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COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION

The Computer Library for Agricultural Systems Simulation (CLASS) is
one of the four major activities of the Agricultural Sector Analysis
and Simulation Projects at Michigan State Unviersity under U. S.
Agency for International Development Contract AlD/csd-2975. The
other three major interrelated project activities include theoretical
and methodological research, the Development Analysis Study Program,
and field activities, primarily in the Republic of Korea.

The project objective is to develop an approach to institutionalizing
an analytical capacity for jlanning, policy formulation, program
development, and project implementation for agricultural sector
development within the public decision making structure of developing
countries. A major component of the analytical capacity is a series
of system simulation models tailored to the needs of the individual
country. Much of the experience gained from the field activity and
the knowledge gained from the theoretical and methodological research
added to the present stock of knowledge about building and maintaining
analytical capacities for agricultural sector development can be
preserved and extended in the training provided through the Develop-
ment Analysis Study Program and in the stock of model, component, and
utility routine computer software documented in the Computer Library
for Agricultural Systems Simulation.

In full operation, the Computer library for Agricultural Systems
Simulation (CLASS) acquires, catalogs, maintains and distributes
computer programs and associated documentation. These computer
programs are of generalized simulation models, components, and
routines designed specifically for the analysis of agricultural
development problems and processes. In particular, the Tibrary se’s
standards of admissibility for programs and documentation; catalogs
and indexes programs and documentation so as to facilitate their
retrieval by users seeking a set of programs to be used in a specific
problem analysis; and distributes programs and documentation to users.

To enhance the effectiveness of the library, its functions also

include identifying and soliciting needed models: actively bringing
programs and documentation up to the Tibrary's standards; and

providing limited consultation in identifying and implementing
appropriate library programs for a particular application. A subsidiary
function of the library in conjunction with the identification and
solicitation of models is to survey and catalog ongoing research in
agricultural systems modeling and simulation.

The CLASS document publication series is the main vehicle for informing
potential users of the substance of CLASS holdings and activities.

July, 1976 George E. Rossmiller
Director
Agricultural Sector Analysis and
Simulation Projects



PREFACE

There are many situations in socioeconomic processes where time delays
are distributed rather than discrete. That is, for aggregate flows indi-
vidual entities in the aggregate have different lag times so that, while
entities may enter the delay processes &t the same 1ime, the output flow
will be distributed over time. This will be particularly true when the
individual tag times of entities are random variables. For example, a
tree population may be modeled as a series of age cohorts regrcsenting
stages of productivity. Modeling the gestation stage, for instance, as
a2 distributed delay says that for trees planted at the same time produc-
tion will begin at different times for different trees--some sooner, some
later--depending on genetic and local environmertal conditicns obtaining
for each tree; and similarly for passage throught the other productivity
stages defined. Similar examples abound in other processes, such as
Investment, transportation, diffusion cf information, etc.

This publication fprovides the set cf documentations fcr six
distributed delay routines: DEL, DELS, DELF, DELLF, DELVF, DELLVF. The
delay in all routines is modeled by & kTh—order differential equation,
which is also an aggregate representation of the case where individual
lag times of entities in the aggregate ar< random variables following
an Erlang distribution. DEL is the simplest form of the distributed
time delay process. The other routines have additicnal features as
summarized in Table 1. Five routines compute storage in the delay by
Integrating the net flow into the delay. Four routines insure simulation
stability by automatically decreasing the integration step size when

the time constant is small relative to the order of the delay. Two

vii
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routines allow for proportional storage losses and/or accretions. Finally,
two routines allow the mean lag time of the delay to be varied over the
simulation run.

The last three columns of Table 1 show the compile and execution
central processor times and core storage required by the distributed del sy
routines on Michigan State University's CDC 6500 computer with its FORTRAN
Extended (Version 3.0) compiler and operating under HUSTLER 2, M5U's

version of COC's SCOPE 3.2 operating system,

«~ I
>

O=x
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DEL Abstract

DEL simulates a distributed time delay process. It is useful
for modeling information lags and for flow delays inherent In such
aggreaqated processes as investment, production, transportation,
information dissemination, and d$mographic processes.

The delay is modeled by a k h_order differential equation,
which is also an aggregate representation of the case where indi-
vidual tag times of entities In the agaregate are random variables
following an Erlang distribution. The Input to DEL is the unlagged
value or flow into the delay, and the output is the lagaed value
or flow out of the delay.
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. Process Description

There are many situations in socioeconomic processes where time delays
are distributed rather than discrete. That is, for acgrecate flows indi-
vidual entities in the agarenate have different lag times so that, while
entities may enter the delay process at the same time, the output flow
will be distributed over time. This will be particularly true when the
Individual lag times of entities are random variables [1]. For example,
a tree population may be modeled as a series of age cohorts representing
stages of productivity. 'Modeling the gestation staae, for instance, as
a distributed delay says that for trees planted at the same time produc-
tion will begin at different times for different trees--some sooner, some
later--depending on genetic and local environmental conditions obtainina
for each tree; and similarly for passage throuah the other productivity
stages defined [2]. Similar examples abound in other processes, such as
investment, transportation, diffusion of information, etc. DEL simulates
this process.

In the technical description which follows, reference is made to
the use of DEL to model the gestation stage of cocoa trees, where the

fnput is tree plantings and the output is trees becomina productive.
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I'l, Technica!l Descrintion

h. Mathematical model

JEL is identical rotheratically to the DILAYZ routine of [1], produces
the same numerical recults as the Lo coutine of [3], and is a aenerali=~
zation of the DLLAY? routine of [4].

The kTheorder difforential eagation modeling a distributed delay can
be shown to be equivalent fo k first-order differantial equations modeling
¢ kestene delay orocess, whore each <tane ie a first-order delay [5]
(Fiqure 1),

The delay times for *adividual trees entering the aestation delay

, . th e N , e )
follow a k' -order nammy disiribution with mean ), ¥ determines the vari-

2 . 2
ance o4 of the namma dictributed daetav times as o = D7/k.  In certain
cases ko and D moy be estimated from reat-world or experimental data.  As
k cets larae and qoes to infinity (Finure 2), the die*ritution denenerates
to a normal distrihuticp with mear O and rzero variance--i,e,, a discrete
delay of lenath D,
,Tth . . .
The i stace of rthe delay is modeled by the first-order differential

eauation

0 dRi(T) »
(1) v *“E;——'+ Ry (1) = Ryyp ()

which can be sotved numerically usina tuler's intearation approximation by

(2) P = R (h-0T) nT-;Lai+1(+-nT) - R (+-DT) ]

where, for the KT Gtace of the: dodav, Rk+l = RN and where

R, = rate out of the i™ staae (trees/year)
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ROUT

|

RIN
k=1 j—— 2

Ficure 1

kfh-Order Distributed Delay Process

ROUT

RO;T * $

. ' .t .
D D D
(a) k=1 (b) k=3 (c) k=10
Fioure 2

kth-order Delay Zero-State Unit Impulse Response
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RIN = plantina rate (Figure 1) (frees/year)

k = the order of the delay process

1

D = the mean delay time (years)

0T = the integration step size, tne simulation time increment (years).

The output of the delay (trees becoming productive--Fiqure 1) is
(3) ROUT(+) = Ry(t),

If the user can assume steady-state initial .onditions--i.e., that
the planting rate RIM has been constant for a lonc time prior to time
zero (implying that the first k-1 derivatives of ROUT(t+) are zero at
t=0)--then the intermediate rates, Ri' i=1, ..., k, shauld te
initialized to
(4) Ri(O) = S(0)/D, i=1, ..., k
wiere S(0) is the initial storaqe (i.e., number of trees) in the
aestation delay. |If, instead of the initial storane, the initial output
or input to the delay is known, Ri should be initialized to
(5) Ri(O) = ROUT(0) = RIN(D), i=1, ..., k.
If, on the other hand, steady-state initial conditions are not to be
assumed, equation (2) may be used to establish other initial conditions
for Ri that yield non-zero initial values for the derivatives of ROUT.
In any case, the initial storage and the rates Ri must satisfy the
relationship:

k

(6) S(0) = & EZ] R, (0).

It a model contains several delays, stability considerations dictate

that
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2D,
(7) DT < min [TJ.']’
J J
For reasonabte simulation accuracy and to include a margin of safety, the
requirement becomes
D
(8) DT < min (L)
J J
where j indexes all the delays in a model. Alternatively, if (8) requires
OT to be too small for efficient computation, a larger DT may be used for
the model as a whole by using routine DELF in place of DEL for those delays
J whose DJ/ij ratios require a smaller DT.

DEL is one of a set of six distributed delay routines (Table 1) which
cover situations where storage is computed automatically within the routine,
the delay times, Dj’ may vary over time, storaqe losses and/or accretions
may occur in the course of the delay, and/or finer time cycles are required
for stabilitv assurances. The last three columns of Table | show the com-
pile and execution central processor times and core storage required by
DEL (and the other distributed delay routines for comparison) on Michigan
State University's CDC 6500 computer with its FORTRAN Extended (Version

3.0) compiler and operating under HUSTLER 2, MSU's version of COC's

SCOPE 3.2 operating system.

B. Sample run
The sample run assumes a third-order, three-year gestation delay (i.e.,
k =3 and D = 3). No trees existed in the gestation stage prior to time

zero (i.e., S(0) = R, (0) = R,(0) = Rs(0) = 0), and the planting rate RIN

2
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CLASS Distributed Delay Routines
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is assumed to jump from O to 100 trees/year at time zero and to remain
constant thereafter. In addition, the number of trees in the gestation

stage at time t (storage) is

(9) L3 - pinet) - ROUT(H)

and is simulated by Euler integration (See the list of the sampie run
executive program.) by:
(10) S(+) = S(+=DT) + DT+ (RIN(+-DT) - ROUT(t-DT)),

Under these conditions, we can use (1) and (9) to solve analytically
for the output and storage of the gestation stage and compare these with
the simulated output and storage from (2) and (10). The analytical
solution for ROUT and S are:

(1) ROUT(H) = 100[1-e"T(4+% + + + 1]

2+2f+3)].

(12)  S(+) = 100[3 - e~T(;5t
Results, includinn the percent deviations of the simulated solutions
from the analytical solutions, are fabulated in Figure 3 for a |0-year

simulation with OT = .25 years.
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I1l. Proaram Information

A. Program description

DEL was programmed and tested in the following operating environment:

Machine: CDC 6500

Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of CDC Scope

3.2

Compiler: CDC FTHN V3,0-P357

Core requirements: 56 decimal worcs

CP compile time: .24 seconds

CP execution time (for sample run): .27 milliseconds

Tapes: none

Direct access files: none

FORTRAN library subproagrams used: FLOAT

DEL is structured as a sinale subroutine, DEL, which simulates a
continuous (distributed) delay process. MNo COMMON blocks are used.

