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1. Research Design*
 

1.1 Introduction
 

Economic planners in less developed countries are often in
 

a position to affect 'the flow of investment to increase or decrease
 

the rates of growth of different sectors in the economy. In so
 

doing they would like to be able to select patterns of production
 

and investment which would produce that set of pachs of sectoral
 

growth which would maximize a measure of welfara for ihe society.
 

For example, they might want to encourage relatively slow growth
 

of the housing industry and rapid growth of the machine tools in

dustry at the beginning of the period and then reverse these rela

tive rates of growth as time progresses.
 

1.2 Current State of Research in the Field
 

1.2.1 Empirical Growth Models
 

A number of linear programming models have been con

structed to study feasible or optimal paths for the growth of mul

tiple sector economies. Chenery and Clark (1959) developed one of
 

the first single period linear programming models. Bruno (1966a) has
 

constructed one of the most successful single period models and is
 

presently working oh a multiperiod model for Israel. The multiper

iod model for India developed by Chakravarty, Eckaus, Lefeber and
 

Parikh and completed by Eckaus and Parikh (1966) is a linear pro

gramming study disaggregate to eleven sectors. This stuoy provides
 

the most comprehensive empirical model of long-run economic growth
 

yet developed.
 

These linear programming models force the analyst to use lin

ear or piecewise linear functions to approximate inherently non

linear relationships such as production functions, export revenue
 

functions and welfare (criteria) functions,- cf. Barr and Manne
 

(1966). In principle, linear approximations to an underlying
 

This research has been supported in part by a grant from the
 

Agency for International Development. We are indebted to Robert
 

Kierr for very able programming assistance.
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nonlinear relationship can be m Lzlose, but in prac

tice close approximation becomes computationally infeasible.
 

In addition, linearized verskons of nonlinear relatiohsips may be
 

unstable with respect to small parameter changes which can cause
 

large shifts in activity levels due to basis changes. The stab

ility can be improved with better linear approximation, but at the
 

cost of computation time.
 

To overcome these problems we propose to specify smooth non

linear welfare and constraint functions that allow us to avoid
 

the rigidities and instability problems of linear models. This
 

approach also allows us to incorporate econometric work on estima

tion of substitution production functions and linear logarithmic
 

formulations of export demand functions and consumption functions.
 

1.2.2 Theoretical Growth Models
 

Alongside the work on empirical models a number of
 

theoretical studies of nonlinear multisectoral growth models have
 

been completed. Samuelson and Solow (1956) worked out a capital
 

model involving heterogeneous capital goods. Chakravarty (1962)
 

analyzed a one-technique Leontief model without a labor input and
 

Bruno (1966) has studied optimal growth in a multisectoral model
 

of the discrete activity analysis type-. The last two of these
 

studies, those of Chakra~varty and of Bruno, have employed tech

niques from the calculus of variations and from control theory
 

to attempt to determine the optimal growth path over time in theo

retical and multisectoral growth models.
 

1.3 Proposed Investigation
 

1.3.1 The Model
 

Kendrick and Taylor (1967) contains an outline of the
 

model toward which we hope to work. We have begun our computational
 

* 

A 1inearized version of a nonlinear program with easily approx
imated separable functions has a solution time about three times
 
that of a strictly linear program of similar size. (Hadley, Nonlin
ear and Dynamic Programming, p. 119). Non-separable realtionships,
 
such as production functions, require much more elaborate approxi
mation and corresnondinalv more cnmnifi-inn_ 
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experimentation with greatly reduced forms of that model. We ex

pect to add slowly to the complexity of the model and to the number
 

of sectors. The complete model will contain the following elements:
 

1. 	A performance index which is an integral over
 

time of utilities associated with the consumption
 

path of j = lo ..... ,n different goods.
 

2. 	Distribution relations which relate total production
 

and imports of each good to their uses. Production
 

is determined by capital and labor inputs through
 

a production function for each sector. We anti

cipate using production functions of either the
 

Cobb-Douglas or constant elasticity of substi

tution form. The uses of t jooJs are divided 

by 	destination into intermediate products, exports,
 

investments, and consumption. Intermediate pro

ducts are required to obtain output. exports pro

duce foreign exchange, investments result in in

creases in capital stocks, and consumption increases
 

the 	performance index.
 

