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COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION
 

The Computer Library for Agricultural Systems Simulation (CLASS) is 
one of the four major activities of the Agricultural Sector Analysis 
and Simulation Projects at Michigan State Jnviersity under U. S. 
Agency for International Development Contract AID/cgd--2975. lhe 
other three major interrelated project activities include theoretical
 
and methodological research, the Development Analysis Study Program,
 
and field activities, primarily in the Republic of Korea.
 

The project objective is to develop an approach to institutionalizing
 
an analytical capacity for pianning, policy formulation, program 
development, and project implementation for agricultural sector
 
development within the public decision making structure of developing
 
countries. A major component of the analytical capacity is a series
 
of system simulation models tailored to the needs of the individual 
country. Much of the experience gained from the field activity and
 
the knowledge gained from the theoretical and methodological research
 
added to the present stock of knowledge about building and maintaining
 
analytical capacities for agricultural sector development can be
 

preserved and extended in the training provided through the Develop

ment Analysis Study Program and in the stock of model, component, and
 

utility routine computer software documented in the Computer Library
 

for Agricultural Systems Simulation.
 

In full operation, the Computer Library for Agricultural Systems 
Simulation (CLASS) acquires, catalogs, maintains and distributes 

computer programs and associated documentation. These computer 
programs are of generalized simulation models, components, and
 

routines designed specifically for the analysis of agricultural
 
development problems and processes. In particular, the library sets
 

standards of admissibility for programs and documentation; catalogs
 

and indexes programs and documentation so as to facilitate their
 

retrieval by users seeking a set of programs to be used in a specific 
problem analysis; and distributes programs and documentation to users.
 

To enhance the effectiveness of the library, its functions also 
include identifying and soliciting needed models; actively bringing
 

programs and documentation up to the library's standards; and
 

providing limited consultation in identifying and implementing
 

appropriate library programs for a particular application. A subsidiary
 

function of the library in conjunction with the identification and
 

solicitation of models is to survey and catalog ongoing research in
 

agricultural systems modeling and simulation.
 

The CLASS document publication series is the main vehicle for informin
 

of the substance of CLASS holdings and activities.
potential users 


George E. Rossmiller
July, 1976 

Di rector
 
Agricultural Sector Analysis and 

Simulation Projects
 



PREFACE
 

There are many situatlons in socioeconomic processes where time delays
 

are distributed rather than discrete. That is, for aggregate flows indi

vidual entities in the aggregate have different lag times so that, while
 

entities may enter the delay processes at the sare Ilr, the:, omtput flow
 

will be distributed over time. This will be particularly true when the
 

individual lag times of entities are random variables. For example, a
 

tree population may be modeled as a series of age cohorts reprcsenting
 

stages of productivity. Modeling the gestation stage, for instance, as
 

a distributed delay says that for trees planted at the same time produc

tion will begin at different times for different trees--some sooner, some
 

later--depending on genetic and local environmental conditions obtaining
 

for each tree; and similarly for passage through the other productivity
 

stages defined. Similar examples abound in other processes, such as
 

Investment, transportation, diffusion of information, etc.
 

This publication provides the set of documentations fcr six
 

distributed delay routines: DEL, DELS, DELF, DELLF, DELVF, DELLVF. The
 

delay in all routines is modeled by a k th-order differential equation,
 

which is also an aggregate representation of the case where individual
 

lag times of entities in the aggregate art random variables following
 

an Erlang distribution. DEL is the simplest form of the distributed
 

time delay process. The other routines have additional features as
 

summarized in Table 1. Five routines compute storage in the delay by
 

Integrating the nel flow into the delay. Four routines insure simulation
 

stability by automatically decreasing the integration step size when
 

the time constant is small relative to the order of the delay. Two
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routines allow for proportional storage losses and/or accretions. Finally,
 

two routines allow the mean 
lag time of the delay to be varied over the
 

simulation run.
 

The last three columns of 
Table I show the compilp and execution
 

central processor times and -ore storaqp required by rhr distributed delay 

routines on Michigan SIate University's CDC 6500 computer wilh its FORTRAN 

Extended 
(Version 3.0) compi lkr and operating under HUSTLER 2, MU's 

version of CDC's SCOPE 3.2 operating system.
 

M. H. A.
 
C. J. W. 
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CLASS Document 

I. Stmb-olic Name 

DEL 

2. Name 

Distributed Delay 

3. 

routine 

-4. Version No. 
and Date 

1A 
1/11/74 

DEL Abstract 

DEL simulates a distributed time delay process. It is useful 
for modelinq Information lags and for flow delays inherent in such 
aggregated processes as investment, production, transportation, 
Information dissemination, and demographic processes.

The delay ismodeled by a k h-order differential equation, 
which is also an aqgrepate representation of the case where indi
vidual lag tines of entities in the aggregate are random variables 
following an Erlang distribution. The Input to DEL is the unlagged
value or flow into the delay, and the output is the lagged value 
or flow out of the delay. 
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I. Process Description
 

There are many situations In socioeconomic processes where time delays
 

are distributed rather than discrete. That is, for acgrenate flows indi

vidual entities In the agqrepate have different lag times so that, while
 

entitles may enter the delay process at the same time, the output flow
 

will be distributed over time. This will be particularly true when the
 

individual lag times of entities are random variables [1]. For example,
 

a tree population may be modeled as a series of age cohorts representing
 

stages of productivity. Modeling the gestation stage, for instance, as
 

a distributed delay says that for trees planted at the same time produc

tion will begin at different times for different trees--some sooner, some
 

later--depending on genetic and local environmental conditions obtaining
 

for each tree; and similarly for passage throunh the other productivity
 

stages defined [2]. Similar examples abound in other processes, such as
 

Investment, transportation, diffusion of information, etc. DEL simulates
 

this process.
 

In the technical description which follows, reference is made to
 

the use of DEL to model the gestation stage of cocoa trees, where the
 

Input is tree plantings and the output is trees becoming productive.
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II. Technical Descri liion
 

A. Ma thema t ica I rrod ,I 

DEL is identic.)l r-.I-t
matically to the D[LAY2 routine of [1], produces 

the same nurnerical r,. S as 0c ",L.. -uftinr,of [3J, and is a generali

zation of the DELAY3 routine of [4]. 

The kTh-.rrdcer diff:>,rnfl d +ion model inq a distributed delay can 

be sthown to b ,.quiva'lCrv to k f irIt-ordfor differential equations modeling 

a '--t, delay/ :)r:ns,, whre each -taqe is a first-order delay [51 

(Fiqure 1). 

The de lay times for :*dividual froes unterin(i the qestation delay
 
follow a lth- - q:mJ d s-ir ibution with moan deterri l '. the vari

a2ance of the namma -diftrbuted de!ivTrimes a-,; 2 - /, . In certain 

cases k an! D may bo estitrate(d frvn rca I-worl.- or 7xp.rir1"ental dat-a. As 

k c(-ets larce and qoes to i nf ;ni ly (Fi,,,ure 2), -I;striLution denenerates 

to a distribuf ,.ith U) and .ere ,normal -;i mean variance--i .e. a discrete 

delay of lenath ). 
tth 

The i stan!e cf rhe delaiy is oodrcled by the first-order differential 

eauation
 

'
 ( kSdRidit t) + 1i(1 

which can !e solved nunerica!!y usinn Eu~er's intenration apnroximation by
 

:
(2) ::t) .(t-DT) + fYF.L-.i ( t-UT) - R Ct-UT) 

where, for the kth , aru of i. :e.lav. Rk+1 Ri(I and where 

R = rate out of the ith stane (trees/year) 



R Nk Rkk - 1 Rk-I R3 6 2 R2R ' 

Ficure I 

kth-Order Distributed Delay Process 

ROUT ROUT ROUT 

D 

(a) k=l 

t 

D 

(b) k=3 

Finure 2 

kth-Order Delay Zero-State Unit Impulse Response 

D 

(c) k=10 

t 



DEL-4 

RIN = planting rate (Figure 1) (trees/year)
 

k = the order of the delay process 

D = the mean delay time (years) 

DT = the inteqration step size, toe simulation time increment (years). 

The output of the delay (trees becoming productlve--Figure 1) is
 

(3) ROUT(t) = R1 (t). 

If the user can assume steady-sTate initial .onditions--i.e., that 

the planting rate RIN has been constant for a lonr time prior to time 

zero (implyinq that the firsT k-i derivatives of ROUT(t) are zero at
 

t=O)--then the intermediate rates, Rip i =1, ... , k, should be 

initialized to
 

(4) R.(O) = S(O)/D, i = I, ..., k
 

wiere S(O) is the initial storaqe (i.e., number of trees) in the
 

gestation delay. If, instead of the initial storage, the initial output
 

or input to the delay is known, Ri should be initialized to
 

(5) R. (0) = ROUT(0) = RIN(O), i = I, k 

If, on the other hand, steady-state initial conditions are not to be
 

assumed, equation (2) may be used to establish ether initial conditions
 

for Ri that yield non-zero initial values for the derivatives of ROUT.
 

In any case, the initial storage and the rates Ri must satisfy the 

relationship:
 

D k
 
(6) S(O) [".(O). 

If a model contains several delays, stability considerations dictate
 

that
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2D.
 
(7) 	DT < min [-kJJ.

j 	 k.
 

For reasonable simulation accuracy and to include a margin of safety, the
 

requirement becomes
 

.D 

(8) 	DT < min [2-]
2k.


J J 

where j indexes all the delays in a model. Alternatively, if (8) requires
 

DT to be too small for efficient computation, a larger DT may be used for
 

the model as a whole by using routine DELF in place of DEL for those delays
 

j whose D/2k. ratios require a smaller DT.
 

DEL is one of a set of six distributed delay routines (Table 1) which
 

cover situations where storage is computed automatically within the routine,
 

the delay times, Dj, may vary over time, storage losses and/or accretions
 

may occur in the course of the delay, and/or finer time cycles are required
 

for stability assurances. The last three columns of Table I show the com

pile and execution central processor times and core storage required by
 

DEL (and the other distributed delay routines for comparison) on Michigan
 

State University's CDC 6500 computer with its FORTRAN Extended (Version
 

3.0) compiler and operating under HUSTLER 2, MSU's version of CDC's
 

SCOPE 3.2 operating system.
 

B. 	Sample run
 

The sample run assumes a third-order, three-year gestation delay (i.e.,
 

k = 3 and D = 3). No trees existed in the gestation stage prior to time
 

zero (i.e., S(O) = RI(O) = R2(0) = R3 (0) = 0), and the planting rate RIN
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Table 1
 

CLASS Distributed Delay Routines
 

Routines 

) 

U0 
L 
cL 

> 
o 

-

C) 

-e--

4-

• 

L
4-
n 

-

C U"_0 0 c: 
Oc r 

U 

C L 
EV 

(UU00 (U 
U >-

Q)- -O0 - --

L U . 
0.- ( Q) 
++- 4--> 
U( (A 

E 4-
.00 ." 
-4- 4--C 

.. ,--C:c-

C-u 
U0 

U)
0) 
0 

-

)C;.. 

L 
0 0 
4-.-
U)+-

)
.CL 
4-
*-U : 

0) 

4-
+-
>. 

-
( 

7)-o 

-

.-
L
(0
> 

.: 
4-
*-

-L 

L v) 

c c 
a)0 

Uuo 
Q 

0)I:I 

+-L 
0 

U)
a-)

CU 
E 0 
CL o 

( c0 
U 

- a) 

U 

-

W*

-I .- I 

CL 
00 

W 
)

nO)
U U 
0 0 
XL aww 

V 

L 
G--0 

L 

WC, 

L-,
0
+-( u 
U)

0 U 
LW 
COLU 

DEL x .24 .27 56 

DELS X X .28 .31 62 

DELF X X X .40 .44 93 
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is assumed to jump from 0 to 100 trees/year at time zero and to remain
 

constant thereafter. In addition, the number of trees in the gestation
 

stage at time t (storage) is
 

(9) d S(t)
 
-UT RIN(t) - ROUT
 

and is simulated by Euler integration (See the list of the sample run
 

executive program.) by:
 

(10) S(t) = S(t-DT) + DT.(RIN(t-DT) - ROUT(t-DT)).
 

Under these conditions, we can use (1) and (9) to solve analytically
 

for the output and storage of the gestation stage and compare these with
 

the simulated output and storage from (2) and (10). The analytical
 

solution for ROUT and S are:
 

(11) ROUTt) = lO0[1-e-t(Tt2 + t + 1)]
 

(12) 	 S(t) = 100[3 - e-t(yt 2 + 2t + 3)].
 

