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FOREWORD
 

The Statistical Reporting (SRS)Service has been engaged for 

many years in the training of agricultural statisticians from around
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.Agency for International Development (AID) training programs; however,
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into the International Statistical Programs Center of the Bureau of the
 

Census, with which SRS is cooperating.
 

This treatise was developed by the SRS with the cooperation of 

AID and the Center, in an effort to provide improved materials for
 

teaching and reference in the area of agricultural statistics, not
 

only for foreign students but also for development of staff working
 

for these agencies.
 

HARRY C. TRELOGAN
 
Administrator
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Washington, D. C. 
 September 1974
 



PREFACE
 

The author has felt that applied courses in sampling should give more 

attention to elementary theory cf expected values of random variable.a 

The theory pertaining to a random variable and to functions of random 

variables is the foundation for probability sampling. Interpretations 

of the accuracy of estimates from probability sample surveys are predicated
 

on, among other things, the theory of expected values.
 

There are many students with career interests in surveys and the
 

application of probability sampling who limited backgroundshave very in 

mathematics and statistics. Training in sampling should go beyond simply
 

learning about sample designs in a descriptive manner. The foundations 

in mathematics and probability should be included. It can (1) add much 

to the breadth of understanding of bias, random sampling error, components 

of error, and other technical concepts; (2) enhance one's ability to make 

practical adaptations of sampling principals and correct use of formulas;
 

and (3) make communication with mathematical statisticians easier and more
 

meaningful.
 

This monograph is intended as a reference for the convenience of
 

students in sampling. It attempts to express relevant, introductory
 

mathematics and probability in the context of sample surveys. Although
 

some proofs are presented, the emphasis is more on exposition of mathe­

matical language and concepts than.on the mathematics per se and rigorous
 

proofs. Many problems are given as exercises so a student may test his
 

interpretation or understanding of the concepts. 
Most of the mathematics
 

is elementary. If a formula looks involved, it is probably because it
 

represents a long sequence of arithmetic operations.
 

ii
 



Each chapter begins with very simple explanations and ends at a much
 

more advanced level. Most students with only high school algebra should
 

have no difficulty with the first parts of each chapter. Students with a
 

few courses in college mathematics and statistics might review the first
 

parts of each chapter and spend considerable time studying the latter parts% 

In fact, some students might prefer to start with Chapter III and refer to 

Chapters I and II only as needed.
 

Discussion of expected values of random variables, as in Chapter III, 

was the original purpose of this monograph. Chapters I and II were added 

as background for Chapter III. Chapter IV focuses attention on the dis­

tribution of an estimate which is the basis for comparing the accuracy 

of alternative sampling plans as well as a basis for statements about the 

accuracy of an estimate from a sample. The content of Chapter IV is 

included in books on sampling, but it is iirortant that students hear or 

read more than one discussion of the distribution of an estimate, espe­

cially with reference to estimates from actual sample surveys. 

The author's intere' and experience in training has been primarily
 

with persons who had begun careers in agricultural surveys. I appreciate
 

the opportunity, which the Statistical Reporting Service has provided, to
 

prepare this monograph. 

Earl E. Houseman 
Statistician
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CHAPTER I. NOTATION AND SUMMATION
 

1.1 INTRODUCTION
 

To work with large amounts of data, an appropriate system of notation
 

is needed. The notation must identify data by individual elements, and
 

provide meaningful mathematical expressions .for a wide variety of summaries
 

from individual data. This chapter describes notation and introduces
 

summation algebra, primarily with reference to data from census and sample
 

surveys. The purpose is to acquaint students with notation and summation
 

rather than to present statistical concepts. Initially some of the expres­

sions might seem complex or abstract, but nothing more than sequences of
 

operations involving addition, subtraction, multiplication, and division
 

is involved. Exercises are included so a student may test his interpreta­

tion of different mathematical expressions. Algebraic manipulati6ns are
 

also discussed and some algebraic exercises are included. To a consider­

able degree, this chapter could be regarded as a manual of exercises for
 

students who are interested in sampling but are not fully familiar with
 

the summation symbol, Z. Familiarity with the mathematical language will
 

make the study of sampling much easier. 

