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NUMERICAL SOLUTION OF NONLINEAR PLANNING MODELS*
 

This paper discusses methods of numerical solution
 

for nonlinear multisectoral planning models and their applica­

tion to a particular model which could be used in the formula­

tion of development programs for less developed countries.
 

The numerical methods were originally developed by control
 

theorists, and we devote some space to their derivation and
 

evaluation since they are not well known to economists even
 

though one can visualize a wide range of economic applications
 

for them.
 

The model itself is based on ideas drawn from two
 

recent lines of thought about economic growth over time.
 

The first is that of neoclassical theoretical models designed
 

to analyze the characteristics of an economy in asymptotic
 

ocptimal growth, viz. Samuelson and Solow [25] and Koopmans [19].
 

The other line is that of finite horizon linear programming 

planning models, viz. Bruno [4], Eckaus and Parikh [i0] , and 

Chakravarty and Lefeber [ 7]. 

*T1his research has been financed in part by the Agency for
 
International Development and in part by the Harvard Institute
 
for Economic Research under a grant from the National Science
 
Foundation. We are indebted to Rod Dobell, Hollis Chenery,
 
I. A. Mirrlees, Louis Lefeber, Thomas Vietorisz, and Arthur
 
Bryson for comments and suggestions and to Andy Szasz for
 
programming assistance.
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By drawing on the aforementioned numerical methods
 

for solving dynamic nonlinear problems we have been able 
to
 

blend the nonlinear production and welfare functions of the
 

neoclassical models with the disaggregation and emphasis
 

on foreign trade of 
the linear programs. In so
 

doing we have employed an approach which
 

offers growth theorists the possibility of using greater
 

disaggregation than their present closed-form-solution methods
 

permit and which offers economic planners the opportunity
 

of specifying 
 their models with nonlinear functions in both
 
the performance index and the constraints.1/
 

In Section 1 we give 
a general statement of the dis­

crete optimization problem we are 
interested in solving,
 

along with the first order conditions for a constrained min­

1/While a number of authors have discussed models which
 
share characteristics with ours, previous studies have not
fully exploited the control theory approach to computer solu­tion of dynamic problems. 
The pioneer in formulating such
planning problems was Frisch, who in the 1950's proposed a
number of models nonlinear in production and welfare functions
(see, for example, [13]). 
 At about the same time, Chenery and
Uzawa [ 8] solved a model nonlinear in the foreign exchange
constraint. 
Models with nonlinear welfare functions have been
solved by Chakravarty [ 61 , Barr and Manne [ 2], Brioschi and
Rossi [ 31, 
and Johansen and Lindholt [16], while Mirrlees [21)
has solved a one-sector model nonlinear in both welfare and
production functions. 
 Radner and Friedman [23) solved a modi­fied multi-sectoral "log-linear" model with Cobb-Douglas

welfare and production functions, but in published work have
 not discussed the applicability of their methods to mor3 gen­eral functions. Finally, Dobell and Ho 
f 9) and Stoleru [26]
have obtained numerical solutions to models with "state vari­
able" inequality constraints and with minimum time objective
functions respectively by modified dynamic programming methods
 not akin to those we used.
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imum. The statement and conditions serVe as a basis for
 

a discussion in Section 2 of the conjugate gradient and
 

neighborhood extremal methods we employed to obtain numerical
 

solutions. In Section 3 we sketch the four-sector economy­

wide model to which we applied these techniques, and in
 

Section 4 comment on their computational characteristics,
 

especially speed of convergence. Finally, in Section 5
 

we demonstrate some of the effects of parameter variations
 

on the solutions, concentrating on (i) effects of changes
 

in the elasticity of substitution parameters and (ii) inves­

tigation of the turnpike properties of the model.
 

1. Formulation of the Problem in General Terms
 

There is a large literature, mainly in the engineering
 

journals, on numerical methods for solving dynamic nonlinear
 

optimizing models. In this and the next section we summarize
 

some of the solution methods which control theorists have
 

proposed, with some emphasis on their applicability to the
 

kinds of problems which are likely to arise in economics.
 



An initial question in any study of
 

dynamic problems is whether to work with discrete or continuous
 

time. We formulated our models in discrete terms#
 

largely for reasons of numerical convenience. One inevitably
 

has to discretize problems for digital computer solution in
 

any case, and an impressive body of oral tradition among
 

numerical analysts led us to use difference equations before
 

going to the computer, rather than letting the machine chop
 

up time in differential equations according to the whims of
 

a Runge-Kutta integration routine. 
Since the mechanics of
 

setting up the discrete-time optimal control problem are not
 

as well-known as the calculus of variations version, we
 

review the problem here in general terms before discussing
 
1/


solution methods.-


Consider the problem of finding the minimum of a
 

scalar function
 

N
 
(1.1) J = P(XN+l) + i~l L'(xiui) 

of n-vectors- of state variables x. and 
 m-vectors of
1 

control variables ui defined in each period i = 1, 2, , N
...


