
ACENCY I'OR INTERNATIONAL DEVIEL0P.rIJT FRAD USE ONLY
WAIII14M TON. 0, C. 20 '1

BIBLIOGRAPHIC INPUT SHEET e4 / 63
A. I°II|AAV f

,. ,) it. f. I TEMPORARY
CL ASI

). SUEC(JiDARY
FICATION

2. TITLE AND SUBTITLE

Policy Analysis Language,version 2.3: programmer's guide for CDC Cyber computers

3. AUTHOR(S)

Winer ,Claudia; Wolf,Christopher

4. DOCUJMENT DATE I. NUMBER OF PAGES 16. ARC NUMBER
1976 1 66p.I AR C

7. REFERENCE ORGANIZATION NAME AND ADDRESS

Mich .State

8. SUPPLEMENTARY NOTES (Sponsorlng Organlzatlons Publishers, Availability)

(In Computer Library for Agr.Systems Simulation. CLASS doc.no.3)

9. ABSTRACT

(LIBRARY & INFO.SCIENCE R&D)

10. CONTROL NUMBER 111. PRICE OF DOCUMENT

P/y- A- -_ _0_7
12. DESCRIPTORS 13. PROJECT NUBER

Computer programs Simulation
Data processing 14. CONTRACT NUM1ER
Decision making CSD-2975 Res.

Programing languages 15. TYPE OF DOCUMENT

AID '90o.1 14-74)

POLICY ANALYSIS LANGUAGE

VERSION 2.3

PROGRAMMER'S GUIDE FOR

CDC CYBER COMPUTERS

Claudia S. Winer

Chris Wolf

COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION

CLASS Document No. 3

Agricultural Sector Analysis and Simulation Projects

Supported under Contract AID/csd-2975

U.S. Agency for International Development

Department of Agricultural Economics

Michigan State University
East Lansing, Michigan

July 1976

TABLE OF CONTENTS

Page
CHAPTER

I. INTRODUCTION 1

II. THE DECLARATIVE SECTIONS 6

III. THE CONVERSATION SECTIONS 11

IV. COMMAND USAGE 19

V. THE 	STANDARD VALUE FILE 28

VI. DEBUGGING A PAL PROGRAM 36

VII. 	 PREPARING A MODEL FOR USE WITH A PAL

CONVERSATION 42

VIII. INSERTING FORTRAN IN A PAL PROGRAM 45

IX. OVERLAYING A PAL PROGRAM 49

APPENDIX A - USING PAL ON THE CDC 6500 56

APPENDIX B - FORTRAN CODE GENERATED BY THE PAL

TRANSLATOR 59

iii

COMPUTER LIBRARY FOR AGRICULTURAL SYSTEMS SIMULATION

The Computer Library for Agricultural 	Systems Simulation (CLASS) is

one of the four major activities of the Agricultural Sector Analysis
and Simulation Projects at Michigan State Unviersity under U. S.

Agency for International Development Contract AID/csd-2975. The

other three major interrelated project activities include theoretical
and methodological research, the Development Analysis Study Program,

and field activities, primarily in the Republic of Korea.

The pro.iect objective is to develop an approach to institutionalizing

an analytical capacity for planning, policy formulation, program

development, and project implementation for agricultural sector

development within the public decision making structure of developing

countries. A major component of the analytical capacity is a series

of system simulation models tailored to the needs of the individual

country. Much of the ,experience gained from the field activity and

the knowledge gained from the theoretical and methodological research

added to the present stock of knowledge about building and maintaining

analytical capacities for agricultural sector development can be

preserved and extended in the training provided through the Develop
ment Analysis Study Program and in the stock of model, component, and

utility routine computer software documented in the Computer Library

for Agricultural Systems Simulation.

In full operation, the Computer Library for Agricultural Systems
Simulation (CLASS) acquires, catalogs, maintains and distributes
computer programs and associated documentation. These computer

programs are of generalized simulation models, components, and

routines designed specifically for the analysis of agricultural

development problems and processes. In particular, the library sets
standards of admissibility for programs and documentation; catalogs

and indexes programs and documentation so as to facilitate their

retrieval by users seeking a set of programs to be used in a specific

problem analysis; and disLributes programs and documentation to users.

To enhance the effectiveness of the library, its functions also

include identifying and soliciting needed models; actively bringing

programs and documentation up to the library's standarfds; and

providing limited consultation in identifying and impleme ting

appropriate library programs for a particular application. A subsidiary

function of the library in conjunction with the identification and

solicitation of models is to survey and catalog ongoing research in

agricultural systems modeling and simulation.

The CLASS document publication series is the main vehicle for informing
potential users of the substance of CLASS holdings and activities.

July, 1976 	 George E. Rossmiller
Di rector
Agricultural Sector Analysis and

Simulation Projects

v

PREFACE

This document is intended as a guide for the programmer

who is using the Policy Analysis Language (PAL) Version 2.3. It

explains the use of PAL, from writing a program to running it.

There are two related documents. The PAL Reference Manual

(CLASS-4) defines the syntactical elements of the language.

Guide to Using A PAL Program (CLASS-5) is a short guide written

for nonprogrammers who will be using a PAL program from a terminal.

The initial progranming for PAL was done by Frank Huybrechts,

Carl Wright,and Tom Hamby. We wish to thank Dave Watt for his help

in many areas, especially in testing PAL; Mort Rahimi and Mike

Abkin for the initial conceptualization and valuable design suggestions;

and Judy Pardee for her infinite patience throughout the numerous

retypings of this manual.

Documentation and consultation are available free of charge.

Source code for the translator and the library routines can also

be provided. For more information, or for comments on PAL or this

manual, contact Chris Wolf or Claudia Winer ii Room 306 Computer

Center (355-4701).

Chris Wolf

Claudia Winer

vii

CHAPTER i

INTRODUCTION

Purpose

The Policy Analysis Language (PAL) was developed to make computer

simulation models easy for nontechnical people to use. Normally when

such a user wants to make test runs of a model, he needs the help of a

programer or modeler or both.
 The modeler must explain to him the

model structure, standard input and output options, etc.
 The programmer

must then make the necessary changes, run the program, and give the

results to the user.

PAL can simplify this process by allo!.-ing the nonprogrammer to run

the model himself. The modeler can write a PAL program which will
con

duct a conversation with the user at the terminal.
 The program can

explain to the user the same things the model designer might have explained,

such as the model structure and the areas that can be explored.
This

program can allow the user to change variables which are of interest to him,

to choose the output he desires, and to make repeated runs of the model.

A PAL program may be constructed to offer the user two alternative

sets of messages--typically a set of detailed explanations for the novice

user and a set of brief prompts for the experienced user. In addition,

whenever the user is expected to enter input, he may choose to enter commands

for changing and printing data values, running the model, or performing

various other actions. If desired, all functions may be performed by

commands, bypassing the conversation entirely. This capability is particu

larly useful to the programmer when checking out the model.

Although developed for use with simulation models, PAL is suitable

for use with almost any FORTRAN program. Throughout this manual,we will

use the term "model" to refer to the FORTRAN program.

Structural Overview

A PAL program consists largely of text statements which are printed

at the terminal at execution time. There are also statements which read

in the user's responses to the text and perform various functions

depending on his responses. If the user desires, he may bypass the pre

to
programmed conversation and enter commands directly from the terminal

do what he wants.

The major divisions of a PAL program are called sections. The

structure of a PAL program is defined by ten PAL directives which specify

the sections of the program. Each directive name begins with a dollar

sign ($). The directives are classified into three types as shown

below:

Declarative Section
Directives

Conversation Section
Directives

Language
Directives

$MODEL
$COMMON
$LOCAL
$TYPE
$CONSTRAINTS

$PROGRAM
$SUBROUTINE
$END

$FORTRAN
$PAL

The $MODEL section tells the name of the model to be used with

the conversation. The $COMMON section is used for declaring the variables

to be shared between the PAL program and the model. The $LOCAL section

is used for declaring variables to be used only in the PAL program. In

the $TYPE section, variables whose types are to be different than their

FORTRAN default can have their types specified. The $CONSTRAINTS section

is used by the model designer to disallow particular variable values

that he feels are unreasonable or could cause errors in the model. The

$PROGRAM and $SUBROUTINE sections contain the text for the conversation

and the program for executing it. In addition, actual FORTRAN statements

may be inserted by the use of $FORTRAN and $PAL directives. None of

these sections is required, but most programs will contain at least a

$MODEL section, $COMMON section, and $PROGRAM section.

Using a PAL Program

There are two steps required in compiling a PAL program. First you

use the PAL translator, which reads in a PAL program and translates it

into FORTRAN. Then you compile this FORTRAN program,using the FORTRAN

compiler. The result of this will be a binary version of the conversation.

See Appendix B for more detailed information about the contents of this

fi le.

You must also create a file which contains default values for the

variables used in the PAL program. This is called the standard value file.

Chapter V has more information about the standard value file.

To execute the program you need four files: the conversation file,

the standard value file, the file containing the compiled model, and a

file containing the PAL library routines (which carry out most of the

functions of PAL). These files are depicted in Figure 1.

The conversation file will contain a main program which will be the

overall ,executive" for the run. The model will consist of one or more

subroutines. To execute the model, the conversation will call the

"executive" subroutine of the model.
 In some models this will be the only

3

STA ARD VALUE

FILE CONVERSATION FILE

>

PROGRAM NAME

SUBROUTINE HERE

MODEL FILE PAL LIBRARY ROUTINES FILE

SUBROUTINE MODEL SUBROUTINE SZZTXT

SUBROUTINE SZZVIO

SUBROUTINE OTHER

SUBROUTINE SZZRED

Figure 1

4

subroutine; in others, this routine will call other routines which will

carry out various functions. The model will print the results for the

user andwhen it is finished, control will
return to the conversation.