1.2 NOTATION AND THE SYMBOL FOR SUMMATION
 

"Element" will be used in this monograph as a general expression for 

a unit that a measurement pertains to. An element might be a farm, a per­

son, a school, a stalk of corn. or an animal. Such units are sometimes 

called units of observation or reporting units. Generally, there are 

several characteristics or items of information about an element that one 

might be interested in.
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"Heasurement" or "value" will be used as general terms for the
 

numerical value of a specified characteristic for an element. This
 

includes assigned values. For example, the element might be a farm and
 

the characteristic could be whether wheat is being grown or is not being 

grown on a farm. A value of "1" could be assigned to a farm growing wheat 

and a value of "0" to a farm not growing wheat. Thus, the "measurement" 

or "value" for a farm growing wheat would be "1" and for a farm not grow­

ing wheat the value would be "0." 

Typically, a set of measurements of N elements will be expressed as
 

follows: X1, X2 1..,XN where X refers to the characteristic that is 

measured and the index (subscript) to the various elements of the popula­

tion (or set). For example, if there are N persons and the characteristic
 

X is a person's height, then X is the height of the first person, etc.
 

To refer to any one of elements, not a specific element, a subscript "i"
 

is used. Thus, Xi (read X sub i) means the-value of X for any one of the 

N elements. A common expression would be "Xi is the value of X for the 

ith element." 

The Greek letter Z (capital sigma) is generally used to indicate a 

sum. When found in an equation, it means "the sum of." For example, 

N 
E i represents the sum of all values of X from X, to X; that is,
 

N
 

E Xi - X1 + X2 +..+ X. The lower and upper limits of the index of
 

summation are shown below and above the summation sign. For example, to
 

20 
specify the sum of X for elements 11 thru 20 one would write Z X . 

i=ll 
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You might also see notation such as "EX where i - 1, 2,..., N" which 

indicates there are N elements (or values) in the set indexed by serial
 

numbers 1 thru N, or for part of a set you might see"EX where i - 11, 

12,..., 20." Generally the index of summation starts with 1; so you will
 

N 
often see a summation written as EX . That is, only the upper limit of

ii 

the summation is shown and it is understood that the summation begins with 

i-l. Alternatively, when the set of values being summed is clearly under­

stood, the lower and upper limits might not be shown. Thus, it is under­

stood that EX or EX is the sum of X over all values of the set under 
ii 

consideration. Sometimes a writer will even drop the subscript and use 

EX for the sum of all values of X. Usually the simplest notation that is 

adequate for the purpose is adopted. In this monograph, there will be 

some deliberate variation in notation to familiarize students with various 

representations of data. 

An average is usually indicated by a "bar" over the symbol. For 

example, X (read "X bar," or sometimes "bar X") means the average value of 

N
SXi 

X. Thus, N In this case,showing the upper limit, N, of the sum­

mation makes it clear that the sum is being divided by the number of elements
 
Exi
 

and X is the average of all elements. However, -- would also be inter­

preted as the average of all values of X unless there is an indication to
 

the contrary.
 

Do not try to study mathematics without pencil and paper. Whenever
 

the shorthand is not clear, try writing it out in long form. This will
 

often reduce any ambiguity and save time.
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Here are some examples of mathematical shorthand:
 

N1 1 i 1 

(1) Sum~of the reciprocals of X 1 -1 - +1 . 

i - 1 + 72 

N
 
(2) 	Sum of the differences between- E (Xi-C)m(X1-C)+(X 2-C)+..+(X,-C) 

X, and a constant, C il 

(3) 	Sum of the deviations of X (X -X)=(XI-R)+(X2-R)+..+(X-R)
 
from the average of X i
 

(4) 	Sum of the absolute values df
 
the differences between Xi
 
and X. (Absolute value, l 1 x2-Il...lxN-Rl.
EIXi- Xl-RXJ 
indicated by the vertical
 
lines, means the positive
 
value of the difference)
 

