in statistics. These researchers should also benefit from the sections 
concerned with the analysis and interpretation of data collected. Likewise, this 
book will help them grasp the statistical concepts essential for effective agricultural 
research. 

The authors of the book have long experience in conducting field experiments 
with rice and associated annual crops. Furthermore, they have provided consultative 
assistance on statistics for other agricultural scientists in a wide range of field 
research. They have used these experiences effectively in producing this readable 
book, which field researchers throughout the world should find most helpful. 

For illustrative material, the authors have drawn upon their own research, as well 
as that of their colleagues in the University of the Philippines at Los Baflos and in 
the International Rice Research Institute (IRRI). They used effectively their 1-year 
sabbatic leaves at Michigan State University, USA, to complete the book. 

IRRI is pleased to publish this book and compliments the authors for demonstra­
ting how the science of statistics can be applied readily to the experimental 
problems not only of scientists working with rice and rice-based cropping systems, 
but also of agricultural researchers in general. 

N. C. Brady, Director-General 
The International Rice Research Institute 

Ill 
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CHAPTER 1 

Introduction 

Most experiments try to verify certain hypotheses suggested by past experiences 

and observations. A corn breeder, for example, is apprehensive about the slow 
of the high-yielding corn varietiesadoption rate by farmers in Mindanao 

developed at Los Bafios. He visits the corn-growing areas in Mindanao and 

observes that the new varieties are much more vigorous and look more pro­

ductive than the native ones in disease-free areas. However, in fields infested 

with downy mildew, a very destructive and prevalent disease of corn in that 

region, the damage to the new varieties is more severe than that to the native 

varieties. He suspects, and therefore, hypothesizes that the new high-yielding 

varieties developed at Los Bafios are more susceptible to downy mildewcorn 

than are the native varieties.
 

At other instances, theoretical considerations may play a major role in 

arriving at a suggested hypothesis. For example, it can be shown theoretically 
nitrogen from the soil than is naturally re­that a rice crop removes more 

hypothesize that to maintainplenished during one growing season. Thus, we 

the yield potential of a rice farm, supplementary nitrogen fertilizer must be 

added for every rice crop. 
a procedure for itsOnce a hypothesis is framed, the next step is to design 

one that usually consists ofverification. This is the experimental procedure, 

four parts: (I) selecting the appropriate materials to test, (2) specifying the
 

characters to measure, (3) selecting the procedure to measure these characters,
 
whether the measurementsand (4) specifying the procedure to determine 

made support the hypothesis. The first two are fairly easy for a subject matter 

specialist to specify. In our example on corn, the test material would probably 

be the native and the newly developed varieties. The characters to be measured 

would probably be disease infection and grain yield. For the example on rice, 

the test variety would probably be one of the recommended rice varieties and 
the suspected range of nitrogenthe fertilizer levels to be tested would cover 

needed. As for corn, rice yield and other agronomic characters would have to 

be measured. 
There is not much need for knowledge in statistics to arrive at these decisions. 

But the procedures on how the measurements are to be made and how these 

measurements can be used to prove or disprove the postulated hypothesis, 

I 



2 Statisticalproceduresforagriculturalresearch 

depend heavily on techniques developed by statisticians. The precision in 
measuring a character, for example, is highly dependent upon the experimental 
design, number of replications, and plot technique used. Furthermore, the 
decision whether a certain observed difference is considered real or imaginary 
is based on probabilistic and statistical reasoning. 

Thus, statistical tools and procedures have had and will continue to have 
universal usefuilness for all kinds of research. Because of this and because of 
the rapid proliferation in areas of research specialization, a wide body of pro­
cedures has been developed for the biological, physical, and social sciences. 
In the biological sciences alon,,, there are different statistical techniques for 
crop and animal researches, for laboratory and field experiments, for genetic 
and physiological researches, etc. Although this diversity indicates the avail­
ability of appropriate techniques for most research problems, it also indicates 
the difficulty of matching the correct technique to a given experiment. Obvious­
ly, this difficulty increases as there are more and more procedures to choose 
from. 

Choosing the correct statistical procedure for a given experiment must be 
based on expertise in both statistics and the experimental subject matter. 
Thorough knowledge on only one of the two would not be enough. Thus, a 
good choice could be made by ( 1)a subject matter specialist with some training 
in experimental statistics, (2) a statistician with some background and ex­
perience in the subject matter under experimentation, or (3) the joint effort 
and cooperation of a statistician and a subject matter specialist. 

For most Asian institutions engaged in agricultural research, the presence 
of a trained statistician is a luxury. Of the already small number of statisticians 
in the region, only a small fraction have the interest and experience in agri­
cultural research necessary for effective co,,sultation. Thus, probably the most 
useful alternative is to give the necessary statistical background to the existing 
agricultural researchers so that they can correctly choose the statistical tech­
nique most appropriate for their planned experiment. 

This backgrounding is the major objective of this book. We shall try to 
cover most of the simple and commonly met problems in crop research. The 
more complex ones will still have to be tackled in consultation with a compe­
tent statistician. But even then, this background in statistics will help the 
researcher communicate his problems to the statistician. 

This book has two main features. First, it is written with a minimum of 
mathematics and a maximum of actual examples. Our experience as agri­
cultural researchers indicates that using familiar examples makes a text more 
easily read, more readily understood, and better appreciated than detailing 
the mathematical proof behind a procedure. Second, we have restricted our 
discussion and examples to the most important annual food crops in Asia. 
Thus, the book would be most useful to researchers working with annual 
grain crops, such as rice, corn, field legumes, and sorghum, but not so much 
to those working with perennial fruit trees or in the animal sciences. Even 
though the fairly specialized coverage of the book could reduce its users, we 
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feel that the prime importance of the annual food crops in both research and 
actual production justifies our special emphasis. 

We have divided the book into three parts: (1) experimental design and 
analysis of variance, (2) methods of analyses. and (3) field plot techniques. 
fliese topics are most pertinent in deciding how measurements are made and 
how these measurements are used to test the hypothesis. All our examples are 
from experiments conducted at the International Rice Research Institute 
(IRRI) and at the University of the Philippines at Los Bafios (UPLB), both 
located at Los Bafios in the Philippines, an area typical of the humid tropics 
of Southeast Asia. 



CHAPTER 2 

Valid experimental designs 

Consider a plant breeder who wishes to compare the yield potentials of a new 
rice variety, say variety B, to a standard variety of known and tested properties, 
say variety A. He lays out two plots of equal size, side by side, and sows one to 
variety A and the other to variety B. Grain yield for each plot is then measured 
and the variety having higher yields isjudged the better of the two. Despite the 
simplicity and common-sense appeal of the procedure just outlined, it has one 
important flaw. It presumes that any difference between the yields of the two 
plots is caused by the varieties and nothing else. This certainly is not true. Even 
if the same variety were planted on both plots, the yield would still vary from 
one plot to another. Other factors, such as soil fertility, moisture, and damage 
by insects, diseases, and birds also affect the yields of plots. 

Because these other sources of variability affect the yields of plots, a satis­
factory evaluation of the two varieties must involve a procedure that can separate 
varietal difference from the other extraneous sources of variation. That is, 
the plant breeder must be able to design an experiment that allows him to 
decide whether the difference observed isreally due to varietal difference or due 
to other extraneous factors. 

The logic behind the decision is simple. Two varieties, A and B, will be 
considered different in their yielding ability only if the observed yield difference 
between plots is larger than that expected if all plots were planted to the same 
variety. Hence, the researcher needs to know the yield difference between plots 
planted to the same variety as well as the yield difference between plots planted 
to different varieties. 

This difference among experimental plots treated alike is called "experimental 
error." This error cannot be totally eliminated, however, since two plots will 
not perform exactly the same no matter how carefully they are treated alike. 
But since experimental error is the primary basis for deciding whether an 
observed difference between various treatments is real or just due to chance, an 
experiment must be designed so that a measure of experimental error is avail­
able. Clearly, then, error plays a major role in modern agricultural research. 
Equally important are the techniques that help measure and minimize ex­
perimental error. 

5 



6 Statistical procedures fr agricutural researcI 

2.1 REPLICATION 

In the same way that at least two plots of the same variety are needed to deter­
mine the difference among plots treated alike. experimental error can be measur­
ed only if the same variety (or treatment) is repeated at least once. Thus, to 
obtain a measure of experimental error, replication is needed. 

2.2 RANDOMIZATION 

But there is more involved than simply planting several plots to the same variety. 
For example, suppose, in comparing two rice varieties, a plant breeder planted
varieties Aand Beach in four plots as shown in figure 2.I. If this particular area 
has a unidirectional fertility gradient so that there is a gradual reduction of 
productivity from left to right, variety B would then be handicapped because 
it is always on the right side of variety Aand isalways in a relati\'elv less fertile 
area. Thus, the comparison between the yield performanccs of variety A and 
variety B would be biased in favor of A. That is. a part of' the yield difference 
between the two varieties would be due to the difference in the fertility levels 
and not to the varietal difference. 

To avoid such bias. treatments must be assigned to experimental plots so 
that a particular variety is not consistently favored or handicapped. This can 
be achieved by assigning treatments to the experimental plots at random. 
Randomization ensures that each variety will have an equal chance of being 
assigned to any experimental plot and consequently. of being grown under any
particular conditions existing in the experimental site. Thus, both replication 
and randomization are needed to obtain an unbiased estimate of experimental 
error. 

2.3 LOCAL CONTROL 

Since the possibility of detecting an existing difference between treatments 
depends upon the size of experimental error, a good experiment minimizes 

PLOT 1 PLOT 2 PLOT 3 PLOT 4 PLOT 5 PLOT 6 PLOT 7 PLOT 8 

A B A B A B A B 

Fig. 2.1 A systematic arrangement of plots planted to two rice varieties, A and B. This 
scheme does not provide a valid estimate of experimental error. 
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experimental error. A good technique to reduce experimental error isto assign 
a way that some of the inherenttreatments to experimental plots in such 

variation among experimental plots does not enter into the difference among 
as "local control." Localtreatments. This technique is commonly known 

control is generally accomplished through blocking; i.e., by subdividing the 

experimental area so that more or less homogeneou, plots are grouped together. 

Treatments can then be assigned to each of the different groups or blocks 

separately thus ensuring that variations among groups do not contribute to 
see section 3.3.1).experimental error. (For further discussion on blocking, 

2.4 CONCLUSIONS 

To summarize, the ininum requirements for a valid experimental design are: 
more in an experiment to1. Replication-a treatment appears than once 

provide a means for estimating experimental error. 
2. Randomization-every treatment has the same chance of being favored or 

handicapped to provide a valid measure of experimental error. 
known causes of3. Local control-treatments are arranged so that some 

variations are eliminated to r,.duce experimental error. 



CHAPTER 3 

Single-factor experiments 

3.1 INTRODUCTION 

Experiments in which only a single factor varies while all others are kept 
constant are called single-factor experiments. Some examples of such experi­
ments are: (1) a yield test of several rice varieties, (2)a fertilizer trial involving 
several rates of only one fertilizer element, and (3) a trial involving several 
plant densities. 

For single-factor experiments, two groups of designs can be used. One group 
is the family of incomplete block designs, which are appropriate for experiments 
with large numbers of treatments, e.g., a varietal test involving 100 entries. 
The other group is the family of complete block designs, which are fitted for 
experiments with small numbers of treatments, e.g., a fertilizer trial involving 
one variety and six rates of nitrogen fertilization. This chapter will detail the 
three most commonly used complete block designs: (a) completely randomized 
design, (b) randomized complete block design, and (c) Latin square design; 
and the lattice designs, the most commonly used incomplete block design for 
agricultural experiments. 

3.2 COMPLETELY RANDOMIZED DESIGN 

The completely randomized design is most appropriate for experiments with 
homogeneous experimental units. Thus, it is commonly used in laboratory 
experiments where environmental effects are easily controlled. This design is 
rarely used in field experiments, but because of its simplicity, a discussion of 
it will help you understand more complex designs. 

3.2.1 Randomization and layout 
Randomization is accomplished by assigning treatments to experimental units 
entirely at random. This can be done by using a random number table, by 
drawing cards, by throwing dice, or by any other operation that serves the 
same purpose. 

For illustration, we shall discuss an experiment involving four treatments, 
A, B, C, and D, each replicated five times. The randomization and layout of 
plots are accomplished as follows: 

9 



10 Statistical procedures for agricultural research 

1. Determine the total number of experimental plots. For our example, the 
total number of experimental plots is 5 x 4 = 20. 

2. Assign a plot number to each experimental plot in any convenient manner, 
for example, consecutively from I to 20. 

3. Assign treatments to the experimental plots by using one of the following 
schemes: 

3.2.1.1 By table of'randoin numbers. 
STEP 1. Locate a starting point in a table of random numbers (appendix !) 

by pointing a finger, with your eyes closed, to any position in a page. 
STEP 2. Using the starting point obtained in step 1, select nt three-digit 

numbers, where n is the total number of experimental plots (n = 20 for our 
example). Three-digit numbers are preferred since they are less likely to include 
ties. Indeed, any higher digit numbers can be used. 

For example, starting at the intersection of the sixth row and the twelfth 
column read downward vertically to get 20 three-digit numbers: 

Random Random Random Random 
number Sequence number Sequence number Sequence number Sequence 

937 I 749 6 918 I1 549 16 
149 2 180 7 772 12 957 17 
908 3 951 8 243 13 157 18 
361 4 018 9 494 14 571 19 
953 5 427 10 704 15 226 20 

STEP 3. Rank the 20 selected numbers from the smallest to largest. 

Random Random
 
number Sequence Rank number Sequence Rank 

937 I 17 918 il 16 
149 2 2 772 12 14 
908 3 15 243 13 6 
361 4 7 494 14 9 
953 5 19 704 15 12 

749 6 13 549 16 10 
180 7 4 957 17 20 
951 8 18 157 18 3 
018 9 I 571 19 11 
427 10 8 226 20 5 

STEP 4. Assign treatments to plots. Use the rank as the plot number and 
use the sequence in which the random numbers occurred to refer to treatments. 
Thus in our example, assign treatment A (i.e., the first treatment) to plot 
numbers 17, 2, 15, 7, and 19; treatment B to plot numbers 13, 4, 18, 1, and 8; 
treatment C to plot numbers 16, 14, 6, 9, and 12; and treatment D to plot 
numbers 10, 20, 3, 1I, and 5. 
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Plot no. 2 3 4*1 

Treatment _.+ B A D B 

5 6 7 8 
D C A B 

9 10 11 12 
C D D C 

13 
B 

14 
C 

15
A 

16
C 

Fig. 3.1 Field layout or a completely 18 9 20 
randomized design with four treatments, A B A D
replicated five times. 

The final layout of the experiment is shown in figure 3. 1. 

3.2.1.2 By drawing cards. 
STEP 1. Shuffle an ordinary pack of cards and draw 20 cards at random. 
STEP 2. Assign ranks to cards according to number and suit. The result 

may be as follows: 

Rank 14 7 9 15 5 11 2 19 13 i s 

16 8 10 I 3 20 6 17 12 4 

STEP 3. Follow the procedures stated in step 4 of the previous scheme. That 
is, treatment A is assigned to plot numbers 14, 7, 9, 15. and 5; treatment B to 
plot numbers 11, 2, 19, 13, and 18; treatment C to plot numbers 16, 8, 10, 1, 
and 3; and treatment D to plot numbers 20, 6, 17, 12, and 4. 

Clearly, this procedure is not applicable whe i the number of experimental 
units exceeds 52. 

3.2.1.3 By drawing lots. 
STEP 1. Prepare 20 identical pieces of paper and label them with the letters 

A, B, C, and D; each letter appears five times. 
STEP 2. Mix the 20 pieces of paper thoroughly and place them in a box (or 

a hat). 
STEP 3. Pick out a piece of paper at random. If it is labeled B, the experi­

mental plot number I will receive treatment B. 
STEP 4. Without returning the drawn piece of paper to the box, draw a 

second piece at random. If it is labeled A, then treatment A will be assigned to 
the experimental plot number 2. 
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Table 3.1 Grain yield of rice using different types of follar and granular Insecticides for 
the control of brown planthoppers and stem borers. IRRI. 

Treatment Grain yields (kg/ha) Treatment Treatment 
total mean 

Do-Mix (1 kg) 2,537 
Do-Mix (2kg) 3,366 

2.069 
2.591 

2,104 
2,211 

1,797 
2.544 

8,507 
10,712 

2.127 
2,678 

DDT + -,-BHC 2,536 
Azodrin 2,387 
Dinecron-Boom 1,997 

2.459 
2.453 
1,679 

2.827 
1,556 
1,649 

2.385 
2,116 
1.859 

10,207 
9,512 
7.184 

2,552 
2,128 
1,796 

Dimecron-Knap 1.796 1.704 1.904 1,320 7,624 1.681 
Control 1,401 1.516 1.270 1.077 5.264 1,316 

Grand total and mean 57,110 2,040 

STEP 5. Repeat the process until all 20 pieces of paper have been drawn. 

3.2.2 Analysis of variance: completely randomized design with an equal 
number of replications 
Analysis of variance is one of the most powerful and commonly used statistical 
tools in analyzing experimental data. It allows for the subdivision of the total 
variability into several causal components. For a completely randomized 
design (CRD), there arc two components of variation: (a) that due to treatment 
and (b) that due to expcrimental error. The relative size of these two com­
ponents provides the basis for determining whether the observed differences 
among treatments are real or not. 

We will use as an example an experiment conducted by the Department of 
Entomology of the International Rice Research Institute to investigate the 
effects of foliar and granular applications of some selected insecticides for the 
control of the brown planthopper and stem borers. The experiment involved 
six treatments and a control, each replicated four times in a completely ran­
domized design. 

The steps involved in constructing the analysis of variance are: 
STEP 1. Group the data by treatments and calculate the treatment totals, 

treatment means, and grand total as shown in table 3.1. 
STEP 2. Construct an outline of the analysis of variance as follows: 

Source Degrees Sum Observed Tabular F 
of of of Mean 

variation freedom squares square F 5% 1% 

Treatment 
Experimental 

error 

Total 

STEP 3. Determine the degrees of freedom (d.f.) for each source of variation 
as follows: 
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Total d.f. = total number of observations - I
 
= 28 - I = 27,
 

Treatment d.f. = total number of treatments - I
 
= 7- I = 6. and
 

Error d.f. which can be computed in either of two ways:
 

(I) 	as total d.f. - treatment d.f. = 27 - 6 = 21, or 
(2) 	 as (total number of treatments) (total number of replications - I) 

= (7)(4 - I) = 21. 

STEP 4. Using X's to designate individual measurements from each plot. 

t as the number of treatments, and r as the number of replications, calculate 

the sum of squares (SS) as follows: 
(. 	 )(grand total1) 2 

-
_(FrtX)2 (3.1)Correction factor (C.F.) = total (n d ot 


ttlnumber of observations ri1
 
(57,110)2 - 116,484,004,
 

(4)(7)
 

X 2Total SS = - C.F. (3.2) 

= [(2,537)2 + (2,069)2 + ... + (1,270)2 + (1,077)21 
- 116,484,004 

= 7,577,412, 

Treatment SS (treatment1" total) 2 - C.F. 	 (3.3) 

(8,507)2 + (10,712)2 + ... + (5,264)2 - 116,484,004 
4 

= 5,587,175, and 

Error SS 	= total SS - treatment SS (3.4) 

= 7,577,412 - 5,587,175 
= 1,990,237. 

Throughout this book, the symbol Y will be used to represent "the sum of." 

For example, the expression T = X, + X2 + ... + X,, can be written as 

T = £ Xj, or simply T = ZX. 

