
AGENCY IOR INTFNA '"ONALDEVE.LOPMIVh1T FOR AID USE ONLY
WASHIJGTON, 0. C. 20521

BIBLIOGRAPHIC INPUT SHEET
. AA. I.IAABy TEMPORARY

(.L ASSI-
U SEC'NOARYFICATION

2. TITLE AND SUBTITLE

Policy Analysis Language,version 2.3: reference manual

3. AUTHOR(S)
Wolf,Christopher; Winer,Claudia

4. COCUMENT DATE 5. NUMBER OF PAGES 16. ARC NUMBER
1976 44p._ ,__C

7. REFERENCE ORGANIZATION NAME AND ADDRESS

Mich.State

B. SUPPLEMENTARY NOTES (Sponeoring Oralinlzntlon, Publisheta, Avalobility)

(In Computer Library for Agr.Systems Simulation. CLASS doe.no.4)

9. ABSTRACT

(LIBRARY & INFO.SCIENCE R&D)

10. CONTROL NUMBER I1. PRICE OF DOCUMENT

SaN- ,iAE6- 010
12. DESCRIPTORS 13. PROJECT NUMBER

Data processing
Decision making
Manuals
Programming languages

Simulation
Syntax 14. CONTRACT NUMBER

CSD-2975 Res.
15. TYPE OF DOCUMENT

AID 590-I (4-74)

POLICY ANALYSIS LANGUAGE

VERSION 2.3

REFERENCE MANUAL

Claudia S. Winer

Chris Wolf

COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION

CLASS Document No. 4

Agricultural Sector Analysis and Simulation Projects

Supported under Contract AID/csd-2975

U. S. Agency for International Development

Department of Agricultural Economics

Michigan State University
East Lansing, Michigan

July 1976

TABLE 	OF CONTENTS

PAGE

CHAPTER

1
1 	 OVERVIEW ...

2 THE MODEL DIRECTIVE 4

3 THE COMMON SECTION 5

"4 THE LOCAL SECTION 7

5 THE TYPE SECTION 9

6 THE CONSTRAINTS SECTION 11

7 THE CONVERSATION SECTIONS 13

8 LANGUAGE DIRECTIVES 17

9 	 COMMANDS ...
 19

10 	 THE STANDARD VALUE FILE 27

APPENDIX A - RESERVED NAMES 29

APPENDIX B - EXECUTION OF A PAL PROGRAM 30

APPENDIX C - INTERACTIVE USE OF COMMANDS 35

iii

COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION

The Computer Library for Agricultural Systems Simulation (CLASS) is

one of the four major activities of the Agricultural Sector Analysis

and Simulation Projects at Michigan State Unviersity under U. S.

Agency for International Development Contract AID/csd-2975. The

other three major interrelated project activities include theoretical

and methodological research, the Development Analysis Study Program,

and field activities, primarily in the Republic of Korea.

The project objective is to develop an approach to institutionalizing
an analytical capacity for planning, policy formulation, program
development, and project implementation for agricultural sector
development within the public decision making structure of developing
countries. A major component of the analytical capacity is a series
of system simulation models tailored to the needs of the individual
country. Much of the experience gained from the field activity and
the knowledge gained from the theoretical and methodological research
added to the presenL stock of knowledge about building and maintaining
analytical capacities for agricultural sector development can be
preserved and extended in the training provided through the Develop­
ment Analysis Study Program and in the stock of model, component, and
utility routine computer software documented in the Computer Library
for Agricultural Systems Simulation.

In full operation, the Computer Library for Agricultural Systems

Simulation (CLASS) acquires, catalogs, maintains and distributes

computer programs and associated documentation. These computer

programs are of generalized simulation models, components, and

routines designed specifically for the analysis of agricultural

development problems and processes. In particular, the library sets

standards of admissibility for programs and documentation; catalogs

and indexes programs and documentation so as to facilitate their

retrieval by users seeking a set of programs to be used in a specific

problem analysis; and distributes programs and documentation to users.

To enhance the effectiveness of the library, its functions also

include identifying and soliciting needed models; actively bringing

programs and documentation up to the library's standards; and

providing limited consultation in identifying and implementing

appropriate library programs For a particular application. A subsidiary

function of the library in conjunction with the identification and

solicitation of models is to survey and catalog ongoing research in

agricultural systems modeling and simulation.

The CLASS document publication series is the main vehicle for informing

potential users of the substance of CLASS holdings and activities.

July, 1976 George E. Rossmiller

Director

Agricultural Sector Analysis and

Simulation Projects

v

PREFACE

This document describes the Policy Analysis Language (PAL) Version

2.3. It is intended to be used as a reference manual by programmers who

are familiar with the elements of the language. There are two related

documents. The PAL Programmer's Guide (CLASS-3) explains how to write

and run a PAL program. Guide to Using A PAL Program (CLASS-5) is a simple

guide written for non-programmers who will be using a PAL program from

a terminal.

The initial programming for PAL was done by Frank Huybrechts, Carl

Wright,and Tom Hamby. We wish to thank Dave Watt for his help in many

areas, especially in testing PAL; Mort Rahimi and Mike Abkin for the

initial conceptualization and valuable design suggestions; and Judy Pardee

for her infinite patience throughout the numerous retypings of this manual.