(5) 	Sum of the squares of EX2 X-2 + X2 + X2 +
 
i, 	1 2 3 N 

(6) Sum of squares of the E(Xi_ )2 . (XIR)2 +...+ (XR)2_
 
deviations of X from R
 

N

(7) Average of the squares of the -E(Xi-X)2 (X-X)2+...+(_ )2
 

deviations of X from X 
 i-l 	 li1XN
 
N 	 N
 

N
 
(8) 	Sum of products of X and Y £ Xiyi n XlY+XY2+...+XNYN
 

Xi 	 XI X2 X
 
* 


divided by Y 

(9) 	Sum of quotients of X E Xi + +...+5
 

i 	 1 Y2 YN
 

Exi 	X+X2+..+
 
(10) 	 Sum of X divided by the -1-


sum of Y EYi Y+Y2+'"" 
YN
 

N
 
(11) 	 Sum of the first N digits E i - 1+2+3+...+ N
 

i-I
 

N

(12) 	 Eix nX+U2+3X3+...+ NXN
 

i-l
 

6
 
(13) 	 E (-l)iXi - -XI+x2-X3+X4-X5+X6
Jul
 



5.
 

Exercise 1.1. You are given a set of four elements having the 

- 2, X2 - 0, X3 - 5, X4 - 7. To test yourfollowing values of X: X1 


understanding of the summation notation, compute the values of the follow­

ing algebraic expressions:
 

Expression Answer
 

(1) 
4E (x1+4) 30
 
i-i
 

(2) E2(Xi-l) 20
 

(3) 2E(X -1) 20
 

(4) E2Xi-l 27
 

(5) R- N 3.5
 

(6) EX2 78
 

Ei
 

(7) E(-Xi) 2 78 

(8) [EXil]2 196
 

(9) E(X2 - Xi) 64 

(10) E(X2i) 
- EX 64 

(11) Ei(Xi) 45
 

(12) E(-l) (x1)
4 2 

0 

(13) E (Xj ­ 3) 66 
i-l 

4 2 _4 

(14) X 
i:l 

- E (3) 
i-l 

66 

4 
Note: E (3)means find the sum of four 3's 

4-1l
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Expression (Continued) Answer 

(15) 	E(Xj- ) 0
 

(1()z i ") )2 

(16) -- r--2	 

29 

N-13
 

2 -­
(1)N-1 	 29(17) [ - 2XiX + R2] 	 -3 

-NX 2
rX1 	 29
EX2 N2­

(18) N-1 	 2 

Definition 1.1. The variance of X where X X,X 2,..., , is 

defined in one of two ways:
 

N -

NE(xi-x) 

2 i-i
 
N 

or
 

E(Xi-R)S2 i-i 
S 
 N-i
 

The reason for the two definitions will be explained in Chapter III.
 

The variance formulas provide measures of how much the values of X vary
 

(deviate) from the average. 
The square root of the variance of X is
 

called the standard deviation of X. The central role that the above
 

definitions of variance and standard deviation play in sampling theory
 

will.become apparent as you study sampling. The variance of an estimate
 

from a sample is one of the measures needed to judge the accuracy of the
 

estimate and to evaluate alternative sampling designs. Much of the algebra
 

and notation in this chapter is related to computation of variance. For
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complex sampling plans, variance formulas are complex. This chapter
 

should help make the mathematics used in sampling more readable and more
 

meaningful when it is encountered.
 

Definition 1.2. "Population" is a statistical term that refers to
 

a set of elements from which a sample is selected ("Universe" is often
 

used instead of "Population").
 

Some examples of populations are farms, retail stores, students,
 

households, manufacturers, and hospitals. A complete definition of a
 

population is a detailed specification of the elements that compose it.
 

Data to be collected also need to be defined. Problems of defining popu­

lations to be surveyed should receive much attention in'courses on sampling.
 

From a defined population a sample of elements is selected, information
 

for each element in the sample is collected, and inferences from the sam­

ple are made about the population. Nearly all populations for sample
 

surveys are finite so the mathematics and discussion in this monograph
 

are limited to finite populations.
 