The conversation may end at that point or it may allow the
user to make

more changes and make further runs.
 The user can end the conversation

whenever he wishes.

Appendix A explains in more detail the procedures for compiling

and running a PAL program.

5

CHAPTER II

THE DECLARATIVE SECTIONS

$MODEL Section

The $MODEL section consists of one card which gives the name of the

model. When the model is used with the conversation, the main program of

the model must be converted to a subroutine. When the time comes in the

conversation to execute the model, the subroutine whose name is on
the

$MODEL card will be called.

$COMMON Section

A $COMMON section is a means of declaring that a FORTRAN common

block from the model is to be used in the PAL program. The $COMMON

section will contain all of the variables from the common block, with

their dimensions. Each variable may also have an "explanation." The

explanation is what will be shown to the user if he requests further

information about that variable. The explanation should be written in

nontechnical terms that the user can readily understand. It should not

be thought of as program documentation.

The variables in a $COMMON section are used to create a labeled

common block. The variables will appear in the common block in the order

in which they occur in the $COMMON section. Normally, the variables

will match those in the model's common block in name, type, and

dimensions. If they are not identical, care should be taken to insure

that the variables are aligned properly and that the total sizes of the

blocks are the same.

Any model variables that are to be referenced in the PAL program must

be included in the $COMMON sections. It is the only way of communicating

6

between the model and the PAL program, so all policy variables should be

included. Also, any variable whose value the user may want to change

should be included, as well as any variable whose value is to be printed

by the PAL program.

Standard and Current Values

A simulation model will usually have a "standard" or "base-run"

value assigned to each variable in the program. When the model is run

using these values, it is considered a "base run." For testing purposes,

one or more values may be changed and the results compared with those of

the base run. These values can also be used as default values, so the

user only changes those he is interested in and the rest retain their

standard values automatically. In order to run any PAL program which

contains one or more $COMMON sections, you must provide a file of standard

values.

The value that a variable has at any given time is referred to as its

"current" value. When a PAL program begins executing, all common variables

are initialized to their standard values so that the current and standard

values are the same. Whenever a value is changed by the PAL program, the

model, or the user, only the current value changes.

For more information about the standard value file see Chapter V.

$LOCAL Section

The $LOCAL section is a means of declaring the variables that are

to be used only in the PAL program and not in the model. Variable

explanations, as provided for in the $COMMON section, are not allowed

in the $LOCAL section. The standard value file, which contains default

values for all those variables which occur in the $COMMON sections, does

7

not have values for local variables. However, the local variable statement

may specify initial data values in a way similar to a FORTRAN DATA

statement.

$TYPE Section

The $TYPE section is used to declare nonstandard variable types. A

variable will automatically assume the type it would have as a FORTRAN

variable. Ifyou wish to change the default type, a REAL or INTEGER

statement may be used. There are also two non-FORTRAN variable types:

HOLLERITH and INITIAL.

A HOLLERITH variable is
one that is used for character information.

REAL and INTEGER variables should not be used for character information,

and HOLLERITH variables should not be used for numeric irformation.

A type INITIAL variable may be declared to be any o the other three

types as well. Type INITIAL is particularly useful for simulation models.

It is used for a variable whose value changes during a simulation run and

the-efore must be re-initialized for the next run. Since LOCAL variables

are used only in the PAL program--not in the model--they cannot change

during a run. For this reason, LOCAL variables should not be declared

type INITIAL.

As an example, suppose a user wishes to make several runs of a simu

lation model of Michigan. The price of horses is a policy variable.

Its standard value is $700 and the price increases 10% per year for the

length of the run. The user follows the conversation, changing several

variables. He decides that the initial value for the price of horses

will be $750 for this set of runs. After he makes these changes, he is

8

ready to run the model. When the model is run, the price of horses

will increase from $750 to $1098 (for a five-year run).

The user will then be asked if he wishes to make more changes and

do another run. If he wants the next run to incorporate all of the

changes from the previous run, he has a problem. If he lepves all the

values ,.s they are, the price of horses will start at $1098 for the

next run. If all of the variables are set back to their default values,

the price of horses will start at $700 instead of $750, and he will

lose all the other changes he made as well.

By declaring the price of horses to be type INITIAL, this problem

can be resolved. There is a command called >STORIV which can be executed,

Just before a run of the model is made, to save the current values of all

type INITIAL variables. Then, after the run is made, those values can

be restored with a command called >INITIALIZE. The values of non-INITIAL

variables will not be affected by either of these two commands. The

price of horses will be $750 and the user can make whatever other changes

he wants for the next run. See Chapter IV for more information on the

use of >STORIV and >INITIALIZE.

$CONS1RAINTS Section

The $CONSTRAINTS section contains statements which restrict the

values that variables may take on. Any of the variables in the $COMMON

or $LOCAL sections may be used. This gives the model designer a means of

disallowing values that are incorrect or unreasonable. Anything which

might cause a program error (such as dividing by zero) should also be

included.

After the user has entered all of his values, they can be checked

against the constraints. If any of the constraints are violated, they

9

will be printed at the terminal, and the user will be given instructions

on how to fix them. The constraints that are violated are printed

exactly as they are written--as FORTRAN logical exoressions. They should

be as
readable as possible because constraint violations will nCt be

an easy thing for a user to fix.
 He will have to understand the FORTRAN

expression,and he will have to be able to enter the necessary PAL commands

to fix them.

In some instances, it might be easier for the
user if the checking

were done as he enters the values.
 Then he can be given more specific

feedback on what he has done wrong as soon as he has done it. The

>REQUEST command is sometimes useful for this purpose.
See Chapter IV

for more information.

10

CHAPTER III

THE CONVERSATION SECTIONS

The $PROGRAM and $SUBROUTINE sections contain the statements which

conduct the conversation with the user.
There are four types of state
ments that are used. Text statements contain the exact text that isto

be written out to the user at the terminal. Action statements contain

commands which carry out functions of the program.
 Reaction statements

are similar to action statements, but whether they are executed or not

depends on the user's responses. Identifier statements are used for

branching.

Sample Program and Execution

Here isan example of a
partial PAL program for a simulation model of

Michigan.

$MODEL MICMOD

$COMMON BLOCKI

OUTSW

NPRT-THE NUMBER OF POINTS INTIME TO BE PRINTED (6PER RUN MAXIMUM)
TPRT(6)-TIMES TO BE PRINTED (ONE FnR EACH TIME TO BE PRINTED)

$PROGRAM MICHIG
L WELCOME TO THE MICHIGAN PROJECTION MODEL. THIS MODEL IS BASED
ON THE MSU PROJECT 80&5 AND ISCOMPOSED OF SIX COMPONENTS WHICH
INTERACT TO PROJECT MICHIGAN AGRICULTURE TO 1985. POLICIES ARE
IMPLEMENTED INTHE MODEL BY CHANGING PARAMETER VALUES, AND ARE
GROUPED BY COMPONENT. FROM WHICH COMPONENT WOULD YOU LIKE TO SEE

OUTPUT?

C 1. HUMAN POPULATION

2. LIVESTOCK POPULATION

3. LAND ALLOCATION

4. PRODUCTION

5. DEMAND

6. ACCOUNTING

7. NONE

1 >OUTSW=1

2 >OUTSW=2

3 >OUTSW=3

4 >OUTSW=4

5 >OUTSW=5

6 >OUTSW=6

7 >OUTSW=O

11

L SIMULATION RESULTS ARE DISPLAYED FOR 1970, 1975, 1980, AND 1985.

WOULD YOU LIKE TO SELECT PRINTOUT TIMES OTHER THAN THESE?

1 >EXPLAIN (NPRT) >READ (NPRT)

>EXPLAIN (TPRT) >READ (TPRT(1-NPRT))

2 >TPRT(1)=1970. >TPRT(2)=1975. >TPRT(3)=1980.

>TPRT(4)=1985. >NPRT=4

L OK, HERE WE GO.

A >RUN >EXIT

If this conversation were to be translated and executed, this is what

it would look like at the terminal. The user's responses have been under

lined.

WELCOME TO THE MICHIGAN PROJECTION MODEL. THIS MODEL IS BASED

ON THE MSU PROJECT 80&5 AND IS COMPOSED OF SIX COMPONENTS WHICH

INTERACT TO PROJECT MICHIGAN AGRICULTURE TO 1985. POLICIES ARE

IMPLEMENTED INTHE MODEL BY CHANGING PARAMETER VALUES, AND ARE

GROUPED BY COMPONENT. FROM WHICH COMPONENT WOULD YOU LIKE TO SEE

OUTPUT?

1. HUMAN POPULATION

2. LIVESTOCK POPULATION

3. LAND ALLOCATION

4. PRODUCTION

5. DEMAND

6. ACCOUNTING

7. NONE

*4

SIMULATION RESULTS ARE DISPLAYED FOR 1970, 1975, 1980, AND 1985.

WOULD YOU LIKE TO SELECT PRINTOUT TIMES OTHER THAN THESE?

*YES

THE NUMBER OF POINTS INTIME TO BE PRINTED (6 PER RUN MAXIMUM)

**3

TIMES TO 'E PRINTED (ONE FOR EACH TIME TO BE PRINTED)

**1977

**1982

*'1987

OK, HERE WE GO.

This would be followed by a table of output values produced by the

model.