Documentation and consultation are dvailable free of charge. Source

code for the translator and the library routines can also be provided.

For more information, or for comments on PAL or this manual, contact

Chris Wolf or Claudia Winer in Room 306 Computer Center (355-4701).

Chris Wolf

Claudia Winer

vii

CHAPTER 1

OVERVIEW

Program Structure

The structure of a PAL program is defined by ten PAL directives which

specify the sections of the program. The directives are classified into

three types as shown below:

Declarative Section Conversation Section Language

Directives Directives Directives

$MODEL $PROGRAM $FORTRAN
$COMMON $SUBROUTINE $PAL
$LOCAL $END
$TYPE
$CONSTRAI NTS

The declarative section and conversation section directives are used

to mark the boundaries of the sections of a PAL program. The language

directives are used to insert subsections of FORTRAN code into a PAL

program. A section is composed of PAL statements. Each type of section

has its own set of legal statements which, in general, are not legal in

any other section.

None of the sections are required, but the declarative directives,

if present, must appear before all of the other directives and must be

in the order they are listed above. The only exception to this is that

the $FORTRAN and $PAL directives may be used immediately before the

$CONSTRAINTS directive (but not before any of the other declarative section

di recti ves).

The $COMMON, $LOCAL and $TYPE sections end when the next directive is

found. If an $END directive is found in one of the declarative sections,

that will be considered the end of all of the declarative sections. The

1

$CONSTRAINTS, $PROGRAM and $SUBROUTINE sections end when any directive

other than a language directive is found.

The $MODEL, $LOCAL, $TYPE and $CONSTRAINTS directives may appear only

once. There may be up to 14 $COMMON sections (or 15if no $LOCAL section

is included), and any number of $PROGRAM, $SUBROUTINE, $END, $FORTRAN and

$PAL directives.

If two consecutive $END directives are found, that will be considered

the end of the PAL program. However, the $END directives are not required

because an end-of-file will also be considered the end of the program.

For more details about a particular directive,see the chapter that

describes that directive.

General Directive Card Format

Each directive card must have a dollar sign ($) in column one

followed by the directive name beginning in column two with no embedded

blanks. Each directive may occupy only one card; continuations are not

allowed. The $MODEL, $COMMON and $SUBROUTINE directive cards require a

symbolic name following the directive name. The $PROGRAM directive card

allows one, but does not require it.

General Statement Format

Columns 1-72 of a card may be used for a PAL statement. Information

beyond column 72 is printed in the listing but is otherwise ignored by

the compiler.

If a statement requires more than one card, continuation cards may

be used. A card with blanks in the first four columns is considered a

continuation card. Local variable statements and type statements are

limited to 17 continuation cards. A constraint statement is limited to

10 continuation cards. All other statements may have any number of

continuations.

2

Comments

A comment card isdenoted by an asterisk (*)in column one. Itmay

appear anywhere in a PAL program. Itwill be printed in the program

listing, but isotherwise ignored by the compiler.

3

CHAPTER 2

THE $MODEL DIRECTIVE

The $MODEL directive is used to specify the simulation model which

is associated with the PAL program.

The format of the $MODEL card is as follows:

$MODEL sname[(oAg1,...' ag)

The symbolic name sname is the name of the FORTRAN (or PAL) subroutine

which will be called in order to execute the simulation model when a >RUN

command is found. Embedded blanks are allowed. The name must not appecr

on the reserved name list in Appendix A. The $MODEL card may include an

argument list if desired, but all arguments used must be constants.

If a $MODEL card is present, itmust be the first card in the PAL

program. If it is omitted, a >RUN command will have no effect.

The first non-comment card after a $MODEL directive must be another

directive.

4

CHAPTER 3

THE $COMMON SECTION

A $COMMON section defines a FORTRAN common block of variables which

will be used by both the PAL program and the simulation model. It is

composed of variable statements, each of which specifies one variable

in the common block. The simulation model must contain a common block

of the same name.

The variables in a $COMMON section are
used to create a labeled

common block. The variables will appear in the common block in the
order

in which they occur in the $COMMON section. No more than 157 variable

names may be declared in a PAL program.

The format of the $COMMON card is as follows:

$COMMON [/] cimme [/]

The symbolic name ename must appear, and itmust be the same as the name

of the corresponding common block in the simulation model.
 It must be

no longer than six characters. The name may be enclosed in slashes, if

desired. Blanks may be used anywhere except within the word $COMMON

or within the name. The name must not appear on the reserved name list

in Appendix A.

Any $COMMON section that is present must contain at least one common

variable statement.

5

Common Variable Statement

A common variable statement must begin in column one with the FORTRAN

variable name. The name must be no longer than six characters and must

not appear on the reserved name list in Appendix A or in any other common

or local variable statement. If it is an array, the name must be followed

by the dimensions as they would appear in a FORTRAN DIMENSION statement.

Variable dimensions are not allowed. An array may have no more than three

dimensions. No blanks are allowed from the beginning of the name to the

end of the dimensions.

Each variable may have an explanation associated with it. The

explanation consists of a character string of any length, with blanks

allowed anywhere. The explanation must be separated from the name by a

dash (-)which may have any number of blanks on either side of it.