STEP 5. Calculate the mean squares (MS) by dividing each SS by its cor­

responding degrees of freedom: 

Treatment'MS = treatment SS 	 (3.5)I-I 

(5,587,175)
 
6
 

= 931,196, and
 

Error MS = error SS 	 (3.6)t(r - 1) 
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1,990,237
 
21
 

= 94,773. 

STEP 6. Calculate the observed F-value: 

F = treatment MS (37) 
error MS 

931,196 
94,773
 

= 9.82.
 

STEP 7. Obtain the tabular F-values from appendix 5 using the treatment 
degrees of freedom as 1, and the error degrees of freedom as];. The tabular 
F-values for 6 and 21 degrees of freedom at 5'o and 1%levels of significance 
then are 2.57 and 3.81, respectively. 

STEP 8. Fill up the analysis of variance table with values computed in steps 
4 to 7.The final result appears in table 3.2. 

STEP 9. Compare the observed F-value with the tabular F-values based on 
the following decision rules: 

1. If the observed F is as large as or larger than the tabular F at the 1% 
level, the differences among treatment means are said to be highly significant. 
This result is indicated by placing two asterisks on the observed F-value. 

2. If the observed F is as large as or larger than the tabular F at the 5,%, 
level but smaller than the tabular F at the I", level, the differences among 
treatments are said to be significant. This is indicated by placing one asterisk 
on the observed F-value. 

3. If the observed F is smaller than the tabular F at the 5',, level, the dif­
ferences among treatments are said to bc nonsignificant. This is indicated by 
placing ns on the observed F-value. 

In the present example, the observed F is larger than the tabular F at the 
I",, level. Hence, the differences among treatments are said to be highly signi­
ficant. In other words, chances are less than I in 100 that all the observed 
differences among the seven treatment means could be due to chance. 

Note that we can only conclude that there exist some differences between 
one or more pairs of the treatments but cannot state which specific pair or 
pairs are causing the difference. Procedures discussed in chapter 6 can be used 
to obtain this type of information. 

STEP 10. Compute the coefficient of variation (cv): 

cv /error x 100 (3.8) 

grand mean 

- x=2,040 100 = 15.1%. 
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Table 3.2 Analysis of variance for rice yield data of table 3.1.1 

Source Degrees Sum Mean Observed Tabular F 
of 

variation 
of 

freedom 
of 

squares 
square F2 

5% 1% 

Treatments 
Experimental error 

6 
21 

5,587,175 
1,990,237 

931,196 
94,773 

9.82" 2.57 3.81 

Total 27 7,577,412 

cv = 15.1%, = significant at 1 % level. 

The cv value, which indicates the degree of precision in a particular experi­
ment, is generally placed underneath the analysis of variance table as shown 
in table 3.2. 

The coefficient of variation is a good index of the reliability of an experiment. 
It expresses the experimental error as a percentage of the mean, and thus, the 
higher its Value, the lower is the reliability of the experiment. 

The coefficients of variation vary greatly with the type of experiment, the 
crop being tested, and the character being measured. An experienced researcher, 
however, can make good judgment on the acceptability of a particular cv for 
a given type of experiment. Our experience with measuring rice yield, for 
example, indicates that we should aim for a cv of 6 to 8",, in varietal tests, 10 
to 12",,, for fertilizer trials, and about 15,,, for insecticide or herbicide trials. 
Moreover, the cv for other characters can greatly differ from that of yield. 
For example, in experiments where the cv for yield is about 10",,, that for 
tiller number can be expected to be about 20',, and that for plant height about 
3/.
 

3.2.3 Analysis of variance: completely randomized design with an unequal 
number of replications 
Completely randomized design (CRD) is one of the few designs that allows 
you to use an unequal number of replications and is still easy to compute. 
This feature is most useful for studies where the experimental material pre­
cludes using an equal number of replications for all treatments. Some examples 
of this are: (a) animal feeding experiments where the number of animals for 
each breed are not the same, (b) experiments for comparing body length of 
different species of insect caught in an insect trap, and (c) experiments that 
may start with an equal number of replications but some experimental units 
(or plots) will probably be lost or destroyed during the experiment. 

When the number of replications per treatment differs, the computational 
procedures shown in section 3.2.2 are slightly modified. To illustrate the 
modified procedure, data on grain yield from the performance of post-emer­
gence herbicides in upland rainfed rice trial conducted at IRRI in the 1968 wet 
season (table 3.3) will be used. The correction factor and the total SS are 
computed following formulas (3.1) and (3.2). 
That is, 



Table 3.3 Grain yield of rice under different types, rates, and times of application of post-emergence herbicides under upland-rainfed 
condition. IRRI. 

Treatment Grain yields (kg/ha) Treatment Treatment 

total mean . 
Type Rate' Time of 

(kg a.i./ha) application2 

(DAS) 

Propanil/Bromoxynil 2.0/0.25 21 3.187 4.610 3.562 3.217 14.576 3.644 

Propanil/2.4-D-Bee 3.0/1.00 28 3.390 2.875 2.775 9.040 3.013 
Propanil/Bromoxynil 2.0/0.25 14 2.797 3.001 2.505 3.490 11.793 2.948 
Propanil/loxynil 2.0/0.50 14 2.832 3.193 3.448 2.255 11.638 2.910 
Propanil/CHCH 3.0/1.50 21 2.233 2.743 2,727 7.703 2.568 
Phenyedipham 1.5 14 2.952 2.272 2.470 7.694 2.565 
Propanil/Bromoxynil 2.0/0.25 28 2.858 2.895 2.458 1.723 9.934 2.484 
Propanil/2.4-D-IPE 3.0/1.00 28 2.308 2.335 1.975 6.618 2,206 " 
Propanil/loxynil 2.0/0.50 28 2.013 1.788 2.248 2.115 8.164 2.041 . 
Handweed twice - 15 and 35 3,202 3.060 2.240 2.690 11.192 2.798 -
Control - - 1.192 1.652 1.075 1,030 4.949 1.237 . 

'a.i. = active ingredient. 2 DAS = days after seeding. 

http:2.0/0.50
http:3.0/1.00
http:2.0/0.25
http:3.0/1.50
http:2.0/0.50
http:2.0/0.25
http:3.0/1.00
http:2.0/0.25
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2 

C.F. (grand total)= 
total number of observations 

_ (103,301)2 
40 

= 266,777,415, and 

Total SS 	= YX 2 - C.F. 
= [(3187)2 + (4610)2 + ... + (1030)2 ] - 266,777,415 
= 20,209,724. 

Computation of the treatment SS, however, differs slightly from that given 
by equation (3.3) in that the divisor of the term involving the square of treat­
ment totals varies from one treatment to another. Each divisor is the number 
of replications corresponding to the treatment concerned. That is, 

JT 2 Treatment SS = - C.F. 	 (3.9) 

= [(14,576)2 + (9,040)2 + + (4,99)2- 266,777,4151 4 3 ' 4 6,7,1 

= 15,090,304. 

The error SS is computed from formula (3.4) as 

Error SS 	= total SS - treatment SS 
= 5,119,420. 

The mean squares and F-values are then calculated using equations (3.5), 
(3.6), and (3.7). The completed analysis of variance is given in table 3.4. The 
F-test indicates highly significant differences among treatment means. 

3.3 RANDOMIZED COMPLETE BLOCK DESIGN 

The randomized complete block (RCB) design is one of the most widely used 
experimental designs in agricultural research. It is characterized by blocks of 
equal size, each of which contains a complete set of all treatments. The chief 
advantage of this design is that it reduces experimental error (through proper 
blocking) while retaining much of the flexibility and simplicity of the com­
pletely randomized design. 

Table 3.4 Analysis of variance for grain yield data (kg/ha) of Table 3.3.' 

Source 
of 

variation 

Degrees 
of 

freedom 

Sum 
of 

squares 

Mean 
square 

Observed 
F 

Tabular F 

5% 1% 

Treatment 
Error 

10 
29 

15,090.304 
5,119.420 

1,509,030 
176,532 

8.55" 2.18 3.00 

Total 39 20.209,724 

'cv = 16.3%. = significant at the 1% level. 
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3.3.1 Blocking
The primary purpose of blocking is to reduce as much as possible heterogeneity 
among plots within each block. Proper blocking increases the differences 
among blocks while leaving plots within a block more homogeneous. Knowing
the fertility pattern in the experimental area is of great value in achieving this. 
Some simple rules to follow are: 

1. When the fertility pattern of the experimental field is known, orient the 
blocks so that soil differences between blocks are maximized and those within 
blocks are minimized. For a field with a unidirectional fertility gradient, long
and narrow blocks should be used. Blocks should be oriented such that their 
length is perpendicular to the direction of the fertility gradient. For example,
for a field with a gradient along the length of the field, blocking should be made 
across the width of the field, cutting across the gradient.

2. When a fertility gradient occurs in two directions, with one direction 
perpendicular to the other, or nearly so, a Latin square design, described in
section 3.4, or a covariance technique, discussed in chapter 8 may be used. 
If, however, a randomized complete block design must be used, more or less 
square blocks are recommended. 

3. When the fertility pattern is not known or when fertile areas occur in 
unpredictable spots, blocks should be as square as possible.

Except for the different treatments assigned, plots within each block should 
be managed as uniformly as possible. Data collection and all cultural and 
management practices, aside from the treatments being studied, should be 
made at the same time and as uniformly as possible on all plots in each block. 
For example, if application of insecticides or harvesting of a field experiment 
must be done over several days, all plots in a block should be applied or har­
vested in the same day. Also, if more than one research worker makes obser­
vations on the experimental area and if there is any likelihood that observations 
made on the same plot would differ with the individual, then different persons
should be assigned to different blocks; i.e., one person should make the obser­
vations for all plots in a block. See chapter 14 for a further discussion on 
uniform management of experiments. 

3.3.2 Randomization and layout
Divide the experimental area into as many blocks as the number of replications.
Each block is further subdivided into plots that correspond to the number of 
treatments. Since the randomized complete block design specifies that all 
treatments must appear once in each replication, randomization is done 
separately for each block. Randomization procedures similar to those described 
in section 3.2. 1can be used to assign treatments to plots in each block. 

Let us take an experiment where we have six treatments (A, B, C, D, E, and F) 
to be replicated four times. If the table of random numbers is used, we first 
select at random six three-digit numbers. For example, starting at the inter­
section of the sixteenth row and twelfth column of the table in appendix 1, 
read downward vertically to get six three-digit numbers: 
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Sequence 
918 1
 
772 2 
243 3
 
494 4
 
704 5
 
549 6
 

Second, rank the selected numbers from the smallest to the largest: 

Sequence Rank 
918 1 6
 
772 2 5 
243 3 1 
494 4 2 
704 5 4 
549 6 3 

Third, use the sequence in which the random numbers occurred as the treatment 
number, and use the rank as the plot number in the block. Thus, assign treat­
ment A to plot 6, treatment B to plot 5, treatment C to plot 1, treatment D to 
plot 2, treatment E to plot 4, and treatment F to plot 3. 

The layout of the first block is shown in figure 3.2. 
Fourth, repeat the first three steps for block II, then for block III, and finally 
for block IV. 

A sample outcome of the layout is given in figure 3.3 (a). A hypothetical 
layout of completely randomized design (figure 3.3 (b)) is also given to em-

PLOT no. BLOCK I 

1 treatment C 

2 treatment D 

3 treatment F 

4 treatment E 

5 treatment B 

6 treatment A 

Fig. 3.2 Sample layout of the first block 
of a randomized complete block design 
with six treatments. 
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(a) RCB layout (b) CRD hypothetical 
layout 

C B 
D E
F C 

Block I EE F 

B A 
A B 
A C 
E A 

Block II 
C 

F 
C 

D 

D A 
B C 
F E 
D B 
C FFABlock III A E 

B D 
E E 
E A 
C F 
D DFABlock IV A F 

F B 
B D 

Fig. 3.3 Layouts of randomized complete block (RCB) and com­
pletely randomized design (CRD) with six treatments and four 
replications. 

phasize the differences in layouts. Note that in a randomized complete block 
design, randomization is restricted so that all treatments must appear in the 
same block, unlike the completely randomized design, which has no restric­
tion whatsoever. 

Table 3.5 Grain yield of rice variety IR8 planted with different rates of seeding, IRRI, 
1967 wet season. 

Treatment Grain yield (kg/ha) Treatment Treatment 
(kg seeds/ha) total mean 

Block I Block II Block III Block IV ( T) 

25 5,113 5,398 5,307 4,678 20,496 5.124
50 5,346 5,952 4,719 4.264 20.281 5,070 
75 5,272 5,713 5,483 4,749 21,217 5,304

100 5,164 4,831 4,986 4,410 19,391 4,848
125 4,804 4,848 4,432 4,748 18,832 4,708
150 5,254 4,542 4,919 4,098 18.813 4,703 

Block total (B) 30,953 31,284 29,846 26,947
Grand total 119,030
Grand mean 4,960 
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3.3.3 Analysis of variance
 
To illustrate the analysis of variance for a randomized complete block design,

data on grain yield from an experiment comparing six rates of seeding in upland

rice will be used (table 3.5). Four replications were used in this experiment.


STEP 1. Group the data by treatments and blocks and calculate treatment 
totals, block totals, and treatment means as in table 3.5. 

STEP 2. Outline the analysis of variance as :ollows: 

Source Degrees Sum 	 Observed Tabular F 
of 

variation 
of 

freedom 
of 

squares 
Mean 

square F 5% 1% 

Block 
Treatment 
Error 

Total 

Note that in addition to the two sources of variation for completely randomized 
design (section 3.2.2), a third component, block, is also separable for this 
design.

STEP 3. Determine the degrees of freedom (d.f.) for each source of variation 
as follows: 

Total d.f. = total number of observations - I 
= 24 - I = 23, 

Block d.f. = total number of blocks - I 
=4 - I = 3, 

Treatment d.f. = total number of treatments - I 
= 6 - I = 5, and 

Error d.f. = total d.f. - block d.f. - treatment d.f. 
= 23 - 3 - 5 = 15, or 
= (block d.f.)(treatment d.f.) = (3)(5) = 15. 

STEP 4. 	 Calculate the various sums of squares (SS): 
C.F. = (grand total)2 

total number of observations 
- (119,030)2 

24 
- 590,339,204, 

Total SS 	= YX 2 - C.F. 
= [(5,113)2 + (5,346)2 + ... + (4,098)2] - C.F. 
= 595,140,272 - 590,339,204 

= 4,801,068, 
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Block SS 	= (block total)2 _ C.F. (3.10) 

= (30,953)2 + (31,284)2 + (29,846)2 + (26,947)2 - C.F. 
6 

= 592,283,565 - 590,339,204 
= 1,944,361, 

Treatment 55 = z (treatment total) 2 C.F._r 

= (20,496)2 + ... + (18,813)2 _ C.F. 
4 

= 591,537,535 - 590,339,204 
- 1,198,331, and 

Error SS 	= total SS - block SS - treatment SS
 
= 4,801,068 - 1,944,361 - 1,198,331
 
= 1,658,376.
 

STEP 5. Divide each sum of square (SS) by its corresponding degrees of 
freedom to obtain the mean square (MS). 

Block MS block SS 
r- I 

1,944,361
 

3
 
= 648,120,
 

Treatment MS treatment SS
 
i-I 

1,198,331
 
5
 

- 239,666, and
 

Error MS = error SS _ 1,658,376 = 110,558.ErrrM =(r - 1)(t - 1) 15 1058 

STEP 6. Compute the observed F-value for testing the treatment effects as 
in formula (3.7): 

F treatment MS
 

error MS
 
_ 239,666 - 2.17.
 

110,558
 

STEP 7. Obtain the tabular F-value for 5 and 15 degrees of freedom from 
appendix 5. The tabular F-value for 5%and 1%levels of significance are 2.90 
and 4.56, respectively. Since the observed F-value is smaller than the tabular 
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Table 3.6 Analysis of variance on grain yield data of table 3.5.1 

Source Degrees Sum Mean Observed Tabular F 
of 

variation 
of 

freedom 
of 

squares 
square F 

5% 1% 

Block 
Treatment 
Error 

3 
5 

15 

1,944,361 
1,198,331 
1,658,376 

648.120 
239,666 
110,558 

5.86" 
2.17 ns  3.29 

2.90 
5.42 
4.56 

Total 23 4,801,068 

'cv = 6.7%, = significant at 1%level, ns = not significant. 

F-value at 5'%,, level, we conclude that the experiment failed to show any signi­
ficant difference among the six rates of seeding. 

STEP 8. Compute the coefficient of variation: 
e_rror MS /TO0,558

CV = . - x 100 = = 6.7%. (3.11)grand mean 4,960 

STEP 9. Enter all values computed in steps 3 to 8 in the analysis of variance 
table (table 3.6). 

3.3.4 Block efficiency 
The differences among blocks may also be tested, if desired, by dividing the 
block MS by the error MS to obtain the observed F-value. In this instance, we 
have F = 648,120/110,558 = 5.86, which is highly significant. This indicates 
that using blocks was effective in reducing the size of the experimental error; 
i.e., the precision of the experiment was increased by using a randomized 
complete block design instead of the completely randomized design. To 
evaluate the gain in precision, we compute the relative efficiency (R.E.) of 
RCB relative to CRD as 

RE (r- l)Eb + [(t - I) + (r- I)(t -)E. (3.12)
(ri - I)E,. 

where Eb and Ee are the block and error mean squares. If the error degrees of 
freedom is uaider 20, the relative efficiency should be multiplied by the factor 

k = [(r - 1)(t - 1) + l][t(r - 1) + 3] (3.13)
[t(r - I) + I][(r - I)(( - 1) + 3]"* 

Applying equation (3.12) to the data of table 3.6, we obtain 

R.E. = 3(648,120) + (5 + 15)(110,558) = 1.63.(23)(11,056) 

Since the error d.f. is only 15, the adjustment factor should be computed using 
equation (3.13) as 

k = (15 + 1)(18 + 3) = 0.982.(18 + 1)(15 + 3) 
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The adjusted relative efficiency then is 

k(R.E.) = (1.63)(0.982) 
= 1.60. 

Expressing the relative efficiency as a percentage, we get 160%, which indicates
that blocking increased the precision of the experiment by 60%. 

A word of caution is needed here: Although it has been generally stated that
great differences among blocks indicate the success of blocking, the problemof heterogeneity of variance (see chapter 10), as well as the presence of inter­
actions (see chapter 4) between treatment and block, may be encounteredwhen block differences are extremely large. Researchers should not, therefore,
choose blocks so different that the response to the various treatments may 
vary from block to block. 

3.4 LATIN SQUARE DESIGN 
The most important feature of the Latin square design is its capacity to block 
an area along two directions instead of only as the randomizedone with

complete block. The two-directional blocking, commonly referred 
to as rows
and columns, is accomplished by arranging the treatments so that every
treatment occurs only once in each row and once in each column. This allows 
us to measure and remove from the experimental error the differences amongrows as well as among columns. Thus, the Latin square design is especially
adapted for use in an experimental site where there are two fertility gradients
running perpendicular to each other. 

The stratification into rows and columns, while useful in removing variability
along two directions, also becomes a major restriction, requiring that thenumber of replications must equal the number of treatments. This restriction isvery significant because for a large number of treatments, the design becomes

impractical. On the other hand, with fewer than four treatments, the number

of degrees of freedom associated with the experimental error becomes too
small. Thus, the Latin square design is generally used only for experiments
with four to eight treatments. Because of such inflexibility and limitation, the
Latin square design has not been widely used in agricultural experimentation
despite its great potential for controlling experimental error. 