Results, includinn the percent deviations of the simulated solutions
 

from the analytical solutions, are tabulated in Figure 3 for a 10-year
 

simulation with DT = .25 years.
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ANALYTICAL SIMULATED PEP CENT ANALYTICAL SIMULATED PER CENT 

TIME OUTPUT OUTPUT DEVIATION :TORAGE STOPAGE DEVIATION 

0.0 
1 .0 
2.u 
-. -

3 .0 
4.10 
5.0 
6 .0 
7.0 
8.0 
'9.0 

C. 
8.03 
32.53 
57,.8,. 
.r.19 
8E7 .53 
9.3.8:0 
97.i4 
98 .62 
99.3 

0ii . i0 
5.08 

32.15 
--

0.93 
:E0:.29 
90.37 
9.0U.d 
?8.4 
99.33 

7 

0.0 0 
-$6.?. 

- .58 
95.64 
5.38 
3.1 

1 .4 
.1 
.-. 

ii.0 

97 .6? 
178.20 
' , 

23.79 
-,

26.20 
2832.8,2 
291 .82 
296.2 
298.29 
29.24 

r,-

99.61 
185 .4:3 
241 .93 
,..a,-I

272.94 
288:.13 
295 .0(2 
297.98 
299.20 
299.69 

0.0 0 
1.919 
4 .06 

. 

3.9. 
29 
1.88 
1 .1 0 
.60 
.31 
.15 

10.0 99.72 99.90 .18 299 .t7 299.88 .07 

Figure 3 

DEL Sample Pun Output 
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Ill. Proaram Information
 

A. 	Program description
 

DEL was programmed and tested in the following operating environment:
 

Machine: CDC 6500
 
Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of CDC Scope
 

3.2
 

Compiler: CDC FT14 V3.0-P357
 
Core requirements: 56 decimal words
 
CP compile time: .24 seconds
 
CP execution time (for sample run): .27 milliseconds
 
Tapes: none
 
Direct access files: none
 
FORTRAN library subprograms used: FLOAT
 

DEL is structured as a single subroutine, DEL, which simulates a
 

continuous (distributed) delay process. No COMMON blocks are used.
 

B. Program Implementation
 

All input is transmitted through the arnument list. Input variables
 

DELAY (called D in section II above), DT, and K require values which must
 

remain constant during the simulation of a particular delay; RIN requires
 

a value which may change during a simulation run; R(l) requires only
 

initial values, as they are subsequently recomputed within DEL. R must
 

be dimensioned to at least K in the calling program. All output is trans

mitted through the argument list. The output variables are ROUT and the
 

updated values of R(1). See the list of the sample run executive program
 

for an example of the call statement.
 

For DEL to operate properly, the value of DT must be such that 

0 < DT < DELAY/2K, DELAY must be greater than zero, and K must be an 

integer > 1. When K = 1, the delay can be simulated more efficiently by 

a single statement in the calling program than by this routine: 
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(13) ROUT(t) = ROUT(t-DT) + DT- K (PIN(t-DT) - rOUT(t-OT)).

2.DELAY
 

C. Program lists
 

The computer progransfor the sample run and for DEL are listed
 

below:
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PROGRAM 	 DELT."T (OUTPUT, TAPE2=OLITPIT , 
DIMENSION R(3::,
 
DATA DELAY :3.
 
DATA K ' 
DATA DT .25
 
DATA RINR.,ROUT ... 100.p 4*0 .
 

DATA STRG / 0.
 
.IRITE( 29'0) 
T = -DT 
DO .30 I=1 0999 

T = T + 	DT
 
IF(T .EQ. 0., 30 TO 15
 
:STRG = 'TRG + DET.'.Ir1-ROUT.',
 
CALL DEL,.RINqROUT&-,DELAY:DT;K':'
 
IF'.AMOD(T:1 *:' .tiE. 0.) '30 TO 30 

15 	 AROUT = 100 .:( 1 .- E::.':I- r ::,.,: T.T.'. +T+ 1* :*, 
A.TRG = iO0.*. -3.-EX:'..(- T)' T.T,2.+2.,T+_3.)) 
PDOUT = 1On .W,(RO.UT-RIROUT)...AROLIT 
IF(AROUT .EO'. 0.0, F'DOUT = 0. 
PDSTRG = 10 0.0(-'TR-T-TRG . A-:T.I3 
IF(A:TRG .EQ. 0.) 'PD-.TRG = 0. 
WRITE( .91 ) T ,AROLIT ,ROUT .PDOUT ,A:TRGSTRG ,P'D.TRG 
IF(T .GE. 10..' TOP 

3 0 CONT I NIUE 
90 FORMAT(ol AINALYTIC:RL .-.IMiLATED PER CENT eINALYTICAL .SIMUL* 

+ *ATED PER CENT.."* TIME OUTPUT OUTPUT DEVIATION * 
+ * :TORAGE -.TORAGE DE'.IATION*.') 

91 FORMAT(* *F4.1,F10.2,5-1.2) 
END 
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TITLE - DISTRIBUTED' DELAY 

VERSIO - IA 

DATE - 1 HO.' 1974 

PURPOSE - SIMULATIO" JF R DIS.TRIBUTED TIME DELAY PROCESS 

INPUT REQU I REMEMTS 

''ALUES TRANSMITTED THIOURH THE ARGUMENT LIST -- DELAY, DT, ,
 
R(In. R IN
 

V"AF'IABLES REQUI'ING VALUES W.IHICH WILL NOT CHAIGE DURING FRUN 

-- DELHi, DTxi :. 
,"ARIABLES REQUIRING VALUE. IHICH MAY CHRNGE DUR.ING A RUN 

-- PIrl 
",,,'ARIIBLES COMPUTED E:f TH1I FUTIHE REQUIRING IHITIAL VALUES 

-- R, I 

OUTPUT ',,,'FRIABLE-. 

','ALUES TRANSMITTED THROUGH THE ARGUMENT LIST -- R(1) ROUT 

VARIABLE DEFINITIO-. 

DELAY - LENGTH OF DELAY IN TIME UNIT:. 

DT - SIMULATION TIME INCREMENT IN TIME UNITS. 

K - ORDER OF DELAI'. UNITLE/:. 

R(I) - INTERMEDIATE RATES IN UNITS/'-ULIT TIME.'STAGE OF DELAY) 

RIM - INPUT RATE IH UNIT".UNIT TIME. 

ROUT - OUTPUT PRTE IN UNITEIUNIT TIME.
 

DIMENS ION R(1!:
 
A = FLOAT(K)0DTIDELA''
 
IF(K .EQ. I) GO TO 2O
 
KM1 = K - 1
 
DO 10 I=IpKMr


R(I) = R(I) + A ( (+ R:) 

10 COHTINUE 
20 R(K) = R(K:, + A*(RIN-R, K: .', 

F'OUT = R"', 
RETUR 
END
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DELS simulates a distributed time delay process and computes the
 
storage associated with the flow through the delay. It is useful for
 
modeling flow delays inherent in such aggregated processes as investment,
 
production, transportation, and demographic processes. 

The delay is modeled by a kth-order differential equation, which
 
is also an aggregate representation of the case where individual lag
 
times of entities in the aggregate are random variables following an
 
Erlang distribution. The 	input to DELS is the unlagged value or flow
 
into the delay, and the output is the lagged value or flow out of the
 
delay. In addition, DELS 	computes storage in the delay by integrating
 
the net flow into the delay.
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I. Process Description
 

There are many situations in socioeconomic processes where time delays
 

That is, for aggregate flows indiare distributed rather than discrete. 


vidual entities in the aggregate have different lag times; so that, while
 

entities may enter the delay process at the same time, the output flow
 

will be distributed over time. This will be particularly true when the
 

are random variables [I]. For example,
Individual lag times of entities 


a series of age cohorts representing
a tree population may be 	modeled as 


Modeling the gestation stage, for !nstance, as
stages of productivity. 


a distributed delay says that for trees planted at the same time, produc

begin at different times for different trees--some sooner, some
tion will 


later--depending on genetic and local environmental conditions obtaining
 

and similarly for passage through the other productivity
for each tree; 


Similar examples abound in other processes, such as
 stages defined [2]. 


DELS simulates
Investment, transportation, diffusion of information, etc. 


this process.
 

In the technical description which follows, reference is made to the
 

use of DELS to model the gestation stage of cocoa trees, where the input
 

is tree plantings and the outputs are trees becoming productive and 
the
 

number of trees in the gestation stage.
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II. 	Technical Description
 

A. 	Mathematical model
 

Aside froff its orripuliat'on of storage, DELS is identical mathematically 

to the DELAY2 routine of [1], produces the same numerical results as the 

DELAY routine of [3], and is a generalization of the DELAY3 routine of [4]. 

The kh-order differential equation modeling a distributed delay can 

be shown to be equivalent to k first-order differential equations modeling
 

a k-stage delay process, where each stage is a first-order delay [5]
 

(Figure 1).
 

The 	delay times for individual trees entering the gestation delay
 

follow a kt h -order gamma distribution with mear D. k determines the vari

2 	 2 as 0/k. 


k and D may be estimated from real-world or experimental data. As k gets
 

large and goes to infinity (Figure 2), the distribution degenerates to a normal
 

distribution with mean D and zero variance; i.e., a discrete delay of length D.
 

The ith stage of the delay--where i, 2, ..., k--is modeled by the
 

first-order differential equation:
 

ance 	a of the garnma distributed delay times D In certain cases
 

(1) 	 D dRi(t) 

K dl- +R i(t) = Ri+ 1 (t) 

which can be solved numerically using Euler's integration approximation by
 

(2) 	R.(t) = R.(t-DT) + DT'-[R (t-DT) - R.(t-DT)1
i 	 D +1I 

where, for the kth stage of the delay, Rk+ 1 = RIN and where: 
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RIN ROU 

RKK K- R .RR R_ 2 1 RR1 

Figure 1
 

Kth-Order Distributed Delay Process
 

ROUT ROUT ROUT
 

D D D 

(a)K=1 (b)K=3 (c)K=10
 

Figure 2
 

kth-Order Delay Zero-State Unit Impulse Pesoonse
 



DELS-	 4 

R = rate out of the ith stage (trees/year)
 

RIN = planting rate (Figure 1) (trees/year)
 

k = the order of the delay process
 

D = the mean delay time (years)
 

DT= the integration step size, the simulation time increment (years).
 

The output of the delay (trees becoming productive--Figure 1) is
 

(3) ROUT(t) = R1 (t). 

Finally, the storage in the delay associated with the flow through the 

delay (the number of trees in the gestation stage) is computed from the 

differential equation; 

(4) 	 dS(t) = RIN(t) - ROUTt)
 
dt
 

using 	Euler integration: 

(5) 	S(t) = S(t-DT) + DT.(RIN(t-DT) - ROUT(t-DT)). 

If the user can assume steady-state initial conditions--i.e., that 

the planting rate RIN has been constant for a long time prior to time 

zero (implying that the first k-1 derivatives of ROUT(t) are zero at 

t=O)--then the intermediate rates, R., i=1, ... , k, should be 

initialized to: 

(6) 	R (0) = S(O)/D, i=1, ... , k 

where S(O) is the initial number of trees in the gestation delay.
 

If, instead of the initial storage, the initial output or input to the
 

delay is known, Ri should be initialized to:
 

(7) 	RI(M) = ROUT(O) = RIN(O), i=1, ... , k. 
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If, on the other hand, steady-state initial conditions are not to be
 

assumed, equation (2) may be used to establish other initial conditions
 

for Ri that 	yield non-zero Initial values for the derivatives of ROUT.
 

In any case, the initial storage and the rates R. must satisfy the
 

relationship:
 

k
 
(8) SCO) = 	D ! Ri(O). 

If a model contains several delays, stability considerations dictate
 

that:
 

D. 
(9) DT < mlnE-].

j k.

J 

For reasonable simulation accuracy and to include a margin of safety, the
 

renui rement 	becomes:
 

D
(10) 	 DT <minE2k . 

J J 

where j indexes all the delays in a model. Alternatively, if (10) requires
 

DT to be too small for efficient computation, a larger DT may be used for
 

the model as a whole by using routine DELF in place of DELS for those
 

delays whose Dj/2k. ratios require a smaller DT.
 

