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Introduction 

The purpose of this paper is to expound a special technique for
 

use in the typology approach to analysis of economic development. The
 

discussion consists of two parts: 
 (1) the evolution of the technique itself
 

as a contribution to development planning methodology and (2) 
 an 

application of this technique to the Philippine economy to demonstrate t,,e 

usefulness of the method for analysis of an open, dualistic economy.
 

Development of the technique proceeds first -with reference to the open,
 

dualistic economy (here exemplified by the Philippines) in Sections I and II. 

It is specifically applied to the Philippine economy in Section III and is 

later generalized by more formal analysis in Section IV so that its 

applicability to other types of economies becomes apparent. The 

mathematical proofs of theorems presented in Section IV will be found in 

the mathematical appendix which is written as a self-contained unit not 

requiring previous mathematical background. 

The analysis is designed to assist in understanding the development 

dynamics of particular types of less developed economies. Such 

understanding is required for two related objectives: (1) to provide a 

sounder basis for formulating development strategies and policies 

applicable to economies of each type and (2) to serve as a basis for studies 

of comparative typology. Methods of analysis currently available do not 



adequately emphasize structural and functional differences among 

developing economies for either purpose. This paper demonstrates that 

the techniques presented are capable of differentiating basic structural 

and functional characteristics, as well as revealing inter-temporal
 

changes in these characteristics.
 

I. THE NATIONAL INCOME ACCOUNTING FRAMEWORK 

The national income accounting system for the open, dualistic 

economy is presented in Diagram I. This system distinguishes four 

basic nexuses of economic activity which are shown as dotted circles: 

production, income disposition, financial, and foreign. Two of the 

nexuses, production and income disposition, are broken down into three 

sectors: industry, agriculture, and government. In other words, each 

of the three domestic sectors appears in both the production and income 

disposition nexus, facilitating analysis of both production and income 

for these three sectors. 

Government productive activity is defined as the provision 

of collective consumption services, valued as the total of government 

expenditures. The private sector is comprised by agriculture and 

industry. Agricultural production is defined as productive activity which 
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DIAGRAM I
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creates organic output by a process in which land is involved in an 

essential way. 1 This leaves the industrial sector defined to include 

essentially all non-agricultural private economic activity. The foreign 

nexus shows the relationship between the three domestic sectors and the 

rest of the world, while the financial nexus is the balancing sector. 

Functionally, it provides savings resources for the finance of the 

economy's investment. 

The national income accounting system in Diagram I, therefore, 

gives a synoptic view of the operation of the open, dualistic economy in 

terms of relationships among (and in some cases, within) five key 

centers of economic activity: industry, agriculture, government, foreign, 

and finance. These relationships are shown as directed flows of monetary 

2pients with arrows in the pipes indicating direction of the flows. All 

directed flows are national income accounting concepts, referring to 

magnitudes of monetary payments in a given year. Actual figures shown 

in the pipes are estimates for the Philippines for the year 1964, in 

millions of pesos at constant 1955 prices. 

1Milled rice and similar processed agricultural products, however, are 
considered as agricultural output, with services (e. g., milling) 
rendered by the industrial sector construed as intermedizte se-rvices 
purchased from the industrial sector. 
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Diagram I contains a series of junctures at which several 
directed flows converge. There are 10 such junctures, represented by 
the 10 rectangular boxes, indexed (a) through (j). A central property of 
each juncture is that all directed inflows equal all directed outflows. In 
fact, as we will elaborate in more technical terms below, this is a 
necessary feature of any legitimate national income accounting system. 
Conceptually, we can think of an accounting equation at each juncture 

stating this equality. 

In Table I we present a list of the 27 variables shown as the 
national income flows in Diagram I. We now introduce each of these 
flows from the viewpoint of inflows into the junctures, (a) through (j). 

Beginming with juncture (a), which shows the industrial
 
production sector, 
we find four inflows representing the four components 
of demand for industrial output. Two of these are final demand: 71d,
 
industrial output for final domestic use, 
 and Ey, industri.l exports. The 
remaining two represent demand for intermediate goods purchased by 
governm ent, Yg, and by agriculture, N. 

Juncture (b) shows the total supply of industrial goods available 
for final domestic use. Total spending on these goods includes three 
components, the three inflows into the jurintur,: purchase.s of capital 
goods for investment, I; industrial goods purchased by indiustrial 
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households for consumption, Yh; and industrial goods purchased by 

agricultural households for consumption, YL'
 

Juncture (c) represents the income disposition function for
 

industrial households. Virtually all income is from factor income
 

payments from the industrial sector itself, shown 
as the inflow Vy, value 

added by industrial production. This reflects the assumption in our 

framework that virtually all income in the industrial sector derives from 

employment within the sector itself. This provides a direct link between 

the production and income functions. (A similar assumption is made for 

the agricultural sector. ) A second, small component of industrial income 

is shown as the inflow Gh, government purchases of primary factor 

services from industrial households. 

Juncture (d) shows agricultural production. As in the case of 

industry, there are four inflows comprising the four components of 

demand for agricultural output. Two are final demand; i. e., Xd, 

agricultural output for final domestic use, and Ex, agricultural exports. 

The two other inflows are intermediate good purchases by industry, R, 

and by government, Xg. 

Total supply of agricultural goods available for final domestic 

use is shown at juncture (e). The two inflows into the juncture are 

purchases of agricultural consumer goods by industrial households, Xh# 

and by agricultural households, XL. 
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Inflows comprising income of agricultural households are 
shown at juncture (fW. The larger inflow, Vx, value added by agricultural 
production, represents payments for primary factor services employed 
in agriculture, while the smaller inflow, GL, represents government 
purchases of primary factor services from agriculture. 

The government sector's total expenditures on goods and 
services for collective consumption are shown as the only inflow, G, into 
juncture (g). Government income is shown at juncture (h) as two
 
inflows: Th, industrial sector tax payments, 
 and TL, agricultural
 

sector tax payments.
 

Juncture (i) represents the foreign nexus. 
 Three of the inflows 
are payments for imports: M., intermediate goods imported by the
 
industrial sector; Mx, 
 imports of agricultural consumer goods by the
 
agricultural sector; and Mf, 
 imported industrial goods for final use. The 
latter includes both imported capital goods and imported industrial 
consumer goods. A' is shown as inflow from the financial nexus and 
represents the rather untypical situation of capital export. This 
situation has prevailed in the Philippines in the last few years and, hence, 
is shown in Diagram I. Ordinarily, we would expect to find a reverse 
flow of foreign savings from the foreign nexus to the developing country. 
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Finally, juncture (j) shows the financial nexus. In the
 

Philippine case shown, 
 there are three domestic savings inflows: Sg. 

government savings; SLI agricultural sector savings; and Sh, industrial 

sector savings. As noted in the preceding paragraph, we would usually 

find an inflow of foreign savings into the developing country's financial 

nexus. For this reason, the outflow of capital, A', is shown at the 

bottom of the rectangvlar box rather than at the top. 

We have now described each national income flow, shown in 

Diagram I, in terms of inflows into each of the 10 junctures. Since each 

inflow is an outflow from another juncture, there are a total of 27 national 

income flows, related by 10 accounting equations, one for each juncture. 2 

This framework is explicitly designed for the study of the 

open, dualistic economy. As a national income accounting system it 

represents a general equilibrium approach to facilitate investigation of 

the growth dynamics of the econoray as a whole. All of the essential 

economic relationships which relate to the development of this type of 

economy are included in the system. For this reason, the framework, 

2 1f total inflows were considered as additional variables, we would have 
10 additional variables and 10 additional equations. 
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although working within a national income accounting system, includes 

reiationships not specifically accounted in conventional systems. 

Examples include the recording of intersectoral intermediate goods flows, 

the disaggregation of households into three income distribution sectors, 

and the disaggregation of both exports and imports between industrial 

and agricultural. Disaggregation is limited to a selected number of 

intersectoral relat4.otships to keep the number of variables studied within 

manageable bounds. This cho'ce represents a workable compromise between 

the relatively high level of aggregation employed in most development 

models and the excessive amount of disaggregation reflected in input-output 

analysis. The system is designed to facilitate quantitative analysis of the 

relationships among a small number of relatively large (aggregated) sectors. 

The sectors selected for analysis are considered to be strategic for the 

development of a particular type of economy. The framework used in this 

paper reflects of this typology approach to the open, dualistic economy. 



c 

Table I: Accounting Variables in Open, Dualistic Economy Framework 

Juncture Inflows 

a Industrial Output sold as: 

Yd : goods for final domestic use 

Ey : exports 

Y 	 : intermediate goods purchased by 
government 

N 	 : intermediate goods purchased by 
agriculture 

b Total available industrial output for final 
use purchased as: 

I : investment goods 

Yh : consumer goods purchased by 
industrial households 

YL : consumer goods purchased by 
agricultural households 

Industrial sector income received as: 

V 	 : value added by industrial 
production 

Gh : 	 government primary factor 
purchases
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Table I: Accounting Variables in Open, 
(Continued) 

Dualistic Economy Framework 

Juncture Inflows 

d Agricultural output sold as: 

Xd : goods for final domestic use 

Ex : exports 

X : intermediate goods purchased by 
government 

R : intermediate goods purchased by 
industry 

e Total available agricultural output for final 
use purchased as: 

XL : consumer goods purchased by
agricultural households 

Xh : consumer goods purchased by
industrial households 

f Agricultural sector income received as: 

Vx : value added by agricultural 
production 

g 

h 

GL : government primary factor 
purchases 

G : total government expenditures 

Goverament revenue received as: 

Th 

TL 

: 

: 

industrial sector tax payments 

agricultural sector tax payments 
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Table I: 	 Accounting Variables in Open, Dualistic Economy Framework 
(Continued) 

Juncture Inflows 

Foreign sector receipts from: 

MR : intermediate goods imported by 
industrial sector 

Mx : imported agricultural consumer 
goods
 

Mf : imported industrial goods for 
final use 

A' : capital outflow 

Total domestic savings as: 

Sh : savings of industrial households 

SL : savings of agricultural households 

S : savings of government 
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II. LINEAR GRAPH THEORY AND NATIONAL INCOME ACCOUNTING 

A. Linear Graph Concepts 

To facilitate the later analysis we define two concepts which 

are basic to the techniques we develop--the concepts of a directed linear 

graph and a valued linear graph. 

Definition: A directed linear graph, G, is formed of a set of vertices 
(a, b, c....) and a set of directed edges which are ordered 
pairs of vertices (x, y). For the directed edge (x, y), x is 
the initial vertex and y is the terminal vertex. 

Diagram Ila is a directed linear graph in which a directed edge 

is represented by an arrow pointing from the initial to the terminal 

vertex. The formal mathematical definition of the directed linear graph 

shown is given just below the diagram. Unless otherwise noted, we will 

be concerned only with directed edges in this paper. Hence, in several 

places, we dispense with the adjective "directed. " 

Definition: A valued linear graph, A, is a directed linear graph, G, with 
a number written on each edge. If the number x is written on 
edge (a, b), x is referred to as the value of the edge. The 
linear graph, G, is called the skeleton of A. 

Diagram Ilb is a valued linear graph constructed on the skeleton 

shown in Diagram Ila. 
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The national income accounting system of Diagram I can be construed 

as a valued linear graph. The skeleton describes the structure of the small, 

open economy showing 27 flows (edges) connecting 10 vertices (a, b, c, d, e, f, 

g,h,i,j). 

There are two aspects of the valued linear graph which have
 

significance for our typology approach to development planning end
 

strategy. 
 First, there is the feature of a specific structural image of the
 

economy (the skeleton) which reveals a particular pattern of economic
 

relationships emphasized for a given type of economy. 
 Second, there is
 

the quantitative aspect, an attribute associated with the values assigned
 

to each edge of the skeleton. 

The former aspect, the structural skeleton of a system, is of 

primary significance for the typology approach. It is the skeleton which 

describes the totality of economic relationships which exist among the 

economy's key nexuses and sectors. With reference to the small, open 

economy, for example, the central features of dualism and openness can 

be defined mathematically from the characteristics of the skeleton. 

Basic features of other types of econcmies should be similarly defined 

from the skeleton. 

The second aspect, values of the edges in the skeleton, allows 

us to apply the skeleton to a specific economy by assigning concrete 

numbers to each relationship. It is this aspect which brings to the 
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skeleton the unique numerical substance for individual cases. In 

combination, therefore, the skeleton and values provide a basis for 

comparative typology. Different economies can be compared by analysis 

of different skeletons as well as by analysis of numerical values on the 

same basic skeleton. In the discussion that follows, we develop techniques 

for both the analysis of the skeleton and the analysis of values. 