3.4.1 Randomization and layout
The layout for a Latin square design is set up by selecting a sample Latin 
square plan from appendix I I followed by the randomization among rows and 
among columns. 

To illustrate, let us consider an experiment involving five treatments, A, B,
C, D, and E. i he randomization procedure is as follows: 

STEP 1. Take the 5 x 5 Latin square plan shown in appendix 11: 
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A B C D E 

8 A E C D 

C D A E B 

D E B A C 

E C D B A 

STEP 2. Randomize the row arrangement as follows: 
(a) Select at random five three-digit numbers from appendix 1: e.g., 628, 
846, 475, 902, and 452. 
(b) Rank these numbers from lowest to highest: 

Random number Selection sequence Rank 
628 1 3 
846 2 4 
475 3 2 
902 4 5 
452 5 1 

(c) Use these ranks as the row number of the selected plan and the sequence 
as the row number of the rearranged plan. That is, the third row of the 
selected plan becomes the first row, the fourth row becomes the second, and 
so on. Thus, the new plan after row rearrangement is: 

C D A E B 

D E B A C 

B A E C D 

E C D 8 A 

A B C D E 
STEP 3. Randomize the columns using the same procedure as in step 2.


For example, five random numbers were 
again chosen from appendix 1 and 
ranked as follows: 

Random number Selection sequence Rank 
792 1 4 
032 2 1 
947 3 5 
293 4 3 
196 5 2 

The rank now represents the column number of the plan of step 2, and the 
sequence that the numbers occurred in represents the column number of the 
newly rearranged plan. That is, the fourth column of the plan of step 2 be­
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comes the first column in the new plan, the first column becomes the second, 
and so on. Thus, the resulting plan is: 

E C B A D 

A D C B E 

C B D E A 

B E A D C 

D A E C 8 

This plan becomes the final layout of the experiment. 

3.4.2 Analysis of variance 
Table 3.7 shows data on grain yield of three promising corn hybrids (A, B, 
and D) and a check variety (C), from an advanced yield test of the Department 
of Agronomy, UPLB. The experiment was conducted in a Latin square design 
with four replications. 

The steps in constructing an analysis of variance are: 
STEP I. Arrange the data by row and column as in table 3.7. For each 

observation, the particular treatment involved must be specified. 
STEP 2. Compute treatment totals and treatment means as follows: 

Yield (cavans/ha) 
Treatment Total Mean 

A 117.1 29.3 
B 117.7 29.4 
C 85.4 21.4 
D 107.1 26.8 

STEP 3. Outline the analysis of variance as follows: 

Source Degrees Sum Observed Tabular F 
of of of Mean 

variation freedom squares square F 5% 1% 

Row 
Column 
Treatment 
Error 

Total 

Note that there are four sources of variation for the Latin square design 
compared with three for the randomized complete block (section 3.3.3) and 
with two for the completely randomized design (section 3.2.2). 

STEP 4. Determine the degrees of freedom (d.f.) for each source of variation 
as follows: 
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Table 3.7 Grain yield of three promising corn hybrids and of a check variety. 
Row Grain yield (cavans/ha) Row 

Col. 1 Col. 2 Col. 3 Col. 4 
total 

1 
2 
3 
4 

32.8 (B)
29.5 (C) 
33.4 (A) 
31.3 (D) 

24.2 (D)
23.7 (A) 
14.2 (C) 
25.8 (B) 

28.5 (C)
28.0 (D) 
33.3 (B) 
33.1 (A) 

26.9 (A)
25.8 (B) 
23.6 (D) 
13.2 (C) 

112.4 
107.0 
104.5 
103.4 

Column total 
Grand total 

127.0 87.9 122.9 89.5 
427.3 

Total d.f. = total number of observations - I 
= 16 - I = 15,

Row d.f. = column d.f. = treatment d.f. 
= total number of treatments - I,

Error d.f. = total d.f. - row d.f. - column d.f. - treatment d.f. 
= 15 - 3 - 3 - 3 = 6, or 
= (total number of treatments ­ l)(total number of treatments 

- 2) 
=(4 - 1)(4 - 2) = 6. 

STEP 5. Compute the various sums of squares (SS): 
C.F. = (grand total) 2 

total number of observations 
_ (427.3)2 

16 
= 11,411.581. 

2Total SS = ZX - C.F. 
= [(32.8)2 + (29.5)2 + ... + (13.2)2] - C.F. 
= 565.569, 

Row SS - (row total) 2 ­
t C.F. 

= (112.4)2 + (107.0)2 + (104.5)2 + (103.4)2 C.F. 

= 12.062, 

Column SS = , (column total)2 - C. F. 
It
 

_ (127.0)2 + (87.9)2 + (122.9)2 + (89.5)2 C.F. 

4
 
= 330.937, 

Treatment SS = (treatment total)2 

I-C.F. 



28 Statisticalprocedures for agricultural research 

(117.1)2 + (117.7)2 + (85.4)2 + (107.1)2 - C.F. = 4 

= 170.737, and 

- row SS - column SS - treatment SSError SS = total SS 
- 170.737= 565.569 - 12.062 - 330.937 

= 51.833. 

Compute the mean square for each source of variation by dividing
sTP 6. 

the sum of squares by its corresponding degrees of freedom. 
mean square by

sTP 7. Compute the observed F-values by dividing each 

the error mean square as follows: 

= 4.021< I 
F for row 

F for column - 110.312 _ 12.77,
8.639 

and 
59.91 _6.. 

F for treatment = .912 659. 
8.639 

of the observed F-values with the appropriate
STEP 8. Compare each 

tabular values and declare the test for the particular effect significant or not 

significant following the rules given in section 3.2.2. 

Enter all values so far computed in the analysis of variance table. 
STEP 9. 

shown in table 3.8. Significant differences in the mean
The final results are 

out whether
yields of the four corn varieties tested were obtained. To find 


every one of the three hybrids gave significantly higher yield than the check,
 

or whether there are any significant differences among the three hybrids, etc.,
 

test procedures discussed in chapter 6 may be used.
 

3.4.3 Row and column blocking 

The test for column differences in table 3.8 showed a highly significant result 

while that for row differences gave a nonsignificant result. This indicates that 

the grouping of experimental plots into rows was not as successful in reducing 

grain yield data of table 3.7.'Table 3.8 Analysis of variance on 

Source 
of 

variation 

Degrees 
of 

freedom 

Sum 
of 

squares 

Mean 
square 

Observed 
F 

Tabular F 

5% 1% 

Row 
Column 
Treatment 
Error 

3 
3 
3 
6 

12,062 
330.937 
170.737 
51.833 

4.021 
110.312 

59.912 
8.639 

< 1 
n 
s 

12.77"" 
6.59" 

4.76 
4.76 
4.76 

9.78 
9.78 
9.78 

Total 15 565.569 

= not significant.
'cv = 11.0%," = significant at 1% level, ' = significant at 5% level, ns 
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the experimental error as was the grouping by column. This would suggest 

that a randomized complete block design with columns as blocks would have 

done similarly well. 

3.5 LATTICE DESIGNS 

Theoretically, the complete block designs discussed in the previous sections 

can be used for any number of treatments. But in reality they become inefficient 

when the number of treatments becomes large. The Latin square design becomes 

impractical because the number of replications must equal the number of 

treatments. As a result, the size of the experiment increases very fast as the 

number of treatments increases. For example, with 5 treatments, 25 experi­

mental units are required; with 8 treatments, 64 units are required; and with 

100 units are required. The required number of experimental10 treatments, 

units quadruples for every doubling of the number of treatments. Thus, as
 

are not commonly used for experi­mentioned earlier, Latin square designs 

ments with more than eight treatments. 

The other two complete block designs become inefficient as the number of 

treatments increases because either the number of experimental units or block 
design, the

size must increase substantially. For a completely randomized 

number of experimental units must increase and this increase results in more 

and, greater experimentalheterogeneity among experimental units hence, 

error. For a randomized complete block design, block size must increase, and 

of blocking in controlling experimental error decreases as
the effectiveness 
the block size increases. 

more difficult when there are
Controlling experimental error also becomes 

significant soil heterogeneitylarge differences among experimental units or a 

in the expeimental site. Thus, none of the complete block designs is recom­

mended for use when the number of treatments is large, especially if substantial 
There is, however, anexperimental are 

attractive alternative: the family of incomplete block designs. In these designs 

longer equals the number of replications. Instead, 

differences among units expected. 

th: c..mber of blocks no 

the replication is further subdivided into smaller blocks in which only a fraction 

of the total number of treatments is alloted. The name of this family of designs, 

"incomplete block," describes this important feature. 

Another important feature of the incomplete block designs is the flexibility 

of such in the choice of the number of replications. By choosing an appropriate 

design, the restrictions on the number of replications becomes so insignificant 

that practically any number of replications can be used for any number of 

treatments. 
in this book, so we

There are too many incomplete block designs to cover 

have limited our discussion to the lattice designs since this subgroup of designs 

is more commonly used in agricultural experiments. In opting to include only 

as clearly and as completely as 
a few designs we hope to discuss these few 

possible so that you can then easily understand other incomplete block designs 
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found in other references. Furthermore, we have deliberately chosen two types
of lattice designs that allow us to bring out the important features the re­
searcher needs in choosing an appropriate incomplete block design for his 
particular experiment.

A requirement for using lattice designs is that the number of treatments 
must be a perfect square; e.g., 52 or 25. 62 or 36, 72 or 49, 82 or 64, 92 or 81,
and 102 or 100. This requirement may seem stringent, but it is not too difficult 
to satisfy in practice, since, as the number of treatments to be tested becomes 
large, adding a few treatments or eliminating less important treatments is 
usually easy to accomplish. For example, if a plant breeder wishes to test the 
performance of 80 varieties, all he needs to do to use a lattice design is to add 
one more variety. Or, if he has 82 or 83 varieties to start with, the plant breeder 
can usu..lly eliminate one or two without much difficulty. However, where 
adjusting the number of treatments is not easily done, other lattices, such as 
the rectangular or the cubic. or other incomplete block designs should be 
considered (see Cochran and Cox, 1957).

We have chosen to discuss the balanced lattice and the partially balanced 
lattice designs in this section because they illustrate the important trade-offs 
involved in choosing one incomplete block design over another. An important 
trade-off between the balanced and partially balanced lattice designs is (a) the 
balanced lattice design has a more stringent requirement on the number of 
replications than does the partially balanced lattice, but (b) the precision 
among treatment comparisons is the same for all pairs of treatments in the 
balanced lattice but not in the partially balanced lattice design.

For both types of lattice designs, the number of plots in each block is equal 
to the square root of the total number of treatments. For example, block size 
would be 8 with 64 treatments, 10 with 100 treatments, etc. For a balanced 
lattice, the number of replications required is one more than the square root 
of the total number of treatments; e.g. with 64 treatments, 9 replications are 
required. For a partially balanced lattice, however, any number of replications 
can be used. And with 2 replications, the design is called a simple lattice; with 
3 replications, a triple lattice; with 4 replications, a quadruple lattice; etc. 

Table 3.9 shows a balanced lattice design involving nine treatments arranged
in three incomplete blocks each with three treatments. Thus, the number of 
replications required is four. In this design, any particular pair of treatments 
appears together in any block once and only once in the experiment. This is 
why there is an equal degree of precision in the comparisons of all pairs of 
treatments in the balanced lattice design.

On the other hand, symmetry in the occurrence of the various pairs of 
treatments together in the same block is not possible in the partially balanced 
lattice design. Since the number of replications is usually fewer than that 
required for a balanced lattice, some treatments never appear together in the 
same block, so the precision of comparison among treatments is not constant 
for all treatments. There is a higher degree of precision in treatments appearing
in the same block relative to those that did not. For example, the plan involving 
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Table 3.9 Balanced lattice design for nine treatments in blocks 
of three units with four replications. 

Incomplete Treatment no. 
block 

no. Rep. I Rep. II Rep. III Rep. IV 

1 1 2 3 1 4 7 1 5 9 1 6 8 
2 4 5 6 2 5 8 2 6 7 2 4 9 
3 789 369 348 357 

only replications I and II of table 3.9 constitutes a partially balanced lattice 
design for nine treatments with two replications, or a simple lattice design. 
Note that in this plan, not all pairs of treatments occur together in any incom­
plete block. For example, treatment number I appears with treatment numbers 
2, 3, 4, and 7 once in an incomplete block but not with treatment numbers 
5, 6, 8, or 9 in any block. Thus, the four comparisons between each of the 
treatments 2, 3, 4, and 7 with treatment Iwould have higher degree of precision 
than those between treatment I and each of the treatments 5,6, 8, and 9. 

If a triple lattice is used for testing the nine treatments, the plan would be 
equivalent to taking the first three replications (Replication I, Replication II, 
and Replication III) from table 3.9. Clearly, in the triple lattice, as in the simple 
lattice, there are some pairs of treatments that do not occur together in any 
block. For example, treatment I does not occur together in an incomplete 
block with treatments 6 and 8 if the triple lattice, as just described, is used. 
Note that there are more pairs occurring together in the same incomplete 
block in a triple lattice than in a simple lattice; hence, there is a higher degree 
of precision in the first than in the second design. 

Since all comparisons of pairs of treatments have equal precision in the 
balanced lattice design, it follows that there is only one test of significance 
that needs to be computed. In contrast, since there is more than one test of 
significance for comparisons of pairs of treatments in a partially balanced 
lattice, statistical analysis is also more complicated. 

All the major characteristics of the balanced and partially balanced lattice 
designs so far discussed are summarized in table 3.10. 

3.5.1 Randomization and layout
 
The randomization and layout for lattice designs follow these steps:
 

STEP 1. Divide the experimental area into r replications each containing I 
experimental plots, where tis the total number of treatments to be tested. Then, 
divide each replication into k = J incomplete blocks each containing k 
experimental plots. There will be a total of rt = rk2 experimental plots for 
the whole experiment. The blocking technique discussed in section 3.3.1 should 
be followed in choosing the shape and orientation of the plots, of the incom­
plete blocks, and of the replications. Note that the criterion established to 
ensure proper blocking in an incomplete block design allows maximum homo­
geneity among experimental units within the same incomplete block. Maximum 
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Table 3.10 Basic features and requirements of balanced and
 
partially balanced lattice designs.
 

Feature Balanced lattice Partially balanced
 
lattice
 

Number of treatments a square number, k 2 a square number, k2
 

Number of replications k + 1 any number
 

Block size k k 

Precision of treatment Same for all pairs of Higher for treatment
 
comparison treatments pairs appearing in
 

same block relative
 
to pairs that do not.
 

homogeneity is achieved by maximizing variations among replications and 
that among incomplete blocks within a replication. Thus, in applying the 
blocking technique described in section 3.3.1, the rk incomplete blocks can 
be treated as if they were rk blocks of a randomized complete block design. 

STEP 2. Select a basic plan from appendix 12 based on the number of 
treatments to be tested. Note that the basic plans given in appendix 12 are for 
balanced lattice designs. The plans for a partially balanced lattice design can 
be derived directly from those of the balanced lattice having the same number 
of treatments by including in the plan only the required number of replications. 
For example, the first two replications of a balanced lattice plan constitutes a 
simple lattice; the first three replications, for a triple lattice; and so on. When 
the number of replications for a partially balanced lattice exceeds three and is 
an even number, another alternative for deriving the plan is available. Instead 
of choosing a basic plan corresponding to the desired number of replications 
from appendix 12, a basic plan corresponding to a number of replications 
that is only a fraction of the desired number is chosen and repeated as many 
times as required until it reaches the desired number of replications. For 
example, for a quadruple lattice (i.e., a partially balanced lattice with four 
replications), the plan can be obtained by duplicating the simple lattice. In 
general, the first procedure of using the basic plan without repetition is slightly 
preferred as compared with the second, which involves some repetitions, 
because the resulting design comes closer to the symmetry achieved in a bal­
anced lattice. 

STEP 3. Randomization is done in two stages: one for the assignment of 
incomplete blocks within each replication, and another for th.' assignment of 
treatments to the plots within each incomplete block. For methods of ran­
domization at either of the two stages, follow the procedurts described in 
section 3.2.1. 

For illustration, consider a field experiment using a 3 x 3 balanced lattice 
design to test nine treatments. The steps involved in the rando.mization and 
layout are: 

First, divide the experimental area into four replications (eac.h containing 
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Rep. I Rep. II Rep. III Rep. IV 

Fig. 3.4 Division of the experimental area into four replications as the first step in 
laying out a 3 x 3 balanced lattice design. 

REP. I REP. II REP. III REP. IV 

Block 1 Block 1 Block 1 Block 1 

Block 2 Block 2 Block 2 Block 2 

Block 3 Block 3 Block 3 Block 3 

Fig. 3.5 Division of each of the four replications into three incomplete blocks as a 

second step in laying out a 3 x 3 balanced lattice design. 

REP. I REP. II REP. III REP. IV 

Plot Plot Plot
 

BLOCK 1 1 2 3 

BLOCK 2 

BLOCK 3 

Fig. 3.6 Division of each of the three incomplete blocks in each replication into three 
plots as a third step in laying out a 3 x 3 balanced lattice design. 

nine experimental plots), as in figure 3.4. 
Next, divide each replication into three incomplete blocks (each containing 

three experimental plots), as shown in figure 3.5. 
And finally, divide each of the 12 incomplete blocks into three experimental 

plots, as in figure 3.6. 
The second step is to select a basic plan. We will use the plan given in table 

3.9. (For other plans, see appendix 12.) 
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The third step involves randomization. First, randomize the replications.
Using any of the randomization schemes described in section 3.2.1, assign at
random the replications appearing in the basic plan to the replications in the 
field layout. For example, the result of the randomization may be as follows: 

Replication numnber Replication number 
in basic plan infield la'out 

III IIIII
 
III IV
 
IV I
 

Next, randomize the incomplete blocks in each replication. For each of the
four replications independently, assign at random the three incomplete blocks 
of the basic plan to the incomplete blocks in the field layout. The result may be 
as follows: 

Incomplete Incomplete
block no. in basic plan block no. in field layout 

Rep. III Rep. II Rep. IA Rep. I 

1 3 2 2 I
2 2 1 3 3
3 I 3 I 2 

That is, incomplete block number I of replication I in the basic plan (i.e.,
replication III in the field layout) would be assigned to incomplete blo,.k
number 3 of the field layout; block number 2 of the same replication in the
basic plan to block number 2 of the field layout; and block number 3 in the 
basic plan to block number I of the field layout. The same implication applied 
to other replications. The outcome is as follows: 

Rep. III Rep. i1 Rep. IV Rep. I 

Incomplete Treatment Incomplete Treatment Incomplete Treatment! Incomplete Treatmentblock no. no. block no. no. i block no. no. block no. no. 

3 7 8 9 2 2 5 8 2 3 4 8 I 1 6 82 4 5. 6 1 4 7 3 1 5 9 3 3 5 7
1 1 2 3 3 3 6 9 1 2 6 7 2 2 4 9 

Finally, randomize the treatments within each incomplete block. For each
of the 12 incomplete blocks independently, assign at random the 3 treatments 
to the 3 plots in each block. The result may be as follows: 
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Rep. Ill Rep. 11 Rep. IV I Rep. I 

Incomplete IIncomplete Incomplete Incomplete 
block Treatment block Treatment, block TreatmMent block Treatment 

no. no. no. no. no. no. no. 11o. 

3 7 9 8. 2 2 8 5 2 8 3 4 I 1 8 6 
2 4 5 6' I 7 4 I 3 5 I 91 3 5 7 3 
1 3 2 I 3 9 3 61 I 6 7 2, 2 4 2 9 

That is, the field layout based on this plan will be as in figure 3.7. 