In the theory of sampling, it is important to distinguish between
 

data for elements in a sample and data for elements in the entire popula­

tion. Many writers use uppercase letters when referring to the population
 

and lowercase letters when referring to a sample. Thus XI,..., XN would
 

represent the values of some characteristic X for the N elements of the
 

population; and xl,..., xnwould represent the values of X in a sample of
 

n elements. The slubscripts in xl,..., xn simply index the different
 

elements in a sample and do not correspond to the subscripts in X1 ,..., XN
 

which index the elements of the population. In other words, xi could be
 

any one of the XiIs. Thus,
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N 

N- X represents the population mean, and
 

n
E,X-4 

- x represents a sample mean 

In this chapter we will be using only uppercase letters, except for
 
constants and subscripts, because the major emphasis is on symbolic repre­
sentation of data for a set of elements and on algebra. 
For this purpose,
 
it is sufficient to start with data for a set of elements and not be
 
concerned with whether the data are for a sample of elements or for all
 

elements in a population.
 

The letters X, Y, and Z are often used to represent different charac­
teristics (variables) whereas the first letters of the alphabet are commorly 
used as constants. 
There are no fixed rules regarding notation. For
 
example, four different variables or characteristics might be called X1.
 
X2 , X3 , and X4. In that case Xli might be used-to represent the ith value 
of the variable X1 . Typically, writers adopt notation that is convenient 
for their problems. 
It is not practical to completely standardize notation.
 

Exercise 1.2. 
 In the list of expressions in Exercise 1.1 find the
 
variance of X, that is, find S2
 .
 Suppose that X4 is 15 instead of 7. How
 

much is the variance of X changed? Answer: From 91 to 441
3 4~ 

Exercise 1.3. 
You are given four elements having the following values
 

of X and Y 

X1 - 2IC-0 X3 -5 -7X4 


Y1 2 Y2 
 -3 Y3 "1 Y4 "14 
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Find the value of the following expressions: 

Expression Answer Expression Answer
 

(1) EXiY1 107 (7) EXi-ZYi -6 

(2) (EXi) (EYi) 280 (8) E(Xi-¥Yi) 2 74 

(3) E(X2-)(¥1) (9) 237 2(X2-Y -132 

(4) ZX Y -NXY 37 (10) EX2-EY2 -132 

1 X 2 
(5) i 1.625 (11) [E(X-Y)] 2 36 

(6) Z(Xi-Yi) -6 (12) [EXil]2 [EYi] 2 -204 

1.3 FREQUENCY DISTRIBUTIONS
 

Several elements in a set of N might have the same value for some
 

characteristic X. For example, many people have the same age. Let X
 

be a particular age and let N be the number of people in a population
 
K 

(set) of N people who have the age X . Then Z N - N where K is the 

J-1 

number of different ages found in the population. Also ENjX is the sum 

EN X
 
of the ages of the N people in the population and ENENjX represents the
 

average age of the N people. A listing of X and N is called the
 

frequency distribution of Xsince N is the number of times (frequency)
 

that the age X is found in the population.
 

On the other hand, one could let Xi represent the age of the ith
 

individual in a population of N people. Notice that j was an index of age. 

We are now using i as an index of individuals, and the average age would 

EXi EN X EX
 
be written as-- . Note that EN X - EX and that -- = . TheN i EN NN
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choice between these two symbolic representations of the age of people in
 

the population is a matter of convenience and purpose.
 

Exercise 1.4. Suppose there are 20 elements in a set (that is, N - 20) 

and that the values of X for the 20.elements are: 4, 8, 3, 7, 8, 8, 3, 3, 

7, 2, 8, 4, 8, 8, 3, 7, 8, 10, 3, 8. 

(1) List the values of X and N, where j is an index of the 

values 2, 3, 4, 7, 8, and 10. This is the frequency
 

distribution of X.
 

(2) What is K equal to?
 

Interpret and verify the following by making the calculations indicated:
 

N K 
(3) E - N x 

ii 

(4) ---
N Nj 

-2 -2
Z(Xi-X) ENI (Xi- R)
(5) 	 = 

N EN 

1.4 ALGEBRA 

In arithmetic and elementary algebra, the order of the numbers-when
 

addition or multiplication is performed does not affect the results. The
 

familiar arithmetic laws when extended to algebra involving the summation
 

symbol lead to the following important rules or theorems: 

