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FOREWORD

The Statistical Reporting Service (SRS) has been engaged for
many years in the training of agricultural statisticians from around
the world. Most of these participants come under the support of the
Agency for International Development (AID) training programs; howevgr,
many also come under sponsorship of the Food and Agriculture Organization

into the International Statistical Programs Center of the Bureau of the

Census, with which SRS is cooperating.

This treatise was developed by the SRS with the cooperation of
AID and the Center, in an effort to provide improved materials for
teaching and reference in the area of agricultural statistics, not
only for foreign students but also for development of staff working

for these agencies.

HARRY C. TRELOGAN
Administrator
Statistical Reporting Service

Washington, D. C. September 1974



PREFACE

The author has félf that applied courses in sampling should give more
attention té elemeatary theory cf expected values of a random variable.
The theory pertaining to a random variable and to functions of random
variables is the foundation for probability ggmpling. Interpretations
of the accuracy of estimates from probability sample surveys are predicated
on, among other things, the theory of expected values.

There are many students with career interests in surveys and the
application of probability sampling who have very limited backgrounds in
mathematics and statistics. Training in sampling should go Beyond simply
learning about sample designs in a descriptive manner. The foundations
in mathematics and probability should be included. It can (1) add much
to the breadéh of understanding of bias, random sampling error, components
of error, and other technical concepts; (2) enhance one's ability to make
practical adaptations of sampling principals and correct use of formulas;
and (3) make communication with mathematical statisticians easier and more
meaningful.

This monograph is intended as a reference for the convenience of
students in sampling. It attempts to express relevant, introductory
mathematics and probabi;ity in the context of sample surveys. Although
some proofs are presented, the emphasis is more on exposition of mathe~-
matical language and concepts than_on the mathematics per se and rigorous
proofs. Many problems are given as exercises so a student may test his
interpretation or understanding of the concepts. Most of the mathematics
is elementary. If a formula looks involved, it is probably because it

represents a long sequence of arithmetic operations.

i1



Each chapter begins with very simple explanations and ends at a much
more advanced level. Most students with only high school algebra should
have no difficulty with the first parts of each chapter. Students with a
few courses in college mathematics and statistics might review the first
parts of each chapter and spend consideréble time studying the latter parts.
In fact, some students might prefer to start with Chapter III and refer to
Chapters I and II only as needed.

Discussion of expected values of random variables, as in Chapter III,
was the original purpose of this monograph. Chapters I and II were added
as background for Chapter III. Chapter IV focuses attention on the dis-
tribution of an estimate which is the basis for comparing the accuracy
of alternative sampling plans as well as a basis for statements about the
accuracy of an estimate from a sample. The content of Chapter IV is
included in books on sampling, but it is iwnortant that students hear or
read more than one discussion of the distribution of an estimate, espe-
cially with reference to estimates from actual sample‘surveya.

The author's intere..t and experience in training has been primarily
with persons who had begun careers in agricultural surveys. I appreciate
the opportunity, which the Statistical Reporting Service has provided, to

prepare this monograph.

Earl E. Houseman
Statistician
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CHAPTER I. NOTATION AND SUMMATION

1.1 INTRODUCTION

To work with large amounts of data, an appropriate system of notation
is needed. The notation must identify data by individual elements, and
provide meaningful mathematical expressions for a wide variety of summaries
from individual data. This chapter describes notation and introduces
summation algebra, primarily with reference to data from census and sample
surveys. The purpose is to acquaint students with notation and summation
rather than to present statistical concepts. Initially some of the expres-
sions might seem complex or abstract, but nothing more than sequences of
operations involving addition, subtraction, multiplication, and division
is involved. Exercises are included so a student may test his interpreta-
tion of diffe?ent mathematical expressions. Algebraic‘manipulatibns are
also discussed and some algebraic exercises are included. To a consider-
able degree, this chapter could be regarded as a manual of exercises for
students who are interested in sampling but are not fully familiar with
the summation symbol, I. Familiarity with :the mathematical language will
make the study of sampling much easier.
1.2 NOTATION AND THE SYMBOL FOR SUMMATION

"Element" will be used in this monograph as a general expression for
a unit that a measurement pertains to. An element might be a farm, a per-
son, a school, a stalk of corn. or an animal. Such units are sometimes
called units of observation or reporting units. Generally, there are
several characteristics or items of information about an element that one

might be interested in.



"Measurement" or '"value" will be used as general terms for the
numerical value of a specified characteristic for an element. This
includes assigned values. For example, the element might be a farm and
the characteristic could be whether wheat is being grown or is not being
grown on a farm. A value of "1" could be assigned to a farm growing wheat
and a value of "0" to a farm not growing wheat. Thus, the "measurement'
or "value" for a farm growing wheat would be "1" and for a farm not groﬁ-
ing wheat the value would be "0."

Typically, a set of measurements of N elements will be expressed as
follows: Xl, X2,...,XN where X refers to the characteristic that is
measured and the index (subscript) to the various elements of the popula-
tion (or set). For example, if there are N persons and the characteristic

X is a person's height, then X, is the height of the first person, etc.

1

To refer to any one of elements, not a specific element, a subscript "i"
is used. Thus, Xi (read X sub i) means the-value of X for any one of the

N elements. A common expression would be "X, is the value of X for the’

i
ith element."

The Greek letter I (capital sigma) is generally used to indicate a
sum. When found in an equation, it means "the sum of." For example,

N
Z X, represents the sum of all values of X from X, to XN; that is,
im1 i 1

N ' .
IX = xl + Xz +.00t XN. The lower and upper limits of the index of

gwy 1 .

summation are shown below and above the summation sign. For example, to
20

specify the sum of X for elements 11 thru 20 one would write I Xi.
i=11



You might also see notation such as "X, where i = 1, 2,..., N" which

i
indicates there are N eléments (or values) in the set indexed by serial

numbers 1 thru N, or for part of a set you might see"IX, where i = 11,

i
12,..., 20." Generally the index of summation starts with 1; so you will

N
often see a summation written as zxi. That is, only the upper limit of
the summation is shown and it is uiderstood that the summation begins with
i=1. Alternatively, when the set of values being summed is clearly under-
stood, the lower and upper limits might not be shown. Thus, it is under-
stood that ixi or zxi is the sum of X over all values of the set under
consideration. Sometimes a writer will even drop the subscript and use
IX for the sum of all values of X, Usually the simplest notation that is
adequate for the purpose is adopted. In this monograph, there will be
some deliberate variation in notation to familiarize students with various
representations of data.

An average is usually indicated by a "bar" over the symbol. For

example, X (read "X bar," or sometimes 'bar X") means the average value of

N
X
= qmt
X. Thus, X = N ° In this case,showing the upper limit, N, of the sum-
mation makes it clear that the sum is being divided by the number of elements

X :
and X is the average of all elements. However, —== would also be inter-

N
preted as the average of all values of X unless there is an indication to
the contrary.

Do not try to study mathematics without pencil and paper. Whenever

the shorthand is not clear, try writing it out in long form. This will

often reduce any ambiguity and save time.
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(2)

(3)

(4)

(5)

(6)

(7

®

9

(10)

(11)

(12)

(13)

Here érg some examples of mathamatical shorthand:

Sum of the reciprocals of X

Sum of the differences between-

Xi and 'a constant, C

Sum of the deviations of X

from the average of X 1

Sum of the absolute values d4f
the differences between X

and X. (Absolute value,
indicated by the vertical
lines, means the positive
value of the difference)

Sum of the squares of Xi

Sum of squares of the

deviations of X from X

Average of the squares of the
deviations of X from X

Sum of products of X and Y

Sum of quotients of X
divided by Y

Sum of X divided by the
sum of Y

Sum of the first N digits

N

%-%-+%+”&i
=15 % % X
N

zl(xi-C)-(xl-C)+(x2-c)'+. (K ~C)
{=

N
I(X i-)'c)-(xl-i)+(x2-i)+. . .+(xN-i)
i

L] X, -X]|=| X, =X|+| X, =K +.. 4| XXl

2 2 2 2 2
zxi = X1 + X2 + X3 +..0 XN

x-0% = (%02 4k B

N
.2
'L (X,~X) =.2 342
i-l i . (Xl-X) +..¢+(XN X)
‘N N
N
1§1xiy $ " X1Y1+X2Y2+. P2 A
X .5 + %2 Foout *
Y, ¥,y TeeTyo
i 1 2 N
):xi _ XK oo ot Xy
ZYi Y1+Y2+...+ Y,
N
4= 14243+...+ N
i=]
N
iilixi - x1+2x2+3x3+. -t NX
6 i
I (-1)"X, = <X +X, ~X.+X,~X +X

im1 S R A



Exercise 1.1. You are given a set of four elements having the
following values of X: X, = 2, X, = o, X3 =5, x4 = 7, To test your
understanding of the summation notation, compute the values of the follow~

ing algebraic expressions:

Expression Answer
4
(1) I (%) 30
1=1
(2) 22(xi-1) 20
(3) 22(xi-1) 20
(4 21 27
. X
(5) ¥ = —N-l‘- 3.5
2
©® X 78
N z(-xi)2 78
@ (x,)° 196
(9) z(xi -x) 64
(10) z(xi) - X, 64
(1) 5% 45
a2 e-niep 0
& 2
13) £ (& -3 66
1=1
b 5 b
) sx- 13 66
g=1 1 im1
4

Note: I (3) means f£ind the sum of four 3's
1m1



Expression (Continued) ~ Answer

L a5 e -% .0
| =2
. (X, - X)

(16) —i 2
N-1 3
z[xf = XX + v 2
(17) ==
N-1 3
zxf - N%2 29
(18) —e—— ==

N-1 3

Definition 1.1. The variance of X where X = xl,_xz,.,., XN, is
defined in one of two ways:
N

(X
2 _ i=1

=2
17X)
[o}

or

The‘reason'for the two definitions will be explained in Chapter III.
The variance formulas provide measures of how much the values of X vary
(deviate) from the average. The square root of the variance of X is
called the standard deviation of X. The central role that the above
definitions of variance and standard deviaﬁion play in sampling theory
will.become apparent as you study sampliﬁg. The variance of an estimate
from a sample is Gne of the meésures needed to judge the accuracy of the
-estimate and to evaluate alte*native sampling designé. Much of the algebra

and notation in this chapter is related to computation of variance. For



complex sampling plans, variance formulas are complex. This chapter
should help make the mathematics used in sampling more readable and more
meaningful when it is encountered.

Definition 1.2, "Population" is a statistical term that refers to

a set of elements from which a sample is selected ("Universe'" is often
used instead of "Population"). |

Some examples of populations are farms, retail stores, students,
households, manufacturers, and hospitals. A complete definition of a
population is a detailed specification of the elements that compose it.
Data to be collected also need to be defined. Problems of defining popu-
lations to be surveyed should receive much attention in' courses on, sampling.
From a defined population a sample of elements is selected, information
for each element in the sample is collected, and inferences from the sam-
ple are made about the population. Nearly all populations for sample
surveys are finite so the mathematics and discussion in this monograph
are limited to finite populations.

In the theory of sampling, it is important to distinguish between
data for elements in a sample and data for elements in the entire popula-
tion. Many writers use uppercase letters when referring to the population
and lowercase letters when referring to a sample. Thus Xl,..., xN would
represent the values of some characteristic X for the N elements of the
populatiorn; and xl,..., xn would represent the values of X in a sample of
n elements. The subscripts in Kyseoss X simply index the different
elements in a sample and do not correspond to the subscripts in Xl,..., XN
which index the elements of the population. In other words, Xy could be

any one of the xi's. Thus,



N
LX
!?f- = X represents the population mean, and

xi.

oo

-1;4- ™ X represents a sample mean

In this'chaﬁter we will be using only uppercase letters, except for
constants and subsctipts, because the major emphasis is on symbolic repre-~
sentation of data for a set of elements and on algebra. For this purpose,
it is sufficlent to start with data for a set of elements and not be
concerned with whether the data are for a sample of elements or for 511
elements in a population.

The letters X, Y, and Z are often used to represent different charac-
teristics (variables) whereas the first letters of the alphabet are commorly
used as constants. There are no fixed rules regarding notation, - For
example, four different variables or characteristics might be called xl.
x2, X3, and xa. In that case xli mighi be used ‘to represent the ith value
of the variable Xl’ Typically, writers adopt notation that ig convenient
for their problems. It 1is not practical to completely standardize notation.

Exercise 1.2. 1In the list of expressions in Exercise 1.1 find the

variance of X, that is, find Sz. Suppose that X4 is 15 instead of 7. How
much is the variance of X changed? Answer: From 9§-to 44% .

Exercise 1.3. You are given four elements having the following values

of X and Y



Find the value of the following expressions:

Expression Ansver Expression Angwer
(1) XY, - 107 (7) IX,-IY, -6
_ , : 2
(2) (in)(ZYi) 280 (8) z(xi-yi) 74
- = 2 ,2
(3) E(Xi-x)(Yi-Y) Y 9) Z(Xi-Yi) -132
_— 2 2.2
(4) IX, ¥, -NXY 37 (10) IX{-IY) -132
1. % 2
(5) R—z‘-{: 1.625 (11) [Z(Xi-Yi)] 36
2 2
(6) E(Xi-Yi) -6 (12) [zxi] -[).‘.Yi] -204

1.3 FREQUENCY DISTRIBUTIONS
Several elements in a set of N might have tlre same value for some

characteristic X. For example, many people have the same age. Let Xj
j be the number of people in a population
K
(set) of N people who have the age xj. Then I Nj = N where K is the
i=1

be a particular age and let N

number of different ages found in the population. Also ZNij is the sum

IN. X
of the ages of the N people in the population and -iﬁ¥41 represents the
h|

average age of the N people. A listing of Xj and Nj is called the

frequency distribution of X, since N, is the number of times (frequency)

3

that the age Xj is found in the population.

On the other hand, one could let X h

1 represent the age of the it

individual in a population of N people. Notice that j was an index of age.
We are now using i1 as an index of individuals, and the average age would

X zxi

IN.X
_i; - ——Lj--.___
be written as N ° Note that Zijj zxi and that XNj N The
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choice between these two symbolic representations of the age of people in
the population is a matter of convenience and purpose.

Exercise 1.4. Suppose there are 20 elements in a set (that is, N = 20)

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8,3, 3,
7, 2, 8, 4, 8, 8, 3, 7, 8, 10, 3, 8.
(1) List the values of Xj and Nj’ where j is an index of the
values 2, 3, 4, 7, 8, and 10. This is the frequency
distribution of X.
(2) What is K equal to?
Interpret and verify the following by making the calculations indicated:

N K
3) X = INX
gm1 1 gep 3

IX, INX
d._dd.x
W -3 W,

=2 =2
I(X,-X)° IN,(X,~X)
& ; - — zgj

1.4 ALGEBRA

In arithmetic and elementary algebra, the order of the numbers when
addition or multiplication is performed does not affect the results. The
familiar arithmetic laws when extended to algebra involving the summation
symbol lead to the following important rules or theorems:

Rule 1.1 Z(Xi-Yi+Zi) = EX1-2Y1+221

or Z(X11+X21+...+XK1) = X +ZX21+...+ZXKi

11

Rule 1.2 Zax1 - atxi where a is a constant

Rule 1.3 Z(x1+b) = in+Nb where b is constant
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If it is not obvious that the above equations are correct, write both
sides of each equation as series and note that the difference between the
two sides is a matter of the order in which the summation (arithmetic) is
performed. Note that the use of parentheses in Rule 1.3 means that b is
contained in the series N times. Thag is,

N
151(X1+b) = (X1+b)+(X2+b)+...+(XN+b)

= (X1+X2+. ..+XN) + Nb

On the basis of Rule 1.1, we can write

N N N
z (X{+b) = I xi + Ib
i=1 i=1 i=]
N
The expression I b means”sum the value of b,which occurs N times." Therefore,
i=1
N
Z b = Nb.
i=]1
N
Notice that if the expression had been L Xi+b.then b is an amount to add
i
N
to the sum, I X, .
i
i
- N- -N -
In many equations X will appear; for example, I XXi or L (Xi-x).
i i

Since X 1s constant with regard to the summation, xixi = izxi « Thus,

ZXi

I(X,-X) = I X,~2X = £X, - NK. By definition,X = i—N— . Therefore,

i 1 13 41

NX = zxi and Z(Xi-X) = 0.

i i
N 2

To work with an expressicn like X(Xi+b) we must square the quantity
i

in parentheses before summing. Thus,
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2(X, + b)% = 2(x2 + 26X, + b2)
! 1 1

- zxf + 12X, + £b®  Rule 1
- zxf + 2bIX, + Nb2  Rules 2 and 3

Verif& this resu}t by using series notation. Start with (Xl+b)z+...+(Xﬁ+b)2.
It is very important that the ordinary rules of algebra pertaining to

the use of parentheses be observed. Students frequently make errors

because in;dequate attention is given to the placement of parentheses or

to the interpretation of parentheses. Until you become familiar with the

above rules, practice translating shorthand to series and series to short-

hand. Study the following examples carefully:

W zxp? s zx,)? The left-hand side is the sum of
the squares of Xi. The right~hand
side is the square of the sum of Xi.
On the right the parentheses are
necessary. The left side could

2 have been written sz .
x| 1
(2) === —= Rule 1.2 applies.
N N2

2

1 A quantity in parentheses must be

2 2
(3) Z(X1+Yi) ¢ XXi + ZY
squared before taking a sum.

2

(4) z(xf + Yf) - 1X] + v’ Rule 1.1 applies

2
i
(5) inYi ¥ (zxi)(zyi) The left side 1s the sum of products.
The right side is the product of

sums,

' 2 _ .2 2
(6) Z(y-Y)" = 1x; - 25X ¥ 41y

N N
(¢)) Za(xi-b) ¢ aEXi - ab
i i
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N N

(8) Za(xi-b) = azxi - Nab
i i
N N
9) a[zxi-b] - atxi-ab
i .

2
(10) in(xi-Yi) in - ZXiYi

Exercise 1.5. Prove the following:

In all cases, assuie 1 = 1, 2,..., N.

(1) z(xi-i) =0

XY Y

(2) &;Lii - g_i
X X
i
I (zxi)2
(3) NX* = N
N
4) iEl(aXi+in+C) = aZXi+bEYi+NC

Note: Equations (5) and (6) should be (or become)
very familiar equations.
2 =2

(5) z(xi-'i)2 = IX; - NX

(6) z(xi-i)(vi-?) = zxivi-Nii

X

M syt L
a

2
E(Xi+aYi)

(8) Let Yi - a+bxi, show that ¥ = a+bX

2 .2

and Y = Na(a+2bX) + b D

i

(9) Assume that xi = 1 for N1 elements of a set and that Xi = 0
for N0 of the elements. The total number of elements in the
N N
1 0
set is N leNo. Let N P and N . Prove that
=2
z(xi-x)

N = PQ .
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(10) z-(xi--d)2 - z(xi-i‘c)2 + N(Z-d)%. Hint: Rewrite (xi-d)2

as [(xi-§)+(i-d)]2. Recall from elementary algebra that

2

(a+b)2 = a +2ab+b2 and think of (xi-i) as a and of (X-d)

as b, For what value of d is X(Xi-d)2 a minimum?

1.5 DOUBLE INDEXES AND SUMMATION

When there is more than one characteristic for a set of elements,
the different charaéteristics might be distinguished by using a different
letter for each or by an index. For example, Xi and Yi might represent
the number of acres of wheat planted and the number of acres of wheat
harvested on the ith farm. Or, xij might be used where i is the index
for the characteristics and j is the index for elements; that is, xij
would be the value of characteristic Xi for the jth element. However,
when data on each of several characteristics for a set of elements are
to be processed in the same way, it might pot be necessary to use

notation that distinguishes the characteristics. Thus, one might say

£(X,-%)2
N-1

calculate for all characteristics.

More than one index is needed when the elements are classified accord-

ing to more than one criterion. For example, Xij might represent the value

th

of characteristic X for t. - i farm in the ith county; or X

13k might be
th th th

the value of X for the k~ household in the J7 block in the 1~ city.

As another example, suppose the processing of data for farms involves

classification of farms by size and type. We might let xijk represent

the value of characteristic X for the kt:h farm in the subset of farms

classified as type j and siée i. 1If Ni1 is the number of farms classified
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gid x
b g

as type j and size 1, then N *° iij is the average value of X for
1j ’

the subset of farms classified as typz j and size i.

There are two general kinds of classification~-cross classification
and hierarchal or nested classification. Both kinds are often involved
in the same problem. However, we will discuss each separately. An
example of nested classification is farms within counties, counties within
States, and States within regions. Cross classification means that the
data can be arranged in two or more dimensions as illustrated ir the next
section.
1.5.1 CROSS CLASSIFICATION

As a specific illustration of cross classification and summation with
two indexes, suppose we are working with the acreages of K crops on a set

th crop on the jth f

of N farms. Let xij represent the acreage of the 1 arm
where 1 = 1, 2,,..,Kand j =1, 2,..., N. In this case, the data could

be arranged in a K by N matrix as follows:

Column (j)

: : : Row :
. Row (1) : .
; f 1 y ¢ total
5 1 fxll LI N ] xlj o8 8 xlN 5§x1j E
: i :xil LN N ] xij L N xiN :§X1J :
PR i Ky e Xy e kN f;‘:xxj
¢t Column : % X X L X, ¢t X :
¢ total ¢ 1 11 i 1] i iN: ij 1] s
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N
The expression I X,, (or I X ) means the sum of the values of X,, for a
PR R ¥ 13
fixed value of 1. Thus, with reference to the matrix, I xij is the total

h

of the values of X in the ith row; or, with reference to the example about
farms and crop acreages, I Xih would be the total acreage on all farms of
h | K
whatever the ith crop is. Similarly, I Xij (or I xij) is the column total
' i i

for the jth column, which in the example is the total for the jth farm of

the acreages of the K crops under consideration. The sum of all values of

KN
X could be written as IP X,, or I X, ..
13 1] 1j ij

Double summation means the sum of sums. Breaking a double sum into

parts can be an important aid to understanding it. Here are two examples:

KN N N N
(1) Irx = 7 X 4+ I X +..o.t+ L X (1.1)
19 B 570 3 M

With reference to the above matrix, Equation (1.1) expresses the grand total

as the sum of row totals.

KN N N
(2) 11:33 Xy (¥ gta) = § Xy ¥y 5+a) +oot ;: Xgq (T y+a) (1.2)
. )
v
N

§ le(Y1j+a) = Xll(Y11+a) +ooot XlN(Y1N+a)

In Cquations (1.1) and (1.2) the ‘double sum is written as the sum of K
partial sums, that is, one partial sum for each value of i.