3.5.2 Balanced lattices 
The analysis of a balanced lattice design will be illustrated using data from a 
fertilizer trial on rice involving 16 treatments. The experiment was conducted 
in a 4 x 4 balanced lattice with 5 replications. The experimental plan and 
corresponding data on tiller number are presented in table 3.II. The plan has 
been rearranged so that it coincides with the basic plan of appendix 12. This 
is done to help you understand the analysis and is not necessary in the actual 
analysis. In table 3.11, the values in parentheses placed above the data are the 
corresponding treatment numbers. 

The steps in the analysis are as follows:
 
STEP I. Calculate the block totals and replication totals, as shown in table
 

3.11. 
STEP 2. Calculate the treatment totals (T) and the grand total (G)as given 

in column 2 of table 3.12. 
STEP 3. For each treatment, calculate B, as the sum of block totals over all 

blocks in which the particular treatment appears. For example, B, for treatment 
number 5 is computed as the sum of block totals (table 3.11) of block number 2, 
block number 6, block number 9, block number 15, and block number 20. That 
is, 

B, (5) = 616 + 654 + 639 + 675 + 827 = 3,441. 

The results for the 16 values of B,'s are shown in column 3 of table 3.12. 
To doublecheck the computation make sure that the sum overall B,'s equals 

REP. I REP. II REP. III REP. IV 

1 8 6 7 4 1 3 2 1 6 7 2 

4 2 9 2 8 5 4 5 6 8 3 4 

5 7 3 9 3 6 7 9 8 5 1 9 

Fig. 3.7 A sample field layout of a 3 x 3 balanced lattice design showing positions of 

the nine treatments in each of the four replications. 
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Table 3.11 Tiller number per square meter from 16 fertilizer treatments tested in a 4x4 
balanced lattice design.' 

Rep. I Rep. II 

Block Totals Block Totals 

1 
(1)

147 
(2)

152 
(3)
167 

(4)
150 616 5 

(1) 
155 

(6) 
162 

(11) 
177 

(16) 
152 646 

2 
(5) 
127 

(6) 
155 

(7) 
162 

(8) 
172 616 6 

(5) 
182 

(2) 
130 

(15) 
177 

(12) 
165 654 

3 
(9) 

147 
(10) 
100 

(11) 
192 

(12) 
177 616 7 

(9) 
137 

(14) 
185 

(3) 
152 

(8) 
152 626 

4 
(13) 
155 

(14) 
195 

(15) 
192 

(16) 
205 747 8 

(13) 
185 

(10) 
122 

(7) 
182 

(4) 
192 681 

2595 2607 

Rep. III Rep. IV 

Block Totals Block Totals 

(1) (9) (5) (13) (1) (14) (7) (12)
 
9 140 182 165 152 639 13 220 202 175 205 802
 

(10) (2) (14) (6) (13) (2) (11) (8)
 
10 97 155 192 142 586 14 205 152 180 187 724
 

(7) (15) (3) (11) (5) (10) (3) (16) 
11 155 182 192 192 721 15 165 150 200 160 675
 

(16) (8) (12) (4) (9) (6) (15) (4) 
12 182 207 232 162 783 16 155 177 185 172 689
 

2729 2890
 

Rep.V 

Block Totals 

(1) (10) (15) (8) 
17 147 112 177 147 583
 

(9) (2) (7) (16)
 
18 180 205 190 167 742
 

(13) (6) (3) (12) 
19 172 212 197 192 773
 

(5) (14) (11) (4)
 

20 177 220 205 225 827
 

2925
 

'The values enclosed in parentheses correspond to the treatment numbers. 

k times the grand total where k is the block size that is equal to the square root 
of the number of treatments. In the present example, k = 4. 

sTEP 4. For each treatment, calculate 

W = kT - (k + I)B, + G. 

For example, the value W for treatment 5 is computed as: 

W = 4(816) - (5)(3,411) + 13,746 = -45. 
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Table 3.12 Treatment totals and adjustment factors for the 
analysis of 'lata of table 3.11. 

Treatment no. T B, W= 
(4T-5B,+G) 

Adjusted
total 

Adjusted 
treatment 

T+pW mean 

1 809 3,286 552 829 166 
2 
3 

794 
908 

3,322 
3,411 

312 
323 

805 
920 

161 
184 

4 901 3,596 -630 878 176 
5 816 3,411 - 45 814 163 
6 848 3,310 588 869 174 
7 864 3,562 -608 842 168 
8 
9 

865 
801 

3,332 
3,312 

546 
390 

885 
815 

177 
163 

10 581 3,141 365 594 119 
11 946 3,534 -140 941 188 
12 971 3,628 -510 953 191 
13 869 3,564 -598 848 170 
14 994 3.588 -218 98'6 197 
15 913 3,394 428 928 186 
16 866 3,593 -755 839 168 

G= 13,746 54,984 0 - -

The results are presented in column 3 of table 3.12. To doublecheck, the sum 
of W's should be zero. 

STEP 5. Construct an outline of the analysis of variance specifying the 
sources of variation and their corresponding degrees of freedom as follows: 

Source Degrees Sum Mean 
of of of square 

variation freedom squares 

Replication k = 4 
k2Treatment (unadjusted) - I = 15 

Block (adjusted) V - I = 15 
Intrablock error (k - I)(k 2 

- I) = 45 

Total k2 (k + I) - I = 79 

STEP 6. Compute the following sums of squares in the usual manner: 

Total SS = YX 2 - C.F. 

+ ... + (225)2] - (13,746)2 
= [(147)2 + (152)2 

80 
= 58,855, 

Replication SS = x (replication total) 2 CReplcatinSS= 2 -C.F. 

(2,595)2 + (2,607)2 + ... + (2,925) 2 (13,746)2 

16 80 

= 5,946, and 
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Table 3.13 Analysis of variance on tiller number data of table 
3.11 (a 44 balanced lattice design). 

Source Degrees Sum Mean
 
of of of square
 

variation freedom squares
 

Replication 4 5,946 
Treatment (unadj.) 15 26,994 
Block (adj.) 15 11,382 759 
Intrablock 45 14,533 323 

Total 79 58,855 

(treatment total) 2 - C.F. 
Treatment SS k + I 

(869)2 + (794)2 + ... + (866)2 (13,746)2 
5 80 

= 26,994. 

STEP 7. Compute the block within replications sum of squares adjusted for 
treatment effects as 

W2Bl= . (W2+ (-598)2 + (312)2 ... + (365)2Block (adj.) SS Y- _ .)2 + 

P (k + 1) -320 

111,382. 

STEP 8. Compute the intrablock error sum of squares as 

Intrablock error SS - total SS - replication SS - treatment SS ­
block (adj.) SS
 

= 58,855 - 5,946 - 26,994 - 11,382
 
= 14,533.
 

STEP 9. Compute the mean squares for block (adj.) and intrablock error 
as follows: 

block (adj.) SSBlock (adj.) MS 

11,382 and - =-759,an 
15 

intrablock error SS = Intrablock error MS 
(k - 1)(k 2 - 1) 

= 14,533 = 323. 
45
 

STEPI0. Enter all values computed in steps 6 to 9 in the analysis of variance 
table. The result is shown in table 3.13. 

STEP 11. To make an F-test in the analysis of variance, the treatment SS 
needs to be adjusted. The treatment mean square, if computed, cannot be 
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tested against the intrablock error mean square because it contains some 
block effects. The proper adjustments are made as follows: 

Calculate the adjustment factor 

block (adj.) MS - intrablock MS
 
k2 [Block (adj.) MS]
 

759 - 323
 
- 759) =0.0359.16(759) 

Note: if the intrablock MS happens to be greater than the block (adj.) MS, 
p will be taken to be zero and no further adjustment will be needed. The F-test 
can be computed as the ratio of the treatment MS and the intrablock MS in 
the usual manner. 

Calculate the adjusted treatment total for each treatment as: 

T(adj.) = T + p W. 

For example, the adjusted treatment total for treatment 5 is computed as: 

T(adj.) = 816 + (0.0359)(-45) = 814. 

The results for all treatments are shown in column 4 of table 3.12. 
Calculate the adjusted treatment mean square as: 

Treatment (adj.) MS - r(k2 I I) [treatment (adj.) total]2 

(grand total)
2 

2 

k 


1 [(829)2 + (805)2 + ... + (839)2] 

5(15) 
(13,746)2 

16 

= 1,602. 

Calculate the effective error mean square as:
 
Effective error MS = (intrablock error MS)(l + ku)
 

= 323 [1 + 4 (0.0359)] = 369.
 
Calculate the F-ratio as:
 

F treatment (adj.) MS
 

effective error MS
 

1,602 =4.34. 

369 

Compare the observed F-value with a tabular F-value (appendix 5), with 
15 and 45 degrees of freedom, at a specified level of significance in the usual 
manner. 

The effective error MS and not the intrablock error MS will be used as error 
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MS in all tests for comparisons among treatment means described in chapter 
6. For comparisons ari:ong treatment means, the adjusted treatment means 
should be used. They are computed from the adjusted treatment total. For 
example, the adjusted mean of treatment no. 5 is 8 = 163. The adjusted 
treatment means for all treatments are presented in the last column of table 
3.12. 

STEP 12. Estimate the gain in precision due to the use of a balanced lattice 
relative to the use of arandomized complete block design as:
 

+ intrablock error SS1 
= 100 [block(adj.)SSR.E. 

I k(k2 - 1)(effectiveerror MS) 

.
60(369)= 17
= 100 1 14,53 3] =[11,382 - 117%. 

This result indicates that using a balanced lattice design has increased the 
precision of the experiment by 17',,,over that which would have been obtained 
had the randomized complete block design been used. 

3.5.3 Triple lattices 
The analysis of a triple lattice design will be illustrated by rice yield data from 
an upland rice varietal test involving 81 entries conducted in a 9 x 9 triple 
lattice design. The plan and data are given in table 3.14. Values enclosed in 
parentheses correspond to the treatment numbers. 

The steps in the analysis are as follows: 

Table 3.14. Grain yield data from an upland rice varietal trial conducted In a 9x9 triple
 
lattice design.
 

Block Grain yields (f/ha) Block 
no. total 

Rep. I 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 2.70 1.60 4.45 2.91 2.78 3.32 1.70 4.72 4.79 28.97 
(10) (l11) (12) (13) (14) (15) (16) (17) (18) 

I1 4.20 5.22 3.96 1.51 3.48 4.69 1.57 2.61 3.16 30.40 
(19) (20) (21) (22) (23) (24) (25) (26) (27) 

1II 4.63 3.33 6.31 6.08 1.86 4.10 5.72 5.87 4.20 42.10 
(28) (29) (30) (31) (32) (33) (34) (35) (36) 

IV 3.74 3.05 5.16 4.76 3.75 3.66 4.52 4.64 5.36 38.64 
(37) (38) (39) (40) (41) (42) (43) (44) (45) 

V 4.76 4.43 5.36 4.73 5.30 3.93 3.37 3.74 4.06 39.68 
(46) (47) (48) (49) (50) (51) (52) (53) (54) 

VI 3.45 2.56 2.39 2.30 3.54 3.66 1.20 3.34 4.04 26.48 
(55) (56) (57) (58) (59) (60) (61) (62) (63) 

VII 3.99 4.48 2.69 3.95 2.59 3.99 4.37 4.24 3.70 34.00 
(64) (65) (66) (67) (68) (69) (70) (71) (72) 

VIlI 5.29 3.58 2.14 5.54 5.14 5.73 3.38 3.63 5.08 39.51 
(73) (74) (75) (76) (77) (78) (79) (80) (81) 

IX 3.76 6.45 3.96 3.64 4.42 6.57 6.39 3.39 4.89 43.47 

323.25 

continued on opposite page 
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Table 3.14 continued 
Rep./ 

1 
(1) 

3.06 
(10) 
2.08 

(19) 
2.95 

(28) 
3.75 

(37) 
4.08 

(46) 
3.88 

(55) 
2.14 

(64) 
3.68 

(73) 
2.85 28.47 

II 
(2) 

1.61 
(11) 
5.30 

(20) 
2.75 

(29) 
4.06 

(38) 
3.89 

(47) 
2.60 

(56) 
4.19 

(65) 
3.14 

(74) 
4.82 32.36 

11 
(3) 

4.19 
(12) 
3.33 

(21) 
4.67 

(30) 
4.99 

(39) 
4.58 

(48) 
3.17 

(57) 
2.69 

(66) 
2.57 

(75) 
3.82 34.01 

(4) (13) (22) (31) (40) (49) (58) (67) (76) 
IV 2.99 2.50 4.87 3.71 4.85 2.87 3.79 5.28 3.32 34.18 

(5) (14) (23) (32) (41) (50) (59) (68) (77) 
V 3.81 3.48 1.87 4.34 4.36 3.24 3.62 4.49 3.62 32.83 

VI 
(6) 

3.34 
(15)
3.30 

(24)
3.68 

(33) 
3.84 

(42) 
4.25 

(51) 
3.90 

(60) 
3.64 

(69)
5.09 

(78)
6.10 37.14 

VII 
(7) 

2.98 
(16) 
2.69 

(25) 
5.55 

(34) 
3.52 

(43) 
4.03 

(52) 
1.20 

(61) 
4.36 

(70) 
3.18 

(79) 
6.77 34.28 

VIII 
(8) 

4.20 
(17) 
2.69 

(26) 
5.14 

(35) 
4.32 

(44) 
3.47 

(53) 
3.41 

(62) 
3.74 

(71) 
3.67 

(80) 
2.27 32.91 

IX 
(9) 

4.75 
(18) 
2.59 

(27) 
3.94 

(36) 
4.51 

(45) 
3.10 

(54) 
3.59 

(63) 
2.70 

(72) 
4.40 

(81) 
4.86 34.44 

300.62 

(1) (12) (20) (34) 
Rep. II 
(45) (53) (58) (70) (77) 

I 3.52 2.18 3.50 3.30 3.88 2.45 3.75 4.45 4.14 31.17 

II 
(2) 
.79 

(10) 
3.58 

(21) 
4.83 

(35) 
3.63 

(43) 
3.02 

(54) 
4.20 

(59) 
3.59 

(67) 
5.06 

(78) 
6.51 35.21 

III 
(3) 

4.69 
(11) 
5.33 

(19) 
4.43 

(36) 
5.31 

(44) 
4.13 

(52) 
1.98 

(60) 
4.66 

(68) 
4.50 

(76) 
4.50 39.53 

IV 
(4) 

3.06 
(15) 
4.30 

(23) 
2.02 

(28) 
3.57 

(39) 
5.80 

(47) 
2.58 

(61) 
4.27 

(72) 
4.84 

(80) 
2.74 33.18 

V 
(5) 

3.79 
(13) 

.88 
(24) 
3.40 

(29) 
4.92 

(37) 
2.12 

(48) 
1.89 

(62) 
3.73 

(70) 
3.51 

(81) 
3.50 27.74 

(6) (14) (22) (30) (38) (46) (63) (71) (79) 
VI 3.34 3.94 5.72 5.34 4.47 418 2.70 3.96 3.48 37.13 

VII 
(7) 

2.35 
(18) 
2.87 

(26) 
5.50 

(31) 
2.72 

(42) 
4.20 

(50) 
2.87 

(55) 
2.99 

(66) 
1.62 

(74) 
5.33 30.45 

VIII 
(8) 

4.51 
(16) 
1.26 

(27) 
4.20 

(32) 
3.19 

(40) 
4.76 

(51) 
3.35 

(56) 
3.61 

(64) 
4.52 

(75) 
3.30 32.78 

IX 
(9) 

4.21 
(17)
3.17 

(25) 
5.03 

(33) 
3.34 

(41)
5.31 

(49)
3.05 

(57)
3.19 

(65)
2.63 

(73) 
4.06 33.99 

301.18 

'The values enclosed in parentheses correspond to the treatment numbers. 

STEP 1. Calculate the block totals and the replication totals as shown in 
table 3.14. Calculate tie grand total as 925.05. 

STEP 2. Calculate the treatment totals as shown in table 3.15. 
STEP 3. Construct an outline of the analysis of variance as follows: 

Source Degrees Sum Mean 
of of of square 

variation freedom squares 

Replication r - I = 2 
k2Treatment (unadj.) - I = 80 

Block (adj.) r(k - I) = 24 
Intrablock error (k - I)(rk - k - I) = 136 

Total rk2 - I = 242 



Table 3.15 


Treatment 


no. total 

1 9.28 
10 9.86 
19 12.01 
28 11.06 
37 10.96 
46 11.51 
55 9.12 
64 13.49 

73 10.67 

Treatment totals computed from data of table 3.14. 

Treatment Treatment Treatment 

no. total no. total no. total 

2 4.00 3 13.33 4 8.96 
11 15.85 12 9.47 13 4.89 
20 9.58 21 15.81 . 22 16.67 
29 12.03 30 15.49 31 11.19 
38 
47 

12.79 
7.74 

39 
48 

15.74 
7.45 I 

40 
49 

14.34 
8.22 

56 12.28 57 8.57 58 11.49 
65 9.35 66 6.33 67 15.88 
74 16.60 75 11.16 76 11.46 

Treatment 

no. total 

5 10.38 
14 10.90 
23 5.75 
32 11.28 
41 14.97 
50 9.65 
59 9.80 
68 14.13 

77 12.18 

Treatment 

no. total 

6 10.00 
15 12.29 
24 11.18 
33 10.84 
42 12.38 
51 10.91 
60 12.29 
69 15.27 

78 19.18 

Treatment 

no. total 

7 7.03 
16 5.52 
25 16.30 
34 11.34 
43 10.42 
52 4.38 
61 13.00 
70 10.07 

79 16.64 

Treatment 

no. total 

8 13.43 
17 8.47 
26 16.51 
35 12.59 
44 11.34 
53 9.20 
62 11.71 
71 11.26 

80 8.40 

Treatment 

no. total 

9 
18 
27 
36 
45 
54 
63 
72 

81 

13.75 
8.62 

12.34 
15.18 
11.04 
11.83 

9.10 
14.32 

13.25 

R, 
= 

2 
2. 

N.. 
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STEP 4. Compute the following sums of squares in the usual manner: 

X 2Total SS = - C.F. 

+ (4.06)2] (925.05)2... = [(2.70)2 + (1.60)2 + 
243 

= 308.9883, 

=S _(replication total) 2 -C.F.ReplicationReplcatonSS - 2 _ 

= (323.25)2 + (300.62)2 + (301.18)2 (925.05)2 

81 243 

= 4.1132, and 

Treatment SS _=(treatment total) 2 _ C.F. 
r 

... + (13.25)2 (925.05)2(9.28)2 + (4.00)2 + 
3 243 

= 256.7386. 

STEP 5. For each block, calculate Cb as 

Cb = M - 3B, 

where M is the sum of treatment totals for all treatments appearing in the 
particular block, and B is the block total of the particular block concerned. 
For example, block II of replication II contained the following treatment 
numbers: 2, 1I, 20, 29, 38, 47, 56, 65, and 74. Hence, M for block II of replica­
ation II is computed as 

M = 4.00 + 15.85 + 9.58 + 12.03 + 12.79 + 7.74 + 12.28 + 9.35 + 
16.60 = 100.22, 

and Cb is then computed as 

Cb = 100.22 - 3(32.36) = 3.14. 

The Cb values for the 27 blocks are presented in table 3.16. 

STEP 6. Calculate the replication totals (Re) of the Cb values for each repli­
cation as follows: 

Replication I "R = 3.25 - 5.33 - 10.15 + ... - 10.87 = -44.70, 

Replication I :Rc = 12.55 + 3.14 + 1.32 + ... + 6.11 = 23.19, and 
Replication III • Rc = 5.34 + 3.74 - 8.62 + ... - 0.83 = 21.51. 