Sample Program Analysis

The sample program begins with a declaration of one of the connon

blocks that is in the model, BLOCK1. The variables OUTSW, NPRT, and

TPRT comprise the block. The last two have explanations provided, which

12

are used later in the conversation. TPRT is
an array which is dimensioned

to 6.

After the $COMMON section is
a $PROGRAM section.
The first text

statement to be printed is defined by the L in column 1. This indicates

that the following text is the long text.
This is the text that would

normally be used.
 Other types of text will be discussed later. Note

that the text ends with a multiple-choice type of question.

After the long text comes the choice text, indicated by the C in

column 1. As you can see
in the actual run of the program, the choice

text is printed just as
it appears in the program, directly following

the long text.
A single asterisk then appears at the terminal, telling

the user to type in the number of his choice.

The statements that are numbered 1 through 7 in column 2 are called

raaction statements.
 The number the user chooses determines the number

of the reaction statement that will be executed.

A reaction statement may contain one or more commands.
 Notice that

all commands begin with a greater-than sign (>). These particular

reaction statements contain only assignment commands.
 Other commands are

used later in the program. The assignment command does just what it would

in FORTRAN; it assigns the value on the right hand side to the variable

on the left hand side. The user in the example has picked choice 4,
so

OUTSW will be set to 4.

Following through the program, the next text statement simply

requires a YES or NO answer, so no choice text is necessary. A YES

answer will always correspond to reaction 1,
a NO to reaction 2. The user

chose YES, so reaction number 1
was executed.
This time two different

commands are involved.
 First the >EXPLAIN is executed, which prints the

explanation of the variable.
Then the >READ is executed. That is,the

13

user is asked to provide a value for this variable. The double asterisk

appears and the user types in his value. Then the next >EXPLAIN and

READ are executed. This >READ specifies a range for the subscript.

That means that values are to be read in for TPRT(1), TPRT(2),

TPRT(NPRT), one right after the other.

After that, the last line of text is written out. This text state

ment is a little different than the previous ones, in that it does not

ask a question. For this reason it does not need a set of reactions.

The last statement is an action statement. It consists of commands

which are to be executed at this point in the program. It does not

depend on a choice from the user; it will always be executed. It is

denoted by an A in column 2. Here, zwo commands are to be executed.

The >RUN calls and executes the model, and the >EXIT stops execution of

the PAL program.

Text Statements and Modes of Conversation

As indicated above, the text statement can be used in three different

ways. The first one is a multiple-choice question, which the user must answer

with a number. The second is a yes or no question. The third type is

declarative or descriptive, requiring no response from the user. The

first two types must be followed by reactions, while the third type

must not be.

After a user has executed the same conversation several times, he

will no longer need to have all of the text written out. In fact, he

will probably prefer a shorter version, in order to speed up the con

versation. PAL allows the programmer to provide an abbreviated text.

14

Here iswhat the sample program might look like with short text.

$PROGRAM MICHIG

L WELCOME TO THE MICHIGAN PROJECTION MODEL.
 WHICH WOULD YOU PREFER?

C 1. THE LONG CONVERSATION

2. THE SHORT CONVERSATION (NOT RECOMMENDED FOR BEGINNERS)

1

2 >CONVERSATION(S)

L THIS MODEL ISBASED ON THE MSU PROJECT 80&5 AND ISCOMPOSED OF

SIX COMPONENTS WHICH INTERACT TO PROJECT MICHIGAN AGRICULTURE TO

1985. POLICIES ARE IMPLEMENTED INTHE MODEL BY-CHANGING

PARAMETER VALUE,
AND ARE GROUPED BY COMPONENT.

B FROM WHICH COMFUNENT WOULD YOU LIKE TO SEE OUTPUT?

C 1. HUMAN POPULvTION

2. LIVESTOCK POPULATION

3. LAND ALLOCATION

4. PRODUCTION

5. DEMAND

6. ACCOUNTING

7. NONE

1 >OUTSW=I

2 >OUTSW=2

3 >OUTSW=3

4 >OUTSW=4

5 >OUTSW=5

6 >OUTSW=6

7 >OUTSW=O

L SIMULATION RESULTS ARE DISPLAYED FOR 1970, 1975, 1980, AND 1985.
WOULD YOU LIKE TO SELECT PRINTOUT TIMES OTHER THAN THESE?

S DIFFERENT PRINT TIMES?

C 1. YES

2. NO

1 >EXPLAIN(NPRT)

>EXPLAIN(TPRT)

2 >TPRT(1)=1970.

>TPRT(3)=1980.

>NPRT=4

>READ(NPRT)

>READ(TPkT(1-NPRT))

>TPRT(2)=1975.

>TPRT(4)=1985.

L OK, HERE WE GO.
A >RUN >EXIT

The question above that asks from which component output isdesired

has a B in column 1. That indicates tha the following text is both

part of the long text and part of the short text. Thus the long text

consists of the L
text plus the B text, while the short text consists of

only the B text.

15

The first question asks the user whi:ch text he wants. If the

answer is the short text, the >CONVERSATION command is used to

change the "mode" of the conversation from long to short. The conversation

always starts out in the long mode, which prints the long text and

choices. If there is no long text, the short text is printed. If the

mode is changed to short, only the short text is printed. If the short

text does not exist, then the long text is printed. So no matter what

mode the conversation is in something will always be printed for every

text statement.

Occasionally you may want a particular text omitted entirely in

the short mode. The only way to do this is to put an S in column one

and leave the rest of the line blank. This will print a blank line at

the terminal.

For more information, see the section "Text Statements and Modes

of Conversation" inAppendix B of the PAL Reference Manual (CLASS-4).

There is one other type of text, the explanation text. Ifyou

feel a novice user may not find the long text sufficient, a further

explanation may be provided. It is not automatically printed in either

mode of conversation,and the user must ask for it by entering an E at

the terminal. He does this when the computer is waiting for him to

make a choice. Here is an example of an E field.

L WHICH 1IiPE OF FERTILIZER WOULD YOU LIKE TO APPLY?
E THE THREE COMPONENTS OF FERTILIZER ARE NITROGEN-PHOSPHORUS-

POTASSIUM.
C 1. 6-24-24

2. 6-18-6
3. 4-10-10

16

Identifier Statements

Branching isaccomplished ina PAL program by use of an identifier

statement. This iscomparable to a statement label inFORTRAN, but it

must appear on a line all by itself. Here isan example.

L WOULD YOU LIKE TO EXPERIMENT WITH POTATOES?

C 1. YES

2. NO

1

2 >GO TO CORN

L WHAT WOULD YOU LIKE THE PRICE OF POTATOES TO BE IN 1970?

A >READ(PRPOT(1))

L WHAT WOULD YOU LIKE THE PRICE OF POTATOES TO BE IN 1985?

A >READ(PRPOT(16))

CORN

L WOULD YOU LIKE TO EXPERIMENT WITH CORN?

Reaction Statements

Reaction statements are used wherever the user isto be given a

choice between two or more options, and you want the program to execute

different commands depending on his choice. The statements always appear

in sets of 2 to 51, and they are always preceded by a text statement. The

text statement must be there to ask him a question or explain the choices

available to him.

Out of each set of reactions, only one statement will be executed

each time. The statement that will be executed will be the one with the

same number as the user's response. The commands inthe statement are

executed inthe order they appear. When the last command inthe statement

has been executed, the other reaction statements in that set are ignored

and control transfers to the statement following the set of reaction

statements. A reaction statement may have no commands in it, inwhich case

control will immediately transfer to the statement following the set of

reaction statements.

17

Whenever a set of exactly two reaction statements isfound,

PAL will accept a YES or NO answer instead of a numeric one. In this

case, an answer of YES or Y or 1 will result inexecution of the first

reaction statement. A NO or N or 2 will execute the second reaction.

See "Reaction Statements" inAppendix B of the PAL Reference

Manual (CLASS-4) for more information.

18

CHAPTER IV

COMMAND USAGE

Some of the PAL commands require a little more explanation than is

provided in the PAL Reference Manual (CLASS-4) in order to be used as

effectively as possible.
They are described here in alphabetical order.

It is best to read the section in the Reference Manual about each command

before reading the description here.

1. >CHECK

This command checks the current values of variables to see if their

values meet the constraints specified. If no $CONSTRAINTS section appears

in the PAL program, the >CHECK command will have no effect.
This capability

is provided primarily to catch ridiculous values which may be caused by

typing errors or a misunderstanding of what kind of value is needed.

Some values may even cause a machine error (such as dividing by zero).

The constraint statements cannot be checked individually. Every

time a >CHECK is executed, every constraint will be checked. For this

reason, a >CHECK will
usually appear only once in a program. Itwill be

at a point where all of the values that may be changed have been changed,

and itwill be before the >RUN command.

Normally the >CHECK will be the command immediately preceding the

>RUN command. The exception to this will
occur when type INITIAL variables

are used. Then if the >CHECK was executed, the user would correct those

illegal values and the model would run.
 But the values that had been

stored would still be the illegal ones, which is not a desirable situation.

So the sequence of comminds should be:

A >CHECK >STORIV >RUN

19

See the >INITIALIZE and >STORIV commands for more information.

A constraint statement nay not always be the best way to find

illegal values. An unsophisticated user may have difficulty correcting

his values when confronted with a constraint violation if he is unable

to read FORTRAN logical expressions and use a few PAL commands. If

there are particular places in your PAL program where a user is likely

to enter illegal values, it may be better to write your own code to

check the values as they are entered. This way you can do a much better

job of explaining to the user what he did wrong.

2. >INITIALIZE and >STORIV

These commands are used only if a program contains type INITIAL

variables. Otherwise, they have no effect. See "$TYPE Section" in

Chapter II to determine ifyou need INITIAL variables.