Exercise 1.6. (a) Write an equation similar to Equation (1.1) that

expresses the grand total as the sum of column totals. (b) Involved in
Equation (1.2) are KN terms, xij(Yij+a)' Write these terms in the form of

a matrix,
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The rules given in Section 1.4 also apply to double summation.

Thus,
KN KN KN
I X, (Y, +a) = £ X,. Y. + alr X (1.3)
Py i3*°13 13 1j “1j 14 ij

Study Equation (1.3) with reference to the matrix called for in Exercise
1.6(b). To fully undgrétand Equation (1.3), you might need to write out
intermediate steps for getting from the left-hand side to the right-hand
side of the equation.

To simplify notation, a system of dot notation is cormonly used, for

example:
§ xij Xi.
f Xij = x.j
-
The dot in Xi. indicates that an index in addition to i is involved and

xi. is interpreted as the sum of the values of X for a fixed value of i.
Similarly, X.j is the sum of X for any fixed value of J» and X represents
a sum over both indexes. As stated above, averages are indicated by use of
a bar. Thus ii- is the average of Xij for a fixed value of i, namely
N
) 13
i=1 " = X, and X would represent the average of all values of X R
i. L ) ij
Iz Xij
namely éd———*—.
NK
Here is an example of how the dot notation can simplify an algebraic

“xpression. Suppose one wishes to refer to the sum of the squares of the

row totals in the above matrix. This would be written as Z(Xi.)z. The sum
i
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of squares of the row means would be z(ii.)z. Without the dot notation the
i s

N 2

KN k | %4y

corresponding expressions would be Z(inj)2 and I iﬁ——- + It is very
i} i

KN
important that the parentheses be used correctly. For example, E(inj)2 is
11}

Incidentally, what is the difference between the

KN 5
not the same as IIX

ij 1"
last two expressions?
Using the dot notation, the variance of the row means could be written
as follows:
K

I(X, =X )
i {e Cee

2

VX ) = (1.4)

K-1
where V stan&s for variance and V(ii_) is an expression for the variance of
21- « Without the dot notation, or something equivalent to it, a formula
for the variance of the row means would look much more complicated.

Exercise 1.7. Write an equation, like Equation (1.4), for the variance

of the column means.

Exercise 1.8. Given the following values of X

1}
: i
i : . L] *
. 1 : 2 : 3 N
1 8 11 9 14
2 : 10 13 11 14
3 ¢ 12 15 10 17
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Find the value of the following algebraic expressions:

Expression . Answer . Expression Answer
N N,
(LX), 42 (9) KE(X, =X ) 54
k| -3 '
N KN
EX (10) IZ(X X, X, ) 6
23 13" :'l
(2) 1N—— 12 i .
Tk
= LIX
3 X, 13.5 a l:ij ij:'
(11) ZIIX 78
4 X, 45 g 447X
2
KN
KN K
(5) X 144 nx2 I}zxﬁ—'
12) H—- 53 18
(6) X,. 12
. N 5
KN _ 3) = ,-X ) 21
(" IIex, -%,.)* .78 g 4
1
Ky 2
. K, (14) IE(x,.-X, ) 60
8 N@& X )° 18 13 1
- i

Illustration 1.1. To introduce another aspect of notation, refer to

the matrix on Page 15 and suppose that the values of X in row one are to
be multiplied by a;, the values of X in row two by 8,5 etc. The matrix

would then be “1“11 eee alxlJ ces alxlN

aixil e aixij cos aixiN

The generai term can be written as 8ixij because the index of a and the
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mindéxli'in xij are the same. The:total of all KN values of gi'ij is

‘KN AT : ; - o
Xtaixij . ‘Since a, is constant with respect to summation involving j,
1] ?

’ ‘ N
we can place a, ahead of the summation symbol £ . That is, Ifa,X,, =

i i 13 1714

La,LX,, .
i ij 1]

Exercise 1.9. Refer to the matrix of values of Xij in Exercise 1;8.

Assume that a, = -], a, = 0, and a, = 1.

Calculate:

(1) ZZa X
1j 11j

a,X
(2) pz-Lil
TR

(3) £ia.x

Answer:~296
1] i"1j

Show algebraically that:

(4) Iia, X , =IX

-IX
g3 1117 P17

a X
() sx-iil.z 3
4 N 3. 7%,

’ 2 2 2
(6) ZZaiXij = §x3j-§x1j

Exercise 1.10. Study the following equation and 1if necessary write

the summations as series to be satisfied that the equation is correct:

KN
LZ(aX, ,+bY,,) = alIX,. + bILY
13 1371 19 13 1 i3

Illustration 1.2. . Suppose

Yij - X1J+ai+bj+c where i = 1, 2,...,K and J=1, 2,...,N

Yoo
P T
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The values of Yij can be arranged in matrix format as follows:

Y = X +a"'b+c.o-uo

11 1 1 . L] . L ] L] 'l YlN - xlN
+ a

11 + al+bN+c

+b . +c .

. Y. =X 1+dy

13 43

YKl = xKl + ak+b1+c .' L] * L] L] .' L] L] L] L ] L ] KN = xKN + %%N+c
Notice that a, is a quantity that varies from row to row but is constant
within a row and that bj varies from column to column but is constant

within a column. Applying the rules regarding the summation symbols we

have

gYij = §(xij+ai+bj+c)

= gxij + Na1 + gb + Ne

iYij = i(xij+ai+bj+c)

ixij + iai + ij+Kc

LY, , = LI(X, ,+a,+b +c)
13 137 gy g

LiX,, + NZa, + KIb, + KNe¢
131 41 4

Illustration 1.3. We have noted that Z(XiYi) does not equal

(xxi)(zyi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But,

Z?Xin - (in)(EYJ) where i = 1, 2,...,K and j = 1, 2,...,N. This becomes
i it 3

clear if we write the terms of IIX,Y, in matrix format as follows:

TRE
Row Totals
lel + lez L A XlYN xlej
+ szl + x2Y2 +eoeot szN XZEYj
+ xKY1 + XKY2 tosot xKYN = szin szYJ
1]

IX,IY,
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The sum of the terms in each row is shown at the right. The sum of these

row totals is4X18Yj +...+,XK£Yj = (X1+...+ xK)ZYJ = EXiEY +« One could

get the same final result by adding the columns first. Very often inter-
mediate summations are of primary interest.
Exercise 1.11, Verify that SZXin = (in)(EYj) using the values of

ij
X and Y in Exercise 1.3. 1In Exercise 1.3 the subscript of X and the sub-

script of Y were the same index. In the expression IIX,Y, that is no longer

TR
the case.
Exercise 1.12. Prove the following:
KN 2 K,yN, K N N,
(1) :g(aixij+bj) = iai gxij + Ziai :Zlibjxij + K:I;bj
KN - o K N 2 R 4
(2) iiai(xij-xi') = iai §x1j - Niaixi.
KN K N K

(3) Ila (X, =X )(Y,,-¥, ) = Ia, IX .Y,, - NZa & R
FERE S B R & e Dl | PSS I K

1.5.2 HIERARCHAL OR NESTED CLASSIFICATION

A double index does not necessarily imply that a meaningful cross
classification of the data can be made. For example, Xij might represent
the value of X for the jth farm in the ith county. In this case, j simply
identifies a farm w%thin a county., There is no correspondence, for example,
between farm number 5 in one county and farm number 5 in another. . In fact
the total number of farms varies from county to county. Suppose there are

K counties and Ni farms in the ith county. The total of X for the ith

N K
county could be expressed as X, = zix + In the present case IX,. is
i j 1] 1 1j

KN
meaningless. The total of all values of X is TIix

19 47
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When the classification is nested, the order of the subscripts
(indexes) and the order of the summation symbols from left to right should
be from the highest to lowest order of classification. Thus in the above
example the index for farms was on the right and the summation symbol

KN
involving this index is also on the right. In the expression ZZiX

i3’
1}
summation with respect to i cannot take place before summation with regard

to j. On the other hand, when the classification is cross classification
the summations can be performed in either order.

In the example of K counties and Ni farms in the ith county, and in
similar examples, you may think of the data as being arranged in rows (or
columns) :

xll, xlz’ LN

le, x22. ene

Xerr ¥gar ovv 0 Xy

Here are two double sums taken apart for inspection:

RN N N

i = 2 1l = 2 K = 2
(1) 22K, DT = TR K DT ek TR ) (1.5)
ij h| J
e % )2 - (X, K )2 4ot (X, =% )2
j (lj- * s 11 .o e 1N1 X
Equation (1.5) is the sum of squares of the deviations, (Xij-i_.), of all

K

values of xij from the overall mearn. There are ZNi values of xij’ and
i
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zeix
14 4
X, = —%f——~. If there wag no interest in identifying the data by counties,
,
N 2
a single index would be sufficient. Equation (1.5) would then be Z(Xi-x) .
i
KNy 2, 3l
lg(x )2 = (x, % )2 + + (X, X, )2
j 13 1 11 1. *ee lN1 1.
N e o .2
With reference to Equation (1.6) do you recognize I (xlj-xl.) ? It involves
h|
only the subset of elements for which 1 = 1, namely X.., X.,,... X,, . Note
11° 712 1N1
' N
that il- is the average value of X in this subset. Hence, Zl(xlj-}'fl.)2 is
A

the sum of the squares of the deviations of the X's in this subset from the
subset mean. The double sum is the sum of K terms and each of the K terms
is a sum of squares for a subset of X's, the index for the subsets being 1.

Exercise 1.13. Let xij represent the value of X for the jth farm in

the ith county. Also, let K be the number of counties and Ni be the number

of farms in the ith‘county. Suppose the values of X are as follows:

Xjp=3  Xp=1  X,=5
Xy =4 Ry =6
X0 X5 Xyy=1l X, =2

Find the value of the following expressions:

Expression Answer
K
(1) ZNi 9

i



8, 2, and 14 for i = 1, 2,

Expression (Continued) Ansgwer
KN,

(2) =z X, 27
13 13

(3) X,, and X, 27
N,

(4) ;:xlj =X, 9

(5) X2 and X3_ 10

(6) il., iz., and 23. 3
IN, X
1%

(7) 3
N,
K N K

(8) z(::ixij)2 or 5xZ, 245
14 1

(9 zz(x K ) 36
13 1
N
1 2

(10) ;: x,,%, ) 8
N
i = .2

an reg,)
KN

1 e X, )P 24
13 1
KR e = .2

(13) :i:Ni(xi.-x") 12
N, 2 i, 2
six rrix
kg 1 1y 1

(14) ¢ - 12
. N IN
K

(15) N X2 -NE2, 12

and 3 respectively

25
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations

of the same thing. By definition

Ni KNi K
I, ., =X, ,IIX, = X,, sand EIN, = N
j. 1]j i 13 1j 1 i
Substitution in (14) gives
K X2 -Xz
I LA
i'Ni N ,
X - . = Ko 22
Also by definition ==— =X, and — = % + Therefore o= = N.X¢ and
Ni i N ve Ni 1"1.
xozo —2 K -2 -2
" NX" . Hence, by substitution, Equation (1.7) becomes ZNixi-- NX .

i
Exercise 1.14. Prove the following:

KN, Ko
(W zztx, x,, =kl
13 i
KN, _ )
(2) fz Ry (X%, ) =0
h|
K K
(3) IN (X, -X )2 = IN.X% -NF2
ii i' e iii. L

Note that this equates (13) and (15) in Exercise 1.13.
The proof is similar to the proof called for in part (5)
of Exercise 1.5.

KN K, N K K
1 2 2 1.2 2
() IZ(aX, . ~b,)“ = Tai I'X{ -2%a b X+ IN,b
PR E e PR S e S TR !

1.6 THE SQUARE OF A SUM
In statistics, it is often necessary to work algebraically with the

square of a sum. For example,

2 2 2
+X Xt o o X +X2X1+...+XN+XﬁX1+...

2 2
(ZXi) (X1+Xz+...+XN) = Xl 149 2

(1.7)
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The terms in the square of the sum can be written in matrix form as

follows:
xlxl X1X2 oo XlX.j . xlxN
xle XZXZ o X‘zxj cee .xsz
xixl xixz e xixj . XiXN

)

xle LA I | %xj
The general term in this matrix is xixj where Xi and Xj come from the same

set of X's, namely, Xl,...,XN. Hence, 1 and j are indexes of the same set.
Note that the terms along the main diagonal are the squares of the value

of X and could be written as ZXZ That is, on the main diagonal i = ]

i L]
and xixj = xixi = Xi . The remaining terms are all products of one value

of X with some other value of X. For these terms the indexes are never
equal. Therefore, the sum of all terms not on the main diagonal can be

expressed as IX, X, where i # j is used to express the fact that the summa-

13"

tion includes all terms where i is not equal to j, that is, all terms other

than those on the main diagonal. Hence, we have shown that (Xxi)2 =

XXZ + IX. X

1 gyt
Notice the symmetry of terms above and below the main diagonal:

X1X2 = xle,xlxa = X3X1 » etc. When symmetry like this occurs, instead of

IX,X, you might see an equivalent expression 2 X.,X., . The sum of all
1431 1< 43

terms above the main diagonal is I xixj . Owing to the symmetry, the sum
i<j
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of the terms below the main diagonal is the same. Therefore, I xixj =
143
2L XX .
i<j 13
4
Exercise 1.15. Express the terms of [ in
’ i=1
matrix format. Let X1 = 2, X2 = 0, x3 = 5, and x4 = 7, Compute the values
2 2

of TX{ , 2L XX, , and [ZX,]% . Show that [ZX.]% = X°> + 2 I X.X. .
R 1 1 1% Y

2 2 3
] [X1+1{2+X3+X 4 17 in

An important result, which we will use in Chapter 3, follows from the

fact that
2 2
[in] = in + I xixj (1.8)
i¢3

Let X, = Yi-f. Substituting (Yi-?) for X, in Equation 1.8 we have

- .2 - 2 - -
[Z(Yi-Y)] = X(Yi-Y) + I (Yi-Y)(Y -Y)

i3 ]

We know that [Z(Yiu‘?)]2 = () because E(Yi-?) = 0. Therefore,

-2 - -
E(Yi-Y) + I (Yi-Y) Y,~Y) = 0

143 3

It follows that I (¥,-¥)(y,-¥) = -z(Y1-§)2 (1.9)

i#3 ]

Exercise 1.16. Consider

%) = T (v,Y, - ¥y, - ¥y, + §9)

X (Yi-Y)(Yj 191 in i j

1]

- LYY, -YIY -TZY + ¥

143 13 gyt gyl gy

2 = N(N—l)?z? With reference to the matrix layout,

Do you agree that £ ¥
14]

Y~ appears Nz times but the specification is 1 ¥ j so we do not want to
count the N times that ?2 is on the main diagonal. Try finding the values

of I Xi and I Xj and then show that
it} i3
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DD - vy - N(N-1)F2

j_-j j i*j i .1

Hint: Refer to a matrix layout. In I Y1 how many i:imes does Yl appear?
1%y
Does Y, appear the same number of times?

2
1.7 SUMS OF SQUALES

For various reasons statisticians are interested in components of
variation, that is, measuring the amount of variation attributable to each
of more than one source. This involves computing sums of squares that
cofrespond to the different sources of variation that are of interest.

We will discuss a simple example of nested classification and a simple
example of cross classification.
1.7.1 NESTED CLASSIFICCATION

To be somewhat specific, reference is made to the example of K counties

and N, farms in the :lth county. The sum of the squares of the deviations

i

of xij and i.. can be divided into two parts as shown by the following

formula:
KN K KN
zzi(x =X )2 = IN, (X, -X )2 + zzi(x -X )2 (1.10)
ij ij oo i i i. ) ij ij i-

The quantity on the left-hand side of Equation (1.10) is called the
total sum of squares. In Exercise 1.13, Part (9), the total sum of squares
was 36.

The first quantity on the right-hand side of the equation involves the
squares of (ii.-i'.),which are deviations of the class means from the over-
all mean. It is called the begween class sum of squares or with reference
to the example the between county sum of squares. In Exercise 1.13,

Part (13), the between county sum of squares was computed. The answer was

12.
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The last term is called the within sum of squares bech#se it involves
deviations within the classes from the class means. It was‘presented
previously. See Equation (1.6) and the discussion pertaining to it. In
Exercise 1.13, the within class sum of squares wuad 24, which was calculated
in Part (12). Thus,‘from Exercise 1.13, we have the total sum of squares,
36, which equals the'Between, 12, plus the within, 24, This verifies
Equation (1.10).

The proof of Equation 1.10 is easy if one gets started;éorrectly.
Write X

ij
subtracting Xi' divides the deviation (Xij-i..) into two parts. The proof

(X i-) +(ii-.i")’ This simple technique of adding and

proceeds as follows:

KN
RS SRR ({CHE PR A ST
ij ij
S o S s = .2
= IL[(X ) + 22X, X, Y(X SX) X =X, )
Y 11" X,. 157,70y 1
= I7(X ) + 2Ln(X -X )(X -X ) + ZZ(X .)
1 37 19 141 1
KNi o
Exercise 1,17, Show that LI (Xi -xi,)(xi.-x..) =0
TR
K, 2 K
and that ZZ (x -x..) = 3 Ni(Xi.-X..)
14 1

Completion of Exercise 1.17 completes the proof.

Equation (1.10) is written in a form which displays its meaning rather
than in a form that is most useful for computational purposes. For computa-
tion purposes, the following relationships are commonly used:

KN

Total = zzi(xi
TR

2

2 -
%)% = zzx? X
The
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N (5 % 12 22 o2
Between = IN, (X, -X )° = IN X, -NX
1 Teo i1, o
i i
KNy 2 2 o2
Within = EI (xij 1. ) szij -IN x
ij ij i
N
" zixij z):ixi:I
where N = IN, , X, =d—" ,and ¥ =24l
i i. N oo N
i i
KN 2
Notice that the major part of arithmetic reduces to calculating LI Xij ’
i]
K <2 )
2Nixi. » and NX . . There are variations of this that one might use. For
i
K Xf_ K -2
example, one could use % N instead of XNiXi.
i1 i

Exercise 1.18. Show that

KN

Iz (xij " )2 szzj ZN xz
ij] ij i
A special case that is useful occurs when Ni = 2. The within sum of
squares becomes
K2 . 2 K 2
zz(xij-xi,) = ):[(Xil 1. ) + (X12 10 )7]
ij i
X,.+X
Since Xi. = —ili—iz it is easy to show that
S MAEE XS

and (X;,-X, )2 4 (Xi17%59)

Therefore the within sum of squares is

=

2
: (X57-X45)

which is a convenient form for computation.
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1.7.2 CROSS CLASSIFICATION
Reference is made to the matrix on Page 15 and to Exercise 1.8. The
total sum of squares can be divided into tﬁree parts as shown by the

following formula:

Ny 5 2 Ko - o N_ _ o, RN
ZI(X,,~X )" = NI(X, =X )° + KE(X ,-X )T+ IZ(X,.~X, -X +X ) (1.11)
1j ij () i i. ) J .j X ij ij ic oj o

Turn to Exercise 1.8 and find the total sum of squares and the three
parts. They are:

Sum of Squares

Total 78
Rows 18
Columns 54
Remainder 6

The three parts add to the total which verifies Equation (1.11). 1In
Exercise 1.8, the sum of squares ca;led remainder was computed directly
(see Part (10) of Exercise 1.8). 1In praefice, the remainder sum of squares
is usually obtained by subtracting the row and column sum of squares from
the total.

Again, the proof of Equation (1.11) is not difficult if one makes the
right start. In this case the deviation, (xij-i..), is divided into three
parts by adding and subtracting ii- and i-j as follows:

-X ) = (X, -X,,) + (X

=X, ) + (X =X X)) (1.12)

3 13" i 3
Exercise 1,19. Prove Equation (1.11l) by squaring both sides of Equa-

(% j

tion (1.12) and then doing the summation. The proof is mostly a matter of
showing that the sums of the terms which are products (not squares) are zero.
KN

For example, showing that zz(i X )(X X .+X y=0.
ij ij i .j oe
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CHAPTER II. RANDOM VARIABLES AND PROBABILITY

2.1 RANDOM VARIABLES
The word "random" has a wide variety of meanings. Its use in such

' or "random sample," however,

terms as "random events,'" "random variable,'
implies a random process éuch that the probability of én event occurring

is known a priori. To select a random sample of elements from a population,
tables of random numbers are used. There are various wayé of using such
tables to make a random selection so any given element will have a specified
probability of being selected.

The theory of probability sampling is founded on the concept of a
random variable which is a variable that, by chance, might equal any one
of a defined set of values. The value of a random variable on ‘. partic;
ular occasion is determined by a random process:in such a way that the
chance (probabiiity) of its being equal to any specified value in the set
is known. 'This is in accord with the definition of a probability saﬁﬁle
which states that every element of the population must have a known prob-
ability (greater than zero) of being selected. A primary purpose of this
chapter is to present an elementary, minimum introduction or review of
probability as background for the next chapter on expected vaiues of a
random variable. This leads to a theoretical bgéis for sampling and for
evaluating the accuracy of éstimates from a probability-sample survey.

In saﬁpling theory, we usually start with an aésumed-population of N’
elements and a measurement for each elgment of some characteristic X. A
typical mathematical rebresentatian of the N measurements or values is

h

xl""’xi""’xN where xi.is the value of the characteristic X for the it

element, Associated with the ith element is a probability Pi’ which is the

probability of obtaining it when one element is selected at random from the‘
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i'vaill be called selection probabilities. If each

element has an equal chance of selection, Pi = %\ The Pi's need not be
i : . .

set of N. The P

equh;, but'we will specify that each Pi>0.'When‘referring to the probability

of X beingﬂeqhhiltO»xivwe will‘pge P(Xi)'inétead of‘Pi.
We need to be aware of a distinction between selection probability

and iﬁélusion probability, the latter being the probabiiity of an element

being.included in.a sample. In this chapter, much of the discussion is

oriented toward selection probabilities because of its relevance to finding

expected values of estimates from samples of various kinds.

Definition 2.1. A random variable is a variable that can equal any

value xi, in a defined set, with a probability P(Xi).

When an element is selected at random from a population and a measure-
ment of a characteristic of it is made, the value obtained is a random
variable. As we shall see later, if a-sample of elements is selected at
random from a population, the sample average and other quantities calculated
from the sample are random variables.