DELS is one ef a set of six distributed delay routines (Table 1)
 

which cover situations where storage is computed automatically within
 

the routine, the delay times, Dj, may vary over time, storage losses
 

and/or accretions may occur in the course of the delay, and/or finer
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Table I
 

CLASS Distributed Delay Routines
 

n 0.) m 
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U cO0 1 (0Uc 
0 - 0 c m 4- - L 0 
L (D c ( ( -- U 

-l.4- L Ln (n c ) i 
-) "o D ( ( -0 (Di(n 
a- c Un -Jr c U .- L

( E (0U1 u1 0 ()0 --- 0 
- 0 0aa -u U 

) U >- -a '-) w I 
"> >- 4- 0) U) EE I 

a)- 0- -1 (1) *- I ) 
"o V)- -) , E 1 4- I 0) 

0) (UD *4- (0Un .-*- - (0
4- - ) - -L C L L.-,(L L 

0 .- ) 0 0 L 0 0 0 0
+- 4-- > 4-.- (a W u) .- n -f-U 
rn M U).- U)+- > -) 4- n u E 

L E -4- 0) .- ) .)
I- - 0 " M _ L U 0U 

-) -- 0n 44--+- 4-U E Q 0) L () 
.0 - 0- X L 0 0 

U -Routines 3c 2 UQ0I Ld 

DEL X .24 .27 56
 

DELS X X .28 .31 62
 

DELF X X x .40 .44 93
 

DELLF X X X X .47 .49 103
 

DELVF X X X X .51 .55 104
 

DELLVF X X X X X .54 .57 108
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time cycles are required for stability assurances. The last three columns
 

of Table 1 show the compile and execution central processor times and core
 

storage required by DELS (and the other distributed delay routines for
 

comparison) on Michigan State University's CDC 6500 computer with its
 

FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,
 

MSU's version of CDC's SCOPE 	3.2 operating system.
 

B. 	Sample Run
 

The sample run assumes a third-order, three-year gestation delay
 

(i.e., 	k=3 and D=3). No trees existed in the gestation stage prior to
 

= 
 = 
time zero (i.e., S(O) = RI(O) R2 (O) R3(O) = 0), and the planting rate
 

RIN is assumed to jump from 0 to 100 trees/year at time zero and to remain
 

constant thereafter.
 

Under these conditions, we can use (1) and (4) to solve analytically
 

for the output and storage of the gestation stage and compare these with
 

the simulated output and storage from (2) and (5). The analytical solutions
 

for ROUT and S are:
 

(11) ROUT(t) = 100[1 - e-t( t2 + t + 1)]
 

(12) S(t) = 100[3 - e-t( t2 + 2t + 3)].
 

Results, including the per cent deviations of the simulated solutions
 

from the analytical solutions, are tabulated in Figure 3 for a 10-year
 

simulation, with DT = .25 years.
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ANALYTI CAL S*IMULFTEL, P'ER CENT ANALYTICAL :%IMULATED PER CEMT 

TIME OUTPUT OUTPUT IEV IAT I : TOR'AGE TOPAIGE DEVIATION 

0.0I0.0 0 0 :o 09.0 ci. 7i i:E.. 94 . i.9 
1.10 
'.0,_ 

::.u:
32-.32::_-,---

5.0:.:
-2.15_ .5;:_,- :.1 ," -: 

2-
'0.! 

;5. . 43
1.44 

1 . 9
0i 

:. .. : 5. .4 .. . ,- 241.9:: 3.9 
4.0 E.. 1..9 .29 E. . 272 .94 .92 
5. C .87 C:: 1 .3' 
E.0 .'0 .: , i- :" .02 1 . 10 
. !... 1 . -4. 0 

9 ; 9.:9 99 . 4 E-99. 24 "q9. .15 

10.0 9.72 .0 1 : 299. :: .07 
:Z:T0FP 

Figure 3 

DELS Sample Run Output 
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Ill. Program Information
 

A. Program Description
 

DELS was programmed and tested in the following operating environment:
 

Machine: CDC 6500
 
Operating system: MSU Hustler 2 L239 LSD 32--an extension of
 

CDC Scope 3.2
 
Compiler: CDC FTN V3.0-P357
 
Core requirements: 62 decimal words
 
CP compile time: .28 seconds
 
CP execution time (for sample run): .31 milliseconds
 
Tapes: none
 
Direct access files: none
 
FORTPAN library subprograms used: FLOAT
 

DELS is structured as a single subroutine, DELS, which simulates a
 

continuous (distributed) delay process and computes storage in the delay. 

No COMMON blocks are used.
 

B. Program implementation
 

All input is transmitted through the argument list. Input variables 

DELAY (called D in section II above), DT, and K require values which must 

remain constant during the simulation of a particular delay; STRG and 

R(1) require only initial values, as they are subsequently recomputed 

within DELS. R must be dimensioned to at least K in the calling program. 

All output is transmitted through the argument list. The output variables 

are ROUT and the updated values of R(l) and STRG (called S in section II 

above). See the list of the sample run executive program for an example 

of the call statement. 

For DELS to operate properly, the value of DT must be such that 

0 < DT < DELAY/2K, DELAY must be > 0, and K must be an integer > 1. When 
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K = 1, the delay can be simulated more efficiently by a single statement
 

(in addition to the STRG equation) in the calling program than by this
 

routi ne:
 

K 
(13) ROUT(t) = ROUT(t-DT) + DT. (RIN(t-DT) - ROUT(t-DT)).


2•DELAY
 

C. Program lists
 

The computer programs for the sample run and for DELS are listed
 

below:
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PROGRAM 	DELTST (OUTPUT TAPE,=OUTPUT'
 
DIMENSION R. .3?
 
DATA DELAY 3.
 
D AT A K 3._ 

DATA iT .25
 
DATA PIN,.,ROIT 100., 4+0. 
DATA :"'T'G 0 .
 
WR I TE (2 ,90.)
 
T = -DT
 
DO 30 1=1 F,9999 

T = T + DT
 
IF(T .EQ. 0.) GO TO 15
 
CALL DEL.'. PIN EDT
'POUT.R "- R13, DELAYi, DK
 
IF(AMOD(T .1.. iE. 0...,'30 TO :0
 

15 	 AROUT = 100.i,,.'1 -E: .P'.-T'.(*. T'-".+T+I.')
 
A:STRG = 100." E'-'. ':.T. .- ..T+-,.:: )
 
PDOUT = 100..nOJT-Fi.OUT,.APOUT
 
IF(AROUT .E'Q. 0..) PDOUT = 0.
 
PDSTRG = 100 ' TF-.TR') A
.PG
 
IF(ASTRG .EQ.. 0.) F'D.:TR'G = u
 
WRITE(- ,91) FA.-: S.,r.TR'3
T .,AROJT:POUT, PDOLIT. TR3 -F'D]&!.:TR'3 
IF(T .GE. 10.) :.-:TOP 

30 CONTINUE 
9 0 FORMAT(,l ANAL'Y'TICAAL S:IMI.LATED PER CENT RNALYTICAL :IMIUL# 

+ *ATED PER CErT*..-.* TINE OITPUT OUTPUT DEVIATION # 
+ * :3:TORAGE :ZTOPAGE DEV IATION. 

91 FORMAT(* *F4.1,F10.2.5F11.2)
 
END 
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TITLE - DI:STRIBITEI DELA'' W.IITH :TORAGE
 

VERS:ION - 1A
 

DATE - 1 NO'.' 1974
 

PURPO::E - :IMULATION OF A DI-:TRIBUTED TIME DELAY PROCESS ITH 
STORAGE 

INPUT REQ'UIREMENTS 

VALUE: TRANSMITTED THROUGH THE ARGUMENT LIST -- DELAY. DT, K 
RF: .:' ., '.(I , R.I M 

''RIABLES REQULIRINIiG ''ALUE. IHICH IW.ILL NOT CHANGE DURING A RUN 
-- DELiY, DT, K 

''APIABLE.S REQUIF'ING 'V,'ALUES .IHIlCH MAY CHANGE LIRING A RUN 
-- RIH 

'ARIABLE: COMPUTED BY THI:: ROLININE RELUIRING INITIAL VALUES 
-- R,: I :, O:TP, 

OUTPLIT ,ARIABLE:'_ 

''ALIE: TRA-:.MITTED THROUGH THE ARGIMENT LI::T -- R':I) ROUT, 
".TF'G
 

VARIABLE DEFINITION:: 

DELAY - LENGTH OF DELAY IN TIME UNITS. 

DT - :IMILATION TIME INCREMENT IN TIME UNITS. 

K - ORDER OF DELAY. UHITLE.S. 

F'(I)' - INTERMEDIATE RATES IN UINITS UNIT TIME.('STAGE OF DELAY) 

RIM - INPUT RATE IN UNIT.-UN IT TIME.
 

ROUT - OUTPUT RATE IN UNIT:..INIT TIME.
 

•TRG - STORAGE IN UNIT:.
 

DIMEN:SION ,'1 
STRG = .::TRG + DTKI.'IN-ROUT)
 

A = FLOAT(K)DTvDEL'y'
 
IF(K .E@..I '0 TO En:
 
KM1 = K - I
 
DO 10 I=lwKMl
 

RKI) = R(I):, + H.:RI+1:,-R(1I: 
10 C:ONT INUE 
20 R(K::, = R(K) + R.(PIN-R(K): 

ROUT = R( 1)
 
RETIRN
 
END
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DELF Abstract
 

DELF simulates a distributed time delay process, computes the
 
storage associated with the flow through the delay, and automatically
 
insures simulation stability. It is useful for modeling flow delays
 
inherent in such aggregated processes as investment, production,
 
-transportation, and demographic processes.
 

The delay is modeled by a kth-order differential equation. which
 
is also an aggregate representation of the case where individual lag
 
times of entities in the aggregate are random variables following an
 
Erlang distribution. The input to DELF is the unlaggod value or flow
 
into the delay, and the output is the lagged value or flow out of the
 

delay. In addition, DELF computes storage in ine delay by integrating
 
the net flow into the delay. DELF insures simulation stability by
 
automatically decreasing the integration step size when the time
 
constant is small relative to the order of the delay.
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I. Process Description
 

There are many situations in socioeconomic processes where time delays
 

are distributed rather than discrete. That is, for aggregate flows indi

vidual entities in the aggregate have different lag times; so that, whi le
 

entities may enter the delay process at the same time, the output flow
 

will be distributed over time. This will be particularly true when the
 

individual lag times of entities are random variables [1]. For example,
 

a tree population may be modeled as a series of age cohorts representing
 

stages of productivity. Modeling the gestation stage, for instance, as
 

a distributed delay says that for trees planted at the same time, produc

tion will begin at different times for different trees--some sooner, some
 

later--depending on genetic and local environmental conditions obtaining
 

for each tree; and similarly for passage through the other productivity
 

stages defined [2]. Similar examples abound in other processes, such as
 

investment, transportation, diffusion of information, etc. DELF simulates
 

this process.
 

In the technical description which follows, reference is made to the
 

use of DELF to model the gestation stage of cocoa trees, where the input
 

Is tree plantings and the outputs are trees becoming productive and the
 

number of trees in the gestation stage.
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II. 	Technical Description
 

A. 	Mathematical model 

Aside from its computation of storage, DELF is Identical mathematically 

to the DELAY2 routine of [1], produces the same numerical results as the 

DELAY routine of [3], and is a generalization of the DELAY3 routine of [4]. 

The kth-order differential equation modeling a distributed delay can 

be shown to be equivalent to k first-order differential equations modeling 

a k-stage delay process, where each stage is a first-order delay [5] 

(Figure 	1).
 

The delay times for individual trees entering the gestation delay
 

fol low a k lh-order gamma diskribution with mean D. k determines the vari

2 2 
ance a of the gamma distributed delay times as = D /k. In certain cases 

k and D may be estimated from real world or experimental data. As k gets 

large and goes to infinity (Figure 2), the distribution degenerates to a normal 

distribulion with mean D and zero variance; i.e., 9 discrete delay of length D. 

The ith stage of the delay--where i=i, 2, ..., k--is modeled by the
 

first-order differential equation:
 

r)DdRi Ct) 
) . + Ri(t) = R (t) 
k 	 dt i +1 

which can be solved numerically using Euler's integration approximation by
 

(2) 	Ri(t) = Ri(t-DT) + DT.[R i+l(t-DT) - R.(t-DT) 

where, for the kth stage of the delay, Rk+1 + RIN and where: 
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RIN ROUT 
• --- K K-1 -2 1-

RKR K -1 R3 R2 RlR 

Figure 1
 

Kth-Order Distributed Delay Process
 

ROUT ROUT ROUT
 

t (c Kl 

D D 

(a) K-1 (b) K=3 (c) K=10 

Figure 2
 

kth-Order Delay Zero-State Unit Impulse Response
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Ri = rate out of the i
th stage (trees/year)
 

RIN = planting rate (Figure 1) (trees/year)
 

k = the order of the delay process
 

D = the mean delay time (years)
 

DT = the integration step size, the simulation time increment (years).
 

DELF does not use (2), however. In order to insure stability, DELF
 

divides the DT time interval into IDT subintervals, where IDT is computed
 

in (12). Thus, integrating over the subintervals of length EDT = DT/IDT,
 

(2) becomes:
 

(3) Ri(r) = R.(T-EDT) + EDT..[Ri+I(T-EDT) - Ri(T-EDT)] 

for T = t - DT + EDT, ..., t - EDT, t, and where, for the kth stage of the 

delay, Rk+1(T - EDT) = RIN(t - DT) for all T. 

The output of the delay (trees becoming productive--Figure 1) is: 

(4) ROUT(t) = RI(t). 

