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On the Non-Optimality of Discounting, and
 
its Correct Generalizations in
 

Investment Project Analysis
 

1. Introduction
 
This largely tutorial note is devoted to a coherant demon­

stration of three results in the theory of investment project
 
analysis which are well-known to theorists but which to date
 
have had only limited impact on practicioners. All of the
 
results are derived in a new and I think illuminating way, using
 
dynamic programming, and are presented for this reason.
 

(i) The first (and only widely applied) result is the follow­
ing: discounting the flows of output resulting from an investment
 
project is the unambiguously correct rule for deciding whether
 
or not to undertake the project--when the project is "small" and
 
the economy is adequately described by a one-sector Ramsey-type
 
optimal accumulation model with malleable capital stock.
 

(ii) Discounting is not an optimal decision rule when there
 
are heterogeneous malleable capital good& in the system. Rather,
 
one must use shadow prices to evaluate the flows of output from
 
the project which depend in a complex way on the future marginal
 
products of all capital goods. Although these shadow prices
 
cannot be expressed as familiar discount integrals, they have
 
a natural interpretation as a multivariate analog of discounting.
 

(iii) Finally, formulas are presented for optimal shadow
 
prices in the case where the investment project is itself large
 
enough to influence future marginal products of capital (and interest
 
rates). In this case, discounting is not a correct decision rule
 
even in a one-sector model, since it is basically a first-order
 
procedure which cannot deal with feedbacks from the project onto
 
the equilibrium prices of the economy.
 

These results are discussed successively in Sections 3-5
 
of this paper. In Section 2 and the appendix, some very
 
general rules for project analysis are derived--all of the
 
foregoing conclusions follow from specializations of these
 
rules. Finally, Secticn 6 contains conclusions and.thoughts
 



about possible extensions of the results presented here.
 

2. General Decision Rules
 

The natural way to view an investment project in
 

the context of an optimal growth model (or any other equi­
librium system) is as a perturbation. That is, one can
 
imagine solving an optimizing model containing whatever sort
 
of descriptive relationsbips seem relevant--production
 
functions, demand functions, etc.-- and then re-solving with
 

the particular flows of product resulting from a particular
 
investment project added to the accounting relationships.
 
Comparison of the optima with and without the project super­

imposed upon the general model of the economy indicates whether 
or not the project should be undertaken. Specifically, if the
 
level of welfare is higher with the project included, then it
 

is worth doing.
 

Given this approach, the whole point of
 
project analysis is to calculate an approximation to the wel­
fare change induced by the project. Of course, it is impossi&.
 
to reprogram the whole economy for every new investment, but
 
various decision rules can be used to short-cut this calculat.
 
and elect projects on more simple grounds. As indicated above
 
the most familiar rule is calculating the present discounted
 
value (PDV) of a project, and checking whether it is positive
 
or negative.
 

What I will do in this section (and the Appendix)
 
is set up a general problem in optimal growth, and derive
 
approximation formulas for the welfare effects of a project/
 
perturbation imposed on an equilibrium solution of the model
 
The approximations are developed using a technique known as
 
differential dynamic programmming, originally proposed by D.
 
Jacobson and D.Mayne for use in calculating numerical solution'
 
to optimal control models2 . The main differences between the
 
formulas of this section and those of Jacobson and Maync lie
 
in the type of perturbation considered and in a restriction
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imposed here that the approximations must be based solely
 
on values calculated in connection with the without-project
 

solution.
 

The problem of interest is the optimization (or,
 

for consistency with most of the optimal control literature,
 
the minimization) of the following welfare functional (of
 
"society" or, perhaps more realistically, of the Central
 
Planning Office):
 

tf.­

L(xu,t)dt + FEX (tf) , tf3 (1) 
to 

subject to the differential equations,
 

dx/dt= =f(x ut) p(2)
 

initial conditions,
 

x(t) = x0.given, (3) 

and terminal conditions,
 
G& tf), tf =01 (4)
 

where the state variables x and control variables u are
 
expressed as column vectors with m and n elements respectively,
 
L and F are scalar-valued functions, f is an m-component vector
 
Function, and G is a vector function with p (<m) components3 .
 
(all functions are assumed to be twice-continuously dffaentiab.e.)
 