B. The Linear Graph and the Square Table 

A valued linear graph can always be cast into the form of a 

square table under the following rules: 

(1) The number of sectors in the square table (i.e., the number 
of similarly indexed columns and rows) equals the number of vertices 
in the linear graph. Each column and row must be indexed by a vertex 
notation. 

(2) If the value of the edge (a, b) is X, the value of the cell in 
the a-th row (i.e., the initiating vertex) and the b-th column (I. e., the 
terminating vertex) is x. 

As an illustration, the square table corresponding to a valued linear 

graph is shown beside the graph in Diagram II. It is apparent that a 

square table can always be interpreted as a valued linear graph under the 

above rules. We apply this principle to the valued linear graph in Diagram 

I by putting it in the form of a square table, Table III. 
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Definition: A square table is a balanced table if the sum of all entries
in any row is the same as the sum of all entries in the like­
indexed column. 

A valued linear graph corresponding to a balanced table is
 

called an Euler grph 
 In an Euler graph, the value of total inflows
 

into each vertex equals the value of total outflows. Diagram HIc 
 shows 

an Euler graph and :ts corresponding balanced table. It can be seen 

that the table is in balance from the equality between row sums (written 

at the right-hand margin of the table) and the column sums (written at 

the bottom of the table). We shall say that a sector of a square table is 

in balance if the sum of all the entries in a row equals the sum of all
 

entries in the like-numbered column.
 

We now state an elementary theorem (which can be easily 

proved) to be referred to as the "Balanced Table Theorem": 

Theorem: A square table with n sectors is a balanced table when n-I 
sectors are in balance. 

Graphically, the interpretation of this theorem is that, if a 

valued linear graph has n vertices and if n-1 vertices are in balance, it 

an Euler graph. The reasonablenessis of the theorem is apparent from 

this graphic interpretation. 
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An economic application of the Balanced Table Theorem can 

now be made. Referring to Table II, which has 10 sectors, the first 9 

sectors are in balance by definition. 3 The theorem then implies that 

the last sector is in balance, showing the familiar equality between 

savings and investment. Thus, the national income accounting system 

of the open, dualistic economy is represented by a balanced table 

(i. e., an Euler graph). 

C. The Linear Graph as a National Income Accounting Skeleton 

We have seen that an Euler graph may be interpreted as the 

skeleton of a national income accounting system. This is based on the 

fact that any meaningful national income accounting system can be put 

into the form of a balanced table with positive entries. We now 

investigate what properties a linear graph must have to serve as the 

skeleton of such a meaningful national income accounting system. For 

this purpose we introduce the following definitions: 

3 Each of these 9 sectors is in balance because for each sector a 
residual item is defined to balance the sector. This national income 
accounting principle will be more systematically explored in Section IV. 
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Definition: 	 A set of edges form a path connecting "a"and "z" if they can 
be written in the form (a, U) (b, c) (c, d). . . . (x,Y) (y, z) where 
a, b, c. . . . z are distinct. A path is a circuit if "a" is "z." 

Diagram Ild is a path with a length of five edges, and Diagram Ile 

is a circuit of five edges. This circuit can be written in the form (a, b, c, 

d, e), in which the vertices appear in the specified sequence. 

Definition: 	 A linear graph Is a cyclic net if for every pair of vertices 
x, y there is a path from x to y and a path from y to x. 

Diagram Ilf is a cyclic net. 

Visual inspection of Diagram I, the skeleton of the accounting 

system for the open dualistic economy, reveals that this skeleton is a 

cyclic net. We shal prove in Section IV that the skeleton of a "legitimate" 
4 

national income accounting system is always a cyclic net. For the analysis 

In this section, we assume that this is true. 

D. Aggregation 

Let the linear graph, G, in Diagram lia be given and let the vertices 

be classified in the following sub-sets: 

4A linear graph, G, is defined to be the skeleton of a legitimate national
 
income accounting system if a strictly positive Euler graph can be
 
written on G (i.e., strictly positive values must be attached to all edges
 
of G to form an Euler graph).
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=A =(a) B (b, c, d) C = (e, f) D = (g, h, i) 

such that each vertex belongs to one and only one of these sub-sets. An 

aggregated linear graph, A(G), basad on this classification is a linear 

graph with vertices: 

A, B, C, D 

and contains an edge (X, Y) if, and only if, there is an edge (u, v) in G
 

such that us is in X and v is in Y.
 

An example is given in Diagram Ila and IlIb. 
 The vertex 

classification of Diagram ila is indicated by the four squares, and the
 

aggregated linear graph derived from 
 ia is shown in IlIb. 

When a valued linear graph is defined on G, the valued linear 

graph can be aggregated by valuing the edge (X, Y) as the sum of the 

values of all edges (u, v) where us is in X and v is in Y. The aggregation 

of the valued linear graph shown in Diagram Ila can be seen from the 

valued edges in Diagram Ilb. 

These rules of aggregation can be generalized to apply to any 

linear graph and any valued linear graph. 

The valued linear graph in Diagram Ila is an Euler graph. 

One can verify that the aggregated linear graph shown in IMb is also an 

Euler graph. This is an example of the following theorem which can be 

easily proved: 
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DIAGRAM III: AGGREGATES 
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Theorem: The aggregation of an Euler graph leads to an Euler graph. 

The operation of aggregation can be represented in table form, as 

indicated in Diagram Mia and IMb. To perform this operation, let the vertices 

belonging to the same sub-set be listed adjacently, as in the table in Diagram 

Ia. In this diagram the heavier lines mark off the cells in the aggregated 

table in Mb. The sum of all entries in each cell in the disaggregated table 

(Diagram la) is computed and recorded in the aggregated table, as shown in 

Diagram 111b. 

When this aggregation technique is applied to the skeleton of the open, 

dualistic economy shown in Diagram I (and the Balanced Table shown in Table 
4a 

11), we obtain the aggregated linear graph and aggregated table shown in 

Diagram IVa and IVb. 

The economic significance of such aggregation is the 

simplification of economic relationships into a limited number of 

aggregates which can be subjected to intensive study. This is essential 

for understanding the operation of the economy as a whole and the 

relationship of the parts to the dynamics of the whole system. It is 

apparent that there are many ways to aggregate a detailed table similar 

to the one presented in Table II. The choice of a particular way will 

depend on the parts of the whole to be emphasized in the analysis. In the 

case of the aggregation results shown in Diagram IV we have sc!ected 

an approach which stresses intersectoral relationships among industry (Y), 

4 aFor this aggregation, the vertex classifications (a,b, C), (d, e, f), (g, h), 

(i), (j) so that the aggregated table is a 5 x 5 table. 
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agriculture (X), government (G), foreign trade (F), and finance (Z), 

while neglecting internal (intrasectoral) relationships within each sector. 

This emphasis is based on our premise that key development phenomena 

are likely to be found in changing flows among the strategic sectors 

listed. 

Given the importance of the intersectoral relationships in the 

open, dualistic system, the flows (edges) shown in Diagram IVa require 

elaboration. The previous system (Diagram I) has been reduced to 5 

sectors (vertices) with 16 directed edges (flows). This has been done 

partly by combining the production and income distribution components 

of each domestic sector (agriculture, industry, government) into one 

sector, thus eliminating flows within these sectors and partly by 

combining flows among the five sectors into aggregates. Each of the 16 

resulting flows (with numbers representing estimates for the 

Philippines, 1964) can be seen in the aggregated linear graph presented 

in Diagram IVa and in the aggregated table given in Diagram IVb. Flows 

in the table should, of course, be read from columns to rows; i.e., the 

first entry from column Y to X, (:xy), represents payments by industry (Y) 

to agriculture (X). At each vertex we can identify inflows of money 

payments to the sector represented by the vertex from other sectors and 
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outflows to other sectors. 5 The same flows can also be read from the 

balance table, reading vertically for each sector to obt ain inflows and 

horizontally to obtain outflows. Beginning with vertex Y, the industrial 

sector, the following inflows are shown: (1) payments from agriculture, 

Yx, composed of payments for both intermeuiate goods (N in Diagram I) 

and for consumers goods (YL in Diagram I); (2) paymen';s from 

government, y'g., including both payments for intermediate goods (Yg in 

Diagram I) and for primary factors (Gh in Diagram I); (3) payments for 

exports, Ey; and (4) payments from the finance sector for investment 

goods, I, broken down into two flows to facilitate later analysis; i. e., 

Iv, industrial investment, and Ix, agricultural investmert. 

At vertex X, the agricultural sector, three inflows are shown: 

(1) payments from industry, X'y, including both industrial purchases of 

intermediate goods (R in Diagram I) and consumers goods (Xy in 

Diagram I); (2) payments from government, xg, composed of purchases 

of intermediate goods (Xg in Diagram I) and primary factors (GL in 

Diagram I); and (3) payments for exports, Ex. 

5 Since every outflow from one sector is an inflow to another, we will 
discuss only inflows. 
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At vertex G, the government sector, inflows are Th, tax
 

payments from the industrial sector and TL, tax payments from the
 

agricultural sector. At vertex F, 
 the foreign sector, inflows comprise
 

payments for imported agricultural consumer goods, Ix, imported
 

industrial goods, M* (composed of M 
 industrial intermediate goods, 

and Mf, finished industrial goods, in Diagram I), and A', capital export. 

At vertex Z, the finance sector, the three inflows represent three 

domestic savings flows: Sh, industrial savings; SL, agricultural savings, 

and Sg, government savings. 

E. Economic Circulations 

Applied to national income accounting, a circuit (defined above) 

depicts a particular type of economic circulation revealing a complete and 

consistent set of events which assumes an independent accounting 

existence. When a skeleton, such as the one in Diagram IVa is given, we 

can systematically identify all circuits implied in the structure. The 

resulting set of circuits represents all p(ssible individual circulations 

found in the economic structure described by the skeleton. 

If the skeleton is a cyclic net, it can be easily shown that: 

Theorem: In a cyclic net every edge is included in a circuit. 
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For this reason a large number of circuits can generally be
 

found in a cyclic net. 
 For the cyclic net shown in Diagram Va, for
 

example, 
 we can identify five circuits designated in Diagram Vb as
 

C 1 , C2 , C 3 , C4 , and C5 .
 

In order to emphasize the economic significance of circuits 

as economic circulations, we study the skeleton shown in Diagram IVa, 

which is also a cyclic net. We recall that this diagram shows economic 

flows among five sectors: foreign (F), agriculture (X), industry (Y), 

government (G), and finance (Z). By systematic listing of all possible 

circuits we can identify twenty-nine, including seven of two edge lengths, 

ten of three edge lengths, seven of four edge lengths, and five of five 

edge lengths. To assist in understanding the economic neaning of these 

circuits, we have listed all but the complex five length circuits in 

Table 111. 6 

Table III is designed to classify the circuits in terms useful 

for economic analysis. The first broad distinction is between current and 

financial (capital) transactions, depending on whether circuits touch the 

financial sector, Z. A further sub-classification distinguishes between 

6Five length circuits are likely to be too cumbersome to be convenient 
for economic analysis. 
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TABLE III: ECONOMIC CIRCULATIONS IN OPEN, DUALISTIC ECONOMY (DIAGRAM IVa) 

i CURRENT (Z excluded) 	 FINANCIAL (Z included) 

Private (G excluded) Public (G included) Private 	 Public 

Bilateral Triangular Bilateral Triangular a- ter- Intra- Inter-
Exchange Exchange Transfer Transfer sectora t Intorallr s sectrl
 

-- !---.-.---- -- - -.-Y-) c-.= x z 'I I1se1 
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FOREIGN I 1C 1 FX)C	 1 =XZ 
tC6(FY) 

: , FYX) 	 (ZFY) ,I 

Quadrangular Transfers (4 edges): Current: (FXGY) (FYGX); and Financial: 	 (ZFXY) (XGZF) 
(XGZY) (YGZF) 
(XGZ Y) 
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private and public circulations, depending on whether circuits involve 

the government sector, G. Both private and public current circulations 

are further broken down between bilateral exchange and triangular 

exchange for private and bilateral transfers and triangular transfers for 

public. Bilateral exchange involves only two sectors while triangular 

exchange involves accommodation through a third sector. A similar 

interpretation holds for the distinction between bilateral and triangular 

transfers. For financial circulations, both public and private, we 

distingui&.:- between intrasectoral and intersectoral finance. Intrasectoral 

finance represents circulations in which a sector's own real savings 

finance its own investment, while intersectoral finance involves 

transferring one sector's real savings to finance investment in another 

sector. Finally, all circulations are classified into foreign and domestic, 

depending on whether the foreign sector, F, is involved. 