B. Proagram Implementation

Al'l input is fransmitted through the araument list. |Input variables
DELAY (called D in section || above), DT, and K require values which must
remain constant durina the simulation of a particular delay; RIN requires
a value which may change durina a simulation run; R(l) reaquires only
initial values, as they are subsequently recomputed within DEL. R must
be dimensioned to at least K in the calling program. All output is trans-
mitted through the araument list. The output variables are ROUT and the
updated values of R(1), See the list of the sample run executive program
for an example of the call statement,

For DEL to operate properly, the value of DT must be such that
0 < DT < DELAY/2K, DELAY must be greater than zero, and K must be an

integer > 1. When K= 1, the delay can be simutated more efficiently by

a single statement in the calling program than by this routine:
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= - oK (PIN($-DT) = POUT(+-DT))
(13) ROUT(t+) = ROUT(+-pT) + DT STOELRY .

C. Program lists
The computer proqgrans for the sample run and for DEL are listed

below:



FPROGRAM DELTETCOUTRUT « TRPES=0OUTFUT

DIMENZIOM RoZ0
DATA DELRHY < 2.
DATA k -~ 3 ~
DATA DT « 2% -
DATA RIMNsSFSROUT -
DATR =TR: « 0.
WRITECS 300
T =-DT
DO 20 I=133333
T=T+ 0T
IFLT ER. 0.2 30 TO 13

STRG = ZTRG + DTe RIN-ROUT

100, den,

CALL DELCRIMROUT oF «ODELHY oDT 0kl

IFLAMODCT 1.0

MEL. . 30 TO

AROUT = 100,601l . —EXFo-Tie TeT 2, +T+1 .20

AZTRE = 100,602, —EXEC-Tie TeT 2  +Z.0T+2, 00

FOOUT = 100, ROJT-AROUT 2 REOUT

IFCAROUT ER. 0.0 PDOUT =

FOZTRE = 100, STRG-AZTRG "HITRG

IFCAZTRIE JER. 0.0 FROETREL =
WRITECZ »31r TAROUT sROUT «sFOOUT sHETRG o ETRGSFDETR

IFCT J5E. 10,0 ZTOF
COMT INMUE
FORMRAT el

*HTED

+ ETORAGE *TORHAGE
FORMAT (e oF4 . 1 F10.25711 .20
END

AMALYTICARL

ZIMULATED
FEFR CEMTe-e TIME

OUTFIT
DEVIATIONS

FER CENT

guTePuT

AMALYTICAL

DEL=- 11

EIMUL e
DEVIATION e



SUEROUTIME DELCRIMSOUT sR«DELHY oDIT ok DEL~12
TITLE - DIZTRIEUTED DELAY

YERZIOM - 1A

DARTE - 1 HOY 1374

FUEFOZE - ZIMULATION JF & DIEZTRIEBUTED TIME DELAY FROCESE

IMPUT REGUIFREMENT:

YALUEZ TEAMEZMITTED THROUSH THE ARGUMEMT LIZT -- DELAY s OTs Ko
Folse =IH

YAFTAELES REGUIFIMG WHLUEE WHICH WIte HOT CHARMGE DURIMG A RUH
-- DELH+ys OTs =

WARIABLE:T FREQUIRIMG WHLUEZ WHTCH MAY CHHMGE DUEIMG A RUM
~= FIN

“YARIABLEL COMPUTED By THIZ ROUTIME REQUIRIMS INITIAL WHLUESE
-— Rl

OUTFUT WARIAELES
VALLES TRANIMITTED THROUSH THE ARGUMENT LIST -- R{Ixs ROUT
VARIABLE DEFINITION:
DELAY - LEMSTH OF DELAY I TIME UMITE.
DT - ZIMULATION TIME INCREMEMT IN TIME UNITE,
b - ORDER OF DELAY. UMITLEZE.
ReIx - IMTERMEDIATE RATES IN UNITE-UNIT TIME.(STASE OF DELAY)
RIM - IMFUT RATE I UMITI-UHIT TIME.
ROUT - OUTPUT RSTE IM UWITZ-UMIT TIME,
DIMENIION Fils
A = FLOAT: k3 eDT-DELAY
IFCk LE0. 13 50 TO 20
Ml o= k-
D0 10 I=1skM1
ReID = ROLD + AeCROI+10-FoL0
COMT INLE
Rk = ROKY + AeiRIN-Fikis
FOUT = Relo

FETURN
EMD
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DELS Abstract

DELS simulates a distributed time delay process and computes the
storage associated with the flow through the delay. It is useful for
modeling flow delays inherent in such aggregated processes as investment,
production, transportation, and demographic processes.

The delay is modeled by a kth-order differential equation, which
is also an aggregate representation of the case where individual lag
times of entities in the aggregate are random variables following an
Erlang distribution. The input to DELS is the unlagged value or flow
into the delay, and the output is the iagged value or 7low out of the
delay. In addition, DELS computes storage in the delay by integrating
the net flow into the delay.
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|. Process Description

There are many situations in socloeconomic processes where time delays
are distributed rather than discrete. That is, for aggregate flows indi-
vidual entities in the aggregate have different lag times; so that, while
entities may enter the delay process at the same time, the output flow
will be distributed over time. This will be particularly true when the
individual lag times of entities are random variables (1]. For example,

a tree population may be modeled as a series of age cohorts representing
stages of productivity. Modeling the gestation stage, for instance, as

a distributed delay says that for trees planted at the same time, produc-
tion will begin at different times for different trees--some sooner, some
later--depending on genetic and local environmental conditions obtaining
for each tree; and similarly for passage through the other productivity
stages defined [2]. Similar examples abound in other processes, such as
investment, transportation, diffusion of information, etc. DELS simuiates
this process.

In the ftechnical description which follows, reference is made to the
use of DELS to model the gestation stage of cocoa trees, where the Tnput
is tree plantings and the outputs are trees becoming productive and the

number of trees in the gestation stage.
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II. Technical Description

A. Mathematical model

Azide from its compuiation of storage, DELS is identical mathematically
to the DELAYZ routine of [1], produces the same numerical results as the
DELAY routine of (3], and is a generalization of the DELAY3 routine of [4].

The k™M-order differential equation modeling a distributed delay can
be shown to be equivalent to k first-order differential equations modeling

a k-stage delay process, where each stage is a first-order delay [5]

(Figure 1).

The delay times for individual trees entering the gestation delay
follow a k'N-order gamma distribution with mean . k determines the vari-
ance 02 of the gamma distributed delay times as 02 = Dz/k. In certain cases
k and D may be estimated from real-world or experimental data. As k gets
large and goes to infinity (Figure 2), the distribution degenerates to a normal

distribution with mean D and zero variance; i.e., a discrete delay of length D.

The ith stage of the delay--where i=1, 2, ..., k--is modeled by the

first-order differential equation:

o D dR"(T)
K d+

+ Ri(T) = Ri+1(f)

which can be solved numerically using Euler's integration approximation by

(2) Ry(+) = R;(+=DT) + OT-K[R; 4 (+-DT) = R, (+-0T)]

where, for the kTh stage of the delay, Rk+1 = RIN and where:



DELS-3

RIN ' ROU1
| ey aae K EEm—— K...]_ B s e 2 N s l o
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Figure 1

Kth—Order Distributed Delay Process

ROUT ROUT ROUT
| =t : Bt v et
D D D
(a) K=1 (b) K=3 (c) K=10
Figure 2

kTh-Order Delay Zero-State Unit Impulse Pesponse
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RI = rate out of the it stage (trees/year)

RIN = planting rate (Figure 1) (trees/year)

k = the order of the delay process

D = the mean delay time (years)

DT = the integration step size, the simulation time increment (years).
The output of the delay (4rees becoming productive--Figure 1) is
(3) ROUT() = R1(+).
Finally, the storage in the delay associated with the flow through the

delay (the number of trees in the gestation stage) is computed from the

differential equation:

ds(t)

= } -
m RINCT) ROUT (1)

(4)

using Euler integration:
(5) S(t) = S(+=-DT) + DT+(RIN(+-DT) -~ ROUT(t-DT)).

[f the user can assume steady-state initial conditions--i.e., that
the planting rate RIN has been constant for a long time prior to time
zero (implying that the first k-1 derivatives of ROUT(+) are zero at
t=0)--then the intermediate rates, Ri’ i=1, ..., k, should be
initialized to:

(6) Ri(O) = $(0)/D, i=1, ..., k
where 5(0) is the Initial number of trees in the gestation delay,

f, instead of the initial storage, the initial output or input to the

delay is known, Ri should be initialized to:

(7) R;(0) = ROUT(0) = RIN(0), i=1, ..., k.
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I f, on the other hand, steady-state initial conditions are not to be

assumed, equation (2) may be used to establish other initial conditions
for Ri that yield non-zero Initial values for the derivatives of ROUT.

In any case, the initial storage and the rates Ri must satisfy the

refationship:

(8) S(0) =

o~ x

-E-i 1R;(O).

f a model contains several delays, stability considerations dictate

that z

D,
(9) OT < min[EJ-].
T
For reasonable simulation accuracy and to include a margin of safety, the
reauirement becomes:

D:
(10) DT f_min[ggiﬂ
J J

where j indexes all the deiays in a model. Alternatively, if (10) requires
OT to be too small for efficient computation, a larger DT may be used for
the model as a whole by using routine DELF in place of DELS for those
delays whose DJ/ZKJ ratios require a smaller DT.

DELS is one cf a set of six distributed delay routines (Table 1)
which cover situations where storage is computed automatically within
the routine, the delay times, Dj' may vary over time, storage losses

and/or accretions may occur in the course of the delay, and/or finer
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time cycles are required for stability assurances. The last three columns
of Table 1 show the compile and execution central processor times and core
storage required by DELS (and the other distributed delay routines for
comparison) on Michigan State University's CDC 6500 computer with its
FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,
MSU's version of CDC's SCOPE 3.2 operating system.
B. Sample Run

The sample run assumes a third-order, three-year gestation delay
(i.e., k=3 and D=3). No trees existed in the gestation stage prior to
time zero (i.e., 5(0) = Rl(O) = RZ(O) = R3(O) = 0), and the planting rate
RIN is assumed to jump from O to 100 trees/year at time zero and fto remain
constant thereafter.

Under these conditions, we can use (1) and (4) to solve analytically
for the output and storage of the gestation stage and compare these with

the simulated output and storage from (2) and (5). The analytical solutions

for ROUT and S are:
(11) ROUT(+) = 100[1 - et (442 + + + 1)]
(12)  S(+) = 100[3 - e~T(:t2 + 2t + 3)].

Results, including the per cent deviations of the simulated solutions
from the analytical solutions, are tabuilated in Figure 3 for a 10-year

simulation, with DT = .25 years.
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AMALYTICAL  SIMULATEL  FER CENT  ANRLYTICAL  SIMULATED FER CENT
TIME OuUTPUT OUTFUT DEVIRTIOM LTORAGE L TORRGE DEVIRTION
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Vel av . n4 3T, 29 1.24 QAL 2 o I B 0
2.0 2 .ee SR .l SAag,.2d el e 31
3.0 29,28 3.7 o DB o329 R A5
1.0 R I R I 13 2LV R R IS N

ZTOF
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Figure 3

DELS Sample Run OQutput



DELS- 9

{ll. Program Information

A. Program Description
DELS was programmed and tested in the following operating environment:
Machine: CDC 6500
Operating system: MSU Hustler 2 L239 LSD 32--an extension of
CDC Scope 3.2
Compiter: CDC FTN V3,0-P357
Core requirements: 62 decimal words
CP compile time: .28 seconds
CP execution time (for sample run): .31 milliseconds
Tapes: none

Direct access files: none
FORTRAN library subprograms used: FLOAT

DELS is structured as a single subroutine, DELS, which simulates a
continuous (distributed) delay process and computes storage in the delay.