Rule 1.1 Z(Xi-Yi+Zi) - EXi-ZYi+ZZi 

or Z(X i+X2i+...+XKi) - EXli+X 21+...+EXKi 

Rule 1.2 ZaXi - aEXi where a is a constant 

Rule 1.3 E(Xi+b) - EXi+Nb where b is constant 
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If it is not obvious that the above equations are correct, write both
 

sides of each equation as series and note that the difference between the
 

two sides is a matter of the order in which the summation (arithmetic) is
 

performed. Note that the use of parentheses in Rule 1.3 means that b is
 

contained in the series N times. That is,
 

N 
E (Xi+b) - (Xl+b)+(X2+b)+...+(XN+b)
i=1
 

- (X1+X2+...+X.) + Nb
 

On the basis of Rule 1.1, we can write
 

N N N 
E (Xi+b) - E Xi + Z b 

i-I i-l i-i 

N
 
The expression E b means"sum the value of b,which occurs N times." Therefore,
 

i-l
 

N
 
E b =Nb.
 
i-1
 

N
 
Notice that if the expression had been E Xi+b,then b is an amount to add
 

i
 
N
 

to the sum, E Xi 
i 

N N 
In many equations X will appear; for example, E XXi or*E (Xi-X). 

i i 

Since X is constant with regard to the summation, EXX - XEXi . Thus, 

z(Xi-X) E X.i-EX - EX - NX. By definition,X =_ Therefore, 
ii i Ii i i 

NR - EXi and E(Xi- X) - 0. i 

To work with an expression like E(X +b)2 we must square the quantity
 
i i
 
N2
 

in parentheses before suming. Thus,
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Z(Xi +b 2ENX+2bXi + b2)
i 

XX + E2bXi + Eb2 Rule 1
 

2
X2 + 2bEXi + Nb 

2 
Rules 2 and 3 

Verify this result by using series notation. 
Start with (Xl+b)2+ •+(X+b)2.
 
It is very fmportant that the ordinary rules of algebra pertaining to
 

the use of parentheses be observed. 
Students frequently make errors
 
because inadequate attention is given to the placement of parentheses or
 
to the interpretation of parentheses. 
Until you become familiar with the
 
above rules, practice translating shorthand to series and series to short­
hand. 
Study the following examples carefully:
 

(1) Z(Xi) 2 (EXt) 2The left-hand side is sumthe of 

the squares of Xt
. The right-hand
 
side is the square of the sum of X
 .
 
On the right the parentheses are
 
necessary. 
The left side could
 

Z[ 1 2 
 have been written EX
 
(2) fi 
 Rule 1.2 applies.
 

(3) r(Xi+Yi)2 22X+ Ey2 
 A quantity in parentheses must be
 
squared before taking a sum.
 

(4) E(X 2+ Y ) -X + Ey Rule 1.1 applies
 

(5) EXiY i (EXi)(EYi) The left side is the sum of products.
 

The right side is the product of 
sums.• 

(6) 	 Z(Xi-Yi) 2 . X2 - 2EX Y +Ey2

Si 
 i i 

N N 
(7) Ea(Xi-b) I aEX. - ab
 

i 
 i
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N N 
(8) Ea(Xi-b) - aEX. - Nabi ii1
 

N N 
(9) a[EX -b] - aEXi-ab 

i i 

(10) EXi(Xi-Yi)- EX2 - EXi 

Exercise 1.5. Prove the following:
 

In all 	cases, assrine i - 1, 2,..., N. 

(1) E(Xi-i) - 0 

(2) T. y­()Exiy 


2 
2 (EXid-NX(3) 

N
 

N
 
(4) i (aXi+bY+C) - aEXi+bEYi+NC
 

Note: 	Equations (5) and (6) should be (or become)
 
very familiar equations.
 

(5) E(X -X) 2 . EX - N-2 
E(i~ i N 

(6) E(Xi-i) (Y¥i-) - EXiYi-NUY 

E(Tx~~1 Yi ) 22 -2 E(Xi+aYi)2(7) + - 12 

a 

(8) Let Yi " a+bXi, show that Y - a+bX 

and EY2 Na(a+2bX) + b2 EX2
 

i 	 i 

(9) Assume that Xi - 1 for N1 elements of a set and that Xi - 0 

for N0 of the elements. The total number of elements in the

N1 NO 

set is N - N+N 0 . Let N -- P and N - Q, Prove that 

S(Xi-x) 2 

N - PQ 
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2(10) N(Xid) 2 - E(Xi-X) + N(X-d) 2 . Hint: Rewrite (X d) 2 

as - ­[(Xi-X)+(x-d)] 2 . Recall from elementary algebra that
 

(a+b) 2 = a2+2ab+b 2 and think of (Xi-X) as a and of (X-d)
 

as b. 2For what value of d is E(Xi-d) a minimum? 