If type INITIAL variables are declaea in a PAL program, the translator

sets up a table large enough to contain the values of all of these

variables. This table will be used at the time the conversation is

executed.

The >STORIV command takes the current values of all type INITIAL

variables and stores them in the table mentioned above. The >INITIALIZE

command takes the values from the table and reassigns them to the

variables. Thus their current values will become the same as they were

when the last >STORIV was done. Note that these commands do not deal

with the standard value file at all. They deal only with current values

(which, of course, may happen at times to be the same as the standard

values).

20

A >STORIV command must be executed before the first time an

>INITIALIZE is done. If not, the initial value table will not have any

values in it. Then >INITIALIZE would cause the current values to be

set to something unpredictable and probably illegal.

It is important to understand the difference between >RESET and

>INITIALIZE. The purpose of a >RESET is to undo all changes the user

may 	have made to program variables. It does this by replacing all

current values with standard values.
 This means the user is starting

all over as
far as setting values is concerned. rhe purpose of an

>INITIALIZE is
to undo all changes to variables which may have been

caused by running the model.
 This means the user is starting again

with the values which were current just before the model
was run. These

may or may not be the same as the standard values. He may then make

further changes and run the model again.
 In contrast, if a >RESET were

done, he would lose all of the nonstandard vdlues he had used for the

previous run.

3. 	>PRINT

The >PRINT statement in PAL isquite easy to use because it does

not 	require anything like a FORTRAN FORMAT statement. However, ifyou

want 	specific spacing to print labels or headers, it
can be complicated.

The techniques described here may simplify things somewhat.

A new print line is started whenever a new >PRINT command is found

or when the previous print line is full.
 This means that one >PRINT

command,with five variables specified in its argument list,will print

one line of values, while Five consecutive >PRINT commands, each containing

one variable,ill print five separate lines.

21

Each numeric value will be right-justified in one of the six 12

column fields predefined by PAL. Each HOLLERITH value will be printed

with an (AIO) format and will start in the column immediately following

the previous value. Suppose, for example, you used one >PRINT command

to print one numeric value, three HOLLERITH values, and another

numeric value. The first numeric value would be right-justified in the

first field, ending in rolumn 12. The three HOLLERITH values would

occupy the next 30 columns, column 13 through column 42. The last

numeric value would be right-justified in the next available field,

column 49 through column 60.

Suppose yoii wanted headings for each of the six numeric fields. One

way to do this would be to write a text statement before the >PRINT

command. This text statement would be the entire header line and could

be spaced accordingly. Another way would be to print a line of HOLLERITH

variables. You could not, however, print six HOLLERITH variables and

expect them to line up with the six numeric fields because HOLLERITH

variables are printed with no blanks in between. Each one begins where

the previous one ended. What you must do then, is to print a full line of

HOLLERITH variables, including blanks exactly where you want them.

Probably the best way to do this is to declare a LOCAL HOLLERITH array

and initialize it to the desired HOLLERITH values.

It is important to remember that local variables do not have

standard values. A >PRINT command will always print the current value

of a local variable, even if the S argument is used.

Another thing that cannot be done directly in PAL is to print

standard and current values on the same output line. This is because a

single >PRINT command prints all current or all standard values, and

each new >PRINT command starts a new line. The way to get around this

22

is to use a dummy local variable as follows:

A >DUM = LENGTH >PRINT(S,LENGTH,DUM)

The current value of DUM will be equal
to the current value of LENGTH

and,because it is a local variable, the >PRINT will automatically print

its current value.
 So the first value on
the line will be the standard

value of LENGTH and the second value will be the current value of LENGTH.

4. >READ

When using >READ,it is important to remember that HOLLERITH variables

are handled differently than other variables.
 Normally only one value

is read in from each line. However, if a range of values in a HOLLERITH

array is to be read, it is assumed that they are intended to be used as

a label of some sort, i.e.,
that they form a single phrase. In this case,

all of the values in the range will be read from one line on the terminal.

Each input line must be no longer than 72 characters and an (AIO) format

is used for each value, so each HOLLERITH array range should represent

no more than 7 values. If
a larger range is used, an error message will

be printed at execution time. The PAL translator does not check for

this.

To avoid confusion and mistakes on
the part of the user, the

conversation should make it quite clear what type of value is expected for

each >READ. If a HOLLERITH value is requested, the user needs to know

how many characters long it should be. Often a good way to do this is

to use an L text field to explain this. It is usually safe to assume

that anyone who uses
the short mode of conversation will not need this

information and will probably not want it.

The >READ command behaves slightly differently than the >PRINT,in

that it makes no difference whether you put a
whole list of variables in

23

one >READ or have a series of >READ's, each containing one variable. The

result that the user sees will be the same in either case.

5. 	>REQUEST

This command is unique in that it can be used only in an action

statement, not in a reaction. The reason for this is that >REQUEST is

designed to replace a set of reactions of a particular form. Suppose a

PAL program contained the following statments:

L 	 WHAT ISYOUR ANNUAL FAMILY INCOME?

C 	 1 $0-4000

2 $4001-8000

3 $8001-12000

4 $12001-20000

5 OVER $20000

1 >INCGRP=I

2 >INCGRP=2

3 >INCGRP=3

4 >INCGRP=4

5 >INCGRP=5

rhis is the type of situation that >REQUEST was designed for. The

set 	of five reactions can be replaced by a single action as follows:

A >REQUEST(INCGRP,5)

Notice that the reaction statements must be removed entirely. The

>REQUEST actually takes the place of the reaction statements. It is not

correct to simply lEae the reaction statements blank and follow them

with 	the action statement containing the >REQUEST. In other words, if

a set 	of reactions is used in conjunction with a particular text state

a >REQUEST is used with a particular
ment, a >REQUEST must not be used; if

text, reaction statements must not be used.

These two different ways of writing this code will do exactly the

same thing and will look the same to the user at the terminal. The only

difference is that the >REQUEST is easier for the programmer to write.

24

The larger the number of reactions needed, the more you save by using

>REQUEST.

Notice that the purpose of the >REQUEST is very specific. Itworks

best 	in the situation above, where all of the reactions do exactly the

same 	thing and the value assigned to the variable is the same as the

reaction number. The further a set of reactions is from fitting these

criteria, the less useful >REQUEST is for replacing the reactionL.

Here 	are two more examples of uses of >REQUEST:

L WHAT COMMODITY WOULD YOU LIKE TO MAKE CHANGES TO?

C 1 CORN
 2 WHEAT 3 BARLEY

4 SOYBEANS 5 RICE
 6 NONE

1 >INDCRP=1

2 >INDCRP=2

3 >INDCRP=3

4 >INDCRP=4

5 >INDCRP=5

6 >GO TO LAST

These reactions can be replaced with:

A >REQUEST(INDCRP,6) >IF(INDCRP.EQ.6)GO TO LAST

Sometimes the values desired may not be the same as the reaction

numbers.

L
 WHAT 	TYPE OF TAX WOULD YOU LIKE TO IMPOSE FIRST?

C 	 1 NO TAXES

2 SALES TAX
3 PERSONAL INCOME TAX
4 BUSINESS INCOME TAX

5 VALUE-ADDED FAX

6 IMPORT TAX

I >ITAX=O >GO TO NTAX

2 >ITAX=I >CALL TAX

3 >ITAX=2 >CALL TAX

4 >ITAX=3 >CALL TAX

5 >ITAX=4 >CALL TAX

6 >ITAX=5 >CALL TAX

These reactions could be replaced with:

A >REQUEST(ITAX,6) >ITAX=ITAX-1 >IF(ITAX.EQ.O) GO TO NTAX >CALL TAX

25

For an example of a case where >REQUEST isnot useful, suppose the

reactions above were changed to:

1 >ITAX=O >GO TO NTAX

2 >ITAX=l >CALL SALTAX

3 >ITAX=2 >CALL INCTAX

4 >ITAX=3 >CALL BUSTAX

5 >ITAX=4 >CALL VALTAX

6 >ITAX=5 >CALL IMPTAX

Here the reactions cannot be replaced because each of them does a different

thing.

This has shown how >REQUEST can be used to replace a set of reactions.

There are also some instances where it can be used instead of a >READ.

Infact, itmay be preferable to a >READ because itchecks the user's

value when he enters itand, if it is illegal, asks him for a new one.

Of course, it can only be used for INTEGER or REAL variables which are

to have integer values from 1 up to some specified maximum. If,for example,

you wish to allow a zero value rr a fractional value, >REQUEST cannot

be used. Suppose you had the following statements:

L FOR HOW MANY DIFFERENT YEARS (UP TO 6) DO YOU WANT RESULTS PRINTED?

A >READ(NPRT)

L ENTER THE YEARS (ONE PER LINE) FOR WHICH YOU WANT RESULTS PRINTED.

A >READ(TPRT(I-NPRT))

IfTPRT is dimensioned to 6 and the user mistakenly enters a value for

NPRT larger than 6, then the next >READ will store something outside the

bounds of TPRT. Ifthe first action were:

A >REQUEST(NPRT,6)

the user will not be allowed to enter a value less than 1 or greater

than 6. This makes the >REQUEST much more desirable than the >READ in

this case.

26

6. >RUN

The >RUN command, when used from the terminal, is different than

all other PAL commands. The >RUN command may be used only when the

PAL program is operating in command mode.
All other commands may be

entered any time the user is asked for a
response, even in conversation

mode,
The reasons for this are explained inChapter IX.

There are also restrictions on where a >RUN command can appear

in a PAL program, if that program is overlayed. These restrictions and

the reasons for them are explained in Chapter IX.