(and in period N+l for the state variables). The evolution
 

of the sta,:e variables is described by the vector-valued
 

system equations
 

-/Much of the remainder of this section is based on
 
the uncommonly clear control theory text of Bryson and Ho 
[ 51 .
 

T 2/As usual, we treat all vectors as columns, and write

for the transpose of x.
 x 
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(1.2) xi+ 1 = f i(xi,u i 

We assume initial conditions
 

(1.3) x1 specified
 

and may require terminal conditions
 

(1.4) (xN+l ) 5Ej 

to be met by some components (indexed by j) of the vector XN+l*
 

(The constrained terminal components of XN+ 1 will not enter
 

into the function (xN+l) in (1.1).) 

The problem as stated can be solved in principle by
 

standard methods of elementary calculus. We adjoin the
 

system equations (1.2) to (1.1) with a sequence of multiplier
 

vectors Ai+l,
 

N 	 T
 
=(1.5) *	 + i=l {L'(xi,ui) + A i u ) _X~X,XN+1) ) 	 Tilf~ f(x.,u) x. ] } 

For conveniience, we define a scalar sequence Hi (analogous to
 

the Hlamiltonian in 	the continuous formulation) as
 

(1.6) 	 1i Li ui ) + AT fi
 
1 =1' i+l (i i
 

and substitute into (1.5), also changing the indices of
 

suiumnation on the last term
 

N 
N i T 

(1.7) J*- xN+) -
-T 

N+ XN+l +iE [H - AT xi] + HI 
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Taking differential changes in J* due to differential changes
 

/in ui , we get 

(1.8) dj* x 1 ~ T1N___ N=2UI 

Lxi N H1 dx I1 + H1=21~ 1 x 

+ DHi du + -1 dx+ duDu xl 1 Du1 1
 

Our aim is to find conditions on the x's, u's and X's
 

which will guarantee that the standard first order optimality
 

condition dJ*= 0 is satisfied. This task is considerably
 

simplified if we choose the multiplier sequence Ai so that
 

AT - . - 0 i = 2, ... , N
1 

which implies that
 

1(1.9) AT (xi'ui) +L AT fi(xi ui)
 
i (Ix+ i+l ax.
1 1 

To simplify (1.8) further, we impose boundary conditions on
 

the costate equations (1.9) as follows:
 

(1.10) AT ­

N+l XN+1
 

!/For a scalar function f(xI, ... , xn ), define 2' as the 

;)f af 
row vector lox ... I I--- • 

1 On
 



We have now reduced equation (1.8) to the form
 

1N i 

dJ* dui + dXl.
 

The vector x is assumed given, so the second term
 

vanishes. To set dJ*= 0 and satisfy the first order necessary
 

conditions for a minimum we finally specify optimality conditions
 

(1.11) i = 0.-

Summarizing, to find the control sequence that gives 

a stationary value of the performance index J, we must choose 

at each step i 

(a) The n state variables, x.
1 

(b) The n adjoint variables, X
 

(c) The m control vectors, u.
1
 

to tiatisfy, simultaneously, 

(i) The n system equations, (1.2) 

(ii) The n costate equations, (1.9) 

/The di.screte programming problem discussed here can 
be guJn(ralized by the addition of inequality constraints, in 
which case t:he Kuhn-Tucker conditions apply. For example, 
a minimum principle holds for the controls in a discrete 
system, i.e., if the vector u.1 is constrained to lie within 

some set 12,and if the set {f (xi,u i ) : ui.E) is convex 

Hifor all x., then simply minimizing i = 1, ... , N 

for u.I is a necessary condition for a minimum. (See Halkin 

(141 for details.) 



(iii) The m optimality conditions, (1.11) 

(iv) The initial and final boundary conditions, 

and (1.3) and (1.10).Y' 

2. Solution Algorithms
 

Finding a set of variables which satisfies all of
 

these equations is not an easy task in any non-trivial problem.
 

Most solution methods in fact are based on not satisfying
 

some of the first order conditions. Rather, a nominal control
 

history is chosen which satisfies some set of the conditions
 

(i)-(iv). A system of difference equations linearized about
 

this nominal is then formulated and solved in such a way as
 

to indicate changes in the nominal solution which will bring
 

it closer to satisfying the violated conditions. There are
 

a number of possible sets of the conditions (i)-(iv) which
 

could be relaxed in these "successive linearization" algorithms.
 

Three that have been used are shown in Table 1.
 