Note: to countercheck, the Rc values should sum up to zero. 

STEP 7. Calculate the adjusted sum of squares for blocks as 

- )R 
2 

= kr brBlock (adj.) SSS-kr(r 1) k2r(r - 1)Blok~dj) ­
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Table 3.16 The values of Cb computed from data of tables 3.14 
and 3.16. 

Rep. I Rep. II Rep. III 

Block Cb Block Cb Block Cb 
no. no. no. 

1 3.25 1 12.55 1 5.34 
2 -5.33 2 3.14 2 3.74 
3 -10.15 3 1.32 3 -8.62 
4 -4.92 4 0.56 4 -2.28 
5 -6.06 5 0.55 5 8.70 
6 1.45 6 2.92 6 2.97 
7 -4.64 7 -8.14 7 6.08 
8 -8.43 8 4.18 8 6.41 
9 -10.87 9 6.11 9 -0.83 

Total -44.70 23.19 21.51 

(3.25)2 + (-5.33)2 + ... + (-0.83) 2 

54 
(-44.70)2 + (23.19)2 + (21.51)2 

486 
= 12.1492. 

STEP 8. Calculate the intrablock error sum of squares as 

Intrablock error SS = total SS - replication SS - treatment SS 
- block (adj.) SS 

= 308.9883 - 4.1132 - 256.7386 - 12.1492 
= 35.9873. 

STEP 9. Calculate the mean square for intrablock error and block (adj.) as 
follows: 

Intrablock error MS = intrablock error SS 
(k - l)(rk - k - 1) 

35.9873 
_____ = 0.2646, and

136 

Block (adj.) MS = block (adj.) SS - 12.1492 = 0.5062.
r(k- 1) 24 

STEP 10. Enter all sums of squares and mean squares values computed in 
steps 4 to 9 in the analysis of variance. The final result is shown in table 3.17. 

STEP 11. Calculate the adjustment factor as 

(WSE -3MSB - MSE) 
k( 2E + 3MSB - MSE 
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Table 3.17 Analysis of variance for grain yield data of table
3.14 (a 9x9 triple lattice design). 

Source Degrees Sum Mean
of of of square

variation freedom squares 

Replication 2 4.1132Block (adj.) 24 12.1492 0.5062
Treatment 80 256.7386 
Intrablock error 136 35.9873 0.2646 

Total 242 308.9883 

where MSE is the intrablock error MS and MSB is the block (adj.) MS. The 
result is 

(o.46 2 

S0.2646 + 3(0.5062 - 0.2646 

If MSB is less than MSE, no further adjustment is needed. The F-test required 
can be made directly from the analysis of variance of table 3.17. 

STEP 12. Calculate the adjusted treatment totals as 

T(adj.) = T + pZCb, 
where the summation runs over all blocks in which the particular treatment 
appears. For example, for treatment number 2, the adjusted treatment total
is computed as 4.00 + 0.0265 (3.25 + 3.14 + 3.74) = 4.27. The adjusted 
treatment means can then be computed in the standard form. 

STEP 13. The F-test of the adjusted treatment totals can be made by com­
puting the adjusted treatment sum of squares as: 

Treatment (adj.) SS = treatment (unadj.) SS MS - 3MSB MSE) 

[(MSE)B. - MSE(MSB - MSE)], 
where B, is the unadjusted sum of squares for blocks within replications, which 
is computed as 

B_ = X(block total) 2 
_ X(rep. total)2
 

k2

k 

= (28.97)2 + (30.40)2 + ... + (33.99)2 

9
 
(323.25)2 + (300.62)2 + (301.18)2
 

81
 
= 49.4653. 

Therefore, the treatment (adj.) SS 
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= 256.7386-2,,,.,,46 .2646)[0.2646(49.4653)-3 (0.5 0 62) -0.26) 

- 0.2646(0.5062 - 0.2646)] 
= 233.9467. 

Finally, the F-test is computed as follows: 

- 1)
treatment (adj.)SS/(k 

2 

intrablock error MS 
_ 233.9467/80 =2.9243 

0.2646 0.2646 = 
which is compared with the tabular F-value with 80 and 136 degrees of freedom. 
The test indicates a highly significant result. 

STEP 14. For comparisons of pairs of treatment means, two different error 
terms are used: one for comparison between treatments appearing in the same 
block and another for comparison between treatments that have never appeared
in the same block. 

Error MS Jbr comparison between treatments appearing in the same block: 

6 1 
MSE MSE 2)
 

Error MS (1) - k 2 2
j +-E3MSB - MSE 

6 
(0.2646) 0.2646 79 2 2 + 

'624+ 3(0.5062) - 0.2646 
= 0.2786. 

Error MS for comparison between treatments that have not appeared in the 
same block: 

F 9 
Error MS (2) - MSE MSE + (k ­

k 2 2 3)
 
MSE 3MSB - MSE
9 

(0.2646) 0.2646 
9 2 + 2 

0.2646 3(0.5062) - 0.2646 
= 0.2856. 

Note that for most practical purposes, especially when the experiment is large,
the average error MS can be used for all comparisons among treatments. The 
average error MS is computed as: 
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MkSE MSE-________ 

Av. error MS M 2M SE + (k - 2)

P;SE+ 3MSB - MSE
 

9 1 
_ 0.2646 0.2646 710 2 2+7 

+S0.2646 3(0.5062) - 0.2646 

=0.2835. 
STEP 15. Compute the precision relative to randomized complete block 

design as 

R.E. [block (adj.)SS + intrablock error SS1[ 100 1
r(k - i) + (k - l)(rk - k - ) 1[Av. error MS 

[12.1492 + 35.9873 i f100 10
1 24 + 136 -1 L .28 = 06.3,.
 

3.5.4 Quadruple lattices 
As mentioned in the previous section, the plan for a quadruple lattice can be
derived such that each of the four replications comes from a unique basic plan 
or such that two replications are repetitions of the other two. The second 
alternative basically consists of two simple lattices, one as a repetition of the
other. In this section we shall illustrate the analysis for a quadruple lattice
with repetitions, but the procedure for analyzing data from a simple lattice 
can be directly derived from the proccdurce discussed here. 

Data from a rice varietal trial conducted in a 5 x 5 quadruple lattice design
will be used. The plan and data are presented in table 3.18. Replications I and 
Ii are from the usual simple lattice plan, and replications IlI and IV are 
repetitions of replications I and II, respectively. 

The steps in the analysis are as follows: 
STEP 1. Calculate the block totals as shown in table 3.18. The grand total 

is computed as 606,426. 
STEP 2. Calculate the treatment totals as shown in table 3.19. 
STEP 3. Construct an outline of the analysis of variance as follows: 

Source Degrees Sum Meanof of of squarevariation freedom squares 

Replication (r - I) = 3 
Treatment (unadj.) (k2 - I) = 24 
Block (adj.): r(k - I) = 16 

Component (a) n(p 1)(k - I) = (8)-
Component (b) n(k - I) = (8)

Intrablock error (k - I)(rk - k - 1) = 56 

Total k2np - I = 99 



Table 3.18 Grain yield data (kg/ha) from a rice varietal trial conducted in a 5x5 quadruple lattice. 

Rep. I Rep. I Rep. III Rep. IV 

Treatment Yield Block Treatment Yield Block Treatment Yield Block Treatment Yield Block . 
no. (kg/ha) total no. (kg/ha) total no. (kg/ha) total no. (kg/ha) total­

1
2 

4.723
4.977 

1
6 

6.262
5,690 

1
2 

5.975
5.915 

1
6 

5,228
5.302 

3 6.247 11 6.498 3 6.914 11 5.190 
4 
5 

5,325 
7.139 28.411 

16 
21 

8,011 
5.887 32.348 

4 
5 

6,389 
7,542 37.735 

16 
21 

7,127 
5,323 28.170 ~ 

6 5,444 2 5.038 6 4,750 2 5,681 
7 
8 

5,567 
5,809 

7 
12 

4.615 
5.520 

7 
8 

5.983 
5,339 

7 
12 

6,146 
6.032 

9 5.086 17 6.063 9 4.615 17 7,066 
10 6,849 22 6.486 10 5,336 22 6,680 .;. 

28,755 27,722 26,023 31.605 2 
11 
12 
13 

5,237 
5,174 
5.395 

3 
8 

13 

6,057 
6,397 
5.214 

11 
12 
13 

5,073 
6,110 
6.001 

3 
8 

13 

6.750 
6,567 
5,786 

N 

14 
15 

5,112 
5.637 

18 
23 

7.093 
7.002 

14 
15 

5.486 
6,415 

18 
23 

7.159 
7.268 . 

26,555 31.763 29.085 33,530 
16 5,793 4 5.291 16 6,064 4 6,020 
17 6,008 9 4.864 17 6,405 9 5,760 
18 
19 

6.864 
5,026 

14 
19 

5.453 
4.917 

18 
19 

6,856 
4,654 

14 
19 

6,413 
5,760 

20 6,348 24 6,318 20 5.986 24 6.856 
30.039 26,843 29.965 30.185 

21 5.321 5 7,685 21 5.750 5 7.173 
22 6,870 10 5,985 22 6,539 10 5,626 
23 7.512 15 6,107 23 7,576 15 6,310 
24 6.648 20 6.710 24 7.372 20 6,529 
25 6.948 25 6.915 25 6.439 25 6,677 

33.299 33,402 33,676 32.315 

Replication total 147.059 152.078 151.484 155,805 
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Table 3.19 Treatment totals computed from data of table 3.18. 

Treatment Treatment Treatment Treatment Treatment 

no. total no. total no. total no. total no. total 

1 22,188 2 21,611 3 25,968 4 23,025 5 29,539 
6 

11 
21,186 
21,998 

7 
12 

22,311 
22,836 

8 
13 

24,112 
22,396 

9 
14 

19,701 
22,464 

10 
15 

23.796 
24,469 

16 26,995 17 25,542 18 27,972 19 20,357 20 25,573 
21 22,281 22 26,575 23 29,358 24 27,194 25 26,979 

Here it is the number of replications in the basic plan and p is the number of 
repetitions of the basic plan. In our example, it = 2 (i.e., simple lattice is the 
basic plan) and p = 2 (i.e., the basic plan is repeated twice). 

STEP 4. Compute the following sums of squares in the usual manner: 

Total SS = YX 2 - C.F. 
(6 0 6 ,4 2 6 )2 

= [(4,723)2 + (4,977)2 + ... + (6,677)2 ] 
• 	 " "100 

= 63,513,101.24, 

Replication SS = X(replication total)2 _ C.F.k 2 

(147,059)2 + (152,078)2 + (151,484)2 + (155,805)2 

25 
(606,426)2 

100 

= 1,541,779.08, and 
Treatment (unadj.) SS - Y(treatment total) 2 _ C.F. 

r 

(22,188)2 -t- (21,611)2 + ... + (26,979)2 

4 
(606,426)2 

100 
= 45,726,281.24. 

STEP 5. Rearrange the block totals of table 3.18 by placing any two blocks 
containing the same set of k treatments side by side as shown in table 3.20. 
Compute the sum over two block totals for each row as shown in column 4 
of table 3.20. 

Compute the C values for each group of similar blocks as 

C = 	(sum of treatment totals over all treatments appearing in the group) 
- n(sum of block totals in the group). 

For example, for the sixth row (i.e. block number I of replications 11 and IV), 
the treatments appearing in this group are treatment numbers 1,6, 1i, 16, and 
21 (see table 3.18). Hence, C for this group is computed as 

http:45,726,281.24
http:1,541,779.08
http:63,513,101.24
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C 	= (22,188 + 21,186 + 21,998 + 26,995 + 22,281) - 2(60,518)
 
= 6,388.00.
 

The results of all C values are shown in the fifth column of table 3.20. 
Compute the sum of C values for each repetition, i.e., R. Here, there are 

two repetitions, and, hence, two values of R, namely, 9,340 and -9,340. The 
sum of the two Rc values must always be zero. 

STEP 6. Compute the two components of the block (adj.) sum of squares: 
2


YC 2 YRC
Component (b) SS 	 R-2____ 

kr(n - I) k2r(n - 1) 
(39)2 + (1,550)2 + ... + (- 1,078)2 

20 

(9,340)2 + (-9,340)2 

100 

= 3,198,864.70. 

The component (a) SS is needed only with the design having repetition of a 
certain basic design. Thus, for an ordinary simple lattice, there will be only 
one component, namely, component (b), in the block (adj.) sum of squares. 

Table 3.20 will be used for the base data for computing component (a) sum 
of squares. Treat the data in columns 2 and 3 of table 3.20 as coming from 
two k x p tables, each of which can be analyzed as follows: 

Source Degrees
 
of of
 

variation freedom
 

Row 	 k - I = 4 
Column p- I= I
 
Row x column (k - 1)(p - I) = 4
 

Total 	 kp- I =9 

The component (a) SS is the sum of the row x column interaction sum of 
squares over all n tables. (In this instance, the sum over two tables.) It can be 
obtained from the following calculations: 

Total SS = (28,411)2 + (28,755)2 + ... + (32,315)2
k = 5 

(298,543)2 + (307,883)2 
50
 

= 23,435,940.84,
 

+ 	 ... + (65,717)2
Row SS = (61,146)2 + (54,778)2 

pk = 10 

(298,543)2 + (307,883)2 
50 

http:23,435,940.84
http:3,198,864.70
http:6,388.00


Single-factor experiments 51 

Table 3.20 Block totals of table 3.18 rearranged In pairs of blocks containing the same set 
of treatments. 

Block no. Block totals Sum C pC 

1 
Rep. I 
28,411 

Rep. III 
32,735 61.146 39 6.15 

2 
3 

28,755 
26,555 

26,023 
29,085 

54.778 
55,640 

1,550 
2.883 

244.27 
454.33 

4 30,039 29.965 60,004 6,431 1,013.47 
5 33,299 33,676 66,975 -1.563 -246.31 

(Total) (147.059) (151,484) (298,543) (9,340) 

1 
Rep. I/ 
32.348 

Rep. IV 
28,170 60,518 -6,388 -1,066.69 

2 
3 

27,722 
31,763 

31,605 
33,530 

59,327 
65.293 

221 
-780 

34.83 
-122.92 

4 26,843 30,185 57,028 -1,315 -207.23 
5 33.402 32,315 65,717 -1,078 -169.88 

(Total) (152,078) (155,805) (307,883) (-9,340) 

= 15,364,390.84, and 

+ ... + (155,805)2+ (152,078)2Column SS = (147,059)2 k2 = 25 

(298,543)2 + (307,883)2 
50 

= 669,423.08. 

Component (a) SS is computed as 

Total SS - row SS - column SS 
= 23,435,940.84 - 15,364,390.84 - 669,423.08 
= 7,402,126.92 and 
Block (adj.) SS 	= component (a) SS + component (b) SS 

= 7,402,126.92 + 3,198,864.70 = 10,600,991.62. 

sTEP 7. Compute the intrablock error SS as 

Intrablock error SS = total SS - replication SS - treatment 
(unadj.) SS - block (adj.) SS 

= 63,513,101.24 - 1,541,779.08 - 45,726,281.24 
- 10,600,991.62 = 5,644,049.30. 

sTEP 8. Compute the block (adj.) mean square and the intrablock error 
mean square as 

MSB = 10,600,991.62= 662,561.98, and
16 

MSE - 5,644,049.30 100,786.59. 
56 

sTEP 9. Enter all values of sum of squares and mean squares computed in 
steps 4 to 8 in the analysis of variance. The final result is shown in table 3.21. 

http:100,786.59
http:5,644,049.30
http:662,561.98
http:10,600,991.62
http:5,644,049.30
http:10,600,991.62
http:45,726,281.24
http:1,541,779.08
http:63,513,101.24
http:10,600,991.62
http:3,198,864.70
http:7,402,126.92
http:7,402,126.92
http:669,423.08
http:15,364,390.84
http:23,435,940.84
http:669,423.08
http:15,364,390.84
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Table 3.21 Analysis of variance of grain yield data of table 3.18. 

Source Degrees Sum Meaof 
variation 

of of squalfreedom squares 

Replication 3 1,541,779.08Treatment 24 45,726,281.24Block (adj.): 16 10,600,991.62 662,561Component (a) (8) 7,402,126.92
Component (b) (8) 3.198,864.70

Intrablock error 56 5,644,049.30 100,78E 
Total 99 

STEP 10. Calculate the adjustment factor 

p(MSB - MSE) 
= k[(r - p)MSB - (p - I)MSEJ 

2(662,561.98 - 100,786.59) 
5[2(662,561.98) - (100,786.59)] 

= 0.15759. 
Multiply the adjustment factor, p, to each C value in table 3.20. The resu 

are presented in the last column of table 3.20. 
STEP II. Calculate the adjusted treatment totals as 

T(adj.) = T + ZpC 
where the summation runs over all blocks in which the particular treatme 
appears. For example, the adjusted treatment total for treatment number I
computed from data of tables 3.19 and 3.23 as 

Adjusted treatment total of treatment number I 
= 22,188 + (6.15 - 1,006.69) 
= 21,188. 

The results of all adjusted treatment totals are shown in table 3.22. 
STEP 12. For the F-test, compute the adjusted treatment sum of square!
Treatment (adj.) SS = treatment (unadj.) SS 

- ,(B) 1 
- k(nl - I), (n1- l)(l i - B41. 

Table 3.22 Adjusted treatment total for data of tables 3.18 and 3.19. 
Treatment Treatment Treatment Treatment Treatment 

no. total no. total no. total no. total no. total 
1 
6 

11 
16 
21 

21,188 
20.424 
21,446 
27.002 
21.028 

2 
7 

12 
17 
22 

21,652 
22.590 
23.325 
26.590 
26,364 

3 
8 

13 
18 
23 

25,851 
24,233 
22,727 
28,863 
28,989 

4 
9 

14 
19 
24 

22,824 
19.738 
22,711 
21,163 
26,740 

5 
10 
15 
20 
25 

29,37 
23,87 
24,75 
26,41 
26,56 

http:1,006.69
http:100,786.59
http:5[2(662,561.98
http:100,786.59
http:2(662,561.98
http:5,644,049.30
http:3.198,864.70
http:7,402,126.92
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where Ba is the component (b) SS and B, the row SS used for computing com­
ponent (a) SS in step 6. Hence, we have 

Treatment (adj.) SS = 45,726,281.24 - 5(l)(0.15759)
 
2(15,364,390.84) _ 1,198,864.7
 

()[I + 5(0.15759)]
 
= 11,021,656.58.
 

The F-test then is
 

treatment (adj.) SS/(k 2 
- 1)
 

intrablock error MS
 
11,021,656.58/24 = 14.35.
 

100,786.59
 

Compare the observed F-value with a tabular F-value with k2 - I = 24 and 
(k - l)(rk - k) = 56 degrees of freedom at a specified level of significance. 
Here the observed F-value is greater than the corresponding F-value at 1%, 
level of significance, indicating highly significant differences among treatments. 

STEP 13. The effective error mean squares appropriate for making tests on 
comparisons among treatment means are computed for treatments of the 
same block as 

Effective error MS 	= MSE[I + (n- )pj
 
= 100,786.59[l + (0.15759)]
 
= 116,669.62, and
 

for treatments not of the same block as 

Effective error MS 	= MSE[I + np]
 
= 100,786.59[1 + 2(0.15759)]
 
= 132,552.64.
 

For most practical purposes, especially when the experiment is large, the 
average error MS can be used for all comparisons among treatments. The 
average effective error MS is computed as 

+ 2(5)(0.15759)jMSEI + nkl I]=] 100,786.59[1 6MSL k + 

= 127,258.30. 