Only the relatively simple two and three length circulations are 

classified according to these principles in Table IH. Four length circuits, 

referred to as quadrangular transfers, are listed at the bottom of the 

table and separated into current and financial. 

In the first cell in Table III we see a current circulation 

C2 2 (XY) which is also domestic, private, and bilateral. This 

circulation represents the important phenomenon of domestic commodity 
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trade between the two dualistic sectors of the economy--agriculture, X, 

and industry, Y. Referring to Diagram IV, we observe the flow y
 

representing agricultural purchases of commodities from industry, 
and 

including both intermediate goods (shown as N in Diagram I) and final 

consumer goods (shown as YL in Diagran I). These may conveniently 

be thought of as "fertilizer and cloth" purchases from industry by 

agriculture. We also observe a reverse flow of payments from industry 

to agriculture, Xy, representing industrial purchases of agricultural 

commodities, including both intermediate goods (R in Diagram I) and 

final consumer goods (Xh in Diagram I). These may be thought of as
 

payments for "raw materials and food."
 

Other current domestic circulations shown are C8 = (XG),
 

=
C5 = (YG), C4 (XYG) and (XGY). Both C8 =(XG) and C5 = (YG) are 

bilateral circulations, the former representing current flows between 

agriculture and government and the latter between industry and 

government. Since these are public circulations, not involving the 

principle of exchange, the bilateral aspect is referred to as bilateral 

transfers. In the case of C8 (-XG), for example, there is a bilateral 

transfer of taxes from agriculture to government with the reverse flow 

representing government acquisition of real agricultural goods and 

services (Xg and GL, respectively, in Diagram I) with these resources. 

A similar interpretation holds for C5 (=YG), the industry-government 

circulation. 

- 31 ­



C9 = (XYG) is an example of a triangular transfer involving 

agriculture, industry, and government. This circulation involves tax 

transfers from industry to government, government purchase of 

agricultural goods and services from these tax resources, and 

agricultural purchase of industrial goods to complete the circulation. 

This may be thought of as industry providing fertilizer and cloth to 

agriculture to compensate agriculture for its providing raw materials, 

food, and services to the government. The adjustment between industry 

and government is the industrial sector's transfer of money taxes 

enabling the government to purchase from agriculture. Essentially the 

same mechanism operates, mutatis mutandis, for the circulation shown 

as (XGY), with agriculture paying taxes to accommodate government 

purchase of industrial goods and industry receiving compensation in the 

form of agricultural goods. 

Current circulations are also shown involving the foreign sector. 

The simplest, bilateral cases are C1 1 (FX) and C6 (FY) representing, 

respectively, trade between agriculture and the rest of the world and 

between industry and the rest of the world. In C1 1 , for example, in 

real terms agriculture exports in exchange for a reverse flow of imports 

=to agriculture. The triangular exchange cases (C12 FXY and FYX) are 

a bit more complicated. In C1 2 (FXY), we find agriculture exporting 

- 32 ­



goods, a compensatory flow of goods from industry to agriculture and, 

finally, imports into the industrial sector to complete the circulation. It 

is this circulation, incidentally, which makes both domestic and foreign 

terms of trade relevant to the study of the distribution of gains from 

trade between agriculture and industry. 

We turn now to the financial circulations shown in Table III. 

Two domestic, private, intrasectoral circulations are shown, C 3 (ZyY) 

and C1 3 = (XZY). The former is interpreted as the industrial sector's 

own financing of industrial investment, representing a flow of industrial 

savings, S h to the finance sector and back to industry to purchase capital 

goods for industrial investment. The second, (XZY) isC 1 3 = interpreted 

as agricultural finance of investment in agriculture, representing a flow 

of agricultural savings, SL, to the fin.ance sector, and thence to industry 

to purchase capital goods for agricultural investment. This is 

construed as an intrasectoral circulation since agricultural savings are 

employed to finance agricultural investment. 

Two domestic, private intersectoral financial circulations, 

C 1 4 2 (ZY) and (X, Zy, Y), are also shown. The former represents 

industrial finance of agricultural investment, Ix, and the latter, 

agricultural finance of industrial investment, Iy. These involve an 

original flow of savings from industry, Sh, and from agriculture, SL 

respectively. 
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Two domestic, public, financial circulations are shown, one 

intrasectoral and one intersectoral. C15 ' (GZ Y) represents industrial 

savings forced by government taxation flowing to the government as tax 

revenues, thence from government to the finance sector as government 

savings, Sg, and finally to industry to finance Industrial investment, ly. 

This circulation is construed as intrasectoral finance since the industrial 

sector itself is forced to save to provide the real capital goods for 

investment. The other domestic, public, financial circulation, GZY, 

is construed to be intersectoral finance since government taxation forces 

savings upon the industrial sector; these savings are transferred through 

government to finance investment in agriculture, Ix,through a flow from 

finance to industry for purchase of capital goods to be added to capital 

stock in agriculture. 

Finally, we observe two financial circulations, both private, 

=
which involve the foreign sector, C 1 6 (FXZ) and (ZFX). Both are 

intrasectoral. The former represents agricultural exporting to finance 

capital export, the circulation flowing through agriculture in the form of 

agricultural savings, SL, and finally through finance to the foreign sector 

in the form of capital export, A. The second foreign financial 

circulation involves the same process beginning from industrial exports. 
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The circulations of four lengths, representing quadrangular
 

transfers, 
are shown at the bottom of Table III. They will not be 

discussed in detail, but it should be noted that each can be given economic 

interpretation as a complete and independent set of events--which may 

assume importance for analysis. For example, the financial circulation, 

ZFXY, represents a quadrangular pattern of capital export. In this
 

circulation, the industrial sector saves (Sh)
 , these savings flow to
 
finance to accommodate capital export, the agricultural sector exports
 

to provide foreign exchange, 
 industry transfers real goods to agriculture 

in return, and industrial units acquire foreign assets. Another
 

quadrangular example is the financial circulation, XGZF, 
 which
 

represents 
a quadrangular pattern among agriculture, government, 

finance, and the foreign sector. In this case, tax transfers from 

agriculture to government allow government to obtain foreign exchange 

from agricultural exports. These resources flow through finance as 

capital exports to allow government acquisition of foreign assets. 

It should be emphasized that these circulations have been 
derived from the structure of the skeleton shown in Diagram IVa. Of 

all possible economic circulations, only a given number (29 in this case) 

can be identified from a particular skeleton. If, for example, the 

skeleton were changed to show an inflow of foreign savings rather than 
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capital export (as in Diagram IVa), it wnuld be possible to trace 

circulations showing flows generated by foreign savings not included in 

the circulations discussed here. Such circulations are, in fact, used 

in Section III for analysis of the Philippine economy during certain years. 

F. Decomposition Technique 

In the previous section we have given the economic 

interpretation of circulations to circuits. An economic circulation, in 

addition to a qualitative aspect (represented by the circuit), has a 

quantitative aspect, i. e., the monetary value of the particular circulation. 

In Diagram VIa, b, c, for example, we show monetary values for three 

circulations: 2 dollars for CIV 4 dollars for C2 , and 4 dollars for C3. 

This quantitative aspect of a circulation is the coefficient of the circuit. 

More precisely: 

Definition: 	 A circulation is a valued linear graph obtained by assigning 
a fixed number "a" to every edge of a circuit. The number 
"a" is called the coefficient of the circulation. 

A circulation is obviously an Euler graph and can be 

represented by a balanced table, each cell of which contains zero or "a" 

numbers. The balanced tables corresponding to the three circulations in 

Diagram VIa, b, c are shown on the same diagram. When these tables 
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are added (in the matrix sense), we obtain a balanced table B which is 

shown with the Euler graph interpretation in Diagram VId. 

Since B is the sum of the circulations, it can be denoted by: 

B = 2 C1+4 C2 +4 C 3 

This can be generalized as follows: 

Definition: A valued linear graph, B, is a sum of circulations if there 
exists circuit ci and coefficient a. (i 1, 2, .... r) so that: 7 

=
B a1c1 +a 2 c 2 +.... +arcr and
 

B is decomposable into circulations with coefficients a,
 

(i =1, 2, e.... r). 

We observe that B is obviously an Euler graph when it is a sum 

of circulations. However, an Euler graph is not necessarily decomposable. 

For example, the Euler graph in Diagram Vie r annot be decomposed. In 

fact, the skeleton does not even contain a single circuit. 

7In matrix notation c. is a square matrix containing "1" for a cell
 
corresponding to an edge of a circuit and "0" elsewhere.
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To investigate the phenomenon of decomposition we defined 

the cyclomatic number 8 for any directed linear graph: 

Definition: Let G be any directed linear graph. The cyclomatic number 
=of G is u E - V + 1 where E is the number of edges and V is 

the number of vertices. 

An example is given in Diagram VId where the number of edges 

is 6, the number of vertices 4, and the cyclomatic number is 3. 

The cyclomatic number is an important concept in linear graph 

theory, with useful applications to our analysis of the open, dualistic 

economy. In a national income accounting skeleton, for example, since 

E is the number of variables and V-1 the number of independent 

accounting equations, u is the number of exogenous variables whose value 

can be arbitrarily assigned. The planning implications of this 

important deduction are discussed in a later section. 

In Section IIC above, we pointed out that the skeleton of every 

legitimate national income accounting system is a cyclic net. For cyclic 

nets, we have the following "decon,.rosition theorem": 

8Ordinarily this definition is applied to a linear graph which is 
connected, a concept discussed later. 
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Theorem: If N is a cyclic net with a cyclomatic number, u. there exist u 
circuits C;(i=l, 2,... u) in N such that any Euler graph, E,
defined on N is uniquely decomposable into C4, i.e. * there exists 
a unique set of coefficients 41(1=1,2.... u) so that: 

E =alC1 + a2 C2 . .. ..... auCu 

The decomposition theorem contains three parts. The first part 

asserts that there exists a set of u circuits, C, which may be identified 

from the skeleton. For later reference, these comprise a set of basic 

circuits. The second part asserts that any Euler graph defined on this cyclic 

net can be decomposed into these circuits. The third part asserts that 

the decomposition is unique; i o., there are no alternative sets of 

coefficients to the one specified. The theorem will be re-examined in 

Section IV and proved in the mathematical appendix. We shall also develop 

the actual procedure for decomposition in Section IV, where the more 

general applicability of our approach will be discussed. 

III. ANALYSIS OF THE PHILIPPINE ECONOMY 

The technique of decomposition can be applied to any type of economy 

at any level of aggregation. The application here is to the Philippine 

economy as an example of the open, dualistic type. The level of aggregation 

for our analysis in this section (shown in Diagram IV) emphasizes intersectoral 

relationships among agriculture, industry, government, finance, and the 

foreign sector.
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We have shown above that there are 29 possible circulations 

which can be identified from the national income accounting skeleton of 

Diagram IV. This number is too large to provide a grasp of the
 

dynamics of an economy. The decomposition theorem of the previous
 

section offers 
a convenient device to reduce the number of circulations 

for analytical purposes. Since the cyclomatic number for the skeleton in 

Diagram IV is u12, we know that there exists among the 29 circuits a 

set of 12 circuits (economic circulations) into which any national income 

accounting system defined on the skeleton can be uniquely decomposed. 

To analyze the Euler graph showing the accounting flows for
 

1964 (presented in Table IVB), 
 we proceed by identifying a set of 12 basic
9 

circuits, and these are shown in Diagram VII, labelled C 2, C3 , C5 , C6 , 
C8 , C 9 , Cll, C 1 2 , C1 3 , C1 4 , C5, and C1 6 . It will be noted that this is 

the same set of basic circuits classified in Table III, and the economic 

interpretation of each of these circulations has been given in Section IIE. 