'if some of the terminal states are specified as in
 
(1.4), the corresponding terminal costates satisfy the conditions 

(1.lOa) (AN+I) = vj 

where the v. can be interpreted as Lagrange multipliers on 

the constraints (xN)j = xj. 
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Table 1 

NOMINAL SOLUTION SATISFIES
 

(i) (ii) (iii) (iv) 

System Costate Optimality Boundary 
Equations Equations Conditions Conditions 

Neighboring 
Extremal 
Methods Yes Yes Yes No 

Gradient
 
Methods Yes Yes No No
 

Qu ilinoar­
ization
 
Methods No No Yes Yes
 

We have experimented with the first two of these
 

methods, and will sketch out both how they work and what
 

we have learned about their applicability to economic optimization
 

problems.
 

2.1 	 Neighboring Extremal Algorithms 

This class of algorithms is based on the most straight­

forward (perhaps naive is a better word) method of solving 

oltimal control problems. A typical recipe goes as follows: 

(Q) Choose an initial A2 * Use (1.3) to obtain x 1 . 

Uso x I 	 and 2 in (1.11) to solve for ui. Use xI and u1 in 

(K.2) to obtain x 2 Set i = 2. 

(ii) Use x.I and Ai1 in (1.9) and (1.11) to solve 

for ui and A 01/
 

Vin practice we found it useful to solve (1.9) and
 

(1.11) sepratcly, iterating between them until the ins
 

converged. We did this by choosing Ai+'s, using these in
 

(1.11) with an unconstrained minimization technique (see
 
Fletcher-Powell 11]) to obtain u 's, computing new Ai 's
 

with (1.9), and repeating this process until the Ai+l's converged. 
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(iii) Use ui and xi in (1.2) to obtain xi+I . 

Set i = i+l.
 

(iv) Repeat steps (ii) and (iii) until the final
 

state variables and adjoint variables are obtained. Observe
 

how far these values miss their respective boundary conditions
 

(1.10) (or (1.4) and (1.10a)) and use this informatiun to
 

modify the initial A2.
 

(v) Repeat steps (i)-(iv) until the final state
 

and adjoint variables obtained in (iv) are "close enough" to
 

the boundary conditions. 

As one might expect, this approach is a bit too simple
 

to be of general applicability../ The problem is that state
 

variables; at the terminal time may be highly sensitive to changes
 

in the guesses of the initial costates. This sensitivity
 

-I./lowever, 
we have observed that multisectoral program­
ring models in which (i) all the distributional relations hold 
;u- equalitie:, (ii) the production functions are linear, and (iii) the 
welfare functions are nonlinear in the controls, can be solved very
 
quickly by naive methods. With a terminal scrap value
 

T
 
in each sector we obtain AN+ from (1.10) and sweep the equation
N+l
 
(0.9) backward to provide the A path for each sector. The 
linearity of the production functions and the fact that 
the capital stocks (i.e., state variables) do not enter the 
performance index makes it possible to sweep (1.10) back­
ward without computing the control or state variables simul­
taneously. The A's can then be used to compute the control 
variables using (1.11) and the control variables can be used 
to integrate (1.2) forward to obtain the state variables. 

:ven in the case where terminal capital stocks are
 
specified instead of terminal unit scrap values, the procedure
 
outlined above leads to a very effective iterative scheme for
 
solving this class of optimizing planning models.
 



problem arises because equations (1.9) and (1.2) when linear­

ized about the optimal path are adjoint, with the property 

that solutions to the homogeneous parts of the two sets of 

equations may diverge from each other over time by many orders 

of magnitude. This divergence of fundamental solutions makes 

transmission of information about appropriate changes in X2 

from the terminal time to the initial time very much subject 

to problems of numerical round-off error. In simple one­

sector capital accumulation models with fifty-year planning 

horizons we found that under certain conditions changes of 

one unit in the eight significant digit of A2 would change 

the levol of terminal capital stock by a factor of two or more. 

These conditions may but do not necessarily occur and 

we found the neighborhood extremal method more efficient than 

th.e conjugate gradient method for solving one sector models, 

but Les.; efficient than gradient methods on our multisectoral 

model.;. HIad we undertaken the extensive programming required 

to transLate the effects of differential errors in missing 

boUndary conditions into differential changes in A2 , via 

Lhe backward integration of quadratic Riccati matrix differ­

ential equations, this method might have surpassed the
 

(radient app~roach./ 

!/See Bryson and 11o 1 5], Section 7.3, for a discussion
 
of such an algorithm.
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2.2 	 Gradient Methodsi/
 

As indicated in Table 1, most gradient algorithms
 

work 	with a nominal solution which satisfies neither the
 

optimality condition (1.11) nor terminal boundary conditions
 

of the form (1.4) and (l.10a). The algorithms operate by
 

iteratively improving the nominal control
 

histories to meet these conditions. The boundary conditions
 

may 	be approached by successive modification of estimates of
 

the multipliers v. in (l.10a) or else by adding to the per­

formance index (1.1) quadratic penalty functions of the ferm
 

2 a.( 	(xN+ 1 - on deviations of the final states (xN+l) j 

from 	their specified terminal values x., Modifying the
 

multipliers is a somewhat neater approach since it does not
 

distort the "true" shadow prices A as do the penalty functions
 

which substitute a condition of the form
 

(2.1) [ T aj -N+xj ] 

for 	the condition (l.10a). However, penalty functions are
 

useful since they are easy to apply, proving quite feasible
 

in our planning model with five state variables specified
 

at the terminal time.
 