STEP 14. Compute the gain in precision relative to randomized complete 
block design as 

100 1R.E. [ block (adj.) MS + intrablock error MS][
r(k - 1) + (k - l)(rk - k - I) Av. effective error MS 

o[10,600,991.62 + 5,644,0793 ][ 10 1
 
72 127,258.30
 

= 177.3%.
 

http:127,258.30
http:o[10,600,991.62
http:127,258.30
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CHAPTER 4 

Two-factor experiments 

4.1 INTRODUCTION 

Since biological organisms are simultaneously exposed to various factors 
during their lifetimes, single-factor experiments are sometimes criticized for 
their narrowness. The usual criticism is that single-factor experiments are not 
realistic since the response of organisms to a single factor varies with changes 
in other factors. Thus, many biological experiments involve several variable 
factors considered simultaneously instead of one at a time. In this chapter 
we shall examine some experimental designs useful in experiments where two 
factors are examined simultaneously. 

4.2 FACTORIAL EXPERIMENTS 

Factorial experiments are characterized by treatments that are composed of 
all possible combinations of levels in each of two or more factors. The simplest 
example is one with two factors each at two levels, e.g., the response of two 
varieties of rice to two levels of nitrogen. The treatments for such an experi­
ment might be: 

Variety A at 0 kg N/ha
 
Variety B at 0 kg N/ha
 
Variety A at 60 kg N/ha
 
Variety B at 60 kg N/ha
 

Note that the term 'factorial' merely specifies how the treatments are formed. 
It does not in any way describe how the treatments are to be arranged in the 
experimental plots as any design should. Thus, a factorial should not be 
confused with a design. Indeed, a factorial experiment still needs to be fitted 
to a particular design. For instance, if the rice-nitrogen example were fitted 
into a randomized complete block design, then the correct description would 
be a factorial experiment in the randomized complete block design. 

A major advantage of factorial experiments over single-factor experiments 
is their versatility to evaluate response to simultaneous changes in several 
factors. This ushers in an important concept referred to as inhteraction. When 

55 
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Table 4.1 Hypothetical examples of (a) no interaction between 
variety and nitrogen effects and (b) the presence of an 
Interaction. 

Variety 
Rice yield (kg/ha) 

0 kg N/ha 60 kg N/ha Average 

(a) no interaction 
A 10 30 20 
a 20 40 30 

Av. 15 35 

(b) interaction present 
A 10 30 20 
B 20 20 20 

Av. 15 25 

two variable factors are being evaluated in a single experiment, one of two 
things can happen: either the change in one factor does not influence the 
relative effects of the other factor (the two factors do not interact with each 
other) or the relative effects of one factor depend upon the level of another 
factor (one factor interacts with the other). The size of this interaction can be 
measured only if the factors are tested together in a factorial experiment. To 
illustrate, let us use the previously described experiment involving two vari­
eties of rice and two levels of nitrogen. Table 4. Ia shows a hypothetical case 
in which the two factors do not interact, while table 4.1b shows a case where 
there is interaction. 

When there is no interaction, the relative yield of one factor (e.g., variety) 
remains the same regardless of the level of the other factor (e.g., nitrogen). 
Thus, in table 4.1a the difference between the two varieties remains the same 
at both 0 N and 60 N. That is, the yield of variety B relative to variety A is 
10 units higher at both fertilizer levels. Similarly, the application of 60 kg N/ha 
increased yield of both varieties A and B by 20 units. 

Table 4. 1b shows the case where varieties interact with fertilizers. Variety 
B is better yielding at 0 N, but variety A is better at 60 N. In other words, the 
relative performance of the two varieties at the two levels of nitrogen are not 
similar. Likewise, while the application of 60 kg N/ha increased the yield of 
variety A by 10 units, it did not change the yield of variety B. When there is 
an interaction between two factors, two single-factor experiments (one on 
fertilizer and another on varieties) conducted separately would not have re­
vealed as complete information as that obtained from a factorial experiment 
involving the two factors. If the two varieties were compared in a single-factor 
experiment, the researcher would have used only one fertilizer level. But the 
decision as to which of the two varieties is better depends upon whether 0 or 
60 kg N/ha was used. This illustrates how limited, and even at times misleading, 
the information from a single-factor experiment can be. When interaction is 
present, a factorial experiment would not only give a broader basis for com­
paring the varieties but would also give additional information concerning 
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Level foctor A 

(a) (b) (c) 

0 I 
0 I 0 I 0 

Level of foctor 8 

Fig. 4.1 Graphical illustration of various degrees of interactions between two factors, A and B, 
each at two levels: (a) no interaction; (b) mild interaction; and (c) strong interaction. 

the desirable fertilizer rate for each of the two varieties. It is thus advisable 
that a factorial experiment, instead of several single-factor experiments, be 
conducted whenever possible. 

Figure 4.1 illustrates graphically three types of relationship between two 
factors at two levels each: Figure 4. la shows no interaction, while figure 4.lb 
shows a mild interaction where rankings do not change in spite of the difference 
in response to factor A as factor B changes, and figure 4. 1c shows an extreme 
interaction where the size of the response in factor A is reversed as factor B 
changes. 

Because of the wide range of factors that affect biological organisms and 
because of the need to characterize these effects both separately and in 
relation to one another, factorial experiments are of major importance and 
are commonly used in agricultural experiments. This does not imply, however, 
that one should use factorial experiments uncritically since factorial experi­
ments are usually much larger and therefore more complex and costly to con­
duct than several single-factor experiments. Furthermore, it is not wise to 
commit oneself to a large experiment at the investigation's beginning when 
several small preliminary experiments may indicate promising approaches. 

For example, a plant breeder has collected, say, 30 new varieties from a 
neighboring country. He wants to assess the reaction of these new materials 
to the local environment. Since the local environment may vary in terms of 
soil fertility, moisture levels, etc., the ideal case would have been to test the 
30 varieties in a factorial experiment involving such other variables as ferti­
lizer, moisture, and population density, The experiment, however, becomes 
very large as factors other than varieties are added. Even if only three levels 
of nitrogen were included, the number of treatments would have increased 
from 30 to 90. This size will mean difficulties in financing, land area, control 
of soil heterogeneity, etc. Thus, usually the 30 varieties are tested under one 
environment first, then these results are used to discard the obviously poor
varieties and to select a few varieties for a more detailed study. Such a prelimi­
nary test, for example, may show that only five varieties are outstanding 
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Table 4.2 The 3x5 factorial treatments (treatment combinations 
of three rice varieties and five nitrogen levels). 

Nitrogen level Variety
 
(kg/ha)
 

6966 P1215936 Milfor 6(2)

(V,) (Va) (V3)
 

0 (No) NoV, NoV2 NOV,
 
40 (N1) N,V, N,V3 NV,
 
70 (N,) N3V, N2V,
N3V3

100 (N ) N3V, NV N V,
 
130 (N.) N4V, N.V NV,
 

enough to warrant further testing. These five varieties could then be put into 
a factorial experiment with three levels of nitrogen, resulting in a smaller 
experiment with 15 treatments. Thus, while a factorial experiment will, without 
question, be more informative than single-factor experiments, practical con­
siderations could limit its use. 

In most instances preliminary experiments are very helpful in reducing the 
levels to be considered in each variable so that the final number of treatments 
is small enough to be within the limit of the resources of the experimenter. 

4.3 	 A TWO-FACTOR EXPERIMENT IN RANDOMIZED 
COMPLETE BLOCK DESIGN: AN EXAMPLE 

Any of the basic designs for single-factor experiments can be applied directly 
to a factorial experiment. The combination of all the factors involved results 
Table 4.3 Grain yield of three rice varieties under five levels of nitrogen. 

Nitrogen level 	 Grain yield (t/ha) Treatment
(kg /h a ) . . . . . . . .. .. .. . . . . . . . . . . 

Block Block Block Block Total Mean 
II III IV 

6966 
0 3.852 2.606 3 144 2.894 12.496 3.124 

40 4.788 4.936 4.562 4608 18.894 4723 
70 4.576 4,454 4884 3,924 17838 4.460 

100 6.034 5.276 5.906 5.652 22.868 5.717 
130 5.874 5916 5984 5518 23292 5823 

P1215936 
0 2.846 3794 4108 3.444 14192 3.548 

40 4.956 5.128 4150 4.990 19.224 4.806 
70 5928 5.698 5.810 4308 21 744 5436 

100 5.664 5.362 6.458 5.474 22958 5.740 
130 5.458 5.546 5786 5.932 22.722 5.680 

Mi/for 6(2) 
0 4192 3.754 3738 3428 15.112 3778 

40 5.250 4.582 4.896 4286 19.014 4754 
70 5.822 4.848 5.678 4.932 21.280 5.320 

100 5.888 5.524 6.042 4756 22.210 5.552 
130 5.864 6.264 6056 5.362 23.546 5.886 

Block total 76.992 73.688 77.202 69.508 
Grand total 297.390 
Grand mean 4.956 
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in the total number of treatments, and the randomization schemes are applied 
as if the treatments are unrelated. 

An illustration will be given of a two-factor experiment, involving five 
levels of nitrogen and three rice varieties (table 4.2), conducted by the Depart­
ment of Agronomy, IRRI, at Maligaya Experiment Station. Nueva Ecija, in 
the 1965 wet season. A randomized complete block design with four replica­
tions was used. The field layout is shown in figure 4.2, and data on grain yield 
are given in table 4.3. Note that the layout was constructed using the procedures 
outlined in section 3.3.2 for it randomized complete block design with 15 
treatments. 

The steps in the computation are as follows: 
STEP I. Compute treatment totals, treatment means, and the grand total 

as shown in table 4.3. 
STEP 2. Let r be the number of replications, t, be the number of varieties, 

and n be the number of nitrogen levels. Construct an outline of the analysis 
of variance as follows: 

Source 
of 

variation 

Degrees 
of 

freedom 

Sum 
of 

squares 

Mean 
square 

Observed 
F 

Tabular F 

5". Va, 

Block 
Variety 
Nitrogen 

r- I = 3 
v - I = 2 
it - I = 4 

Variety x 
nitrogen 

(v-
= 

l)(n 
8 

- I) 

Error (r­
= 

I)(vn 
42 

- I) 

Total rvn - I = 59 

STEP 3. Enter the 15 treatment totals in the two-way table (table 4.4). 
STEP 4. Calculate the various sums of squares as follows: 

(grand total) 2 

C.F. = 
total number of observations 

- 1,474.014,(297390)2 

Total SS 	 = JX 
2 - C.F. 

= [(3.852)2 + (2.606)2 + ... + (5.362)2] - C.F. 
= 1,527.544 - 1,474.014 = 53.530, 

Block SS = 	 C.F. 

= (76.992)2 + ... + (69.508)2 _ C.F. 
(3)(5) 

= 1,476.613 - 1,474.014 = 2.599, 
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VN 2 VaN, V1N4 V1N, V2 N,
 

BLOCKI V,N3
VN o V3N4 V1N2 V3N3
 

V3N, VN
V2N4 V2 No o V2N2
 

V2 N, VN, V2 N VN,
V3 N3 o 


BLOCK II VN	 VN,3 V3 N2 VN 2 V2 N4 

VN 0 V3 N4 V2 N2 V3 N V 3 N 

VN, V3No V3 N, V,N4
VN 0 

BLOCK III V.N, V,N V,N, VN,2 VN 4 

V2 No V3 N2 V2 N, V2 N, VN 3 

V2N, V2 N
VN 2 V2 N2 VN 0 o
 

BLOCK IV V3 N, VN 4, VN, V2 N,
VN 3 


V3 No V2 N, 
 V3N2 V3 N 3 V3 N,
 

Fig. 4.2 Field layout of the 3 x 5 factorial experiment in a ran­
domized complete block design with four replications. 

Treatment SS = X(treatment total)2 _ C.F. 
I. 

= (12.496)2 + ... + (23.546)2 - C.F. 
4 

= 1,518.592 - 1,474.014 = 44.578, 
Error SS 	= total SS - block SS - treatment SS
 

= 53.530 - 2.599 - 44.578 = 6.353,
 

Variety SS = (variety total)2 _ C.F. 
rtz 
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Table 4.4 The variety x nitrogen table of totals from data in table 4.3. 

Nitrogen Yield total (t/ha) 

Nitrogen
V, V, V3 total 

N. 12.496 14.192 15.112 41.800
N, 18.894 19.224 19.014 57.132
N2 17.838 21.744 21.280 60.862
N3 22.868 22.958 22.210 68.036
N4 23.292 22.722 23.546 69.560 

Variety total 95.388 100.840 101.162 297.390 

= (95.388)2 + (100.840)2 + (101.162)2 - C.F. 
(4)(5) 

= 1,475.066 - 1,474.014 = 1.052, 
Nitrogen SS = (nitrogen total) 2 _ C.F. 

rv 

= (41.800)2 + "" + (69.560)2 - C.F. 

(4)(3) 

= 1,515.248 - 1,474.014 = 41.234, and 
Variety x nitrogen SS = treatment SS - variety SS - nitrogen SS 

= 44.578 - 1.052 - 41.234 = 2.292. 

sTP 5. Calculate mean squares by dividing each SS by its d.f. 
sTm, 6. Compute observed F-values by dividing the mean square for each 

source of variation by the error mean square.
STEP 7. Look up the corresponding tabulated F-values. 
STEP 8. Enter all values obtained in steps 4-7 in the analysis of variance. 

The results are shown in table 4.5. 

4.4 SPLIT-PLOT DESIGN 
A group of designs developed specifically for factorial experiments is the 
split-plot design. This design's basic feature is the use of two plot sizes, one 

Table 4.5 Analysis of variance on data Intable 4.3.1 

Source 
of 

variation 

Degrees 
of 

freedom 

Sum 
of 

squares 

Mean 
square 

Observed 
F 

Tabular F 

5% 1% 

Block 
Variety 
Nitrogen 
Variety x nitrogen 
Error 

3 
2 
4 
8 

42 

2.599 
1.052 

41.234 
2.292 
6.353 

0.526 
10.308 
0.286 
0.151 

3.48" 
68.26" 

1.89 n' 

3.22 
2.59 
2.17 

5.15 
3.80 
2.96 

Total 59 53.530 

" = significant at 1%level; *= significant at 5%level; ns = not significant. 
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each for the two variables under study. For example, one for variety and one 
for nitrogen level. The larger plot size is called the mainplot. The number of 
mainplots in a replication corresponds to the levels of the first factor. Each 
mainplot is subdivided into smaller size plots, called subplots, such that the 
number of subplots in each mainplot corresponds to the levels of the second 
factor. Thus, the relative size of the mainplot and the subplot depends upon the 
level of the factor assigned to the subplots. 

Using two plot sizes results in two levels of precision, one for the mainplot 
and one for the subplot. Tile expected precision for the mainplot is lower than 
that for the subplot. In other words, smaller differences can be detected among 
subplot treatments than anong the mainplot treatments. Consequently, a 
careful consideration of the relative importance of the factors involved should 
be made before utsing the design. For example, do you want more precision 
in varietal comparisons or nitrogen level comparisons? 

The split-plot design is recommended for use when: 

1. The ipraclical limit for plot size is utch larger in one faictor compared with the other. 
For example. in ani experiment to c aloatc isater nartaglcns and poptlation densities, 

practical conside rations necessitate using larger plots for water managenents. Water manage­
ment levels could then he assigncd to the nainplot i\hile population densities are allocated to 
the subplot. 

2. Greater precision is desired in one fhctor relative to the other. For example, in a study 
to evaluate the performance of \arielies at eeral fertilizer levels. if the factor of primary 
importance is the variety rather than the fertilizer level, then fertilizer level should be assigned 
to the mainplot and varieties to the so hplot 

4.4.1 Randoniization and layout 
The randomization in a split-plot design is a two-stage one. It involves assign­
ing the levels of the first ftctor to the mainplot in accordance with any of 
the basic designs discussed in chapter 3. This is followed by a random assign­
ment of the levels of the second factor to the subplots in each mainplot. In other 
words, there are two separate randomization processes: one for the mainplots 
and another for the subplots. For illustration, consider a factorial experiment 
with six levels of nitrogen as mainplots and four rice varieties as subplots 
arranged according to a randomized complete block design with three replica­
tions. 

The steps in the randomization are as follows: 
First, divide the experimental area into three blocks of equal size. Each of the 

three blocks is further subdivided into six mainplots. Starting with the first 
block, allocate at random the six levels of nitrogen fertilizer (N,, N,, N2, N3 , 
N4, N,) to the mainplots. Repeat the process for the other two blocks indepen­
dently. Hypothetical results are shown in figure 4.3. 

Note that up to this stage, the randomization scheme is merely one of assign­
ing six treatments with three replications in randomized complete block 
manner. 

Next, divide each of the 18 mainplots (six mainplots from each of the three 
blocks) into four subplots. Assign the four varieties ( 1 , V2, V3, 1/4) at random 
to the four subplots in each mainplot. This process is repeated independently 



Two-factor experiments 63 

N. N. 	 N, N. N. N., N, N. N. N. N,, N: N. N, N, N, N:, N., 

I~~ I 	 I I _ _ TI I 
BLOCK I 	 BLOCK II BLOCK Ill 

Fig. 4.3 	 Random assignment of nitrogen levels to main plots. 

18 times since there are 18 mainplots. The layout of this particular experiment 
is given in figure 4.4. 

Note that the randomization procedure assures that all the subplots com­
posing a mainplot are adjoining each other. Thus, in our example, all four
varieties in each vertical strip received the same fertilizer level. This strip,
then, is considered as only one plot (mainplot), for fertilizer treatment, but is 
composed of four separate plots (subplots), for varieties. 

4.4.2 Analysis of variance 
For illustration we will use data on grain yield from an experiment involving
six levels of nitrogen and four rice varieties conducted in 1969 at Mufioz,
Nueva Ecija (table 4.6). A split-plot design was used with the six levels of
nitrogen as mainplots and the four rice varieties as subplots. The mainplot
treatments were arranged according to the randomized complete block arrange­
ment with three replications. Thus, the layout would be similar to that in 
figure 4.4. 

Let n represent the levels of the mainplot treatment (nitrogen) and v repre­
sent the subplot treatment (variety). The steps involved in constructing the 
analysis of variance of a split-plot design are: 

STEP I. Compute 

C.F. 	= (grand total)2 

total number of observations 
N,, N3 N, N0 N, N2 N, N. N5 N, N, N3 N. N, N, N, N3 N,2 

V2 V, V1 V2 V4 V, V1 V4 V3, V, V1 V3 V4 V Va V1 V2 V1 

V1 V4 V2 V3 VI V V3 V1 V4 V- V4 V- 2 V; V4 V, V, V 

V3 V2 V- V1 VI V1 V2 V, V1 V4 V." V4 V1 V1 V4 V2 V4 V2 

V4 V3 V3 V4 V V. V4 V V :V3 V3V1 V3 V2 V, V4 VI V: 

BLOCK I BLOCK II BLOCK Ill 

Fig. 4.4 Hypothetical layout of a split-plot design for testing four rice varieties (subplot) at six
nitrogen levels (mainplot) in three replications. 
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_ (394,481)2 
72 

= 2,161,323,047, and 

Total SS = YX 
2 - C.F. 