In economic terms, the usual interpretations of all
 
these variables and functions are the following: The state
 
variables x are stocks of "malleablel'capital (no restrictions
 
have been placed on the rate of disposal of the capital stock)
 
and the control variables correspond to flows of products or
 
resources. The function L is q "felicity" function giving
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the welfare resulting from instantaneous levels of stock
 
and flow variables and the vector-valued function f gives
 
the rules for accumulation of stocks. The functions F and
 
G represent alternative ways of specifying terminal stock
 
levels--F gives a welfare weight to terminal stocks (e.g.
 
a scrap value on capital stock) while G constrains the levels
 
of terminal stocks to lie within 3ome manifold or to certain
 

4
 
point values.


The solution to this problem can be expressed most
 
simply in formal terms if the constraints (4) are adjoined
 
Lagrange-wise to the welfare functional with a (transposed)
 

multiplier vector k':
 

t 

L(x,u,,t)dt+FE (t )I tfj + G (tf),tj (') 
t 
0,
 

Let VO (x,k,t) be the value of the optimized welfare
 
functional when the problem is solved with x as 
the vector of
 
initial values of the state variables, t as the initial time,
 
and k as 
the multiplier on the terminal contraints. This
 
"optimal return function" satisfies the boundary condition
 

VO (x,k,t) = 	 F (0,t)+ k'G(x,t) 
on tne hyjersurface G (x,t) (5) 

with k chosen in such a way that (4) is satisfied. Its value
 
at the particular point (x0pt0 ) with optimal choice of k is
 
the value of 	the functiona.L (1) when it is minimized with
 
respect to (2) -(4).
 

It is well known that a general sufficiency condition 
for the solution of (1)-(4) is that the optimal return function 
satisfy the Hamilton-Jacobi-Bellman partial differential 

5 
equation,
 

-*VO= Min (xu,t) + VO f (xIut 
 (6)
 



where VO is the vector of partial derivatives of V with
x 
respect to x, written as a row. From this equation follow
 
the usual optimality conditions for the control problem
 

(1)-(4) including the condition for an (internal) minimum
 
of the Hamiltonian function
 

x
H (xuV t) = L (x,u,t) + Vx f (x,u,t):
 

H L + V 0 f 0, (7)
U U x 

where Hu and L are row vectors of partial derivatives with
 
respect to u, and f is the m x n matrix of first derivatives
 

of the m-vector f with respect to u. If one treats V° as a
 
xfunction of time along an optimal path, the Euler equations
 

can also be deduced from (6) in the form:
 

=-H =- L - V0 f(
 
xx (8) 

with associated boundary conditions,
 

V°x (ti)fg x +k' Gx t= t f° (9) 

Equations (8) and (9) are identical to the equations
 

satisfied by the costate variables in the solution to a control
 

problem based on the Minimum Principle--the solution technique
 
often used in the optimal economic growth literature. Thus
 

the costates can be interpreted as partial derivatives along
 
an optimal trajectory of the optimal return function with
 

respect to the state variables. The recommendation that these
 
variables be used as shadow discount rates is made precisely
 
because they have this interpretation. We now will examine
 
the extent to which this "first order" interpretation of the
 

costate variables is valid.
 

To do this, we follow Arrow and Kurz/2/ by introducing
 

a small amount of non-malleable capital into our pristine neo­



classical world in the form of an investment project which
 
generates a vector of flows of product r(t), 
whose time­
phasing and product-mix cannot be varied. 
If the project is
 
undertaken, the capital-accumulation equation (2) becomes
 

.(2')
X f(x,u,t) + r(t) 


We explore the responses of the economy to this new pattern
 
of accumulation 6
 

Let W be the optimal return function for the problem
 
with the project. By assumption, the problem without the
 
.project has been solved, and the optimal values 
for the
 
state. variables (written henceforth as x°), control variables
 

°
(u ) and the multipliers on the terminal constraints (k°)
 
are all known. The optimal solution to the with-project problem
 
is described by the variables xu, and k, defined as
 

X0
X = + x 

u u0 +;u 

k =k° +k 

where no restrictions have been put (yet) on the variations
 
Cx, u, and k. 