No COMMON blocks are used.

B. Program implementation

All input is transmitted through the argument list. [Input variables
DELAY (called D in section || above), DT, and K require values which must
remain constant during the simulation of a particular delay; STRG and
R(1) require only initial values, as they are subsequently recomputed
within DELS. R must be dimensioned to at least K in the calling program.
All output is transmitted through the argument list. The output variables
are ROUT and the updated values of R(l) and STRG (called S in section Il
above). See the list of the sample run executive program for an example

of the call statement.

For DELS to operate properly, the value of DT must be such that

0 < DT < DELAY/2K, DELAY must be > 0, and K must be an integer > 1. When
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K =1, the delay can be simulated more efficiently by a single statement
(in addition to the STRG equation) in the calling program than by this

routine:

K
= - +  — - - -
(13) ROUT(+) = ROUT(+-DT) + OT > DELAY (RIN(+=-DT) - ROUT(t+=-DT)).

C. Program lists
The computer programs for the sample run and for DELS are listed

below:



15

L
Dme B e }

PROGFEAM LDELTETCOUTRUT s TRPES=DUTRLITY

DIMENSION R 3

DATH DELAY ~ 2.

DATA kK -~ 3 ~

DATA DT -~ .25

DATA FIMRROUT » 100, de0,

DATA ZTRG <« 0. -

WRITECS 302

T = -IT

DO 30 I=1 3395333
T=T+ I'T
IFCT JEQ. 0. 30 TO 1S
CALL DELZCRIMROUT sR s ZTRGSDELAY s DT sk
IFCAMODCT 1. JHE. 0.0 30 TO 20
AROUT 100,001  ~EHXFi~Tre TeT 2. +T+1 02
AZTRG
POOUT 100, ROUT-HEOUT 2 ~RROUT
IFCAROUT .ER. 0. FDOUT = 0.
PDETREG = 100, 2TRE-AZTRG Y "HEZTRG
IFCREZTRE JER. 0.2 FPOETRG = 1.

in

1. ez  —ExFi=Tie ToT-2.+2. 0T+, 0
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WRITECS 312 TsAROUT »rOUT «FDOUT sAZTRG s STRG «FIZTRG

IFCT J5E. 1d.e ZTOF
CONTINUE

FORMRT &1 AMALYTICAL  IMULRTED PER CEMT  AMALYTICAL  SIMULe

+ *HTED FER CEMTe-e TIME OuTrFUT

+ +  ETORAGE =TOFAGE LIEVIATIONe. 2
FORMAT e oF4.1F10.2s3F11.30

END

OuTFUT DEVIATION e



SUBROUTINE DELZCRIMAROUT oF o STRE JIELAY sIT ok DELS-12

TITLE - DIZTRIEUTED DELAY WITH ZTORAGE
VERZION - 1R
DATE - 1 HOY 1374

FURFOZE ~ ZIMULATION OF & DISTRIBUTED TIME DELAY FROCEZS WITH
ZTORAGE

INFUT REQUIREMENT

WHLLUES TRANEZMITTED THROUGH THE ARGUMEMT LIZT -- DELAYs DTs Ko
FoLas RIMs ZTRG

4

VARTAELES REGUIRIMG WALUEY oHICH WILL NOT CHANGE DURIMNG A RLUN
-— DELRAYs OTs K

YARIABLE: FEQUIRING WALLET WHICH MAY CHAMGE DURIMS A FEUN
-- RIH

YARIAEBLELZ COMFUTED BY THIZ ROUTIME REGUIRING INITIAL “YALUES
== RiIxs ZTRS

1

guTFUT YARIAEBLEE

WHLLUEE TRANZMITTED THROUGH THE ARGUMEMT LIZT —-- ROIys ROUT.

ZTRI3
YARTHRELE DEFINITIOME
DELAY - LEMSTH OF DELAY IM TIME UMITZ,
DT - ZIMULATION TIME IMCREMEMT IN TIME UMNITSE,
k. - ORDER OF DELAY. UNITLEZEZ.
FoId = INTERMELDIRTE RATES IM UMITS-UNIT TIME.CSTRSE OF DELAY
RIM — IMNFUT RATE IM UNIT2-UMIT TIME,
ROUT — QUTPUT FATE IN UMITZ-UMIT TIME.
ZTRE - EZTORAGE IM UNITE,

DIMEMSION Rl
ITRE = EZTRG + DTecRIM-ROUTY
R = FLOART kK »eDOT-DELAY
IFCK JER.L1» 30 7O &N
kM1 = K - 1
I0 10 I=1.kM1
Rely = ROIy + AeCROI+1=ROT 0
CONTIMUE
ROKD = ROKD + AeCRIM-ROKD)
ROUT = Ro12
RETURM
EMD
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DELF Abstract

DELF simulates a distributed time delay process, computes the
storage associated with the flow through the delay, and aufomatically
insures simulation stability. |t is useful for modeling flow delays
inherent in such aggregated processes as investment, production,
transportation, and demographic processes.

The delay is modeled by a k'h-order differential equation. which
is also an aggregate representation of the case where individual laqg
times of entities in the aggregate are random variables following an
Erlang distribution. The input fo DELF is the unlagged value or flow
into the delay, and the output is the lagged value or flow out of the
delay. |In addition, DELF computes storage in ine delay by integrating
the net flow info the delay. DELF insures simulation stability by
automatically decreasing the integration step size when the time
constant is small relative to the order of the delay.
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I. Process Description

There are many situations in socioeconomic processes where time delays
are distributed rather than discrete. That is, for aggregate flows indi-
vidual entities in the aggregate have different lag times; so that, while
entities may enter the de{ay process at the same time, the output flow
will be distributed over time. This will be particularly true when the
individual lag times of entities are random variables [1], For example,

a tree population may be modeled as a series of age cohorts representing
stages of productivity. Modeling the gestation stage, for instance, as

a distributed delay says that for trees planted at the same time, produc-
tion will begin at different times for different trees--some sooner, some
later--depending on genetic and local environmental conditions obtaining
for each tree; and similarly for passage through the other productivity
stages defined [2]. Similar examples abound in other processes, such as
investment, transportation, diffusion of information, etc. DELF simulates
this process.

In the technical description which follows, reference is made to the
use of DELF to model the gestation stage of cocoa trees, where the input
Is tree plantings and the outputs are trees becoming productive and the

number of trees in the gestation stage.
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1. Technical Description

A. Mathematical model
Aside from its computation of storage, DELF is identical mathematically
to the DELAY2 routine of [1], produces the same numerical results as the
DELAY routine of [3], and is a generalization of the DELAY3 routine of [4].
The kTh-order differential equation modeling a distributed delay can
be shown to be equivalent to k first-order differential equations modeling
a k-stage delay process, where each stage is a first-order delay (5]

(Figure 1).

The delay times for individual trees entering the gestation delay

follow a kfh—order gamma distribution with mean D, k determines the vari-

ance 02 of the gamma distributed delay times as 02 = Dz/k. [n certain cases

k and D may be estimated from real world or experimental data. As k gets

large and goes to infinity (Figure 2), the distribution degenerates to a normal

distribution with mear 0 and zero variance; i.e., a discrete delay cf length D.
The i stage of the delay--where i=1, 2, ..., k--is modeled by the

first-order differential equation:

D L R = Ry ()

which can be solved numerically using Euler's integration approximation by

(2) R () = R;(+=DT) + DT+S{R., (+-DT) = R, (+-DT)]

where, for the k'h stage of the delay, Ry ;¢ + RIN and where:
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RIN ROUT
g K ———>» K-1 5% ‘¢ =01 2 s 1 -
R R R
K-1 3 2 1
Figure 1
-Order Distributed Delay Process
ROUT ROUT ROUT
' :
! :
| »t 4 ».t | e A .
D D D
(a) K=1 (b) K=3 () K=10
Figure 2

kTh-0rder Dalay Zero-State Unit Impulse Response
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R; = rate out of the ith stage (trees/year)

RIN = planting rate (Figure 1) (trees/year)

k

the order of the delay process

D = the mean delay time (years)
DT = the integration step size, the simulation time Increment (years).
DELF does not use (2), however. In order to insure stability, DELF
divides the DT time interval into IDT subintervals, where IDT is computed
in (12). Thus, integrating over the subintervals of length EDT = DT/IDT,

(2) becomes:

(3) Rj(x) = R (T-EDT) + EDT+E+[Ry4(T-EDT) = R, (x-EDN)]

for 1=1 - DT + EDT, ..., t - EDT, t+, and where, for the kTh stage of the
delay, Rk+1(T - EDT) = RIN(+ - DT) for all 1.
The output of the delay (frees becoming productive--Figure 1) is:

(4) ROUT(t) = Ry(T).

Finally, the storage in the d&lay associated with the flow through the
delay (the number of trees in the gestation stage) is computed from the

differential equation:

(5) 9%%11-= RINCH) = ROUT(+)

using Euler integration:
(6) S(t) = S(t-EDT) + EDT<[RIN(+-DT) - ROUT(7-EDT)]
for T =+ - DT + EDT, ..., t - EDT, *t.
| f the user can assume steady-state initial conditions--i.e., That

the planting rate RIN has been constant for a long time prior to time
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zero (implying that the first k-1 derivatives of ROUT(t+) are zero at
t=0)~-~then the intermediate rates, Ri» i=1, ..., k, should be
initialized to:

(7). R;(0) = 5(0)/D, i=1, ..., k

where S(0) is the initial storage (i.e., number of trees) in the
gestation delay. |f, instead of the initial storage, the initial output

or input to the delay is known, R:; should be initialized to:

i
(8) Ri(O) = ROUT(0) = RIN(O), i=1, oo, k.
If, on the other hand, steady-state initial conditions are not to be

assumed, equation (2) may be used to establish other initial conditions

for Ri that yield non-zero initial values for the derivatives of ROUT.
In any case, the initial storage and the rates Ri must satisfy the

relationship:

R. (0).
-

I~ X

(9) s(o) =D
Ki

|f a model contalins several delays, for each delay j stability

considerations dictate that:

(1oy 0T 2]
o7, < R

For reasonable simulation accuracy and to include a margin of safety,

the requirement becomes:

(ny ot Y
Ty 22K
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With DT, Dj’ and kj already specified, DELF computes IDTJ so that (11)

holds:

k.
(12)  1DT. = MAX{IDTU., [1 + 2+DT=3]}
J J D;

where the operation [+] setfs IDTJ equal to the largest integer in the

value of the expression in brackets and MAX{a,b} sets IDTJ equal to the
maximum of a and b. The user may specify an IDT greater than 1 to increase
inteqration accuracy (even if not required for stability) by specifying
IDTU greater than 1; i.e., the number of desired subintervals. Thus,

DT will have only one subinferval of length DT unless stability requires
oftherwise.