= [(4,430)2 + ... + (2,014)2 ] - 2,161,323,047 
- 204,747,916. 

sTp 2. Construct an outline of the analysis of variance as follows: 

Source Degrees Sum Mean Observed Tabular F
of 

variation 
of 

freedom 
of 

squares 
square F 

5% 1% 

Block r- I = 2 
Nitrogen n - I = 5 
Error (a) (r ­ 1)(n - I) = 10 
Variety r- I = 3 

Nitrogen 
variety 

x 
(n - 1) (i, - I) = 15 

Error (b) n(r - l)(v - I) = 36 

Total rnv - I = 71 

STEP 3. The computation of sum of squares will be separated into two parts: 
mainplot and subplot.

(a) Mainplot analysis. First, construct the two-way table of mainplot totals 
(block x nitrogen table of totals) as in table 4.7. Then, compute the following 
SS's: 

XB2Block SS - C.F. 
nv
 

= (128,873)2 + ... + (130,004)2 _ 2,161,323,047 
(6)(4) 

= 1,082,577, 
Nitrogen SS - YN 2 - C.F. 

rv 

_ (48,670)2 + ... + (69,561)2 _2,161,323,047 
(3)(4) 

= 30,429,200, and 
Erro _(NB)Y(a SS-

Error (a)SS -
2 . C.F. - block SS - nitrogen SS 

_ (15,964)2 + ... + (22,318)2 _2,161,323,047 ­

(4) 
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Table 4.6 Grain yield data for four rice varieties grown undersix levels of nitrogen in three replications. 

Variety Grain yield (kg/ha) 

Rep. I Rep. II Rep. III 

IR8 (V) 
IRS (V.) 
C4-63 (V,) 
Peta (V 4 ) 

4.430 
3.944 
3.464 
4.126 

N, (0 kg N/ha)
4.478 
5,314 
2.944 
4.482 

3.850 
3.660 
3.142 
4.836 

IR8 
IR5 
C4-63 
Peta 

5.418 
6,502 
4.768 
5,192 

N. (60 kg N/ha) 
5.166 
5.858 
6.004 
4.604 

6.432 
5.586 
5.556 
4,652 

1R8 
IR5 
C4-63 
Pete 

6.076 
6,008 
6.244 
4.546 

N3 (90 kg N/ha)
6.420 
6.127 
5,724 
5,744 

6.704 
6.542 
6.014 
4.146 

1R8 
IRS 
C4-63 
Pete 

6.462 
7.139 
5.792 
2,774 

N 4 (120 kg N/ha)
7.056 
6.982 
5.880 
5.036 

6.680 
6.564 
6.370 
3.638 

IR8 
IRS 
C4-63 
Peta 

7,290 
7,682 
7.080 
1,414 

N. (150 kg N/ha)
7.848 
6,594 
6,662 
1.960 

7,552 
6.576 
6.320 
2.722 

IR8 
IRS 
C4-63 
Peta 

8.452 
6.228 
5,594 
2.248 

N. (180 kg N/ha) 
8.832 
7.387 
7.122 
1.380 

8.818 
6.006 
5,480 
2.014 

1,082,577 - 30,429,200 

= 1,419,678. 
Note that this analysis is exactly the same as that of a randomized complete
block with three replications and six treatments.
(b) Subplot analysis. Construct the two-way table of treatment totals(mainplot x subplot), as shown in table 4.8. Then, compute the following
SS's: 

Variety SS ­ - C.F. 
ra 

- (117,964)2 + ... + (65,558)2 ­ 2,161,323,047 
(3)(6) 

= 89,888,101, 

Variety x nitrogen SS (VN) 2 C.F. - variety SS - nitrogen SS r 
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Table 4.7 The block x nitrogen table of yield totals computed from the data of table 4.6. 

Yield total (kg/ha) 
Nitrogen 

Block I Block II Block III N total 

N, 15,964 17.218 15,488 48,670 (N,) 
N, 21,880 21.632 22.226 65,738 (N2 ) 
N= 22.874 24,015 23.506 70,395 (N 3 ) 
N4 22.167 24,954 23.252 70,373 (N 4) 
N6 23,466 23,064 23,214 69,744 (N6 ) 
N6 22.522 24.721 22,318 69,561 (N6 ) 

Block total 128,873 135,604 130.004 
Grand total 394,481 

Table 4.8 The nitrogen x variety table of yield totals computed from the data of table 4.6. 

Yield total (kg/ha) 
Nitrogen 

V, V V, V. N total 

N, 12,758 12.918 9.550 13,444 48.670 (N,) 
N., 
N, 

17,016 
19.200 

17.946 
18.777 

16.328 
17,982 

14,448 
14.436 

65,738 (N2 ) 
70.395 (N 3 ) 

N4 20.198 20.685 18,042 11.448 70,373 (N4) 
N6 22.690 20.852 20.062 6,140 69.744 (Ne) 
N6 26,102 19.621 18.196 5,642 69.561 (N6 ) 

Variety total 17,964 110,799 100.160 65,558 
Grand total 394.481 

(12,758)2 + ... + (5,642)2 2,161,323,047
3 

- 89,888,101 - 30,429,200 

= 69,343,487, and 

Error (b) SS = total SS - the sum of all other SS's 
= 204,747,916 - (1,082,577 + 30,429,200 + 1,419,678 + 

89,888,101 + 69,343,487) 
= 12,584,873. 

STEP 4. Compute mean square for each source of variation by dividing 
the sum of squares by its corresponding degrees of freedom as follows: 

30,429,200Nitrogen MS 54, = 6,085,840, 

1,419,678Error (a) MS 10 = 141,968, 

89,888,101
Variety MS - = 29,962,700, 

3 

Nitrogen x variety MS =69,343,487 4,622,899, and 
15 
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12,584,873
 
Error (b) MS - =-3349,580.
36
 

STEP 5. Compute the observed F-values. The block and mainplot treatment 
(in this instance, nitrogen) effects are tested using error (a), while the subplot 
treatment (variety) and the interaction effects are tested with error (b). Thus, 

Ffor nitrogen = 6,085,840 - 42.87,
141,968 

F for variety = 29,962,700 85.71, and349,580 

F for interaction = 4,622,899 = 13.22.349,580 

STEP 6. Compute the coefficients of variation. Since the split-plot analysis 
has two error terms, there are also two coefficients of variation to be computed, 
one for the mainplot analysis, cv(a), and another for the subplot analysis. cv(b). 

cv(a) =/error (a) MS x100 14,968-69 an ..= el3X 0 .. x 100 = 6.9",,), and 
grand mean 5,479 

cv(b) = x 100 = x 100 = 10.8/,.incrarr
grand mean 5,479 

The cv(a) indicates the degree of precision attached to the measurement of 
the mainplot treatment effects and the cv(b) the precision of the subplot 
treatment and interaction effects. Usually we would expect cv(b) to be smaller 
than cv(a) since, as indicated earlier, the factor assigned to the mainplot is 
measured at relatively lower precision than those assigned to the subplot. This 
trend does not always hold, however, as shown by the present example. The 
cause for such an unexpected outcome is beyond the scope of this book. You 
should consult a competent statistician if such results frequently occur in your 
experiments. 

STEP 7. Enter all values obtained from steps I to 6 in the analysis of variance 
table. The completed result is given in table 4.9. Compare the observed F­
values with their corresponding tabular values and indicate its significance by 
appropriate asterisk (see section 3.2). In this instance, all the three effects (N, 
V,and N x I,') are highly significant. When the interaction is significant, the 
interpretation of the results becomes complicated and procedures given in 
section 6.5 should be followed. 

4.5 STRIP-PLOT DESIGN 

When the levels of the second factor are laid out in strips, instead of being 
randomized independently within each mainplot, as in the split-plot design, 
the resulting design is referred to as strip-plot design. This design isappropriate 
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Table 4.9 Analysis of variance for grain yield data of table 4.6.1 
Source Degrees Sum Mean Computed Tabular Fof of of squarevariation freedom squares F 

5% 1% 
Block 2 1,082,577 541,228Nitrogen (N) 5 30,429,200 6,085,840 42.87' 3.33 5.64Error (a) 10 1,419,678 141,968Variety (V) 3 89,888,101 29.962,700 85.71 2.86 4.38N x V 15 69,343,487 4,622,899 13.22"" 1.96 2.58Error (b) 36 12,584,873 349,580 

Total 71 204,747,916 

'cv(a) = 6.9%; cv(b) = 10.8%; = significant at the 1%level. 

for experiments where both factors need relatively large plots, and it is accom­
plished by dividing the block first into horizontal strips for one factor and then 
dividing the block into vertical strips for the second factor.

The strip-plot design sacrifices precision on the main effects of both factors.
On the other hand, the interaction is measured more accurately than is possible
with either a randomized complete block or a split-plot design. Thus, the strip­
plot design is appropriate for experiments where (1) practical consideration
necessitates relatively large plots for both factors, or (2) the interaction of the 
two factors is the principal object of study. 

4.5.1 Randomization and layout

First, 
one factor is randomly allocated to the horizontal strips and then the
second factor is randomly allocated to the vertical strips.

Consider an experiment involving six rice varieties and three nitrogen levels
using a strip-plot design with three replications. After dividing the area into

three blocks, the randomization 
 scheme starts by assigning the six varieties
 
to horizontal strips. The result is shown in figure 4.5.
 

V. V4 V" 

V. V., V. 
V3 V6 V, 
V. V3 V4 

V, 
 V, 
 V6 

V1 V" V, 

BLOCK I BLOCK II BLOCK III 
Fig. 4.5 Random assignment of six varieties to the horizontal strips in strip.plot
design. 
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Then proceed to allocate randomly the three nitrogen levels to vertical strips.
 
The final layout is shown in figure 4.6.
 
Note that you can assign either the vertical or the horizontal strips first.
 

4.5.2 Analysis of variance 
Data from the experiment whose layout is described in the previous section 
(table 4.10) will be used to illustrate the analysis of variance. Using v as the 
number of varieties and n as the levels of nitrogen, the steps in computing the 
analysis of variance are: 

STEP 1. Construct an outline of the analysis of variance as follows: 

Source Degrees Sum Mean Observed Tabular F 
of of of square F 

variation freedom squares 51,, 1%/ 

Block r - I = 2 
Variety , - I = 5 
Error (a) (r - 1)(r - I) 

= 10 

Nitrogen i - I = 2 
Error (b) (r - 1)(n - i) 

=4 

Variety x (, - I)(n - 1)
 
nitrogen = 10
 
Error (c) (r - 1)(n - 1)(i - I)
 

= 20 

Total r- I = 53 

STEP 2. Compute the sums of squares. As usual, we start out with computing 

tt (grand total) 2 

C.F. 
total number of observations 

N, N, N. N3 N. N1 N3 N1 N2 

V, V" V. 

V. V.2 V. 

V3 V" V3 

V.2 V3 V4 

V4 V, V. 

V, V" V, 

BLOCK I BLOCK II BLOCK III 

Fig. 4.6 A hypothetical layout of a strip-plot design with six varieties and three 
nitrogen levels in three replications. 
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Table 4.10 Data on grain yields of six rice varieties grown 
under three nitrogen levels and under broadcast condition. 
1969 dry season. 

Nitrogen Yield total (kg/ha) 
level 

(kg/ha) 
. 

Block I Block II Block III 

0 (N,) 
60 (N3 ) 

120 (N3 ) 

2,373 
4.076 
7,254 

IR8 (V,) 
3.958 
6,431 
6,808 

4.384 
4,889 
8,582 

0 (N,) 
60 (N3) 

120 (N3) 

4,007 
5,630 
7,053 

IR127-80 (V2) 
5.795 
7,334 
8.284 

5,001 
7.177 
6,297 

IR305-4-12 (V3 ) 

0 (N,) 
60 (N2 ) 

120 (N3) 

2,620 
4,676 
7,666 

4.508 
6.672 
7,328 

5,621 
7.019 
8.611 

0 (N,) 
60 (N3) 

120 (N,) 

2.726 
4,838 
6,881 

IR400.2-5 (V,) 
5,630 
7.007 
7.735 

3,821 
4,816 
6,667 

IR665.58 (V,) 

0 (N,) 
60 (N3) 

120 (N1) 

4,447 
5,549 
6,880 

3,276 
5,340 
5.080 

4,582 
6,011 
6,076 

Pete (V,) 

0 (N,) 
60 (N3) 

120 (N3) 

2,572 
3,896 
1,556 

3.724 
2,822 
2,706 

3,326 
4.425 
3,214 

(285,657)2 

54 

= 1,511,109,660, and 

EX 2Total SS 	 = - C.F. 
= [(2,373)2 + ... + (3,214)21 - 1,511,109,660 
= 167,005,649. 

The analysis of variance of a strip-plot design has three parts, the first part 

for factor A, the sccond for factor B, and the third for the interaction between 
factors A and B. The computation of the sums of squares will be made separately 
for each part as follows: 

(a) Factor A analysis. Construct the block x variety table of total, as in 
table 4.11. Then, compute 

YB 2Block SS 	= - C.F.
I'll 

(84,700)2 	 + (100,438)2 + (100,519)2 _
(6)(3) 1,511,109,660 

(6)(3)
 
=9,220,962. 
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Table 4.11 The block x variety table of yield totals from data of table 4.10. 

Yield total (kg/ha)
Variety
 

Block I Block II 
 Block Ill Total 
V, 13,703 17,197 17.855 48,755 (V,)V2 16,690 21,413 18,475 56.578 (V 2 )V, 14,962 18.508 21.251 54.721 (V)V. 14,445 20,372 15.304 50,121 (V4 )V. 16.876 13.696 16,669 47.241 (V.)V. 8.024 9,252 10,965 28.241 (V.) 

Block total 84.700 100.438 100,519 

Variety SS - _ _ - C.F. 
rn 

= (48,755)2 + ... + (28,241)2 - 1,511,109,660 
(3)(3)
 

= 57,100,201, and
 

Error (a) SS ­ (B V)2 - C.F. - block SS - variety SS 
I) 

= (13,703)2 + ... + (10,965)2 _ 1,511,109,660 
3 

- 9,220,962 - 57,100,201 
= 14,922,620. 

(b) Factor B analysis. Construct the block x nitrogen table of yield totals 
as in table 4.12. Then, compute
 

Nitrogen SS - ZN 2 
- C.F.
 

r t 

(72,371)2 + (98,608)2 + (114,678)2 _1,511,109,660 
(3)(6)
 

= 50,676,061, and
 

Error (b) SS - (BN)2 
- C.F. - block SS - nitrogen SS 

V 

Table 4.12 The block x nitrogen table of yield totals computed from data of table 4.10. 

Yield total (kg/ha)
Nitrogen
 

Block I Block II 
 Block Ill N total 
N, 18,745 26,891 26.735 72,371 (N,)N2 28,665 35,606 34.337 98,608 (N)N, 37,290 37,941 39,447 114,678 (N,) 

Block total 84,700 100,438 100,519Grand total 285,657 
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Table 4.13 The variety x nitrogen table of yield totals computed 
from data in table 4.10. 

Yield total (kg/ha) 
Variety 

N, N2 N3 

V, 
V, 
V, 

10,715 
14,803 
12,749 

15,396 
20,141 
18,367 

22,644 
21,634 
23,605 

V4 
V. 

12,177 
12,305 

16,661 
16,900 

21,283 
18,036 

V. 9,622 11,143 7,476 

(18;745)2 + ... + (39,447)2 1,511,109,660 
6 

- 9,220,962 - 50,676,061 

= 2,974,909. 

(c) FactorC analysis. Construct the variety x nitrogen table of yield totals 
as in table 4.13. Then, compute 

Variety x nitrogen SS = E,( VN) 2 _ C.F. - variety SS --nitrogen SS 
r 

= (10,715)2 + ... + (7,476)2 - 1,511,109,660
3 

- 57,100,201 - 50,676,061 

= 23,877,980, and 

Error (c) SS = total SS - the sum of all other SS's 
= 167,005,649 - (9,220,962 + 57,100,201 + 14,922,620 

+ 50,676,061 + 2,974,909 + 23,877,980) 
= 8,232,916. 

STEP 3. Compute the mean square for each source of variation by dividing 
each SS by its degrees of freedom: 

Variety MS 57,100,201 = 11,420,040,
5 

Error (a) MS 14,922,620 = 1,492,262,10 

_ 50,676,061 
Nitrogen MS - 2 -= 25,338,031 , 

Error (b) MS 2,974,909 = 743,727,4 

Variety x nitrogen MS = 23,877,980 = 2,387,798, and
10 
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Error (c)MS - 8,232,916 _ 411,646.2
20
 

STEP 4. Compute the observed F-values as follows: 

F for variety variety MS 11,420,040 7.65, 
error (a) MS 1,492,262 

Ffor nitrogen nitrogen MS 25,338,031 34.07, and 
error (b) MS 743,727 

F for interaction (V x N)MS _ 2,387,798 5.80. 
error (c) MS 411,646 

STEP 5. Compute the coeflicients of variation as 

cv(a) 1error (a) MS x 100 
grand mean 

_ /1,4922 2 x 100 = 23.1%,
 
5,290
 

cv (b)~~/error (b)MS xI00 
grand mean
 

_ 727 x 100 = 16.3%, and
 
5,290
 

cv (c)= -,'error(c) MSX10
cv()= × 100
 
grand mean
 

_ x 100 = 12.1".
 
5,290
 

The cv(a) indicates the degree of precision attached to the measurement of 

varietal effects, while cv(b) refers to nitrogen effects, and cv(c) to interaction 

effects. In this instance, cv(c) is the smallest, indicating that the measurement 

of interaction effects has the highest precision. This trend is normally expected. 

Table 4.14 Analysis of variance for grain yield data of table 4.10.1 

Mean Observed Tabular FSource Degrees Sum 
of square Fof of 5% 1%

variation freedom squares 

Block 2 9,220,962 4,610,481 
Variety (V) 5 57.100,201 11,420,040 7.65- 3.33 5.64 

Error (a) 10 14,922,620 1,492.262 
Nitrogen (N) 2 50,676,061 25,338,031 34.07"" 6.94 18.00 

Error (b) 4 2,974,909 743,727 
V x N 10 23,877,980 2,387,798 5.80" 2.35 3.37 

Error (c) 20 8,232,916 411,646 

53 167.005,649Total 

= 16.3%; cv(c) = 12.1%; = significant at the 1% level.'cv(a) = 23.1%; cv(b) 
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Between cv(a) and cv (b), however, there is no basis to expect one to be greater 
or smaller than the other. 

STEP 6. Enter all values so far computed in the analysis of variance table, 
as shown in table 4.14. Compare the observed F-values with their corresponding 
tabular values and designate the significant results with the appropriate 
asterisk (see section 3.2). In this instance, all the three tests show highly signi­
ficant results. With a significant interaction, caution must be exercised when 
interpreting the results. See section 6.5. for further details. 



CHAPTER 5 

Three-or-more-factor experiments 

5.1 INTRODUCTION 
In the same manner that a single-factor experiment can be expanded to include 
a second factor, a two-factor experiment can be expanded to include a third, 
a three-factor experiment to include a fourth, and so on. 

The total number of treatments, however, is the product of the levels in each 
factor so that the size of the experiment expands very quickly with the number 
of factors. For example, a two-factor experiment with three levels of each 
factor will have nine treatments. Adding an additional factor with three levels 
will increase the total number of treatments to 27: adding still another factor, 
again with three levels, will increase the number of treatments to 81. Thus, the 
primary limitation to the number of factors that can be included is the size of 
experiment. 

Any of the designs described in chapter 3 for a single-factor experiments and 
in chapter 4 for two-factor experiments can be uscd for experiments with three 
or more factors. For example, a three-factor experiment involving two varieties, 
four nitrogen levels, and three weed control methods can be put in either a 
randomized complete block or a split-plot design, as shown in figures 5. I and 
5.2. Obviously, the same experiment can be fitted into any of the other designs 
previously described. The choice of which alternative to use depends upon the 
objectives of the experiment and the specific advantages of each design, as 
described in the previous chapters. In our present example, for instance, the 
degree of precision for the measurement of the effects of the three factors is 
equal in the randomized complete block while nitrogen response, which is 
allocated to the subplots. will be measured with higher precision in the split­
plot design. 