27

CHAPTER V

THE STANDARD VALUE FILE

Every PAL program which contains one or more $COMMON sections, must

have a corresponding standard value file.
The standard value file contains

default values for all of the common variables.

The standard value file is used in three ways.
 It is rea in

immediately prior to the start of the conversation so that all
common

variables are initialized to their standard values.
 It is read inwhenever

a >RESET comiand is executed.
 It is also used for printing standard values.

Note t'at local variables have only current values, not standard

values.
 The current values may be initialized by using the local variable

statement, but values for them must not be included on
the standard value

file.
For this reason, a >RESET command has
no effect on
local variables.

The standard value file contains the standard values for each

variable in each $COMMON section in the order in which they are declared

in the PAL program.
The file is binary (created by an unformatted

FORTRAN write statement), with 63 central memory words per logical record.

If the size of a common block is
not exactly divisible by 63, the last

variable of the common block will be written in the middle of a logical

record.
Rather than starting the next common block inthe middle of a

logical record, the remainder of that record is
not used. Because short

records are not allowed, the remainder of that record must be filled with

something (anything).
The next common block will start at the beginning

of the next logical record.

Creating a Standard Value File

There are several ways in which a standard value file can be created.

A separate FORTRAN orogram may be written to create the file.
 For each

28

$COMMON section in the PAL program, the FORTRAN program should contain

an array dimensioned to the length of that section. The values to go

on the file should be put into the array(s), perhaps in DATA statements

or by reading data cards. The values within each array must be in the

same order as the variables in the PAL $COMMON section.

Once the correct values are in the array(s), a FORTRAN subroutine

called SZZCRE can be called. SZZCRE is part of the PAL package and is

available on a permanent file. There must be one call for each $COMMON

section. SZZCRE will take the array(s) and write out a standard value

file in the proper format. Three arguments must be provided in the call

to SZZCRE. The form of the call should be:

CALL SZZCRE(ARRAY,NSIZE,LUNIT)

where ARRAY is the array of data values, NSIZE is the dimension of ARRAY,

and LUNIT is the number of the logical unit you would like the standard

value file to be written on. LUNIT will be the same for all of the calls.

The order of the calls must correspond to the order of the $COMMON sections

in the PAL program.

ARRAY may be real or integer, but the values stored in it must have

the proper internal representation for the type of the variables they

correspond to. For example, suppose you decide to use a real array

called DUMMY, and suppose the first variable on your file is an integer

variable, NPRT, with a desired value of 4. Suppose you put its value

into DUMMY with the following statements:

DUMMY(1) = 4

The value would be converted to real representation before it was

stored. It would be written this way on the standard value file by

SZZCRE. Then,when it was read back in to run the conversation, it would

29

be treated as an integer value.
 This could cause many errors inyour

program. There are several ways to avoid this. EQUIVALENCE statements

can be used with variable names of the correct type. DATA statements

and READ statments will generally allow you to put a value of one

type in a variable of a different type.

If you have a working model, there is an easier way to create the

file. The model will already be using the proper common blocks and, at

some point near the beginning of a run, the variables should all have their

standard values. At that point, you should insert calls to SZZCRE to

create the standard value file. There should be one call for each

$COMMON section. The first argument in each call should be the first

variable in the corresponding common block. As before, you must include

the size of the common block and the logical unit number. The order of

the calls must correspond to the order of the $COMMON sections in the

PAL program. The calls should be followed by a STOP statement, unless

a full run of the model is desired at the same time. After the model

finishes,you can catalog the newly created standard value file for use

with the conversation. Here is an example of a model set up to write

a standard value file:

PROGRAM MICH(TAPE1,TAPE7)

COMMON /BLOCK1/ TPRT,NPRT,DAIRY(17), GRAINS(17), FRUIT(17)

COMMON /BLOCK2/ DEMAND, PROD,LgDGRN(12)

DATA NPRT,TPRT /4,1970./

READ(l) DAIRY,GRAINS,FRUIT

READ(1) DEMAND,PROD,LNDGRN

CALL SZZCRE(TPRT,53,7)

CALL SZZCRE(DEMAND,14,7)

STOP

END

When using either method of creating the standaru value file, you

should make sure that all variables have their desired values at the

point where SZZCRE is called. Failure to do this may result in constraint

violations or errors at execution time.

Listing the Standard Value File

After the standard value file has been created, there may be times

when you will want to know what the values on it are. You may wish a

list of values to see if it was created correctly or just because you

forgot what some value was. There is a program called STDWRT that will

list your standard value file for you. It is part of the PAL package

and is available on a permanent file.

In order to run STDWRT,you will also need the first three FORTRAN

subroutines that PAL produces when it translates your PAL program. These

contain information, such as variable names and dimensions, that is needed

to print out the values. The names of the three routines are: SZZPAL,

SZZDAT, and SZZINC. They will always be the first three subroutines of

a compiled conversation, so you can copy them to another file easily.

See Appendix B for a full description of the FORTRAN routines that PAL

produces.

The standard value file to be used as Input should be on unit 7.

Unit 9 will contain the output, which will be a listing of variable names

and their values. You can copy it to a printer ifyou want it printed,

or you can save it for later use. There will be a blank at the beginning

of each line for carriage control.

Each variable to be printed will start on a new line. For arrays,

six values will be printed per line. Each line will be 72 columns wide.

31

right-justified in 12-cola umn field. Each

HOLLERITH value will be printed with a (2X,A1O) format. Arrays will be

printed with the first subscript varying fastest.

Each numeric value will be

Changing Values on the Standard Value File.

There may be times when you want to change some of the values on the

standard value file.
 You might, for example, come up with a better

estimate for some parameter in the model and want to replace the old

value on the standard value file.
 You might want to make several copies

of the standard value file with slightly different values representing

different base runs.
 Or you might be using a conversation at a terminal

and wish to save the changes you have made to the current values to be

used for a run at some other time.

The >SAVE command will allow you to do these things easily.
You

begin by executing the PAL conversation, using the old standard value

file.
 You change the values that you want changed, either by entering

commands or by following through the conversation. When all the vaiiables

have the desired values, you enter the >SAVE command. This takes all

the current values and writes them on logical unit 8 in the correct form

for a standard value file.
 You can then continue using the conversation

and running the model,or you can enter an >EXIT command to end the

conversation. When you are finished you must catalog TAPE8 for later use.

You may use the >SAVE command as many times as you wish during a

single execution of the conversation. However,the saved file is always

rewound before it is written on.
 This means that at the end of execution

only the last set of saved values will be on the file.
 Ifyou want to

32

save more than one set of new values, each must be saved ina separate

run of the conversation.

Itis best to enter a >CHECK command just before you use the >SAVE.

This will insure that illegal values are not written on the file.

There isanother method of changing values on the standard value

file. This method is usually less convenient than use of the >SAVE

command. Its most useful application is for changing the size of a

standard value file. How to change the size of the file will be

described in the next section.

This method of changing values uses two separate FORTRAN programs.

One is STDWRT which was described in the previous section. The other is

ascalled STDCHG, and it uses the output from STDWRT its input file. Then

itwrites out a new standard value fije.

You must first run STDWRT as described above and save the coded

output file with the names and values. You can then make changes to that

STDWRT writes the variables
file, putting in the new values that you want.

in a particular format,and you must be careful to maintain that format

so that the file will be read back incorrectly. The line with the

variable name,and the blank lines before and after it,should not be

changed. No lines should be added. The formats for reading the values

back inwill be (2X,A1O) for HOLLERITH variables, (112) for INTEGER

variables, and (E12.0) for REAL variables.

STDCHG also requires the first three subroutines from the compiled

PAL conversation. Itreads the corrected coded file from unit 8. From

this itproduces a new standard value file on unit 7. It then reads

this file back in and writes out a new coded version of the file on unit 9.

33

This isdone just so you can check the values to make sure they are

what you intended them to be. This file is in the same format as that

produced by STDWRT.

Here is a summary of how you would change the standard value file:

Step I: Run STDWRT. The files it uses are:

logical unit 7--(input) the standard value file in binary
form (without corrections)

logical unit 9--(output) the standard value file incoded
form (without corrections)

Step II: Make corrections to the coded file (unit 9). The new file

would become logical unit b inStep Il.

Step III: Run STDCHG. The files it uses are:

logical unit 8--(input) the standard value file in coded
form (with corrections) from Step II

logical unit 7--(output) the standard value file in binary
form (with corrections)

logical unit 9--(output) the standard value file incoded
form (with corrections)

This technique will work only when you are changing the values

that are already on the standard value file. Itwill not allow you to

add or delete variables or rearrange the order of the variables. To do

this, see the next section.

Changing the Size of the Standard Value File

Adding or removing value-s on the standard value file can be done

using STDWRT and STDCHG, but it is a little more involved.

Using your old standard value file as input, run STDWRT to create

the coded file. This will require the first three subroutines from your

old PAL program.

34

Then take the coded file of values and make the desired changes

to it. Remember that the format of the file must be maintained. For

each variable there must be two blank lines, a line with the variable

name, another blank line, andthen the values, six per line in the

appropriate format. So for each variable you add or remove, there will

be at least five lines involved (more for some arrays). Ifyou do not

get this exactly right, the program probably will not work.

Next you must take your PAL program and change the $COMMON sections

to reflect the new number of variables. Then you must recompile it

because you will need the first three subroutines from it for the next

step.

Now you are ready to run STDCHG with the corrected coded file as

input. Use the first three subroutines from the new PAL program. STDCHG

will produce a new standard value file on unit 7. It will also write

a list of the new Jile on unit 9. You should always check this list to

make sure that it matches your input file (unit 8). This will insure

that all the values were read in correctly.