1.5 DOUBLE INDEXES AND SUMMATION 

When there is more than one characteristic for a set of elements,
 

the different characteristics might be distinguished by using a different
 

letter for each or by an index. For example, Xi and Yi might represent
 

the number of acres of wheat planted and the number of acres of wheat
 

harvested on the i th farm. Or, Xij might be used where i is the index 

for the characteristics and J is the index for elements; that is,Xij
 

would be the value of characteristic Xi for the Jth element. However,
 

when data on each of several characteristics for a set of elements are
 

to be processed in the same way, it might not be necessary useto 

notation that distinguishes the characteristics. Thus, one might say
 

calculate N- 2 for all characteristics.
 

More than one index is needed when the elements are classified accord­

ing to more than one criterion. For example, Xii might represent the value
 

of characteristic X for t.
. j th farm in the ith county; or Xijk might be 

the value of X for the kth household in the jth block in the ith city. 
As another example, suppose the processing of data for farms involves 

classification of farms by size and type. We might let Xijk represent
 

the value of characteristic X for the kth farm in the subset of farms
 

classified as type j and size i. If Ni
1 is the number of farms classified
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as type j and size i, then k Nij = Xij. is the average value of X for 

the subset of farms classified as type j and size i.
 

There are two general kinds of classification--cross classification
 

and hierarchal or nested classification. Both kinds are often involved
 

in the same problem. However, we will discuss each separately. An
 

example of nested classification is farms within counties, counties within
 

States, and States within regions. Cross classification means that the
 

data can be arranged in two or more dimensions as illustrated in the next
 

section.
 

1.5.1 CROSS CLASSIFICATION
 

As a specific illustration of cross classification and summation with
 

two indexes, suppose we are working with the acreages of K crops on a set
 

of N farms. Let Xij represent the acreage of the ith crop on the jth farm 

where i - 1, 2,..., K and j = 1, 2,..., N. In this case, the data could 

be arranged in a K by N matrix as follows: 

Column (J : R
 
Row (i) Row
 

S J N : total
 

* .E 

: 1 :X 
 X
 
1 X •.... XlN :E
 

: : .J:
 

i ij ... ~iN ij 

• * . 

K XK1 ... 
 X : E XKJ :
 

: E X ExColumn XiN Xij

:total : i i i N 
ij
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The expression 
ZXj (or E X J ) means the sum of the values of X for a
 

fixed value of i. Thus, with reference to the matrix, E X is the total
 

of the values of X in the ith row; or, with reference to 

ji 

the example about
 
farms and crop acreages, E Xif 
would be the total acreage on all farms of
 

h
whatever the "crop is. Similarly, E X1 jj (or Li x j) is the column total
i x
 

for the jth column, which in the example is the total for the jth farm of
 
the acreages of the K crops under consideration. 
The sum of all values of
 

KN
X could be written as EEr X1 or rE
 
i j 
 iJi
 

Double sumation means the sum of sums. 
Breaking a double sum into
 
parts can be an important aid to understanding it. Here are two examples:
 

KN N N 
 N
(1) xij Xlj+ X2j XKj 
 (1.1)
 

With reference to the above matrix,Equation (1.1) expresses the grand total
 

as the sum of row totals.
 

KN 
 N 
 N
(2) E Xij(Yij+a) 
- E (Yl+a)+...+ E XKj(yj+a) 
 (1.2)
 

N 
EXij (Yl+a) - X1 1 (Y11+a) +...+ XIN(YiN+a) 

In Equations (1.1) and (1.2) the double sum is written as the sum of K 
partial sums, that is, one partial sum for each value of i.
 

Exercise 1.6. 
 (a)Write an equation similar to Equation (1.1) that
 
expresses the grand total as 
the sum of column totals. (b)Involved in
 
Equation (1..2) 
are KN terms, Xij (Yij+a). Write these terms in the form of
 

a matrix.
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The rules given in Section 1.4 also apply to double summation.
 