Given a nominal control history ui, the steps of the
 

gradient algorithm we used go as follows:
 

(i) 	Integrate the system equations (1.2) forward
 

in time using the nominal ui history.
 

!/We are grateful to Raman Mehra for giving us a copy of
 
his conjugate gradient code, and to Robert Kierr for excellent
 
programming work in helping us to modify this code for our Purposes.
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(ii) 	 At terminal time, evaluate AN+1 using (2.1)
 

for the constrained state variables, and (1.10)
 

for the uiconstrained states.
 

(iii) Integrate the costate equations backward in
 

time, and using the calculated Xi and xi
 

histories, calculate the Hamiltonian (1.6)
 

and its gradient with respect to the ui
 -


(iv) 	Make a one-dimensional search in the gradient
 

direction- until the Hamiltonian is minimized;
 

more precisely, this means first choosing a
 

parameter a to minimize
 

g(a) = H[u - cVHT(u)]
 

where u is the current control history vector,
 

H is the Hamiltonian, and VH is its gradient,
 

and then calculating the new control history
 

from the relationship
 

u = u - aVH(u). 

We actually only approximated a, which is 

given by the condition 

T
(2.2) 0 d( )-= - VH(u) I [VH(u - TVH(u))]

by varying u in the gradient direction until
 

1/In actual practice, it is often preferable to search
 
in a modified gradient direction -- the modifications attempting
 
to take account of curvature properties of the Hamiltonian as a
 
function of the u.. We used a "conjugate gradient" procedure

which at each ste4 changes the u. according to a weighted average

of this step's gradient and last step's direction of movement.
 
For details, see Lason, Mitter and Warren [20], and Fletcher
 
and Reeves [12).
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the quantity on the right of (2.2) changed signs,
 

and then fitting an interpolating polynomial in
 

a to the control vectors calculated just before
 

and after the sign change.1 /
 

(v) 	 Return to step (i) with the new u-history,
 

after possible modifications to the penalty
 

function constants a. in (2.1).
)
 

First order gradient methods of this type typically
 

show rapid convergence in the first few iterations, but perform
 

relatively poorly near the optimum. In addition, they have
 

the drawback of not picking out with complete accuracy the
 

optimal control histories. Both of these problems can be
 

rectified near the optimum by use of either neighboring
 

extremal methods (if they converge), or of second order
 

gradient methods which take account of curvature properties
 

of the Haniltonian. However, both second order methods and
 

neighboring extremal algorithms with modifications to counter­

act numerical instability require large inputs of programming
 

logic and computation time. It is not clear in view of the
 

high marginal costs of these inputs that the improvements
 

which can be made on first order solutions are economically
 

justifiable. We have found that first order methods will
 

typically determine control histories to three significant
 

4/We imposed non-negativity constraints on some control
 
variables, and when these applied we simply set the negative
 
controls equal to zero after fitting the polynomial. A more
 
complete procedure would involve (a) minimizing the uncon­
strained discrete Hamiltonian, (b) checking for negative con­
trols and setting them to zero, (c) re-minimizing the Hamiltonian
 
thus constrained. We did not go through these additional cal­
culations largely because our problems seemed to converge well
 
with 	the simpler procedure.
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digits in a score or so of iterations.1 Since the parameters
 

in our problems are known at best to this degree of precision,
 

better solutions seem somewhat extravagant.
 

3. Apjlication to a Four-Sector Model2/
 

The numerical methods can be demonstrated on a four­

sector model which is large enough to provide a good test of
 

their computational feasibility.
 

The four sectors are (1) agriculture and mining,
 

(2) heavy industry, (3) light industry, and (4) services.
 

The basic structure of the model is to maximize a welfare
 

function over a thirty year period subject to
 

consLraints in the form of distribution relations, production
 

functions, absorptive capacity functions, foreign exchange
 

constraints, and initial and terminal capital stock and foreign 

debt con.; tra i. nts. 

3.1 The Wetfare Punction 

In a number of linear programming models (e.g., Bruno [4 ]) 

tliu welf.are function has been specified in something like 

the foll()winq form: 

N -i 4(3.1) 	 f. = : (l+z) 2 c..
 

i=l j=l 3
 

I/See Section 4 for a discussion of convergence of our
 
solution methods for the model considered in this paper.
 