While DELF accurately simulates a distributed delay (e.qg., the
gestation stage of a cocoa tree population in this case), non-trivial
inaccuracies relating to non-conservation of flow arise when IDTJ >
and when the outpuf ROUTJ(T) (equation (4)) is used elsewhere in a larger
model; ¢.q., inteqgrated or used as the input rate to another delay. In
this example, the problem arises when the rate of trees leaving the ges-
tation stage is used as the input to a second delay representing Trees
with increasing vietds up to full maturity. For a full discussion of
the problem and alternative ways to modify DELF to handle it, see [6].

DELF is one of a set of six distributed delay routines (Table 1)
which cover situations where storage is computed automatically within
the routine, ‘the delay times, Dj’ may vary over time, storage losses

and/or accretions may occur in the course of the delay, and/or finer
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+ime cycles are required for stability assurances. The last three columns
of Table 1 show the compile and execution central processor times and core
storage required by DELF (and the other distributed delay routines for
comparison) on Michigan State University's CDC 6500 computer with its
FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,

MSU's version of CDC's SCOPE 3.2 operating system.

B, Sample Run

The sample run assumes a third-order, fthree-year gestation delay
(i.e., k=3 and D=3). No trees existed in the gestation stage prior to
time zero (i.e., 5(0) = Ry(0) = R,(0) = RB(O) = 0), and the planting rate
RIN is assumed to jump from O to 100 trees/year at time zero and to remain

constant theareafter.

Under these conditions, we can use (1) and (5) to solve analytically
for the output and storage of the gestation stage and compare these with
the simulated output and storage from (2) and (6). The analytical solutions

for ROUT and S are:
(13) ROUT(H) = 100(1 - eT(4t% + + + 1]
(14) S(t) = 100[3 - e~ T(4t2 + 2t + 3)7].

Results from two sample runs are fabulated in Figure 3. This includes
the per cent deviation of the simulated solution from the analytfical solu-
tion. Each run is for 10 years, with DT = .25 years. |DTU has a value

of 1 for the first run and a value of 4 for the second run. This
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demonstrates the increased accuracy that can be obtained by subdividing

the time interval.
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I1'l. Program Information

A. Program Description
DELF was programmed and tested in the following operating environment:
Machine: CDC 6500
Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of
CDC SCOPE 3.2
Compiler: CDC FTN V3,0-P357
Core requirements: 93 decimal words
CP compile time: .40 seconds
CP execution time (for sample run): .44 milliseconds
Tapes: none

Direct access files: none
FORTRAN library subprograms used: FLOAT

DELF is structured as a single subroutine, DELF, which simulates a
continuous (distributed delay process and computes storage in the delay.
No COMMON blocks are used.

B. Program implementation

All input is transmitted through the argument list. |Input variables
DEL (called D in section || above), DT, and require values which must
remain constant during the simulation of a particular delay; STRG and
R(I) require only initial values, as they are subsequent!y recomputed
within DELF. R must be dimensioned to at least K in the calling program.
Al'l output is transmitted through the argument list. The output variables
are ROUT and the updated vatues of R(I) and STRG (called S in section !
above). See the list of the sample run executive program for an example
of the call statement.

For DELF to operate properly, DT and DEL must be > 0 and K must be
an integer > 1. In addition, IDTU should equal 1 unless greater integration

accuracy is desired, in which case IDTU will be an integer > 1.
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C. Program lists

The computer programs for the sample run and for DELF are |isted

below:



PROGEAM DELTETCOUTFUT » TRFES=0UTFUT
DIMEMZION RoZ0
IRTH DEL

IRTH K

AY < 3,

DATH DTSIDTU ~ .o
DATH RINSRFOUT -

DRTHR XTRE ~

WRITECZ »300

T = -07T

DD ,-_:: 'J I:l _.E‘v:‘.‘-: q: .9
T=T+ O7

IFCT .ER.

AROUT
H=ZTRI3
FOOUT

FOZTE

Ia

IFCREZTRR

WEITECS y31 2

IF:T
COMT INL

100, 02  ~ExFi-Tre TeT 2 +Z ,6T+3, 10

Se 1

100, denn,

ME .

D.rx B0 TO 1S
CALL DELFCRIMaROUT sR o ZTRISsTELAY s DT « IDTL ok 3
IFCAMODC T s1 .2

N.x 0 TO 20
100,001  —EXFC-TreTeT <2, ¢T+1, 5%

100, e ROUT-AROUT » ~HROUT
IFCARREDOUT EQ. D

A F

nouT =

100,00 ZTRA~-AEZTRE ~HZTRIZ
ENW. OLx PDETRG =

JEL 10,

E

FORMAT e}

*HTED

*

HMALY T ICAL
FEFR CEMTe-e TIME

ZTORAGE

=TOF

=TORAGE

FORMAT: e oF4 1sF10.2s3F11.22

END

ZIMULATED

QUTRUT
IEVIATIONS. 3

FER CEMT

ToAROUT s ROUT s FDOUT s AZTRIG s ZTRIG SFISTRG

OUTPLUT
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AMARLYTICAL  ZIMULe

DEVIATION »
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ZUBROUTINE DELF CRIMROUT sR s STRIS s TEL « DT o IDTU sk
TITLE - DISTRIBUTED DELAY WITH FINER TIME INCREMENT
VERSION - 1A

DATE - 1 HOY 1974

PURFOZE ~ ZIMULATION OF A DITTRIBUTED TIME DELAY PROCESS WITH
FIMEF TIME IMCREMEMT

IHFUT RECIIREMEMTE

VALLESZ TRAMIMITTED THROWSH THE ARGUMENT LIZT -- DELs DT
IDTWUs ke Rilre RIMse STRIS

YARTAHELE S SEQUTIRTHS WALUES WHTCH oIl MOT CHAMGE DURIMG H
-~ [DEL DT INOTds %

VAR IAEBLE T RELUIRTHS WA JED WHICH MAY THAMSE DURING A RLH
-— R1IN

4

N

WARTAEBLED Z0MPUTED By THID PIUTIME REGUIRIMG IMITIAL VWALUES

== o lys LTRS
OQUTFLUT “AHRIAEBLE

YALUES TRAHIMITTED THROWSH THZ ARGUMEMNT LIET --= RoIxs ROUT

T

WARIAEBLE De=INITIMC
DEL - LEMSTH OF DeonRy I TIMS UMITE,
DT - SIMUOLATION TIME IHCREMEMT IN TIME UMITE,

IDT - mMMBER OF DOEDIWIZION: JF DT PEQUIRED. UMITLEEE.

IDTU - UXER-FECIRFLIED UMBeER JF LUBDINVIZIONZ OF DT. UHITLERE.

o= OFDER UF DELAy . A TLEEZL.

Fole = IHTEFMEDIATE FAETET I JHITL 7UMIT TIME (CEZTHGE OF DELAY Y

FIM - IHEOT BHTE Tre O D77 041 T TIME,
ROUT - OUTEUT 4TS IH OHITI - JdIT TIME.
TTRG - ITORAGE IH uHITo.

DIMEMTION Fi

FVo= FLOAT ko

IL]I = 1, + Z,eFkeDT - Dici
IFCIDT LT, IDTLs IDT = 10Tu
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FIDT = FLORTCIDT
H = FKeDT~LELeFIDOT
EML = k-1
ng &0 Jd=1+IDT
=TREE = ZTRG + DTeCRIMN-FOL2Y FIDT
IFck JER. 13 350 7O 15
DO 10 I=1 <k
Filr = ROId 4+ AeCROI+10-RaIx
10 COMTIMUE
15 Rokld = Riky + AeCRIM=FRLK
20 COMTINHUE
FOUT = ROt
FRETLREN
EMD
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DELLF Abstract

DELLF simulates a distributed time delay process with storage
losses (or additions), computes the storage associated with the
flow through the delay, and automatically insures simulation sta-
bility. It is useful for moceling flow delays inherent in such
aggregated processes as capital formation, transportation, and
demographic processes. |In these cases, storage losses could refer
to disinvestment, spoilage, and deaths or migration, respectively.

The delay is modeled by a kth-order differential equation,
which is also an aggregate representation of the case where indi-
vidual lag times of entities in the aggregate are random variables
following an Erlang distribution. The inputs to DELLF are the
unlagged value, or flow into the delay, and the proportional stor-
age loss rate, Outputs are the lagged value, or flow out of the
delay, and the storage resulting from integration of net flow
into the delay. Finally, DELLF insures simulation stability by automatically
decreasing the integration step size when the time constant is small
relative to the order of the delay.
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. Process Description

There are many situations in socioeconomic processes where time
delays are distributed rather than discrete. That is, for aggregate flows
individual entities in the aggregate have different lag times so that,
while entities may enter the delay process at the same time, the output
flow will be distributed over time. This will be particularly true when
the individual lag times of entities are random variables [1]. For examp le,
a tree population may be modeled as a series of age cohorts representing
stages of productivity. Modeling the gestation stage, for instance, as
a distributed delay says that for trees planted at the same time production
will begin at different times for different trees--some sooner, some later--
depending on genetic and local environmental conditions obtaining for each
tree; and similarly for passage through the other productivity stages de-
fined [2]. Similar examples abound in other processes, such as investment,
transportation, diffusion of information, etc. DELLF simulates this
process.

I't is frequently the case that storage losses or additions occur in
the course of the delay process. Notable examples include population
~migrations, tree removals, deaths, production losses, distribution losses,
etc. DELLF is specifically designed to incorporate this factor in the
delay process.