Illustration 2.1. One of the most familiar examples of a random

variable is the number of dots that happen to be on the top side of a die
when it éomes to rest after .a toss. This also illustrates the concept 6f
probability that we are interésted ing namély, the relative frequency with
which a particular aqutcome will occur in reference t6 a defined set of

- possible outcomes. With a die there are six possible outcomes and we expect
each to occur with the same frequency, 1/6, assuming the die is tossed a )
very large.or‘infinite number of times. Implicit in a statement that each
side 6f a.die-hasla probability of 1/6 of being the top side are some

assumptions about. the physical structure of .the die and the "randomness"

Qf,thé!tossf i
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The additive and multiplicative laws of probability can be stated in
several ﬁéys depending upon the context in which they are to be used. 1In
sampling, our inierest is primarily in the outcome of one random selection
or of a‘sefiés of random selections that yields a probability sample.
Hence, the rules or theorems for tlie addition or mulfiplication of prob-
abilities will be stated or discussed only in the context of probability
sampling.

2,2 ADDITION OF PROBABILITIES

Assume a population of N elements and a variable X which has a value
Xi for the ith element. That is, we have a set of values of X, namely
xl""’xi"°°’xN' Let Pl""’Pi""'PN be a set of selection probabilities
where Pi is the probability of selecting the ith element when a random

selection is made., We specify that each Pi must be greater than zero and

N

that EPi = 1. When an element is selected at random, the probability that
i

it is either the ith element or the jth element is Pi + Pj‘ This addition

rule can be stated more generally. Let Ps be the sum of the selection
probabilities for the elements in a subset of the N elements. When a random
selection is made from the whole set, Ps is the ptobability that the element
selected is from the subset and l-Ps is the probability that it is not from
the subset. With reference to the variable x,'let P(xi) represent the

probability that X equals X Then P(X1)+P(Xj) represents the probability

i .
4 OF xj; and Ps(x) could be used to represent the

probability that X is equal to one of the values in the subset.

 that X equals either X

Before adding'(Or subtracting) probabilities one should determine

whether the events are mutually exclusive aﬁd whether all possible events

have been accounted for. Consider two subsets of elementé, subset A and
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subset B, of a population of N elements. Suppose one eiement is selected
at raﬂdom. What is the probability that the selected eleﬁént is a member
'of either subset A or subset B? Let P(A) be the probability that the
selected element is from subset A; that is, P(A) is the sum of the selec—
tion .probabilities for elements in subéet A. P(B) is defihed similarly.

If the two subfets are mutually exclusive, which means that no element is
in both subsets, the probability that the element selected is from either
subset A or subset B is P(A) + P(B). If some elements are in both subsets,.
see Figure 2.1, then event A (which is the selected element being a member
of subset A) and event B (which is the selected element being a member of
subset B) are not mutually exclusive events. Elements included in both
subsets are counted once in P(A) and once in P(B). Therefore, we must
subtract P(A,B) from P(A) + P(B) where P(A,B) is the sum of the probabilities
for the elements that belong to both subset A and subset B. Thus,

P(A or B) = P(A) + P(B) - P(A,B)

Figure 2.1

To summarize, the additive law of probability as used above could be
stated as follows: If A and B are subsets of a set of all possible outcomes

that could occur as a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability
that the outcome is in A plus the probability that it is in B minus the
probability that it is in both A and B.

The additive law of probability extends without difficulty to three
or more subsets. Draw a figure like Figure 2.1 with three subsets so that
some points are common to all three subsets.. Observe that the additive
law extends to three subsets as follows:

P(A or B or C)=P(A)+P(B)+P(C)-P(A,B)-P(A,C)-P(B,C)+P(A,B,C)

As a case for further discussion purposes, assume a population of N
elements and two criteria for classification. A two-way classification of
the elements could be displayed in the format of Table 2.1.

Table 2.1--A two-way clagsification of N elements

f f X class f f
¢t Y class : ¢ Total :
: : 1 vos h| vee s : :
f 1 f Nll’Pll eee Nlj’Plj o le’Pls f Nlo’Pl- f
f i f Nil,Pil L N ] Nij’Pij LI ) Nis,Pis f Nil,Pil 3
f t f Ntl’Ptl ves th’Ptj eee Nts’Pts 3 Nt-’Pt- f
¢ Total : N.1 N.j N.s ¢ N,P=1 H

The columns represent a classification of the elements in terms of criterion
X; the rows represent a classification in terms of criterion Y; Nij is the

number of elements in X class j and Y class i; and P,, is the sum of the

1]
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selection probabilities for the elements in X class j and Y class 1. Any
one of the N elements can be classified in one and only one of the t times
s cells.

Suppose one element from the population of N is selected. According
to the additive law of probability we can state that

IP,, = P-j is the probability that the element selected is from

g 4

X class j, and
ZPij = Pi- is the probability that the element selected is from
b

Y class 1, where
Pij is the probability that the element selected is from
(belongs to both) X class j and Y class i.

The probabilities P-j and Pi- are called marginal probabilities.

The probability that one randomly selected element is from X class

J or from Y-class i is P'j + Pi- - Pij' (The answer is not P_j + Pi- because

in P’j + Pi- there are Nij elements in X class j and Y class i that are
counted twice.)

N

N
If the probabilities of selection are equal,_?ii = —%1 y P . = —ﬁi ,

N
i
and Pi- N~

Illustration 2.2. Suppose there are 5,000 students in a university.

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living
in dormitory A. From a list of the 5,000 students, one student is selected

at random. Assuming each student had an equal chance of selection, the
1600

probability that the selected student is a freshman is 5000 ° that he is a
1400 1600
sophomore is 5000 ’ and that he is either a freshman or a sophomore is 5000 +

%%g% » Also, the probability that the selected student lives in dormitory A
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s 300
5000 °

a freshman or lives in dormitory A? The question involves two classifica-

i But, what is the probability that the selected student is either

tions: one pertaining to the student's class and the other to where the
student lives. The information given about the 5000 students could be

arranged as follows:

f f Class f E
: Dormitory : ¢ Total H
: : Freshmen Sophomores Others : s
H A : : 500 :
:  Other H : 4500 :
: Total : 1600 1400 2000 : 5000 :

From the above format, one can readily ohserve that the answer to the ques-
. tion depends upon how many freshmen live in dormitory A. If the problem

had stated that 200 freshmen live in dormitory A, the answer would have

been 1600 + 500 _ 200
5000 = 5000 5000 °

Statements about probability need to be made and interpreted with
great care. For example, it is noi¢ correct to say that a student has a
probability of 0.1 of living in dormitory A simply because 500 students out
of 5000 live in A. Unless students are assigned to dormitories by a random
process with known probabilities there is no basis for stating a student's
probability of living in (being assigned to) dormitory A. We are consider-

ing the outcome of a random selection.

Exercise 2.1. Suppose one has the following information about a

population of 1000 farms:



600 produce corn

500 produce soybeans

300 produce wheat

100 produce wheat and corn

200 have one or more cows

all farms that have cows also produce corn

200 farms do not produce any :crops

40

One farm is selected at random with equal probability from the list

of 1000. What is the probability that the selected farm,

(a) produces corn?

Answer:

(b) does not produce wheat?

(c) produces corn but no wheat? Answer:

0.6

(d) produces corn or wheat but not both?

(e) has no cows?

Answer:

0.8

(f) produces corn or soybeans?

(g) produces corn and has no cows?

Ansver:

(h) produces either corn, cows, or both?

(1) does not produce corn or wheat?

One of the above questions cannot be answered.

Exercise 2,2,

probabilities as follows:

Element
1
2

Assume a population of 10 elements and selection

[N

.05
.10
.08
.02

.20

Element

10

0.5

0.4

[y

.15
.20
.05
.05

.10
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One.element is selected at randcm with probability Pi‘
Find:

(a) P(X=2),. the probability that X = 2,

(b) P(X>10), the probability that X is greater than 10.

(c) P(X<2), the probability that X is equal to or less than 2.

(d) P(3<X>10), the probability that X is greater than 3 and less
than 10

(e) P(X<3 or X>10), the probability that X is either equal to or less
than 3 or is equal to or greater than 10.

Note: The answer to (d) and the answer to (e) should add to 1.
So far, we have been discussing the probability of an event occurring as
a result of a single random selection. When more than one random selection
occurs simultaneously or in succession the multiplicative law of prob-
ability is useful.
2.3 MULTIPLICATION OF PROBABILITIES
Assume a population of N elements and selection probabilities

N
Pl""’Pi”"’PN' Each Pi is greater than zero and EIP, = 1. Suppose

g 1

two elements are selected but before the second selection is made the
first element selected is returned to the population. In this case the
outcome of the first selection does not change the selection probabilities
for the second selection. The two selections (events) are independent.
The probability of selecting the 1th element first and the jth element
second is, Pin, the prodqct of the selection probabilities Pi and Pj‘

1f a selected element is not returned to the population before the next

selection is made, the selection probabilities for the next selection are

changed. The selections are dependent.
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The multiplicative law of probability, for two independent events
A and B, states that the joint probability of A and B happening in the
order A,B is equal to the probability that A happens times the prob-
ability that B happens. 1In equation form, P(AB) = P(A)P(B). For the
order B,A, P(BA) = P(B)P(A) and we note that P(AB) = P(BA). Remember,
independence means that the probability of B happening is not affected
by the occurrencé’of A and vice versa. The multiplicative law extends
to any number of independent events. Thus, P(ABC) = P(A)P(B)P(C).

For two dependent events A and B, the multiplicative law states that
the joint probability of A and B happening in the order A,B is equal to
the probability of A happening times the probability that B happens under
the condition that A has already happened. 1In equation form P(AB) =
P(A)P(BIA); or for the order B,A we have P(BA) = P(B)P(AIB). The vertical
bar can usually be translated as "given" or "given that." The notation on
the left of the bar refers to the event under consideration and the nota-
tion on the right to a condition under which the event can take place.
P(B|A) is called conditional probability and could be read "the prob-
ability of B, given that A has already happened," or simply "the prob-
ability of B given A." When the events are independent,P(BlA) = P(B);
that is, the conditional probability of B occurring is the same as the
unconditional probability of B. Extending the multiplication rule to a
series of three events A,B,C occurring in that order, we have P(ABC) =
P(A)P(BIA)P(C,AB) where P(CIAB) is the probability of C occurring, given
that A and B have already occurred.

2.4 SAMPLING WITH REPLACEMENT
When a sample is drawn and each selected element 1s returned to the

population before the next selection is made, the method of sampling is
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called "sampling with replacement.” In this case, the outcome of one
selection does not change the selection probabilities for another
selection.

Suppose a sample of n elements is selected with replacement, Let the
values of X in the sample be xl,xz,...,xn where Xy is the value of X
obtained on the first selection, Xy the value obtained on the second
celection, etc. Notice that X is a random variable that could be equal
to any value in the population set of values xl,xz,...,xN, and the prob-

ability that x. equals X, is P,. The same statement applies to Xy, etc.

1 i i

Since the selections are independent, the probability of getting a sample
of n in a particular order is the product of the selection probabilities
namely, p(xl)p(xz)...p(xn) where p(xl) is the Pi for the element selected
on the first draw, p(xz) is the Pi for the =2lement selected on the sécond

draw, etc.

Illustration 2.3. As an illustration, consider a sample of two

elements selected with equal probability and with replacement from a popu-
lation of four elements. Suppose the values of some characteristic X for

the four elements are X There are 16 possibilities:

1° X2, x3, and XA.
Xl,Xl Xz,xl X3,Xl Xa’xl
xl,xz xz,xz x3,x2 Xa,x2
Xl,X3 Xz,x3 x3,x3 X4,X3
xl,x4 XZ,X4 X3,X4 Xa,xa

In this illustration p(xl) is always equal CO'% and p(xz) is always %-.

Hence each of the 16 possibilities has a probability of (%)(%9 = %E .



44

Each of the 16 possibilities is a different permutation that could
be regarded as a separate sample. However, in practice (as we are not
concerned about which element was selected first or second) it is more
logical to disregard the order of selection. Hence, as possible samples

and the probability of each occurring, we have:

Sample Probability Sample Probability
Xl,Xl 1/16 XZ,X3 1/8
xl.xz 1/8 xz,x4 1/8
Xl,X3 1/8 x3,x3 1/16
xl,x4 1/8 X3,X4 1/8
Xz,x2 1/16 xa,x4 1/16

Note that the sum of the probabilities is 1. That must always be the
case if all possible samples have been listed with the correct prob-
abilities. Also note that, since the probability (relative frequency
of occurrence) of each sample is known, the average for each sample is
a random variable. 1In other words, there were 10 possible samples, and
any one of 10 possible sample averages could have occurred with the
probability indicated. This is a simple illustration of the fact that
the sample average satisfies the definition of a random variable. As
the theory of sampling unfolds, we will be examining the properties of
a sample average that exist as a result of its being a random variable.
Exercise 2.3. With reference to Illustration 2.3, suppose the

probabilities of selection were P 3 P2 3 P3 3° and P4 g

1
Find the probability of each of the ten samples. Remember the sampling

is with replacement. Check your results by adding tlie 10 probabilities.
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The sum should be 1. Partial answer: For the sample composed of elements

2 and 4 the probability is (%9(%9 + (%9(%) = %3;
2.5 SAMPLING WITHOUT REPLACEMENT

When a selected element is not returned to the population before the
next selection is made, the sampling method is called sampling without
replacement. In this case, the selection probabilities change from one
draw to the next; that is, the selections (events) are dependent.

As above, assume a population of N elements with values of some
characteristic X equal to Xl,xz,...,XN. Let the selection probabilities
for the first selection be Pl""’Pi""PN where each Pi>0 and ZPi =1,
Suppose three elements are selected without replacement. Let X1 Xy and
X, be the values of X obtained on the first, second; and third random
draws, respectively. What is the probability that X = XS’ X, = X6, and
X, ® x77 Let P(XS,X6,X7) represent this probability,which is the prob-
abllity of selecting elements 5, 6, and 7 in that order.

According to the multiplicative probability law for dependent events,

P(X; X ,X,) = P(xs)P(x6|x5)P(x7|x5,x6)

It is clear that P(XS) = P For the second draw the selection prob-

50
abilities (after element 5 is eliminated) must be adjusted so they add

to 1. Hence, for the second draw the selection probabilities are

1f% ’ 1f§ J 1?3 ’ 1f: ’ 1fg e 1f§ + That is, P(X|X,) = 1fg .
5 5 1Fg 5 5 N 5
P,
Similarly, P(x7|x5,x6) = I:ﬁg:ig .
P P
6 7 (2.1)

Therefore, P(XS’ 6’x7) = (Ps)(l_Ps)(l_PS_p6)
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P P

5 7
Observe that P(X,,X.,X,) = (P,) (1-P6) G5

=)
6 s

Hence, P(Xs,x6,x7) ¥

P(x6,X5,X7) unlegs P5 = P6' In general, each permutation of n elements
has a different probability of occurrence unless the Pi's‘are all equal.
To obtain the exact probability of selecting a sample composed of ele-
ments 5, 6, and 7, one would need to compute the probability for each of
the six possible permutations and get the sum of the six probabilities.

Incidentally, in the actual process‘of selection, it is not neces-
sary to compute a new set of selection probabilities after each selection
is made. Make each selection in the same way that the first selection
was made. If an element is selected which has already been drawn, ignore
the random number and continue the same process of random selection
until a new element is drawn.

As indicated by the very brief discussion in this section, the
theory of sampling without replacement and with unequal probability of
selection can be very complex. However, books on sampling present ways
of circumventing the complex problems. In fact, it is practical and
advantageous in many cases to use unequal probability of selection in
sampling. The probability theory for sampling with equal probability
of selection and without replacement is relatively simple and will be
discussed in more detail.

Exercise 2.4. For a population of 4 elements there are six possible

samples of two when sampling without replacement. Let P1 = %3 P2 = %3

P3 --%, and P4 --%. List the six possible samples and find the prob-
ability of getting each sample. Should the probabilities for the six

samples add to 1? Check your results.
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Exercise 2.5. Suppose two elements are selected with replacement

and with equal probability from a population of 100 elements. Find the
probability: (a).th;t element number 10 is not seleqted, (b) that ele-
ment number 10 is selecﬁed only once, and (c) that element number 10 is
selected twice? As a.check, the three probabilities ghould add to 1.

| Why? Find the probability of selecting the combination of elements 10

and 20.

Exercise 2.6. Refer to Exercise 2.5 and change the specification

"with replacement" to 'without replacement." Answer the same questions.
Why is the probability of getting the combination of elements }0 and 20
greater than it was in Exercise 2.5?

2.6 SIMPLE RANDOM SAMPLES

In practice, nearly all samples are selected without replacement.
Selection of a fandom sample of n elements, with equal probability and
without replaéemeqt, from a population of N elements is called simple
random sampling (srs). One element must be selected at a time, that is,
n separate random selections are required.

First, the probability of getting a particular combination of n
elements will be discussed. kefer to Equation (2.1) and the discussion
preceding it. The Pl's are all equal to %-for simple random samplingf
Therefore, Equation (2.1) bécqmes P(XS,XG,X7) = (%Q(E%EO(E%E). All per-
mutations of the three eleﬁents 5, 6, and 7 have the same probability of

occurrence. There are 3! = 6 possible permutations. Therefore, the

probability that the sample is composed of the elements 5, 6, and 7 is

D)3
N(N-1) (N-2) °

probability of occurrence.

Any other cémbinafion of three elements has the same
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In gerierdl, all possible combinations .of n elements have theisame = -
Achah¢e Qg;se;ecﬁion gqqﬂgpynparticulq:,qombinatibnﬁoffn hgsgthe foliowing
probability of being selected:

(1)(2)(3)eee(n) - n! (N-n)! (2.2)
' N(N—l)(N—Z)...(N-n+1) N! *

According to a theorem on number of combinations, there are'57z§%ﬁyy
possible‘combinatibﬁs (samples) of n elements. If each combination 6f
n eleménts has the same chance of being the sample selected, the probability
of selecting a specified combination must be the reciprocal of the number
of combinations. This checks with Equation (2.2).

An impprtant feature of srs that will be needed in the chapter on
expected values is the fact that the jth element of the populétion is as
likely to be selecfed at the i;h random draw as any other. A general
expression for the probability that the jth element of the population is

selected at the ith drawing ié

S D .. gt el - & @

Let us check Equation 2.3 for i = 3. The equation becomes

The probability that the jth element of the population is selected at tﬁe
third draw is equal to the probability that it was not selected at either
the first or second draw times the conditional probability of being |
aelectgd at thé third draw, given that it was not selected at the first

or second draw. (Remember, the sampling is without replacement). Notice

that X2 18 the probability that the 3™ element 1s not selected at the
fi:st draw and %E%-ib the conditional probabilit& that it was not selected

at the second draw. Therefore, 6§§AO(gE%9 ia the probability that the jth
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element has not been selected prior to the third draw. When the third
draw is made, the conditional probability of selecting the jthAelement

is ﬁ%f . Hence the probability of selecting the j?h element at the third

N-1
N

To summarize, the general result for any size of sample is that the

draw is ( )(g:i)(niz) - %-. This verifies Equation (2.3) for i = 3.

jth

at the 1

element in a population has a probability equal to %-of being selected
th drawing. It means that X, (the value of X obtained at the ith
draw) is a random variable that has a probability of %-of being equal to
any value of the set xl,...,xN.

What probability does the jth element have of being included in a
sample of n? We have just shown that it has a probability of %-of being
selected at the 1th drawing. Therefore, any given element of the popula-
tion has n chances, each equal to %-, of being included in a sample. The -
element can be selected at the first draw, or the second draw,..., or the
nth draw and it cannot be selected twice because the sampling is without
replacement. Therefore the probabilities, %-for each of the n draws, can
be added which gives'% as the probability of any given element being
included in the sample.

Illustration 2.4. Suppose one has a list of 1,000 farms which includes

some farms that are out-of-scope (not eligible) for a survey. There is no
way of knowing in advance whether a farm on the list is out-of-scope. A
simple random sample of 200 farms is selected from the list. All 200 farms
are visited but only the ones found to be in scope are included in»;he
sample. What probability does an in-scope farm have of being in the sam-

ple? Every farm on the list of 1000 farms has a probability equal to~%
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of being in the sample of 200. All in-scope farmg in the sample of 200
are included in the final sample. Therefore, the answer is %u

Exercise 2.7. From the following set of 12 values of X a srs of

three elements is to be selected: 2, 10,'5, 8, 1, 15, 7, 8, 13, 4, 6,
and %. Find P(§312) and P(3<§<12). Remember that the total possible
numbér gf samples of 3 can readily be obtained by formula. Since every
possible sample of tiiree is equally likely, you can determine which sam-
ples will have an §§3 or an x>12 without listing all of the numerous
possible samples. Answer: P(§312) = 3%3 3 P(§53) = 5%3 s P(3<x<12) = %%%.
2.7 SOME EXAMPLES OF RESTRICTED RANDOM SAMPLING

There are many methods other than srs that will give every element
an equal chance of being in the sample, but some combinations of n ele-
ments do not have a chance of being the sampie selected unless srs is
used, For example, one might take every kth element beginning from a
random starting point between 1 and k. This is called systematic sam-
pling. For a five percent sample k would be 20. The first element for
the sample would be a random number between 1 and 20, If it is 12, then
elements 12, 32, 52, etc., compose the sample. Every element has an
equal chance, %6 s 0f being in the sample, but there are oﬁly 20 com~-
binations of elements that have a chance of being the sample selected.

Simple random sampling could have given the same sample but it is the

method of sampling that characterizes a sample and determines how error

due to sampling is toc be estimated. One may think of sample design as a
matter of choosing a method of sampling; that is, choosing restrictions

to place on the process of selecting a sample so the combinations which
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have a chance of being the sample selected are generally "better" than
many of the combinations that could occur with siﬁple random sampling.
At the same time, important properties that exist for simple random sam-
ples need to be retained. The key properties of srs will be developed in
the next two chapters.

Another common method of sampling involves classification of all

elements of a population into groups called strata. A sample is selected

from each stratum. Suppose Ni elements of the population are in the ith

stratum and a simple random sample of n, elements is selected from it.

This is called stratified random sampling. It is clear that every ele-

n
h stratum has a probability equal to ﬁl of being in the
n i
sample. If the sampling fraction, ﬁi s 18 the same fqr all strata,
i n
every element of the population has an equal chance, namely ﬁl , of
i

being in the sample. Again every element of the population has an equal

ment in the it

chance of selection and of being in the sample selected, but some combi-
nations that could occur when the method is srs cannot occur when
stratified random sampling is used.