In this chapter, two other designs that can only be used for three-factor 
experiments will be described. These are the split-split-plot design and the 
strip-split-plot design. 

5.2 SPLIT-SPLIT-PLOT DESIGN 
The split-split-plot design is an extension of the split-plot design discussed in 
section 4.4. To accommodate a third factor, each subplot in the basic split­
plot design is further divided into sub-subplots, and the randomization of this 
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REPLICATION I REPLICATION II REPLICATION III 

V V I V, V, V, V, V, V, V , V, V, V V, V , VV0
N. N, N, N N, NN, N N N , N , N
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Fig. 5.1 A layout for an experiment involving two varieties. four nitrogen levels, and three weed control methods, arranged in a 
randomized complete block design with three replications. 



REPLICATION I REPLICATION II REPLICATION III 
V,W, VWIV,W 3 V.,W v , wV.W VWVWVWVW 

, V,w VW, VW, V 2WV,W,VWV" Vw v w 

N , N , N, N N N,N N N . N , N, N, N, N, N, N, 

N. N N.N N N. N 3 N, N, N, N, N, N, N, N, N, N, N. 

N, N, No N N. No N, No N, N, N.N3 N0 N, N, N, N. N, 

N, N N,o N, N, N, NN N N, N N, N, NN0 N, N 

Fig. 5.2 A layout for an experiment involving two varieties, four nitrogen levels, and three weed control methods. arranged in asplit-plot design with nitrogen levels as subplot treatments, in three replications. 
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N2 N N,1 

N, N,N5 

N5 N4 N1 

N4 N2 N4 

N3 N: N2 

BLOCK I BLOCK II BLOCK III 

Fig. 5.3 Random assignment of five nitrogen levels to the mainplots as the first 
step in a split-split-plot layout. 

last factor is made separately for each subplot. Theoretically, subdivision 
could continue. That is. each sub-subplot in a split-split-plot design can be 
divided further into sub-sub-subplots and levels of a fourth factor randomly
allocated. Practical considerations in terms of total area as well as size of the 
smallest plot may, however, limit the number of factors that can be included 
in an experiment. 

The advantages and limitations of a split-split-plot design, or any of its 
extensions, are similar to that of a split-plot design. The precision of the 
comparisons among the sub-subplot treatments is the best, followed by those 
among the subplot treatments, with those among the mainplot treatments 
having the least precision. Therefore, the e.xperimenter should assign the most 
ihportant.fctor to the smallest pht and not to the largest. 

5.2.1 Randomization and layout 
For illustration, we shall use a 5 x 3 x 3 factorial experiment with three 
replications in which the five nitrogen levels are the mainplot, the three manage­
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NM, NM, NM, NM. NM,,NM, N , M, N3M.2 N3,M, 

NM,{NM, NM_ 2 N,5M. N.M, N5 M,, N.M, N5,M,{NM 3,
 

N.M, N5,M2,N,,5M ,M M, N NM.
. N1 M3, N1 M, 

N4 M, N4 M, {N.M, N.M, N.M.{N.M, N4M,2 IN 4 M3 I NM, 

N3,M, ,,N z , NM ,M, M N2,M, N2,M, N2,M, 

BLOCK I BLOCK II BLOCK III 

Fig. 5.4 The layout after the five mainplot treatments (N2, N2, N,, N4, N,) and 
the three subplot treatments (M,, M 2, M,) were assigned. 

ment practices the subplots, and the three rice varieties the sub-subplot treat­
ments. The randomization steps are: 

STEP 1. Divide the area into three blocks and each block into five equal 
units to correspond to the five mainplots. Randomly assign the five nitrogen
levels (N1, N,, N,, N4, and N5) to the five mainplots separately and inde­
pendently for each of the three blocks following a randomized complete block 
design (see section 3.3.2). The results are shown in figure 5.3. 

STEP 2. Divide each mainplot into three subplots and randomly assign
three management practices (M,, A,, and 3). The randomization process 
is repeated independently for all the 15 main plots. The result is shown in 
figure 5.4. 

STEP 3. Divide each subplot into three sub-subplots, each of which is 
randomly assigned to one of the three varieties (V1. V2 , and V3). This process 
is repeated for all the 45 subplots independently. The final layout is shown in 
figure 5.5. 
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N.M 1 V, 	 NM 2 V, NMV, NMV 2 .V N3 M2 V, N,N2 M3 V3 NMV 3 	 N3 M1 

N.M 1 V3 N2 M3 V, N2 M2 V., NM V, N1 M 3 N 1MV, N3 MV, N3MV N,V2 	 3 

N 2 M1 V2 N2 MV, N 2 M2 V , N1M 2V , NMV, NMV, N3 MV, NJM 2V, N3 

NM 3 V2 N 1 MV 1 N 1 M2 V, N~M 2 V, N M V; NM 3 V N M 2 V, NM 1 V, N, 

N, MV, N 1M,V 3, N 1M,,W, NM 2 Vz NM 1 V, N5,M3V, NBM 2 V 3 NM,V, N,, 

N,M 3 V:3 N ,M,V, N,M,,V, N5M2V, NM 1 V, N5 MJV 3, N~I 2V 2 N3MV. N, 

NM 3V, NM 2 V, N5 MV, N4 M2V, N4 M3 V, N 4 M,V, N, M2V, N,MV N, 

N5,M3 V3 NM,,V. N5M,V 2,NM,4M2V1, N4 M3 N V NIM 2 VJ N,M,,V N, 

N51M 3 V2 N 5M 2V, N 5M,V, N4,MV, , . NMMV , N,N1 M3,V3 

N 4 M 2 V, N 4,M,V, N4 M,V, N\1MV;. N;,M;,2 N ,NjVN,,V, 4 3 N. 

N__M_ V_ N__M2VINMVNMV.N 4 M 2V 2 N 4 M,V, NMV, NM V N.MV, N -V NMV; N,4M2V N, 

NM 2 V, NMV. N4 M, ,MV 	 423 NMV, N, 

N 3MV, NM 2V, NMV., NM 2 V, NMV, NMV, N2 MV, N2MV; N 2 

NM,V, 	 NMV, NM 3V, N 3 M 2 V NM 3,V, NM,V, N2MV;. N2 M,V, N 2 

N3 M,V2 N3IM2V2 N3 M3 V2 N3,M2 V, NM3 V. 3M,V3 N2 M3 V, N2M, V;N, 

BLOCK 	 I BLOCK II BLOCK III 

Fig. 5.5 The final layout of a 5 x 3 x 3 factorial experiment arranged in a split­
split-plot design with N as mainplot, A as subplot, and V as sub-subplot treatments 
in three replications. 

5.2.2 Analysis of variance 
The steps in computing the analysis of variance will be illustrated using the 
grain yield data shown in table 5.1. In the computation that follows, n, ni, and 
v represent the number of treatments in the main plot, the subplot, and the 
sub-subplot, respectively. 

STEP 1. 	 As in any other analysis of variance, the first step is to compute 
C.F 	 tol (grand total)2
 

total number of observations
 

_ 	 (884.846)2
 
135
 

= 5,799.648, and 
2Total SS = YX - C.F. 



Table 5.1 Data on grain yields of three rice varieties grown under different management practices, IRRI. 

Management 
practice 

V, 

Grain yield (t/ha) 

V V, 

III III I II III II IIl 

Minimum (M,) 
Optimum (Ma) 
Intensive (M 3 ) 

3.320 
3.766 
4.660 

3.864 
4.311 
5.915 

4.507 
4.875 
5.400 

N, (0 kg N/ha)
6.101 
5.096 
6573 

5.122 
4.873 
5.495 

4.815 
4.166 
4.225 

5.355 
7.442 
7.018 

5.536 
6.462 
8.020 

5.244 
5.584 
7.642 

Minimum (M,) 
Optimum (M2) 
Intensive (M,) 

3.188 
3.625 
5.232 

4.752 
4.809 
5.170 

4.756 
5.295 
6.046 

N (50 kg N/ha)
5595 
6.357 
7.016 

6.780 
5.925 
7.442 

5.390 
5.163 
4.478 

6.706 
8.592 
8.480 

6.546 
7.646 
9.942 

7.092 
7.212 
8.714 

Minimum (M,) 
Optimum (M2 ) 
Intensive (Mr,) 

5.468 
5.759 
6.215 

5.788 
6.130 
7.106 

4422 
5.308 
6.318 

N, (80 kg N/ha) 
5.442 
6.398 
6.953 

5.988 
6533 
6.914 

6.509 
6.569 
7.991 

8.452 
8.662 
9.112 

6.698 
8.526 
9.140 

8.650 
8.514 
9.320 

S 

Minimum 
Optimum 
Intensive 

(M,) 
(M2 ) 
(M3) 

4.246 
5.255 
6.829 

4.842 
5.742 
5.869 

4.863 
5.345 
6.011 

N, (110kg N/ha) 
6.209 
6992 
7.565 

6.768 
7.856 
7626 

5.779 
6.164 
7.362 

8.042 
9.080 
9.660 

7.414 
9.016 
8.966 

6.902 
7.778 
9.128 

, 

5" 

Minimum 
Optimum 
Intensive 

(M,) 
(M 2 ) 
(M 3) 

3.132 
5.389 
5.217 

4.375 
4.315 
5.389 

4.678 
5.896 
7.309 

N, (140 kg N/ha) 
6.860 
6.857 
7.254 

6.894 
6.974 
7.812 

6.573 
7.422 
8.950 

9.314 
9.224 

10.360 

8.508 
9.680 
9.896 

8.032 
9.294 
9.712 

C 

00 
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= (3.320)2 + ... + (9.712) 2 - 5,799.648 
= 373.540. 

STEP 2. Con'struct an outline of the analysis of variance as follows: 

Source Degrees Sum Mean Observed Tabular F 
of 

variation 
of 

freedom 
of 

squares 
square F 

5", I1 

Block r - I= 2 
Nitrogen (N) 
Error (I) 

it - I = 4 
(r - 1)(n - I) = 8 

Management (M)
NXAM 

in - I = 2 
(n - l)(m - I) = 8 

Error (b) n(r - l)(m - 1) = 20 

Variety(l1) v - I = 2 
NXV (i- 1)(s,- )= 8 
MXV 
NXAMX1' 
Error (c) 

(ims- l)(v - I)= 4 
(n - I)(m - I)(v - I)= 
nin(r ­ l)(v - I)= 60 

16 

Total rimin - I = 134 

STEP 3. Compute the various sums of squares. The computation will be 
made separately for the mainplot, the subplot, and the sub-subplot parts.

Mainplot analysis. First, construct the table of the mainplot totals (block 
x nitrogen) as in table 5.2. Then compute 

Block SS = - C.F. 

- (294.068)2 + (299.375)2 + (291.403)2 - 5,799.648 
(5)(3)(3) 

= 0.732, 

Nitrogen SS ZN2 C.F.
rinlt' 

= (145.387)2 + "" + (195.316)2 - 5,799.648 
(3)(3)(3) 

= 61.641, and 

)2Error (a) SS -_(BN -C.F. - block SS - nitrogen SS 

(49.33 1)2 + ... + (67.866)2 _5,799.648 - 0.732 
(3)(3) 

- 61.641 

= 4.451. 

Subplot analysis. First construct the mainplot x subplot (the nitrogen x 
management) table of totals, as shown in table 5.3. Then, compute 
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Table 5.2 The block x nitrogen table of yield totals computed from data in table 6.1. 

Nitrogen Yield total (t/ha)

level
 

(kg/ha) Block I Block II Block III N total 

0 49.331 49.598 46,458 145.387 (N)50 54.791 59,012 54.146 167.949 (N2)80 62.461 62.823 63.601 188.885 (N3 )110 63.878 64.099 59.332 186.309 (N,)140 63.607 63.843 67.866 195.316 (N5 ) 

Block total 294.068 299.375 291.403
 
Grand total 
 884.846 

Management SS - M2 C.F. 

_ (265.517)2 + (291.877)2 + (327.452)2 5,799.648 
(3)(5)(3) 

= 42.936, and 

Nitrogen x management SS - _(NM)2 C.F. - nitrogen SS 

- management SS 
(43.864)2 + ... + (71.899) 2 5,799,648 

(3)(3) 

- 61.641 - 42.936 

= 1.103. 

Next, construct the block x mainplot x subplot (block x nitrogen x 
management) table of totals as in table 5.4. Then compute 

Error (b) SS = Z(BNM) 2 _ C.F. - block SS - nitrogen SS - error (a) 

1, 

SS - management SS - (nitrogen x management) SS 

(14.776)2 + ." + (25.971)2 
33
 ____- 5,799.648 - 0.732 

Table 5.3 The nitrogen x management table of yield totals 
computed from data intable 5.1. 

Nitrogen Yield total (K/ha)
level 

(kg/ha) Management 1 Management 2 Management 3 

0 43.864 46.575 54.948
 
50 50.805 54.624 62.520

80 57.417 62.399 69.069
 

110 55.065 63.228 69.016
 
140 58.366 65.051 71.899
 

Management total 265 51 291 877 327.452 
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Table 5.4 The block x nitrogen x management table of yield
totals computed from data in table 5.1. 

Management Yield total (t/ha) 

Block I Block II Block III 

0 kg N/ha 
M 14.776 14.522 14.566 
M2 
M 

16.304 
18.251 

15.646 
19.430 

14.625 
17.267 

50 kg N/ha 
M 15.489 18.078 17.238 
M 18.574 18.380 17.670 
M3 20.728 22.554 19.238 

M 19.362 
80 kg N/ha 

18.474 19.581 
M, 20.819 21.189 20.391 
M 22.280 23.160 23.629 

110 kg N/ha 
M 18.497 19.024 17.544 
M2 21.327 22.614 19.287 
M 24.054 22.461 22.501 

140 kg N/ha 
M 19.306 19.777 19.283 
M. 21.470 20.969 22.612 
M, 22.831 23.097 25.971 

- 61.641 - 4.451 - 42.936 - 1.103 

= 5.236. 

Sub-subplot anal'sis. First, construct the mainplot x sub-subplot (nitrogen 
x variety) table of totals as in table 5.5. Then compute 

Variety SS - _ - C.F. 
I
 

(230.707)2 + (287.826)2 + (366.313)2 _ 5,799.648 
(3)(5)(3) 

= 206.013, and 

Nitrogen x variety SS - E(NV) - C.F. - nitrogen SS - variety SS 
rm 

(40.618)2 + ... + (84.020)2 _ 5,799.648 
(3)(3) 

-61.641 - 206.013 

= 14.144. 

Next, construct the subplot x sub-subplot (management x variety) table 
of totals as in table 5.6. Then, compute 

Management x variety SS = Y(MV) 2 _ C.F. - management SSrif 
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Table 5.5 The nitrogen x variety table of totals computed 
from data in table 5.1. 

Nitrogen Yield total (t/ha) 
level 

(kg/ha) V, V2 V, 

0 40.618 46.466 58.303 
50 42.873 54.146 70.930 
80 52.514 59.297 77.074 

110 49.002 62.321 75.986 
140 45.700 65.596 84.020 

Variety total 230.707 287.826 366.313 

Table 5.6 The management x variety table of totals computed 

from data In table 5.1. 

Management 	 Yield total (t/ha) 

V, V2 V, N total 

M 66.201 90.825 108.491 265.517 
M 75.820 93.345 122.712 291,877 

88.686 103.656 135110 327452M3 

Variety total 230.707 287.826 366.313 

- variety SS 
= (66.201)2 + "'. + (135.110)2 - 5,799.648 

15 

- 42.936 -	 206.013 

= 3.852. 

Finally, construct the mainplot x subplot x sub-subplot (nitrogen x 
management x variety) table of totals as in table 5.7. Then compute 

Nitrogen x 	management x variety SS 

-(NMV/)2 - C.F. - nitrogen SS - management SS - variety SS 
r 

-(nitrogen 	 x management)SS - (nitrogen x variety)SS 

-(management x variety)SS 

(11.691)2 + 	"'" + (29.968)2 - 5,799.648 - 61.641 - 42.936 
3 

-206.013 -	 1.103 - 14.144 - 3.852 

= 3.699, and 

Error (c) SS 	= Total SS - all other SS's.
 
= 373.540 - 0.732 - 61.641 - 4.451 - 42.936 - 1.103
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Table 5.7 The nitrogen x management x variety table of yield 
totals computed from data in table 5.1. 

Management Yield total (t/ha) 

V, V2 V, 

0 kg N/ha 
M 11.691 16.038 16.135 
M 12.952 14.135 19.488 
M 15.976 16.293 22.680 

50 kg N/ha 
M 12.696 17765 20.344 
M= 13.729 17.445 23.450 
M 16.448 18936 27.136 

M 15.678 
80 kg N/ha 

17.939 23.800 
M 17.197 19.500 25.702 
M 19.639 21.858 27.572 

M 13.951 
110 kg N/lha 

18.756 22358 
M3 
M 

16.342 
18.709 

21.012 
22.553 

25.874 
27.754 

M 12.185 
140 kg N/ha 

20.37 25.854 
M., 
M3 

15.600 
17.915 

21.253 
24.016 

28.198 
29.968 

- 5.236 - 206.013 - 14.144 - 3.852 - 3.699 
= 29.733. 

STEP 4. Compute all the mean squares by dividing each sum of squares by 
its degrees of freedom. The F-values are then obtained for each effect by 
dividing its mean square by the appropriate error mean square, as follows: 

F for nitrogen = 	 nitrogen MS 
error (a) MS 
15.4102 
0.5564 

= 27.70, 

F for management managementMS 
error (b) MS 

21.4680 
0.2618 

= 82.00, 

F for nitrogen x management = (N x M)MS 
error (b) MS 
0.1379 
0.2618 

= 0.53, 
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F for variety variety MS 
error (c) MS 

103.0065 
0.4956 

= 207.84, 

Ffor nitrogen x variety= 	 (N x V) MS
 
error (c) MS
 
1.7680
 
0.4956
 

= 3.57,
 
(M x V) MS
 

F for management x variety = error (c) MS
 

0.9630 
0.4956 

= 1.94, and 

F for nitrogen x management x variety = (N 	x M x V)MS
 
error (c) MS
 

0.2312 
0.4956 

= 0.4665. 

STEP 5. Obtain the tabular F-values for each effect.
 
STEP 6. Compute the coefficients of variation as follows.
 

cv (a) = error (a) MS x 100= 0*564 x 100= 11.4%,
 
grand mean 6.55
 

cv( /error(b) MS x 100 = -2618 x 78, and
 
grand mean 6.55 0 ­

cv(c)=Lerror (c) MS x 100= x 100= 10.7%.
 

grand mean 6.55
 

The cv(a) indicates the degree of precision attached to the measurements of 
the effects of the mainplot treatments, cv(b) indicates the precision of the 
subplot treatments and their interaction with the mainplot, and cv(c) indicates 
the precision of the sub-subplot treatments and all their interactions with the 

other factors. Normally, we would expect the sizes of these coefficients of 

variation to decrease from cv(a) to cv(c). In the present example cv(a) is the 
largest, as expected, but cv(b) and cv(c) do not follow the expected trend. As 
mentioned earlier (section 4.4.2), such outcomes are encountered occasionally 
but if they occur frequently, you should consult a competent statistician. 

STEP 7. Enter all values computed in steps I to 6 in the analysis of variance 
table as shown in table 5.8. 