Thus,
 
KN 
 KN
EEJiXxj1i (Yij+a) 

KN 
Ji xj
- EEX Jixj
YJ + a EEX 
 (1.3)
.3
 

Study Equation (1.3) with reference to the matrix called for in Exercise
 

1.6(b). To fully understand Equation (1.3), you might need to write out
 

intermediate steps for getting from the left-hand side to the right-hand
 

side of the equation.
 

To simplify notation, a system of dot notation is commonly used, for
 

example:
 

E Xii "Xi. 

i Xii M X
 

EE Xi-X0 

The dot in X indicates that an index in addition to i is involved and
 

Xi. is interpreted as the sum of the values of X for a fixed value of i.
 
Similarly, X. 
is the sum of X for any fixed value of J, and X represents
 

a sum over both indexes. 
 As stated above, averages are indicated by use of
 
a bar. 
Thus Xi. is the average of Xij for a fixed value of i, namely
 

N
 
-
IXi
 

N 
 Xi, and X.. would represent the average of all values of Xii
 ,
 

namely NK
 

Here is 
an example of how the dot notation can simplify an algebraic
 

ixpression. 
Suppose one wishes to refer to the sum of the squares of the
 
row totals in the above matrix. 
This would be written as Z(Xi)2. The sum
 

I
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-2
of squares of the row means would be E(Xi.) 2
 . Without the dot notation the
 
i
 

K N EK
Nxi
 

corresponding expressions would be E(EXij)2 and Z L 2 It is very 

K N

important that the parentheses be used correctly. For example, Z(EXi)2 is 

KN2 i j 

not the same as EEX . Incidentally, what is the difference between the 
ii i 

last two expressions?
 

Using the dot notation, the variance of the row means could be written
 

as follows:
 
K2 

V(Xi) - K-l (1.4) 

where V stands for variance and V(Xi) is an expression for the variance of
 

Xi. • Without the dot notation, or something equivalent to it, a formula
 

for the variance of the row means would look much more complicated.
 

Exercise 1.7. Write an equation, like Equation (1.4), for the variance
 

of the column means.
 

Exercise 1.8. Given the following values of X j
 

i: 

: 1 2 3 4 

1: 8 911 14
 

2: 10 13 11 14 

3: 12 1015 17
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Find the value of the following algebraic expressions:
 

Expression Answer Expression Answer
 

N 	 N 2 
(1) 	 • j 42 (9) K(X j-X')1 54 

i I 

N 	 KN2 
J*-.)
X2j 	 (10) zE(Xij -R . 6 

(2) N 	 12 J 2 

(3) 	X3 13.5 2 Lj iJ 
2
(11) Ex - -	 78 

iJ iJ KN
45
(4) 	EX14 


KN 
 KE
 
iJ iJ
(5) 	EEX 144 (12 zx EIx 18 

N KN 18 
(6) 	X.. 12 

N -2 
l - 2 	 (13) E(Xlj-X1 ) 21 

(7) 	ZE(Xi1-x..) 78
 
ij	 KN2
 

2 -2E(X
K -	 (14) -X ) 60 

(8) NZ( iX..) 18 ij
 
i
 

Illustration 1.1. To introduce another aspect of notation, refer to
 

the matrix on Page 15 and suppose that the values of X in row one are to 

be multiplied by al, the values of X in row two by a2, etc. The matrix 

would then be all ...alXlj ... alXlN 

i il . iX i iN 

The er... aXj ... a N
 

The generai term can be written as aiJi1 because the index of a and the 
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index i in Xij are the same. Thetotal of all KN values of a X is
iJ71 i 

KN 
E~a X .. -,Since ai is constant with respect to summa tion involving J, 

we can place aI ahead of the summation symbol 
N 
E . That is, EJa X -

Eai ij 

Exercise 1.9. 
 Refer to the matrix of values of Xij in Exercise 18.
 

Assume that aI - -1, a2 0, and a3 1.
 