So far, our discussion has referred to the selection of individual
elements, which are the units that data pertain to. For sampling purposes
a population must be divided into parts which are called sampling units.

A sample of sampling units is then selected. Sampling units and elements
could be identical. But very often, it is either not possible or not
practical to use individual elements as sampling units. For example,
suppose a sample of households is needed. A list of households does not
exist but a list of blocks covering the area to be surveyed might be avail-

able. In this case, a sample of blocks might be selected and all households
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within the selected blocks included in the sample. The blocks are the
sampling units and the elements are households. Every element of the
population should belong to one and only one sampling unit so the list of
"sampling units will account for all elements of the population without
duplication or omission. Then, the probability of selecting any given
element is the same as the probability of selecting the sampling unit
that it belongs to.

Illustration 2.5. Suppose a population is composed of 1800 dwelling

units located within 150 well-defined blocks. There are several possible
sampling plans. A srs of 25 blocks cnuld be selected and every dwelling
unit in the selected blocks could be included in the sample. In this
case, the sampling fraction is % and every dwelling unit has a probabiiity
of %-of being in the sample. Is this a srs of dwelling units? No, but
one could describe the sample as a random sample (or a probability sample)
of dwelling units and state that every dwelling unit had an equal chance
of being in the sample. That is, the term "simple random sample" would
apply to blocks, not dwelling units. As an alternative sampling plan, if
there were twelve dwelling units in each of the 150 blocks, a srs of two
dwelling units could be selected from each block. This scheme, which is an
example of stratified random sampling, would also give every dwelling unit

a probability equal to %-of being in the sample.

Illustration 2.6. Suppose that a sample is desired of 100 adults

living in a specified area. A list of adults does not exist, but a list
of 4,000 dwelling units in the area is available. The proposed sampling
plan 1s to select a srs of 100 dwelling units from the list. Then, the

field staff is to visit the sample dwellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units.
A simple random sample of 100 adults is selected from the list of 220.
Consider the probability that an adult in the populatibn has of being in
the sample of 100 adults.

Parenthetically, we should recognize that the discussion which
follows overlooks important practical problems of definition such as the
definition of a dwelling unit, the definition of an adult, and the defini-
tion of living in a dwelling unit. However, assume the definitions are
clear, that the list of dwelling units is complete, that no dwelling is
on the list more than once, and that no ambiguity exists about whether
an adult lives or does not live in a particular dwelling unit. Incom-
plete definitions often lead to inexact probabilities or ambiguity that
gives difficulty in analyzing or interpreting results. The many practical
problems should be discussed in an applied course on sampling.

It is clear that the probability of a dwelling unit being in the
sample is %6 « Therefore, every person on the list of 220 had a chance
of %a-of being on the list because, under the specifications, a person
lives in one and only one dwelling unit, and an adult's chance of being
on the list is the same as that of the dwelling unit he lives in.

The second phase of sampling involves selecting a simple random
sample of 100 adults from the list of 220. The conditional probability
of an adult being in the sample of 100 is %%% = %T . That is, given the
fact that an adult is on the list of 220, he now has a chance of %T of
being in the sample of 100.

Keep in mind that the probability of an event happening is its rela-

tive frequency in repeated trials. If another sample were selected
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following the above specifications, each dwelling unit in the population
would égain have a chance of %a-of being in sample; but, the number of
adults listed is not likely to be 220 so the conditional probability at
the second phase depends upon the number of dwellings units in the sample
blocks. Doés every adult have the same chance of being in the sample?
Examine the case carefully. An initial impression could be misleading.
Every adult in the population has an equal chance of being listed in the
first phase and every adult listed has an equal chance of being selected
at the second phase. But, in terms of repetition of the whole sampling
plan each person does not have exactly the same chance of being in the
sample of 100. The following exercise will help clarify the situation
and 1s a good exercise in probability.

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with

the following numbers of adults:

Dwelling Unit No. of Adults

1 2

4
3 1
4 2
> 3

A srs of two d.u.'s is selected. A srs of 2 adults is then selected from

a list of all adults in the two d.u.'s. Find the probability that a speci-
fied adult in d.u. No. 1 has of being in the sample. Answer: 0.19. Find
the probability that an adult in d.u. No. 2 has of being in the sample.
Does the probability of an adult being in the sample appear to be related

to the number of adults in his d.u.? In what way?
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An alternative is to take a constant fraction of the adults listed
instead of a constant number. For example, the specification might have
been to select a random sample of %-of the adults listed in the first
phase. In this case, under repeated application of the sampling speci-
fications, the probability at the second phase does not depend on the
outcome of the first phase and each adult in the population has an equal
chance, (%6)(%9 = %6 , of being selected in the sample. Notice that
under this plan the number of adults in a sample will vary from sample
to sample; in fact, the number of adults in the sample is a random variable.

For some surveys, interviewing more than one adult in a dwelling unit
is inadvisable. Again, suppose the first phase of sampling is to select
a srs of 100 dwelling units. For the second phase, consider the following:
When an interviewer completes the listing of adults in a sample dwelling,
he is to select one adult, from the list of those living in the dwelling,
at random in accordance with a specified set of instructions. He then
interviews "the selected adult if available; otherwise, he returns at a
time when the selected adult is available. What probability does an adult
living in the area have of being in the sample? According to the multi-
plication theorem, the answer is P'(D)P(AID) where P°(D) is the probability
of the dwelling unit, in which the adult lives, being in the sample and
P(A|D) is the probability of the adult being selected given that his
dwelling is in the sample. More specifically, P°(D) = %5 and P(A|D) = %; ’
where ki is the number of adults in the ith dwelling. Thus, an adult's

chance, (%3)(%f9, of being in a sample is inversely proportional to the
i

number of adults in his dwelling unit.

Exercise 2.9. Suppose there are five dwelling units and 12 persons

living in the five dwelling units as follows:
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Dwelling Unit Individuals
1 1, 2
2 3,4, 5, 6
3 7, 8
4 9
5 10, 11, 12

1. A sample of two dwelling units is selected with equal probability
and without replacement. All individuals in the -selected dwelling units
are in the sample. What probability does individual number 4 have of being
in the sample? Individual number 97

2. Suppose from a list of the twelve individuals that one individual
is selected with equal probability. From the selected individual two
items of information are obtained: his age and the value of the dwelling
in which he lives. Let Xl, xz,...,xlz represent the ages of the 12 indi-
viduals and let Yl,...,Y5 represent the values of the five dwelling units.
Clearly, the probability of selecting the ith individual is %7 and there-
fore P(Xi) = %E » Find the five probabilities P(Yl)""’P(YS)' Do you
agree that P(Y3) - %5 ? As a check, ZP(Yj) should equal one.

3. Suppose a sample of two individuals is selected with equal prob-
ability and without replacement. Let Y., be the value of Y, obtained at

1j b/
the first draw and ‘12:l be the value of Yj obtained at the second draw.

Does P(Ylj) - P(Yzj)? That is, is the probability of getting Yj on the
second draw the same as it was on the first? If the answer is not evident,
refer to Section 2.5.

Exercise 2.10. A small sample of third-grade students enrolled in

public schools in a State is desired. The following plan is presented only
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as an exercise and without consideration of whether it is a good one: A
sample of 10 third-grade classes ig to be selected. All students in the
10 classes will be included in the sample.

Step 1. Select a srs of 10 schoo; districts.

Step 2. Within each of the 10 school districts, prepare a list

of public schools having a third grade. Then select one
school at random f;om the list.

Step 3. For each of the 10 schools resulting from Step 2, list

the third-grade classes and select one class at random.
(If there is only one third-grade class in the school,
it is in the sample). This will give a sample of 10 classes.

Describe third-grade classes in the population which have relatively
small chances of being selected. Define needed notation and write a
mathematical expression representing the probability of a third-grade
class being in the sample.

2.8 TWO-STAGE SAMPLING

For various reasons sampling plans often employ two or more stages
of sampling. For example, a sample of counties might be selected, then
within each sample county a sample of farms might be selected.

Units used at the first stage of sampling are usually cal}ed primary
sampling units or psu's. The sampling units at the second stage of sam-
pling could be called secondary sampling units. However, since there has
been frequent reference earlier in this chapter to "elements of a popula-

tion,"

the samnling units at the second stage will be called elements.
In the simple case of two-stage sampling, each element of the popu-

lation is associated with one and only one primary sampling unit. Let i
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be the index for psu's and let J be the index for elements within a psu.
Thus xij represents the value of some characteristic X for the jt:h element
in the ith psu. Also, let
M = the total number of psu's,
m'= the number of psu's selected for a sample,
Ni = the total number of elements in the ith psu, and
n, = the number of elements in the sample from the ith psu.
Then,
M
iNi = N, the total number of elements in the population, and
m
ini = n, the total number of elements in the sample.
Now consider the probability of an element being selected by a two
step process: (1) Select one psu, and (2) select one element 'within the
selected psu., Let,
Pi = the probability of éelecting the 1th psu,
lei = the conditional.probability of selecting the jth
element in the ith psu given that the ith psu has already
been selected, and
Pij = the overall probability of selecting the jth element in
the ith psu.,
Then,

Pij = Pipjli

If the product of the two probabilities, Pi and Pj,i’ is constant for

every element, then every element of the population has an equal chance of
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being selected. In other words, given a set of selection probabilities

Pl""’PM for the psu's, one could specify that P, = %»and compute P

13 \1E!

J|5 = ﬁ%— » 80 every element of the population will have an equal
) i

chance of selection.

where P

Exercise 2.11. Refer to Table 2.1. An element is to be selected by

a three-step process as follows: (1) Select one of the Y classes (a row)

N .
with probability ﬁi', (2) within the selected row select an X class (a
N
column) with probability ﬁil s (3) within the selected cell select an
i.

element with equal probability. Does each element in the population of N
elements have an equal probability of being drawn? What is the probability?

The probability of an element being included in a two-stage sample

is given by
Pij ] PiP;fli (2.4)
where
P{ = the probability that the ith psu is in the sample
of psu's, and
.‘il i" the conditional probability which the j element has

of being in the sample, given that the ith psu has
been selected.

The inclusion probability Pij will be discussed very briefly for three

important cases:

(1) Suppose a random sample of m psu's is selected with equal prob-

ability and without replacement. The probability, Pi , of the ith psu

being in the sample is f where f, is the sampling fraction for the

-B
1 M 1
first-stage units. In the second stage of sampling assume that, within

each of the m psu's, a constant proportion, fz, of the elements is selected.
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That is, in the ith pou in the sample, a simple random samplg;pf n, ele-

ments out of Ni is selected, the condition being that n, = sz Hence,

i i°
the conditional probability of the jth element in the ith psu being in
n

¢ ﬂ—gf .
it N, 2

Pij = f1f2 which shows that an element's probability of being in the

sample is equal to the product of the sampling fractions at the two stages.,

the sample is P Substituting in Equation 2.4, we have

In this case P;, is constant and is the overall sampling fraction.

i)

Unless Ni is the same for all psu's, the size of the sample,

n, = f Ni » varies from psu to psu. Also, since the psu's are selected

i 2
m mn
at random the total size of the sample, n = Zni = f2 ENi, is not constant
i i

with regard to repetition of the sampling plan. In practice variation in
the size, n,, of the sample from psu to psu might be very undesirable. If

appropriate information is available, it is possible to select psu's with

-»

probabilities that will equalize the sample sizes n and also keep Pij

constant.

N
(2) Suppose one psu is selected with probability P, = ﬁl + This

i
is commonly known as sampiing with pps (probability proportional to size).

Within the selected psu, assume that a simple random sample of k elements
is selected. (If any N1 are less than k, consolidations could be made so

all psu's have an Ni greater than k). Then,

P’n-{q-j-'- P’ n-li
1N 41 N,

-4

» and P7 = 1

Ak _k
i "N N, °N

i
which means that every element of the population has an equal probability,
% » of being included in a sample of k elements.

Extension of this sampling scheme to a sample of m psu's could

encounter the complications indicated in Section 2,5. However, it was
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stated that means exist for circumventing those complications. Sampling
books 1/ discuss this matter quite fully so we will not include it in this

monograph. The point is that one can select m psu's without replacement

. N _
in such a way that m ﬁl is the probability of including the ith psu in
N

the sample. That is, P; =mg . ‘I1f a random sample of k elements is
selected with equal probability from each of the selected psu's,

. k
P = = and

jl N

N
‘e m-BEy) Mk, D
Py (mN)(Ni) NN

Thus, if the N, are known exactly for all M psu's in the population,

i
and if a list of elements in each psu is available, it is possible to
select a two-stage sample of n elements so that k elements for the sample
come from each of m psu's and every element of the population hés an equal
chance of being in the sample. In practice, hqwever, one usually finds
one of two situations: (a) there is no informétion on the number of ele~-
ments in the psu's, or (b) the information that does exist is out-of-date.
Nevertheless, out-of-date information on number of elements in the psu's
can be very useful. It is also possible that a measure of size might

exist which will serve, more efficiently, the purposes of sampling.

(3) Suppose that characteristic Y is used as a measure of size. Let

]

Yi be the value of Y for the 1th psu in the population and let P1 = Ti
M
wvhere ¥ = ZYi . A sample of m psu's is selected in such a way that
i
Y
P{=m L is the probability that the ith psu has of being in the sample.

i Y

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.
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ﬁith regard to -the-second étage.of Samhlihg;‘let‘fZi'bé the ‘sampling
fraction: for selecting a simple random sample within the ith psu in the
sample. ' That is, P;li = fZi . 'Theﬁ,'
Yy
PR NCES TN (2.5)
in sgtting sampling specifications one would decide on a fixed value

for Pij' In this context Pij

tion of the population that is to be included‘ip'the sample. For example,

is the overall sampling fraction or propor-

if one wanted a 5 percent sample, would be .05. Or, if one knew there

Pij
were approximately 50,000 elements in the population and wanted a sample

of about 2,000, he would set P£1

all sampling fraction and set Pij

the measure of size to be used and on the number, m, of psu's to be selected.

= ,04. Hence, we will let f be the over-

equal to f. Decisions are also made on

In Equation 2.5, this leaves fzi to be determined. Thus, f21 is computed

as follows for each psu in the sample:

fzi"ﬁ;

Use of the sampling fractions fZi at the second stage of sampling will give
every element of the population a probability equal to f of being in the
sample. A sample wherein every element of the population has an equal

chance of inclusion is often called a self-weighted sample.
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CHAPTER III. EXPECTED VALURS OF RANDOM VARIABLES

3.1 INTRODUCTION

The theory of expected values of random variables 1is used exten-
sively in the theory of sampling; in fact, it is the foundation for
sampling theory. Interpretations of the accuracy of estimates from
probability samples depend heavily on the theory of expected values.

The definition of a random variable was discussed in the previous
chapter. It is a variable that can take (be equal to) any one of a
defined set of values with known probability. Let Xi be the value of X
for the ith elément in a set of N elements and let Pi be the probability
that the ith element has of being selected by some chance operation so
that P, is known a priori. What is the expected value of X?

i
Definition 3.1. The expected value of a random variable X is

N N
L P.X, where I P,=l. The mathematical notation for the expected value
i1 i
i=1 i=]
N
of X is E(X). Hence, by definition, E(X) = L Pixi .
i=1

Observe that )ZPix:l is a weighted average of the values of X, the
weights being the probabilities of selection. “Expected value" 1is a
substitute expression for "average value." In other words, E means "the
average value of" or "find the average value of" whatever follows E. For
example, E(Xz),read "the expected value of xz;'refers to the average value

of the squaresof the values that X can equal. That is, by definition,

N o,

E(X%) = I PXS .
i=1

1f all of the N elements have an equal chance of being selected, all

values of P, must equal %-because of the requirement that ZPi =1, In

i
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N X
this case, E(X) = ¢ %- ;= —ﬁi = X » Which is the simple average of X
i=1

for all N elements.

Illustration 3.1. Assume 12 elements having values of X as follows:

Xl =3 X5 =35 Xg = 10
X2 =9 X6 = 3 xlO = 3
X3 =3 X7 s 4 X11 = §
X4 =5 X8 =3 x12 = 4

For this set,E(X) = §i2%%;£ti = 5, assuming each element has the same

chance of selection. Or, by counting the number of times that each
unique value of X occurs, a frequency distribution of X can be obtained

as follows:

.
3 5
4 2
5 C 2
8 1
9 1
10 1
where xj is a unique value of X and Nj is the number of times Xj occurs.
IN.X in _
We noted in Chapter I that SNj = N, Xijj = in, and that zNj =" X .

Suppose one of the Xj values is selected at random with a probability equal

N
to Pj where P, = =i = ﬁl « What is the expected value of Xj ? By
k|

(39
™
=
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N IN.X
definition E(Xj) = ZPjX3 = Eﬁi Xj --——%~1 = X . The student may verify
that in this illustration E(Xj) = 5, Note that the selection specifica-

tions were equivalent to selecting one of the 12 elements at random with
equal probability.
Incidentally, a frequency distribution and a probability distribution

are very similar. The probability distribution with reference to xj would

be:
e I I
3 5/12
4 2/12
5 2/12
8 1/12
9 1/12
10 1/12
The 12 values, P1 = %-, for the 12 elements are also a probability distri-

bution. This illustration shows two ways of treating the set of 12
elements,

When finding expected values be sure that you understand the defini-
tion of the set of values that the random variable might equal and the
probabilities involved.

Definition 3.2. When X is a random variable, by definition the

expected value of a function of X is

N
E[£(X)] = Z P [£f(X)]
i i
i=1
Some examples of simple functicns of X are: £(X) = aX, f(X) = Xz,

2

£(X) = a+ bX + cX“, and £(X) = (x-f{)2 . For each value, Xi , 1n a

defined set there is a corresponding value of f<x1).
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of 12 elements discussed above, there are 12 values of f(Xi) as follows:

f(Xl) = (2)(3) +3 =9
f(xz) = (2)(9) + 3 =21

f(XIZ) = 2(4) + 3 =11

Assuming P =1 the expected value of f(X) = 2X+3 would be

£ %W
1(2X43) = 11:2 Leax +3) = (&) (9)+() (21)+. ..+ (11) = 13
EQ2x+3) = Ky 1z 12 et 3

In algebraic terms, for £(X) = aX+b, we have

N
E(aXtb) = I

. 1Pi(axi+b) = XPi(aXi) + ZP,b

i

By definition ZPi(axi) = E(aX), and ZP b = E(b). Therefore,

i

E(aX+b) = E(aX) + E(b)

Since b is constant and IP,.= 1, IP.b = b, which leads to the first

i i
important theorem in expected values.

Theorem 3.1. The expected value of a constant is equal to the

constant: E(a) = a.

(3.1)

(3.2)

By definition E(aX) = ZPi(aXi) = aIP X.. Since IP X, = E(X), we have

i1 i1
another important theorem:

Theorem 3.2. The expected value of a constant times a variable equals

the constant times the expected value of the variable: E(aX) = aE(X).
Applying these two theorems to Equation (3.2) we have E(aX+b) =
aE(X) + b, Therefore, with reference to Illustration 3.2, E(2X+3) =

2E(X) + 3 = 2(5) + 3 = 13, which is the same as the result found in

Equation (3.1).
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Exercise 3.1. Suppose a random variable X can take any of the

following four values with the probabilities indicated:

Xl = 2 X2 =5 X3 = 4 X4 = 6
P,=2/6 P,=2/6 P,=1/6 P, =1/6
(a) Find E(X) Answer: 4
(b) Find E(X°) Answer: 18L. Note that E(x’) # [E(X)]?
(¢) Find E(X-X) Answer: 0 Note: By definition
- 4 -
E(X-X) = iilpi(Xi-X)
| (d) Find E(x-}-i)2 Answer: 2%. Note: By definition
E(x-X)? = g Pi(xi-)'()2
i=1

one

Exercise 3.2. From the following set of three values of Y,

value is to be selected with a probability P{:

Yl = =2 Yz = 2 Y3 = 4
P/ =1/4 Pj = 2/4 P; = 1/4
(a) Find E(Y) Answer: l.;'_
1 N S ¥
(b) Find E(q) Answer: 3/16. Note: ECD) # E(Y)
(c) Find E(Y-?)2 Answer: 4%

3.2 EXPECTED VALUE OF THE SUM OF TWO RANDOM VARIABLES

The sum of two or more random variables is also a random variable.

If X and Y are two random variables, the expected value of X + Y is equal
to the expected value of X plﬁs the expected value of Y:E(X+Y) = E(X)+E(Y).
Two numerical illustrations will help clarify the situation.

Illustration 3.3. Consider the two random variables X and Y in

Exercises 3.1 and 3.2:
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=2 By =g Yy =-2 P=%
X, =5 Pz"% Y, = 2 P£=-42-
X,=6 P =%

Suppose one element of the first set and one element of the second
set are selected with probabilities as listed above. What is the expected
value of X + Y? The joint probability of getting.xi and Yj is PiPJ because

the two selections are independent. Hence by definition

4 3
EQX+Y) = L IPP’ (X +Y,) (3.3)
=] =1 3 714

The possible values of X + Y and the probability of each are as follows:

X+ Y B2 X+ Y PP

X, +Y =0 PpP’=2Z X, +Y. =2 pp-ei
1 v Y 11 ° 2% 3t h *1 =%
X, +Y, =4 ppr=i X,+Y, =6 PP:=2
1t Y 12 = 7 3t Y, 3£2 = 35
X, +Y, =6 P.P’=2 X, +Y. =8 p.pr=i
1+ Y, 1°3 5% X3 + Y, 3t3 = 3
X,+Y =3 Ppr=2 X, +Y, =4 pPpr=il
2t Y 21 % %% st Y &1 %3
X, +Y, =7 PP = 4. X, +Y =8 PP’ = 2
2t Y, P2 = 73 4+ Yy sF2 = 3
X.+Y, =9 pp’a=2Z X, +Y, =10 PP’=i
MR 2P3 = 33 5+ Y5 3 = %

As a check the sum of the probabilities must be 1 if all possible
sums have been listed and the probabilitv of each has been correctly
determined. Substituting the values of Xi + Yj and PiPJ in Equation (3.3)

we obtain 5.5 as follows for expected value of X + Y:

2 4 1
GRO + GP W) + ... + G 0) = 5.5
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From Exercises 3.1 and 3.2 we have E(X) = 4 and E(Y) = 1.5. There-
fore, E(X) + E(Y) = 4 + 1.5 = 5.5 which verifies the earlier statement
that E(X + Y) = E(X) + E(Y).