Finally, the storage in the cblay associated with the flow through the
 

delay (the number of trees in the gestation stage) is computed from the
 

differential equation:
 

(5) dS(t) = RIN(t) - ROUT(t) 

dt
 

using Euler integration:
 

(6) S(T) = S(T-EDT) + EDT'ERIN(t-DT) - ROUT(T-EDT)] 

for T = t - DT + EDT, ..., t - EDT, t. 

If the user can assume steady-state initial conditions--i.e., that 

the planting rate RIN has been constant for a long time prior to time 
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zero (implying that the first k-i derivatives of ROUT(f) are zero at
 

t=O)--then the intermediate rates3 Ri, i=1, ... , k, should be 

initialized to:
 

(7) R.(0) = S(O)/D, i=I, ... , k 

where S(O) is the initial storage (i.e., number of trees) in the
 

gestation delay. If, instead of the initial storage, the initial output
 

or input to the delay is known, Ri should be initialized to:
 

(8) Ri(O) = ROUT(O) = RIN(O), i=1, ..., k.
 

If, on the other hand, steady-state initial conditions are not to be
 

assumed, equation (2) may be used to establish other initial conditions
 

for Ri that yield non-zero initial values for the derivatives of ROUT.
 

In any case, the initial storage and the rates R. must satisfy the
 

relationship:
 

k
 
(9) S(o) 2 R.(0).
 

ki=1
 

If a model contains several delays, for each delay j stability
 

considerations dictate that:
 

(10) _DT < 
IlDT k . 

For reasonable simulation accuracy and to include a margin of safety,
 

the requirement becomes:
 

(11) _2T_ D. 
IDT,: 2k.


j J 
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With DT, D., and k. already specified, DELF computes IDTj so that (11)
 

holds:
 

]}
(12) IDT. = MAX{IDTU., [ + 2DT-

where the operation [.] sets IDT, equal to the largest integer in the 

vjlu of h, expression in brackets and MAX{a,b} sets IDTi equal to the 

may greater than 1 to increasemaximum of ai and b. The user specify an IDT 

integration accuracy (even if not required for stability) by specifying
 

IDTU greater than 1; i.e., the number of desired subintervals. Thus,
 

DT will have only one subinterval of length DT unless stability requires
 

otherwi se. 

While DELF accurately simulates a distributed delay (e.g., the
 

a cocoa tree population in this case), non-trivial
gestdtion stage of 


inaccuracies relating to non-conservation of flow arise when IDT. > I 

and when the oulput ROUT.(t) (equation (4)) is used elsewhere in a larger 

idel; e.g., integrated or used as he input rate to another delay. In 

this example, the problem arises when the rate of trees leaving the ges

tation stage is used as the input to a second delay representing trees 

with increasing yields up to full maturity. For a full discussion of 

the problem and alternative ways to modify DELF to handle it, see [6]. 

DELF is one of a set of six distributed delay routines (Table 1) 

which cover situations where storage is computed automatically within
 

the routine, the delay times, D., may vary over time, storage losses
 

and/or accretions may occur inthe course of the delay, and/or finer
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time cycles are required for stability assurances. The last three columns
 

of Table 1 show the compile and execution central processor times and core
 

storage required by DELF (and the other distributed delay routines for
 

comparison) on Michigan State University's CDC 6500 computer with its
 

FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,
 

MSU's version of CDC's SCOPE 3.2 operating system.
 

B. Sample Run
 

The sample run assumes a third-order, three-year gestation delay
 

(i.e., k=3 and D=3). No trees existed in the gestation stage prior to
 

time zero (i.e., S(O) = RI(O) R2 (O) = R3 (0)= 0), and the planting rate
= 


RIN is assumed to jump from 0 to 100 trees/year at time zero and to remain
 

constant thereafter.
 

Under these conditions, we can use (1) and (5) to solve analytically
 

for the output and storage of the gestation stage and compare these with
 

the simulated output and storage from (2) and (6). The analytical solutions
 

for ROUT and S are:
 

(13) ROUT(t) = 100[1 - e-t( t2 + t + 1)]
 

(14) S(t) = 100[3 - e-t( t2 + 2t + 3)].
 

Results from two sample runs are tabulated in Figure 3. This includes
 

the per cent deviation of the simulated solution from the analytical solu

tion. Each run is for 10 years, with DT = .25 years. IDTU has a value
 

of I for the first run and a value of 4 for the second run. This
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ANAL'YTICAL SIMULATEl PER CENT 'RHALYTICAL SIMULATED PER CENTTIME OUTPUT OUTPUT DEV IA TION STORA'GE STORAGE DEVIATION 

10 .00 
 .00 .00 .0J .00 
 .00
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ANALYTICAL SIMULATED PER CENT ANALYTICAL S;IMULATED PER CENTTIME OUTPUT OUTPUT DEIrIoN STORAGE STORAGE DEIATION 
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Figure 3 

DELF Sample Run Output
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demonstrates the increased accuracy that can be obtained by subdividing
 

the time interval.
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IIl. Program Information
 

A. 	 Program Description 

DELF was programmed and tested in the following operating environment: 

Machine: CDC 6500
 
Operating system: 
 MSU 	HUSTLER 2 L239 LSD 32--an extension of
 

CDC SCOPE 3.2
 
Compiler: CDC FTN V3.0-P357
 
Core requirements: 93 decimal words
 
CP compile time: .40 seconds
 
CP execution time (for sample run): .44 milliseconds
 
Tapes: none
 
Direct access files: none
 
FORTRAN library subprograms used: FLOAT
 

DELF is structured as a single subroutine, DELF, which simulates a
 

continuous (distributed delay process and computes storage in the delay.
 

No COMMON blocks are used.
 

B. 	Program implementation
 

All input is transmitted through the argument list. Input variables
 

DEL (called D in section II above), DT, and require values which must
 

remain constant during the simulation of a particular delay; STRG and
 

R(I) require only initial values, as they are subsequently recomputed
 

within DELF. R must be dimensioned to at least K in the calling program.
 

All output is transmitted through the argument list. The output variables
 

are ROUT and the updated values of R(I) and STRG (called S in section II
 

above). See the list of the sample run executive program for an example 

of the call statement. 

For DELF to operate properly, DT and DEL must be > 0 and K must be 

an integer > 1. In addition, IDTU should equal 1 unless greater integration 

accuracy is desired, in which case IDTU will be an integer > I. 
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C. Program lists 

The computer programs for the sample 

below: 

run and for DELF are listed 
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PF.O'GRAM DELT"T (F::OUTPUT THPE;E=O;JTPUT)
 
DIMENS ION R:'>
 
DATA DELAY 3.
 
DATA K / 3
 
DATA DT, IDTU / 25P
.. 1
 
DATA RIN,F.'P.,.UT 10
i0., 4.0.
 
DATA :TRG ..
 

I..IRITE ' ,0
 
T = -DT
 
DO 30=1 ,999.9
 

T = T + DT
 
IF(T .E . 0.;, '30 TO 15
 
CALL DELF,(RIN ,ROUT .R:".TRG,tELAr ,DTh IDTU 4:.
 
IF(AMOD,:TI . .' NE. 0.) GO TO 0
 

15 	 AROUT = 10 . ,:1 .- EX ::-':,., T.T.. -T+ .
 
A:TRG = 1 0,: -:.- E :. -T::.', T."-" . . r+ 3..:'
 
PDOUT = .. ROIIT
10 0. ,:ROIUT-AROIT: ' 


IF(AROUT .EQ.. 0.:., FDOUT = 0.
 
F'D:TRG = 100.:'.(S:TRG- S.TPGl,.R TRt,
 
IFA.TRG .EQ. 0.' PD:TRG = 0.
 
IITE:--,'91 : T ,TRORUT :ROUT ,FDOUT , 'TF.3 :.TRG,PD".-:TRGIF,:T .GE. 10.): -:TOPF
 

.3:0 CONT INUE
 

90 FORMAT(o1 ANALYTICAL SIrMULATEED PER CENT ANALYTICAL S:IMUL,
+ *ATED PER CENT*.* TIME OUTPUT OlUTPUT DEVIATION + 
+ * STORAGE .TORAGE DE.'IATIO*...) 

'91 FOR.MAT&, F4. ,F .2,'.2.,
EN'D
 

http:RIN,F.'P.,.UT


I 
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S:UBROU IE DELF(RI, qROU1 , qgTRG qIEL, DT, ItDTU ,K) 

TITLE - DISTRIBUTED'DELAY WJITH FINER TIME INCREMENT 

VER.' o N: - IA 

DFATE - I H'V 1974 

PIRPO:E - SIMULATION OF A DIT.TRIBUTED TIME DELAY PROCESS WJITH 
F I HEF TI ME INC,:SREMENT 

F'UT FE':!U I REMEr T 

'ALUE:S TRANriI TTED 7H'IJU,3H THE A,3UrMENT LI.T -- DELP DT, 
lI UN Kq RK:,I:' R:IM,q TR'3 

'ARIABLE] 9EC 6!Il'I I.'J ,ILL NOT CHANGE DURING A RUN,' 'ALU'ES IIC:H 
-- DEL, DT, IDTj !... 

'A I ELE-7 E,:II VJH l'_H MAY CHAGIIE DUR IN1G A RurN_E
fIr ','F 

-- RfIJ 

'RIAE:LE : "OrM'PUTED E,, THI. P'UTINE REQ'UIRING' INITIAL 'AILUES 
-- - 0', 'TR',
I., 


OIUTFUT ','PIAE;LE: 

'VALUE: TFHH r-iI TTE[U TH G'I',H AR'GUrMENT -- ROUTTH-E LIST R,(I:I' , 
-. T :" 

VAR,'IABL DET INlI T IA.1N
 IE:_E 


DIEL - LEN"TH OF DE'LA Ir TIME UHIT.. 

IT- SIMU.LATIOH TI'IE I"H'EMENT INH TI ME U-IT.: 

IDT - rOII::FIF' OF lF . :lI[r1 OF DT PEUIREILI.UNITLE .: 

I DT! - ' E'- FEj I '- 1F U 1JM EF: IF .UE[I I ,'I. I T OF LIT UN ITLE :.: 

K - CFLEF LIE ['EL0,. _rl][_E-:. 

F' I - IA'T"-"1E[RDIATE WFH IN _lr:.-"rIT TIME.,::TAIGE OP IELA) 

PIN - IriA-iT PATE Ini' U,T -'_f" T TIrIE. 

ROUT - OU TPIUT H-TIE I U'IIT -. r4IIT TIME. 

-T G T ! F' E IN ,.iT . 

DIMENIOH P' ] , 
Fv = FLOAT', 

IIl = 1. + .. *FK.DTi',_, 
IF' IDT .LT. ID I!, IDT = IT,_! 
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FIDT = FLOAT('.IDT:,
 
A = FK*DT..'(DELFIDT)
 
KM1 = K-I
 
DO 2:0 J=1 ,IDT
 

:TRG = :':TRG £+T.(FIN-F' :" :, IIT 
IF(K .EQ. 1) 610 TO 15 
DrO i0 I=1411

R( I * = F.:(I ' + Ri.(R(II':,11:-1:: II 

10 COrIT I UE 
15R(K: = R(K) + ,.'Iri-R:K).. 
20 CONTIHUE 

ROUT = R(1:',
 
RETURN
 
END
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flow through the delay, and automatically insures simulation sta
bility. It is useful for modeling flow delays inherent in such 
aggregated processes as capital formation, transportation, and 
demographic processes. In these cases, storage losses could refer 
to disinvestment, spoilage, and deaths or migration, respectively. 

The delay is modeled by a kth-order differential equat-ion, 
which is also an aggregate representation of the case where indi
vidual lag times of entities in the aggregate are random variables 
following an Erlang distribution. The inputs to DELLF are the 
unlagged value, or flow into the delay, and the proportional stor
age loss rate. Outputs are the lagged value, or flow out of the 
delay, and the storage resulting from integration of net flow 
into the delay. Finally, DELLF insures simulation stability by automatically 
decreasing the integration step size when the time constant is small 
relative to the order of the delay. 
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I. Process Description
 

There are many situations in socioeconomic processes where time
 

delays are distributed rather than discrete. 
That is, for aggregate flows
 

individual entities in the aggregate have different 
lag times so that,
 

while entities may enter the delay process at the same time, the output
 

flow will be distributed over time. This will be particularly true when
 

the individual lag times of entities are random variables [1]. For example,
 

a tree population may be modeled as 
a series of age cohorts representing
 

stages of productivity. Modeling the gestation stage, for instance, 
as
 

a distributed delay says that for trees planted at the same time production
 

will begin at different times for different trees--some sooner, some later-

depending on genetic and local environmental conditions obtaining for each
 

tree; and similarly for passage through the other productivity stages de

fined [2]. Similar examples abound in other processes, such as investment,
 

transportation, diffusion of information, etc. DELLF simulates this
 

process.
 