Now the with-project return function W(x,k,t) should
 
satisfy an equation like (6) for points x,u, and k along the
 
new optimal trajectory. However, this new trajectory is un­
known, so we can only write the equation corresponding to (6)
 
in terms of the expansion of W about its values on the without­
project trajectory described by x0 0
 , u , and k0 . When this
 
expansion is carried through (as is done in the Appendix), a
 
set of ordinary differential equations is derived for the
 
matrices W 
and Wxx of the partial (first and second) derivatives
 
of the optimal return function W of the with-project problem
 
along the (x ,u ,k°) trajectory. These equations are:
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-W + H - H H 1 (f' W + H ) (10)x 
 xx x U UU U x x
 
and
 

-h=H +'W + W f
 xx xx x xx xx x
 

-.Wxf + Hx).Hu1 (fu Wxx H )
uu U'u +X UX 

and they have boundary conditions (at the terminal time)
 
as follows,
 

Of(t
Wx (t) = F EO(tf), Q] + k O GXLj'(tf),) (12)

W (3)
 

F=x ~xxFo (tf)?tfJ k E (ti)p f (13) 

At the same time, we may define a new variable a (x0 ,t),
 

a(x0,t) = W (x0,k0,t) - V°(x°,k0 ,t), (14)
 

the difference between the return W from following the optimal
 
with-project trajectory forward from the point (x°,t) and the
 
return V0 from following the nominal without-project trajectory
 
forward from this point. At initial time, the value of a(x0,t0)
 
is a prediction of the change in welfare induced by the pro~ec
 
as will be exemplified shortly. At terminal time, obviously
 
nothing can be gained over the nominal path, so the boundary
 
condition,
 

a (xO ,tf) = 0 (15) 

necessarily holds.
 

In the Appendix, it is shown that a satisfies the
 
following differential equation,
 

a-W r-I H H' H'l (16)
Uuu 
1 

U' 



the basic relation for calculating the difference in welfare
 
levels betwpen the two problems.
 

3.Optimal Discounting in a One-Sector Model
 

The implications of these equations stand out more
 
sharply if they are examined in two stages--successively as
 
first and second order approximations to the change in the
 
solution. We treat the first order approximation in this and
 
the next section.
 

To make this approximation, ignore equation (11)
 
completely, and rewrite (10) and (16) without second order
 
terms. This gives:
 

-a_= Wxr 
 (16a)
 

and
 

-Wx = Hx = Lx + Wxfx (10a) 

with the same boundary condition as before.
 

Not too surprisingly, the equation for Wx is tne,
 
same as that for V0 in the without-project problem, while
 

x

(16a) simply evaluates the project's product flow with the
 
shadow prices Wx (t). In a model with only one state variable,
 
this evaluation reduces to calculating the project's present
 
discounted value, as can be easily shown. 
 In such a model (20a)
 
has only one component, so its solution can be written as,
 

WI(t) = Wa(tf) exp f a (Z') dt3 
tff
 

t 

+ exEP[ f (v) dv]. LI ( d'v 
tt 

where the subscript "I" stands for differentiation with respect
 
to the first and only state variable of the system.
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If the "felicity function" L(xju,t) does not depend
 

explicitly on the capital stock (an assumption almost inevi­

tably madein optimal growth models), then this equation simpli­

fies to
 

WI(t) = W I (t f) exp[ ( )ld(T 

t
 

(17)
 

to 
where
 

to 

In integrated form, the estimated change of welfare
 

between time t0 and time,tf is
 

a(x0 ,t0 ) = A WI(t f ) exp -f1(v) dv r(L) d'. ( Ea 
t0 0 

For an acceptable change in welfare, a(x0,t0)-O. But this
 

condition is equivalent to a discount calculation, or
 

tf G5 expff f1 (v) dvj r0t) , 

since in a minimizing model the requirement of a positive
 

value for the terminal capital stock implies that WI (tf )40.
 

Hence;
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In a one-sector optimal gro-th model with malleable 
caoital stock, the optimal decision rule about whether to
 
accept a small investment project amounts to calculating the
 
PDV of the 2roJect, and accenting th e__jt_ .itiv
PDV is. n_ 

The aporopriate time-varvin rate of discount is the mariinal
 
roduct of caital along the "reference" (without-oroiect)
 

solution to the model. 

4. Optimal Shadow Prices in a Multi-Sector Model
 

Still sticking to the linear analysis of the effects
 
of the project, we now must consider the implications of the
 
fact that (10a) is a vector differential equation, with as
 
many components as there are types of capital goods in the
 
system. Written out fully, (10a) in transposed form appears
 
as follows:
 

4 ~ L 1 2 
4 I f 1 f 1 0 f IW 
-2 L2 f 
 W2
 

* . + 2 + 22 
* (a9) 

-W L fm m W
 m mn i mW 

where subscripts denote differentiation with respect to the
 
various components of the vector of capital stocks x'=(x,,x 2 *..
 

.. xm ) and the fi are components of the vector function f.
 