We now proceed to derive the value (coefficient) of each of these 12 

circulations by decomposing the Euler graph. 10 In Diagram VII we 

present the results of the decomposition procedure. To show the nature 

9 Techniques for identifying a set of basic circuits are described in 
Section IV. 

10ThM procedure for decc,:nposing an Euler graph is presented in 
Section IV. 
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TABLE IV: CLASSIFICATION OF VALUED ECONOMIC CIRCULATIONS 
(in millions of pesos, 1.955 prices) 

FOR THE PHILIPPINES: 1964 
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DIAGRAM VII: Fco,4oNc CCULATIONS, PrILJPPINES, 1964.
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and value of each economic circulation, a valued circuit and balanced 

table are given. Each circulation now has a specific coefficient, uniquely 

determined according to the decomposition theorem. All values shown 

are in million pesos at 1955 prices. 

Decomposition of the Euler graph of Diagram IVb has yielded 

results, therefore, which can be used to describe the economy by writing 

an equation of linear form: 

E = 3296 C +16302 C 3 + 463 C 5 + 847 C 6 + 142 C8 + 696 C 9 + 

115 C11 +1526 C12 +272 C13 +21 C14 + 145 C5 +168 C16 

This allows us to visualize the economy's operation in the year 
analyzed (1964) in terms of these 12 circulations, each with a specific 

value. The dualistic and open features of the economy, the central 

characteristics of this type, can now be analyzed in quantitative and 

qualitative terms. To assist in interpreting the meaning of these results, 

we present in Table IV the set of basic circulations with their coefficients 

classified according to the system introduced in Table III. 

We recall that the 12 circulations just classified represent 

int'rsectoral relationships. The totals shown in Table IV, therefore, 

represent the sum of intersectoral relationships of particular types as 

well as a grand total, T, for all intersectoral relat onshipa described by 
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the 12 intersectoral circulations. Using these totals to describe the
 

Philippine economy in 1964, 
 we find, for example, that 24 per cent of all 

intersectoral circulations were financial in nature, showing considerable 

financial integration among sectors. I The other major breakdown in
 

Table IV, domestic-foreign, 
 is also of interest: approximately 29 per
 

cent of all intersectoral flows involved the foreign sector, 
a relationship 

which may be used to measure the degree of openness of the economy. 12 

Another distinction, public versus private intersectoral
 

relationships, is 
 shown; public flows (those touching the government
 

sector) represer.t about 16 per cent of the total. 
 The government's share 

in financial relationships is particularly small, only about 6 per cent of 

their total. This represents the volume of government saving which, 

under our definition of the government sector, must be transferred to 

finance investment in either agriculture or industry (or, as a third 

possibility, used to accommodate capital export). 

A unique aspect of the 1964 circulations, which will emerge more 

clearly from the inter-temporal comparisons below, is the accommodation 

of capital export by the Philippine economy. Circulation C16 in 

116
 
11The significance of these examples will be more apparent from the

intertemporal comparisons presented below. 

12Here, too, intertemporal and international comparisons would yield
interesting conclusions. 
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Diagram VII and Table IV shows this phenomenon in the amount of P168 

million. The export of capital is shown as a flow from the finance sector, 

Z, to the foreign sector, F. This capital transfer required both 

domestic saving and available foreign exchange. We see that both were 

accommodated through the agricultural sector. Agricultural exports
 

provided the foreign exchange resources 
(a part of the large surplus of 

agricultural exports of 1, 809 million over agricultural imports, 115 
million). These resources were transferred to the finance sector in the 

form, of agricultural savings. The necessity for agriculture to
 

accommodate this outflow of capital, 
 however, caused a shortfall in
 

agricultural savings financing agricultural investment. 
 Of total
 

agricultural savings of P440 million, 
 P168 million were diverted to
 

accommodate the economy's capital export leaving P272 million for
 

financing agricultural investment which totalled P293 million. This 

shortfall of P21 million led to another circulation, C 1 4 , showing 

industrial savings accommodating agricultural investment. This 

circulation represents the only example of intersectoral finance in 1964. 

reflecting a transfer of real savings accomplished by the industrial 

sector to accommodate real capital accumulation in agriculture. This 

occurred despite the industrial sector's relatively l~rge d-ficit (P124 

million) in financing industrial investment (P1, 775 m'liio:) from its own 

voluntary savings (P1, 651 million). The adjustment is shown in 
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circulation C1 5 in which the entire amount of government savings 

(P145 million) was employed to cover the industrial sector's deficit in 

financing from voluntary savings its own investment and capital transfer 

to agriculture (a shortfall of P124 million for investment and P21 million 

for capital transfer). It will be noted in Table IV that this circulation is 

classified as intrasectoral finance. This is done since the real savings 

to accommodate this circulation were forced upon the industrial sector 

itself by government taxation. In the final analysis, therefore, the
 

industrial sector covered slightly more (by P21 million) than its own
 

investment (P1, 775 million) through a combination of voluntary 

(P1, 651 million) and forced saving (P145 million), while the agricultural 

sector provided a net outflow of savings of P147 million, the difference 

between the sector's saving and its irestment. The adjustments shown 

by these circulations reveal, therefore, that the agricultural sector 

bore the brunt of the economy's capital export (P168 million) in 1964. 

Inter-temporal Comparisons: The Philippine Economy 

We now proceed to apply our techniques to analyze the changing 

structure of an open, dualistic economy over time. In addition to the 

results presented for the Philippine economy in 1964, three additional 

years (1949, 1953, and 1960) have been studied to give us a time span 

of 15 years. 
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We find, however, that inter-temporal comparisons present 
additional difficulties. In the Philippine case, several of the flows shown 
in Diagram IV reversed direction between 1949 and 1964. Examples
 
include capital export, A', 
 which did not appear until the 19 60's. Prior 
to 1963 a reverse flow, A, capital import (foreign savings) existed.
 
Similarly, sectoral savings for two 
 f the three domestic sectors,
 
agriculture and government, 
 were negative in 1949 while our estimates 
for 1964 show positive savings for both sectors. Such reversing 

directions in the flows analyzed imply that economic circulations
 
existing at one 
point in time do not exist at another. 13 Partly for this
 
reason, 
we have found it necessary in applying our techniques to the four
 
years to select different sets of basic circuits for different years. 
 We
 
know, however, 
 that every set of basic circuits will comprise 12 
circulations. This is true because the same skeleton (Diagram IVa) 
has been consistently employed for analysis of the four years. Hence, 
the number of edges and vertices remain the same, and the cyclomatic 

number is 12 in all cases. 

13This problem, leading to the necessity to shift bases, is more fullyinvestigated in Section IV. 

- 47 ­



For each year analyzed, a set of 12 basic circuits could be found 

in accordance with the principles described in Section IV. In all, 18
 

circuits, C1, C2, ..... C18 , were used for analysis of the four years.
 

These circuits are presented in Diagram VIII, which shows the year(s) 

for which each circuit was employed in the decomposition analysis. The 

circuits not previously described are: = (FZY), = (FZX),C 1 C4 


C7 
2 (FZGX), C10 = (FZyY), C17 = (GZY), and C18 = (ZIYF). It will be
 

noted that all but one of these, C17 2 (GZY), touch the foreign sector, F, 

and, hence, represent foreign circulations. In addition, they all touch 

the finance sector, Z. This gives some insight into the reason for their 

relevance to the years prior to 1964; foreign savings played a role in 

financing the economy's investment (as well as dissaving by some sectors) 

in the three years, 1949, 1953, and 1960. This condition had been 

reversed by 1964, when capital was exported and all three domestic 

sectors showed positive savings. 

Circulation C 11 (FZY) which was used for 1949, 1953, and 1960 

represents foreign savings, A, financing agricultural investment, Tx, 

with an accommodating flow of industrial payments for imports. 

Circulation C4 = (FZX), used for 1949 and 1953, shows foreign savings, 

A, financing dissaving by the agricultural sector, SL1, allowing that 

sector to purchase foreign goods. Circulation C 7 2 (FGZX), which is 
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DIAGRAM Viii:. CIRCUiTS USED FOR ANALYSIS 
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quadrangular, represents a relatively complex phenomenon existing in 

only 1949, i.e., foreign savings, A, financed government sector 

dissaving, Sg', allowing the government sector to purchase domestic 

agricultural output, with an accommodating flow compensating the 

agricultural sector through import of goods. Circulation C1 0 (FZY), 

used for 1949 and 1960, represents foreign savings, A, financing 

industrial investment, Iy, with accommodation through imports into the 

industrial sector. Circulation C 1 7 , used only for 1953, represents
 

government sector savings, 
 Sg, from industrial sector tax payments, Th, 

financing agricultural investment, Ix . This implies forced saving on the 

industrial sector for an intersectoral transfer of finance. Finally,
 

Circulation C1 8 = (ZXYF), 
 used for 1960, shows a quadrangular
 

relationship with foreign savings, 
 A, financing agricultural dissaving, 

SL', allowing the agricultural sector to purchase domestic industrial 

output and providing compensation to the industrial sector through an 

accommodating flow of industrial sector payments for imports. 

The results of the decomposition analysis using the basic 

circuits described are presented in the classification tables V (1949), 

VI (1953), VII (1960), and VIII (1964). The table for each year shows the 

values of the 12 basic economic circulations which were employed to 

decompose uniquely all intersectoral flows for that particular year. We 

now have a basis to analyze inter-temporal structural change in the 

Philippine economy, 1949-1964, by using the four classification tables. 
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__ __ __ 

TABLE V: CLASSIFICATION OF VALUED ECONOMIC CIRCULATIONS FOR THE PHILIPPINES: 1949
(in millions of pesos, 1955 prices) 

CURRENT 

FINANCIAL a 

Private 
- -- b 

Public
.[ 

Private I Publicublic 
O 0co 

Bilateral jTriangular Bilateral 'Triangular Intra- Inter- Intra- Inter- 1 
sectoral 
sectoral. sectorasectoral 

1.876 C 43C 153C 153 i 
DOMESTIC 179 C 8 

_ _ ___I__ c 

I 
I 6 

1 12e 
320C 236 C 34( C. IFOE1 
 12292C4 IC, 

246 C ;
1162 C100 

35cC" 
Total 2, 678Ratioi! 375 676 0 3,729
to GNP .4792 !.492.0671 .6071673i
.1210 ' 
 .6673 

GNP49 5,588
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TABLE VI: CLASSIFICATION OF VALUED ECONOMIC CIRCULATIONS FOR THE PHILIPPINES: 1953 
(in millions of pesos, 1955 prices) 

CURRENT FINANCIAL 

Private Public Private Public I
 
Bilateral Frianguar Bilateral Triangular Intr Inter- Intra- Inter-T asectorali sectoral sectoral sectoral 

OMESTIC 
2,291cC

27 

__ 

241c 
59 

i 73 c _8_ 
269 C 

_ _ _ 

C431C3 53 
C 1 4 

72 C
7 __ 

287 C 659 C 52 C 

FOREIGN 
6i 
! 

12 2CiI 
4 1 . 

_ 

0 
I" 

_ 108Cl144__ I 

1Total 3,345 583 580 72 4,580
 
Ratio 
 j 
to GNP .4527 1 .0789 1 .0785 .0097 .6198 

GNP5 7, 389 
53 
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TABLE VII: CLASSIFICATION OF VALUED ECONOMIC CIRCULATIONS FOR THE PHILIPPINES: 1960 
(in millions of pesos, 1955 prices) 

CURRENT FINANCIAL i 

Private Public Private Public 010 -30Bectri . e tor a- Inter 

D TIC Tringla Ia -O I 

3,108 C 350C 471C 659C 3 C , 

i08 C 

1 514% 1,406C 1 "199C
FOREIGN 

94CC C _______j 
Total 5,122 1 929 92 150 7,103
 

fRatio .0899GNP .4959 .Io .044, .6877
.087• .0145
 

GNP 6 0 10, 329 

- 53 ­



TABLE VIII: CLASSIFICATION OF VALUED ECONOMIC CIRCULATIONS FOR THE PHILIPPINES: 1964 
(in millions of pesos, 1955 prices) 

CURRENTi-c 1FINANCIAL 

Private Public Private IPublic 
fI r* 

ilateral
________Isectoral Triangular !Bilateral ITriangular Intra- Ietr etra Iectoral :sectoral: sectoral. 

2 i 3,296C 1428 696 C 9 3 14 15.1, 630 C3121 C 140 i2 

IDOMESTIC! 27463 C co5 27 
 1C
 

11 C 52 C ,1 16 C w 
IFOREIGN!i I 847 C6 , 

8I I I 3I aIL 
_ _ _ _ _ _I" 

I 

Total 5,784 1,301 2,091 I 145 9,321 

Ratio to I;GNP .4596 .1034 
 L 1662 1 0115 7407 

GNP 6 4 = 12, 584 
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Extensive analysis of inter-temporal changes will be 

undertaken in later papers when the entire time series for the period 

1949-1964 has been decomposed. In this paper, discussion is limited 

to a few conclusions suggested by the results for the four benchmark 

years studied here. To assist in the analysis, several types of 

circulation (foreign- domestic, current-financial, and private-public) 

have been totalled for each of the years. We have then computed the
 

ratio of each type of circulation to GNP. 
 The results of these operations 

for each of the years studied are shown in Tables V through VIII. 