3. 	Investment relations, which relate the use of
 

goods for investment purposes to increases in the
 

sectoral capital stocks.
 

4. 	A foreign exchange equation which equates total
 

foreign exchange earnings by exports and net cap

ital inflow to total foreign exchange uses for
 

imports.
 

5. 	 An integral constraint on foreign aid which re

quires that net foreign capital inflow over the 

period of the model not exceed some specified 

value. 

6. 	Labor availability constraints which define the
 

labor force which is available to produce goods
 

and services.
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7. 	 A set of boundar, condit ions which specify the 

capital stock available in each sector, the labor 

force, and the foreign debt at the original time 

and 	the target capital stocks for each sector at
 

the 	terminal time.
 

Mathematically we intend to formulate and solve the model as
 

a control theory model. This will permit us to introduce a non

linear performance index (the consumption measure) and nonlinear
 

constraints (viz., the distribution relations, and in particular
 

the production functions). If this can be accomplished while
 

retaining a sufficient degree of computational efficiency, a break
 

could be made from some of the rigidities of the linear programming
 

models which have been used for emperical studies of this sort in
 

the past.
 

1.3.2 The Algorithm 

We are presently using a conjugate gradient algorithm 

to solve the non-linear planning models./ This algorithm employs 

successive one dimensional searches in the "conjugate gradient" 

direction in seeking the optimum. The direction of search at the 

n + 1st step is a weighted average of the direction of search at 

the nth step and the gradient direction at the minimum point reached 

on the nith step. The weighting depends upon the relative stepness 

of the previous direction and the gradient direction. Figure 

1 gives a schematic discussion of the algorithm, and Appendix A
 

gives a more detailed description of the algorithm.
 

2. Results obtained
 

We decided to check the algorithm and our programming on one
 

The terminal conditions may alternatively be set as some function
 
of output levels or of intra-period capital stocks.
 

The algorithm employed is described in Lasdon, Mitter, and Warren
 
(1966). It was programmed by Raman Mehra and has been modified
 
by Robert Kierr. 



Figure 1 

The 	Conjugate Gradient Algorithm
 

The 	algorithm is as follows:
 

1. 	Select an arbitrary starting point A.
 

2. 	Make a one dimensional search in the gradient direcLion
 

from A to find the minimum point B.
 

3. 	Find the gradient direction BD at B.
 

4. 	Compute the conjugate gradient direction BC.
 

5. 	Make a one dimensional search along the conjugate gradient
 

to the minimum point C.
 

6. 	Find the gradient direction at C.
 

7. 	Compute the conjugate gradient direction at C.
 

8. 	Make a one dimensional search along the conjugate grad

ient direction at C.
 

9. 	Etc.
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sector growth models before pro cU:-'.ng L-j mu2X=ctoral problems.
 

We did this because for these problems it is possible to obtain
 

as
These solutions then served 
exact solutions in closed form. 


to which we could compare the solution obtained with 
a standard 

the algorithm. 
models


The two problems we have solved in this fashion Are 

later
described and analyzed by Chakravarty (1962) and which were 


the subject of an exchange between Maneschi (1966) and Chakravarty
 

(1966) primariliy in reference to the terminal conditions on 
the
 

model. For both problems the algorithm solution and the exact
 

solution were close together, although as might have been expected
 

the 	algorithm performed relatively better on a problem with a non

linear production function than on a problem with a linear produc

tion 	function. 

The basic model used by Chakravarty is
 

(1) 	 max J = St 1 1-7 

o (Ct) dt
1 


subject to
 

(2) 	 Ct =bKt Kt
 

and
 K =K
 
(3) 0 0
 

Ko (l+g)tKt 

t 0
 

where
 

Ct = consumption of time t
 

Kt = capital stock at time t
 

b = output capital ratio 

when= coefficient for non-linear production function; 
0 V 1.0, b = l.o 

= the elasticity of marginal utility 

g = rate of growth used to compute the terminal capital 

stock 

http:cU:-'.ng
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The two cases we have analyzed are for (1) b = .33, 8 = 1.0, and 

(2) b = 1.0, 8 = .5. Thus case (1) is with a linear production 

function
 

(4) Yt 
= bKt
 

where Yt is output, and case (2) is with a Cobb-Douglas type pro

duction function
 
= 


(5) Yt 
Kt
 

exhibiting diminishing returns.
 