In this form, it appears more or less obvious that
 
each of the shadow prices Wi will in general depend over time
 
on all of the other shadow prices and itself. 'In last section,
 
we were able to express the capital shadow price W 1 --which
 
envolved over time according to a linear differential equation
 
with - fl as its coefficient--as an exponential function of
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the integral of f over time. By analogy, one ought to
 
be able to introduce some sort of exponential matrix function
 
to use the 
same way in "solving" (19) with its coefficient
 
matrix of marginal products of capital in formal terms. 
 This
 
we will do through the use of an m x m "transition matrix"
 

A(t,t 0 ). 

Let f' stand for the matrix of derivatives of the
 
fi on the right side of (19). 
 Then if we take the "minus"
 
sign in (19) to the right side, the transition matrix of
 
this system satisfies the following matrix differential
 

equation,
 

(tt) = - )fx (t) I (tt o (20)
 

with initial boundary condition
 

(t0 ,t0) = I (= the identity matrix).(21) 

In effect, each column of / (t to ) represents one of the
 
m fundamental solutions of (19) over time. 
 In the one­
variable system of last section, the function exp - f (T)dV 

served the same function. The following comparisons Relp
 
illustrate the similarity of the two representations:
 

One-variable system 
 m-variable system
 

t2.~ =exp 2_fId( 1- 0
 

0
 

~expE -f1,(Z)do m exp
t_ t 0-f1 00 dV 4J(tot 0) =~(toot),
to
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Clearly, .(t,t0 ) performs a smoothing operation
 

over time in the multi-variable system equivalent to that
 
done by. the exponen*tial integral in the one-variable system.
 
This stands out quite clearly when we write the solution of
 
(29), starting from an initial value of Wx 
and again assuming
 
that the non-homogeneous term Lx vanishes: I
 

w, ( t't 0 ) w, (to) (22) 

This solution is a generalization of (17) for all
 
components of the vector Wx(t). 
 The corresponding generalization:
 
of (18) is
 

to 

where the integration is component-wise. In the case where
 
r (t) has only its first component non-zero (so that it uses
 
and produces only the first type of capital good), 
the above
 
expression reduces to
 

a(xo'to) = (to)" '(V, .to r ( d 
.
t j 1 0.
 

so that the appropriate shadow price for the first sector
 
is a weighted sum of the first components of the m fundamental
 
solutions of (19). 
 Since this will not correspond to an
 
exponential integral, we may conclude that
 

Discounting is-not an optimal decision rule when 
thei:e are many heterogeneous carital Ltocks, and must be 
replaced by a multivariate analoQ based on 
future maroinal
 
products of all capital 
 in the s .7oods 


We can illustrate this result with 
a simple two-sector
 
model of the type being developed at the pilot stage by various
 

economic programmers.9 
The model maximizes (or minimizes -the
 
negative of) a utility integral
 



Mm f L (1 ,c2) dt
Min f Ld
 

to 

of the output of consumption goods in each of the sectors.
 

The accumulation equations are
 
• = . 2 ( y 

;1 gI ( x-. y71 , y2) -a. 2g ( y1 x2_y2)_c1 

x2 = -a21 0 (x-yIy9)+ g2(y,x 2-y2) - c2 

where y, and Y2 are control variables which assign the two
 

types of capital stock between the two sectors and a12 and
 

a2. are input-output coefficients.
 

The equations for Wx in this model are
 

W
-9 a2 1 g 

(23)
 

2 a1222 9-g 2:1 a g1 22 w 

Suppose for illustrative purposes that the marginal
 

products of capital gI and g2 are constant ovee the planning
 

period. Then the matrix on the right side of (23)--call it 

G--will be constant. The Hawkins-Simon condition/7tpp.215-18/ 

assure us that the negative transpose of G will have two 

positive eigenvalues. Therefore, G itself will have two 

negative eigenvalues• Suppose that these are distinct, and 

call them 'A and A 2 ; also call P the matrix which diagonalizes 

0 P-1 G P ,* 

0
 

Then we can write the solution of (23) as
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exp( A\t) 0 w (0) 

W2(t) 0 exp( 2 t) W (0)

Lg 0.2 a 2] . n 1 02 1
 

Thus, the appropriate shadow prices for project analysis are
 

weighted sums of two exponential functions. For the "reasonable"
 

values of g = 0.2, 2 = 0.1, a 0.4 and a the two
 

eigenvalues turn out to have values of -0.207 and -0.092 res­

prectively. For product flows induced far in the future by an
 

investment project, therefore, the second value will dominate
 

and "the" appropriate discount rate will be about 9.2 percent.
 