Turning first to the financial circulations, we see a general 

trend toward greater financial integration in the economy reflected in a 

rising ratio of financial circulations to GNP. We note first, however, 

that the year 1949 was untypical; virtually all financial circulations 

involved inflows of foreign savings. Foreign savings, in fact, 

represented about 9 per cent of GNP and P523 million of total financial 

circulations of P676 million. This reflected the fact that in 1949 the 

Philippine economy was still in the throes of rehabilitation and was heavily 

dependent on foreign savings for financing of both investment and 

consumption. Domestic financial circulations, therefore, represented 

only 2. 7 per cent of GNP. By 1953 this situation had changed dramatically, 

with domestic financial circulations rising to P556 million of a total of 
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P652 million and representing 7.5 per cent of GNP, compared to foreign 

financial circulations equivalent to 1. 3 per cent of GNP. The ratio of 

domestic financial circulations to GNP rose slightly above this figure 

(to 7. 8 per cent) in 1960 and showed considerable improvement by 1964 

when it rose to 16 per cent. Moreover, by 1964, the one remaining 

foreign financial circulation, represented capital export rather than 

foreign savings. 

Public financial circulations, however, have been consistently 

small. They were non-existent in 1949 and in the three other years 

hovered near 1 per cent of GNP. Hence, progress toward financial 

integration of the economy has been primarily a matter of private sector 

activity. 

The current circulations reflect non-financial intersectoral 

relationships, i.e., exchange of current goods and services. The 

startling conclusion emerging from the results in this case is that, 

unlike financial circulations, current circulations have remained 

relatively unchanged as a fraction of GNP. Private current circulations 

showed a ratio of 48 per cent of GNP in 1949, 45 per cent in 1953, 50 per 

cent in 1960, and 46 per cent in 1964. At first glance, one hypothesizes, 

therefore, that private intersectoral linkages to overcome the basic 

problem of domestic dualism have not been strengthened over the 
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15-year period, 1949-1964. This conclusion becomes even more
 

apparent when we study the domestic-foreign breakdown in current
 

circulations. 
 Private domestic current circulations represented 34 per 

cent of GNP in 1949, 31 per cent in 1953, 30 per cent in 1960, and 26 per 

cent in 1964. For the predominantly private sector economy of the 

Philippines, these results show a surprising lack of progress in 

expanding private current intersectoral relationships in the domestic 

economy. 

While private domestic current circulations have decreased,
 

however, privateifrin current circulations have shown 
a rapid rise 

relative to GNP. Equivalent to about 14 per cent of GNP in both 1949 and 

1953, these circulations rose to approximately 20 per cent of GNP in the 

two later years, 1960 and 1964. This suggests that current integration 

with the foreign sector is rapidly outpacing current integration within the 

domestic economy. This is indeed a central characteristic of the 

development of the Philippine open, dualistic type economy during the 

fifteen-year period. 

Some slight progress has been achieved in raising the level of 

publi current circulations. At the beginning of the period studied, in 

1949, the ratio of public current circulations to GNP was about 7 per 

cent, rising to 8 per cent in 1953, 9 per cent in 1960, and 10 per cent in 
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1964. It should be pointed out, however, that the growth of this type of 

current circulation is unlikely to have any direct effect o~n afleviating the 

basic problem of domestic dualism between agriculture and industry. In 

a basically private enterprise economy, this problem must be solved 

primarily by strengthening the direct linkages between industry and 

agriculture. 

To provide a general index of progress toward intersectoral 

integration, we present in Diagram IX a graphic representation of the 

ratios of various types of intersectoral circulations to GNP for the four 

years studied. Total circulations may be construed as a measure of the 

integration ratio for the economy as a whole. This measure is shown as 

comprising four broad types of economic circulations: private current, 

private financial, public current, and public financial. The first two, 

private current and private financial, represent a measure of private 

sector integration while the latter two, public current and public 

financial, represent a measure of integration between the government and 

the private sector. Private current circulations are separated into their 

domestic and foreign components. 

The major conclusions stated may be seen by visual inspection of 

Diagram IX. The total integration ratio of the economy has risen gently 

from below. 70 in 1949 to slightly above .70 in 1964. The break shown for 
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1953 is explained by a sharp reduction in private financial circulations 

between 1949 and 1953, caused by a rapidly declining rate of foreign 

savings inflows. The gradual rise in the aggregate ratio between 1953 and 

1964 was caused primarily by a combination of growing private financial 

circulations (particularly after 1960) and public current circulations. 

Between 1960 and 1964, these circulations offset a decline in private 

current circulations. 

It is also apparent that the decline in private current 

circulations is explained by the consistently falling domestic component of 

these circulations. Domestic private circulations fell by 8 percentage 

points (relative to GNP), offsetting the significant rise in private 

financial circulations. 

IV. LINEAR GRAPH THEORY AND COMPARATIVE TYPOLOGY 

In the preceding discussion we have employed linear graph 

techniques to analyze intersectoral relationships in a particular open, 

dualistic economy--the Philippines. In this section, we investigate the 

principles under which these techniques can be applied to other types of 

economies at various levels of aggregation. Mathematical proofs of the 

basic propositions in the argument are presented in the mathematical 

appendix. 
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The procedure begins with acceptance of a national income 

accounting flow diagram (e. g., Diagram I) as the quantitative framework 

for the analysis. Such a specific framework is viewed as a special 

case of a more general and systematically defined framework involving a 

large number of basic sectors. Table IX presents this general 

accounting framework in a square table of the input-output variety. To 

illustrate the general principles involved, the table includes three 

domestic sectors (1, 2, and 3), a foreign sector, F, and a finance 

sector, Z. Each domestic sector (1, 2, and 3) has three components, 

each representing a particular aspect of the sector's functioning: (1) 

a production aspect (a, b, c); (2) an income disposition aspect (d, e, f); 

and (3) an investment aspect (g, h, i). This breakdown yields 11 columns 

and rows in the square table. 

The first three rows (a, b, c) contain the familiar accounting 

variables found in a dynamic input-output system: xij is the inter-industry 

payment (from the j-th to the i-th sector) on current account while Cij 0 

Iij, and Ei are the three components of final demand for i-th sector output 

representing, respectively, consumption, investment (from the j-th 

sector), and export. The row sums Xi are the total outputs of the i-th 

sector. 
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TABLE IX: NATIONAL INCOME ACCOUNTING TABLE
 

DOMESTIC I 
Production 

Income 
1 Disposition Investment Foreign Finance 

I 
1f 

2. 
a) i(b) (c) 

'aix Ix ,x 
(a) X1 1  X1 2 ,'x1 3  
1(b) I : : x 

( 2 2 2  2 3  

'3 ,' --
,(d)" (e) W( g) (h) 

Ic Ic 
c 1 

1 c 1 2  1 121!12 
c' c !c 

2 1 2, c2 3 ,(I2'2 

3 
i) 

'i1 
" 

" 
.I2E 

F 

E 
1 

E 
2 

Z 
(k) 

Total 

X1 

x'\(-'
X2 

3C) 

(d) 
-. 

v 1 ,:'V'j 
33. 3y (c3.j 

3v itt 
C33i 3 2. X3 

(d) 

3. g) i) 1 

/ I 

,di .213 
. 

N, 

KtY '"! 
-:;(t 

.1 

Tt(g) d' I I I 

2 

3. 

(h) 
3 

(j 

311f) 3 

d 

M7M 

1 1 -3
d3 

2. 33 

MIIV 

ZI S1 S S3 A i 

Total Il 
1 

V' if 
2. 3 
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The first three columns (a, b, c) represent costs of production. 

They include current intermediary goods costs (xij), costs of imported 

goods (Mi), capital consumption allowances (di), and value added (vi), 

constituting primary factor payments (wages, rent, interest, profit) 

from the i-th production sector to the j-th households. The first three 

sectors are in balance since vij includes profits which are defined to 

balance "cost and revenues. " 

In the next three sectors, (d, e, f), tij represents unilateral 

transfer payments from the j-th households to the i-th household. These 

payments assume particular importance when one of the domestic sectors 

is government, in which case tij includes such items as taxes, social 

security contributions and payments, interest on public debt, and 

subsidies. The sum of a row, Yi, is the personal income of the i-th 

sector (i.e., the sum of value added income and transfer income). 

Savings (S;) is defined as the balancing item for these sectors and is 

interpreted as the difference between personal income and expenditures 

of both the consumption and transfer payment types. 

For the next three sectors (g, h, i) the column Ii ' is gross 

investment in the i-th sector. Net investment (Ii) is defined to balance 

these sectors; i.e., Ii 
= Ii ' - di where di represents capital consumption 

allowances in the i-th sector. 
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In the foreign sector (F), capital inflow (A) is defined to balance 

total imports (M) and total exports. Thus, the first ten sectors (a to j) 

are in balance by definition. The last sector is also in balance (total 

investment (I) equals total savings plus capital import) by the balance 

theorem. 

This national income accounting system is a general framework, 

including not only the variables from the dynamic input-output system 

but also those emphasized in the typical Keynesian system. Variables
 

of the dynamic input-output type are Xii, 
 C Ii, Ei, and Mi, while 

Keynesian variables include income payments (vij), transfer payments 

(ti), savings (Si) , and gross, as well as net, investment (Ii ' and Ii). 

The national income accounting framework for the open, 

dualistic economy is only a special case of this general system. It is 

derived by making the following specific assumptions: 

(1) Industry, agriculture, and government are identified as 

sectors 1, 2, and 3, respectively. 

(2) All encircled entries in row c are deleted, and C33 

represents total government expenditure (G = X3), construed as a 

measure of total government output in accord with current accounting 

convention. 
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(3) All encircled entries in row b are deleted, showing that we 

assume that agriculture does not produce investment goods. Deletions in 

(2) above also exclude government from production of investment goods, 

leaving us with the special assumption that only the industrial sector
 

produces investment goods.
 

(4) The encircled vij items are deleted by our special 

assumptions that there are no intersectoral income payments between the 

two private sectors and that the government sector does not supply 

primary factors of production. 

(5) The encircled tij entries are deleted on the basis of our
 

special assumption that private transfer payments 
are negligible. 

(6) All di items are neglected by our assumption ignoring 

capital consumption allowances. 

Thus, the general accounting system presented in this section 

allows us to clearly identify all of the special assumptions we have made 

to study the structure of the open, dualistic economy. The general system 

obviously provides for construction of more complicated frameworks at all 

possible levels of aggregation and is adequate for applying the typology 

approach to all possible economies. 14 
1 4 As pointed out in the text, such systems as input-output and Keynesian 

are special cases of our system. In particular, when (3) is interpretedas the government sector, we obtain an aggregated table representingthe most familiar national income accounting system, I.e.: (ab)(de)(c)(f)(ghi)(j)(k). In our analysis of the open, dualistic economy, theaggregation used is (ad) (be) (cf) (ghi) (j) (k). 
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Positive Balanced Table 

In an earlier section, it was shown that a national income 

accounting system can be put into the form of a balanced table. In order 

to apply such a system to the study of long-run economic growth, we make 

the further assumption that a national income accounting system is a 

positive balanced table; i. e., that all entries are positive. This 

assumption is justified by three considerations: 

(1) Very few entries can take on negative values intrinsically. 

(In Table IV, for example, the only items which can be negative are the 

balancing items.) 

(2) When an economy is growing over the long-run, a negative 

value is not likely to occur indefinitely. 

(3) A negative value (-x) in a cell, or on an edge (x, y), can be 

replaced by a positive value (x) to form a positive balanced table. 

For these reasons, we define a national income accounting 

structure abstractly, as follows: 

Definition: 	 A national income accounting structure is a linear graph, G, 
on which a strictly positive Euler graph can be defined (i. e., 
strictly positive numbers can be assigned to every edge of G 
to form an Euler graph). 

We now state a theorem to be proved in the appendix: 1 5 

1 5 The definition of "connected" is given below. 
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Theorem 1: A connected linear graph is a national income accounting 
structure if and only if it is a cyclic net. 