6

CHAPTER 9

THE $LOCAL SECTION

The $LOCAL section consists of variable statements which specify all

variables used in the PAL. program which are not in(luded in
a $COMMON

section. Their values are not transmitted to the simulation model, but

they can be used in any PAL $PROGRAM or $SUBROUTINE section or in the

$CONSTRAINTS section.

The format of the $LOCAL card is as follows:

$LOCAL

No embedded blanks are allowed.

If the $LOCAL section is present, it must contain at least one local

variable statement. No more than 157 variables may be declared in
a PAL

program.

Local Variable Statement

A local variable statement must begin in column one with a legal

FORTRAN variable name. The name must be no
longer than six characters

and must not appear on the reserved name list inAppendix A or in any

other common or local variable statement. If it is an array, the name

must be followed by the dimensions as they would appear in a FORTRAN

DIMENSION statement. Variable dimensions are not allowed.
An array may

have no more than three dimensions. No blanks are allowed from the

beginning of the name to the end of the dimensions.

The local variable statement may be used to assign initial values to

local variables. The variable name should be separated from the value(s)

by an equals sign (=) which may be preceded and/or followed by any number of

7

blanks. To assign values to an array, a list of values should be used.

FORTRAN DATA statement,
The value(s) should appear just as it (they) would in a

but without the enclosing slashes. Only 17 continuation cards are allowed

cor a local variable statement.

8

CHAPTER 5

THE $TYPE SECTION

Standard FORTRAN conventions are used forzdetermining the types of

the variables listed in the $COMMON and $LOCAL sections. The $TYPE section

provides a means of overriding the FORTRAN conventions as well as allowing

two non-FORTRAN variable types.

The format of the $TYPE card is as follows:

$TYPE

No embedded blanks are allowed.

Type Statement

The type statement must begin in column one with one of the four type

names. The type name is followed by a variable name or a list of variable

names separated by commas. Blanks may appear anywhere except within a

variable name or a type name. Variable names must not include dimensions.

The type names and their meanings are as follows:

REAL - FORTRAN real variable

INTEGER - FORTRAN integer variable

HOLLERITH - A variable type to be used for character strings. Unlike

FORTRAN these must be explicitly declared.

INITIAL - Denotes a variable whose value may change during a simulation

run and whose value must be reset before beginning another run.

See the'explanations of the >STORIV and >INITIALIZE commanis.

A type INITIAL variable may be declared to be any of the other

types as well. If it is not declared one of the other types,

then FORTRAN conventions will determine whether it is real or

integer.

Up to 17 continuation cards ,re allowed for a type statement.

9

If a variable is declared to be more than one of the first three

types (REAL, INTEGER, or HOLLERITH), the last type declaration will

override all previous ones.

10

CHAPTER 6

THE $CONSTRAINTS SECTION

The $CONSTRAINTS section consists of logical expressions whi~n the

program variables are expected to satisfy. This gives the model builder

a means of disallowing values that are incorrect or unreasonable. See

the >CHECK command (Chapter 9) and the section on constraint violations in

Appendix B for more information on how the constraints are applied.

The format of the $CONSTRAINTS card is as follows:

$CONSTRAINTS

The Constraint Statement

A constraint statement must begin in column one and may consist of

any FORTRAN logical expression. All variables used in it must be declared

in a $COMMON or $LOCAL section. Embedded blanks are allowed. Only 10

continuation cards are allowed for a constraint statement.

An implied DO-loop may be useful for applying a constraint to more

than one member of an array. This may be implemented as follows:

FOR v=a,b,c REQUIRE logical expression

where v is an INTEGER variable and a, b, and c are integer constants,

variables, or expressions. a, b, and c must not contain any commas. This

means that variables with more than one subscript cannot be used as the

index variables. The logical expression will then be checked for all

values of v from a to b, incrementing v by c. If c is omitted, it will

be given the value 1. If a is larger than b, the logical expression will

be checked for v equal to a.

11

Ifmore than one index (up to a total of three) must be varied, the

AND clause should be used as follows:

FOR v=a,b,c AND w=d,e,f REQUIRE logical expression

At least one blank must appear after FOR. At least one blank must appear

before AND and before fEQUIRE. No embedded blanks are allowed anywhere

else before the beginning of the logical expression.

12

CHAPTER 7

THE CONVERSATION SECTIONS

The conversation sections consist of statements which define both the

conversation to be conducted with the user and the related actions to be

carried out. The program will print values, change values, check constraints,

run the model, etc., according to the responses the user gives as his part

of the conversation. See Appendix B for more information about how a PAL

program executes.

The $PROGRAM and $SUBROUTINE directives mark the beginning of each of

the conversation sections of a PAL program, as well as
the end of the

previous section. If an $END directive is found in a conversation section,

itwill indicate the end of that section. If an $END directive is found

in one of the declarative sections, that will be considered the end of

all of the declarative sections. The first non-comment card after an $END

directive must be a $FORTRAN, $PROGRAM, $SUBROUTINE or $END directive.

The $END directive is useful when you wish to insert FORTRAN code

(see Chapter 8) after the end of one section and before the next section.

If no FORTRAN insertions are to be done, the $END directive is
not necessary

anywhere in the PAL program.