However, for near-future product flows in either of the two
 

sectors, the appropriate shadow price will be some weighted
 

average of present values at 20.7 and 9.2 percent. At a given
 

time, neither of these shadow prices need have a value near
 

the discounted marginal product of capital in any specific
 

production function of the system.
10
 

5. Optimal Shadow Prices for Large Proiec s
 

Finally, we discuss briefly in terms of the one­

sector model the implications of the second-order approximation
 

to the change in welfare imposed by a project. The discussion
 

will focus on the qualitative properties of the relevant differen
 

tial equations since little can be said quantitatively in the
 

absence of numerical experimentation with specific equations
 
Some results of this type of experimentation will appear in
 

another paper.
 

The ruling equations in a one-sector model are
 

r W1 + H - H I (fuW11 + Hu1 ) (25) 

-w Hi 2 W f- (W fu + H) 2 Huu- (26) 

http:system.10


where the subscripts "I" and "u" refer respectively to 

differentiation with respect to the one state variable and
 

the one control variable in the system.
 

The main qualitative characteristics of these
 

equations are as follows:.
 

(i) Equation (24) in integrated form is
 

a(x ft H2Hu43dt2 
 WSI 


t0
 

which is similar to the equation discussed in last section,
 

except that a positive correction term I H2 H-I is subtracted
 
2 u uu
 

from the term WIr evaluating the project. This correction
 

takes into account the improvement in the welfare function from
 

the without-project to the with-project solution which would
 

result from the change u in the control variables. As before,
 

the term W r qives the valuation of the project at the shadow
 

prices of the with-project problem.
 

(ii) Equation (25) for WI is the same as 

equation(20a)for the without-project problem, except that a 

finite correction term involving the non-zero value of Hu 

for the with-project problem along the without-project optimal
 

trajectory is stbtracted (as in the equation for a), and a
 

term r W 1 involving the project is added. This latter addition
 

reflects the influence of the project itself on optimal accumu­

lation. The project changes the rate of change of the state­

variable shadow price and this new price in turn affects the
 

flow variable through the optimality condition (7). The point
 

of the second-order approximation is just to take this feedback
 

of exogenous capital accumulation onto the linL&.rest rate into
 

account.
 

Equations(25) and (26) are interrelated, since WI
 

enters into the determination of W via its presence in the
 



derivatives of H with respect to the state variable in (26).
 
However, if we ignore this coupling and the term in (25)
 
involving Hu 
(which will be zero at the optimui), and also
 
assume (as before) that L 
= O,then we can write the splutionl
 
for W in integrated form as
 

W (t) - Wa (tf) exp[ f. fl ) dD (27)
 

+ exp [ f(v) dv] r w(t))d.W 
± t 

The second term of this equation takes into account
 
the feedback of project on interest rate mentioned in last
 
paragraph. 
Clearly, it can be of eitior sign, depending at
 
least on the sign of r. 
In the far future, r will pesumably
 
be positive, while inspection of (26)and its associated boundary
 
condition in the case where terminal capital stock is constraine6
 
to a certain level indicates that W11 will be negative (in a
 
maximizing problem). Hence the distant future shadow :-rice of
 
capital in the with-project solution will be less than in the
 
without-project solution. Near-term effects are unfortunately
 
both more interesting and harder to analyze.
 

Finally' we may note that equation (27) cannot be
 
manipulated to produce a discounting formula when its second
 
term is non-negligible. Even in the one-sector model, the
 
familiar decision rule breaks down in the case of "sufficienAtly"
 
large projects.
 

(iii) The weighting function W 
 for r in its determination
 
of the interest rate in (27) is determined (with feedbacks
 
from the shadow price W1 ) by the Riccati equation (26). Aside
 
from the comments made in connection with the integral (27)
 
for W,, 
little can be said about this equation in qualitative
 
terms, although it plays an important role in all second order
 
analysis of optimal control problems. Nor can it be solved
 
with a finite number of quadratures, and must therefore await
 
computer analysis in specific cases.
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6. ConclusioHs and Conject lres 

Has all this been an arid exercise in matrix algebLa, 

without practical applications or redeeming social implication 

At least to the first clause of the question, I thin?.
 
the answer as to be "no". It is a negative conclusion of con­
siderable importance that discounting is not a theoretically
 
justified tool in the analysis of investment projects. Furthr,
 
the lack of support for'discountinc.doesn't stem from deep
 
capital valuation problems like Wicksell effects and reswitcUin.:,
 
but from the simple multiplicity of capital goods (no matter
 
how malleable and substitutablelin the world. Particularly in
 
underdeveloped countries even 
a rough and ready analyst who is
 
willing to overlook valuation problems cannot ignore the fact
 
that capital goods come 
in two distinct classes-- buildings which
 
are made at home and equipment (or better than 90" of it) which 
is imported. The rules of accumulation of these two types of 
capital are obviously different, and so (apparently) are their 
shadow prices over time. 
 It doesn't do any more just to multiply 
the C.I.F. prices of the capital goods imports by some shadow 
price of foreign exchange, and discount them along with the 
outlays for the buildings. To begin with, one can't discount,
 
and secondly one must somehow have calculated a whole range of
 
shadow prices for the two types of capital goods over time.
 