It is frequently the case that storage losses or additions 
occur in
 

the course of the delay process. Notable examples include population
 

migrations, tree removals, deaths, production losses, distribution losses,
 

etc. DELLF is specifically designed to incorporate this factor in the
 

delay process.
 

In the technical description which follows, reference is made to the
 

use of DELLF to model the gestation stage of cocoa trees, where the inputs
 

are tree plantings and failure rates, and the outputs 
are trees becoming
 

productive and the number of trees 
in the gestation stage.
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II. Technical Description
 

A. Mathematical model 

Thu k1 h-ordrr difforontial equation modeling a distributed delay with 

storage losses (or additions) can be shown to be equivalent to k first-order
 

differential 	equations modeling a k-stage delay process, where each stage
 

is a fir;--order delay [3] (Figure 1). The delay times for individual
 

trees entering ihe gestation delay (assuming no losses) follow a kth-order 

gamma distribution with mean D. k determines the variance cof the qamma 
2 21 

distribution with mean C. a = D2k. Incertain cases k and D may be estimated 

from real-world or experimental data. As k gets large and goes to infinity 

(Figure 2), the distribution degenerates to a normal distribution with mean D 

andd z r v.,r;inr:r.--i.,:., a d iscrete d(: ay of Icenqth I). 

i r- I ill ' ,: f tI. delay--whr.re i n 1, 2, ... , k--Q.i i Iho 

storage (number of lrnes) and [3] 

(1) 	 Q.(t) RID(t)
 

k I
 

where: 

R. rate out of the ith stage (trees/year) 

D -the mean 	 delay time (years) 

k the order of the delay process. 

The rate of change of Qi is the net flow into the it h stage: 

dQ. (I-)
(2) 	 R (t_ 

dt i+1 i i 

whoe Rk+l = 	RIN, the planting rate into the delay (figure 1), and Li is the 

http:delay--whr.re
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LOSS
 

K-1 L2 1
 
K R R K-1 RKI-°' 3 2 R1
 

Figure 1
 

Kth-Order Distributed Delay Process with Storage Losses
 

ROUT ROUT ROUT
 

D D D 

(a) K-1 (b) K-3 (c) K=10
 

Figure 2
 

Kth-Order Delay Zero-State Unit Impulse Response
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from the ith stage. 	 PLR(t)'Qi(t) where PLR
storage loss rate If LI(t) = 


is the proportional loss rate for the total storage in the whole delay
 

(i.e., the losses are apportioned proportionately to each stage), then:
 

( ) d Q i (t)

(3 ddt = R (t) - RiCt) - PLR(t).Qi(t)
 

= R t) - RiCt).(1 + 	D.PLR(t) ).
 
k
 

dQiC() dR(t
-D 


But from (I), dt 	 k d- also, so:
 

(4) 	 dR CI) + RI. t).(1 + D.PLR(t)) = R (t) 
kk dI-

is the first-order differential equation which models the ith stage of a
 

wifh storage losses. This can be solved numerically
kth-ordr del' 


usi ng [i Ir int-:,iir jti'n anproximation by:
 

(5) Rit) = i(t-DT) + LT.i +.1(t-DT) - Ri(t-DT)-(1 + DPLR(t-DT)] 

is he inieration step size, the simulation time increment.
where DT 

DELLF does not use (5), however. In order to insure stahi lity, DELLF 

divides the DT time interval into IDT subintervals, where IDT = IDT(t) 

is computed in (15). Thus, integrating over the subintervals of length 

EDT = DT/IDT(t), (5) becomes: 

(6) R.Qr) KHAN) + EDTk.[Ri+(t-EDT) - Ri (T-EDT)( I + DPLR(t-DT))] 

k+
I 	 D 

for T = t - DT + EDT, ..., t - EDT, t, and where, for the kth stage of the 

delay, Rk+I (T-EDT) = RIN(t-DT) for all T. 
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The output of the delay (trees becoming productive--Figure 1) is
 

(7) ROUT(t) = R1(t)
 

Finally, the storage in the delay associated with the flow through the
 

delay (the number of trees in the gestation stage) is computed from the
 

differential equation:
 

(8) 	dS(t) dQi(t)
 
dt i= dt
 

= RIN(t) - ROUT(t) - PLR(t).S(t) 

using 	Euler integration:
 

(9) S(T) = S(T-EDT) + EDT.[RIN(t-DT) - ROUT(T-EDT) - PLR(t-DT).S(T-EDT)] 

for T 	= t -DT 4 EDT,..., t - EDT, t.
 

If the user can assume steady-state initial conditions--i.e., that
 

the planting rate RIN has been constant for a long time prior to time
 

zero (implying that the first k-i derivatives of ROUT(t) are zero at
 

t=O)--then the intermediate -ates R., =, ... , k, should be 

initialized to:
 

(10) 	 R.(0) = S(O)/D, i=1, , k.
...


where S(O) is the initial storage (i.e., number of trees) in the
 

gestation delay. If, instead of the initial storage, the initial 
output
 

or 
input 	to the delay is known, Ri should be initialized to:
 

(11) 	 R1(0)= ROUT(O) = RIN(O), i=1, , k.
...
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If, on the other hand, steady-state initial conditions are not to be 

assumed, equation (2) may be used to establish other initial conditions 

for Pi that yi (!( non-zero initia , Ituos for -the derivatives of ROUT. 

n c , thr i i I i a I 'Jor ge and1 t : [o . P mus1 satisfy theany 

relationship:
 

k
 

(12) 	 S(O) - i =I ).
k. i 

If a model contains several delays with losses, for each delay 

j stabiliit'y considerations (assuming PLR(t) PLR, a constant) dictate 

that:
 

(1.3) 	 l T k i
 
IDT .('t-) k j + PLRj(t-- ) '
 ,I 	 , J
 

For reasonable simulation accuracy and to include a margin of safety, the
 

requ iremer t tecores: 

(14) 	 "DT2IDI.(t) k. + PIT (t-DT).D.
 
,! i J,
 

Wihl DF, rPLR, n, and k alireadv known, DELLF comnutles IDTj so that (14) 

ho~lds: 

(15) 	 IDTj M) 1 +, 

where [-he oper atf-)n (,I- s I [;l' ~ uI lo I hie Ilat:est i nteger i n thle 

va lJe of i ts,', . i 'a., . . . .. IOT equal to fheii)... 


-reaterI 

inteqra-tion accturicy i f - for i ty) speci fying 

larger of a and t. The user may s[)eci fy an IDT than to increase 

(even not ,ini rvi i I,, by 

IDTU gr oaK, Lan 1, i.e., th@ derI v.d r:2,. or .ijbi ntervals. 

While OELLF accurateuly simulae-, 1 jistribuled delay (e.g., the 

gestation stage of a cocoa tree poral,; ion in this case), non-trivial 

inaccurac i es relati ing to nion-conservation of flow arise when IDT . > 1 
J 
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and when the output ROUTj(t) (equation (4)) is used elsewhere in a larger
 

model; e.g., integrated or used as the input rate to another delay. 
 In
 

this example, the problem arises when the rate of trees 
leaving the ges

tation stage is used 
as the input to a second delay representing trees
 

with increasing yields up to full 
maturity. For a full discussion of
 

the problem and alternative ways to modify DELLF to handle it, 
see [4].
 

DELLF is one of a set of six distributed delay routines (Table 1)
 

which cover situations where storage is computed automatically within
 

the routine, the delay times, Dj, 
may vary over time, storage losses
 

and/or accretions may occur 
in the course of the delay, and/or finer
 

time cycles are required for stability assurances. The last three columns
 

of Table 1 show the compi le and execution central processor times and core 

storage required by DELLF (and the other distributed delay routines for
 

comparison) on Michigan State University's CDC 6500 computer with its
 

FORTRAN Extended (version 3.0) compiler and operating under HUSTLER 2, 

MSU's version of CDC's SCOPE 3.2 operating system.
 

B. Sample Run
 

The sample run assumes a third-order, three-year gestation delay
 

(i.e., k=3 and D=3) with 
a constant failure rate PLR(t) = 0.1/year. No 

trees existed in the gestation stage prior to time zero (i.e., S(O) = 

R1 (0) = R2 (O) = R3(0) = 0), and the planting rate RIN is assumed to jump 

from 0 to 100 trees/year at time zero and to remain constant thereafter. 

Under these conditions, we can use (8)(4) and to solve analytically
 

for the output and storage of the gestation stage and compare these with
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the simulated output and storage from (5) and (9). 
 The analytical
 

solutions for ROUT and S are:
 

(16) ROUT(t) = 0 2- A (1 + PLR)2 + t(1 + PLR) + 1 

100 
 100 
 1
 

(17) S(t) = ( + PLR) (1 - A) + (1+ PLR)2 (1 - A) -+ ROUTtL(I+ LR( +PL)2(HPLR) rRUt)
 

Results, including the per cent deviations of the simulated solutions
 

from the analytical solutions, are tabulated in Figure 3 for a 10-year
 

simulation, with DT 
= .25 years.
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ANALYTI:AL :Ir,1ULHTEED PEP -EHT qlALYTICAL :SIULATED PER CENT 
TIME OUTPUT OUTPUT D.' I51 TI O S .TORA'GE&TORA'GE DEV I AT ION 

O.ni n. O0 O. O n. nO c. on O . no n . o0a 
1.'0 7 .4:-: 4.96 -33.6? 9..00 95.92 3.14 
2.0 28.5 2:"9 1.9 162.52 17:1. 05 4.6$'
 
3.0i 48.13 51.29 6.57 205.32 21.3.25 3.91. 
4.0 61.2 64 .4S 5. 3,- j. 13 2,_.10 2.59 
5.0 68.49 70.79 3.. .29.48 1 .494 305 
b.I ,'.' 13 73.47 1 : 44 .70 24i .1 .8 
7.0 73.3 74.52 .94 47.01 247,
 
8.0 74.58 74.93 .45 4 8.00 4 8.4: .17 
9.0 74.91 75.06 .20 24.41 24-., .0? 

10.0 75.04 75.11 .0? 248. 5:8 248.66 .0-: 

Figure 3 

DELLF Sample Run Output
 



DELLF- 11
 

Ill. Program Information
 

A. 	Program description
 

DELLF was programmed and tested 
in the following operating environment:
 

Machine: CDC 6500
 
Operating system: 
 MSU HUSTLER 2 L239 LSD 32--an extension of
 

CDC SCOPE 3.2
 
Compiler: CDC FTN V3.0-P357
 
Core requirements: 103 decimal words
 
CP compile time: .47 seconds
 
CP execution time (for sample run): .49 milliseconds
 
Tapes: none
 
Direct access files: none
 
FORTRAN library subprograms used: FLOAT
 

DELLF is structured as a single subroutine, DELLF, which simulates a
 

continuous (distributed) delay process with storage losses and/or additions
 

and computer storage in the delay. 
No 	COMMON blocks are used.
 

B. 	Program implementation
 

All input is transmitted through the argument list. Input variables
 

DEL (called D in section II above), DT, IDTU and K require values which
 

must remain constant during the simulation of a particular delay; STRG and
 

R(I) require only initial values, as they are subsequently recomputed
 

within DELLF. R must be dimensioned to at least K in the calling program.
 

All output is transmitted through the argument list. The output variables
 

are ROUT and the updated values of R(1) and STRG (called S in section II 

above). See the list of the sample run executive program for an example 

of the call statement. 

For DELLF to operate properly, DT and DEL must be > 0, and K and IDTU 

must be integers > 1. 
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C. Program lists 

The computer programs for the sample run 

be low: 

and for DELLF are listed 
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PROGRAM DELTS.TOUTPUT TAPE2=U TP'. 

DIMENSION R('

DATA DELAY .
 
DATA K / 3
 
IATRA PLR .1
 
DATA DTITII ,.25 1
 
DATA RIF:r. II.T .. 100. 4 0.
 
DATA STR'. / 0.
 
.I. I TE' S 9 0)
 

T = -DT
 
DO 30 I=5I9'9999 

T = T + DT
 
IFT .EC'. 0.) '30 TO 15
 
CALL DELLF':RIH 
 ROUT R ":TR ,PLR, DELAY DT .IDTU, K 
IF:AMOD,:Tp.. .rHE. 0.?' ,30 TO 30


[5 E: F1 = E:.:: ,:- ( 1. +PL )*T. ' 

+ 
AROUT = 100.. , i .- E:: 1*::I 1 .+FLP: ,*T ) * 2.". +,t 1 .+ F'+PLR.T+1 * ) ).'::1. + F'L tR:, .-
A:.TF.:G = 10.., 1.-E::F'1 .. ,1 .+PL ) + 1:n.., 1.-E::F' :.1.+PLR).. 2 + 100.oT*E:;:.::P1 (1 .+PLP) + -ROUT 
PIOUT = 1 00 .ROUT-HROU I, .apou
 
IF ,:A OUT . E. 0. : PD _ = 0.
 