The formats for these cards are:

$PROGRAM [6name]

$SUBROUTINE sname

$END

The symbolic name sname is optional on the $PROGRAM card. If it is

present, a FORTRAN PROGRAM card with the name sname will be generated

13

preceding the FORTRAN code produced from the PAL $PROGRAM section. Otherwise

no FORTRAN PROGRAM card will be generated. The symbolic name snane is

required on the $SUBROUTINE card. The name begins with the first non­

blank character after the word $PROGRAM or $SUBROUTINE and may be no

more than six characters long. No embedded blanks are allowed. The name

must not be the same as any of the subroutines used in the simulation model

or any other user-provided routines. Inaddition, the name must not be

on the reserved name list in Appendix A.

There are four types of statements allowed in a $PROGRAM or $SUBROUTINE

section. They are:

1. 	 Identifier staten'ent

2. 	Text statenxmt

3. 	 Action statement

4. Reaction statement

Statements may appear in any order with the following restrictions:

1. 	 Reaction stat.emenLs must always appear in sets of two to

51 statements.

2. 	An action statement containinI a -REQUEST command or a set of

reaction statements must always he preceded by a text statement.

IdenItifier Statement

An identifier statement is a non-executable statement which allows

control to be transferred to the staLemen', following it. See the explana­

tion of the >GO TO coniiiand in Chapter 9.

name 	 of two to four charactersThe 	 statement consists of a symbolic

beginning in column one. The name must not contain a greater-than (>)

or 	equals sign (=). The first character must not be a dollar sign ($)

or 	asterisk (*). No embedded blanks are allowed. Each identifier state­

ment 	used within a $PROGRAM or SSIJBROUTINE section must be unique.

14

Text Statement

A text statement consists of text, possibly in the form of a question,

which will be displayed to the user when the statement is executed.

A text statement may consist of one to four parts. Each part has

a different purpose and will be dispiayed to the user under different

circumstances. See "Text Statements and Modes of Conversation" in

Appendix B for more information.

Each part of the statement must begin in column one with an identifying

letter as follows:

L - long text

S or B - short text or both long and short text

E - explanation text

C - choice text

A B used to designate a short text means that the short text will be con­

sidered a part of the long text as well. A text statement may contain

any of these parts subject to the following rules:

1. Those parts which are present must appear in the above order.

2. No part may be used more than once.

3. An S and a B may not appear in the same text statement.

4. An E must be preceded by an L, S or B.

Columns 2-4 of the statement must be blank. The text itself will

appear in columns 5-72. When the statement is executed, the text will

be displayed exactly as it is written, with all blanks intact.

Action Statement

An action statement consists of one or more commands. When an action

statement is encountered during the execution of the PAL program, those

commands are executed.

The statement begins with an A in column two. Columns one, three,and

15

four must be blank. The commands may begin anywhere after column four.

Reaction Statement

Reaction statements are similar to action statements in that they

consist of one or more commands. The difference is in how they are

handled during execution. When a set of reaction statements is encountered,

a single asterisk (*)is printed indicating that the user must respond

to the preceding text statement. Only the reaction corresponding to the

user's response will be executed. See "Reaction Statements" in Appendix

B for more detail.

Within each set, reaction statements should be numbered sequentially,

starting with 1. Columns one through four must be blank except for the

reaction number which must start in column two. It must not contain any

embedded blanks.

16

CHAPTER 8

LANGUAGE DIRECTIVES

Two language directives are provided. Their formats are:

$FORTRAN

$PAL

The $FORTRAN directive indicates that the following statement(s)

is (are) in FORTRAN and should be copied directly into the object code.

The SPAL directive indicates the end of the FORTRAN code. Any other

directive will also indicate the end of the FORTRAN code.

Because of the complex way in which PAL programs are translated

into FORTRAN, there are restrictions on where you can insert FORTRAN

code using these directives. A FORTRAN insertion may be done only in or

immediately before the $CONSTRAINTS, $PROGRAM, and $SUBROUTINE sections.

The insertion cannot be done in the middle of a statement, i.e., the

$PAL directive may not be followed by a continuation card. In a $PROGRAM

or $SUBROUTINE section, the insertion may not precede either an action

statement containing a >REQUEST command or any reaction statement.

The following FORTRAN statements should not be used:

1. PROGRAM

2. SUBROUTINE

3. FUNCTION

4. BLOCK DATA

5. RETURN (ifthe insertion appears in a PAL $PROGRAM section)

6. END

17

7. all specification statements

Care must be taken in using statement numbers because they may duplicate

numbers produced by the PAL translator. For more information,see

Chapters VIII and IXof the PAL Programmer's Guide (Class-3).

18

CHAPTER 9

COMMANDS

The body of an action or reaction statement is composed of commands.

All commands in a program must begin with a greater-than sign (>)followed

immediately by the command name (or a variable name for the assignment

command). There may be blanks between the command name and the argument

list, if present. However, blanks are never allowed within a variable

name. In general, no blanks are allowed within an argument list.

Exceptions are noted in the command descriptions. The command must appear

entirely on one line in the program with the exception of the assignment,

>IF, >CALL, >PRINT, and >READ commands.

The commands listed below may be used in a PAL program. There is a

slightly different set of coiwnands which may be used at a terminal during

execution of a PAL program. See Appendix C for information about the

interactive use of PAL commands.

1. >va = exptession

The assignment command sets the indicated variable equal to the value

of the expression.