The second implication of the results presented here
 
is that investment projects can be viewed fundamentally as
 
perturbations to an equilibrium system, whose effects can be
 
approximated by first or 
second order Taylor series expansions
 
about an equilibrium path. Although this point of view applies
 
to capital accumulation models much more complex than the one
 
considered here, it is still true that it is 
limited to cases
 
of perfect foresight. If the equilibrium growth path is known
 
with certainty, then one can handle with known techniques
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stochastic perturbations in the region around the pa.th whe.r-, 

linear approximations are valid.11 However, when the equill
 

brium path itself can only be determined stochastically with 

dynamic programming methods, 12 then I do not see how one can 

undertake an analysis of perturbations similar to thdt done 

here. It seems that this is virgin theoretical territory
 

which urgently wants exploring.
 

Finally, the analysis here underlines a point made in 

another context by Arrow/Il: " What economic theory can imply 

in a broad range of cases is a computing algorithm." We have 

found here a need for computing algorithms in the analysis of 

investments when there are heterogeneous capital goods, since 

it doesn't seem we'll get the appropriate shadow prices from 

other sources. This almost virgin applied territory which also 

urgently wants exploring. 

Lance Taylor
 

Harvard University and
 

ODEPLaN, Santiago,Chile 

http:valid.11
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APPENDIX
 

In this appendix, we derive the basic difEferential
 

equations (10), (11), (16) and boundary conditions (12),(13),
 

(15) for the change in welfare induced by the investment pro­
ject. To do this, begin by.writing a first order expansion
 
(in Wx) of the Hamilton-Jacobi- Bellman equation (6) about
00 

°

the nominal trajectory defined by the points x0, ,k :
 

-oW(x + x,k°+ k,t)., M 
t~ W( 

ku -%
 

+ x xIWx+'k WkX]JFf(xo+ %XJu0 + Zu,t) + rt 

where W has been expanded to first order about W (x 0 ,k 0 ,t). 
x .X 

Also expanding the left side of (A-i) about W(x0 k0 ,t), 
we 
find (to second order-122L4Zthat
 

W (x 0 +0x, k°+ -kt) [W + W + W 
3- + WxX k 

S (A-2) 

kx 2x + XI, W JX + 7W k' wkk kJ 

VO + WX Jx +c WkxX - [a k-- + kWklk Ck'WWYx 

S + ~ Wkk Ck + x' xX 

where the new variable a(x0 t) = W (x~k°,t)- V°(x0 ,k0 ,t) is 
defined as the difference between the return function W which 
results from applying optimal control forward from the point 
(x0 
t) and the return V0 from applying nominal (without project)
 
control forward from this point.
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On-the other side"of (A-I) the second order expansion
 

gives
 
Min L ( x o + xuo 

U(Lx +x, t) +Wx+Jx' W&d+k' WkxJ' Lf(x0+j X1 

u +Eu,0Jt) + t 

U, XW,[H(X .+ X, + 'oT W ,t)+ x :+ I'kJ. f(X.. ox,Uo .' t) 

+ E+W X W %F,.+j k' Wk x ~ ''kxJJ (J-3) 

MinH' [ . + WkxJ 

A 3
 

k Wkx] 

H+ HWxu +0k' k f + + C X' W+ k' 

with all terms again evaluated at(x°,k0 ,u°).
 