Illustration 3.4. Suppose a random sample of two is selected with

replacement from the population of four elements used in Exercise 3.1.
Let x1 be the first value selected and let x2 be the second. Then xl and
x2 are random variables and xl + x2 is a random variable. The possible

values of X + X, and the probability of each, P(xl,xz),are listed below.

Notice that each possible order of selection is treated separately.

fl f& P(xl,xz) xl+x2 fl f& P(xl,xz) x1+x2
X, X 4/36 4 X, *1 2/36 6
X, X, 4/36 7 Xy X, 2/36 9
X, X, 2/3% 6 X, X, 1/3% 8
X, X, 2/36 8 X, X, 1/36 10
X, X 4/36 7 X, X 2/36 8
X, X, 4/36 10 X, X, 2/36 11
X, X4 2/36 9 X, X, 1/36 10
X, X, 2/36 11 X, X, 1/36 12

By definition E(xl + xz) is

4 4 2 1 -
33(4) + 35(7) + 33(6) + ue + 36(12) 8

In Exercise 3.1 we found E(X) = 4. Since X, is the same random variable

as X, E(xl) = 4, Also, x, is the same random variable as X, and E(xz) = 4,

Therefore, E(xl) + E(xz) = 8, which verifies that E(xl+x2) = E(xl) + E(xz).
In general if X and Y are two random variables, where X might equal

xl,...,xN and Y might equal Yl,...,YM, then E(X + Y) = E(X)+E(Y). The
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proof is as follows: By definition E(X+Y) = g? Pij(xi+Yj) where Pij is
the probability of getting the sum Xi + Yj,and ZZPij = 1. The double
summation is over all possible values of Pij(xi+Yj)' According to
the rules for summation we may write
NM NM NM
i? Pij(xi+Yj) = ig Pini + ig Pinj (3.4)

In the first term on the right, Xi is constant with regard to the summation
over j; and in Ehe second term on the right, Y1 is constant with regard
to the summation over i. Therefore, the right~hand side of Equation (3.4)

can be written as

N M M N
X, LP,.,+ZY IP
gLy T
M N
And, since § Pij = Pi and i Pij = Pj » Equation (3.4) becomes
NM N M
P  (X+Y,) =L X,P, +Z Y.P
L A L T
N M
By definition I X,P, = E(X) and L Y.P = ECY) .
P ] 13

Therefore E(X+Y) = E(X) + EC(Y) .

If the proof is not clear write the values of Pij(xi+Yj) in a matrix
format. Then, follow the summation manipulations in the proof.

The above result extends to any number of random variables; that is,
the expected value of a sum of random variables is the sum of the expected
values of each. In fact, there is a very important theorem that applies

to a linear combination of random variables.
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Theorem 3.3, Let u = a,u, +o0 ot a where Upseeeyyy are random
variables and a)5ee0,8 are constants. Then
E(u) = alE(ul) +oeot a, E(uk)

or in summation notation

k k
E(u) = E i aju, = i aiE(ui)

The generality of Theorem 3.3 is impressive. For example, with refer-

ence to sampling from a population xl,..., XN, ui

obtained at the first draw, u, the value obtained at the second draw, etc.

might be the value of X

The constants could be weights. Thus, in this case, u would be a weighted
average of the sample measurements. Or, suppose il’;2""’§k are averages
from a random sample for k different age groups. The averages are random

variables and the theorem could be applied to any linear combination of the

Ay

averages. In fact uy could be any function of random variables. That is,
A
the only condition on which the theorem is based is that &%%must be a

random variable. R

Illustration 3.5. Suppose we want to find the expected value of

X + Y)2 where X and Y are random variables. Before Theorem 3.3 can be
applied we must square (X + Y). Thus E(X + Y)2 = E(X2 + 2XY + Yz) .
The application of Theorem 3.3 gives E(X + Y)2 = E(X)2 + 2E(XY) + E(Y)z.

Illustration 3.6, We will now show that

E(X-X) (Y-Y) = E(XY) - XY where E(X) = X and E(Y) = ¥
Since (X~-X)(Y-Y) = XY - XY - XY + X¥ we have

E(X-X) (Y-Y) = E(XY-XY-XYV+XY)
and application of Theorem 3.3 gives

E(X-X) (Y-Y) = E(XY) - E(XY) - E(YX) + E(XY)
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.Since X and Y are constant, E(XY) = X E(Y) = i?, E(YX) = ?i, and E(XY) = XY.
| Therefore, E(X-X)(Y-Y) = E(XY) - XY

Exercise 3.3. Suppose E(X) = 6 and E(Y) = 4. Find

(a) E(2%H4Y) Answer: 28
(b) [E@2X)]?  Ansver: 144
(c) YEQY) Answer: 2
(d) E(5Y-X) Answer: 14

Exercise 3.4. Prove the following, assuming E(X) = X and E(Y) = ¥

(a) E(X-X) = 0
(b) E(aX-bY) + cE(Y) = aX + (c-b)¥
(¢) E[a(X-X) + b(Y-Y)] = 0

(d) E(x+a)? = B(x?) + 2a% + a°

(&) Ex-HZ=exd - B
(f) E(aX+bY) = 0 for any values of a and b if E(X) = 0 and E(Y) = 0.
3.3 EXPECTED VALUE OF AN ESTIMATE
Theorem 3.3 will now be used to find the expected value of the mean
of a simple tandom sample of n elements selected without replacement from
a population of N elements. The term "simple random sample" implies equal
probability of selection without replacement. The sample average is

x +l..+x
n

1

X =

n

where Xy is the value of X for the ith element in the sample. Without
loss of generality, we can consider the subscript of x as corresponding

to the 1th

draw; i.e., x) is the value of X obtained on the first draw,
X, the value on the second, etec. As each xy is a random variable, X
is a linear combination of random variables. Therefore, Theorem 3.3

applies and
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E(X) = -'1; [E(x)) +..o+ E(x)]

In the previous chapter, Section 2.6, we found that any given element of

the population had a chance of %-of being selected cn the 1th draw.

This means that Xy is a random vqriable that has a probability equal to %
of being equal to any value of the population set Xl,...,XN. Therefore,
E(xl) = E(xz) = L., = E(xn) = X

§+...+i-

Y X. The fact that E(x)= X is one of the very

Hence, E(X) =
important properties of an average from a simple random sample. Inciden-
tally, E(x) = X whether the sampling is with or without replacement.

Definition 3.3. A parameter is a quantity computed from all values

in a population set. The total of X, the average of X, the proportion of
elements for which xi<A, or any other quantity computed from measurements
including all elements of the population is a parameter. The numerical
value of a parameter is usually unknown but it exists by definitionm.

Definition 3.4. An estimator is a mathematical formula or rule for

making an estimate from a sample. The formula for a sample average,

Ix
X = —;l » 18 a simple example of an estimator. It provides an estimate of
_ zxi
the parameter X = w

Definition 3.5. An estimate is unbiased when its expected value

equals the parameter that it is an estimate of. In the above example, x
is an unbiased estimate of X because E(x) = X.

Exercise 3.5. Assume a population of only four elements having values

of X as follows: X, =2, X =5, X, = 4, X 6. For simple random samples

1 2 3 4 "

of size 2 show that the estimator Nx provides an unbiased estimate of the

population total, in = 17, List all six possible samples of two and
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calculate Nx for each., This will give the set of values that the random
variable Nx can be equal to. Consider the probability of each of the
possible values of N§ and show arithmetically that E(Nx) = 17.

A sample of elements from a population is not always selected by
using equal probabilities of selection. Sampliﬁg with unequal probability
is complicated when the sampling is without replacement, so we will limit
our discussion to sampling with replacement.

I1lustration 3.7. The set of four elements and the associated prob-

abilities used in Exercise 3.1 will serve as an example of unbiased
estimation when samples of two elements are selected with unequal prob-
ability and with replacement. Our estimator of the population total,
n
z ——
Lo 1= Py
2454446 = 17, will be x° = —_ The estimate x° is a random variable.

Listed below are the set of values that x° can equal and the probability

of each value occurring.

Possible Samples xj ?j
X, X 6 4/36
X; X, 10.5 8/36
X) X4 15 4/36
x| %, 21 4/36
X, X, 15 4/36
X, Xq 19.5 4/36
X, %, 25.5 4/36
Xy Xq 24 1/36
Xy X, 30 2/36

36 1/36
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Lxercise 3.6.}'Verify the above values of x5 qndr?j)and,find the

expected value of x“. By definition E(x”) = IP x~* Your answer should

7y’

be 17 because x“ is an unbiased estimate of the population total,

To put sampling with replacement‘and unequal probabilities in a
general setting, assume the popuiation is xl,...,x ,..;,XN and the selec-
tion probabilities are Pl""’Pj""’PN' Let Xy be the value of X for

the ith element in a sample of n elements and let Py be the probability

n
: o
‘which that element had of being selected. Then x* = 1= i is an unbiased
N
estimate of the population total. We will now show that E(x“) = L X1
i=1

To facilitate comparison of x” with u in Theorem 3.3, x° may be
written as follows:

.15 1,%n

1 n
1 X4
It is now clear that a, = = and u, = — , - Therefore,
i n i Py
1.5 *n
E(x”) = =[E(==) +...+ E(-)] - (3.5)
o Pn
: x,
The quantity P which is the outcome of the first random selection from
1

the population, is a random variable that might be equal to any one of the
X X . X
—l-,..., Fi se ey ;E « The probability that BL equals 51 is Pj.

set of values’P
1 3 N 1 3

Therefore, by definition

X
'E(—l)---).Pj(—l)nzxj
;} 3 3%y
%
Since the sampling is with replacement it is clear that any o is the same
. TR : ] i

7

random variable as ;l .
‘ 1
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Therefore Eqﬁhfion (3.5) becomes

1 N N

E(x’) - _[x X Foaot L X ]
n b k|

| h|
Since there are n terms in the series it follows that

N

E(x") = & X, .
j h|

Exercise 3.7. As a corollary show that the expected value of*ﬁ is

equal to the population mean.

By this time, you should be getting familiax with the idea that an
estimacte from a probability sample is a random variablé. Persons respon-
sible for the design and selection of samples and for making estimates
from a;mples are concerned about the set of values, and associatéd
probabilities, that an estimate from a sample might be equal to.

Definition 3.6. The distribution of an estimate generated by prob-

ability sampling is the sampling dist:ibucion‘of the estimate.

The values of ij and Pj in the numerical Iilustration 3.7 are an
example of a sampling distribution. Statisticiang are primarily inter-
ested in three characteristics of a sampling distribution: (1) the mean
(center) of the sémpling distribution in relation to the value of the
parameter being estimated, (2) a measure of the variation of possible
values of an estimate from the mean of the sampling distribution, and
(3) the shape of the sampling distribution. We have been discussing the
first. When the expecfed value of an estimate eduals the parameter being
estimated, we know that the mean of the sampling distribution is equal to

the parameter estimated. But, in practice, values of parameters are

generally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the sampling distribution.
Let us turn now to the generally accepted measure of variation of a random
variable.
3.4 VARIANCE OF A RANDOM VARIABLE

The variance of a random variable, X, is the average value of the squares
of the deviation of X from its mean; that is, the average value of (X—i)z.
The square root of the variance is the standard déviation (error) of the
variable.

Definition 3.7. In terms of expected values, the variance of a random

variable, X is E(x-}—{)2 where E(X) = X. Since X is a random variable,
(X—i)2 is a random variable and by definition of expected value,

N

la(x-i'{)2 =L P, (X %2
_ { i
In case Pi = %-we have the more familiar formula for variance, namely,
N
z(xi-)"c)2
=2 1 2
E(X-X) X Oy
2 2 .2 .2
Commonly used symbols for variance include: o, ox, Ve, 87, Var(X)
2"‘1”—‘)2
and V(X). Variance is often defined as N1 This will be discussed

in Section 3.7.
3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES
Two random variables, X and Y, are independent if the joint probability,

Pij’ of getting X, and Y, is equal to (Pi)(P

i i j i
of selecting X1 frqm the set of values of X and Pj is the probability of

), where P, is the probability

selecting Yj from fhe set of values of Y. The variance of the sum of two

independent random vafiables is the sum of the variance of each. That is,



78

2 2 2

xy "% tO

o x 7 %

Illustration 3.8. 1In Illustration 3.3, X and Y were independent. We

had listed all possible values of X1+Yj and the probability of each. From

that listing we can readily compute the variance 6f X+Y. By definition

o2 v " E[ (X+Y)-(X+¥) 1%= 1z Pin[(Xi+Yj)-(i+?)]2 (3.6)

X+ 14

Substituting in Equation (3.6) we have

2
X+Y

85

2 322 h g e o2 S

o

The variances of X and Y are computed as follows:

2 px®)? = 200o002 4 2e5-i0? 4 Lesin? 4 Lo 2 _ 1
Oy.= E(X-X) 3(2 4)° 4 6(5 4)° + 6(4 4)° + 6(6 4) 3
2 s\ 2 1 2 2 2 1 2 19

Oy = E(Y-Y)° = Z(-2-1.5) + 2(2—1.5) + 2(4-1.5) =

We now have 0; + 03 =~% + %2 = %%-which verifies the above statement that

the variance of the sum of two independent random variables is the sum of

the variances.

Exercise 3.8. Prove that E[(X+Y)-(i+?)]2 = E(X+Y)2 - (§+?)2. Then
calculate the variance of X+§ in Illustration 3.3 by using the formula
§+Y = E(X+Y)2 - (i+?)2. The answer should agree with the result obtained
in Illustration 3.8.

g

Exercise 3.9. Refer to Illustration 3.3 and the listing of possible

values of X + Y and the probability of each. Instead of Xi+-Yj list the

products (Xi-i)(Yj-f) and show that E(xi-i)(Yj-?) = 0,

Exetcise.3.10. Find E(X-X)(Y-Y) for the numerical example used in

Illustration 3.3 by the formula E(XY) - XY which was derived in Illustra-

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO DEPENDENT RANDOM VARIABLES
The variance of dependent random variables involves covariance which
is defined as. follows:

Definition 3.8. The covariance of two random variables, X and Y, is

E(X-X) (Y-Y) where E(X) = X and E(Y) = ¥. By definition of expected value

E(X-X) (Y-¥) = Iz P -Y)

(x,-X) (Y
1 i3+

3

where the summation is over all possible values of X and Y.
Symbols commonly used for covariance are Oyy? SXY’ and Cov(X,Y).
Since (¥+Y) - (¥3+¥) = (X-X) + (Y-Y) we can derive a formula for the

variance of X+Y as follows:

2

25112
wy = E[G#Y) - (B+D)]

o
= E[(X-%) + (v-D)1?
- E[(x-%)2 + (-9)2 + 2x-%) (1-9) ]
Then, according to Theorem 3.3,

2

Ox+Y

- E(x-i)2 + E(Y-?)z + 2E(X-X) (Y-Y)

and by definition we obtain,

2

2
XY + oy + 20

Y XY .
Sometimes Oxx is used instead of 03
A

g l'-'(!)2(

to represent variance. Thus

2
UXﬁY = oxx + oYY + 2°XY

For two independent random variables, Pij = Pin. Therefore

E(X-X) (Y-Y) = IZ P -X) (Y,~Y)

P, (X
g4 14

i i

3

Write out in longhand, 1if necessary, and be satisfied that the following

is8 correct:
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(¥,-¥) = 0 NN )

LI PP (X,-X) (Yj-?) - zpi.(xi-i)gpj .

13 1374 1
which proves that the cavariance Oxy 18 zero when X and Y are independent.

Notice that in Equation (3.7) XPi(xi-i) = E(X-X) end IP, (Y,-¥) = E(Y-Y)

: PER
which, for independent randpm variables, proves that E(X—i)(Y-?) =

E(X-X) E(Y-Y). When working with independent random variables the following
important theorem is frequently very useful:

Theorem 3.4. The expected value of the praduct of independent random
variables Uys Uysenn, u is the product of their expected values:

E(uluz...uk) = E(ul)E(uz)...E(uk)

3.5 VARIANCE OF AN ESTIMATE

The variance of an estimate from a probability sample depends upon
the method of sampling. We will derive the formula for the variance of X,
the mean of a random sample selected with equal probability, with and
without replacement. Then, the variance of an estimate of the population
total will be derived for sampling with replacement and unequal probability
of selection.
3.5.1 EQUAL PROBABILITY OF SELECTION

The variance of §, the mean of a random sample of n elements selected

with equal probabilities and with replacement from a population of N, is:

N -2
o2 , E(Xi-X)
Var(x X . 2 i
ar(x) = a @ Where o) = 5

The proof follows:
By definition, Var(x) = E[E-E(i)]z. We have shown that E(x) = X. Therefore,

Var(x) = E(z-%)2. By substitution and algebraic maninulation. wa nhtain
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X.Feootx

1 2

Var(x) = E[ - X)

(xl-n‘c)+. . .+(xn->‘c)
n

-E[ 2

]

n
-l-z[ Z(x =X 1.

2

n im] 1

=2 -
=X)" + L Z(x,-X)(x
g 10

is
Applying Theorem 3.3 we now obtain
- 1 n =2 - -
Var(x) = =5 [ XE(xi-X) + 5 ZE(xi-x)(xj-X)] (3.8)
n i=1 i#j
In series form, Equation (3.8) can be written as

Var (%)= -17 [E(xl-i)2 + E(xz-:‘c)2 +oeut EGe=B) (ry-K) + BB (R ]
n

Since the sampling is with replacement Xy and xj are independent and

the expected value of all of the product terms is zero. For example,
E(xl-i)(xz-i) = E(xl-i) E(xz-i) and we know that E(xl-i) and E(xz—i) are
zero. Next, consider E(xl-i)z. We have already shown that x1 is a
random variable that can be equal to any one of the population set of

values Xl,....XN with equal probability. Therefore

N -2
z(xj-X)
e 1 - - 2
E(xl X) N Oy
The same argument applies to Xys %q, etec. Therefore,
: 2
n : c

z E(xi-i)2 - 02 +.00t 02 = n02 and Equation (3.8) reduces to Var(x) = X .
=1 X X X n

The mathematics for finding the variance of X when the sampling is
without replacement is the same as sampling with replacement down to and
including Equation (3.8). The expected value of a product term in Equation

(3.8) 1is not zero because Xy and xj are not independent. For example, on
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the first draw@an element has a probability of %-of being selected, but

on the second draw the probability is conditioned by the fact that the
element selected on the first draw was not replaced. Consider the first
product term in Equation (3.8). To find E(xl-i)(xz-i) we need to consider
the set of values that (xl-i)(xz-i) could be equal to. Reference to the

following matrix is helpful:

%) 2 5 (x % T
(Xl-k) (xl-x)(xz-X) cee (Xl-X)(XN-X)
- - =2 - -
(XZ-X)(XI_X) (xz-x) sos (XZ-X)(XN-X)

. L] .
L] L3 .

= S = = S\ 2
(XN-X)(XI-X) (XN-X)(XZ-X) coe (XN-X)
The random variable (xl-i)(xz-i) has an equal probability of being any of
the products in the above matrix, except for the squared terms on the main

diagonal. There are N(N-1) such products. Therefore,

N N - -
LI (Xi—X)(Xj-X)

B(x,~K) (x,-%) = 14

NN-D)

According to Equation (1.9) in Chapter 1,

NN } _ N _,
LI (XK (XK =-1 (X-%)
1 1 !
Hence,
N o o2
I(X,-%) 2
s < i 9%
E(x)=X) (x)~X) = - NON-1) - " Nel

The same evaluation applies to all other product terms in Equation (3.8).
There are n(n-1) product terms in Equation (3.8) and the expected value of

2
o
each is - ﬁ§f . Thus, Equation (3.8) becomes
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2
n o
Var(x) = 33-[2 E(xi-i)2 - n(n-1) ﬁ§ii

n i

Recognizing that E(xi-)-()2 = a§ and after some easy algebraic operations

the answer as follows is obtained:

2
g
Var(x) = %;‘ll ;1-’5 (3.9)

The factor gf% is called the correction for finite population because it

does not appear when infinite populations are involved or when sampling

with replacement which is equivalent to sampling from an infinite population.
For two characteristics, X and Y, of elements in the same simple random

sample, the covariance of x and ; is given by a formula analogous to

Equation (3.9); namely,

g
Cov(x,y) = g:% _§Z (3.10)

3.5.2 UNEQUAL PROBABILITY OF SELECTION

Xy

Py

= ™M

In Section 3.3 we proved that x“ = is an unbiased estimate
of the population total. This was for sampling with replacement and
unequal probability of selection. We will now proceed to find the vari-

ance of x° .,
N

By definition Var(x“) = E[x°~ E(x‘)]2 . Let X =1 Xi . Then since
i
E(x”) = X, it follows that
X X
p—l-+...+ ;—‘l . X
Var(x”) = E[-+——-0 . x12 = L gL - X)He . ot (R - X)]2
n n2 p1 pn

M

1 Xy 2 Xy
a S E[I(—-X)"+L I (—-X)(—-1X)]
n2 Py 1k P1 Pk
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Applying Theorem 3.3, Var(x”) becomes

X X
Var(x”) = 1—2 [ZE(=> - )% + 1 (L - x)(—x-'ﬁ -%] (3.11)
n Py %5 P4 P

Notice the similarity of Equations (3.8) and (3.11) and that the steps
leading to these two equations were the same. Again, since the sampling
is with replacement, the expected value of all product terms in Equation

(3.11) is zero. Therefore Equation (3.11) becomes

n x
Var(x”) = if BX E(—i'- X)Z]
n° 1 Py
b4 N X
By definition E(—i - X)2 =L P (—i - x)2
P i'p
i i i
N X
g Pi(f,-i- - 32
Therefore Var(x”) = L i (3.12)

Exercise 3.11. (a) Refer to Exercise 3.1 and compute the variance
of x° for samples of two (that is, n = 2) using Equation (3.12). (b) Then
turn to Illustration 3.7 and compute the variance of x“ from the actual
values of x“. Don't overlook the fact that the values of x” have unequal
probabilities. According to Definition 3.7, the variance of x“ is

10

z Pj(xi -:X)2 where X = E(x”), xj is one of the 10 possible values of x~°,
h|

and Pj is the probability of x5 .
3.6 VARIANCE OF A LINEAR COMBINATION

Before presenting a general theorem on the variance of a linear
combination of random variables, a few key variance and covariance rela-

tionships will be given. 1In the following equations X and Y are random

variables and a, b, ¢, and d are constants:
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Var(X+a) = Var(X)

Var(aX) = aZVar(x)

Var(abe) = aZVar(x)

Cov(X+a,Y+b) = Cov(X,Y)

Cov(aX,bY) = abCov(X,Y)

Cov(aX+b,cY+d) = acCov(X,Y)

Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)
Var(X+Y+a) = Var(X+Y)

Var(aXtb¥) = a?Var(X) + b2Var(Y) + 2abCov(X,Y)

Illustration 3.9. The above relationships are easily verified by

using the theory of expected values. For example,
Var(aX+b) = E[aX+b-E(aX+b)]?