35

CHAPTER VI

DEBUGGING A PAL PROGRAM

Errors may show up in a PAL program in any of the thre following

ways:

1. They may be detected.by the PAL translator.

2. They may be detected by the FORTRAN compiler.

3. They may be detected at execution time.

PAL Translation Errors

During translation of a PAL program, the translator writes on two

files. The PAL source code is listed on the standard output file. Messages

intended to be displayed at a terminal are written on a message file.

See Appendix A for further information about these files.

Any error messages are interspersed with the source code listing on

the output file. A message will always refer to the last statement (not

including comments) printed before the message. The only exception to

this is messages which list unreferenced and undefined identifiers. These

messages will be listed at the beginning of the $PROGRAM or $SUBROUTINE

following the one to which the messages refer.

Fatal error messages are preceded by a line which looks like this:

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>FATAL ERROR<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Any fatal error will result in no FORTRAN code being produced. Nonfatal

errors are simply printed where they occur, with no preceding line. If

only nonfatal errors are found, the object-code will still be produced

and will run properly. The nonfatal error messages are used to point

36

http:detected.by

out things which the programmer may not have done the way he intended.

Separate counts are kept of the number of fatal and nonfatal errors.

These are printed at the end of the output file, after the variable

table. They are also printed on the message file so that you can tell

from a terminal whether there were errors, without listing the entire

output file. If there is no message on the message file about errors,

then none were found.

There are three very common errors which cause many PAL syntax

errors.

The first errnr is putting something in the wrong column. There

are very specific rules about what must appear in the first four columns.

Here is a short review of those rules. A continuation card must be

blank in columns 1-4. A text statement must have an L, S, B, E, or C

in column 1 with blanks in 2-4. An action statement must have an A in

column two, with blanks in 1 and 3-4. A reaction statement must have a

number from 1 to 51 starting in column 2, with columns 1 and 4 blank.

must be blank unless the number has two digits. An identifier
Column 3

must be 2 to 4 characters long, starting in column 1, with the rest of

the card blank. All statements not mentioned above must start in

column 1.

The second error involves the illegal use of blanks. A few state

ments require blanks in particular places; other statements do not allow

them. If the PAL translator indicates a statement is illegal, and the

problem is not immediately obvious, check for extra or missing blanks.

The third error is misuse of the greater-than sign (>) for commands.

Every command must begin with a greater-than. The exception to this

rule is any command which follows the logical expression of an >IF

37

command. This must not begin with a greater-than.

It is very important to remember that when PAL finds an error in
a

statement, it ignores the remainder of the statement. This means that

even if you fix all of the errors that the translator finds on one run,

on the next run there may be new errors in parts of the code that

the translator ignored the first time.

This failure to process a statement beyond the first error will

occasionally result in false error messages.
 For example, if a >GO TO

command is not processed because of an error earlier in the same state

ment, you may get a
message which says that the identifier in the >GO

TO was unreferenced. Another example of this occurs when there is
a

set of two reaction statements with an error in the first one.
Then the

translator does not recognize the first reaction and it will say that

there must be at least two reactijns.

Sometimes when the translator encounters an error,it may not know

exactly what is wrong. It will print an error message, but the message

may not make it obvious what iswrong. Some of the more common causes

of this are missing commas or parentheses, missing or extra blanks, and

variable names or expressions that are too long.

FORTRAN Compilation Errors

There are portions of certain PAL statements which the PAL trans

lator simply copies into the FORTRAN object code, without checking for

syntax errors. Virtually every FORTRAN compilation error that you find

will be a result of one of these statements. The main problem when

dealing with a FORTRAN error is that of determining which PAL statement

it corresponds to.

38

First, you should check to see if the code that caused the error

was inserted using a $FORTRAN directive. The PAL translator does not

check any of this code,and it is very easy to get in trouble this way.

If this was not the problem, then determine what type of FORTRAN

statement caused the error and what routine it is in. Then Table 1 (see

next 	page) will tell you what type of PAL statement you should look for.

This 	should help you find the error.

It is also possible to get a FORTRAN diagnostic indicating that a

certain statement cannot be executed because control will never be

transferred to it. This means that there is a corresponding PAL state

ment which cannot be executed. The way to identify this is to look at

the FORTRAN statements and use the table to try to identify the PAL

statements which produced them.

Execution Errors

Errors in execution are usually more difficult to diagnose than

errors in compilation. There are too many different symptoms to list

them all here, and, in fact, the symptoms of a particular problem may

vary from one machine to another. For this reason,some of the possible

causes of execution errors, not the symptoms, are listed. This should

help you pinpoint problems to a certain extent.

Some 	possible causes of execution errors are:

1. 	Standard value file errors, such as incorrect number of values on

the file, incorrect values, or incorrect positioning of values

(relative to the $COMMON section ordering of variables).

2. 	 Improper use of $FORTRAN directive.

3. 	 Incorrect name on $MODEL card.

39

FORTRAN statement 	 FORTRAN routine PAL statement PAL section

DATA SZZPAL local variable statement $LOCAL

IF SZZCNS constraint statement $CONSTRAINTS

any other routine >IF **

CALL SZZINR (---)* any routine >READ **

CALL SZZINC ...)* any routine >PRINT **

CALL 	 SZZRUN Model name $MODEL

any other routine >CALL **

vu.-zbte=LZZANS any routine >REQUEST **

vau&bZe=FLOAT (LZZANS) any routine >REQUEST
 **

va abe=expresion 	 any routine assignment conand **

* There will be one CALL for each variable used in a >PRINT or >READ command, so each command will
often result in more than one CALL.

** The error in this casekwill be in the PAL $PROGRAM or $SUBROUTINE with the same name as the FORTRAN

routine.

TABLE 1

4. Incorrect subroutine name in >CALL command.

5. A PAL $COMMON section which does not match the corresponding

FORTRAN common block.

6. Illegal subscript value.

7. Using illegal variable name or function name ina subscript,

>CALL command, or the
a constraint statement, an >IF command, a

right-hand side of an assignment command. PAL does not check

the legality of variable names inthese places.

8. Failure to do a >RESET, >STORIV, or >INITIALIZE at the proper

time.

41

CHAPTER VII

PREPARING A MODEL FOR USE WiTH A PAL CONVERSATION

There is usually a simulation model associated with a PAL conversati

One purpose of the conversation is to explain this model to the user. It

does not have to be a simulation model. Any FORTRAN program may be used,

but here we will always refer to it as the model. Usually the model will

have to be modified somewhat in order to be run with the PAL program.

This chapter explains what may need to be modified. If the model has

not yet been written, this should help you inwriting it.

Generally there is a simulation time range associated with a model.

For example,it might cover the years 1960-1980, or perhaps an unspecified

year consisting of 52 weeks, or four seasons a year for five years.

There are two different ways to run a model of this type. The model

may cover its entire time span each time it is called and then return to

the PAL program. The user would then be offered the choice of another

run,which would mean the model would be run again from the beginning.

The other method of running the model would cover only a portion of the

time span at a time. It would return to the PAL program which would

give the user a chance to change some variable values. Then the model

would be run again, starting where it left off and covering the next

time span. It could be stopped in the middle any number of times. This

method is more complicated,and it ismentioned here just to point out

that the model and the PAL program must be made compatible in this

respect.

The model will not be running by itself if a PAL program is used.

It will be called from some point in the PAL program. This means that

42

the main program of the model must be made into a subroutine. The

name of this subroutine is the name that must appear on the $MODEL

card. At the point where the execution of the model would normally end

(usually a STOP statement), you should use a FORTRAN RETURN statement.

This will return control to the PAL program after the model is run.

When the model is run with the PAL program, all of the $COMMON

variables will have their values supplied on the standard value file.

Any statements in the model (such as READ, DATA,or assignment statements)

that give initial values to these variables should be removed. If they

are not removed, they may override any initial values the user has chosen

for those variables in the conversation.

The model should then consist of a set of subroutines which are

executed together to produce the model output. A model which consists

of programs that run separately from each other, perhaps communicating

via data files and requiring specific actions between execution of the

separate programs, is not well suited for use with PAL. If you want to

use the programs as a single model, you should combine them to form a

single set of FORTRAN subroutines. Otherwise,each separate program should

be considered to be a model, and one PAL program will be required for each

one.

You must also create a standard value file for use by the conversa

tion. The chapter on the standard value file explains how to do this.

You should identify all variables which must be declared type

INITIAL. Failure to do this can produce errors in the results. See the

explanation of type INITIAL in the discussion of the $TYPE section in

Chapter II.

43

The PAL conversation uses standard input and output unit numbers

which the model should conform to.
 Unit number 7 is used for the standard

value file, so it should not be used at all by the model. Unit number

5 is used for input and should probably not be used by the model. Any

input done by the model should be done from another file or changed so

it can be done through the conversation. Unit number 6 is used as the

output file. Any writing done by the model atwhich you want to appear

the terminal should be done on unit 6.

44

CHAPTER VIII

INSERTING FORTRAN IN A PAL PROGRAM

For most conversation programs, the flexibility allowed by PAL

will be sufficient. However, in certain instances, you may want a pro

gram to do something that is awkward or impossible in PAL. Under these

circumstancesyou may use the $FORTRAN directive to insert FORTRAN

statements inyour conversation program.