In the technical description which follows, reference is made to the
use of DELLF to model the gestation stage of cocoa trees, where the inputs
are tree plantings and failure rates, and the outputs are trees becoming

productive and the number of trees in the gestation stage.
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1. Technical Description

A. Mathematical model

The ktheorder differential equation modeling a distributed delay with
storage losses (or additions) can be shown to be equivalent to k first-order
differential equations modeling a k-stage delay process, where each stage
is a firet-order delay [3] (Figure 1). The delay times for individual
trees entering the gestation delay (assuming no losses) follow a kth-order
gamma distribution with mean D. Kk determines the variance o of the gamma
distribution with mean C. 02 = Dz/k. In certain cases k and D may be estimated
from real-world or experimental data. As k gets large and goes to infinity
(Figure 2), the distribution degenerates to a normal distribution with mean D
and zoro variance--i e, a discrete delay of tength D,

th

For the “Aage of the delay--where 1 =01, 2, .., k——Qi in the

storage (number of trees) and [3]
(1 9.¢r) = Broch
ki

where:

Ri = rate out of the ith stage (trees/year)

]

D = the mean delay time (years)

il

k = the order of the delay procnss,

The rate of change of Qi is the net flow into the ifh stage:

—-—~(]:F-——-= ‘\i{”l(-i-) - Ri('i-) - Li('i')

where Rk+l = RIN, the planting rate into the delay (figure 1), and L; is the
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LK Ll
RIN ROUT
K K-1 3 2 1
Figure 1
Kth-Order Distributed Delay Process with Storage Losses
ROUT ‘ ROUT ROUT
!
]
’ ,////a;\\\_
| = t t i A S
D D
(a) K=1 (b) K=3 (c) K=10

Figure 2

th
K™ -Order Delay Zero-State Unit Impulse Response
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storage loss rate from the ith stage. If L;(t) = PLR(1)+Q; (1) where PLR
is the proportional loss rate for the total storage in the whole delay

(i.e., the losses are apportioned proportionately fo each stage), then:

dQ; (+)
(3) = - - .0
3 —x R (1) = Ri(1) = PLR(F)+Q{ (1)

= R, (1) = R (1) (1 + DePLR(TY ),
i+1 i K

But from (1), = = also, so:
dt k - dt
5 dR. (§)
() D0 v rpeh) e+ BePLR(E)) = R (D)
k dt k |

is the first-order differential equation which models the ith stage of a
kTh—order delmy with storage losses. This can be solved numerical ly

using Culer's intearstion approximation by:

(5) Ri(f)

R (+=0T) + DT-E:{R.+](+—DT) - R (+-DT) = (1 + DsPLR(+-DT)) ]
D! ‘ k

where DT is the inteqration step size, the simulation time increment,
DELLF does not use (%), howover. In order fto insure stability, DELLF
divides the DT time iniaorval into 1DT subintervals, where IDT = 1DT(t)
is computed in (15). Thus, integrating over the subintervals of length

EOT = DT/IDT(+), (5) becomes:

(6) Rj(1) = R (t=EDT) + EDT-Ka[Ry; (1-EDT) - R, (x-EDT)-(1 + 2PLR(+-DT)) ]

for v = + - DT + EDT, ..., + - EDT, 1, and where, for the kh stage of the

delay, Ry,;(t-EDT) = RIN(-DT) for all t.
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The output of the delay (trees becoming productive-~Figure 1) is

(7) ROUT(%) = RI(T)

Finally, the storage in the delay associated with the fiow through the
delay (the number of trees in the gestation stage) is computed from the

differential equation:

(g dS(H) _ ‘i dQ; (+)
at -

= RINCH) - ROUT(t) - PLR(t)*S(+)

using Euler integration:
(9) S(1) = S(r-EDT) + EDT«[RIN(+-DT) - ROUT(T-EDT) - PLR(+-DT)+S(1-EDT)]

for t = + - DT + EDT,..., + - EDT, *t.

If the user can assume steady-state initial conditions--i.e,, that
the planting rate RIN has been constant for a long time prior to time
zero (implying that the first k-1 derivatives of ROUT(+) are zero at
t=0)--then the intermediate rates Ri’ i=1, ..., k, should be

initialized to:
(10) Ri(O) = 5(0)/D, i=1, ..., k.

where 5(0) is the initial storage (i.e., number of trees) in the
gestation delay. |[f, instead of the initial storage, the initial output

or input to the delay is known, Ri should be initialized to:

(11) RI(O) = ROUT(0) = RIN(O), i=1, «a., k.
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¥, on the cther hand, steady-state initial conditions are not to be
assumed, equation (2) may be used to establish other initial conditions
for Ry that yield non-zero initial values for the derivatives of ROUT.

In any case, the initial storage and The raltes Ri must satisfy the
relationship:

(12) $€0) = 2 ] Ry(0).
i

1

X

i{ a model contains several delays with losses, for each delay

J stability considerations (assuming PLR(t) = PLR, a constant) dictate

that:
(13 b i
R o T PLR CrT T

For reasonable simulation accuracy and to include a margin of safety, the

requiremenrt becomes:

o1 , i

TD“‘F:(T)‘ < 'kJ. n Pl.niu-m)-?ff :

(14)

rol-

With DT, PLR, D, and k already known, DELLF computes 'DTi so that (14)

holds:

(15) 0T (1) = MA:»f.{tm‘u], TUob el (=01 + b’i)'_}}
‘ J

where the operation [ +] sets iDT] caual to The latgest integer in the
value of The exprossion in traces et Mg, hrosatg IDTi equal to the
targer of a and v. The user may specify an DT arcater Th;n 1 to increase
integration accuracy (even if not raquirens for stapility) by speci fying
IDTU greeter than 1, f.e., the derived numier f subintervals.

Winile DELLF accurately simulates =+ distribuled delay (e.g., the
gestation stage of a cocoa tree ponulation in this case), non-trivial
inaccuracies relating to non-consarvation of flow arise when lDTJ > 1

-
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and when the output ROUTJ(T) (equation (4)) is used elsewhere in a larger
model; e.g., integrated or used as the input rate to another delay. In
this example, the problem arises when the rate of trees leaving the ges-
tation stage is used as the input to a second delay representing trees
with increasing yields up to full maturity. For a full discussicn of
The problem and alternative ways to modify DELLF to handle it, see [4].
DELLF is one of a set of six distributed delay routines (Table 1)
which cover situations where storage is computed automatically within
the routine, the delay times, Dj: may vary over time, storage losses
and/or accretions may occur in the course of the delay, and/or finer
time cycles are required for stability assurances. The last three columns
of Table 1 show the compile and execution central processor times and core
storage required by DELLF (and the other distributed delay routines for
comparison) on Michigan State University's COC 6500 computer with its
FORTRAN Extended (version 3.0) compiler and operating under HUSTLER 2,

MSU's version of CDC's SCOPE 3.2 operating system.

B. Sample Run
The sample run assumes a thlrd-order, three-year gestation delay
(1.e., k=3 and D=3) with a constant failure rate PLR(t) = 0.1/year. No
trees existed in the gestation stage prior to time zero (i.e., S(0) =
R1(O) = Ry(0) = R4(0) = 0), and the planting rate RIN is assumed to jump
from O to 100 trees/year at time zero and to remain constant thereafter.
Under these conditions, we can use (4) and (8) to solve analytically

for the output and storage of the gestation stage and compare these with
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Table 1
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the simulated output and storage from (5) and (9). The analytical

solutions for ROUT and S are:

(12 V1
(16) ROUT(t) = 100 1 - a1l + 2, + +
e || 7 (1 PRIZ 410 4 Rl 1_'
_ 100 100 100At
A7 S ey U - Tz O - - R e,

Results, including the per cent deviations of the simulated solutions
from the analytical solutions, are tabulated in Figure 3 for a 10-year

simulation, with DT = ,25 years.
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AMALYTICAL  ZIMULATED  FPER JEMT  SHALYTICAL  SZIMUOLATED  PER CENT
TIME auTFUT gurTruT DevIATIGH LTORRAGE ZTORAGE DEYIRTION

Y 0, 0 1 0. 00 1.0
1.0 R X 4 .35 35,53 QD00 ERI- R 2.14
2.1 23039 253 1.32 122.92 1F0.0s 4 .53
3.0 43013 51,29 LI 2N5.22 c13.2% 3.91
4.0 w1l E& = I S.3z SeR.1AE 234010 2.0
S0 SE .49 so.TR .35 239,43 209 1.3
B0 = B .47 1.3e 244 .70 SE TN S ] o
V. TI.E3 T4 4 247 .01 o - L o3
.0 74 .95 I =T A5 SdE .00 P S A7
= D VS0 =0 sS4z ,d1 S .an e
10,0 S04 Y911 S ol EE T Y L3

Figure 3

DELLF Sample Run Output



DELLF- 11

Il't. Program Information

A. Program description

DELLF was programmed and tested in the following operating environment:

Machine: CDC 6500
Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of
CDC SCOPE 3.2

Compiter: CDC FTN V3.0-P357

Core requirements: 103 decimal words

CP compile time: .47 seconds

CP execution time (for sample run): .49 milliseconds

Tapes: none

Direct access files: none

FORTRAN library subprograms used: FLOAT

DELLF is structured as a single subroutine, DELLF, which simulates a
continuous (distributed) delay process with storage losses and/or additions

and computer storage in the delay. No COMMON blocks are used.

B. Program implementation

Al'l input is transmitted through the argument list. Input variables
DEL (called D in section Il above), DT, IDTU and K require values which
must remain constant during the simulation of a particular delay; STRG and
R(1)  require only initial values, as they are subsequently recomputed
within DELLF. R must be dimensioned to at least K in the calling program,
Al'l output is transmitted through the argument list. The output variables
are ROUT and the updated values of R(1) and STRG (called S in section Il
above). See the list of the sample run executive program for an example
of the call statement.

For DELLF to operate properly, DT and DEL must be > 0, and K and |DTU

must be integers > 1.
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C. Program lists

The computer programs for the sample run and for DELLF are listed

below:
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FROGREAM DELTETCOUTPUT s TAFES=OUTFJT "
DIMEMZIAM Ro3o
DATA DELAY « 3.
IRTH k- -
IATA PLRE ~ .1
DRTAH OTIDTL « .25 1 -
DATA RIMSRROUT -~ 100, 30,
DATH =ZTRE « O, -
WRITECE 3100
T = =0T
DO 20 I=1 339333
T=T+ DT
IFYT JER. 0.2 30 TO 1S
CHLL DELLFiRIHsRDUTsEsETEGsFLEsDELHTsUTsIDTUsK}
IFCAMODCT sl JME. 0.2 30 TO =0
LS EXFl = EXNFO—01 +FLR T2
ARQUT = iﬂﬂ.oal.—EHPloiicl.+PLRhoThooafa.+f1.+PLE?0T+1.}}f
+ Cl.+PLRE 1 ee3
AZTRE 1O0.e01 (~EXFLy- 01 +FLEY + 100,01 . -EHFL10 01 ,4+FPLR o6 -
+ LOD.eTeEXFL -1 ,+FLREY + AR0OUT
FOOUT = 100.eROUT-AROUT » “AROUT
IFCAROUT LE@. 0.2 FOJUT = 0.
FOEZTRG = 100, STRE-ALTRIS) “ASTRG
IFCRETRE JEQ. 0.0 FRDETRE = o,
WRITE:CS y31 2 T+ARDUT sROUT sFIOUT s RETRIB « STRIG s FOETRIG
IFCT J3E. 10, ZTOFP
a0 COMT IHUE
30 FORMAT (e AMALYTICAL  ZIMULATED  PER CEMT  AMALYTICAL SZIMULe
+ *HTED FEF CEMTe-e TIME OUTPUT OUTRUT DEVIARTION e
+ +  ZTORAGE ETORAGE DEVIATIONS -
ED FORMATC® oFd 1 aF 10, 24SF1] .20
EMD
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ZUBROUTINE DELLFCRIM sROUT a2 o ZTRGoFPLR sDEL s DT s IDTI ok
TITLE - DIZTRIEBUTED DELAY WITH ZTORAGE LOZZEE
YERZION - 1A

OATE - 1 HO« 1374

FURFOZE - ZIMILATION JF A DIZTRIEBUTED TIME DELRY FROCEZS WITH
ZTORASE LOZZEL

IHFUT FEEGUIREMEMTE

YALUE: TREAMIMITTED THROUGH THE ARGIUMENT LIET -~ DELs DOTs
IOTUs va FLES #0iI0e RIMs EZTRG

MARTHELES REDUIRIMAS WHOOEL wHITH WILL HOT CHAWMSE DURING A RLUN

-- DELs OTs I0OTHS -

MARIABLEL FEQOIRIMG WALLET WHITH MeY CHAMGE DURIMNG A RN
~= FLFEs FIH

WARIABLE: COMPUTED EBY THIZ ROUTIME REQUIRING IMITIAL “YALUES
== @ilrs ITRG

QuUTFUT “YARIAEBLE:

WHLUESZ TRAMZMITTED THROUSH THE ARGUMENT LIZT —-- RCIxs ROUT S
=TEG

YARTAELE DEFIMITIONM:
DEL - LEMGTH OF DELAyY I TIME UHITE.
OT - ZIMULATION TIME IHIREMEMT IM TIME UNITE.
IDT - HUMEER O ZUEDIVIZIONT OF DT REQUIFED. UMITLEZE,
InTw - UZER-ZFECIFIED HUMEER OF ZUEDIVITIONT OF DT. UMITLESS.
K. — ORDER OF DELRy. 'MITLEZZ,
FLFE - FROFORTIOMAHTE L0 RATE IM FROFORTIOM<UHIT TIME.
Foly - IMTERMEDIATE ®ATZ: IM UMITZI.UNIT TIME.CZTRGE OF DELAY:D
FIM = IMPUT RATE I JOMITI-UMIT TIME.
FOUT - OUTFIT RATE I UMITIZ<UMIT TIME.