E[aX+b-E(aX)~E(b) ]2

E[aX-aE (X) ]2

E[a(X-%)]?

azE(x-i'{)2 = aZVar(X)

Exercise 3.12. As in Illustration 3.9 use the theory of expected

values to prove that
Cov(aX+b,cY+d) = acCov(X,Y)
As in Theorem 3.3, let u = a1u1+...+akuk where al,...,ak are constants
and Upseesyy are random variables. By definition the variance of u is
Var(u) = E[u-E(u)]?
By substitution

Var(u) = E[a1u1+"'+akuk-E(81“1+'"+ak“k)]2

= E[al(ul-al)+---+Jk(uk-;k)lz where E(u ) = Gi
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By squarinpg the quantity in [ ] and considering the expected values of
the terms in the series, the following result is obtained.
Theorem 3.5. The variance of u, a linear combination of random

variables, is given by the following equation

kK 22 -
Var(u) = L a0, + L £ 'a.a.q
P S i R

where of is the variance of uy and o11 is the covariance of u, and uj.
Theorems 3.3 and 3.5 are very useful because many estimates from
probability samples are linear combinations of random variables.

Illustration 3.10. Suppose for a srs (simple random sample) that

data have been obtained for two characteristics X and Y, the sample
values being xl,...,xn and yl,...,yn. What is the variance of §-§?
From the theory and results that have been presented one can proceed
immediately to write the answer. From Theorem 3.5 we know that Var(x-y) =
Var(x) + Var(y) -2Cov(x,y). From the sampling specifications we know the
variances of x and y and the covariance. See Equations (3.9) and (3.10)
Thus, the following result is easily ohtained:

N

Var(x-y) = G2 (%) (o§ + 03 - 20,) (3.13)

Some readers might be curious about the relationship between covar-
iance and correlétion. By definition the correlation between X and Y is
Cov(X,Y) %%y
YVar (X) Var (Y) %%y

r =

Therefore, one could substitute vy 9% for Oyy in Equation (3.13).

Exercise 3.13. In a statistical publication suppose you find 87

bushels per acre as the yield of corn in State A and 83 is the estimated

yleld for State B. The estimated standard errors are given as 1.5 and
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2.0 bushels. You become interested in the standard error of the differ-
ence in yield between the two States and want to know how large the
estimated difference is in relation to its standard error. Find the
standard error of the difference. You mav assume that the two yield
estimates are independent because the sample selection in one State was
completely independent of the other. Answer: 2.5.

Iliustration 3.11. No doubt students who are familiar with sampling

have already recognized the application of Theorems 3.3 and 3.5 to several
sampling plans and methods of estimation. For example, for stratified
random sampling, an estimator of the population total is

X" = lel +eoot kak = ZNixi

where N, is the population number of sampline units in the ith stratum

i
and §i is tlie average per sampling unit of characteristic, X, from a sample
of ng sampling units from the ith stratum. According to Theorem 3.3

E(x") = EENixi = ZNih(xi)

I1f the sampling is such that E(§i) = X, for all strata, x~ is an unbiased

i
estimate of the population total. According to Theorem 3.5

Var(x”) = Ni

- 2 -
Var(xl) +...% Nk Var(xk) (3.14)
There are no covariance terms in Equation (3.14) because the sample selection
in one stratum is independent of another stratum. Assuming a srs from each

stratum, Equation (3.14) becomes

N;-n 02 N, -n 02

2,11 1 2,k k& k

Var(x?) = N (=) — +oot N G—7) —
1 Nl-l n1 k Nk 1 nk

where oi is the variance of X among sampling units within the ith stratum,
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Illustration 3.12. Suppose xi,...,xé are independent estimates of
the same quantity,T. That;is,E(xi) = T, Let of be the varianée of xi.
Consider a weighted average of the estimates, namely

X" =g +o0ot v X (3.15)

where zwi = 1, . Then
E(x”) f le(xl) +o0ot vy E(xk) = ? . (3.16)
That is, for any set of weights where Zwi = ] the expected value of x“ is

T. How should ‘the weights be chosen?

The variance of x” is

. 22 2 2
Var(x”®) = w191 +o0.+ Wi %
If we weight the estimates equally,wi = %-and the variauce of x* is
L Iy
Var(x’) = i [-k—] - (3.17)

which is the average variance divided by k. However, it is reasonable to
give more weight to estimates having low variance. Using differential
calculus we can find the weights which will minimize the variance of x~.

The optimum weights are inversely pnroportional to the variances of the
1

estimates. That is, w, =<5
o
i

As an example, suppose one has two independent unbiased estimates of
the same quantity which originate from two different samples. The optimum

weighting of the two estimates would be

+

[ BN
Ny

1
—2-x
%

NN

a Pu
+

T a lh‘ Q IH
o N

=N
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As another example, supnose xi,...,xﬂ are the values of X 1n'a¢samp1e
of k sampling uﬁics selected with equal probability and with replacement.

In this case each xi is an unbiased estimate of X. If we let w, = %-, X

is §, the simple average of the sample values. Notice, as one would expect,

Equation (3.16) reduces to E(x) = X. Also, since each estimate, xi , is the

same random variable that could bhe equal to any value in the set Xl,...XN,

9 2(X,-X) 2
it is clear that all of the oi's must be equal to ¢” = N llence,

2
Equation (3.17) reduces to %—- which aprees with the first part of Section

3.5.1.
Xy
Exercise 3.14., If you equate xi in Equation (3.15) with ;— in
i
Section 3.5.2 and let w, = %'and k = n, then x” in Equation (3.15) is the
X
sk

P .
same as x° --—Hi in Section 3.5.2. Show that in this case Equation (3.17)

becomes the same as Equation (3.12).
3.7 ESTIMATION OF VARIANCE

All of the variance formulas presented in previous sections have
involved calculations from a ropulation set of values. In practice, we
have data for only a samplg. lience, we must consider means of estimating,
variances from sample data.
3.7.1 SIMPLE RANDOM SAMPLING

In Section 3.5.1, we found that the variance of the mean of a srs is

2
0 .
Var(x) --g{-'ll ;—’5 (3.18)
N
5 (X, -%)2
2 4 1%
where o, =



rxen?

’ehdftofuee{iv 8% A e as an estimator of S . A reason for this’

n,-l

éwill becomevapparent when we' find the expected value of sz‘ﬁé‘Ebiiéds.
The formula for 32 can be written in a form that is more convenient

for finding"E(siy

) in - nx2
n~-1
and E(s?) = ——1- [zux ) - nE(x%)]

jWe have shown previously that xi is a random variable that has an equal ,

DT

3 ‘.f-v " V Tte <
WAECEA oY WAL SIS

aprobability of being any value 1n the set Xl""’xN Therefore

‘I o -l
VUG s .',,-p. U

-?N;z S B
E(x ) = 'if" and ZE(x ) o ,N’r

2 and 't‘is easy to; show chat

(i


http:pibblt~fbigay.au

91

.2
: X, -
1 =2 2
B =y - ¥ oo
oyl
T
By definition’ Oy = 'N = N «= X° and since the specified method of -
N-n %% N-n ¢

sampling was Srs; o’% N—l -ﬁ— ) We ;hevve .E(e?) = -n—:'i- [crx = N1 J%]

which after simplification is~

o N 2
E(s 2l N1 %
Note from the above }iefinitio‘nagof 6}2{ and 8% that
'#2 'lh"’:'::N * o 2
S TFT %%
Therefore E(sz) = S2
2 . ’ 2 N-1 .2
Since s~ is an unbiased estimate of S”, we will now substitute == §" for
0)2{ in Equation‘ (3.18) which gives
- N-n S2
Var(x) = —— - (3.20)

N
Both Equations, (3.18) and (3.20), for the Var(x) give identical results
and both agree With E'(;c-i')z as a definition of variance. We have shown
that 32 is an unbiased estimate of Sz. Sub'stituting 32 for 82 in Equation
(3. 20) we - ‘have -

o e iNem 82 , o
yar(;;) = T | _ (3.21)
as an. estimate of the variance of x. With regard to Equation (3.18),

Nﬁl 92 is an~ unbiased estimate of 032{ . W,hen,l-lﬂ-g-l ez;' is substituted for

}2{ , I:.quat n\(3 21) is obtained.

Since n’ quation'; (3 20) s —-- is exactly 1 minus the sampling fract:lon




5

z(x -x) o L - L
-Equation (3. 20) and S —ﬁ:r- 888 definition of variance, among.

aamplinﬂ-units in the population.
Ecetcise 3. 15. For a small population of 4 elenents quppose the

valuesgfgﬁg_gfg 31;3 g,’xz = 5, Aa = 3 and x4 6, Consider‘simple
random samplés‘of size 2. There are six.possiblehsamples.
| (a) beiééch?éf thé-éix'samples calculate X and sz. That is,
“ find thé sampling diétribution of x and the sampling -
distribution of s2, |

(b) Calculate Sz, then.find Var(x) usina Equation (3. 20).

(c) Calculate the variance among the six values of X .and compare
the result with Var(x) obtained in (). The.results should
be the same. |

(d) ‘From the samplinp distribution of 52 calcalate E(sz) and
verify that E(s ) = .2.

3.2.2. UNEQUAL PROBABILITY OF SELECTION

In Section 3.5.2, we derived a formula for the variance of the

estimator x” where

x* = —1 A' ' (3.22)

The sampling was with unequal selection probabilities and with replacement.
‘We found that the variance of- x” was given by
, ”'TN _ < ,

IR, (-—ll- - %2

Var(x“) = 1—-——:-—-——- (3.23)

As a formula for es*imating Var(x ) from a sample one might be inclined

;as a first guess, to tty a formula of the samef;orm as, Eauation (3 23) but
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that does nof,woxk,_»Equationf(3;23).is,a~wgigh€eamaveragé of. the: squares:

x »,_,',. . i n e e P T
of deviationsA(Fl - X)2 which reflects the unequal selection probabilities.

i
1f one nppiied‘éhé same weighting~systéﬁiﬁ‘a“fﬁrhulé for estimating
variance from a sample he would in effect be applying tﬁe weights twice;
first, in the selection process itself and second, to the sample data.
The unequal ptobabiiit§ of selection is already incorporated into the
sample itself.’

As in some of ine previous discussion, look at the estimator as follows:

X X
i PRI -
p, P X7 +eoot x7 X
X" = L e L yhere x; = i S
n n i 1

Each xi is an independent unbiased estimate of the population total. Since

each value of x. receives an equal weight in determining x“ it appears that

i
the following formula for estimating Var(x”’) might work:
s2
var(x”) = = (3.24)
n
Z(x’-x‘)2
2 1t
where g =
: n-1

By following an approach similar to that used in Section 3.7.1, one can

prove that

N X
E(s?) = T Pi(i,-i- - 02
g 1Py

That is, Equation (3.24) does provide an unbiased estimate of Var(x’) in
Equation (3.23). The proof is left as an exercise.

Exércise 3.16. Reference is made to Exercise 3.1, Illustration 3.7,

and Exercisé 3.11. In Illustration 3.7 the sampling distribution of x*
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" (See Equation’ (3:22)) 1is<given*forisamples:of 2- Erom’the’population®of

4 elements, that was given in Exercise 3.1.

2 v
(a) Conip(tj;g),j_‘ap‘(x’)hg ﬁ— (Equation (3.24)) for each of the 10

rossible samples.
(b) C§mpg§ea;hqngpgctgd value of var(kf) and compare it with the
result obtained in Exercise 3.11. The results should be the
same, Remember, when finding the expected value of var(x”),
| :hat‘qhe #"s_go not'occur with equal frequency.
3.8 RATIO OF TWO RANDOM VARIABLES
In sampling theory and practice one frequently encounters estimates
that are ratios of random variables. It was pointed out earlier that
L( ) # EE?; ‘where u aﬁd w are random variables. formulas for the expected
value of a ratio and for the variance of a ratio will now be presented

without derivation. The formulas are approximations:

U, . U, U v Puw %u OQ
EQ) 2+ [ -~ ——] (3.25)
WoOowow uw
U, « (Uy2 Gi 05 2000 %4 %
Var(z) = [=]" [ + — - —————] (3.26)
™ e ey R - u
w u w uw
“where u = E(u)
w = EW)
oﬁ = I::(u-;)2
03 - E(w-ﬁ)z
. . o uw-; Com Bl e
and | puw, T where LA E (u=u) (wv-w)

uw
For a discussion of the conditions under which Equations (3.25) and

:f(3 26) are good approximations, reference is made to Hansen, Hurwitz, and



95

Madow. 2/. The.conditions are usually satisfied with regard to estimates

from sample surveys. As a rule of thumb the variance formula is usually

accepted as satisfhétory if the coefficient of variation of the variable
o

in the denominator is less than 0.1; that is, if :E < 0.1, 1In other words,
W

this condition states that the coefficient of variation of the estimate in
the denominator should be less than 10 percent.' A larger coefficient of
variation might be tolerable before becoming concerned about Eqﬁation (3.26)
as an approximation.

o]

The condition :E < 0.1 is more stringent than necessary for regarding
w

the bias of a ratio as negligible. Vith few exceptions in practice the
bias of a ratio is ignored. Some of the logic for this will appear in

the illustration beiow. To summarize, the conditions when Equations {(3.25)
and (3.26) are not good approximations are such that the ratio is likely to
be of questionable value owing to large variance.

If u and w are linea" combinations of random variables, the theory
presented in previous sections applies to u and to w. Assuming u and w
are estimates from a sample, to estimate Var(%) take into account the
sample design and substitute in Equation (3.26) estimates of u, W, oi, 05,
and P Ignore Equation (3.25) unless there is reason to believe the bias
of the ratio might be important relative to its standard error.

It is of interest to note the similarity between Var(u-w) and Varﬁ%).

According to Theorem 3.5,

2 2
Var(u-w) T + o, = 2puw 9.%

2/ Hansen, Hurwitz, and Madow, Sample Survey Methods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.
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"By definition: the relative variance; of anestimate is: the.variance of the
'eStimateﬁQ}x;ggd;bxﬂthéasgugfe of .its -expected: value, Thus, in.terms of;
the relative. variance.of:a ratio, Equation (3.26) can be written -

2 .2

: ‘00

u u w uwv
Rel Var(w) :§-+ o Zpuw —
u w uw

The similarity is an aid to remembering the formula for Var(%).

Illustration 3.13. Suppose one has a simple random sample of n

elements from a population of N. Let x and §'be the sample means for

characteristics X and Y. Then, u =X, w

9
2 2
2aba X2 N Sy
u N n w N n
Oy
Notice that the condition discussed above, — < 0.1, is satisfied if the
W
sample is large enough so
2
S
¥n Y 0,12
N =2
nY

Substituting in Equation (3.26) we obtain the following as the variance of

the ratio:

2 2
=2 S S 20,45 S
var) » Emydy XX, X TWKN)
Y Y Y XY

The bias of §' as an estimate of<§ is given by the second term of
y - Y

Equation (3.25). For this i;}us:ration it becomes

2
_ = P00
A dy X [_’; A 4
Y Y XY

"As the size of the sample increases, the bias decreases as %-whereas the

”s;andard error of.the ratio.decreases at a slower. rate, namely -JL-.

n
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Thus, we need not be concerned about a possibility of the bias becoming
important relative to sampling error as the size of the sample.increases.
A possible exception occurs when several ratios are combined. An example
is stratified random sampling when many strata are involved and separate
ratio estimates are made for the strata. This 1s discussed in the books
on gsampling.
3.9 CONDITIONAL EXPECTATION

The theory for conditional expectation and conditional variance of a
random variable is a very important part of sampling theory, especially
in the theory for multistage sampling. The theory will be discussed with
reference to two-stage sampling.

The notation that will be used in this and the next section is as
follows:

M is the number of psu's (primary sampling units) in the population.

m is the numﬁer of psu's in the sample.

N, is the total number of elements in the ith psu.

i

M

N = ENi is the total number of elements in the population.
i

n, is the sample number of elements from the ith psu.
m

ns= Zni is the total number of elements in the sample.
1

- _n

n = -
m

xij is the value of X for the jth element Jin the ith psu. It

refers to an element in the population, that is, j = 1,..., Ni’

and 1 = 1,..., M.
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‘igithe’ value of X for:the 'j™ element-in ‘the sample from the

i]
«4®" 5eu 1n the sample; ‘that is, the indexes i-and § refer to
- ‘the“set' of psu's-and elements in the' sample,
R T o 4 4th
Xi. = I xij is the population total for the i~ psu.
i .
= Xy th
Xi i is the average of X for all elements in the i psu,
I |
MNi M
X ZX
X, 6= N =5 is the average of all N elements.
M
X

X, = iﬁ— is the average of the psu totals. Be sure to note the

difference between X_, and X,

X, = Eixij.is the sample total for the ith psu in the sample.
h|
- xi.
X, === is the average for the n, elements in the sample from
i
the ith psu,
nn

Ezix

- 1] |
X = ii;——— is the average for all elements in the sample.

Assume simple random sampling, equal probability of selection without

replacgment, at both stages. Consider the sample of ng elements from the
th

i™" psu. We know from Section 3.3 that ii- is an unbiased estimate of the
psu mean ii- ; that is, E(ii.) = ii- and for a fixed 1 (a specified psu)

'”ENiii_ ='N1E(§i.) = Niii- = Xi_ « But, owing to the first stage of gampling,



ENi:-ci must be treated as a random variable. Hence, it is necessary to

become involved with the exﬁected value of an expected value.
First, consider X as a random variable, in the context of single-

-stage sampling, which could equal any one of .the values Xi{'in the
M 5

population set of N = ZNi « Let P(1j) be the probability of selecting
i

the 3% element in the 1™ psu; that is, P(1f) is the probability of X

being equal to X By definition

ij°
MN,
E(X) = I P(ij)x1J
i}

Now consider the selection of an element as a two-step procedure:

(1) selected a psu with probability P(i), and (2) selected an element

99

within the selected psu with probability P(j|i). In words, P(j|i) is the

probability of selecting the jth element in the 1th psu given that the

ith psu has already been selected. Thus, P(ij) = P(i)P(in). By sub-~

stitution, Equation (3.27) becomes

My
E(X) = 5I P(i)P(j[i)xij
1j .
M Ny
or E(X) = IP(i) £ P(j|1)xij
i 3

N
By definition, ZiP(in)xij
h|

of i. It is called'conditional expectation."

N
Let E2(X|i) = ZiP(jli)x where EZ(XIi) is the form of notation we
3 _

ij

will be using to designate conditional ekpectation. To repeat, Ez(xli)

means the expected véiue of X for a fixed i. The subscript 2 indicates

is the expected value of X for a fixed value

(3.27)

(3.28)
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that the conditional expectation apnlies to the second stage of sampling.

E, and E will refer to expectation at the first and second stages,

1 2
respectivelj

Substituting E (xli) in Equation (3 28) we obtain
E(X) -'zp(i) E, (x| 1) (3.29)
i

There is one value of E2<x|1) for each of the i! psu's. In fact Ez(xli)
is a random variable where the probability of Ez(xli) is P(1i). Thus the
right-hand side of Equation (3.29) is, by definition, the expected value
of Ez(Xli). This leads to the following theorem:

Theorem 3.6. E(X) = B, R, (X[ 1)

Suppose P(j|i) = %— and P(1) = %’. Then,
i

1(1 )K = R

E, (X|1) = ThE?

M X

and E(X) = E (R, ) = z(M)(xi,) -

In this case E(X) is an unweighted average of the psu averages. It is
important to note that,if P(i) and P(jli) are chosen in such a way that
P(;j) is constant, every element has the same chance of selection. This
point will be discussed later.

Theorem 3.3 dealt with the expected value of a linear combination of
raudom variables. There is a corresponding theorem for conditional expecta-
tion. Assume the linear combination is

k
U= a u +...+akuk = 2 a u
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where al,;.a;ak aré-honstants‘ana ulg...,uk.are random variables: Let"
E(Ulci) be the expected value of U under a specified conditieh,ci;'Whéfe
c; is one of the conditions out of a set of M conditions that could occur.
The theorem on ¢6ndi€iona1 exﬁéétation can then be stated symbblically és

follows:

Theoren 3.7. E(Ulci) = alE(ullci) +ooot akE(uklci)

k
or E(Ulci) = iatE(utlci)

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is 1like
Theorem 3.3 except that conditional expectation is applied. Assume ¢ is
a random event and that the probability of the event cy occurring is P(i).

Then E(Ulci) is a random variable and by definition the expected value of

E(Ulci) is gP(i)E(UIci) which is E(U). Thus, we have the following
theorem: '
Theorem 3.8. The expected value of U is the expected value of the
conditional expected value of U, which in symbols is written as follows:
E(U) = EE(UIci) (3.30)
Substituting the value of E(Ulci) from Theorem 3.7 in Equation (3.30i"

we have

k
EQU) = E[alE(u1|ci)+...+akE(uk|ci)] = E[iatE(utlci)] (3.31)

Illustration 3.1l4. Assume two-stage sampling with simple random

sampling at both stages. Let x”, defined as follows, be the estimator of

the population total:

(3.32)
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7

Exercise 3.17. ;. Examine:the estimator, x”, Equat:_'i‘dn .(3432). - Express

it in other forms that.might help show its:logical structure. For. example,

=

i ix

for a fixed 1 what is +~

12 ? Does it seem like a reasonable way of

e ™ :;'

1]

estimating the population total?
To display x“ as a linear combination of random variables it is

convenient to express it in the following form:

N N .N
= Bty 4+ 21y ] 4ot (BB +_“.,.1‘_1._.x ] (3.33)
m nl 11 m 1 lnl m nm ml mn ma

Suppose we want to find the expected value of x“ to determine whether it

is equal to the population total. According to Theorem 3.8,

E(x") = EE, x’|1) (3.34)
] m™ Ny By
E(x”) = EIEZ{[E'i ;;-g xijlli} (3.35)

Equations (3.34) and (3.35) are obtained simply by substituting x* as
the random variable in (3. 30) The ci now refers to any one of the m

psu's in the sample. First we must solve the conditional expectation,
: N

Ez(x‘li_). Since % and ;‘-j-'- are constant with respect to the conditional
‘ i

expectation, and making use of Theorem 3.7, we can write

b4

m
5 &
1M,

E(xli) % 1

Eé(xij[i) (3.36)

[N ]

We know for any given psu in t:he sample that xi 5. is an element: in a

simple rahdom sample from the psu and according to Sect:ion 3 3 it:s

;expect:ed value is the psu mean, X

B Gyl ) : Lo
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.
. . : R -
and ) Ez(xijli) n X, (3.37)

Substituting the result from Equation (3.37) in Equation (3.36) gives

TR
E,(x*[1) = Ei N, | (3.38)

Next we need to find the expecéed value of Ez(x‘li). In Equation
(3.38), Ni is a raadom variable, as well as ii-’ associated with the first
stage of sampling. Accordingly, we will take Xi. = Niii- as the random
variable which gives in lieu of Equation (3.38).