2/We specified parameters for the model on the basis of
 
recent South Korean data. For more detail, see (181, and foot­
note 2, p. 26.
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where 	 z = consumption discount rate
 

i = time period index
 

j = sector index
 

c = consumption
 

That is, the discounted sum over time of each year's total
 

consumption is the maximand. To make the problem well-posed,
 

each c.. has been constrained by a linearized income elas­

ticity formula to bear a certain relationship to E cji, i.e.,
J 

total consumption in period i.
 

We have adopted a superficially different but actually
 

rather similar welfare function,
 

4 b 0O< b.<1N 

(3.2) 	 = Z (l+z) Z a.c..
 

i=l j=l 31. a 

I 

Connoisseurs of consumption theory will recognize
 

that the inner sum is just Houthakker's "direct addilog"
 

utility function [151, which gives rise to fairly simple
 

in terms of total consumption
demand functions for the c..
Ji
 

and the parameters a. and b.. We specified these parameters
 

by setting nominal Korean 1965-66 prices to unity, and then
 

choosing the a.J and b.) (non-uniquely) so that income elas­

ticities and consumption shares from the direct addilog func­

tion approximately equaled those in Korea in that year.
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3.2 Capital Stock Accumulation Equations
 

In most planning modelso capital stock accumulation
 

equations are written in the form
 

kj,i+l = kji + 1ji 

where j indexes sectors and i indexes time."/ The linear
 

programmers usually put upper bounds (for "absorptive capacity")
 

on the 6ji, while constraints of the form 6ji > 0 (which
 

guarantee non-shiftability of capital) appear routinely in
 

linear programs and were used explicitly by Johansen and
 

Lindholt 116] in their nonlinear model.
 

We have adopted both of these assumptions, by specifying
 

Lhat the (%ij should be non-negative,-/ and by rewriting our
 

accumulation equations in the form
 

(3.3) k j,i+ = kji + 9j.(6ji, kji ) 

where gj('ji, kji) is a function suggested by Robert Dorfman-/ 

/The addition of a depreciation term for the capital
 
stock in each sector adds no essential difficulty to the problem.
 

2/See footnote 1, p. 14, for details on how we imposed
 
non-negativity constraints in computation.
 

.!/The function was suggested for a different model
 
and we have adopted it for use here. Both Sam Bowles and
 
Louis Lefeber have suggested to us that an absorptive capacity

relationship should include educated or highly skilled labor
 
as one of the inputs. While we are in agreement, we have not
 
implemented that suggestion in the present model.
 



which specifies decreasing 	returns to investment 6.. in
 

the creation of new capital stock. More explicitly, we
 

write
 

(3.4) 	 gj(6ji, kji) = A kk =1 +
 

Ej k>i
 

P. > 0I 

The assumption behind this 	function is simply that
 

as the increase in capacity (Ak) approaches some fraction p
 

of existing capacity k, then investment (6) becomes less and
 

less effective in increasing Ak. For values of E 0, the
 

function g(6,k) is concave, and increases asymptotically to 

p, the absolute upper bound on percentage capacity expansion. 

]'or . -,0, g is still concave, but becomes conplex-valued
 

at the ordinate p. 
On grounds of numerical convenience, we 

sut i. = 0.5, and chose p in the vicinity of 0.3.1 / 

3.3 Distribution and Production Functions
 

The distribution relations are of the standard input­

output type:
 

(3.5) q + Dq + m = Aq 	+ B6 + e + c 
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where
 

q = vector of sectoral output levels
 

6 = vector of investment levels
 

m = vector of untied imports into sectors
 

e = vector of exports
 

c = vector of consumption levels
 

D = diagonal matrix of marginal propensities to
 
import for production
 

A = Leontief matrix
 

13t capital coefficient matrix
 

We have specified the top and bottom rows of B to consist of
 

zero elements, i.e., the agriculture and mining sector and 

Lhe service; sector provide negligible amounts of inputs to 

capital formation.i/ 

In line with recent empirical work, we assume that
 

production funcLions are CES (constant elasticity of substi­
2/


tution) :/ 

-/Actually this assumption is also an empirical result.
 
We aggregated an L8-sector Korean input-output "B" matrix to
 
gjet our matrix. Only 5 out of the 18 sectors actually produce 
capital goods, and these were all aggregated into our "Heavy" 
and "Light" industry sectors. 

2/We use the constant returns to scale form. Diminishing
 
returns specification would add no essential complication but
 
the increasing returns specification would make the problem
 
nonconvex.
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(3.6) 	 qji Tj'(l+ji [ -PJ9 -P J- J
 

(36)= ~ j.1v)ki) + (1-8.)R .ji
 

where
 

q = output
 

-r = 	efficiency parameter
 

v = 	rate of technical progress
 

= distribution parameter
 

k = capital input
 

t = 	labor input
 

L-j-.1 where o. is the elasticity of substitution
 
JJ
 

.th
 
for the j sector.
 