PD' T' = 100 . . , ': TR'WA.TR3:; "A :TRG
 
IF.:TRI3 .EQ. 0.) PD.TRG = 0.I.ITE,:- ,91; T,RR:OUT ,ROUT ,PDOUT ,R.:TRG3TR'3,EIS:TRG
 
IF(T .GE. 10.) TroP
 

0 QrT I HUE
 
?o FORMAT ':.1 AALYTTCALI :I MULATED PER CENT ANALYTICAL S IMUL.+ *ATED PER CENT... TIME OUTPUT OUTPUT DEVIATION*+ * STORAGE :TOiBE DEV I RT ION.') 
11 FORMAT,0 *F4.1.,rO.2,5F1., 

END 
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:S:UIBROUTINE rELLF(RII",6"OUTIL, .T.'3GPF'LR,DEL,DTIDTU K) 

TITLE - DISTRIBUTED DELAY .ITH S:TOFAGE LOS::E: 

VERSION - 1A 

DATE - 1 HO' 1974 

PURFOSE - .IMULATION UPF DI.:TRIBUTED TIME DELAY PROCESS WITH 
.- TORAGE LO. .E". 

INPUT REQ-UIREMEHT.' 

V'ALUE: TRArrMIITTED THROUGH THE ARGUMENT LI.:T -- DELP DT, 
IDTU r. P 1',:.I IPH TRG, PLR, I', 


VARIABLES REQ..,UIR.ING ,'-.JE- ..HICH 'WILL NOT CHANGE DURING A RUN 
-- DELP DT, IDT'.p, 

VR.'I ELE. REQUIRING NA',"LUE ,_HICHMY CHANGE DURING A RUN 
-- PLRP RIH 

'VARIABLE.? COMPUTED B",' THIS ROUTINE REQUIRING INITI AL VALUE. 
-- 9':I.:' 10 

OUTPUT V.,'FIj .
fBLEf 

'ALUES TRAINT.MITTED THROUGH THE FRGUMENT LIST -- R(I). ROUT. 
: TRG 

VA,,ReIAFBLE DEFINITION] 

DEL - LEN'GTH OF DELAY Il TIME UNIT':.
 

DT - SIMUL.ATIOH TIME INHR EMENT IN TIME UNITS.
 

IDT - E.SUBDI. I OH -:OP DT REQUIRED. UJITLESS.
HUMBER OF I 

IDTU - UTER-".PECIFIED HUMBER OF SUBDIVISI ONS: OF DT. UNITLESS. 

K - ORDER OF DELHI. UHITLES.
 

PLR - PROPORTIONATE LOST RATE IN PROPORTIO.oUNIT TIME.
 

R(I:, - IHTERMEDIAIrE PATEN IN UITS..UNIIT TIME.(STA;GE OF DELAY)
 

RIH - INPUT RATE IrH iIT.UHIT TIME.
 

ROUT - OUTPUT RATE IN UHIT.UNIT TIME.
 

S:TRG - STORHGE IH umi"..
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DIMEN:_I ONrrR: 1) 
FK =PLOT.)
 
IDT = 1. + 2..,IT.,::FK...DEL + PLP:.,
 
IF:IDT .LT. ITTU.:, IDT = IDTITU
 
FInT = FLOAT(IDT',
 
A = FK*DT.. DEL*FIDT's
 
B = I .+PLR.DEL.FK.
 
K:M 1 = K:-1 
DOl 20" JAl.PlDT
 

:.:T..3 = .TR'_ I':
+ DT :'IN-P.R,1>)-IPLR.STi;).T .FI[,T
 
IFK .EQ. 1' GO TO 15
 
IO 10 I=IKi'M1
 

to0CONrT I N',UE 
SF'.:) = RF , + A ,.RI i-E: .R:.::,
:'0 C-:ONriT INUt
iE
 

ROUT = R(.1
 
RETU RN
 
END
 

http:PLR.DEL.FK
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DELVF Abstract
 

DELVF simulates a distributed time delay process with variable
 
delay time, computes the storage associated with the flow through
 
the delay, and automatically insures simulation stability. It is
 
useful for modeling flow delays inherent in such aggregated pro
cesses as capital formation, transportation and demographic processes.
 
In these cases, delay times could vary in response to, for example,
 
changing technologies and disease control, respectively.
 

The delay is modeled by a kth-order differential equation,
 
which is also an aggregate representation of the case where indi
vidual lag times of entities in the aggregate are random variables
 
following an Erlang distribution. The inputb to DELVF are the
 
unlagged value, or flow into the delay, and the current value of
 
the mean lag time. Outputs are the lagged value, or flow out of
 
the delay, and the storage resulting from integration of net flow
 
into the storage resulting from integration of net flow into the
 
delay. Finally, DELVF insures simulation stability by automatically
 
decreasing the integration step size when the time constant is small
 
relative to the order of the delay.
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I. Process Description
 

There are many situations In socioeconomic processes where time detis
 

are distributed rather than discrete. That is, for aggregate flows indi

vidual entities in the aggregate have different lag times; so that, while
 

entitles may enter the delay process at the same time, the output flow
 

will be distributed over time. This will be particularly true when the
 

individual lag times of entitles are random variables [I]. For example,
 

a tree population may be modeled as a series of age cohorts representing
 

stages of productivity. Modeling the gestation stage, for instance, as
 

a distributed delay says that for trees planted at the same time produc

tion will begin at different times for different trees--some sooner, some
 

later--depending on genetic and local environmental conditions obtaining
 

for each tree; and similarly for passage through the other productivity
 

stages defined [2]. Similar examples abound in other processes, such as
 

investment, transportation, diffusion of information, etc. DELVF simulates
 

this process.
 

It Is frequently the case that the length of the delay varies over
 

time as a function of other variables in the system. For example, delays
 

associated with the diffusion of innovations may be functions of the
 

profitability of the innovations and/or of the communication infrastructure.
 

Or production delays may be functions of inventory, order backlogs, over

time wage rates and/or machine reliability. DELVF is specifically designed
 

[3] to incorporate variable delays in the delay process. 
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In the technical description which follows, reference is made to
 

the use of DELVF to model the gestation stage of cocoa trees, where the
 

inputs are tree plantings and gestation time, and the outputs are trees
 

becoming productive and the number of trees in the gestation stage.
 



II. 	Technical Description
 

A. 	Mathematical model
 

The kth-order differential equation modeling a distributed delay with
 

variable delay time can be shown to be equivalent to k first-order differ

ential equations modeling a k-stage delay process, where each stage is a
 

first-order delay [3] (Figure 1). The delay times for individual trees
 

-

entering the gestation delay (assuming constant delay time) follow a kth
 

order gamma disTribulion with mean D. k determines the variance 02 of the
 

gamma distributed delay times as a2 = D2k. In certain cases k and D may be 

estimated from real-world or experimental data. As k gets large and goes to
 

infinity (Figure 2), the distribution degenerates to a normal distribution
 

with mean D and zero variance--i.e., a discrete delay of length D. Aside fro
 

the 	computation of storage and the determination of the integration step
 

size consistent with stability, DELVF is identical mathematically with the
 

VDEL routine of [3].
 

For 	the ith stage of the delay--where i=1, 2, ..., k--Q i is the
 

storage (number of trees) and [3]:
 

(1) 	Qi(t ) _ D(t) Ri(t )
 
Ik 

where 
Ri = rate out of the ith stage (trees/year) 

D = 	 the mean delay time (years) 

k the order of the delay process.
 

The rate of change of Qi is the net flow into the ith stage:
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Figure 1 

Kth-Order Distributed Delay Process 

I 
-

ROUT ROUT ROUT 

____ 

D 
t__ tn ..t' 

D 
I ,

D 

(a) K=1 (b) K=3 (c) K=10 

Figure 2 

Kth-Order Delay Zero-State Unit Impulse Response 
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dQ. Mt 
(2) o i  (t) - RR 

dt +1 i 

where Rk+ = RIN, the planting rate into the delay (Figure 1). But from (M): 

(3) 	dQ(t) 1 D(t). dR(t) + Ri(t).dD(t)1
 

dt k dt dt
 

Thus, upon substituting and rearranging terms, the first-order differential
 

equation modeling the ith stage of a kth-order delay with variable delay
 

time becomes:
 

D(t) 	 dRi(t) I ADMt)

k dt + (I + k dt)PRI(t) = Ri+i(t) 

which can be solved numerically using Euler's integration approximation
 

and taking dD(t) D(t+DT) - D(t)
 
dt DT
 

(5) Ri = R i (tDT) + DT-k)(tkT Ri+I(t-DT)t ) 	 Wt-DT ) - Ri(t-DT).(1+DD(t-DT))] 

where DD(t-DT) = 1.D(t) - D(t-DT) and where DT iK the integration step
k DT 

size, the simulation time increment. DELVF does not use (5), however. 

In order to insure stability, DELVF divides the DT time interval into 

IDT subintervals, where IDT = IDT(t) is computed in (14). Thus, inte

grating over the subintervals of length EDT = DT/IDT(t), (5) becomes: 

DT-k [Ri+l(T-EDT) - R.(T-EDT).(I+DD(t-DT))] 

for T = t-DT + EDT, ..., t-EDT, t, and where, for the kth stage of the 

delay, 	 Rk+l(T-EDT) = RIN(t-DT) for all T. 

The output of the delay (trees becoming productive--Figure 1) is
 

(7) ROUT(t) = R1 (t). 
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Finally, the storage in the delay associated with the flow through the
 

delay (the number of trees in the gestation stage) is computed [3] as:
 

DA k
 (8) 	SMt = Dk) RIMt.
 
k i=1
 

If the user can assume steady-state initial conditions--i.e., that
 

the planting 	rate RIN has been constant for a long time prior to time
 

zero (implying that the first k-i derivatives of ROUT(t) are zero at
 

t0)--then the intermediate rates RI, i=1, ... , k, should be initialized 

to:
 

(9) Ri(O) = S(O)/D, i= , ... , k.
 

where S(O) is the initial storage (i.e., number of trees) in the
 

gestation delay. If, instead of the initial storage, the initial output
 

or input to the delay is known, Ri should be initialized to:
 

(10) Ri(O) = ROUT(O) = RIN(O), i= , ..., k.
 

If, on the other hand, steady-state initial conditions are not to be
 

assumed, equation (2) may be used to establish other initial conditions
 

for Ri that yield non-zero initial values for thn derivatives of ROUT.
 

In any case, the initial storage and the rates Pi must satisfy the
 

relationship:
 

k 
(11) 	 S(0) - D X R.(O). 

-k i=1 

If a model contains several delays with variable delay times, for
 

each delay j stabi lity considerations (assuming D(t) D, a constant)
 

dicta te that:
 

Di( 
- IT )
 

II)I I)Fi ( ) < In ( I ')I -DT))
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For reasonable simulation accuracy and to include a margin of safety,
 

the requirement becomes:
 

Dji(t-DT)
IDTj(t)(13) DT -k.j,.(1+nD)(t-DT)) 

where DD~t) ~ 1 dD(t)
 
k dt (see (5)). 
 With DT, D, DD and k already known, DELVF
 

computes IDT. so that (13) holds:
J 

k.
(14) IDTj(t) = MAX{IDTUj, [I + 2.DT-.JT (I + D.(t-T))]}J 
 DO.Ct-DT) jJJ
 

where the operation [.] sets IDT, equal 
to the largest integer in the value
 

of the expression in brackets; and MAX{a, b} sets 
IDTj equal to the larger 

of a and b. Th. user may specify an IDT greater than 1 to increase inte

gration accuracy (even if not required for stability) by specifying IDTU
 

greater than 1; i.e., 
the desired number of 3ubintervals.
 

While DELVF accurately simulates a distributed delay (e.g., the
 

gestation stage of a cocoa tree population in this case), non-trivial
 

inaccuracies relating to non-conservation of flow arise when 
IDTj > i
 

and when the output ROUT1 (t) (equation (4)) is used elsewhere in a larger
 

model; e.g., integrated or used 
as the input rate to another delay. In
 

this example, the problem arises when the rate of trees 
leaving the ges

tation stage is used 
as the input to a second delay representing trees
 

with increasing yields up to full maturity. 
For a full discussion of
 

the problem and alternative ways to modify DELVF to handle it, 
see [4].
 

DELVF is one of a set of six distributed delay routines (Table 1)
 

which cover situations where storage is computed automatically within
 

http:2.DT-.JT
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Table I
 

CLASS Distributed Delay Routines
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DEL X .24 .27 56 

DELS X X .28 .31 62 

DELF X X X .40 .44 93 

DELLF X X X X .47 .49 103 

DELVF X X X X .51 .55 104 

DELLVF X X X X X .54 .57 108 
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the routine, the delay times, O.,J may vary over time, storage losses 

and/or accretions may occur in the course of the delay, and/or finer 

time cycles are required for stability assurances. The last Three columns 

of 	Table 1 show the compile and execution central processor times and core
 

storage required by DELVF (and the other distributed delay routines for
 

comparison) on Michigan State University's CDC 6500 computer with its
 

FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,
 

MSU's version of CDC's SCOPE 3.2 operating system.
 