ETRG - ZTARHGE IM WITE,
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DIMEMZION Rl
Ft: = FLORTCK
IOT = 1, + Z.eDTeiFE-DLEL + FLFY
IFCIDT JLT. IDTW: IDT = ITTY
FIDT = FLOATLIDT
H = FE®NT-(DEL®FIDT
B = | .+FLReLEL-FK
EMl = k-1
Lo 20 Jd=1,10T
ETRE = EZTRG + DTecRIMN-R 1 ~FLROSTREY“FIDT
IFCK JER. 12 30 1O 1S
OO 10 I=1akmM1
Fold = BOly + AedRiI+1a—FeRiIny
Lo CONTINUE
= Fokd = ROKD + HelRIM-BeR (kY
o COMTINLE
FOUT = RitLo
FETURH
EMD
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DELVF Abstract

DELVF simulates a distributed time delay process with variable
delay time, computes the storage associated with the flow through
the delay, and automatically insures simulation stability. It is
useful for modeling flow delays inherent in such aggregated pro-

cesses as capital formation, transportation and demographic processes.

In these cases, delay times could vary in response to, for example,
changing technologies and disease control, respectively.

The delay is modeled by a kth-order differential equation,
which is also an aggregate representation of the case where indi-
vidual lag times of entities in the aggregate are random variables
following an Erlang distribution. The inputs to DELVF are the
unlagged value, or flow into the delay, and the current value of
the mean lag time. Outputs are the lagged value, or flow out of
the delay, and the storage resulting from integration of net flow
intfo the storage resulting from integration of net flow into the
delay. Finally, DELVF insures simulation stability by automatically
decreasing the integration step size when the time constant is small
relative to the order of the delay.
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|. Process Description

There are many situations In socioeconomic processes where time del.ys
are distributed rather than discrete. That is, for aggregate flows indi-
vidual entltlies In the aggregate have different lag times; so that, while
entitles may enter the delay process at the same time, fthe output flow
will be distributed over time. This will be particularly true when the
individual lag times of entities are random variables [1]. For example,

a tree population may be modeled as a series of age cohorts representing
stages of productivity. Modeling the gestation stage, for instance, as

a distributed delay says that for trees planted at the same time produc-
tion will begin at different times for different trees--some sooner, some
later--depending on genetic and local environmental conditions obtaining
for each tree; and similarly for passage through the other productivity
stages defined [2]. Similar examples abound in other processes, such as
investment, transportation, diffusion of information, etc. DELVF simulates
this process.

I+ Is frequently the case that the length of the delay varies over
+ime as a function of other variables in the system. For example, delays
assoclated with the diffusion of innovations may be functions of the
profitability of the innovations and/or of the communication infrastructure.
Or production delays may be functions of inventory, order backlogs, over-
+1me wage rates and/or machine reliability. DELVF is specifically designed

[3] to incorporate variable delays in the delay process.
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In the technical description which follows, reference is made to
the use of DELVF to model the gestation stage of cocoa trees, where the
inputs are tree plantings and gestation time, and the outputs are trees

becoming productive and the number of ftrees in the gestation stage.



DELVE =7

1, Technical Description

A. Mathematical model
The kTh-order differential equation modeling a distributed delay with
variable delay time can be shown to be equivalent fto k first-order differ-
ential equations modeling a k-stage delay process, where each stage is a
first-order delay [3] (Figure 1). The delay times for individual frees

entering the gestation delay (assuming constant delay time) follow a kth-

order gamma distribution with mean D. k determines the variance 02 of the
gamma distributed delay times as 02 = Dz/k. In certain cases k and D may be
estimated from real-world or experimental data. As k gets large and goes to
infinity (Figure 2), the distribution degenerates to a normal cdistritution
with mean D and zero variance--i.e., a discrete delay of length D. Aside fro
the computation of storage and the determination of the integration step
size consistent with stability, DELVF is identical mathematically with the
VDEL routine of [3].

For the iTh stage of the delay--where i=1, 2, ..., k--Qi is the

storage (number of trees) and [3]:

(1 ;e = B i)

where

R; = rafe out of the iTh stage (trees/year)

D = the mean delay time (years)
k = the order of the delay process.
The rate of change of Qi is the net flow into the iTP stage:
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dQ, (+)
ar

Ri+1(f) - Ri(+)

where Rk+l = RIN, the planting rate into the delay (Figure 1). But from (1):

dQ; (+) dR; (1)
L 1fpey SR R, (+)-92L0) 1
dt k dt dt

(3)

Thus, upon substituting and rearranging terms, the first-order differential

equation modeling the ith stage of a kTh-order delay with variable delay

time becomes:

p(+)  dR;(T) 1 dD(+)

() == gyt G+ o AR D) = Ry (1)

which can be solved numerically using Euler's integration approximation

and taking dD{(t) . D(++DT) - D(T)
dt DT

(5) Ri(f) = Ri(T—DT) + DTe- [Ri+1(+-DT) - R; (+-0T) + (14+DD(+-DT)) ]

k.
D(+-DT)

where DD(t-DT) = &:D(+) BTD(+_DT) and where DT is the integration step
size, the simulation time increment. DELVF does not use (5), however.
In order to insure stability, DELVF divides the DT time interval into
IDT subintervals, where IDT = IDT(+) is computed in (14), Thus, inte-
grating over the subintervals of length EDT = DT/IDT(4+), (5) becomes:

= . k .
(6) R;(1) = Ri(T—EDT) + EDT 507 [Ri+1(T—EDT) - Ri(T-EDT) (1+DD(+=DT)) ]

for t = t-DT + EDT, ..., t-EOT, t, and where, for the k'" stage of the
delay, Riyq(1-EDT) = RIN(+-DT) for all T,
The output of the delay (trees becoming productive--Figure 1) is

(7) ROUT(t) = R1(+).
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Finally, the storage in the delay associated with the flow through the
delay (the number of trees in the gestation stage) is computed [3] as:
k
(8) S(+) = Qﬁil..z R; (1),
i=1

[f the user can assume steady-state initial conditions--i.e., that
the planting rate RIN has been constant for a long time prior to time
zero (implying that the first k-1 derivatives of ROUT(t+) are zero at
t=0)~-then the intermediate rates Ry, i=1, ..., k, should be initialized
to:
(9) R, (0) = S(0)/D, i=1, ..., k.
where S(0) is the initial storage (i.e., number of trees) in the
gestation delay. I|f, instead of the initial storage, the initial output
or input to the delay is known, Ri should be initialized to:
(10)  R;(0) = ROUT(0) = RIN(O), i=1, ..., k.
I f, on the other hand, steady-state initial conditions are not to be
assumed, equation (2) may be used to establish other initial conditions
for Ri that yield non-zero initial values for the derivatives of ROUT.
In any case, the initial storage and the rates R, must satisfy the
relationship:

Ri(O)'
1

i~ X

(1) sy =2
<

I'f a model contains several delays with variable delay times, for
each delay j stability considerations (assuming D(t) = D, a constant)
dictate that:

DL PDCE-DT)
DE;CH b (THDCR-DT))

(12)
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For reasonable simulation accuracy and to include a margin of safety,

the requirement becomes:

T D; (+-DT)

(13) o7 (F) ;.2-kj-(1+no(+-DT))

where DD(+) = &-g%%il-(see (5)). With DT, D, DD and k already known, DELVF

computes IDTJ so that (13) holds:

(14) IDTJ(T) = MAX{IDTUJ, [1 + 2.DT- (1 + DDJ(T—DT))]}

—
D;(+-DT)

where the operation [+] sets IDTJ equal to the largest integer in the value
of the expression in brackets; and MAX{a, b} sets IDTJ equal to the larger
of a and b. The user may specify an IDT greater than 1 to increase inte-
gration accuracy (even if not required for stability) by specifying 1DTU
greater than 1; i.e., the desired number of subintervals.

While DELVF accurately simulates a distributed delay (e.g., the
gestation stage of a cocoa tree population in this case), non-trivial
inaccuracies relating to non-conservation of flow arise when IDTJ >
and when the output ROUTJ(T) (equation (4)) is used elsewhere in a larger
model; e.g., integrated or used as the input rate to another delay. In
this example, the problem arises when the rate of *rees leaving the ges-
tation stage is used as the input to a second delay representing trees
with increasing yields up to full maturity. For a full discussion of
the problem and alternative ways to modify DELVF to handle it, see [4].

DELVF is one of a set of six distributed delay routines (Table 1)

which cover situations where ctorage is computed automatically within


http:2.DT-.JT
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the routine, the delay times, Dj’ may vary over time, storage losses
and/or accretions may occur in the course of the delay, and/or finer

time cycles are required for stability assurances. The last ‘hree columns
of Table 1 show the compile and execution central processor times and core
storage required by DELVF (and the other distributed delay routines for
comparison) on Michigan State University's CDC 6500 computer with its
FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,

MSU's version of CDC's SCOPE 3.2 operating system.

B. Sample Run
The sample run assumes a third-order, three-year gestation delay

(i.e., k=3 and D=3) with a constant rate of change of the delay time

dD(t)
dt

to time zero (i.e., S(0) = R1(O) = R,(0) = Rg(0) = 0), and the planting

= .1 years/year. No trees existed in the gestation stage prior

rate RIN is assumed to jump from 0 to 100 trees/year at time zero and

to remain constant thereafter.