We assume full employment in the model, so the sector labor
 

forces are constrained to add up to the total labor available
 

in any given period:
 

4
 
(3.7) : .. = X.. 

j=:I ]1 1 

In thu interest of minimizing the number of control variables
 

in the model, we specified the sectoral exports exogenously,
 

(3.8) ej. given, all j,i
 

using constant exponential growth paths in 10-year periods to
 

make projections on the basis of current export levels. 
/
 

-/If we were to make exports endogenous, we could use
 
price elasticities to generate foreign exchange revenues from
 
real exports for use in the trade constraint (3.15). Lacking
 
data to do this, and wishing to keep our model to an easily
 
manageable size, we adopted the alternative of "parametric
 
programming" about a given export path.
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Also in the interests of simplicity, we allowed no untied
 

imports into sectors one (primary production) and four (ser­

vices):
 

(3.9) mi =m 4	 i =0, all i 

Using the give'n export paths and all the different
 

kinds of imports, we may write a foreign debt "accumulation
 

equation" of the form
 

4 
(3.10) 	 = (1 + e)yi + E (d. q.. - ei + I.6. . + mi..) 

~ 1i j=l Ij 11 3iJ 3J 

where 

Yi = foreign debt
 

0 = interest rate on foreign debt
 

d. 	 = elements of D, i.e., marginal propensities to 
ii import for production 

ii.= marginal differential propensity to import for
 
I capital formation.
 

We know initial foreign debt and can constrain terminal debt 

to be at a given 	 level, 

(3.11) y known; YN+l chosen, 

but we have no explicit constraints on the level of debt at 

any intermediate time period.-

I/
--We are thus solving an isoperimetric problem with
 
respect to foreign debt, specifying a given change in debt
 
(from y to YN+l ) and letting the model optimally allocate
 

this change over time. (An analogous problem in the classical
 
calculus of variations is finding the maximum area which can
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The system has 5 state variables(4 kji's and yi)
 

and 14 control variables (4 's, 4 c-s, 2 m's, and 4 £'s).
 

However, there are effectively only nine controls because
 

(3.5) and (3.7) can be used to express the four c. 's and Xi
 

in terms of the other controls.
 

In summary, our p:.oblem is to maximize the discounted
 

utility sum (3.2), subject to the capital stock and foreign
 

debt accumulation equations (3.3) and (3.10). The control
 

variables in these equations are the four investment "activ­

ities" (ji), the labor forces in sectors two through four,
 

and untied imports into sectors two and three. Consumptions
 

and the labor force in sector one are given in terms of these
 

controls by equations (3.5) and (3.7) while (3.4) and (3.6)
 

describe the absorptive capacity and production functions.
 

We know initial foreign debt and initial capital stocks, and
 

specify terminal levels for these state variables in (3.11)
 

and in
 

= 
(3.12) kj known; kj,N+ chosen j 1, ... , 4.
 

The problem is thus completely stated (with second order
 

be enclosed by a given length of rope.) Possible alternative
 
treatments of foreign debt are (a) using penalty functions to
 
hold debt at any time "close" to some predetermined level;
 
(b) putting inequality constraints on the level of debt in
 
each period. The former alternative is computationally feasi­
ble, although our debt paths seemed well enough behaved for
 
us not to bother with it. The latter approach, involving
 
state variable inequality constraints, is difficult to handle
 
computationally.
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conditions satisfied because of the linearly homogeneous
 

production functions, concave absorptive capacity functions,
 

and convex utility function), and can be solved by an appli­

cation of the methods of last section.
 

4. Computational Properties
 

All of our computational work was done on the time­

sharing system of the Massachusetts Institute of Technology.
 

Time-sharing proved a useful adjunct to our gradient algorithms,
 

since it facilitated operator intervention to change both
 

the step size in the one-dimensional search procedure, and
 

the constants in the quadratic penalty functions on deviations
 

of the terminal state variables from their targets.
 

Using the M.I.T. system, each full iteration of the
 

algoritlm for the four-sector, thirty-period model took between 

thirty and fifty seconds of computation time (with an IBM 7094), 

dependinq on the number of steps made in the one-dimensional 

Z4Cdrch.- Hly comparison of the four-sector model to simpler 

ones, it appears that computation time per iteration increases 

roughly ini proportion to the length of the planning horizon 

and the number of state variables. The number of iterations 

taken until an "optimal" solution is reached naturally depends
 

1!MAD, the coding language used, tends to produce
inefficient machine-language computer programs in comparison 
to, say, FORTRAN IV. Hence, there is every reason to believe 
that our computation times per iteration could well have been
 
reduced by a factor ranging from two to five if we had worked
 
with another programming language.
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on the initial nominal path chosen, and on the stopping
 

criteria. Our stopping criteria were (a) improvement in
 

the objective function had to be less than two tenths of a
 

percent for at least five iterations; (b) the difference of
 

the terminal state variables from their targets had to be
 

less than one percent of the target for the same number of
 

iterations. Using these criteria, and choosing nominal paths
 

from closely related versions of the model (e.g., the nominal
 

path would be the optimal solution for a model differing by
 

only one or two parameters from the one actually being solved),
 

we usually obtained convergent solutions in 20 or 30 iterations.
 