Chakravarty (1962) obtained the closed form solution for the
 

capital stock and consumption paths for both the linear and Cobb-


Douglas cases but did not work out numerically and display these
 

paths. Maneschi (1966) pointed out that the capital stock path
 

for the linear case followed the very strange path which is shown
 

in Figure 2. Chakravarty (1966) countered that a different ter

minal condition would produce a more realistic capital stock path.
 

We have obtained a numerical solution for Chakravarty's closed
 

form solution for the Cobb-Douglas case. In solving this problem
 

Chakravarty comments that he uses a Cobb-Douglas production func

tion with a coefficient of .5 because for this special case he is
 

able to integrate the Euler equation in closed form. His solution
 

path for the capital stock for this prbblem is
 
a t-al
22[Kh 


.K
(6) 2'n
 

where K is capital stock 

n is the elasticity of marginal utility 

t time 

a1 and a2 arbitrary constants of integration 

We used the initial and terminal conditions on K(t) to obtain
 

two equations from (6) through which we could evaluate the constants
 

a and a2 . Then (6) was solved for each time period to obtain
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the capital stock path K(t) which is shown in Figure 2
 

Figure 2 shows that the substitution of a non-linear production
 

function for a linear~production function in a one sector growth
 

model with fixed terminal capital stock results in changing the
 

capital stock path from one that violates our expectations to onc
 

that 	is more in keeping with our expectations.
 

At present we are attempting to solve this planning model
 

with a Cobb-Douglas type production function and a coefficient
 

intermediate
of 8 = .75. Perhaps this will provide us with an 


case between the linear case and the extreme Cobb-Douglas 
case
 

with 8 = .5.
 

Figure 3 gives the consumption paths obtained in each of the
 

two models.
 

3. Our Agenda
 

3.1 	A Model for Primary Exporters
 

We have started to work with a problem involving two control
 

variables3 which was suggested to us by Hossein Mahdavi, an Iranian
 

The problem admits a fairly straightforward analgraduate student. 


ytical solution, so we propose to undertake with it the same 
pro

gram as we did with the Chakravarty model, i.e. run out numerical
 

values for the analytical solution, solve the problem with the
 

conjugate gradient method, and compare results.
 

The model itself is motivated by the plahning problem facing
 

the.oil-exporting countries, and some other natural-resource 
ex-


These countries have exceptionally high current foreign
ploiters. 

Their current
exchange revenues which may decline in the future. 


foreign exchange earnings, to a first approximation, are 
gener

resource cost and can be used to supplement
ated at no domestic 


the relatively low domestic production and thereby allow 
fairly
 

For 	the path shown r = .6 and g = 5%.
 

The 	computational difficulty of solving control 
theory problems
 

increase rapidly with the number of control variables.
 seems to 
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high consumption levels. This situation poses a difficult allo

cation-over-time problem for these cc¢ntries. How much consumption
 

should be allowed now? How much in the future? How much invest

ment should be undertaken at what times, and how should it be co

ordinated with the path of expected foreign exchange earnings?
 

To begin setting up a model for investigating these questions,
 

we assume an unusual form of the national income i.en~ity,
 
=
(7) Yt + Mt Ct + It
 

which states that aggregate supply (domestic production plus im

ports) equals aggregate demand (consumption plus investment).
 

Exports do not enter the accounting identity since they are assumed
 

not to use domestic resources.
 

= 
Let b be the output-capital ratio, set It Kt (ignoring
 

depreciation), and write (7) as
 

(8) Kt = b Kt + Mt - t . 

This is the accumulation equation for the model. (We assume know

ledge of initial and terminal capital stocks.)
 