The PAL translator produces a FORTRAN program which is equivalent

to your PAL program. When you use a $FORTRAN directive, the FORTRAN

statements which follow it are copied directly into the FORTRAN program

which the translator is in the process of creating.
Your FORTRAN

statements are not checked for errors.
 Chapter 8 of the PAL Reference

Manual (CLASS74) explains where the $FORTRAN directive may and may not

J,,

be used.

Statement Numbering

One problem you will encounter when inserting FORTRAN code is that

of statement numbering. You must not repeat any statement numbers that

are used in the PAL-generated code.
 This can be done by following the

instructions below.

All of the statement numbers used when translating the $CONSTRAINTS

section will have a last digit of 0,1,2, or 3. This means
that in

FORTRAN insertions in the $CONSTRAINTS section you can use any statement

numbers ending with 4 through 9.

In a $PROGRAM or $SUBROUTINE section,you can always use any statement

45

number whose last two digits are 52 through 58. Ifthis isnot

satisfactory for some reason, you can determine the lowest allowable

value for any particular section. Find the longest set of reactions in

that routine. Then you can use any statement number whose last two digits

are larger than the number of reactions inthat longest set and less

than 58. Ifthe longest set had five reactions, any statement number

If the longest set had twenty reactions,
ending in06 or more could be used.

However, with this
 any statement number ending in21 or more could be used.

method, ifyou add a new, longer set of reactions later, you may create

a conflict with statement numbers you have previously added. Another

riskier rule of thumb isthat unless the section is extremely long, any

number containing five digits will work. Ifyou want to be as safe as

possible, use only numbers ending in 52 through 58.

Special Purpose Variables

These are a few variables inthe FORTRAN conversation which are

used for special purposes. These may be useful to you ifyou are

inserting FORTRAN code of your own. It is not recommended that you change

the values of these variables at any time. Following are explanations

of them.

LZZOUT--This is the logical unit number of the standard OUTPUT file.

Itcan be used ifyou want to print output at the terminal.

LZZANS--This contains an integer number which is the user's answer

to either the most recent set of reactions or the most
recent >REQUEST command. If he were given five choices
and picked number three, LZZANS would be 3. If he answers
a question YES, LZZANS will be 1; if he answers NOit will
be 2.

LZZMOD--This tells what conversation mode is currently in use. A 1

indicates LONG mode, a 2 indicates SHORT mode, and a 3

indicates COMMAND mode.

46

These variables can also be used in certain PAL statements. Variable

names in most PAL statements are checked to make sure they are declared

as common or local variables in your program.
However, some statements

are not checked for illegal names. This means that these variabies

can be used in the following contexts:

(1) Constraint statements

(2) Subscripts

(3) Right-hand side of assignment command

(4) Logical expression in a >IF command

Specific Uses of $FORTRAN

There are many possible ways of using the $FORTRAN directive. Four

possibly useful ways are described below.

Every time a >CHECK command is executed, all of the constraints are

checked.
There are times, however, when a certain constraint may not

apply. In that case,the statement can be skipped over,using the $FORTRAN

directive. For examplie:

$FORTRAN
IF(NPRT.LT.2) GO TO 25

$PAL

FOR I=2,NPRT REQUIRE TPRT(I-1).LT.TPRT(I)

$FORTRAN

25 CONTINUE

$PAL

In this case, if NPRT is less than 2,the constraint on TPRT is ignored.

The PAL translator normally declares four files on the PROGRAM

card itgenerates. These are:
 TAPE5 for input, TAPE6 for output, TAPE7

for standard values, and TAPE8 for saving current values.
 It is possible

that your model may require additional files for some purpose. If so,you

47

can insert your own PROGRAM card. To do so, there must be no symbolic

name on your $PROGRAM directive. This tells the translator not to

generate a FORTRAN PROGRAM card.

You must always include on your PROGRAM card certain files that

are used by the library routines. It is recommended that you set the

buffer sizes to 129. In this case,your file list would start as follows:

=TAPE7=129, INPUT=129,OUTPUT 129,TAPE8=129,TAPE5=INPUT,IAPE6=OUTPUT

If you do not use this exact sequence of file declarations, you may run

into trouble. You should follow this list with your own file declara

tions, If the model uses units 1 and 2, the sequence of cards would look

as follows:

$END
$FORTRAN

PROGRAM X(TAPE7=129,INPUT=129,OUTPUT=129,TAPE8=129,TAPE5=INPUT,

TAPE6=OUTPUT,TAPE1,TAPE2)

$PROGRAM

The PAL >PRINT command is somewhat limited in flexibility. Another

use of the $FORTRAN directive is to insert WRITE and FORMAT statements

to take advantage of FORTRAN's liexibility. One limitation to this is

that only current values can be printed this way. Standard values can

be printed only with the >PRINT command. LZCOUT should be used as the

output unit number for any WRITE statement.

The $PROGRAM directive is also useful when overlaying a PAL pro

gram. The proper method is described in the next chapter.

48

CHAPTER IX

OVERLAYING A PAL PROGRAM

Many simulation models that are likely to be used with PAL require

so much core that they must be overlayed. Even when this is not the

case, the core required for a PAL program and library routines, when

added to'the size of a simulation model, may make *verlaying a neces
sity.
This chapter deals with overlaying PAL programs on a CDC 6500

computer.
Many of the details will not be applicable to other computers.

It is assumed that the reader already knows how to overlay a FORTRAN

program and has read Chapter VIII and Appendix B of this manual.

Overlay Structure

There are many different ways a PAL program can be overlayed. The

only requirement is that the first PAL $PROGRAM section must always be

in the main overlay. This is because this section is always the first part

of the conversation to be executed, i.e.,
it is the overall executive

program for the run.
 It is convenient to classify overlayed programs

into two types, according to the overlay structure.

The simplest type has the entire PAL program in the main overlay.

There will also be at least one subroutine from the model in the main

overlay.
A run of the model will simply require a call to this

"executive subroutine" which will call in various parts of the model as

overlays. The entire conversation and PAL library routines will remain

core at all times.
in This, of course, works best when the conversation

is not too lengthy.

The second type of overlay structure has
a PAL program which consists

of more than one overlay.
This means that the PAL executive $PROGRAM will

49

call in various overlays to conduct portions of the conversation. Some

portions may not even be used for a particular session because the user

may not be interested in certain aspects of the model. A run of the model

will then call in another overlay, replacing part of the conversation.

A great deal of space may be saved this way, but the programming becomes

slightly more complicated.

Overlay Calls

Ifthe entire PAL program is in the main overlay, there will be no

need for any overlay calls within it. A run of the model will result in

a call to the subroutine specified on the $MODEL card, whi..h will contain

all of the necessary overlay calls.

Ifthe PAL program consists of more than one overlay, each portion

of the conversation must be loaded and executed with a command of the

form:

>CALL OVERLAY(...)

This would contain appropriate arguments for each conversation overlay.

If the model is a separate overlay, the $MODEL card should be of

the form:

$MODEL OVERLAY(...)

This would contain appropriate arguments for the call to the model. Then

any >RUN command will result in a call to that overlay.

Overlay Directives

The programmer must also insert the loader OVERLAY cards in front

of the appropriate binary decks. This can be done in three ways. First,

the programmer can deal only with the binary decks. He can go through all

50

of the compilation stages for the model and the PAL conversation, and

then insert OVERLAY cards where needed in the binary decks.
 The second

method would be to insert the OVERLAY cards into the FORTRAN decks. The

PAL program would be compiled into FORTRAN before this was done.

The third method, which is the recommended one, is to insert all

OVERLAY cards that are needed in the conversation with the use of the

$FORTRAN directive. The OVERLAY cards for the model would be inserted

in the FORTRAN program of the model. Thus all OVERLAY cards will be

in the original source decks, whether PAL or FORTRAN.

The fist PAL $PROGRAM, the $CONSTRAINTS section,and the utility

routines generated by the PAL translator must always be in the main (0,0)

overlay. This means that the OVERLAY card for the main overlay must

always be inserted before the $CONSTRAINTS section or, if this is not

present, before the first $PROGRAM or $SUBROUTINE. If it is inserted

before the $CONSTRAINTS, there must not be another OVERLAY card until

after the first $PROGRAM (because they must both be in the main overlay).

The sequence of cards must be

$FORTRAN

OVERLAY(... ,O,O)

$CONSTRAINTS or $PROGRAM or $SUBROUTINE

When inserting the (0,0) overlay card, the $FORTRAN directive must not be

preceded by an $END directive. This is explained below.

The remaining OVERLAY cards (not needed if the conversation is all

one overlay) should be inserted before the appropriate sections of the

PAL program in a similar way. The difference is that the $END directive

must be used here. The sequence of cards would be:

$END

$FORTRAN

OVERLAY(...)

$PROGRAM or $SUBROUTINE

51

Although the use of the $END directive as outlined above may not

make sense, there is a logical reason for it. The $END directive, when

found in a $PROGRAM or $SUBROUTINE section, tells the translator that

the section is finished. The translator then finishes up the odds and

ends involved in generating FORTRAN code, including writing a FORTRAN

END statement. The same thing happens if a new $PROGRAM or $SUBROUTINE

directive is found. However if a $FORTRAN directive is found, it is not

assumed to be the end of the previous section. The FORTRAN code is

simply copied into the generated code because it is assumed to be part

of the section in which it is found. So ifyou try to insert an overlay

card (other than the first one) without using an $END card, the overlay

card will wind up in the middle of a FORTRAN routine.

Now for an explanation of why the first overlay card is different.