In general, we found convergence to be slightly slower
 

for the state variables than for the objective function, and
 

somewhat slower still for some of the control variables,
 

especially the labor forces in the two industrial sectors
 

and investment in primary production and heavy industry.
 

However, the relative variation for these controls had usually
 

been reduced to the order of 10-2 well before our stopping
 

criteria took effect.!/ Figure 1 illustrates the control paths
 

(plotted at five-year intervals) calculated for two of the more
 

volatile sectors at various points during a run on which we
 

!/Rapid approximate convergence of the controls is
 
a characteristic to be expected of solutions from first order
 
gradient algorithms. Exact convergence can usually not be
 
obtained with such algorithms, although it is possible with
 
second order methods which in effect use first derivative
 
information on the controls.
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took I.Afty-five iterations. The graphs indicate that by 

about twenty-four iterations, the algorithm had modified
 

the pro-guessed control paths until their "shape" was fairly
 

close to optimal. By forty-one iterations, the solution was
 

essentially complete to the scale of the graph, since the
 

paths for forty-one and fifty-five iterations are indistinguishable.
 

5. Some Numerical Solutions-/
 

In a companion paper [18], we describe in detail the
 

derivation of numerical parameters for the model,2/and
 

solutions under a number of parameter variations. Here we
 

discuss briefly two aspects of the solutions which are of
 

David Cole and Larry Westphal generously helped us
 
with accumulating the data we needed and also made useful
 
suggestions about the formulation of the model.
 

-/As much as possible, we used recent data for South 
Korea for our parameters, in particular the input-output 
"A" and "B" matrices, the initial capital stock and debt 
levels, and the export projections. We assumed values for 
the elasticities of substitution and the distribution param­
eters in the production functions, and chose the efficiency 
parameters to equate production function output to Korean 
gross sectoral. output in 1965-66 (assuming the labor force 
levels of that year). The welfare function parameters were 
chosen to give consumption income elasticities and shares 
consistent with those of Korea at her current income level 
(this choice was non-unique), while terminal capital stocks 
were estimated by applying "reasonable" growth rates over the 
thirty-year planning period to the initial stocks. Terminal 
debt iias set according to the rule of thumb that interest 
plus amortization payments (a total of about 10% of the debt) 
!;hould equal 20% of exports in the terminal year. In the 
absorptive capacity constraints, we set the absolute upper 
bound on the percentage change in capital stock (p) at a 
level of about 30% (varying slightly from sector to sector), 
and set the parameter c equal to 0.5 in all sectors. 
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general interest--the turnpike properties (or lack of them)
 

of the model, and the effects on sectoral labor allocations
 

of changes in the production elasticities of substitution.
 

5.1 Turnpike Properties
 

It is well known from economic theory that certain
 

types of closed economy neoclassical models exhibit turnpike
 

behavior in the sense that for most of 
a sufficiently long
 

planning period, such a model will be in a balanced growth
 

state with resource allocations approximately equal to those
 

prcvailing asymptotically in an infinite horizon plan [25]. 

A:; a corollary to this theorem, one might expect that the 

initial stages of a sufficiently long plan would be quite
 

insensitive to terminal conditions. In previouslysome 

reported experiments with one-sector closed economy models
 

1171, we found this type of behavior--in a model with a 

I it y-yuar planning horizon, the first twenty years of the 

plan were es;eitLially unaffected by a wide range of terminal 

conidi t ions. 

The more complex model of this paper also displays
 

the hypothesized getting-to-the-turnpike properties, but to
 

a more 
limited extent. Figures 2 and 3 illustrate. 

ligure 2a shows capital stock accumulation paths for 

:.;,ctor one. We see that for the two lower terminal stocks 

(based on capital growth rates of 5.0% and 6.5%), the first 
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10 to 15 years of the plan are largely independent of the
 

terminal conditions, while for the high terminal stock
 

(based on a 7.0% growth rate), the accumulation path differs
 

greatly from the other two. In Figure 2b, by contrast, the
 

first ten years of the plan for sector four are unaffected
 

by terminal conditions for all three terminal stock targets
 

(based on growth rates of 5.5%, 7.0%, and 7.5%).
 