M m
Ez(xli)-;n- L X

1
Therefore,
- M n
E(x”) = El[t—n- L xi.]
i
From Theorem 3.3
m m
M M
Byl B X1 =g BB (X))
i !
Since
M
m , fxi-
ZE) (%) = ml5—]
i
m M
M
E,[= X, ] = IX, .
1'm i i { i
M
Therefore, E(x”) = & X;, =X,  This shows that x” is an unbiased
. i N .

estimator of the population total.
3.10 CONDITIONAL VARIANCE

Condiéidnaii?é;iéhce refers to the variance of a variable under a
specified'condition or limitatiqn. It is relatéd to conditionél prob-

ability and to coqqiﬁional expectation.
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To £ind the variance of x*(See Equation’(3.32)10r (3,33) the following

“ﬁwx;V(x’) = v (x Ii) + n (x li,;,f

“he first stage of sampliny and: V2 .18 the:

} conditional" variance for the second stage.x

We have discussed E (x Ii) and noted there is . one .value of E, (x° Ii)

}for each psu in the population.‘,Hence V E2(x |i) is simply the variance
fof the M values of k (x Ii) |
In Theorem 3 9 the conditional variance, V (x li) by definition is

v, (x.li) = E {[x -E, (x |1)]2 |1}

To understand V (x li) think of x” as a 1inear combination of random
variables (see Equation (3 33)) Consider the variance of x~° when i ir

‘held constant. All terms (random variables) in the linear conbination

are now constant except those originating from sampling within the i th

Jpsu., Therefore, v (x Ii) is associated with variation among elements in

‘the i th psu. V (x |i) is a random variable with M values in the set, one

‘for,eachupsu. Therefore ‘E V (x” |i) by definition 1is

oM
(x |1) = IP(1)V, (x [1)
£

fThat is‘ E V2(x Ii) is‘an average of M. values of V (x |i) weiphted by

th

bP(i),the probability that the gt psu had of beinp in the sample.

Three illustrations of the application of: Theorem 3 9 will be given.

pIn each case there will be five steps in findin? the variance of x

, Kk

Step 1 wand E (x |1) |

Step 2 find V (x Ii)


http:Equation(3.32
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~ Step 3, find v, (x’ 1)
Step 4, find E,V,(x"1)
1§£epes,‘combine results from Steps 2.and 4;

Illuétthtibh’B“lSﬂ%@This 1s a simple illustration, selected because

we know what the answer is from previous discussion and a linear combina-
tion of random variables is not involved. Suppose x“ in Theorem 3.9 is
simply the random ‘variable X where X,has an equal probability of being

M

any one of the xij values in the set of N = IN We know that the

g1
variance of X can be expressed as follows:
1 e 2
V(x7) = zrl X ) (3.39)
j 1j Q.

In the case of two-stage sampling an equivalent method of selecting a
value of X is to select a psu first and then select an element within the

Psu, the condition being that P(1)) = P(L)P(j|1) = & . This condition is

N
satisfied by letting P(1) = —i and P(Jli) = —— « We now want to find
i

V(X) by using Theorem 3.9 and check the result with Equation (3.39).
Step 1. From the random selection specifications we know that
Ez(x‘[i) = ii- + ~Therefore,

Step 2. V,E,(x°|1) = v, (x L)
N

We know that X; is a random variable that has a probability of ﬁi of being

Tde

th

equal to the i*" value in the set il""’ iM . Therefore, by definition

of the vafianee‘of a random variable,

| N o,
L VEGES [1) = = T XX (3.40)
- i
‘ M
wl?er'e> ‘ xo . = f r xj . = T



.-Step’ 3. .,;By"_»‘q:e'f;ni‘;iqh =

2

Ny 1
(xij 1-),

,:i

V (x Ii) = 2

| SRy

Step 4., Since each value. of V,"z(x‘*“" 1):has a probability -N‘i

'l:x‘-'« : Lo }1 N N ,; g »
) (x Ii) =3 ﬁ-i- 3t ; (xij-xi.)2 (3.41)
Ay T Y T
Step.ﬁﬁ_;Frqm:Equa;ions (3.40) and (3.41) we obtain
M MY, - .2
V(x?) = 5 [N (X, x ) +zst (X =X, )] (3.42)
o 1 13 H

The fact that Equations (3.42) and (3.39) are the same is verified
by Equation (1.10) in Chapter I.

Illustration 3.16. Find the variance of the estimator x° given by

Equation (3.32) assuming simple random'sampling'at both stages of sampling.

Step 1. Theorem 3.7 is applicable. That is,

Ny
E(xli)=22 1:[ —= x, . |1]
13 13

which means "sum the conditional expected values of each of the n terms

in Equation (3.33)."

—

With repard to any one of the terms in Equation (3 33), the

conditional expectation is""
N

=
L

N
M 4 M 4 M is M .
Eala &y fugltl = m w ROyl tw o Xt wA
Therefore
. Xy
E, (x* {1) = zz: - (3.43)
14 m n,

Wiﬁh?feférence to Equation (3.43) and ‘summing with respect to j, we have
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><

n
zi

1

alz

t=}
2 al‘z

ger e

Hence Equation (3.43) becomes

Ey(x’[1) =2 Ex, . o (3.44)
i
ZXI
Step 2. Find V E (x Ii) This is simple because‘!;r- in Equation

(3.44) is the mean of a random sample of m from the set of psu totals

Xl.,..., XM « Therefore,

2
M-m
E,(x[1) = WPl b1 (3.45)
where

M 2 M

(X, -X,) £X, |
o2 =i and X =% __
bl M . M

In the subscript to 02. the "b" indicates between psu variance and "1"
distinguishes this variance from between psu variances in later illustra-
tions,

Step 3. Finding Vz(x‘li), is more involved because the conditional
variance of a linear combination of random variables must be derived.
However, this is analogous to using Theorem 3.5 for finding the variance
of a linear combination of random variables. Theorem 3.5 applies except
that V(uli) replaces V(u) and conditional variance and conditional co-
variance replace the variances and covariances in the formula for V(u).
As the solution proceeds, notice that the strategy 1s to shape the problem
so previous results can be used.

Look at the estimator x*, Equation (3.33), and determine whether any

covariances exist., An element selected from one psu is independent of an
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éiementfgéleccédff:bm~an¢thgr; but within a péu<thggg;;g§§ipﬁ“ig the same"
 a§'tﬁé dhé.wé‘had WBen’finding:the'Variénce-of the mean of a simple random
sample. This suggests writing x* in terms of §i- because the ii_'s are

1n4ep§ndent. Accordingly, we will start with

Hence

M-T =
V,(x7[1) = V([ i Nyx, 1[4}

Since the x, 's are independent

1.
M2 m -
Vz(x [1) = ;f ivz(Nixi-li)

and since Ni is constant with regard to the conditional variance

v (x'l;) S Ty x, |1) (3.46)
2 Z ;12 :

Since the sampling within each psu is simple random sampling

2
, N,-n c
- i1 i
Vo0, D= (559 = (3.47)
i i
where
02_121“1_ (x, %, )2
105 N g

Step 4. After substituting the value of Vz(ii.li) in Equation (3.48),

and then applying Theorem 3.3, we have

wro Ni-hi o)
E\V,(x"|1) = 7 I E, [N} KT '—‘-1-]

i
Since the firét stage of sahpling was simple random sampling and each psu

.had anjédqgl chéﬁce of Seing ihvthe sample,
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2 2
E [NZ ___Ni‘-ni 3] ax ..]; ;{NZ‘ Ni-..ni Si
11 Ni.-l ni M g i Ni-l ni
Hence
, _ 2
M N,-n, o
” - M 2714 i
E,V,(x"[1) - i Ny 51 n, (3.48)

Step 5. Combining Equation (3.48) and Equation (3.45) the answer is

2 2
o M N.-n, o
yay2dn %1 oM 2 47y 9y
VG®) = M° 5 — t o ’iNi N1 n, (3.49)

Illustration 3.17. The sampling specifications are: (1) at the first
stage select m psu's with replacement and probability P(1) = ;i , and (2)
at the second stage a simple random sample of n elements is to be selected
from each of the m psu's selected at the first stage. This will give a sam-
ple of n = mn elements. Find the variance of the sample estimate of the
population totai.

‘The estimator needs to be changed because the psu's are not selected
with equal probability. Sample values need to be weighted by the recip-
rocals of their probabilities of selection if the estimator is to be
unbiased. Let

P“(1j) be the probability of element ij being in the sample,

P“(1) be the relative frequency of the ith-psu being in a sample

of m, and let
P‘(jli) equal the conditional probability of element ij being in
the sample given that the ith psu 1s already in the sample.
Then
P*(11) = P (1)P"(j|1) .
According to the sampling specifications P“(i) = m ﬁi « This prob-

ability was described as relative frequency because "probability of being
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in a sample of m psh's" is gpbject to’misinterp:étation, Thelith psu

can appear in a sample more than once and it is counted every time it
appeafs. That 1is, if the ith psu is selected more than once, a samnle of
n is selected within the ith psu everyitime that it is selected. By
substitution
MR _m_n
PP = Img=l g-= 5 =5 (3.50)

Ny

Equation (3.50) means that every element has an equal probability of being
in the sample. Consequently, the estimator is very simple,

mn

x> = EIx (3.51)
mn ij

Exercise 3.18. Show that x“, Equation (3.51), is an unbiased estimator

of the population total.
In finding V(x°) our first step was to solve for Ez(x‘li).

Step 1. By definition

B (x*|1) = E,{(% 'r£x, 1|1}
d x’ = I e X i
2 AR

Since 1 is constant with repard to Ez,

y m
E,(x“[1) = = I Ez(x“li) (3.52)
mn 1] .
Proceeding from Equation (3.52) to the following result is left as an

exercise:

=

X (3.53)

" 4 = H
, LZ(x li) m i.

He ™M

Step 2. From Equation (3.53) we have

N T
ViE,(x*|1) = v, G ixi’)
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Since the X, 's are independent

e

Nz

m . .
ViE, (x |1) = = IV X))
m i

Because the first stage of sampling is sampling with probability propor-

tional to Ni and with replacement,

-—
v
2z

3 o : At 5 2
vl(xi.) i N (xi. X,.) (3.54)
Let
= 2
V1 (%50 =0y,
Then
N2 2 Vz 2
ViE,(x [1) = ;5 (moy,) = —- o, (3.55)
Exercise 3.19. Prove that E(ii-) = X,, which shows that it is
appropriate to use i._ in Equation (3.54).
Step 3. To find V2(x‘|i), first write the estimator as
m
x*=3 5% (3.56)
m i i.

Then, since the x, 's are independent

j_.
2 M
vy =5 E v (x, )
2 Z | 2t
and
_ Ni-ﬁ oi
ISR e e
i n
where
2. gi 1y % )2
175 N T
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Therefore o _ é
- 2 m N,-n o
vl =5 5 Ao 2
m i i n-
Step 4.
| 2 m N,-n
N® 1 i 2
EV, (x*|1) = =5 = I E (= o))
12 m2 = 1 N1 11
Ni
Since the probability of Vz(x‘li) is T
2 m MN, N,-n
My KoL i R N
E,V,(x |1) 7 = I [E§ oyl
m n i {1 i
which becomes
2 M N, N,-n
EV (x]1) =X ¢ 2 Eoyed (3.57)
12 - N N,-1""1
mn 1 i
Step 5. Combining Equation (3.55) and Equation (3.57) we have the
answer
o2 N, N,-n
‘Y = 2 -Lz- .1_. .._.j; ..__...i 2
V(x°) = N [m +.m; LR (Ni-l)ui] (3.58)
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CHAPTER IV. THE DISTRIBUTION-OF AN ESTIMATE

4.1 PROPERTIES OF SIMPLE RANDOM SAMPLES

The»distribution of an estimate:is a primary basis for judging the
accuracy of an estimate from a sample survey. But an estimate is only
one number. How can one number have a distribution? Actually, "distri-
bution of an estimate" is a phrase that refers to the distribution of
all possible estimates that might occur under repetition of a prescribed
sampling plan and estimator (method of estimation). Thanks to theory
and empirical testing of the theory, it is not necessary to generate
physically the distribution of an estimate by selecting numerous samples
and” making an estimate from each. However, to have a tangible distribu-
tion of an estimate as a basis for discussion, an i1llustration has been
prepared.

Illustration 4.1. Consider simple random samples of 4 from an

N! |
assumed population of 8 elements., There are AT(N-mT "~ G141 70 possible

samples. In Table 4.1, the sample values for all of the 70 possible sam-
ples of four are shown. The 70 samples were first listed in an orderly
manner to facilitate getting all of them accurately recorded. The mean,
i,'for each sample was computed and the samples were then arrayed
according to the value of x for purposes of presentation in Table 4.1.
The distribution of x is the 70 values of x shown in Table 4.1, including
the fact that each of the 70 values of x has an equal probability of being
the estimate. These 70 values have been arranged as a frequency distribu-
tion in Tﬁble 4.2,

As discussed previously, one of the properties of simple random
sampling is that the sample average is an unbiased'estimate of the popu~

lation average; that is, E(x) = X. This means that the dist¥ibution of
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ght elements are X

8.667
" xs‘ - 79"‘x'6 = 8; x7 = 11,‘ X'8 = §

-~ 12,

-, l’
=2
75,
N1

/ Values of X for the population of ei
Z(X

1

x3 = 6, x’[.’;

&
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~Table 4.2--Sampliug distribution of X :

" Relative frequency of X~

Simple random fCluster sémpling tStratified random

sampling = : : ‘ : sampling
Illustration 4.1 :Illustration 4.2 $Illustration 4.2

EL

3.25
3.50
3.75
4,00
4,25
4.50
4,75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.50
8.75

- N =

HHHNH&UU\&UO\#O\U‘#U‘Q&I—‘NHHH
N W s ;e s

36

~
o
(=)

Total

Expected value :
of x 6.00 6.00 6.00

Variance of X 1.50 3.29 0.49
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'=xvisfcentered‘on’x. If the -theory" is cortect the average of x for the

70 samples, which are equally likely to occur. should be equal to the i

population average, 6 00. The average of the 70 samples does equal 6.00.

SRR

From the theory of expected values, we also know that the variance

of x is given by

2

N-n S
§ N n

®xin

where

N o o2
£(%,-%)
2 4
N1

2

With reference to Illustration 4.1 and Table 4.1, S° = 12,00 and Sé -

8-4 12
8 &

variance among the 70 values of i as follows:

= 1.5 . The formula (4.1) can be verified by computing the

(3.25-6. 00) + (3.50-6. 00) ..ot (8.75-6. 00)
70

= 1.5

Since Sz is a population parameter, it is usually unknown. Fortu-

2

nately, as discussed in Chapter 3, E(sz) = S” where

n
8(xi-:-c)2
2.4

n-1

In Table 4.1, the value of s2 is shown for each of the 70 samples. The

average of the 70 values of 82 is equal to 82. The fact that E(sz) = S2

(4.1)

is another important property of simnle random samplen. In practice s2 is

used as an estimate of Sz. That is,

g2 = N 82
x N n

" 18 an unbiased estimate of the variance of x.

To recapitulate, we have just verified three .important propertiea of’

: simple random samples:
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@ s== S

3 B = 52

The sﬁandard error of X, name;ifsi , ;s a medsure ofPhow'much X varies
under repeated éampiing from X. Incidenfally, notice that Equation (4.1)
shows how thé variance of E‘is related to the size of the sample. Now

we need to consider the form or shape of the distribution bf X.

Defiﬂition 4;1.:"The distribution of an estimate is often called the

sampling distribution. It refers to the distribution of all possible
values‘o£~éﬁ'estiﬁgte*that could occur Qndér a prescril ..d sampling plan.
4.2 SHAPE OF THE'SAMPﬁiNG DISTRIBUTLON

For random sampling there is a large vdlume of literature on the
distribution of an estimaté;which we will not attempt to review. 1In
_ practice, the distribution is generally accepted as being normal (See
Figuré 4.1) unless the sample size is "small." The theory and empirical
teéts show that the distribution of an estimate apbroaches the normal
distribution rapidly as the size of the sample increases. The closeness
of the distribution of an estimate to the normal distribution depends on:
(1) the distribution of.X (i.e., the shape of the frequency distribution
of the:ﬁaluesvof X=in”the»population being sampled), (2) the form of the
estimatqr, K3).the sémple‘design, and (4) the sample size. It is not
possible$tqbgivggasfew simple, exact guidelines for deciding.when the
degreg‘Qf_apptoximation;is,godd enough. In‘pfagticé,.it is generally a
matter of workingLaadthough the distribution of an estimate isgpormal but

being mindfylﬁgfi;hé‘pob@ipility that the distribution might differ
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¥y *-’"jv,* l/‘.*' Coate P _»z"~|‘ R e ' ) . l
E(x )-20 . E(x')—ox, E(x7) ‘v¢E(x‘)+o*,___E(x‘)+20x,,

Eiguteyé.l-rpist:ibution of an estimate (normal distribution)

considerably‘fromfnormal'when'the.sample is: very small and the population
distribution is. highly skewed, 3/

It is" very" fortunate: ‘that the- -sampling distribution is approximately
normal -as-it-gives a basis~fottprobability»statementsfabout thefprecisioni,
of an'estimate.e_Asxnotation;x’.willﬂbe;the;general expression“for7anyv“‘
estimate, and: okl~is ‘the: standard error of x7%,
of an estimate.»'It is~the-norma1 distribution,"ln!the mathematical R
..equation for the! normal distribution of ia variable‘there dare two parameters-

the average value of- the variable, and the standard error’ ofithe variable.’ﬂ

v 3/ For a good discussion of the distribution of a sample eatimate, see
v‘Vol. I, Chapter 1, Hansen, Hurwitz, and Madow.; Sample Survey Methods and
v;Theory, John Wiley and Sons, 1953. L ' ‘
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Suppose x° is an estimate from a probability sample. The characteristics

gt ek 11

of the sampling distribution of x” are specified by three things. (l) the

t; -:L-tif BN pge Tae

expected value of x* ’ E(x’), which is the mean of the distribution' (2) the
standard error of x‘, o vy and (3) the ;ssumption that the distribution is’
normal. If x” is normally distributed, two~thirds of the values that x‘
could equal are between [E(x‘) - o, ,] and [E(x‘) + g ,], 95 percent of the
possible values of x’ are between [E(x%) - 20 .l and [E(x‘) + 20 ,], and
99 7 pezcent of the estimates are within 30 . from E(x7).

Exercise 4 l. With reference to Illustration 4.1, find E(x) - oz and

E(x) + oz . Refer to Table 4.2 and find the propr.rtion of the 70 values
of X that are between E(X) ~ o5 and E(x) + os . How does this compare with
the expected proportion assuming the sampling distribution of x is normal?
The normal approximation is not expected to be close,owing to the small
size of‘the population and of the sample. Also compute E(x) - 20; and
E(x) + 20; and find the proportion of the 70 values of X that are between
these twoulimits.
4.3 SAMPLE DESIGN
There‘are‘many methods of designing and selecting samples and of making
estimates grom,samples. Each sampling method and estimator has a sampling
distribution, Jgince the sampling distribution is assumed to be normal,
alternatiwe methodsvare compared in terms of E(x”) and 0, (or o:,).
For_simple random sampling, we have seen, for a sample of n, that

every possible combination of n elements has an equal chance of being the

sample~selected.» Some of these possible combinations (samples) are much
better than’otherstﬁﬁlt is pogsible to introduce restrictions in sampling

so some of the combinations cannot occur or so some combinations have a
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5higher probability of occurrence than others. This can be done without

e, i ek e

;introducing bias in the extimate x‘ and without losing a basis for esti-

‘;Discussion of particular sample designs is not a primary
purpose of this chapter. However, a few simple illustrations will be

'.'

kuaed to introduce the subject of design and to help develop concepts ofr

sampling variation.

Illustration 4.2, Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit Elements Values of X Sample Unit Total
1l 1,2 xl =2, Xz -] 3
2 3,4 X3 = 6, X4 = 4 10
3 5,6 xs =7, x6 = 8 15
4 7,8 x7 =11, x8 =9 20

For sampling purposes the population now consists of four sampling
units rather than eight elements. If we select a simple random sample of
two sampling units from the population of four sampling units, it is clear
that ‘the sampling theorp for simple random sampling applies. This 1llus-
tration points out the importance of making a clear distinction between a
‘sampling unit and an element that a measurement pertains to. A sampling
unit corresponds to a random selection and it is the variation among sam-
Ppling units (random selections) that determines the sampling error of an
eatinatel‘iWhen"the sampling units aré composed of more than one element,
the'sanpling 1§ecdma5niy referred to as cluster sampling because the ele-

ments in'a‘sampling unit ‘are usually close together geographically,



121

For a simple random sample of 2 sampling units, the variance of x .

where x 18 the sample average per sampling unit, ia

82
2 N-n "¢
S’-‘ SN @ 13.17

(]
where :

- (3- ;2) + (10-12) + (;5-12) + (20-12)4, 158
3

N=4,n=2, and S 3

Instead of the average per sampling unit one will probably be interested

)

in the average per element, which is x -'EE » 8ince there are two elements

in each sampling unit. The variance of x is one-fourth of the vatianpe
of ic' Hence, the variance of x is léill = 3,29,
There are only six possible random samples as follows:

Sample average per

Sarple Sampling Units sampling unit, ic sz
1 1,2 6.5 24,5
2 1,3 9.0 72.0
3 1,4 11.5 144.5
4 2,3 12,5 12.5
2,4 15.0 50.0Q
3,4 17.5 12.5
n
Z(xi-ic)z
where si -l el and Xy is & sampling unit total. Be sure to notice

that sz (which is the sample estimate of Sz) is the variance among sampling
units in the sample, not--the variance among individual elements in the
sample. From the list of six samples, it is easy to verify that ic is an
unbiased estimate of the population average per sampling unit and that sz

is an unbiased estimate of l%ﬁ s the variance among the four sampling
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;hhitsfiﬁ”the”populetibh. Also, the variance among the six values of x is
13 17 which agrees with the formula.