B. 	Sample Run
 

The sample run assumes a third-order, three-year gestation delay
 

(i.e., k=3 and D=3) with a constant rate of change of the delay time
 

dD(t)
 - .1 years/year. No trees existed in the gestation stage prior
dt
 

to time zero (i.e., S(O) = R1(O) = R2 (O) = R3 (O) = 0), and the planting
 

rate RIN is assumed to jump from 0 to 100 trees/year at time zero and
 

to remain constant thereafter.
 

Under these conditions, we can use (4) and (8) to solve analytically
 

for the output and storage of the gestation stage and comnare these with
 

the simulated output and storage from (5) and (8). The analytical
 

solutions for ROUT and S are:
 

(15) ROUT(t) - 2700 [1 - A- B BA-BtA(1 + 4lnA)]
C32
 

(16) S(t) = A{3C[(I - A-[)(I + A) - (B - 1)A-BfA] + ROUT(t)}
C C
 

where A = 3 + t B = 3 + C = 1313 3 + a and a = dD(t)
3 Ba 	 dt 



DELVF-IO 

Results, including the per cent deviations of the simulated solutions 

From the analytical solutions, are tabulated in Figure 3 for 5.4,O-year 

simulation, with DT = .25 years. 
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ANALYTICAL "IMULATED PER CENT ANALYTICL .:IMULATED PER CENT 
VIrE OUTPUT OUTP'T DEYIAT I or .:TDRE -TORAGE DEVI AT I ON 

•., .0Fi0 . 00i .0 0 .0 0 .0 0 .01:1 
1.0 7.55 4.87 -35.54 97.78 100.4.3 2.71 
w,f. 2:9.:3: .21 17990 1:7.85 4.42 
" 501 .35 54.44 6.01 2.9.1 : 248.97 4.09 
4.0 67.41 71 .25 5.69 27 9.26 2:7.79 3.06 
5.0 77 .53 :::I.7: 4.1? *-06.6 312.63 2.05 

6. 343 85.76 2.78 32550 329.78 1.283 
,. 0 :6.3 88.25 1.75 34''.5 342.8:E: .77 
.0.54 89.47 1.:.6 32 .- :354 .22 .45 

1. 39.5 1 90.071 .62 .. 55 364.50 .26 
10.0 90.03 90.35 .36 373. . 374 .31 .15
 

Figure 3 

OELVF Sample Run Output
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Ill. Program Information
 

A. 	Program deDscription
 

DELVF was programmed and tesled in the following operating environment:
 

Mach i ne: CDC 65C0 
Operati nj s tem: NS HU TLE? ) L239 LSD 32--an extension of 

C11 SCOPI '. 

Compi Itr: CDC [in V5.0-P_351 
Core r.q iir-mon ts: 104 deci mal w,'rcs 
CP 	comn:ile t-i . Secon(J5me: 51 

CP ex,.cu- lon time for samp le run) : .55 mi I Ii seconds
 
Tapos: ncone
 
Direct access fi ls: none 
FORTRAN library subprograms used: FLOAT 

DELVF is structured as a single ',ubroutinu, DELVF, which simulates a 

continuous (,]isributed) delay process will, v riill doIay time and cornputer 

storage in ilhe delay. Hio COMMON blocks are used. 

B. 	Program implementation
 

All input is transmitted through the argument list. Input variables 

DT, IDTU and K require vjlues which mus,1 remain constant during the simula

t"ion of a particular delay; DELP and R(1) require only initial values, as 

they are ;ubseqjntlIv recomputed within DELVF. R must be dimensioned to 

at least K in the ,dlI ng program. All output is transmitted through the 

arqum:n I I i,,I. Vhe outr)u - variabls are ROUT and the upd ted values of R(I) 

ar ";;dC', i r , ction I I a bovo). ,e Ile Ii ,t of hie ;ample run 

execulie progr, rn for ,n (examriple of thtw call statfment. 

for DULVF to operate properly, DT and DEL(t) must be > 0 for all t, 

and K and IDTU must be integers > 1. 
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C. Program lists 

The computer programs for the sample run 

below: 

and for DELVF are listed 
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D--';P DEL T "T (OI TPU T,TTAFE,=rUTPUT) 

DIATA DELQqDELIP w 3.m B. 
DATA 4 -:
 
DATA E .1
 
DATA DTIDTU , .E'5 1
 
Dtl79 RIXH R[UT 10A.- 4*.
 
[ATA :TP'3 U.
 
,IdI TE, 2 q,0
 

T = -DT
 
DO] --0 I=I-90 0.: 

T = T + DT 
IF,.T .EO'. n. '30 TO 15 
DELAY = DELA' + E*D1 
CALL DEL..'F PIN, POIU T , - TRG, DELAY TIELAYP ,IT, IDTU ,K" 

qE .
IT(A'iOD T 1. . 0..: GO] TO -:1 

+ 

P OIT ".+ 'T:'. *:;. O -PO T O T
 
- A+O T . E.EPD = 0.
. T 


P'" =T = 1-;..LTTPG-RSTPGi3:.
 
I ATLG OD- TRGI
EO ,-. 0., ,
 

hJ. I TE, T, qPOiT ,POUT, F;'.IT ,A:TRG .TPG ,F'D TP
,'1. F 

IF, T .GE. 10 . -TOP
 

, 	o, rIHI H'_IE 
) POPMToAT, A1 AL"TICL SIMULATED PER CENT A!R4LYTICAL :IM.L, 

+ *ATEI' PER CENT,* TIME OiTPUT OUTPUT DE',.'IATIOIN 
+ 	 . :TFRAGE TOFAE IE',.'I TI0il..:,
 

FO MAT,*
[4.1900.2,501.2'
END 
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:S:UBROUT I NE DELVY ('IN ,ROUT, ","T 'G DEL, DELPDT, IDTUK)::, 

TITLE - DISTRIBUTED DELAY IITH VARIABLE DELAY TIME 

VE TC4 -1A 

DATE - I HOV 1974 

PUR!POSE - SIMULATION OF A DISTRIBUTED TIME DELAY PROCESS WITH 
VARIABLE DELAY TIME 

INPUT REI'LU I REMENT: 

V.!ALUEE: TRANSMITTED THROUGH THE ARGUMENT LI:T -- BEL, DELP' 
DT9 IDTU, K, R:(I), RIN, STRG
 

V'ARIABLES REQUIRING VA'HLUES IWIHICH ILL NOT CHANGE DURING A RUN 
-- DTF IDTU 

"V"ARIABLESREQUIRING VALUES WHICH MAY CHANGE DURING A RUN 
-- DEL, RIN 

'A'RIABLES COMPUTED BY THIS ROUTINE REQUIRING INITIAL VALUES 
-- DELP R I), S:TRG 

OUTPUT V,,ARIAB:LES 

"VALUESTRAN:MITTED THROUGH THE ARGUMENT LIST -- R(I), ROUT,
 

VA IAFLE DEFINITIONS
 

DEL - CURRENT LENGTH OF DELAY 
IN TIME UNITS.
 

DELP - PREYIOUS LENGTH OF DELAY 
IN TIME UNITS-.:.
 

DT - SIMULATION TIME INCREMENT IN 
TIME UNITS.
 

IDT - NUMBER OF SUBDIVISION: OF DT REQUIRED. UNITLESS.
 

IDTU - U-:ER-iFPECIFIED HUMBER OF SUBDIVISIOS OF DT. UNITLESS.
 

K - ORDER OF DELAY. UNITLES-.
 

R(I) - INTERMEDIATE RATES IN UNIT;.UNIT TIME.(-TAGE OF DELAY)
 

RIN - INPUT RATE IN UIT-: UNIT TIME.
 

ROUT - OUTPUT RATE IN UNIT:UNIT TIME.
 

STRG - S:TORAGE IN UNITS.
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D I MENS I O R '.1I 
FK = FLOAT( . 
B = 1. + .DEL-IELP.:,..,..T*FK 
IDT = 1. + 2.:'.fBDTOFK/DELP 
IFfIDT LT. IDTU IDT = IiTU 

= FK.DT :DELP*FLOITI DT :', 
DELP = DEL 
KMI = k-1 

DO 20 XJ=IDT 
IP<K .EQ.'. 1, GO 
DO 10 I=I,v'ml 

TO 15 

PI):, = PR I, + im*''I+I :,-B: I:' 
1i CfOT I HIHE 
15 P-K) = F' + AW1, .IF"t-6 0,. ': 
20 CONTINUE 

T'G = 0. 
DtO 30 I=I.,A 

"TF'G = -TF.G + RI '*DEL/. 
COrIT I MN/E 
R OUT = ',.1 

'ETURN 
EMri 
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DELLVF Abstract
 

DELLVF simulates a distributed time delay process with storage
 
losses (or additions) and variable delay times, computes the storage

associated with flow through the delay, and automatically insures
 
simulation stability. It is useful for modeling flow delays inherent
 
in such aggregated processes as capital promotion, transportation
 
and demographic processes. In these cases, storage losses could
 
refer to disinvestment, spoilage and deaths or migrations, respectively;
 
and delay times could vary in response to, for example, changing
 
technologies and disease control respectively.


The delay is modeled by a kTh-order differential equation,
 
which is also an aggregate representation of the case where indi
vidual lag times of entities in the aggregate are random variables
 
following an Erlang distribution. The inputs to DELLVF are the
 
unlagged value, or flow inLo the delay, tne proportional storage loss
 
rate and the current value of the moan lag time. Outputs are the 
lagged value, or- flow out of the delay, and the 3torage resulting
from integration of net flow into the delay. Finally, DELLVF insures 
simulation stabil ity by automatically decreasing the integration step

size when the time constant is small relative to the order of the delay.
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I. Process Description
 

There are many situations in socioeconomic processes where time delays
 

are distributed rather than discrete. That is, for aggregate flows 
indi

vidual entities in the aggregate have different lag times so that, while
 

entities may enter the delay process at the same time, the output flow will
 

be distributed over time. This will be particularly true when the indi

vidual lag times of entities are random variables [1]. For example, a tree
 

population may be modeled as a series of age cohorts representing stages of
 

productivity. 
 Modeling the gestation stage, for instance, as a distributed
 

delay says that for trees planted at the same time production will begin at
 

different times for different trees--some sooner, some later--depending on
 

genetic and local environmental conditions obtaining for each tree; and
 

similarly for passage through the other productivity stages defined [2].
 

Similar examples abound in other processes, such as investment, transportation,
 

diffusion of information, etc. DELLVF simulates this process.
 

It is frequently the case that storage losses or additions occur 
in
 

the course of the delay process and that the length of the delay varies
 

over time as a function of other variables in the system. Notable examples
 

of situations in which storage losses or additions may occur 
Include popu

lation migrations, tree removals, deaths, production losses, distribution
 

losses, etc. 
 Variable delay times may occur, for example, in production
 

processes as functions of inventory, order backlogs, overtime wage rates
 

and/or machine reliability. Similarly, delays associated with the diffu

sion of innova :uns may be functions of the profitability of the innovations
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and/or of the communication infrastructure. DELLVF is specifically designed
 

to incorporate storage losses and variable delay times in the delay process.
 

In the technical description which follows, reference Is made to the
 

use of DELLV to model the gestation stage of cocoa trees, where the inputs 

are tree plantings, fai lure rates arid gestation time, and the outputs are 

trees becoming productive and the number of trees in the gestation stage. 
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II. Technical Description
 

A. Mathematical model
 

The kth-order differential 
equation and variable delay time can be
 

shown to be equivalent to k first-order differential equations modeling a
 

k-stage delay process, where each stage is a first-order delay [3] (Fig

ure 1). The delay times for individual trees entering the gestation delay
 

(assuming no 
losses and constant delay time) follow a kth-order gamma dis

tribution with mean 2
D. k determines the variance a 
of the gamma distributed
 
delay times as 2 = D2/k. In certain cases k and D may be estimated from
 

real world or experimental data. As k gets large and goes to 
infinity
 

(Figure 2), the distribution degenerates to a normal 
distribution with mean
 

D and zero variance--i.e., a discrete delay of length D.
 

For the ith stage of the delay--where i=l, 2, ..., k--Qi is the storage
 

(number of trees) and [31
 

(1) Qi(t) = D()R (t) 

k 

where
 

Ri = rate out of the ith stage (trees/year)
 

D = the mean delay time (years) 

k = the order of the delay process. 