There may be any number of blanks on either side of the equals sign

as well as within the expression. The variable may be subscripted. If

it is, the subscript must conform to FORTRAN rules. Any FORTRAN expression

may appear on the right-hand side. If any non-standard FORTRAN FUNCTION

is used, the programmer is responsible for making it available at execution

time. The left-hand side of an assignment, including the equals sign,

must appear on one card. The expression may use up to 17 continuation

cards.

19

2. >CALL sname [(ag 1, ... , argn)]

This transfers control to subroutine sname. When the subroutine has

finished, control will return to the command or statement following the

call.

The name may be that of a PAL $SUBROUTINE section or a FORTRAN

subroutine. If it is a FORTRAN subroutine, the programmer is responsible

for making it available at execution time. An argument list may be

included only for a call to a FORTRAN subroutine.

Blanks are allowed anywhere after the word CALL. The word CALL must

appear entirely on one card and the remainder of the command may not use

more than one continuation card.

3. >CHECK

This command will check the current values of variables to see if

they meet the requirements of the $CONSTRAINTS section. If no $CONSTRAINTS

section appears in the program,a >CHECK will have no effect. All violations

of those requirements will be printed at the terminal. The user will

then be allowed to change current values to meet the constraints. He

will also be allowed to override the constraints by indicating his

approval of the violations which have occurred. See "Constraint Violations"

in Appendix B and Chapter IV of the PAL Programmer's Guide (CLASS-3)

for more information.

20

4. 	 >CONVERSATION (oAg)

This 	command sets the conversation mode as follows:

Oag 	 mode

LONG or L Long conversation

SHORT or S Short conversation

COMMAND or C Commands only

At the beginning of execution of any PAL program, the mode will automatically

be set to LONG.

5. 	 >EXIT

This terminates execution of a PAL program.

6. 	>EXPLAIN (voA)

If voA is a common variable and an explanation for it was provided

in the program, that explanation will be printed. If voA is a local

variable or if there is no explanation field for voA, a message to that

effect will be printed.

Dimensions may be included with the name in the argument list but

they will be ignored.

7. 	>GO TO iname

This transfers control to the statement following the identifier

statement with name iname.

Any number of blanks are allowed between GO and TO and between TO

and the identifier name. No blanks are allowed within the identifier

name.

21

8. >IF (logicat expre.&4ion) command

If the logical expression is true, the command following
it is

If not, the command is ignored.
executed.

There may be blanks between the closing parenthesis
and the command.

>IF, is allowed after the expression, but
 Any PAL command, except an

Any FORTRAN logical
the greater-than sign (>)must not be included.

The first four

expression may be used, including blanks wherever desired.

The expression may use up to
 characters [>IF(] must appear on one card.

17 continuation cards.

9. >INITIALIZE

This sets all type INITIAL variables to the values which they had at

the time the last >STORIV command was executed. See Chapter IV of the

PAL Programmer's Guide (CLASS-3) for further information.

10. >PRINT (aAg, va, , va)Ln)

This prints the value(s) of the variable(s) indicated in the argument

If wLg is C, the current values will be printed. If atg is S, the
list.

Since local variables do not have
standard values will be printed.

(See Chapter 10
standard values, the current value will always be printed.

for a further explanation of current and standard values.)

Each print line will be no more than 72 characters long. Each PRINT

When no more values
command will start at the beginning of a new line.

will fit on a line, a new line will be started. A value will not be split

between two lines.

For numeric values, each print line will be divided into six fields.

These fields are twelve characters long and start in columns 1, 13, 25, 37,

Each numeric value will be printed, right-justified, in the
49, and 61.

These fields are not used for
next available field of the print line.

22

HOLLERITH variables. Each HOLLERITH value will be printed starting

in the next available column of the print line, with no blanks separating

it from the preceding value.

I11).INTEGER variables will be printed with a FORTRAN format of (1X,

F11.n) format with n varying with theREAL variables will use a (1X,

magnitude of the value being printed. Extremely large or small values

cause a (1X, El1.5) format to be used. For each HOLLERITH variable,will

the full computer word will be printed, using an A-field format. The

to the maximum number of characters
width of the A field will be equal

that can be stored in one computer word.

to be printed,
If more than one consecutive element of an array is

a range of values may be specified for any or all of the subscripts. If

this were done for a singly-dimensioned array, it would appear in the

argument list in this form:

var(i-j)

where i and j may be integer constants or undimensioned INTEGER variables.

If a range is specified for more than one of the subscripts, the first one

will vary fastest.

A >PRINT command may be
Any number of continuation cards may be used.

split between two cards at any point except within the word >PRINT, within

a variable name, or within a subscript (that is (s1, I2' '3)). Blanks

may appear anywhere in the argument list except within a variable name or

within a subscript.

11. >READ (vaA , ... , vain)

This command will ask the user to enter values for the variable(s)

Command" in Appendix Bindicated in the argument list. See "The >READ

for the details of how it executes.

23

If a variable is subscripted, a range may be specified for any or all

As a result,
of the subscripts in the same way it is done for a >PRINT.

each appearance of a variable name in a >READ command may ask for more

than one value. For all variables excppt HOLLERITH arrays, the program

will read exactly one value per line from the terminal. In contrast,

if a subscript range is specified for a HOLLERITH variable, all of

the values will be read from a single line. This allows the user to

type them in as a continuous string of characters, instead of breaking

them up into separate words. This method assumes that a HOLLERITH array

may be used as some sort of label or table heading. This is probably the

most natural way of entering character information into such an array.