The (0,0) card must be the first record on the FORTRAN file that is

produced. There is only one way to make sure that it gets written

there. The first $PROGRAM, $SUBROUTINE, $CONSTRAINTS, or $END directive

indicates the end of the nonexecutable PAL code. When this is found, the

translator immediately writes out several utility FORTRAN routines,

which are needed for execution of the conversation. Ifyou try to

insert the (0,0) overlay card using an $END followed by a $FORTRAN, the

translator will write utility routines on the output file upon finding the

$END. Then itwill insert the overlay card,which of course will not now

be the first card on the file.

Note that ifyou wish to insert an overlay card and also insert

a PROGRAM card of your own, you must use the following sequence (the

$CONSTRAINTS card and statements are optional):

52

$FORTRAN

OVERLAY(...)

$CONSTRAINTS

Constraint statements

$END

$FORTRAN

PROGRAM

$PROGRAM

When overlaying a program, remember that each overlay must have

a transfer address, which means there must be exactly one PAL $PROGRAM

in each overlay.
 In order to effect a return to a calling overlay, use

a >GO TO which transfers control
to the end of the PROGRAM. For this

purpose,you may wish to make the last statement in the program an

identifier. Then a
>GO TO this identifier will terminate execution of

the overlay and return to the calling overlay.

Loading Order

The remaining problem is
to get all of the binary decks loaded in

the correct order.
This can become a problem because the PAL library

routines must be part of the main overlay.

If the entire PAL program is to be in the main overlay,this is not

a problem. First you load the PAL program binary file (which begins

with the OVERLAY (0,0) card and contains no other overlay cards). Next,

load the PAL library routines, thus making them part of the main overlay.

Last, load the model binary file, which will contain the OVERLAY (1,0)

and other overlay cards.

If the PAL program itself consists of more than one overlay,there

are two different ways you can
get the PAL library routines into the

correct position. One method is
to take the conversation binary file,

the library routines, and the model,and combine them all
into one file,

53

using copy routines. The only restriction on the order is that the

library routines must come somewhere after the first two routines (SZZPAL

and SZZDAT) and before the next overlay card on the conversation file.

This will result in one large file containing everything necessary for a

run. The disadvantage of this is that you must either recreat:e this file

from its parts each time you run,or you must maintain a larger file

than necessary (larger,because it contains an "extra" copy of the library

routines).

The alternative is to split the conversation binary file into two

parts which will be loaded separately. The logical place for the break

would be at the end of the main overlay, but it could be done at any

point after the first two subroutines (SZZPAL and SZZDAT) and before

the next OVERLAY card. In order to execute it,you would first load the

first part of the conversation, next load the library routines, then

load the remainder of the conversation, followed by the model. If

desired, the second portion of the conversation and the model binary

could be combined into one file, thus reducing the number of files

requi red.

Running the Model

Using overlays imposes a restriction on the use of the >RUN command.

The >RUN command may be used only in the main overlay. If the entire

PAL program is in the main overlay,this is not a problem. If the PAL

program consists of more than one overlay, then any $PROGRAM or $SUBROUTINE

in a lower overlay must not contain a >RUN command. The PAL translator

does not check for this, so you must be careful when writing the program.

This restriction comes about because of the way one overlay replaces

another one in core. Suppose a >RUN command were encountered during

54

execution of a lower level overlay.
This results in a call to a utility

routine (SZZRUN) which is always in the (0,0) overlay. This routine

calls in the model overlay which will replace the conversation overlay

in which the >RUN was found. When the model is finished,it will return

control to SZZRUN which will attempt to return to the conversation. But

the conversation overlay will no longer be there,and the results at that

point are unpredictable. The conversation will not resume and the program

will probably abort.

This same problem exists for a >RUN command which is entered from

the terminal. Ifsome portion of the conversation other than the main

overlay is being executed when the >RUN command is entered, it may be

impossible to return to the conversation. Some safeguards are built into

the PAL library to minimize this problem. The library routines cannot

differentiate between overlayed and nonoverlayed programs, so these

restrictions apply to all programs. First of all,
it is assumed that a

user who enters a >RUN command is usually not interested in returning

to the conversation. As a result,the user will be required to switch to

command mode before using a >RUN command. This will mean that after the

model
is finished, it will not attempt to return to the conversation.

If he is in command mode and he enters
a >RUN command, he will be warned

that,if he later attempts to change back to a conversation mode, the

program may abort.
After the warning message is printed, the model will

be run for him.

55

APPENDIX A

USING PAL ON THE CDC 6500

Compiling a PAL Program

The PAL translator is available on a permanent file called PAL.

The translator requires about 520008 words of central memory. This does

not vary with the size of the program being translated. For a 600-card

PAL program, central processor time required is about 15 seconds.

The translator uses a total of nine local files: INPUT, OUTPUT,

PALFTN, PALMSG, FZZCOM, FZZDIM, FZZEQU, FZZDAT, and FZZWRK. The PAL

program is read from INPUT. A listing of the PAL program and error

messages will be on OUTPUT. The FORTRAN code produced by the translator

will be on PALFTN. PALMSG is a message file for interactive use (see

below). The five remaining files are scratch files used for intermediate

code and are of no value to the user.

Immediately following the source listing on OUTPUT will be a table

of the variables declared in the program. Each line of the table will

have a variable name in the first column, followed by the characteristics

of that variable. The second column is the type of the variable: REAL,

INTEGER, or HOLLERITH. The third column will indicate if a variable

is LOCAL or INITIAL. A local variable should not be declared INITIAL;

if it is, it will be identified only as LOCAL. The remaining columns

will have the dimensions of the variable if it is an array.

After the variable table will be two lines with information about

the efficiency of a hashing function, which the PAL translator uses. The

efficiency of the function depends on the variable names used in the PAL

program. If any errors were found in the program, the number of errors

will be printed at the end of the listing. If no message about errors

appears, then no errors were found.

56

The FORTRAN code on PALFTN must be compiled by the FORTRAN compiler.

This can be done in the same job as the PAL translation. If there are

fatal errors in the PAL translation, PALFTN will begin with an end-of

file, so the FORTRAN compiler will not compile it.

To compile from a batch job you will need the following control

cards:

ATTACH,PAL,PAL.

PAL.

FTN, I=PALFTN.

CATALOG,LGO,...

This would be followed by an end-of-file and your PAL deck. Ifyour

program is on a file, just put the local file name on the PAL card:

PAL,lfn.

The translator can also be used interactively. In this case,you will

usually want to disconnect OUTPUT before starting or else the entire PAL

program will be listed at the terminal. A special message file, PALMSG,

has been provided for interactive use. Ifyou connect PALMSG before

beginning translation, messages will be printed when the translator

begins each new section of the program. If there are any fatal or nonfatal

errors, a count of the number of errors will be printed. If no message

about errors is printed, then there were no errors found.

Executing a PAL Program

You will generally !ieed four files to run a conversation. One of

these files will contain the compiled PAL conversation. This file must

be the first file loaded because it establishes some of the common block

sizes. You also need the file with the compiled FORTRAN model. The

third file contains the PAL library routines and is available as permanent

file PALLIB.

57

The standard values are read from unit 7. This means that the

standard value file should be attached to TAPE7.
An alternative method

would be to use another local file name and put iton your execution

card. The partial sequence of cards might be:

ATTACH,STDVAL,STDVALUEFILE.

LOAD, ONVER.

LOAD,MODEL.

PALLIB,STDVAL.

The core required for the library routines is about 70008 words.

The size of the compiled PAL program can vary widely, of course, but it

will be roughly 100008 to 300008 words.
 Long text statements, explanation

fields, and constraint statements probably contribute the most to the

length of a program.

58

APPENDIX B

FORTRAN CODE GENERATED BY THE PAL TRANSLATOR

The PAL translator translates a PAL program into a
set of FORTRAN

routines. There are six FORTRAN subroutines produced from the declarative

sections. Following them are the routines produced from the conversation

sections. Each PAL $PROGRAM or $SUBROUTINE produces two FORTRAN routines.

Declarative Sections

The first six subroutines that are generated are:

1. SZZPAL

2. SZZDAT

3. SZZINC

4. SZZINR

5. SZZRUN

6. SZZCNS

All six routines are always written and they are always in the above

order.

SZZPAL is
a BLOCK DATA routine which contains the common blocks from

the PAL $COMMON sections. Since this subroutine is always first, it

establishes the sizes of the common blocks.
 It also contains DATA

statements containing initial values for local
variables.

SZZDAT is
a BLOCKDATA. routine which establishes tables that have

information about the variables in the program.
These tables are used by

the PAL library routines.

SZZINC and SZZINR are interface routines. Sometimes calls must be

made from the conversation to the PAL library routines and additional

59

information must be supplied. The interface routines provide this

information.

SZZRUN is responsible for executing the model.

SZZCNS is generated from the $CONSTRAINTS section. It does the

actual checking of the values against the constraints. If no $CONSTRAINTS

section exists, SZZCNS will be an empty subroutine.

Conversation Sections

Two FORTRAN routines are produced for each PAL section. The first

routine will be a PROGRAM or SUBROUTINE, depending on whether the PAL

section was a $PROGRAM or $SUBROUTINE. Itwill contain the code for

executing the conversation. Its name will be the same as that of the

PAL. section. The second routine will be a BLOCK DATA routine. Itwill

contain DATA statements for storing the text found in the PAL section.

The BLOCK DATA routine generated by the first conversation section will

be named SZZ1O. The BLOCK DATA for the second conversation section will

be SZZ20, the third will be SZZ30, etc., up to SZZ990.

If the PAL program contains no conversation sections, a main FORTRAN

program will be generated with the name ZZZZ. Itwill be set up to

read the standard values into the coninand blocks and place the program

in command mode. When it is executed, an arrow will be printed at the

terminal and the user can then proceed to enter commands.

60