The rate of change of Qi is the net flow into the ith stage:
 

(2) 	dQ -t)
dt - Ri+ 1(t) - RiCt) - Li(t) 
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where 	Rk+ 1 = RIN, the planting rate into the delay (Figure 1), and L I s 

the storage loss rate from the ith stage. If Lit) = PLR(t)*QI(t) where
 

PLR is the proportional loss rate for the total storage in the whole delay
 

(i.e., the losses are apportioned proportionately to each stage), then
 

dQi(t)

dt = Ri+ 1(t) - Ri(t) - PLR(t)'Qi(t)
 

- D(t)= Ri Mt - RIM1 (t).(+- PLIRt)
 .
 

But from (1)
 

dQi(t) 1 )dRi(t) .dD(t)
 

dt k dt I dt
 

Thus, upon substituting and rearranging terms, the first-order differential
 

equation modeling the ith stage of a kth-order delay with storage losses
 

and variable delay time becomes
 

(5) 	DM dRi(t) + (1 + L.dD(t) + D(t).PLR(t)). (t) = R (t)
 
k dt k dt k i i+1
 

which can be solved numerically using Euler's integration approximation and
 

taking dD(t) - D(t+DT) - D(t) by

dt DT
 

(6) Ri(t) = 	 k - Ri(t-DT).(1+DD(t-DT)Ri(t-DT) + DT.D(tkDT ) [Ri+I(t-DT) 


+ D(t-DT)k PLR(t-DT))]
 

where 	DD(t-DT) = _ D(t) - D(t-DT) and where DT isthe Integration step 
k DT
 

size, the simulation time increment. DELLVF does not use (6), however.
 

Inorder to insure stability, DELLVF divides the DT time interval Into IDT
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subintervals, where IDT = IDT(t) is computed in (15). Thus, integrating
 

over the subintervals of length EDT = DT/IDT, (6) becomes
 

(7) Ri(t) = 	Pi(T-EDT) + EDT- k Ri+I(T-EDT) - Ri(T-EDT).(1+DD(t-DT)I Dt-DT) 

+ D(t-DT).PLR(tDT))]
k 

forT = t - DT + EDT, ..., t - EDT, t, and where, for the kth stage of the 

delay, Rk+1(T-EDT) = RIN(t-DT) for all T. 

The output of the delay (trees becoming productive--Figure 1) is 

(8) ROUT(t) = R1 (t). 

Finally, the storage in the delay associated with the flow through the delay 

(the number of trees in the gestation stage) is computed [3] as 

(9) 	S - D(tD~)k R (t).
 

k i "
 

If the user can assume steady-state initial conditions--i.e., that
 

the planting rate RIN has been constant for a long time prior to time 

zero (implying that the first k-1 derivatives of ROUT(t) are zero at 

t=O)--then the intermediate rates Ri, i=1, ... , k, should be initialized 

to:
 

(10) R.(O) = S(O)/D, i=1, ... , k. 

where S(O) is the initial storage (i.e., number of trees) in the 

gestation delay. If, instead of the Initial storage, the initial output 

or input to the delay is known, Ri should be initialized to:
 

(11) Ri(O) = ROUT(O) = RIN(O), i=1, ..., k.
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If, on the other hand, steady-state Initial conditions are not to be
 

assumed, equation (2) may be used to establish other Initial conditions
 

for Ri that yield non-zero initial values for the derivatives of ROUT.
 

In any case, the initial storage and the rates Ri must satisfy the
 

relationship:
 

D
 

(12) S(O) = 2 1 RI(O).
 

If a model contains several delays with losses and variable delay
 

times, for each delay j stability considerations (assuminq PLR(t) = PLR,
 

a constant) dictate that:
 

DT 2D (t-DT)
 
(13 ) DT < . 

IDTM(t) k (+DD.(t-DT)) + PLR.(t-DT).Dj(t-DT)
 

For reasonable simulation accuracy and to include a margin of safety, the
 

requ i rement becomes: 

DT 1 D1(t-DT) 

IDT(t) -2 k.(1+DD.(t-DT)) + PLR.(t-DT)D.(t-DT) 

where DD(t). 1 dD~t) 
w dt) (see (6)). With DT, D, DD, PLR, and k already known, 

DELLVF computes IDTj, so that (14) holds: 

(15) lDTM) = MAX{IDTUjP [1 + 2.DT (k.(I + DD.(t-DT)) + PLRj(t-DT).
Dj(t-DT) j
 

D.(t-DT))]}
 
J
 

where the operation [.1 sets IDTj equal to the largest integer in the value
 

of the expression in brackets and MAX{a, b} sets IDT. equal to the larger
 
J
 

of a and b. The user may specify an lDT greater than 1 to increase
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integration accuracy (even if not required for stability) by specifying
 

IDTU greater than 1, i.e., the desired number of subintervals.
 

While DELLVF accurately simulates a distributed delay (e.g., the
 

gestation stage of a cocoa tree population in this case), non-trivial
 

inaccuracies relating to non-conservation of flow arise when IDT > 1
 

and when the output ROUTj(t) (equation (4)) is used elsewhere in a larger
 

model; e.g., integrated or used as the input rate to another delay. In
 

this example, the problem arises when the rate of trees leaving the ges

tation stage is used as the input to a second delay representing trees
 

with increasing yields up to full maturity. For a full discussion of
 

the problem and alternative ways to modify DELLVF to handle it, see [4].
 

DELLVF Is one of a set of six distributed delay routines (Table 1)
 

which cover situations where storage is computed automatically within
 

the routine, the delay times, Dj, may vary over time, storage losses
 

and/or accretions may occur in the course of the delay, and/or finer
 

time cycles are required for stability assurances. The last three columns
 

*of Table 1 show the compile and execution central processor times and core
 

storage required by DELLVF (and the other distributed delay routines for
 

comDarison) on Michigan State University's CDC 6500 computer with its
 

FORTRAN Extended (Version 3.0) compiler and operating under HUSTLER 2,
 

MSU's version of CDC's SCOPE 3.2 operating system.
 

B. Sample run
 

The sample run assumes a third-order, three-year gestation delay
 

(i.e., k=3 and D=3) with a constant failure rate PLR(t) = 0.1/year and
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constant rate of change of the delay time dD(t)= 0.1 years/year. No
 
dt
 

trees existed In the gestation stage prior to time zero (i.e., 
 S(O) = RI(M) 

= R2 (0) = R3 (0) = 0), and the planting rate RIN is assumed to jump from 0 

to 100 trees/year at time zero and to remain constant thereafter. 

Results are tabulated in Figure 3 for a 10-year simulation, with 

DT = .25 years. 
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TIME OUTPUT RATE :.TORAIBE 
.00
.00
.0 


1.0 	 4.76 6.68
 
.0 26.39 172.16
 

•.0 45.70 	 219 .LI 
56.35 	 245.724.0 


5.0 62.12 	 261.40 
6.0 64. ,:'5 	 271. 7 
7.0 64.89 	 279 .73 
3.0 64.36 	 286 .5

9. 0 64.54 	 292.424.110 1.0110.0 
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Ill. Program Information 

A. Program description 

DELLVF was programmed and tested in the following operating environment:
 

Machine: CDC 6500
 
Operating system: MSU HUSTLER 2 L239 LSD 32--an extension of
 

CDC SCOPE 3.2
 
Compiler: CDC FTN V3.0-P357
 
Core requirements: 108 decimal words
 
CP compile time: .54 seconds
 
CP execution time (for sample run): .57 milliseconds
 
Tapes: none
 
Direct access files: none
 
FORTRAN library subprograms used: FLOAT
 

DELLVF is structured as a single subroutine, DELLVF, which simulates
 

a continuous (distributed) delay process with storage losses and/or addi

tions and with variable delay time. It also computes storage in the delay.
 

No COMMON blocks are used.
 

B. Program implementation 

All input is transmitted through the argument list. Input variables 

DT, IDTU and K require values which must remain constant during the simula

tion of a particular delay; DELP and R(1) require only initial values, as 

they are subsequently recomputed within DELLVF. R must be dimensioned to 

at least K in the calling program. All output is transmitted through the
 

argument list. The output variables are ROUT and the updated values of R(1) 

and STRG (called S in section II above). See the list of the sample run 

executive program for an example of the call statement. 

For DELLVF to operate properly, DT and DEL(t) must be > 0 for all t,
 

and K and IDTU must be integers > 1.
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C. Program lists
 

The computer programs for the sample run and for DELLVF are listed
 

be low:
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PROGRAM IIELT:.:T (OUTPUT. TAPE2L=OIJTPIJT', 
IMNEI.-.ION R,':3 

DATA DTqIDTII ... - 1 
DATA PLR 1 
DATA E .. 11 
DATA ELADELRyPE.L ... .D:. .. 
DATA K /. 3 . 
DiATA RIN.PR ROUT .... Ci1.. 4 0. 
DATA STR .... . . 
i.iR I T E (2 99 ' 

T = -DT 
DO .30 I=.1 ,99999 

T = T + DT 
IF,:T EQ. 0.' G0 ro 15 
DELAY = DELAY + E*DT 
CALL DELL'F(PIN. RO'I. I ,F:--.RT.'3,PLF ',DELA"," ,DELA''P DT, IT. I .K. 

15 
IF(AMDr T,1 .,' .riE. 
IJRITE(2 ,91) T,.O IT 

0.) 
::TP.. 

G TO 10 

IF'T .GE. 10.:' '::TOP 
':-0 CBT I NUE 
9 FORMAT,:.1TIME CUTPUT RATE .7'TORAGE.*, 
91 FORMAT (*F4.1II4. . 

Er4D 
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SUBROUT IN"E DELLVF (RIN .ROUT qR TR . ,PLRPDEL, DELP ,liT , I lITU ,K) 
TITLE - DI::TRIBUTED DELAY .ITH VARIABLE DELAY TIME AND STORAGE 

L rl S-.'3E:-. 

VER::ION - 1A 

DATE - I NOV 1974 

PURPOS_E - :S:IM"ULATIOH OF A DISTRIBUTED TIME DELAY PROCESS WIITH 
VARIABLE DELAY TIME AND S:TORAGE LOSSES 

INPUT REcUIREMENT. 

'..'ALUES TRAN:MITTED THO'UH THE AFIRGIIMENT LIS:T -- DELP DELP, 
DT, IDTU., K: PLR; R(I::, RIN, "TRG 

VRRFIABLE.S REQ!UIRIiG V'LUE: .IHICH IILL NOT CHAF3E DURING A RUN 
-- DT, IDTU: K:. 

VARI ABLE: REQU IRI NG VALUE! WJHIC-:H MAY C:HINGE DURIMG A RUN 
-- DEL, PLF.; Ril 

VARI ABLE: COMPUTED BY THIS ROUTINE RE!UIRING INITIAL VALUE:S, 
-- DELP, R I :, .TR 

OUTPUT VARIAB:LE: 

VALUE:S TRANS.MITTED THROU'H THE ARGLIMENT LIST -- R(I) q ROUT, 

.:TR'32 

VAR I ABLE DEF I NIT I ON.S 

DEL - CUIRRENT LENGTH OF DELAY IN TIME UINIT:S. 

DELP - PREVIOU: LENGTH OP DELAY IN TIME UNITS. 

DT - SIMULATION TIME IrCR.PEMElT I N TIME UrNIT:S.
 

I PT - NLIMBER OF .SUFBIVISIONSO" DT REQJUIRED. UNITLES:S
 

IDTU - USER-SPEC:IFIED NYIER OF SUBDIVI..IONS OF DT. ITLESS.
 

K - ORDER OF DELAY. UN I TLES:.
 

PLR - FROPORTIONArTE LOSE ATE IN PR[lPORTIONi"UNIT TIME.
 

R'I) - INTERMEDIATE PATES IN UNITSIUNIT TIME.(:TAGE OF DELAY)
 

RI N - I NPUT RATE IN UNiIT:,'LINIT TIME. 

ROUT - OUTPUT RATE IN UNITT',NIT TIME.
 

STRG - .TORAGE IN uNITT.
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DIMEM:ION R(1. 
FK= FLOAT(K) 
B = 1. + (£DEL-DELP'..:FK*DT) + PLR*DELP.."FK 
IDT = 1. + 2.*B*DT*FK.'DELP 
IF,'IDT .LT. IDTU) IDiT = IDTU 
A = FK*DT.'(DELP*FLOAT( IDT':) 
DELP = DEL 
KM1 = K-1 
DO '0 l.J=1,IDT 

IF(K .EQ. 1: GO TO 15 
rO 10 1=1.,KM1 

R(I) = R(I) + A.,:R,.1I+I.,-B.(I.) 
10 CONTINUE 
15 R(K) = R(K) + A:.RIr-B*R(K): 
20 CONT I MUE 

::TR G = 0. 
id 30 I=1K 

"ETRG = :3TRi3 + R( I::I DEL'FK 
30 CONTINUE 

ROUT = R(1 ) 
RETURN 
END 
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