It does, however, riean that a subscript range for a HOLLERITH variable

may not represent more than the number of full words of character information

that can fit on a 72-character line. If more values are required, they

must be read in separately. See Chapter IV of the PAL Programmer's Guide

(CLASS-3) for more information.

Any number of continuation cards may be used. A >READ command may be

split between two cards at any point except within the word >READ, within

the variable name, or within the subscript (that is(s I , s2 , s3)). Blanks

may appear anywhere within the argument list except within a variable name,

within a subscript, or between a name and a subscript.

12. >REQUEST (vaA max)

This causes a response to be read from the terminal in the same way

that a set of reaction statements does. For this reason, it may not appear

in a reaction statement. It may appear in an action statement, but in

this case the action statement must be immediately preceded by a text

statement (just as if it were a set of reactions).

24

After the user's response to the command is read, it is stored in

variable vat. The response must be an integer value greater than zero,

just as it is for a set of reactions. The second argument in the command

specifies the maximum value the
user will be allowed to enter. If the

user enters an illegal value, an error message will be printed and he

will be asked again. See Chapter IV of the PAL Programmer's Guide (CLASS-3)

for more information about using this command.

The variable may be REAL or INTEGER. Itmay be dimensioned, but

the subscript must not contain any dimensioned variables. Max must be

an integer constant or undimensioned INTEGER variable.

13. >RESET

This will set all common variables to their standard values. A >RESET

is done automatically before each PAL program begins executing.
 (See

Chapter 10 for further explanation.)

14. >RETURN

This returns control from a PAL $SUBROUTINE to the point from which it

was called.
 It may not appear in a $PROGRAM section. If no >RETURN

appears in a PAL $SUBROUTINE, one will be assumed to exist immediately

after the last statement.

15. >RUN

This command executes a call to the simulation model specified on

the $MODEL card. When it is finished, control returns to the following

command (or statement, if >RUN is the last command in a statement). If

there was
no $MODEL card, a warning message will be printed at execution

time. See Chapter IVof the PAL Programmer's Guide (CLASS-3) for more

information.

25

16. 	 >STORIV

This takes the current values of all type INITIAL variables and stores

them in a special table for use by an >INITIALIZE command. See Chapter IV

of the PAL Programmer's Guide (CLASS-3) for more information.

26

CHAPTER 10

THE STANDARD VALUE FILE

A simulation model will usually have a "standard" or "base-run"

value assigned to each variable in the program. When the model is run

using these values, that is considered a "base run." For testing

purposes, one or more values may be changed and the results compared with

those of the base run. Inorder to run any PAL program which contains

one or more $COMMON sections, the model builder must provide a file of

standard values.

The value that a variable has at any given time is referred to as

its "current" value. When a PAL program begins executing, all common

variables are initialized to their standard values so that the current

and standard values are the same. Whenever a value is changed by the PAL

program, the model, or the user, it is only the current value that changes.

Whenever a >RESET command is executed, the current values of all common

variables are reset to the standard values.

Note that local variables only have current values, not standard

values. The current values may be initialized by using the local variable

statement, but values for them must not be included on the standard value

file. For this reason, a >RESET command has no effect on local variables.

The file itself contains the standard values for each variable in

each $COMMON section in the order in which they are declared in the PAL

program. The file is binary (created by an unformatted FORTRAN write

statement) with 63 central memory words per logical record. If the size

of a common block is not exactly divisible by 63, the last variable of

the common block will be written in the middle of a logical record.

27

Rather than starting the next common block in the middle of a logical

record, the remainder of that record is not used. Because short records

are not allowed, the remainder of that record must be filled with some­

thing (anything). The next common block will start at the beginning of

the next logical record.

28

APPENDIX A

RESERVED NAMES

The FORTRAN code which the PAL translator produces from a PAL program

will contain special subroutines, common blocks, and variables which are

necessary for proper execution of your program. The symbolic names used

for this purpose are always the same,and they are reserved for the use

of PAL. Ifyou use any of these names in your PAL program or in your

simulation model, the results will be unpredictable.

The PAL translator does not check for these names inyour program, so

you will not be warned or prevented from using them. Therefore, it is

very important that you remember not to use these namies.

All of the reserved names begin with one of the following

prefixes:

Czz
LZZ

SZZ
zzz

29

APPENDIX B

EXECUTION OF A PAL PROGRAM

A PAL program will begin execution with the first statement in the

$PROGRAM section. If there is more than one $PROGRAMsection (as there

will be when a program is overlayed), execution will begin with the first

$PROGRAM section. Two chings are always done automatically before the

program starts executi.,. First, the standard value file is read in to

give values to all common variables.
 Second, the mode of the conversation

is set to long.

Text Statements and Modes of Conversation

A text statement consists of conversational material which is to be

displayed to the user. At execution time, one or more parts of each

text statement will be printed at the terminal.
 The mode of the conversation

controls which parts are printed.