To the accuracy of the expansions, (A-2) should equal
 

(A-3). 
 To make use of this fact, we will remove ju from (A-3)
 
and then equate coefficients in Jx andck between (A-2) and (A-3)
 
to get differential equations for the various derivative,.matrices
 

Wxt Wxx* etc., and also for a.
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To carry out these manipulations, begin by grouping terms
 

in (A-3) which' contain Ju: 

Ju' + ~j u' f' w x + ju'Ciu2uWxU u + U ,Wxx 0 Wxk 
u 

+' H JX+ 2 u' Huu -u (A-4) 
ux 


This is a sum of linear and quadratic terms in Ju, with all
 

coefficients evaluated along the without-project optimal solu­

tion. If we solved completely the with-project problem, these
 

coefficients would change to their values at the points (xO + 
J-x, U + eu, k +Z k), and complete minimization of (A-3) with
 

respect to uu would require that these non-linear coefficient
 

changes be taken into account. This could be a difficult cal­

culation. However, it is easy to make a Newton- Raphson type
 

prediction of the change 'u, by miniizing (A-4) with constant
 

coefficients. This gives
 

- -du HH + ( w + Hux)'x + f, W 0k?uu u u xx u xk (A-5) 

as a basic feedback rule for changes in u as functions of changes
 

in the state variables x and multiplier k
 

Now, after (A-5) is used to remove Ju from (A-3),, and
 

coefficients are equated between (A-2) and (A-3), the following
 

partial differential equations result:
 

VO +t=H+ W r + - H H H'x 2 u (A-6) 

x/,t= (V,+ r,).Wx + Hx - Hu Huu (f' Wx Hux) (A-7)
x" xUUU uu 
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a wk t=-(fI+ r,) 	Wxk-HuHu IfI Wxk 
t Hxx+ f xWxx+ 	 W-xfx-(Wxfu+ Hx) Hu i1(fuI Vxx+:u.:-J7 Wxx = 	 uuU 

x x *xu 	uxxu* .-jW/x a xx 	 c xx 

- u Wxx+ Hux 	 (A-6)-lkx/at= Wkx 	 (fu 

-',Wkk/ ) t= - wkX uH }% 
fuxkU
f u5- ­

it will be useful to transform these into ordinary differenti,.l
 

equations. this 	can be done for (A-6) by noting that
 

w- w/?t Wx w/,)t + Wx f(x , uO t) 

along the optimal solution to the without-project problem. 

When the definition of a is .substitutedinto this equation , 

we get. 

O a = (VO+a)/ct+ Wxf (x 0 u 0 ,t) 

and further substitution into (A-6) gives
 

-a = 0_ w f + -H H - H +-H.9 
x 	 x .2 Uuu u 

=- L x, 0 ,t). We canFor the without-project problem,V 


substitute this equality into (A-9), and cancel the Hamiltonian
 

H, to produce at last the ordinary differential equation
 

-a= Wxr- -' Hu H'	 (16)x 2 u uu 	 u -

This is the basic relation giving the difference in the welfare
 

Next, ordinary differential
levels between.the two problems. 

xx and boundary 	conditions are derived.
equations for Wx and 


Regarding the former, note that
 

W -- t+ 	 w -t+ t f' WxxAW I ' 
x x 

and
 

e d xxb<* t
 

to second order, and substitute in (A-7) and .(A-8) to get
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r' W + H H H -1 (f' Wx + Hu) (0) 

- Hx+ fx W + W fx- ( Wxxfu+ Hx )Huu1 (fu' Wxx+Hux ). 

Boundary conditions can be developed from the followiig 

approximate equality which must hold at terminal time t 

W(x0 +Jx, k0 +Jk, tf). = F(x°+ x, t f) + (kO + ?k)' G(x 0 +7C tf) 

I=F + F x'x + T x' F Jx
 

+(k 0 )' (G+ G vx + 2 x' Gxx ) + (G + G X)
X 2 xx 

Expanding the left side tosecond order and equating coeffici.. 

cients, we find the boundary conditions: 

a (tf) = 0 (15) 

WX(tf) Fx(x°(tf) , tf) + (k°)' Gx(x(tf), tf) (12) 

Wxx(tf) =Fxx( (tf), tf) + (k0 )1 Gxx( x°(tf), tf) (13) 

These conditions provide the startinq information for
 

the integration of (16), (10), and (11) backward in time to
 

estimate the change in the welfare functional.
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Footnotes
 

1. This study is part of a general research project in e
 

development being undertaken jointly by the Center for Internati :.., 

Studies, M.I.T., and the Chilean National Planning Office (ODwi.,,\..; 

Support from this project is gratefully acknowledged, and thanks . 

also due to David Jacobson for making available some of his rese,,:c:, 
results on differential dynamic programming, and to Edmar Bacha
 

Richard Eckaus for comments.
 

2. 	 See Jacobson/9/ and Jacobson and Gershwin /10/ for completv
 

descriptionsof the differential dynamic programming technique.
 