Figure 3, which shows foreign debt paths, helps
 

explain this contrasting behavior. As it turns out, sector
 

one has a high foreign exchange component in investment (i.e.,
 

.11is relatively large in equation (3.10)),while sector four's
 

investment importation coefficient is relatively low. It can
 

be seen from Figure 3 that as the terminal stock targets are
 

increased, total foreign debt over the planning period is
 

reduced, even becoming negative during the middle years of
 

the high target plan. The mechanism by which the reduction
 

of debt between the low target and medium target plans takes
 

place involves the untied imports m21 and m3i. (See again
 

equation (3.15).) These are drastically reduced between
 

the two lower target solutions. In the high target solution,
 

these "slack" import variables are forced to zero, and other
 

things must be adjusted by the model in order for it to hold
 

terminal debt down to the required level of 8.0 (billion
 

dollars). As it turns out, investment in sectors with a
 

high import component in capital formation is deferred,
 

and the type of anomaly displayed in Figure 2a results. The
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initial accumulation pattern in sectour four (Figure 2b) is
 

not much affected affected by the target increase, again
 

because the import coefficient w4 is relatively small.
 

One might conjecture that if more slack were built
 

into the debt constraint (e.g., by the inclusion of activities
 

allowing import substitution and/or export promotion), the
 

initial phases of an optimal plan would be independent of 

a wider range of terminal capital stocks. In any event, the 

examples given here demonstrate that generalization of the 

desirable getting-to-the-turnpike property to open economy 

models is likely not to be a completely straightforward process. 

5.2 Varyinq Elasticities of Substitution 

Conjectures vary as to the importance of differential
 

elasticities of substitution in influencing the economic growth
 

process. On the aggregate level, Nelson (as summarized by
 

Nerove [22]) has shown that when capital and labor are growing 

at roughly equal rates, changes in the aggregate elasticity
 

of substitution will have little influence on the overall
 

growth rate. In a disaggregated analysis, however, Arrow, et al.
 

I I, point out that differences in elasticities of substitution
 

among industries will have significant effects on sectoral
 

allocations of capital and labor (and ultimately on the
 

aclqregate elasticity of substitution). In particular high
 

clasticities in the primary sector and lower elasticities in
 

the secondary and tertiary sectors are a means of explaining 

the well-known shift of labor from the former sector toward
 

thc- latter. 
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Using our four-sector laboratory, we made some partial
 

tests of these hypotheses, especially the latter one, by
 

varying sectoral elasticities of substitution while at the same
 

time recalculating the efficiency parameters (T. i_n equation
 

(3.6)) to brinj initial outputs in line with those of
 

Korea in 1965-66. Given this means of normalizing our three­

parameter production functions to fit three pieces of data
 

(initial capital stocks, labor forces, and gross production
 

levels), we calculated optimal solutions to the model under
 

the conditions shown in Table 2:
 

Table 2
 

VARYING ELASTICITIES OF SUBSTITUTION
 

Solution Sector
 

1 2 3 4
 
a 1.2 0.9 0.9 0.6
 

b 1.2 1.3 0.5 0.6
 

c 0.1 0.9 0.9 3.0
 

d 3.0 0.9 0.9 0.1
 

In the first three of these solutions, sectoral labor
 

forces were essentially unchanged, although there were come
 

shifts in the time.-phasing of investment. There were major
 

labor force shifts only in solution d where the elasticity of
 

substitution in primary production was raised by a factor of
 

more than two. In this case labor in the primary sector
 

decreased by 0.6 million workers in the terminal year, repre­

senting a shift of about three percent of the total labor
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force of 18 million. In terms of the conventional GNP
 

aggregate, the growth rate in solution a over the thirty­

year plan was 6.7%, while it was 6.8% in solution d. Here
 

again the effects of changing substitution elasticities were
 

relatively minor.
 

1ow well these preliminary results would stand up
 

under further experimentation is, needless to say, open to
 

question. In particular, shifts of the elasticities of
 

substitution in connection with different welfare functions
 

and/or different normalizations for the efficiency parameter
 

might have more significant effects. It does appear, however,
 

that further experimentation along the lines suggested here
 

would provide a partial answer to the troubling empirical
 

questions regarding the relevance of the elasticity of sub­

stitution to actual planning exercises.
 

6. SumLmryj and Conclusions
 

We have summarized some of the recent advances in the
 

formulation of algorithms for the solution of optimal control
 

problumni;, and demonstrated the feasibility of applying them
 

to the solution of a moderately complex economic planning
 

model. We also report on the results of some modest experi­

mentation with the model as an applied theoretical tool for
 

Lhe analysis of getting-to-the-turnpike properties of optimal
 

growth, and of changes in the elaticities of substitution.
 

Further experimentation along these lines appears promising,
 

as does the eventual application of nonlinear models as
 

actual planning tools.
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