It is precisely this reason that leads us to investigate the
 

special technique for decomposition of an Euler graph defined on 
a
 

cyclic net.
 

Exogenous Versus Endogenous Variables 

When a skeleton of an accounting structure is represented by
 

a linear graph with a cyclomatic number, u, the total number of
 

variables (edges) exceed the total number of independent accounting 

equations (i. e., V-i) by u. This suggests that we can choose u variables 

as exogenous, leaving the remaining variables (n-u=V- 1) as endogenous 

variables. When the values of the exogenous variables are given 

arbitrarily, therefore, the endogenous variables can be determined 

residually by the accounting equations. This knowledge is of special 

relevance for consistent planning for economic development--in essence 

requiring acceptance of a specific accounting framework (skeleton) and 

planning all variables to form a balanced table. 

It is not true, given an accounting skeleton, that any set of u 

edges can be arbitrarily chosen to form a set of exogenous variables. 

For example, in Diagram Xa where u-2, the set of edges (El, E2 ) cannot 

- 67 ­



be a set of exogenous variables because the value of E is always equal 

to the value of E2 . Hence, two numbers cannot be arbitrarily assigned 

to them. Similarly, in Diagram Xb, E1 and E2 cannot both be exogenous 

variables at the same time (see below). Thus, only certain sets of u
 

edges, to be called a basic edge set, 
 can qualify 	as a set of exogenous 

variables. 

Understanding the properties of basic edge sets is crucial both 

for our decomposition technique and the planning applications referred to 

above. The following linear graph definitions are presented to analyze 

the basic edge sets. 

Definition: 	 A set of directed edges on a linear graph form a link between 
x and y if they form a path from x to y after the direction of 
some of these edges is reversed. 

An example of a link is given in Diagram Xc where a path can 

be formed by reversing the direction of the edge (dc) to (cd). 

Definition: 	 A set of directed edges on a linear graph form a circle if they
form a circuit after the direction of some of the edges of the 
circle is reversed. 

An example of a circle is given in Diagram Xd where a circuit 

can be formed by reversing the direction of the edge (dc) to (cd). 

We note that a path is a special case of a link and a circuit is 

a special case of a circle. 
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Definition: 	 A linear graph is connected if for every pair of vertices 
(x, y) there is a link between x and y. (See Diagram Xe)
A linear graph is circle-free if it has no circle. (See 
Diagram Xf.) 
A linear graph is a tree if it is circle-free and connected. 

Understanding the concept of a tree is essential to 	our analysis. 

If a tree has any edge at all, it has at least one end vertex, i.e., a vertex 

touched by 	only one edge, known as an end edge. When the end vertices 

and end edges are removed from a tree, what remains is still a tree. 

In Diagram 	XIa, the end vertices and end edges are, respectively, b,a, 

c, d, and T, Tb,aP T,c Td . When these are removed, we have the tree 

shown in Diagram Xlb. 
respectively, e, f, g, and Te, 

The end vertices and end edges of this tree are,
2 2 2Tf, Tg, which, when removed, leave the 

tree shown in Diagram XIc. This process can be repeated until finally 

only one edge (or one vertex) is left. 

Symbolically, the end edges removed successively may be 

assigned a causal order, as follows: 

Causal order 1: Tai1 Tb,1 Tc 
1 

, T1 (end edges removed in first step) 

Causal order 2: Te T Tg (end edges removed in second step) 
Causal order 3: Te3 f, 

Causal order 3: Th, Ti (end edges removed in third step) 

Causal order 4: T.4 (end edge removed in fourth step)
0 

- 70 ­



L .' ., kk 

VETCES* 

'I' ' ®R e 

ENJD 

EDGES Ts, T1Tj Te, T T T? itT. 

j, I 

(solid) 

BASIC 

______ 

T 

G) 

I 

I,,. 

,44 I9 

h 

-a 

k 

6F9 

T TIT+ 

I 

4 

T 

S9 

or, ir , 

9 

,, 

MD)EVALUE T, () Ti (a 1 ( )() T I,(3) T(4.) 

OIAGRAM X11 DE!TE~RMINATION OFl ENPOGENOUS 
'fARIAGILES iY CAUSAL OAOEIR 

-71­



When any tree is given, a causal order can be assigned to
 

every edge in this way.
 

A connected linear graph which is not 
a tree will contain some
 

sub-graphs which are trees. 
 The following definition emphasizes this
 

phenomenon.
 

Definition: A sub-set of edges, T, of a linear graph, G, is a maximum 
tree if T is a tree which touches every vertex of G. The edges
of G not in T form a basic edge set. 

In Diagram XIal, the solid edges form a maximum tree (in 

fact, the same tree shown in Diagram XIa for which a causal order 

analysis has been made above). All vertices, a to k, are touched by 

edges in this tree. We observe that the cyclomatic number of this linear 

graph, u8, is equal to the number of basic (dotted) edges. This is an 

example of the following theorem: 

Theorem 2: 	 If a connected linear graph, G, has V vertices and a 
cyclomatic number u, every maximum tree of G has V-1 
edges and, hence, every basic edge set has u edges. 

Returning to the planning application, let G be a linear graph 

with E edges corresponding to E planning variables. We present the 

following definition: 

- 72 ­



Definition: A set of variables (edges) of a linear graph, G, form a 
set of exogenous variables and the other edges form a set 
of endogenous variables if, after arbitrary values are assigned
to all exogenous variables, unique values can be assigned to 
all endogenous variables to form an Euler graph. 

With this background, we can state the following theorem: 

Theorem 3: 	 Let a connected linear graph G be given. A set of edges of
 
G form a set of exogenous variables if, 
 they form 
a basic edge 	set (i.e., if and only if the endogenous 
variables form a maximum tree of G). 

We discuss the sufficient condition of this theorem by using an 

example while the necessary condition is given in the mathematical 

appendix. 

The dotted edges in Diagram XIal are a set of basic edges, i. e., 

the exogenous variables. Let values be assigned to these variables as 

indicated by the encircled numbers. We now seek to determine the 

values of the endogenous variables (the solid edges which form a 

maximum tree), according to the causal order shown in Diagram XIa, 

b, c, d. 

We begin with edge T1 in causal order 1. T1 is the onla a 2-U 
endogenous variable touching the end vertex "a. " By requiring that 

vertex "a" be in balance, the value of Ta is uniquely determined as 

-2(3-5). In this way, the values of all edges in causal order 1 

Tb, Tc, Td) can be determined, as indicated at the bottom of 

Diagram XIal. 
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We then proceed to causal order 2 (shown in Diagram XIb An 

endogenous variables in this order (T, T, T 2) are determined by the 

same principle; i.e., of all the endogenous variables of causal order 2 or 

higher, each T 2 is the only endogenous variable touching the i-th end 

vertex. Proceeding through each causal order in this way, we can 

determine uniquely the values of all endogenous variables in r steps, 

where r is the maximum causal order. We can be certain that an Euler 

graph is formed since the endogenous variables form a maximum tiee 

and, hence, eve vertex is in balance. 

The theorem stated above implies that every set of exogenous 

variables contains u variables, the cyclomatic number. It also explains 

why not all edge sets qualify as exogenous variables. Referring back to 

Diagram Xa, we now see that the set of (El, E2 ) edges (though equal to 

the cyclomatic number) is not a set of exogenous variables because the 

other edges do not form a maximum tree. Similarly, in Diagram Xb, 

the two edges (E,, E2 ) cannot belong to any set of exogenous variables 

since the remaining variables would be disconnected. 
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Decomposition Procedure 

We have referred earlier to the concept of a set of basic circuits 

which we now define precisely: 

Definition: Let G be a directed linear graph with cyclomatic number u. 
A set of circuits Ci(il, 2, 3.... u) is a set of basic circuits if 
there exists a basic edge set Ei(i=l, 2 .... u) such that Ei is 
included in Ci and is not included in Cj if j i. 

Thus, a set of basic circuits is defined as having a particular
 

relationship to a given basic edge set. 
 We use Diagram V to exemplify 

this relationship. Diagram Va is a linear graph with a cyclomatic 

number of 4. In Vb, a number of circuits of the linear are shown, of 

which the set C 1 , C2 , C3 0 C4 (in this particular order) form a set of 

basic circuits. This is true because the set of edges El, E2 , E3, E4 S 

form a basic edge set (i. e., the remaining edges form a maximum tree). 

One can verify that the basic edge E. is included only in the basic circuit 

C1 ; E2 is included in C2 but not in C3 or C4 ; E 3 is included in C 3 but not 

in C4 . 

This ex-ample shows the phenomenon of edge-monopolization. 

E1 is included in C1 and is not included in any other basic circuit, 

emphasizing that edge El is monopolized by circuit C 1 . -When E, is 

removed from the linear graph, all other basic circuits (C 2 P C 3 , C4 ) are 
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still intact. Among the remaining circuits, E2 is monopolized by C 2 .
 

Similarly, when the first r basic edges are removed, only the first r
 

basic circuits are destroyed. Of the circuits which remain, the basic
 

edge Er+1 is monopolized by Cr+1 .
 

We can now restate the decomposition theorem as follows:
 

Theorem 4: 	 If N is a cyclic net with a cyclomatic number, u, there 
exist a set of basic circuits, C, (i=1, 2, .. .u) in N such that 
any Euler graph, E, defined on N is uniquely decom*osable 
into Ci; i. e., there exist a unique set of coefficients ai
(i-1, 2, ... u) so that: 

E 2al C 1 +a 2 C2 +...+auCu 

Based on this edge-monopolizing property, able towe are 

design a practical procedure for the decomposition of an Euler graph, 

once a set of basic circuits is given. This procedure is illustrated in 

Table X, the 	decomposition table which we have used to obtain the 

decomposition results for the Philippines in section III above. Columns 

and rows are numbered to facilitate reference. The top margin shows all 

the edges of Diagram IVa. In column 1 the twelve circuits from C1 to C12 

are indicated. 16 A number "1" is written in a cell if and only if the 

16These 12 circuits are those shown as numbers C1 through C12 in
 
Diagram VII.
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circuit specified in the row contains the edge listed in the column. When 

this step is completed, the table is referred to as a circuit-edge table. 

Once an Euler graph is defined on the skeleton, we can write 

the values associated with each edge in row 13. We are now ready to
 

begin the decomposition procedure. The entries with a 
single circle
 

represent monopolized edges (ZY), (YX), (YZ), (ZX), (GY), (FY), 
 (ZG), 

(XG) and the circuits which monopolize these edges (C1 , C2, C3 , C4 , C5' 

C6 8 C7 Ca). The very definition of basic circuits implies that at least 

one edge is monopolized; i.e., E1 is in C 1 but not in any other circuit. 

The coefficient cf every circuit monopoiizing an edge is uniquely 

determined and is equal to the value on the monopolized edge. Hence, 

we can now write the coefficient of C 1 ....... C8 in column 2.
 

Next, for every Ci(i1, 2, .... 8), the values of the coefficient 

Ci are subtracted from the values on all edges of the Euler graph 

contained in Ci . This operation is indicated in row 14. For example, the 

coefficient of C7 is S and, hence, -Sg appears in row 14 under 

columns 9, 11, and 13, corresponding to the three edges of C7. Thus, 

the sum of rows 13 and 14 constitutes a new Euler graph with fewer 

edges (as the value on every monopolized edge is zero) and containing 

fewer circuits since C1, C 2 .... C8 are no longer relevant and can be 

disregarded in later rounds. 
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We now begin the second round of decomposition, again
 

proceeding by identifying monopolized edges and the circuits which
 

monopolize them. 
 These are indicated by the double-circled entries.
 

The coefficients for these circuits, 
 C 9, C 1 0 , C11, are now determined
 

by reference to the new Euler graph (sum of rows 
13 and 14) and recorded 

in column 2. 

We now proceed to the third round, the final round in our 

example, and perform the same operation. In this final round, we
 

determine the coefficient of C12 
 indicated by the triple-circled entries. 

This circuit monopolizes the edge (YF). Any Euler graph can be 

decomposed by this method in a maximum of u (the cyclomatic number) 

steps. 

To re-emphasize the concept of basic circuits, we note that for 

the 12 circuits Mi .... C12) in the decomposition table (Table X), we can 

produce a basic edge set which are the 12 monopolized edges, (ZY), (YX) 

. ... (YF), indicated in the given order as the first 12 edges in Table X. 