Under these conditions, we can use (4) and (8) to solve analytically
for the output and storage of the gestation stage and compare these with
the simulated output and storage from (5) and (8). The analytical

solutions for ROUT and S are:

(15) ROUT(+) = 2—70939— [1 - A8 - BA Benact + %-Zn/\)]

(16) S(t) = A{igﬂ[u - A By ¢ %) - (B - 1)A-BgnA] + ROUT(H)}

WhereA=§%—&,B=3+B,C=BB=3+8andB=d3frﬂ.

8
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Resulfs; including the per cent deviations of the simulated solutions

from The analytical solutions, are tabulated in Figure 3 for a.l0-year

simulation, with DT = ,[25 years.
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I't1. Program Information

A. Program dascription
DELVF was programmed and tested in the followinng operating environment:
Machine: CDC 6500
Operating system:  MSU HUSTLER 2 L239 LSD 32--an extension of
CDCc SsCcobE 5.2
Compilter: CLC TN VH,0-P357
Core requiremants: 104 decimal words
CP compile time: .51 seconds
CP exncution time (for sample run): .55 mitliseconds
Tapes: none
Jircct access files: none
FORTRAN library subprograms used: FLOAT
DELVF is structured as a single subroutine, DELVF, which simulates a

continuous (distributed) delay process with variable delay time and computer

storage in the delay. to COMMON blocks are used.

B, Program implementation

All input is transmitted through the argument list. Input variables
DT, 10TU and K require values which must remain constant during the simula-
tion of o particular delay; DELP and R(1) require only initial values, as
they are subsequently rocomputed within DELVF. R must be dimensioned to
at least K in the calling program. All output is transmitted through the
araqument Tiot,  The outpul variables are ROUT and the updated values of R(I)
and STRG Cealted 5 in aection T above). Lee The Liol of the sample run
exaeculive program for an example of the call statement.

For DELVE to operate properly, DT and DEL(t) must be > O for all +,

and Kand 10TY must be integers > 1,
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C. Program lists
The computer programs for the sample run and for DELVF are listed

below:



+
<+

SROGRAM DCLTITOOUTRUT s TARES=DUTFUT &
DIMEHZION &2y
TS TELRY SDELRVE - Zoa 3,

DRTA v
I=TH E

1

DATH DT-IDTU - 2%« 1 -

U7 RIMROUT - 100, s Jeit,
IHTH TS
AR TTE S e =10

T = =0T

I EIREEEEE

T =T + IT
IFeT L0, 0. 30 10 15
DELAY = DELAY + EeDI

CALL DELWFORINGROUT R o ZTRGCDELAY sTELRAYF sTUT s TDTL a2

[FCeAMBODe TS, JME. 0.

H = 2, +CeT 0. o,

o= B4 00k

To= T4,

_HEO0T = =Y
AL A

H_.TRG =

ALOG A s v+ R TLT o
FOOLT

B30 TO =0

100, e ROUT-AROUT » - /EQUT

IFVAROUT LED. 0.0 RPOGUT = 0,
FOTTRG = 100,00 STRE-AITREY R TRE

[FOiRITR: (EQ, 0.0 ZDITE

5 =0,

WRPITECZ « 31 TA/ROUT «FOUT FTOUT s QHZTRG s ZTRGFLITRG

IFeT JoE. 10,0 ZTOF

COMTIHUE
FORMAT o1

AHALY T ICAL

DIMULATED  FER CENT

eHTED FER CEMTe-e TIME QUTFUT

*+  CTOFAGE TOR
FOFMHT e oFd L F1D.2SF11 .20
ENHD

H>E DEYIATIONe -

QuTFUT
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ZUBROUTINE DELVFCRINGROUT o8 s 3TRE s DEL s DELP s IT s IITU ok
TITLE - DIZTRIEUTED DELAY WITH wARIAELE DELAY TIME
YERTIOM - 1A

DATE - 1 HOY 1974

FURFOIE - ZIMULATION OF A DIZTRIEBUTED TIME DELAY PROCESS WITH
WHMIARELE DELWY TIME

IMFUT REQUIREMENTE

WALUEZ TRAMIMITTED THROUSH THE ARGUMENT LIST -- DELs DELF»
DTs IDTUe Es ®ROIDs RIMS ZTR

WHRIAELE: REQUIRIMNG YWALUES WHICH WILL HOT CHANGE DURING A RN
-=- DOTs IDTUs K
VARIAELEL REDUIRIMNG VHRLILES WHICH MAY CHANGE TURINS AR FPUN
-— DELs RIN
WARIABLES COMPUTED BY THIZ RIOUTINE REGUIRING INITIAL YRALLUES
== DELFy F.Ixs STREG
guTrRUT YARRIARELES

VALLUED TRAMIMITTED THROUGH THE ARSUMENT LIST -- RoIds POUT
ITRG

VAR IAELE DEFINITIONE
DEL - CURREMT LENGTH OF DELAY IN TIME UNITZ.
DELF - FREVIOUZ LENGTH OF DELAY IM TIME UNITS.

OT - ZIMULATION TIME INCREMENT IN TIME UNITE

IDT - HUMBER OF ZUBDIVIZIONT OF DT FEQUIFED. UNITLESS.

IDTW - UZER-ZFECIFIED MUMEER OF ZUEDIVIZIONS OF DT. UMITLESS.
k. - ORDER OF DELAY. UMITLEZZ,

RCIx ~ INTERMEDIATE RATES IN UMITS-UNIT TIME.CSTRSE OF DELAYY
FIM = INFUT RATE IN UMITS-UNIT TIME.

FOUT - OUTPUT RATE IM UNITZ-UNIT TIME.

TR = ETORASE IH UMITE,
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DIMEMZION Fi12

FE. = FLOART K »

E = 1. + DEL-DELFI~ DT®FK

IDT = 1. + 2.eEe[iTeFr.“LIELF

IFCIDT LT, 10T IDY = IDTH

A = FEeDT "t DELFeFLOATCINDT

DeLF = DEL

EMl = k-1

pg cno 4=1410T7

[Fck LB, 10 20 7O 15
00 10 I=teaMt
Folsy = ROETs 4+ AeoRoJ41 i—FBer ] an

1 COMTINUE
15 Fibtia = Fib o + HeiRlM-FLeR Tk W)
S COMTIHIJE

ITRG = 0,

Do =i I=1 «p

CTRE = ITRG + ReIrelEL <Fk
B CONTIMLUE

FOUT = R

RETURN

EHTi



DELVF-17

References

[1] Manetsch, Thomas J. and Gerald Park, Systems Analysis and
Simulation with Applications to Economic and Social Systems,
Part |1, Preliminary Edition (East Lansing: Division of

Engineering Research, Michigan State University, 1973),
Chapter 12.

(2] Abkin, Michael H. and Thomas J. Manetsch, "A Development
Pianning-Oriented Simulation Model of +the Agricultural
Economy of Southern Nigeria," |EEE Transactions on Systems,
Man, and Cybernetics, SMC-2 (Sept., 1972) 472-486.

[3] Manetsch and Park, Op. cit., Chapter 10.

[4] Abkin, M. H. and C. Wolf, "Accuracy in the Simutation of
Distributed Delay Processes in Models of Socioeconomic
Systems," Project Working Paper 74-2, (East Lansing:
Michigan State University, November 1974.)



DELLVF
CLASS Document

1. Symbolic Name 2. Name 3. Type 4. Version No.
and Date
DELLVF Distributed Delay with Storage routine 1A
Losses and Variable Time Delay | 7 1/11/74

DELLVF Abstract

DELLVF simulates a distributed time delay process with storage
losses (or additions) and variable delay times, computes the storage
associated with flow through the delay, and automatically insures
simulation stability. It is useful for modeling flow delays inherent
in such aggregated processes as capital promotion, transportation
and demographic processes. In these cases, storage losses could
refer to disinvestment, spoilage and deaths or migrations, respectively;
and delay fimes could vary in response to, for example, changing
technologies and disease control, respectively.

The delay is modeled by a k+h—order di fferential equation,
which is also an aggregate representation of the case where indi-
vidual lag times of entities in the aggregate are random variables
following an Erlang distribution. The inputs to DELLVF are the
unlagged value, or flow into the delay, tne proportional storage loss
rate and the current value of the mean lag time, Outputs are the
lagged value, or flow out of the delay, and the storage resulting
from integration of net flow into the delay. Finally, DELLYF insures
simulation stability by automatically decreasing the integration step
size when the time constant is small relative to the order of the delay.
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. Process Description

There are many situations in socioeconomic processes where time delays
are distributed rather than discrete. That is, for aggregate flows indi-
vidual entities in the aggregate have different lag times so that, while
entities may enter the delay process at the same time, the output flow will
be distributed over time. This will be particularly true when the indi-
vidual lag times of entities are random variables [1]. For example, a tree
population may be modeled as a series of age cohorts representing stages of
productivity. Modeling the gestation stage, for instance, as a distributed
delay says that for trees planted at the same time production will begin at
different times for different trees--some sooner, some later--depending on
genetic and local environmental conditions obtaining for each tree; and
similarly for passage through the other productivity stages defined [2].
Similar examples abound in other processes, such as investment, transportation,
diffusion of information, etc. DELLVF simulates this process.

I+ is frequently the case that storage losses or additions occur in
the course of the delay process and that the length of the delay varies
over time as a function of other variables in the system. Notable examples
of situations in which storage losses or additions may occur include popu-
lation migrations, tree removals, deaths, production losses, distribution
losses, etc. Variable delay times may occur, for example, in production
processes as functions of inventory, order backlogs, overtime wage rates
and/or machine reliability. Similarly, delays associated with the diffu-

sion of innovaiiuns may be functions of the profitability of the innovations
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and/or of the communication infrastructure. DELLVF is specifically designed

to incorporate storage losses and variable delay times in the delay process.

In the technical description which follows, reference is made to the

use of DELLV to mode! the gestation stage of cocoa trees, where the inputs

are tree plantings, failure rates and gestation time, and the outputs are

trees becoming productive and the number of trees in the gestation stage.
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Il. Technical Description

A. Mathematical model

The kTN-order differential equation and variable delay time can be
shown to be equivalent to k first-order differential equations modeling a
k-stage delay process, where each stage is a first-order delay [3] (Fig-
ure 1). The delay times for individual trees entering the gestation delay
(assuming no losses and constant delay time) follow a kth-order gamma dis-
tribution with mean D. k determines the variance 02.of the gamma distributed
delay times as 02 = Dz/k. In certain cases k and D may be estimated from
real world or experimental data. As k gets large and goes to infinity
(Figure 2), the distribution degenerates to a normal distribution with mean
D and zero variance--i.e., a discrete delay of length D.

For the ith stage of the delay--where i=1, 2, ..., k——Qi is the storage

(number of trees) and [3]
(1 Qen = 2R, (1)

where
Rj = rate out of the ith stage (trees/year)
D

the mean delay time (years)

1]

k = the order of the delay process.