' The six possible cluster samples are among the 70 samples listed in
‘Table'a.l. Their sample numbers in Table 4.1 are 1, 9, 28, 43, 62, and
70. A ALY follows these sample numbers. The sampling'distribution for
the sistpmples is shown in Table 4,2 for comparison with simple random
sampling. It is clear fron inspection that random selection from these
six 18 less desirable than random selection from the 70. For example,
one of the two extreme averapes, 3.25 or 8.75, has a probability of %—of
occurring forvthe cluster sampling and a probability of only %g-when
selecting a simple random sample of four elements. In this illustration,
the sambling restriction (clustering of elements) increased the sampling
variance from 1.5 to 3.29.

It is of importance to note that the average variance among elements
within the four clusters is only 1.25. (Students should compute the within
cluster variances and verify 1.25). This is much less than 12.00, the
variance among the 8 elements of the population. In reality, the variance
among elements within clusters is usually less than the variance among all
elements in the population, because clusters (sampling units) are usually
compssed of elements that are close together and elements that are close
together ussally show a tenaency to be alike.

'Exercise 4.2, In Illustration 4.2, if the average variance among

elements within clusters had been greater than 12,00, the sampling variance
for cldster-ssmplisg‘would have been less than the sampling variance for a

simple‘fsndeﬁ‘seﬁple of elements. Repeat what wssldone in Illustration 4.2
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using as sanpling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.
Study the results.

Illustration 4.3. Perhaps the most common mefhod'of sampling is to

assign sampling units of a population to groups called strata. A simple
random sample is then selected from each stratum. Suppose the popuiaiion
used in Illustration 4.1 is divided into two strata as follows:
Stratum 1 X1 =2, X
Stratum 2 XS =7, X

=1, X, =6,X =4

4
=11, X

2 3

6 7 8
The sampling plan is to select a simple random sample of two elements
from each stratum. There are 36 possible samples of 4, two from each
stratum. These 36 samples are identified in Table 4.1 by an s after the
sample number so you may compare the 36 possible stratified random samples
with the 70 simple random samples and with the six cluster samples. Also,
see Table 4.2,

Consider the variance of x. We can write

X, +x

%= 122

where §l is the sample average for stratum 1 and §2 is the average for

stratum 2. According to Theorem 3.5

2 1,,.2 2
S= = (5)(S= + S= + 25- - )
b4 4 xl x2 xlx2

We know the covariance, S; 5 is zero because the sampling from one
172

stratum is independent of the sampling from the other stratum. And,
since the sample within each stratum is a simple random sample,

N

1 s (2
N.-n, s§2 X %)
Sgﬂl—-l— L where 52_1
X N n 1l N,=-1

1 1 1 1
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The subseript™"1" refersvto stratim 1. Siﬁ’ié'of“thé“éame;fbrﬁ'aé"sz

2 o
Therefore, ‘5 2 :
S T Wl s s WP M 52,
o X 4 Nl n, ~N? n,
Since - R '
N,=n N,=-n
ot o2 2 1 - -
’Nl Nz 2 , and n1 n, 2,
SZ+S2
2 +92+2.92
2+ 300 L1 oz o,

The variance, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in
Illustration 4.2, |

In Illustration 4.2, the sampling units were groups of two elements and
the variance among éhese groups (sampling units) appeared in the formula
for the variaﬁce of Xx. In Illustration 4.3, each element was a sampling
uf\:lt but the selection proéess (randomization) was restricted to taking
one stratum (subset) at a time, so the sampling var£ance was determined by
variabilit& within strata. As you study sampling plans, form mental pictures
of the variation which the sampling error depends on. With experience and
accumulated knowledge of what the patterns of variation in various popui%—
tions are like, one can become expert in judging the efficiency of alterna-
tive sampling plans in relation to specific objectives of a survey.

If the population and the samples in the above illustrations had been
larger, the distributions in Table 4.2 would have been approximately nor-
mal. Thus, since the form of the distribution of an estimate from a prob~-
ability sample survey is accepted as being normal, only two attributes of
an estimate need to be evaluated, namely its expected value and its

variance.
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In the above illustrations ideal conditions were implicitly assumed.
Such conditions do not exist in the real world so the theory must be
extended to fit, more exactly, actual conditions. There are numerous
sources of error or variation to be eva}uated. The nature of the rela-
tionship between theory and practice is a major governing factor deter-
mining the rate of progress toward improvement of the accuracy of survey
results.

We will now extend error concepts toward more practical settings.

4.4 RESPONSE ERROR

So far, we have discussed sampling under implicit assumptions that
measurements are obtained from all n elements in a sample and that the
measurement for each element is without error. Neither assumption fits,
exactly, the real world. In addition, there are "coverage" errors of
various kinds. For example, for a farm survey a farm is defined but
application of the definition involves some degree of ambiguity about
whether particular enterprises satisfy the definition. Also, two persons
might have an interest in the same farm tract giving rise to the possibility
that the tract might be counted twice (included as a part of two farms) or
omitted entirely.

Partly to emphasize that error in an estimaté is more than a matter
of sampling, statisticians often classify the numerous sources of error
into one of two general classes: (1) Sampling errors which are errors
associated with the fact that one has measurements for a sample of elements
rather than measurements for all elements in the population, and (2) non-
sampling errors--errors that occur whether sampling is involved or not.

Mathematical error models can be very complex when they include a term for
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each of many sources, of .error..and .attempt.to represent. exactly the- real
world. However. complicated error models are not always. necessary,
depending upon, the.purposes..

For‘puppoees:of discussion, two oversimplified response-error models
will be used.. This will introduce the subject of response error and give
some clues regarding the nature of the impact of response error on the
distribution of an estimate. For simplicity, we will assume that a
measuremect is obtained for each element in a random sample and that no
ambiguity exists regarding the identity or definition of an element. Thus,
we will be considering. sampling error and response error simultaneously,

Illustration 4.4. Let Tl""’TN be the "true values" of some variable

for the N elements of a population. The mention of true values raises
numerous questions about what is a true value. For example, what is your
true weight? How would you define the true weight of an individual? We
will refrain from discussing the problem of defining true values and simply
assume that true values do exist accordiﬁg to some practical definition.

When an attempt is made to ascertain Ti’ some value other than T, might

i
be obtained. Call the actual value obtained xi. The difference, e, =

i
Xi - Ti' is the response error for the ith element, If the characteristic,
for example, is a person's weight, the observed weight, xi, for the ith
individual depends upon when and how the measurement is taken, However,
for simplicity, assume that Xi is always the value obtained regardless of
the conditions under which the measurement is taken. In other words,
assume that the response error, e is constant for the ich element. In

this hypothetical case, we are actually sampling a population set of values

xl,...,xﬁ instead of:a gset of true values Tl""’TN'
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Under:the .conditions as stated, the sampling theory applies exactly
to the set of population values Xl,....XN. -If a simple ‘random sample of
elements is selected and measurements for all elements in the sample are

N
ZTi

obtained, then E(x) = X. That 1s, if the purpose is to estimate T = iﬁ' ,
the estimate is biased unless T happens to-be equal to X. The bias is
X - T which is appropriately called "response bias.”

Rewrite ei - Xi - '1‘i as follows:

X1 = '1'i + e, (4.2)

Then, the mean of a simple random sample may be expressed as

n n

_ Exi 2(t1+e1)

X = = »
n n

or, as Xx=t+e.
From the theory of expected values, we have

E(x) = E(t) + E(e)
Since E(x) = X and E(t) = T it follows that

X =T+ E(e) N

- - - - Zei

Thus, x is a biased estimate of T unless E(e)= 0, where E(e) = -
That is, E(E) is the average of the response errors, e for the whole
population.

For simple random sampling the variance of x is

N

62 z:(xi-i)2
Sg = Nn X where S2 - E S
x N n X N-1

How does the response error affect the variance of X and of x? We have

h

already written the observed value for the it element as being equal to
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»»itéltfﬁeéﬁhlue%plus%avrespohée error;ﬁthateis;wxi‘- Ty +nei.“Assuming*
random siﬁbliqg;nrfréndxéi.ateﬁrandém va:iablesaiwé can use“Theorem 3.5
from Chapter-III: and write.

2,42, o2

Sy T e + 25, (4.3)

where Si is the va;iahéevof X, S% is the varianée of T, S: is the response
variance (thatlis;kthe variance of e), and sT,e is the covariance of T and
e, The terms on the right-hand side of Equat{on (4.3) cannot be evaluated
unless data on Xi and Ti are-available; however, the equation does show how
the response error influences the variance of X and hence of x.

As a numerical example, assume a population of five elements and the

following values for T and X:

i s 1
23 26 3
13 12 -1
17 23 6
25 25 0
_1 9. _2
Average 17 19 2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:
s2a62.5 s2w54.0 S2m7.5 g
x [ ] T L ] *

As a verification of Equation (4.3) we have

62.5 = 54,0 + 7.5 + (2)(0.5)
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n
| E(x, %)
From data in a simple random sample one would compute é% - i

2
8 .
and use Hﬁg"ai‘ as an estimate of the variance of x. Is it clear that
s: is an unbiased estiﬁate of Si rather than of S% and that the impact of

variation in e, 1is included in s: ?

n-1

To summarize, response error caysed a bias in x as an estimate of T
that was equal to X-T. In addition, it was a source of variation included
‘in the ‘'standard error of X. To evaluate bias and variance attributable to
response error, information on Xi and Ti must be available.

Illustration 4.5. In this case, we assume that the response error

for a given element is not constant. That is, if an element were measured

h

on several occasions, the observed values for the it element could vary

even though the true value, Ti’ remained unchanged. Let the error model be

xii - Ti + eij

where xij is the observed value of X for the ith

element when the
observation is taken on a particular occasion, j,

Ti is8 the true value of X for the ith element,

-

and ei

j is the response error for the ith element on a particular
occasion, j.

Assume, for any given element, that the response error, eij. is a random

variable. We can let eij -e, + eij’ where e, is the average value of eij

for a fixed i, that is, e

th

i
element into two components: a constant component, 31. and a

- E(eijli). This divides the response error
for the 1
variable component, eij' By definition, the expected value of eij is zero

for any given element. That is, E(eijli) = 0,
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- Substituting ei‘+ eij for~eij. the model becomes

X T, +e. +.e

gijf’ Ty ¥ eg ey, (4.4)

The” model Equation (4 4) is now in a good form for comparison with

e 4

the: model in Illustration 4 4. In Equation (4 4), 10 like'e in

A
Equation (4 2) is constant for a given element. Thus, the two models

are alike except fot the added term, e, TH in Equation (4 4) which alcht
for the possibility that the response error for the it h element might not

be constant.

k.

Assume a simple random sample of n elements and one observation for

each element. According to the model Equation (4. 4), we may now write

the sample mean as follows:

B ey
X==— 4 Z— 4
n n n

Summation with respect to j is not needed as there is only one observation
for each element in the sample. Under ‘the conditions specified the'expected
value of x may be expressed as follows:

E(x) = T+e

where T=

e M 2%
-3
[l > 1
1

and e =

=

|

The variance of X is ‘complicated unléss soime furthe: assumptions are
made. .Assume that*allkcovariancesterms“are,aero.:vAlso.‘assumefthat‘the'
conditionalfvariance of'eia‘isﬁconataht for all values of 1i; that 1s, let

V(eij'i)A-ASE!{‘Then.’the*variancehof'§'is”

» 2 A e 9
28n 2 nn % %
x N n N n a
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where é ‘

and S2 is’ the conditional variance of e j’ that is, V(eijli). For this

& 2

model the’ variance of X does not diminish to zero as n#N. However, assuming )

52

N is large; the variance"of-§;“which:beCOmes‘§Ef3 is“probahly negligible{"'

Definition 4.2.: Mean-Square: Exrror. In terms of the theory of ‘expected

values the mean-square error of an estimate, x“, is E(x’-T-)2 where T is the
target value, .that is, the value being estimated. From the theorj?it is

easy to show that -

G -1 = [B(x")-11 + Elx"E(x")]?

Thus, the mean-square error, mse, can be expressed as follows:

nse = B2 + oi, (4.5)

where = B.= E(x) - T _ (4.6)
2 ot inpery12

and oL .= E[x“~E(x”°)] 4.7)

Definition 4.3. Bias. In Equation (4.5), B is the bias in x” as

an estimate of T.

Definition 4.4. Precision. The precision of an estimate is the

standard error of the estinate, namely; ox,;inquuation (4.7).

Precision 1s a measure of repeatability. Conceptually, 1t is'a
. measure of the dispersion of estimates that would be generated by repetition
of the ‘same sampling and estimation procedures many times under the same‘.“
conditions. With reference to the sampling distribution, it is a measure‘yu

of the dispersion of the estimates from the center of the distribution and
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‘fdoes not include any indication of where the center of the distribution

;assumed_to be x, that is. T was equal to x. Therefore, B was zero and

fthe mean-square errcr of x’ was the same as the variance of x . In
Illustrations bed. and 4 5 the picture was’ broadened somewhat by intro- -
ducing response error and examining, theoretically, the impact .of response
) error{onnb(r‘)nsnd o*,..“ln practice many;factors«have potential for .
influencing;thedaampling distribution of x7. ‘That.is, the data in a
sample are subject to error that might be'attributed to several sources.

| From samnle data an estimate5vx‘! is ¢¢p§gg¢4band an estimate of the
variance of x“ is also computed. How does one interpret the results? In
Illustrations 4.4 and 4 5 we found that response error could be divided
_into bias and variance. The error from any source can, at least concep~-
tually, be divided into bias and variance. Anbestimate from a sample is
subject to the combined influence of bias and variance corresponding to
each of the several sources of error.v When an estimate of the ‘variance
of x* is computed from sample data, the estimste is a combination of
variances that might be identified with various sources. Likewise the |
difference between E(x’) and T is a combination of biases that might be
identified with various sources. . "

’ Figure 4 2 illustrates the sampling distribution of x for four .

different cases. A no bias and low standard error, B _no bias and large

¢standard error' C large bias and lo

tandard error' and D large bias

3o

and large standard error. The accuracy of an estimator is sometimesjdefined

,u

as the square root of the mean-square error’ of the estimator. According ‘
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i ,jf ,." ”"' or 4
T
. E(x?) E(x")
A: No bias--low standard error B: No bias--large standard error

' LAARE IR L B 1 )  } ] LS

T E(x°) T E(x”")
C: Large bias--low standard error D: Large bias--large standard error

Figure 4.2--Examples of four sampling distributions

... Figure 4,3--Sampling distribution--
Each small dot corresponds to an estimate
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“to that definition, we could' describe estimators having the four sampling

: distributions in Figure lo 2 as follows. In case A the estimator is precise
and accurate; in B the estimator lacks precision and is therefore inaccurate;
in C the estimator is precise but ihsecurate because of bias, and in D °the
.estinator’is inaceurhte,becanse.of bias and low precision.

Uhfd&éﬁiﬁéély:‘ic'is éenerally“not possible to"netermine, exactly,
the magnitude of bias in an estimate, or of a particular component of bias.
Howerer, evidence of tHe magnitude of biés is often available from general
experience, from knowledge of how well the survey processes were performed,
and from special investigations. The author accepts a point of view that
the mean-square error is an appropriate concept of accuracy to follow. In
that context, the concern becomes a matter of the magnitude of the mse and
the size of B relative to LA That viewpoint is important because it is
not possible to be certain that B is zero. Our goal should be to prepare
survey specifications and to conduct survey operations so B is small in
relation to L Or, one might say we want the mse to be minimum for a
given cost of doing the survey. Ways of getting evidence on the magnitude
of bias is a major subject and is outside the scope of this publication.

As indicated in the previous paragraph, it is important to know some-
thing about the magnitude of the bias, B, relative to the standard error,
ax,. The standard error is controlled primarily by the design of a sample
and its size. For many survey populations, as the size of the sample
Increases, the standard error becomes small relative to the bias. In fact,
the bias might be larger‘tnan’the standardferror even for samples of
‘-moderate size, for eXample a few hundred‘cases, depending unon the circum=-

| stsnees. The point is that if the mean-square error is to be small, both
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B and o_. must be small. The approaches for reducing B are very different
from the approaches for reduciﬁg'ux,. The gre#ﬁer concern about non-
sampling error is bias rather than impact on variance. In thé design and
selection of samples and in the processes of doing the survey an effort is
made to prevent biases that are "sampling" in origin. However, in survey
work one must be constantly aware of potential biases and on the alert to
minimize biases as well as random error (that is, ox,).

The above discussion puts a census in the same light as a sample.
Results from both have a mean-square error. Both are surveys with refer-
ence to use of results. Uncertain inferences are involved in the use of
results from a census as well as from a sample. The only difference is
that in a census one attempts to get a measurement for all N elements,
but making n = N does not reduce the mse to zero. Indeed, as the sample
size increases, there is no positive assurance that the mse will always
decrease; because, as the variance component of the mse decreases, the
bias component might increase. This can occur especially when the popu-
lation is large and items on the questionnaire are such that simple,
accurate answers are difficult to obtain. For a large sample or a census,
compared to a small sample, it might be more difficult to control factors
that cause bias. Thus, it is possible for a census to be less accurate
(have a larger mse) than a sample wherein the sources of error are more
adequately controlled. Much depends upon the kind of information being
collected.

4.5 BIAS AND STANDARD ERROR
The words "bias," "biased," and "unbiased" have a wide variety of

meaning among various individuals., As a result, much confusion exists,
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especially since the terms are often used loosely. .Technically, it seems

1

logteal to define the blas in an estinate as being equal o B in Equation
(446),, which 1o the difference between the expected value of en estimate.
and g#gigé;ggp_yalgg, ~But, except for h?poghecipal cases,~pumegical values
do nogugﬁgst'ipr either E(x”) or the target T. Hence, defining an unbiased
estimate as gpevyhege B = E(xf) - T = 0 is of 1little, if any, practical
value’unless one is willing to accept the target as being equal to E(x”).
From a saﬁgi;ng point of view there are conditions that give a rational
basis for accepting E(x”’) as the target. However, regardless of how the
target is defined, a good practical interpretdcion of E(x”) is needed.

It has become common practice among survey statisticians to call an
estimate unbiased when it is based on methods of sampling an& estimation
that are "pnbiased." For example, in Illustration 4.4, x would be referred
to as an unbiased estimate--unbigsed because the method of sampling and
estimation was unbiased. In other words, since X was an unbiased estimate
of X, % could be interpreted as an unbiase& estimate of the result that
would have been obtained if all elements in the population had been
measured.

In Illustration 4.5 the expected value of x is more difficult to
deacribgf Nevgr;heless, with reference to the method of sampling and
estimatipp,ni was "unbiased" and could be called an unbiased estimate
even though E(X) is not equal to T,

The point is that a simple statement which says, "the estimatc is
qnbiaQed” is.incompiete and can be very misleadinggqggpecially‘ifvone is
.hot?faﬁilié;,yéﬁnjxhg context and concepts of bias. Calling an estimate

-unbiased 18 equivalent to saying the estimate is an unbiased estimate of
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its expected value. Regardless of how "bias" is defined or used, E(x”)
is the mean of thé aampliﬁg distribution of X3 and fhis conéept of E(x‘)
is very important because E(i‘) appears in the st;ndard error, o ., of x”*
as well as in B. SeeAEquations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a
survey, the writer likes the analogy between an estimate and a shot at
a target with a gun or an arrow. Think of a survey being replicated
many times using the same sampling plan, bué a8 different sample for each
replication. Each replication would provide an estimate that corresponds
to a shot at a target.

In Figure 4.3, each dot corresponds to an estimate from one of the
replicated samples. The center of the cluster of dots is labeléd E(x”)
because it corresponds to the expected value of an estimate. Around the
. point E(x”) a circle is drawn which contains two-thirds of the points.
The radius of this circle corresponds to LAY the standard error of the
estimate. The outer circle has a radius of two standard errors and con-
tains 95 percent of the points. The target is labeled T, The distance
between T and E(x”) is bias, which in the figure 1s.greater than the
standard error.

In practice, we usually have only one estimate, x“, and an estimate,
8 of the standard error of x“. With reference to Figure 4.3, this
means one point and an estimate of the radius of the circle around E(x”)
that would contain two-thirds of the eatimateq in repeated samplings. We
do not know the value of E(x”); that is, we do not know where the center
of the circles is. However, when we make a statement about the standard

error of x°, we are expressing a degree of confidence about how close a
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"particular estimate prepared from aﬂsurvey is to E(x ) that is, how

| close one of the points in Figure 4, ; probably is to the unknown point
E(x?). A judgment as to how far E(x‘) is from T is a matter of how T
is defined and assessment of the magnitude of biases associated with
various sources of error.

Unfortunately, it is not easy to make a short, rigorous, and complete
interpretative statement about the standard error of x”. If the estimated
standard error of x” is three percent, one could simply state that fact
and not make an interpretation. It does not help much to say, for example,
that the odds are about two out of three that the estimate is within three
percent of its expected value, because a person familiar with the concepts
already understands that and it probably does not help the person who is
unfamiliar with the concepts. Suppose one states, "the standard error of
x” means the odds are two out of three that the estimate is within three
percent of the value that would have beenvobtained from a census taken
under identically the same conditions.”" That is a good type of statement
to make but, when one engages in considerations of the finer points,
interpretation of "a census taken under identically the same conditions"
is needed--especially since it is not possible to take a census under
identically the same conditions.

In summary, think of a survey as a fully defined system or process
including ail details that could affect an estimate, including: the method
of sampling, the method of estimation, the wording of questions; the order
of the questions on the questionnaire interviewing procedures, selection,

Y

training, and aupervision of interviewers and editing and processing of
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data. Conceptually, the sampling is then replicated many times, £olding
all specifications and conditions constant., This would generate a sam-
pling distribution as illustrated in Figures 4.2 or 4.3. We need to
recognize that a change in any of the survey specifications or conditions,
regardless of how trivial the change might seem, has a potential for
changing the sampling distribution, especially the expected value of x“.
Changes in survey plans, even though the definition of the parameters
being estimated remains unchanged, often result in discrepancies that

are larger than the random error that can be attributed to sampling.

The boints discussed in the latter part of this chapter were included
to emphasize that much more than a well designed sample is required to
assure accurate results. Good survey planning and management calls for
evaluation of errors from all gsources and for trying to balance the effort
to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible.