One can confirm the fact that Cr+1 monopolizes Er+t when the first r edges 

are removed. Finally, we can verify that when all the basic edges are 

removed, the remaining edges form a maximum tree of the original 

skeleton. Hence, CI, C2 .... C12 form a set of basic circuits. 
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The Economics of Decomposition 

Once a set of basic circuits has been identified, the 

decomposition of a particular national income account (Euler graph) to 

determine the coefficients of each economic circulation is merely a matter 

of routine calculations. We have presented a procedure for such 

routine calculation in the previous section. It is apparent that this
 

procedure does not involve economic knowledge or judgment. However,
 

there is 
 a critical input of economic knowledge at an earlier stage when 

the set of basic circuits is selected for decomposition. This is 

especially pertinent when, as we usually find for a large national
 

accounting skeleton, 
 there are alternative sets of basic circuits. It is 

then necessary for decomposition to select one of several sets of basic 

circuits, B1 , B2 .... Bm, on the basis of assessing their economic 

significance. Such choice requires an intimate knowledge of the 

economy for each year for which national income flows are to be 

decomposed. Knowledge of national income accounting data alone is 

inadequate to assure that the proper set of basic circuits will be selected. 

If the national income accounting system is to be analyzed over 

a number of years, detailed knowledge of the economy and its performance 

over the entire period is required. There is a problem in changes in sets 
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of basic circuits, Bi, through time. One Bi appropriate to illuminate
 

details of intersectoral relationships at one point in time may not be
 

germane for another year. 
 While only i.uantitativwa changes are shown 

when only one given base is employed for a period of years, we have 

confronted this problem in the previous section in connection with the 

necessity of shifting bases for analyzing the Philippine economy.
 

Shifting bases is 
an important part of decomposition analysis
 

which can highlight 
sources of change in the growth dynamics of an
 

economy. When bases we
are shifted, see that the composition of the
 

economic circulations are altered, 
 revealing changes in the intersectoral 

patterns of resource utilization. Qualitative changes in the structure of 

the economy can be reflected by this device. 

There are no hard .And fast rules to assist in making the 

difficult choice among alternative sets of basic circuits, B., as the basis 

for decomposition analysis for a particular year. Economic understanding 

supported by experimentation, must be relied upon since the mathematics 

of linear graph analysis (although helpful as a tool) cannot replace 

economic knowledge and judgqnent. In a fundamental sense, the 

decomposition techniques we have presented in this paper are descriptive 

in nature. The results are suggestive of new problems whose analysis, 

however, will require the application of more formal methods, e.g., the 

postulation of behavioristic relationships. 
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Some suggestions that may prove helpful for choosing a set of
 

basic circuits for a specific year may be offered. Given a national
 

income accounting system (i. e., an Euler graph) for a particular year, 

a set of basic circuits, Bi, can be provisionally selected on a trial basis. 

Decomposition of this Bi yields a set of coefficients, Ci, which represent 

the values of the economic circulations. However, the decomposition 

theorem presented in the previous section gives no assurance that al C. 

will be non-negative. If some of the values for the Ci turn out to be 

negative, the result of the decomposition will be unsatisfactory for 

economic analysis. Negative circulations of real resources lack 

economic meaning. Thus, when any negative coefficient appears, it is a 

signal that the set of basic circuits provisionally chosen is inappropriate 

and an alternative set, Bj, must be sought. This trial-and -error method 

was successfully employed in the base shifting described in the previous 

section. The basic set of circuits used for decomposition of the 1964 

Philippine data would have produced negative coefficients for the 1949 

data, so a new and more meaningful set of basic circuits yielding no 

negative coefficient'was adopted for 1949. We find, therefore, that a 

mathematical fact (the sign of the coefficient) provides some guidance 

in choosing an appropriate set of basic circuits. 
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The preceding discussion raises another problem. Given a 

positive Euler graph, E, representing an actual national income accounting 

system, can we always find a set of basic circuits, Bi, that will yield
 

non-negative coefficients when E is 
 decomposed into B. ? An affirmative 

answer to this question is essential if the trial-and-error method
 

suggested above is to be si'ccessful. The following theorem (proved in
 

the mathematical appendix) asserts that the answer is affirmative:
 

Theorem 5: If U is any strictly positive Euler graph (i. e., a balanced 
table with all strictly positive entries defined on a directed
linear graph, q, there exists a set of basic circuits, B, of
G, which will yield non-negative coefficients when E is 
decomposed according to B. 

It should be noted that this theorem differs from the
 

decomposition theorem of the previous section, 
 which merely guaranteed
 

the existence of a set of basic circuits. 
 The decomposition theorem did 

not, however, assure that decomposition would yield non-negative 

coefficients. The theorem now stated begins with a non-negative Euler 

graph, E, and asserts the existence of a base, B, which,when employed 

for decomposition oZ 1E, will yield non-negative coefficients. However, 

if another Euler graph (even with strictly positive coefficients) were to 

be decomposed according to B, some negative coefficients may occur. 

When this phenomenon actually occurs, base shifting becomes 

unavoidable. 
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Mathematical Appendix 

Basic Edge Set and Basic Circle 

We accept the definitions of link circle, connected, end vertex 

end edge, cyclomatic number, circle free, tree, maximum tree. basic 

edge set and causal order of the edges of a tree as given in the text. 

(For those who are familiar with elementary linear graph theory, it may 

be added that these are non-directed linear graph concepts which will be 

used in the appendix first. ) 

Making use of the facts that a tree (with more than one edge) has 

at least one end edge and that when an end edge is deleted from a tree 

what remains again forms a tree, we can easily prove: 

Lemma 1 The Cyclomatic Nurr'er of a Tree is Zero (i. e., EW-1 for a 

tree) 

Let G be a connected linear graph with cyclomatic number u. 

Let T be a maximum tree of G and let B be the set of edges of G which 

are not in T. We now want to prove theorem 2 in the text (i. e., we want 

to prove B has u-edges). Let the edges of B be written as Ei (i~l, 2,.. .r) 

If B is empty (i. e., r 0), then G (which is the same ais T) is a tree and 

Lemma 1 implies the proof. If B is not empty (i. e., r > 0), the edges 
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Ei may be 	added, one by one, to T until T finally becomes G. Since T
 

is maximum, the addition of an 
Ei at each step will increase the
 

cyclomatic number by one 
(as the number of vertices will not be 

increased). Since T is a tree, its cyclomatic number is zero (Lemma 1); 

and, hence, the cyclomatic number of G is r (i. e., u~r). This proves 

theorem 	2. QED.
 

We shall next prove the following:
 

Lemma 2 	 A connected linear graph, Gl, with a cyclomatic number u has 
at least one set of u-edges which form a basic edge set (i. e.,
when these edges are deleted what remains is a maximum 
tree). 

Proof: If 	G1 is a tree, lemma 1 implies that the theorem is true. If 

G 1 is not a tree, let E1 be an edge contained in a circle C 1 in G1 . Delete 

the edge E1 from G1 , the remaining edge is denoted by G2 . It is obvious 

that G2 , with a cyclomatic number, u-i, is connected and maximum in 

G1 . If G2 is not a tree, the same process cani be repeated; i.e., an 

edge E2 can be identified which is contained in a circle C2 or G2 . When 

E2 is deleted from G2 , the linear graph formed by the remaining edges 

is denoted by G3 . In this way we have: 

G 2 G3 GrG1I 	 ...... . Gr +1 (a set of subgraphs) 

C. ,C 2 , C 3 *...... Cr (a set of circles) 

El EE2 , E3 ..... **Er (a set of edges) 
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such that E.1 is in C.1 (which is in Gi) and such that Gi + is obtained from 

Gi by deleting Ei . Furthermore, Gi, with cyclomatic number u-i+1, is 

connected and maximum in G 1. Since G1 has only a finite number of edges, 

the process must stop, in a finite number of steps, at Gr +l which is 

circle free and is thus a maximum tree of G1 . Since the cyclomatic 

number of Gr +1 is zero, we have u-(r+1)+l0 or, u~r. Thus Ei (i1,2,...u) 

form a basic edge set. QED. 

The above proof immediately shows: 

Corollary 1:The cyclomatic number u of a connected linear graph G is
 
non-negative; u is zero if and only if G is a tree.
 

The above proof suggests the definition of a set of basic circles 

by merely changing the word "1circuit" into "circle" in the definition of a 

set of basic circuits in the text. In other words: 

Definition: Let G be a linear graph with a cyclomatic number u. A set of 
circles C. (i1, 2, ... u) form a set of basic circles if there 
exists a set of basic edges E i (i1, 2, ... u) such that E. is 
included in Ci and is not included in any C. if j i. 

The above proof then implies: 

Corollary 2: 	 A connected linear graph with a cyclomatic number u has at 
least one set of u-circles which form a set of basic circles. 
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Exogenous 	and Endogenous Variables 

Let G be a directed linear graph which is connected. A sub-set 

of edges, X, of G will be referred to as a set of exogenous variables 

(the set of edges not in X, denoted by the set notation G-X, referred to 

as a set of endogenous variables) according to the definition given in the 

text. We want to prove the necessary condition of theorem 3 in the text. 

Suppose G-X is not a maximum tree of G, then there 	are two cases: 

Case One: 	 G-X is not circle free. In this case, the endogenous 

variables contain a circle C. According to the definition of a 

"circle, " the edges of C can be classified into two classes 

C+ and C- (one may be empty) such that a circuit can be 

formed when the direction of all edges in C- is reversed. 

Letting k o 	be any number, we can construct a square table B 

by:
 

'
i) assigning the value "k to every cell of B corresponding 
to an edge of C. 

ii) assigning the value "-k" to every cell of B corresponding 
to an edge of C-. 

Then B is a balanced table. Let us assign a particular set of 

arbitrary values to X (the set of exogenous variables) and 

determine a set of values for the endogenous variables in G-X. 
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These values then form a balanced table (i. e., Euler Graph), 

J, by definition. Notice that B+J is also a balanced table in 

which the values of the exogenous variables (X) are the same 

as those in J. This proves that the values of the endogenous 

variables cannot be determined uniquely by the accounting 

equation (i. e., by the requirement that an Euler graph be 

formed). 

Case Two: G-X is circle free. This implies that G-X is either not 

connected or not maximum in G. In this case, it is easy to see 

that we can take some (at least one) edges from X which, when 

added to G-X, would have converted the latter into a maximum 

tree of G. Thus, according to the sufficient condition of 

theorem 3 (proved in the text), a proper sub-set of X 

constitutes a set of exogenous variables. This implies that 

arbitrary values cannot be assigned to all values of X to form 

an Euler graph. QED. 

National Income Accounting Structure 

We accept the definitions of a path, circuit, cyclic net, 

aggregation operation (on a directed linear graph) as given in the text 

which are proper "directed' linear graph concepts. In addition, let us 

introduce:
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Definition: 	 A sub-graph N of a directed linear graph G is a maximum 
cyclic net (MCN) of G if N is a cyclic net 	and is not a proper
sub-graph of a larger cyclic net of G.
 

Definition: A vertex, V, 
 of a directed linear graph is a sink (source) if 
there is no edge initiating from (terminating at)V. 

Definition: A directed 	linear graph is circuit-free when it contains no 
circuit. 

The validity of the following lemmas can be easily verified: 

Lemma 3: A circuit free directed linear graph has at least one source 
and one sink. 

Lemma 4: Every edge of a cyclic net is included in a circuit. 

Lemma 5: 	 A circuit of a directed linear graph is always included in an
 
MCN; twoMC 
 cannot have a common vertex. 

Let us construct an aggregated linear graph, A(G), by 

classifying the vertices of a directed linear graph, G, in the following 

way: a vertex of A(G) either corresponds to a single vertex, x, if x is not 

in an MCN of G or corresponds to a sub-set of vertices belonging to an 

MCN of G. (This aggregation operation is indicated in Diagram III. ) 

Lemma 5 implies that A(G) is circuit-free. If G is connected, 

then A(G) is also connected. If a connected G is a cyclic net, then A(G) 

is merely one 	vertex; otherwise G has at least one edge. This may be 

summarized as: 
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Lemma 6: 	 a) A(G) is circuit free. 
b) If G is connected, then A(G) is connected. 
c) If G is connected and is not a cyclic net, then A(G) has 

at least one edge. 

We shall now accept the idea of a "skeleton" discussed in the
 

text (i. e., a linear graph on which 
an Euler graph can be constructed).
 