There are three modes of operation for a PAL program. One of them is

command mode, in which no text statements are printed at all. Command mode

is explained later.
The other two modes are long conversation mode and short

conversation mode.
Long mode is intended for a user who is unfamiliar

with the program and needs a full explanation of how to use it. Short mode

is for the user who has used the program enough that he finds most of the

explanations unnecessary and only needs brief prompts to get through the

conversation.

In the long mode, the long text and the choice text will be printed

for each text statement. If there is
no long text and there is a

short text, the short text will be printed instead of the long text.

30

In the short mode, only the short text will be printed. If there is

a long text, only the long text will be printed.
no short text and there is

If there is no short text and no long text, only the choice text will be

printed.

If no B text is used, then the long text consists of only the L text

and the short text consists of only the S text. If a B text appears, the

long text will consist of both the L text (ifpresent) and the B text,

while the short text will consist of only the B text.

Reaction Statements

Each set of reaction statements and each action statement containing

a >REQUEST command will require a response from the user. The preceding

text statement will be printed as described above and then an asterisk (*)

will be printed as a prompting character.

The user must type in an integer which is greater than zero and less

than some maximum number. For a set of reactions, that maximum is the number

of reactions in the set. For a >REQUEST command, the maximum is the second

argument specified in the command.

If there are two reactions or the maximum specified in the >REQUEST

command is two, the user will be allowed to answer with a YES, Y, NO, or N.

A YES or Y answer will be the same as a 1. A NO or N answer will be the

same as a 2.

Instead of responding as described above, the user may enter a command.

See Appendix C for more information on commands. After the command has

been executed, an asterisk will be printed indicating that the computer is

still waiting for an answer to the previous question. The user may enter

commands for as long as he wishes before responding to the question.

31

The user may also ask for more information about the question being

asked. If he enters a question mark (?), an explanation of the legal

responses will be printed. If he enters an L, the long text from the

preceding text statement will be printed. If he enters a C, the choice

text will be printed. If he enters an E, the explanation text will be

printed.
 If he asks for a text field which was not provided for the

preceding text statement, a message to that effect will be printed.

After he finally riesponds to the question, one of two things will

happen. If he was responding to a >REQUEST, the number of his choice will

be stored in the variable appearing in the command and the remainder of the

action statement will be executed.

If he was responding to a set of reaction statements, the reaction

corresponding to the number of his choice will be executed.
The commands

in the statement are executed in the order they appear.
When the last

command in the statement has been executed, the other reaction statements

in that set are ignored and control transfers to the staterment following

.the set of reaction statements. A reaction statement may have no commands

in it, in which case control will immediately transfer to the statement

following the set of reaction statements.

The >READ Command

Each >READ command will require the user to enter one or more values

for the variable(s) in the command.
In this case,a double asterisk (**)

will be printed as a prompting character.

The number that the user enters must be a legal FORTRAN constant of

the same type as the variable. A decimal point is not required fo, real

constants. The E form of real
numbers can not be used. For HOLLERITH

32

variables,the H-field descriptor must not be used; only the exact characters

desired in the answer should be entered. Numeric answers must not contain

any blanks. See Chapter IV of the PAL Programmer's Guide (CLASS-3) for more

information on the >READ command.

Instead of entering a value as described above, the user may enter a

command. See Appendix C for more information about commands. After the

command has been executed, a double asterisk will be printed indicating that

the computer is still waiting for a value. The user may enter commands

for as long as he wishes before enitering a value.

If the user wants to know more about the meaning of the value he is

being asked for, he can enter a question mark (?). The name of the variable

(and its subscripts, if it is an array element) will be printed for him.

If the variable is a common variable and an explanation was provided for

it in the PAL program, that explanation will be printed.

Constraint Violations

If a >CHECK command is executed and constraint violations are found,

the user will be required to enter commands to resolve those violations.

First, the FORTRAN logical expressions that were violated will be printed.

Then the user will be asked if he knows how to proceed to correct them.

If he does not, an explanation will be printed telling him how to resolve

the violations by using commands. See Appendix C for more information on

the use of commands.

The program will then switch automatically to command mode and will

remain in command mode until the user has resolved the constraint violations.

Then execution of the program will automatically resume.

The constraint violations can be resolved in two ways. If the user

approves of the violations and wants the model to run using those values,

33

he can use the >OK command, which will cause the conversation to resume.

If he wants to change the illegal values, he can do this with the assignment

command.
Then he can enter a >CHECK command, which will check the constraints

again and, if they are satisfied, cause the conversation to resume. If

there are still any violations, he must again try to resolve them using

one of the two methods described above.

Command Mode

When the mode of operation is set to command mode, the conversation

will be interrupted and the user will be required to enter commands. An

arrow (4)will be printed at the beginning of each line as a prompting

character. The greater-than sign may be omitted from any commands

entered during command mode. The >RUN command may be used only during

command mode; it may not be entered unless the prompting character is an

arrow (4). See Appendix C for more information on commands.

34

APPENDIX C

INTERACTIVE USE OF COMMANDS

Whenever a PAL program asks for a response from the user, the user

may type in a command. This command will be interpreted and executed

by the PAL library routines.

Each command begins with a greater-than (3)sign which is immediately

followed by the command name (or by a variable name for the assignment

command). There may be blanks between the command name and argument list,

if present. Blanks are not allowed anywhere else.