The rate of change of Qi is the net flow into the ifh stage:

dQ; (+)

—aF - RH_](T) - Ri(‘f‘) - Li('f‘)
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where Rk+1 = RIN, the planting rate into the delay (Figure 1), and L; Is

the storage loss rate from the ith stage. |f Li(f) = PLR(+)+Q; (1) where

PLR is the proportional loss rate for the total storage in the whole delay

(i.e., the losses are apportioned proportionately to each stage), then

dQ; (1)

(3) ——
dt

= R, q (1) = Ry(+) = PLR(+)+Q, (1)

= . Q(.jl‘
= R (P = Rp(H) e (1H+=pLR()

But from (1)

do; (o, dR; (1)

(4) el E(D(T)-

,dD(t)
+ Ry (H S

Thus, upon substituting and rearranging terms, the first-order differential

th th

equation model ing the i stage of a k' '-order delay with storage losses

and variable delay time becomes

4y dR. (1)
pen R

1.dD(t) 4 D(1), oR. =
” T7 P - PLR(T)) R, (1) = R, (1)

(5) "

which can be solved numerically using Euler's integration approximation and

taking

dD(t) . D(H4DT) = D(H) py
d DT

(6) R; (1) = R{(+-DT) + DTk __«[R, {(+-DT) = R, (+-DT)+(1+DD(+-DT)
i D(t-DT) '

+ BUDD by Ret-0T)) ]

where DD(+-DT) = %—- D{t) 'D$(T'DT) and where DT is the Integration step

size, the simulation time increment. DELLVF does not use (6), however,

In order to insure stability, DELLVF divides the DT time interval into IDT
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subintervals, where IDT = IDT(t+) is computed in (15)., Thus, integrating

over the subintervals of length EDT = DT/IDT, (6) becomes

(1) R (x) = Bi(x=EDT) + EDT+=Kf Ry g (1=EDT) = Ry (1-EDT)+(140D(+-DT)

* 9$1§911~PLR<+-DT)>]

for t = + - DT + EOT, .,., t - EDT, *, and where, for the k™M stage of the
delay, Ry, ,(t-EDT) = RIN(+-DT) for all t.

The output of the delay (trees becoming productive--Figure 1) is

(8) ROUT(t+) = R, (1),

1
Finally, the storage in the delay associated with the flow through the delay

(the number of trees in the gestaticn stage) is computed [3] as

(9) s(+) = 2B
ko

Il Dv—X

R. (1).
-

If the user can assume steady-state initial conditions--i.e., that
the planting rate RIN has been constant for a long time prior to time
zero (implying that the first k-1 derivatives of ROUT(t) are zero at
t=0)--then the intermediate rates Ri' i=1, +.., k, should be initialized
to:

(10) Ri(O) = 5(0)/D, i=t, ..., k.
where S(0) is the initial storage (i.e., number of trees) in the
gestation delay. If, instead of the initial storage, the initial output

or input to the delay is known, R; should be initialized to:

(11) RI(O) = ROUT(0) = RIN(O), i=1, ..., k.
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I, on the other hand, steady-state Initial conditions are not to be

assumed, equation (2) may be used to establish other initial conditions
for R, that yield non-zero initial values for the derivatives of ROUT,

In any case, the initial storage and the rates Ri must satisfy the

relationship:

1

[N e B>

_D
(12) S(0) = ki

If a model contains several delays with losses and variable delay
times, for each delay j stability consliderations (assuming PLR(t+) = PLR,
a constant) dictate that:

DT qu(f-DT)

10T, () < < (T¥0D (F-D1)) + PLR (F-DT)+D (¥-01) °

(13)

For reasonable simulation accuracy and to include a marqin of safety, the

requirement becomes:

D, (+-DT)
IDTJ(T) ~2 kj(1+DDj(T-DT)) + PLRJ(+-DT)-DJ(T-DT)
.1 db(+) )
where DD(t) = ©at (see (6)). MWith DT, D, DD, PLR, and k already known,

DELLVF computes IDTJ, so that (14) holds:

= o1 4+ —2:DT 0T} DT) -

(15) IDTJ(+) MAX{!DTUJ, (1 + DJ(T—DT) (kj(] + DDJ(T DT)) + PLRJ(T DT)
DJ(T-DT))]}

where the operation [+] sets IDTJ equal to the largest integer in the value

of the expression in brackets and MAX{a, b} sets IDTJ equal to the larger

of a and b, The user may specify an IDT greater than 1 to increase
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integration accuracy (even if not required for stability) by specifying
IDTU greater than 1, i.e., the desired number of subintervals.

While DELLVF accurately simulates a distributed defay (e.g., the
gestation stage of a cocoa ftree population in this case), non-trivial
inaccuracies relating to non-conservation of flow arise when lDTJ >
and when the output ROUTJ(f) (equation (4)) is used elsewhere in a larger
model; e.g., integrated or used as the input ra%e to another delay. In
this example, the problem arises when the rate of trees leaving the ges-
tation stage is used as the input to a second delay representing trees
with increasing yields up to full maturity. For a full discussion of
the problem and alternative ways to modify DELLVF to handle it, see [4].

DELLVF is one of a set of six distributed delay routines (Table 1)
which cover situations where storage is computed automatically within
the routine, the delay times, Djv may vary over time, storage losses
and/or accretions may occur in the course of the delay, and/or finer
time cycles are required for stability assurances. The last three columns
-of Table 1 show the compile and execution central processor times and core
storage required by DELLVF (and the other distributed delay routines for
comparison) on Michigan State University's COC 6500 computer with its

FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,

MSU's version of CDC's SCOPE 3.2 operating system.

B. Sample run
The sample run assumes a third-order, three-year gestation delay

(i.e., k=3 and D=3) with a constant failure rate PLR(t+) = 0.1/year and
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constant rate of change of the delay time Q%%Il.= 0.1 years/year. No
trees existed In the gestation stage prior to time zero (i.e., S(0) = Ry (0)
= Ry(0) = RS(O) = 0), and the planting rate RIN is assumed to Jump from O
to 100 trees/year at time zero and to remain constant thereafter.

Results are tabulated in Figure 3 for a 10-year simulation, with

OT = .25 years,
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[1l., Program Information

A. Program description

DELLVF was programmed and tested in the fol lowing operating environment:

Machine: CDC 6500

Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of

CDC SCOPE 3.2

Compiler: CDC FTN V3.0-P357

Core requirements: 108 decimal words

CP compile time: .54 seconds

CP execution time (for sample run): .57 milliseconds

Tapes: none

Direct access files: none

FORTRAN library subprograms used: FLOAT

DELLVF is structured as a single subroutine, DELLVF, which simulates
a continuous (distributed) delay process with storage losses and/or addi-
tions and with variable delay time. It also computes storage in the delay.

No COMMON blocks are used.

B. Program implementation

All input is transmitted through the argument list. Input variables
DT, IDTU and K require values which must remain constant during the simula-
tion of a particular delay; DELP and R(1) require only initial values, as
they are subsequently recomputed within DELLVF. R must be dimensioned to
at least K in the calling program. A!l output is transmitted through the
argument list. The output variables are ROUT and the updated values of R(l)
ard STRG (called S in section || above). See the list of the sample run
executive program for an example of the call statement,

For DELLVF to operate properly, DT and DEL(t+) must be > 0 for all *,

and K and IDTU must be integers > 1.
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C. Program lists

The computer programs for the sample run and for DELLVF are |isted

below:



300
a1

FROGERM DELTETCOUTPUT s TRFES=0UTRUT

DIMEMEZION RO30

DATH
DRTH
DRTH
IATH
IRTH
DRTH
IATH

DTIDTUL » 25 1

PLE ~ .1 -~

E « .1 -

DELAY sDELRYP «~ 3.4 3.
K - 3 -

RIH:&!RUUT S 100y de0,

ITRG < 0.

WEITECE «3 00

T =

T

=07

T+ D7

[FeT JER. 0.0 30 1O 1S
DELAY = DELRY + EeQT

ZALL DELLWFOCRINSROUT sR s ZTRIS o LR «DELAY s DELAYP o DT o IDTL ok 2

IFCAMODCT 1.0 HE. 0.2 30 T0O

WRITECZ 31y THROUTITRE

IFCT J5E. 10.» ZTOF
COMT INUE
FORMATC&1TIME CUTFUT RATE

FORMATCe oF 4, 1+F14, 2eF1n 20

EMD

TORAGE®
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“

TUBROUTINE DELLYFCRINSROUT oR s 2TRIS«PLR sDEL s DELP sDT s IDTU 9k

TITLE - DIZTRIBUTED DELAY WITH WARIABLE DELAY TIME AND STORAGE
LOZZES

VERTION - 1R
DATE - 1 HOW 1974

PURPOZE - SIMULATION OF A DIZTRIEUTED TIME DELAY PROCETE WITH
WARIAEBLE DELAY TIME AWD TTORAGE LDZZES

INFUT REQUIREMENT:

YALUES TRAMIZMITTED THROUSH THE ARGUMENT LIST -- DELs DELP»
DTs IDTUS K FLEs ROIds RINS ETRG

WHRIAEBLES RESUIRIMG WALUES wWHICH WILL NOT CHAMSE DURING H RLUN
-— DT IOTI. K
VAR IAEBLES FEQUIRIMNG WALUET WHICH MAY CHAMGE DURINS A RUN
-- DELs FPLE« RINH
WHRIAEBLES COMPUTEDR EBY THIS ROUTINE REGUIRING INITIAL VRLUEX
—— DELFs RiIas ZTRIS
QuTeUT YARIAELE:

YALUZS TRAMIMITTED THROWSH THE ARGUMENT LIEZT -- RCIYs ROUT
ZTRIG

YHRIAEBLE DEFIMITIONE
DEL - CUREENT LEMSTH OF DELAY IM TIME UNITE.
DELF - PREVIOUEZ LEMGTH JF DELAY IM TIME UMITE.
DT - ZIMULATION TIME IMCREMEMT IN TIME LMITE.
IDT - HUOMEBER OF ZUEDIVIZIONT OF DT REQIIRED. UMITLESE.
IDTL - UZER-SFPECIFIED HUMEER OF ZURDIVIEIONE OF DT. UNITLESE.
k. — ORDER OF DELRY. UMITLEZE.
FLE - FROPORTIOMATE LOZ: RAHTE IN PROFORTION-UMIT TIME.
REIY - IMTERMEDIATE RATES IN UNITIZSUNIT TIME.CZTRSE OF DELAY?
FEIN - INFUT RATE IM UNITZ<UMIT TIME.
FOUT = DUTPUT RATE IM oMITT-UNIT TIME.

TR - ZTORAGE IN UNITE.



10
15

20

DIMENZION RC1D
Fk. = FLORT k2
B =1. + CDEL-DELP} CFKeDTY + PLROLELP-FK
IDT = 1. + C.eEeDTeFkK-LELF
IFCIDT JLT. IDTUY IDT = IDTU
H = FKeDT-(DELFeFLORTCIDT o
LELF = DEL
kMl = k-1
Dg 20 J=1.1DT

IFCK JEQR. 1 30 TO 15

0o 1o I=1skMi

Fold = ROI) + AedRCI+L-EeRCI )

CONTINUE
Rekd = ROKD + AeCRIN-BeR (KD
CONTINUE

ITRG = 0.
00 30 I=1,K

STRE = ITREG + RCIeDEL-FK
CONT INLE
ROUT = Ri1D
RETURN
END

DELLVF=- 15
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