3. 	 In many economic problems, it is reasonable to add constrain-z.
 

of the form g(x,u,t):0. The results which follow can be extended to
 

this more general problem, but as the algebra is even more lushly
 

foliated with matrices of several orders of derivatives than the
 

appendix of this paper, this extension in omitted.
 

4. 	 The finite tir~e horizon problem is discussed because it
 

allows us to eschew complicated arguments about the existence of
 

solutions, and because the finiteness or infiniteness of the optimal
 
plan is not of much relevance to the things discussed here. Also,
 

finite horizon problems have the modest virtue of being solvable
 

numerically. One really can calculate shadow prices from the type of
 

model discussed here, a task I am presently undertaking whose results
 

will be reported elsewhere. For moderately realistic models,numeri­

cal solution is not possible in the infinite horizon case (but see
 

Mirrlees/14/ for a partial exception).
 

5. 	 The Hamilton-Jacobi-Bellman dynamic programming equation (6)
 

is derived heuristically in a number of texts. The presentations
 

of Arrow and Kurz/2/, Bryson and Ho/4/, and Dreyfus/8/ are particulair
 

ly to be recommended.
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6. In some models (e.g. Little-Mlirrlees/12/) a project pertur;:st:,e constraints in 
a non-linear way. 
The Taylor series expansionsfor the welfare effects of the project in form (2') 
which are devu­loped below can be modified for non-linear porturbations in an 
obvious way.
 

7. 	 Transition matrices are much used in the formal analysis 
o­linear vector differential equations. 
See, for example, Athans and
Falb/3/,Bryson and Ho/4/ and Coddington and Levinson/6/.
 

8. 
 This dependence of efficiency prices on all future margin.l
products of capital has, of course, been pointed out before by a
number of authors--notably DOSSO/7/ and Malinvaud/13/. The latternotes further that "an" interest rate with the usual ?isherian pro­perties can be defined by treating one commodity as a numeraire.Uowever, from the point of view of project analysis, definition of a
copper- or/ a cannabis-based 
 interest rate does not obviate the need
to know all future relative prices of all capital goods. 
 These are
given in symmetric, no-favored-commodity form by (20)-(22). To my
mind, interpretation of these equations as 
a multivariate generaliza­tion of discounting is 
more appropriate than attempting normalization
 
in terms of 
some arbitrary commodity.
 

9. 
 For examples, see Chenery and Raduchel/5/, Kendrick and Taylor

/11/ 
and the references there.
 

10. 
 The input-output coefficients are what tie the two sectors
together in this example--if they were equal to zero, 
(23) would
already be a diagonal system, and it would be correct to discount
product flows in each sector by the appropriate own-marginal product
3f capital.(Note that the two sectors'own-rates of interest need
not be equal). However, input-output relationships (and other
interties between sectors like production externalities and common
usaan 
 of scarce factors like foreign exchange) do exist in the
 



,-.,_or:' world, and it is appropriate to take them into a 

c.:-,u lating investment decision criteria. 

: "The key word here is "linear". In the vicinity of an 

,i.ibrium growth path known with certainty, the ruling..	 diff,,-.:. 

•;ations for perturbations to the solution will be linear, ,,nd
 

1.. 	 objective function can by approximated quadratically. .it . 

Tpproximations, an investment project with stochastic returns cn 

_o ,nalyzed using techniques known hell to both engineers and 

.-conomists--an economic example is given in my paper/15/. UnCe, 

tr-e assumed conditions, it seems that it would be justified to 1.1%71 

curtainty equivalence and work only with the coected returns to 

tUri project. But this is a point which needs more formal analyi:U;. 

,2. i'o take an example from my present country of residence: 

'sing dynamic programming I can work out on the computer an expecct... 

optimal growth path for Chile under conditions of the all-importz.r:' 
uJncertainty about the future world price of copper. What I don't
 

'-,now how to do--as the text indicates--is analyze stochastic
 

:)erturbations about this stochastic path.
 

13. 	 As before, W means the row vector of partial derivatives of
 
with tespect to x, while Wkx is a matrix of cross partial
 

cerivatives with the number of rows equal to the dimensionality
 

of k, and the number of columns equal to the dimensionality of
 

x. The "prime" sign indicates transposition.:
 

14. Note that Wx is only expanded to first order while other
 
functions 	are expanded to second order since Wkx and Wxx are
 

clready expanded to second order in terms of the problem variable!;.
 

15. Note that this feedback rule can always be calculated fro
 

i:n optimal solution to (1) - (4) since Huu will be non-singular
 

from the strengthened Legendre-Clebsch condition.
 

Taylor/157.
 