Only one command may be entered per line. The entire command must

fit on one line; no continuations are allowed. The line must be no longer

than 72 characters. Some command names can be abbreviated by using just

the part of the name that is underlined o:i the list below.

The set of commands listed below may be entered from a terminal during

execution of a PAL program. This set of commands is slightly different

than the set of commands which Is allowed in a PAL program (described

in Chapter 9). There are two commands (:-OK and >VARIABLES) which are not

allowed in a PAL program. There are six commands (>CALL, >GO TO, >IF, >READ,

>REQUEST, and >RETURN) which may not be used from a terminal. There are two

commands (assignment and >PRINT) which differ in form,depending on whether

they appear in a program or are entered from i terminal.

Commands

1. >vaA=value

The assignment command sets the indicated variable to the value

following the equals sign. The value must be a legal FORTRAN constant

of the same type as the variable. A decimal point is not required for

real constants. The E form of real numbers can not be used. For HOLLERITH

35

variables, the H-field descriptor must not be used; only the exact characters

desired in the answer should be entered. Numeric values may not contain

any blanks.

If the variable is an array, it must have integer constants for

subscripts. Ifmore than one consecutive element in an array is to be

set to the same value, a range may be specified (for example, Y(1-4,3-6)=O.O).

2. 	>CHECK

This command will check the current values of variables to see if

they meet the requirements of the $CONSTRAINTS section. See "Constraint

Violations" in Appendix B for more information.

3. 	>CONVERSATION (aoLg)

This command will change the conversation mode as specified by

Ag.

conve-sat.ion
a~g 	 mode

LONG 	or L long

Short 	or S short

COMMAND or C command

4. 	 >EXIT

This command stops the PAL program.

5. 	>EXPLAIN (vat)

If the variable is a common variable and an explanation was provided

for it in the PAL program, that explanation will be printed. The variable

36

name 	may include subscripts, but they will be ignored.

6. 	>INITIALIZE

This sets all type INITIAL variables to the values which they had at the

time the last >STORIV command was executed. Ifno >STORIV command has

been executed, this command will not work properly. This command differs

from >RESET in that it affects only type INITIAL variables. See Chapter

IV of the PAL Programmer's Guide (CLASS-3) for more information.

7. 	>OK

This command indicates your approval of any constraint violations

which have occurred. The program will resume execution.

8. 	 >PRINT (W9g, JAi)

This command will print the value of a variable. This command

differs from the >PRINT command allowed in a program in that only one

variable name may appear in each command and, if subscripts are used,

they must be integer constants (not variables). See the >PRINT commanid

in Chapter 9 for details about how the command works.

9. 	 >RESET

This command will reset all common variables to their standard

values. It has no effect on local variables.

10. >RUN

This command executes a call to the simulation model specified on

the $MODEL card. If there was no $MODEL card, a warning message will

be printed. This command differs from all of the others, in that it
can

be used only when the program isoperating in command mode. The reasons

for this are explained in Chapter IV of the PAL Programmer's Guide (CLASS-3).

37

11. 	 >SAVE

common variablesThis command will write out the current values of all

See Changing Valuesin a form suitable for use as a standard value file.

on the Standard Value File in Chapter V of the PAL Programmer's
Guide

(CLASS-3) for more information.

12. >STORIV

This takes the current values of all type INITIAL variables and

See a special table for use by an >INITIALIZE command.
stores them in

Chapter IV of the PAL Programmer's Guide (CLASS-3) for more information.

13. >VARIABLES

names and dimensions of all variables declaredThis command prints the

in the PAL program.

38

CLASS Documents

Number 	 Ti tle

1 	 "Computer Library for Agricultural Systems Simulation:
A Progress Report," Michael H. Abkin and rai w. Carroll.
(July 1976)

2 	 "Software Standards Manual." (July 1976)

3 	 "Policy Analysis Language, Version 2.3, Programmer's
Guide for CDC Cyber Computers," Claudia S. Winer and
Chris Wolf. (July 1976)

4 	 "Policy Analysis La.guage, Version 2.3, Reference
Manual," Claudia S. Winer anc Chris Wolf. (July 1976).

5 	 "Policy Analysi4 Language, Version 2.3, Guide to
Using a PAL Program," Claudia S. Winer and Chris Wolf.
(July 1976)

6 	 "DEMOGC: Dewography with Distributed Age Cohorts,"

Michael H. Abkin and Chris Wolf. (July 1976)

7 	 "DEMOGD: Demography with Discrete Age Cohorts,"

Michael H. Abkin and Chris Wolf. (July 1976)

8 	 "Distributed Delay Routines: DEL, DELS, DELF, DELLF,
DELVF, DELLVF," Michael H. Abkin and Chris Wolf.
(July 1976)

9 "Table Functions: TABEL, TABEX, TABUL, TABUX," Michael
H. Abkin, Chris Wolf, and Tom W. Carroll. (July 1976)

10 	 "AGACC: Accounting Routine for the Agricultural

Sector," Dennis Pervis and Chris Wolf. (July 1976)

11 	 "User's Guide for the Beef Cattle Enterprise Simulation

Model," Michael R. Jaske. (July 1976)

12 	 "User's Guide tc SYSOPT: An Interactive System

Optimization Computer Prngram," Marcus Buchner.

(AugUst 1976)