However, in a rigorous treatment, the concept of "skeleton" can be
 

dispensed with as is illustrated in the following lemma:
 

Lemma 7: 	 If G is a circuit-free, directed linear graph, the only non­
negative Euler Graph which can be constructed on G is the 
trivial one, i. e. the zero-Euler graph in which the value zero. 
is assigned to every edge of G. 

Proof: We shall prove the lemma by induction on the number of vertices. 

Let G be circuit-free with n-vertices. If n'1, the lemma is trivial.. Let 

us assume that the lemma is proved for all Euler graphs with n-I or 

fewer vertices. If G has any "isolation vertex" (i.e., a vertex touched 

by no edge at all), the vertex can be deleted and the inductive hypothesis 

completes the proof. Thus, we may assume G has no isolation vertex. 

By lemma 3, we can find a vertex "s" which is a source of G. There is 

at least one edge (s, x) that initiates from "s." For any non-negative 

Euler graph defined on G, the value on (s, x)--as well as on every edge 

initiating from "s"--is zero. Let a new linear graph, M, be formed by 

deleting "s, " as well as all edges initiating from "s, " from G. Any 
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non-negative linear graph defined on G can now be defined on M. Since M 

is circuit-free and has one less vertex than G, the inductive hypothesis
 

completes the proof. QED.
 

Let us now accept the definition of the national income
 

accounting structure and now prove theorem 1 in the text. 
 Let a directed 

linear graph G be given. To prove the sufficient condition, suppose G is 

a cyclic net with edges Ei (i1, 2 ,... n). By lemma 4, we can find a set
 

of circuits Ci (i=l, 2 s...n) such that Ei is 
 in Ci. Let k (i1, 2, .... n) be
 

any set of strictly positive numbers; the valued linear graph kC+k2 C2
 . .+ 

knCn is then obviously an Euler graph with strictly positive values
 

defined on every edge of G. Thus G is 
 a national income accounting
 

system, and the sufficient condition of theorem 1 is 
 proved. 

To prove the necessary condition, let U be a strictly positive 

Euler graph defined on G which is assumed to be connected. Let us 

construct A(G) (according to lemma 6) and aggregate U accordingly. In 

this way, we obtain an Euler Graph A(U) (as the aggregation of an Euler 

graph is an Euler graph) which is strictly positive (as only "additions" 

are involved). By lemma 6, A(G) is connected and circuit free. 

Furthermore, if G is not a cyclic net, A(G) has at least one edge on 

which a strictly positive number is defined by A(U). This contradicts 

lemma 7, and hence G must be a cyclic net. This proves che necessary 

condition of theorem 1. QED. This proof implies the following corollary: 
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Corollary 3: For any non-negative Euler graph U defined on a linear 
graph G: 

a) all values on edges not included in an MCN of G are zero.
b) the edges of G corresponding to strictly positive values 

of U form a union of disjoint cyclic nets. 

Decomposition: 

Let G be a linear graph with cyclomatic number u and let
 

C i (i1, 2,... u) be a set of basic circuits--as defined in the text. The
 

validity of the following lemma can be easily verified:
 

Lemma 8: The only Evler graph which can be defined on a tree is the 
trivial one (i. e., the value "0 is assigned to every edge of 
the tree). 

The following lemma constitutes a part of theorem 4 in the text: 

Lemma 9: 	 If G0 is a linear graph (with cyclomatic number u) and if Ci

(-,2,. .. u) is a set of basic circuits, then any Euler graph,

A, defined on G , can be decomposed uniquely in C; i. e.,

there exists a set of unique coefficients ai (il 2, ... u) such
 
that
 

= aCA 1 +a2 2 + ...... +auCu 

Proof: In the definition of Ci, let the set of basic edges be Ei and let 

Gr denote the linear graph when the first "r"E i are deleted from G0 . 

Thus Gu is a maximum tree of G0 . To prove uniqueness, suppose 

bi 4 1, 2,...n) is another set of coefficients, then denoting c i 
= a i - bi, 

we have: 
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where "0" on the left-hand side is a square table of zeros. We will 

=
prove ci = 0 (i. e., ai =bi) inductively on i 1,2,... u. Since C1 is the 

only circuit containing E1 , thus c 1 = 0. Now we assume CI = 2 ... 

=
=cr = 0 and, hence, 0 cr+lCr+1 + 0r+2Cr42....... + CuCu. Since of all the 

circuits which appear on the right-hand side Cr+1 is the only circuit which 

contains Er+l' thus Cr+l=O and the proof is complete. 

To prove the possibility of decomposition, let x! be the value 

of A, now denoted by A 1 , on the edge E1 . The valued linear graph: 

A 2 =A 1 -xlC 1 (orA 1 =XlC 1 +A 2 ) 

is an Euler graph now defined on G I as C 1 is the only circuit containing 

E1 (i. e., the value of A2 on E l is zero). Letting x2 be the value of A 2 

on E2 , the valued linear graph: 

A3 =A 2 _ x2C2 (or A2 =x2C 2 +A ) 

is an Euler graph defined on G2 as C2 is the only circuit (among 

Ci i Z 2) containing E2 . Proceeding in this way, after u-steps, we have: 

Au+l =A11 = =- XuCu (or Au Au+l + XuCu XuCu) 
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where Au+l is an Euler graph defined on Gu. Since Gu is a tree, 

Auft = 0 is thus a 0-table by Lemma 8. Then we have: 

l
A =A x lC +x 2 C 2 +.... +x C 

QED. 

We shall now prove the following lemma: 

Lemma 10: Every cyclic net, N, has at least one set of basic circuits. 

Proof: Let us assume that N has n-edges and a cyclomatic number u. We 

shall prove by induction on n. Let (x, y) be an edge of N which, by 

lemma 4, is included in a circuit Cu in N. Let (x, y) be deleted from G 

and denote the remaining edges by G'. Obviously, G' has n-i edges and 

a cyclomatic number u-i. There are two cases: 

Case One: 	 G' is a cyclic net. The inductive hypothesis is applied to 

locate a set of basic circuits Ci (i1, 2, ... u-l) in G'. When 

Cu is added to this set, a set of basic circuits for G is found. 

Case Two: G' is not a cyclic net. In this case, there is no path in G' 

from x to y. There are two subcases: 

Sub-case One: (y,x) is not in G (and G'). Form a new directed linear 

graph, G", by changing the notations for the vertices "y i and 

"'xI' into "z"--a new vertex notation not previously used in G. 

G" is a cyclic net with cyclomatic number u and n-i edges. 
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The inductive hypothesis leads to a set of basic circuits 

C (i1, 2,... u) in G". If all the edges in a particular Ci 

are not in G', then Ci is a path from y to x. Thus, when the 

edge (x, y) is added to Ci, a circuit C in G can be formed. 

(If C. is in G', take C* Cj. ) In this way, a set of basic 

circuits C. (i,2, .. .u) of G can be found.
1
 

Sub-case Two: (y, x) is in G and G'. Delete (y, x) from G' and then
 

construct G" as in the last case. G" is now a cyclic net, with 

a cyclomatic number u-1, on which the inductive hypothesis 

can be applied to produce a set of basic circuits Ci(i-1, 2,... 

u-i). As in the last sub-case, a set of u-1 circuits 

C* (i1, 2,. .. u-l) can now be constructed in G. When the 

two-edge circuit (y, x) (x, y) is added, a set of basic circuits 

is found for G. QED. 

Lemma 9 and 10 imply theorem 4 in the text. To prove 

theorem 5, we need the following lemma: 

Lemma 11: 	 If U is a non-negative Euler Gr.ph defined on a cyclic net, N, 
with a cyclomatic number u, there exists a set of basic 
circuits C (i-l, 2,... u) in N such that U can be decomposed 
in Ci with non-negative coefficients. 

We will prove this lemma by induction on the number of edges 

"n, " in the cyclic net N. if n-1, N contains a single edge forming a loop 

and, hence, 	 u=1. The theorem is seen to be true. We assume that the 
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theorem is proved for all cyclic nets with n-I or fewer edges. Let N 

be a cyclic net with n edges and with a cyclomatic number u. Let (x, y) 

be an edge in N where U takes on a minimum value m ?-0 (i.e., m is 

not greater than the value of U at any other edge in N). Let G be the 

linear graph constructed by deleting (x, y) from N. G is connected and 

contains all vertices of N. Hence, G has n-i edges and has a 

cyclomatic number u-1. There are two cases: 

Case One: G is a cyclic net. Let C be a circuit of N which contains the 

deleted edge (x, y). Define a new valued linear graph, U', by 

subtracting "m" from U at every edge in C. Thus U' is a 

non-negative Euler graph defined on G. Applying the 

inductive hypothesis, we can decompose U' into a set of basic 

circuits of G, i.e.: 

U' =ClC 1 +c2C 2 +CuICu 

where all the coefficients are non-negative. Then we have 

U+1+c2C2 - C 1 +mC 

It is easy to see that the circuits on the right-hand side form 

a set of basic circuits of N and, hence, the theorem is proved. 
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Case Two: G isnot a cyclic net. In this case there is no path from x to y 

in G. There are two sub-cases: 

Sub-case One: (y x) is not in N (and not in G). Aggregate N by grouping 

the two vertices "x" and "y; while keeping all other vertices 

of N distinct. Denote the aggregated linear graph by A(N) 

which is a cyclic net with n-I edges and with a cyclomatic 

number u. Aggregate U accordingly and obtain a non­

negative Euler graph A(U) defined on A(N). Apply the 

inductive hypothesis, we can decompose A(U): 

A(U) -c C +c 2C 2 +...... +cuC u (ci; 0) 

where Ci are basic circuits of A(N). If a particular Ci is not 

in N, it is a path from y to x; the addition of the edge (x,y) 

to Ci will form a circuit C* in N. (If Ci is in N, take C* to1 
 1 

be the same as Ci. ) In this way, it is easy to see that 

C* (i1, 2,... u) form a set of basic circuits of N. 

The expression: 

BIcC*+c C*+ .. +c C*
 

1 1+2 2 u u
 

defines an Euler graph which is decomposed into a se'. of 

basic circuits of N with non-negative coefficients. Consider 

the difference B-U which is an Euler graph and which, by 
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construction, takes on the value zero on all edges of N other
 

than the edge (x, y). (This is due to the fact that A(U), U, and
 

B have the same value at every one of these edges.)
 

Lemma 8 then implies that B-U also takes on a zero value
 

at (x, y) and, hence, B 3 U.
 

Sub-case Two: (y,_x) is in N (and G). Perform the aggregation as before 

and obtain A(U) defined on A(N) where A(N) now has n-2 edges 

and has a cyclomatic number u-1. Applying the inductive 

hypothesis, we have: 

= C2 .....A(U) CI 1 c2 +uCui 1 (ci '0) 

where Ci is a set of basic circuits of A(N). Construct C.
1 

as before and let C* be the two-edge circuit [(x, y), (y, x)].
u 

We construct 

B =cC +c2C+ ... +c C* +q C* 

1 u-I u-1 u 

where q > 0 is the value of U at the edge (y, x). B is an 

Euler graph decomposed into a set of basic circuits, CM, of
1 

N with non-negative coefficients. Consider the Euler graph 

B-U where, by construction, the value defined on every 

edge [except (x, y) and (y, x)] is zero. Since none of the 

A15
 



C.* (i--,2, ... u-1) contains the edge (y,x), the value of B-U 
1 

at this edge is also zero. Lemma 8 then implies B-U as in 

the last case. QED. 

Notice the proof for theorem 5 is similar to that of Lemma 10. 

Indeed, we can prove Lemma 10 as a corollary of theorem 5 as follows: 

When a cyclic net N is given, we can first apply the sufficient 

condition of theorem 1 in the text by constructing a non-negative linear 

graph U on N. We can then apply theorem 5 on U and N and prove 

Lemma 10 directly. It is interesting to note that while theorem 1 is a 

directed linear graph theorem (i. e., it is not a valued linear graph 

theorem), it can, nevertheless, be proved as a valued linear graph 

theorem. It is for this reason that an independent proof of Lemma 10, 

based only on (none-valued) directed linear graph concepts, was given 

above. 

We are now ready to prove theorem 5, in the text, by induction 

on the number of edges of G. By corollary 3b, G is the union of disjoint 

cyclic nets. If there are more than one cyclic nets in G, the inductive 

hypothesis, applied to the individual cyclic nets, immediately completes 

the proof. Thus, we may assume G is a cyclic net. Lemma 11 then 

immediately implies theorem 5. QED. 
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