Following established 'custom (as we did with the Chakravarty
 

problem) we seek the maximum of the integral of some utility, function
 

However, we modify this approach somewhat to take account of two
 

additional constraints imposed by opening the model to foreign
 

trade:
 

(i) Over the planning period, we require total imports to
 

equal total exports;
 

(ii) At any time, we want imports to be "reasonably" close
 

to exports, although equality need not be required. This restric

tion is imposed as an institutional constraint on the ground that
 

(a) it is difficult for most governmentsto build up and hold large
 

foreign exchange reserves, and (b) most international lending
 

agencies tie their loans to current and expected export perfor

mance.
 

The first constraint is easily stated as
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t
 
(9) 	 f (M -X ) Jt = 0 

0 

is the (known) time path of exports an-d t and t are
where 	X 
 f
t 1a 
the initial and final years of the planning period. 

to the 	use of a welfare functional
The second constraint leads 


of the form
 

tf
 

(10) 	 J = t [e-qtu (Ct) - P (Mt - Xt )] dt. 

0 

atThe U(C ) term is the consumption utility function, discounted 

rate q, while P(Mt - Xt ) is a "penalty function" on deviations 

of imports from exports. (Note that we could handle the problem 

of keeping imports "close" to exports by use of inequality con

the variables. However, this is compatationally tricky,
strain-s on 

as well as being somewhat inelegant In practice, of course, the 

two approaches would tend to converge.) 

To enable us to get a closed form solution to the model, we 

chose simple functions to use in the welfare functional. Specifi

cally, we write J as
 

(11) J tf [ -te Cq - P(Mt.- Xt) ]dt. 

0
 

The constant elasticity utility function is used routinely in the
 

literature (in the Chakravarty problem, for instance). The sys
2 

metric 	quadratic penalty function p(Mt - Xt ) is used largely
 

on grounds of expediency. Presumably an asymmetric functicn penal

izing exchange deficits and surpluses unequally would be preferable,
 

but in this exercise the mathematical tractability of the simple
 

quadratic offsets its drawbacks.
 

The problem, then, is to maximize (11) subject to the integral
 

constraint (9), and the differential equation (8). After going
 

through the 	usual hocus-pocus with the Hamiltonian, the solution
 

for K 	can be written out explicitly. it turns out to be 
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e
) E -bt E 

2(12)pb 4pb d - b(12) K(t) = .... ep

bt ft X(T)e-bT bt
+f e( t~ dT + Ge 

0 

where V, E, and G are constants to be evaluated from boundary con-


The solution is a sum of exponentials
ditions, and y = (b - q)/j. 

All parammodified by a term derived from the export time path. 


eters influence the growth rate, so analysis of solutions is dif

ficult.
 

3.2 Some Extensions
 

The model sketched in the previous section has a number of
 

defects and one cardinal virtue. The virtue, of course, is that
 

the thing is solublie in closed form. The defects include (a) no
 

explibit differentiation between imports of consumption goods and
 

imports of producers' goods; (b) a makeshift assumption of a con

stant capital-output ratio; (c) no comparison in the utility
 

function of the relative benefits of imported and'home-produced
 

consumption goods.
 

In an attempt to remedy some of these defects, we have de

vised another model using (conveniently) three control variables.
 

In skeleton form, it looks like this:
 

be the fraction of domestic output assigned to con-
Let d1
 

sumption, with
 

(j13) dl (t ) -d 1 d Wt 

imposed in line with the effective limits on
where the bounds are 


policy measures. Similarly, let d2 be the fraction of imports which
 

can be consumed, with
 

(14) d 2 '(t) < d 2 <- 2tW 

The problem is to maximize the integral
 



(15) 	 J = '[U 1 (d1f(K)) + U.(d 2M) ] p(M- X) dt
 

0
 

subject to 	(13), (14), and
 

(16) K 	= (1- d) f(K) + (2 - d 2)M 

and t
 

(17) 	 It f (M - x) dt = o,
 
0
 

where K(t ) and K(tf) are known, as is the time path of X. 
0 f 

Note several points.
 

(i) We have purposely left the production function f(K) un

specified, to allow a choice between a constant capital-output
 

ratio and decreasing returns (perhaps modified by some sort of
 

technical progress).
 

(ii) -Equation (16), which says that capital goods, imports
 

and domestic capital formation are two perfectly substitutable
 

"factors" adding up to total capital formation is unrealistic.
 

We know that some 40-60% of capital formation is construction,
 

which has to be produced domestically, while some other given por

tion of capital formation has to be made up of imports. This prior
 

knowledge suggests that (16) should be replaced by
 

(18) K 	= g (l - a )f(K), (1 - d2)M],; 

where g is 	an index function (or production function, if you like)
 

which catalogs permissible trade-offs between imports and domestic
 

production. A CES-type function with shrewdly chosen parameters
 

might be an 	appropriate choice for g -- the distribution parameters 

could be chosen close to current shares of imports and domestic
 

capital 	formation, and the elasticity of substitution between the
 

two types of capital is presumably low. (As far as our limited
 

knowledge of the literature goes, no one has estimated functions
 

such as 	we have in mind, although Sato (1967) does estimate an
 

elasticity 	of substitution between United States plant and equip

ment, coming out with a>l by quite a margin.)
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(iii) The upper and lower bounds on d and d are arbitrary.
1 2 

One can, of course, set them equal to one and zero respectively, 

which allows maximum 'freedom. The chief justification for the 

bounds is that they provide some way of evaluat'ng the benefits 

of policy options like forcing consumption impcrts down to a 

certain percentage of total imports in a certain time. These 

benefit calculations come from shadow prices on the ihequality 

constraints, which enter into the control theory formulation in 

a way quite analagous to linear programming shadow prices. 

3.3 More Extensions
 

Beyond our souped-up oil-exporter problem, we have some more
 

extensions in mind. Briefly, these are
 

(i) Making exports into a cointro1 variable, with export rev

enue a deciining function of total volume.
 

(ii) Adding sectoral labor forces into the production func

tions, originally in a full general equilibrium setting with per

fectly flexible everything, and the perhaps with institutional cor
 

straints along "surplus labor" lines.
 

(iii) Using an input-output table and a B-matrix to build
 

up a non-linear dynamic Leonteif model0 The 2-sector version of
 

this involves two capital stock accumulation differential equation
 

and six controls (two sectoral consumptions, two labor forces,
 

one "primary" export and one "manufactured" import). This is pro

bably about as many controls as we can handle with present com

puter technology and programs. But when third generation computer
 

finally come along, who knows what we can do?
 



APPENDIX A
 

The Conjugate Gradient-Algorithm
 

Robert Kierr
 

Below is a brief description of the conjugate gradient al

gorithm. The reader who wishes a more detailed explaination is
 

referred to Fletchez" and Reeves (1964) and Lasdon, Mitter, and
 

Warrei, (1966). The first derives the technique for finite dimen

sional vector spaces and 'proves that it is quadratically convergent
 

for quadratic f(x) (they also define quadratic convergence).
 

The latter extends the technique to Hilbert spaces.
 

The conjugate gradient procedure is designed to find the min

imum 	 of a scalar field, f(x), where x is an n dimensional vector. 

Let h be the (unknown) location of the minimum. The h is found 

by pirogressing from some initial guess, x , to a better guess, 

x , to x2 ,..., to h. If f(x) is a quadratic function (i.e. f(x) 

can be expressed in a form that looks like a parabola except that
 

the terms are vectors and matrices) then it can be shown that the
 

conjugate gradient niethod will find the location of the minimum
 

in n steps.
 

The procedure is similar to the familiar first order grad

ient method; except that at every step the one dimensional search
 

is done in the "conjugate gradient" direction instead of in the
 

"gradient direction." 

The conjugate gradient direction will be called p below.
 

Then 	 the algorithm is: 

x0 = arbitrary starting point 

go= 	 grad f(x) 

P =-g 
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Then
 

x =XO + "p. 

where a is found in the one-dimensional search alluded
0
 

to above. The criteria for a.1 (at any step) is that 

f(x. + a pi) = a minimum for all possible values of a.11
 

For successive values of x., the formulas are:
1
 

xi+il1 = x.1 + a 1iPi
 

when
 

(_I, q-2P -g + 

and 
gi = grad f(x.) 

As stated above, and proven in Fletcher and Reeves, the al

gorithm is guaranteed to converge on the minimum in n steps when
 

f(x) is a quadratic function. Since the function with which we deal 

in general, quadratic, we do not have this guarantee. However,
 

in our experience convergence has been rapid.
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