Calculate:
 

(1) ZZaiX
 
ii ij
 

aiX 
(2) E -Nir
 

ij

(3) 2
 

(3) EZa X.. Answer:-296
ii i ii 

Show algebraically that:
 

(4) ££aX.. - ZX3 -ZX1 .(4 i ij j jE 

a X 
(5) E
ij N - ­

() 2 2 2 
Z~ai~ij E3j j lj 

Exercise 1.10. Study the following equation and if necessary write
 

the summations as series to be satisfied that the equation is 
correct:
 

KN 
EZ(aXij+bYij) -aZEXi . + bEYi
 -

ij ii ii 

Illustration 1.2. Suppose
 

Y - iJ i where - 1, 2,...,Ki Xw+a +bj+c i and J - 1, 2,...9N,.. 
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The values of Y can be arranged in matrix format as follows: 

+Y11 X al+b+c . .... . .. Y " X + al+b+c
 

Y XiJ +a+bj+c
 

YK1 - XK + ak+bl + c .. ... 	 +K a N+C 
Notice that a i is a quantity that varies from row to row but is constant 

within a row and that b 
varies from column to column but is constant
 

within a column. Applying the rules regarding the sunmation symbols we
 

have
 
Y iJ X +a +b +c)
 

" Exij + Nai + Eb + Nc 

- jE(X+aebj+c)
 

ij i i
 

- Exi +Ea Kb+Kc 
ii ii
 

EZYi . M £E(Xij+ai+bj+c) 

-EEXii + NEa. + KEb. + KNc
 
iJij ii i 

Illustration 1.3. We have 	noted that E(X
1Yi) does not equal 

(EXi)(EYi). (See (1) and (2) in Exercise 1.3, and (5) on Page 12). But, 

"EXj i Y - (EX1)(EYJi ) where i - 1, 2,...,K and j - 1, 2,...,N. This becomes 
ij ± j 
clear if we write the terms of EEX Y in matrix format as follows:ij i 

Row Totals
 
Xly + XlY2 +..+ XlYN 	 X1zY 

+ X2Y1 + X2 Y2 +..+ X 2YN 	 X2Y 

+ 	XKYl + XKY 2 +...+ XKYN - EZX Y. xKYJ 

ij X 
,X'EY.
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The sum of the terms in each row is shown at the right. The sum of these 

row totals is XI Yj +...+XKEYJ - (Xi+..+ X)Eyj = EXi Y One could 

get the same final result by adding the columns first. Very often inter­

mediate summations are of primary interest. 

Exercise 1.11. Verify that ZXiY ­= (EXi) (Eyj) using the values of
 

X and Y in Exercise 1.3. In Exercise 1.3 the subscript of X and the sub­

script of Y were the same index. In the expression ZEX Y that is no longer 

the case. 

Exercise 1.12. 
Prove the following:
 
KN K 2 N2 K N N 2
 

(1) iJZZ(aiXij+b)Ji i EX2 + 2Eaaii Eb Xiji i ijj j+ KEb J2 j i Jj i 

KN 2 K N K(2) Ea (X -X) La -E EX NEa
 
iJ i iii.ij i i* i j ii 

KN K N K 
(3) Z~a (Xij-X ')(YiJ-i . ) = Eai EX Jijyj - NEa i.Yiq 

1.5.2 
HIERARCHAL OR NESTED CLASSIFICATION
 

A double index does not necessarily imply that a meaningful cross
 

classification of the data can be made. 
 For example, Xij might represent
 

the value of X for the jth farm in the i t h county. In this case, j simply 

identifies a farm within a county. 
There is no correspondence, for example,
 

between farm number 5 in one county and farm number 5 in another. In fact 

the total number of farms varies from county to county. Suppose there are 
K counties and Ni farms in the ith county. The total of X for the i th 

Ni Kcounty could be expressed ias X W Xi. • In the present case EXi isj iJ i 
KNi 

meaningless. The total of all values of X is ij i ljEX 
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When the classification is nested, the order of the subscripts
 

(indexes) and the order of the summation symbols from left to right should
 

be from the highest to lowest order of classification. Thus in the above
 

example the index for farms was on the right and the summation symbol
 

KN 
involving this index is also on the right. In the expression Xix
 

ii i'
 
summation with respect to i cannot take place before summation with regard
 

to J. On the other hand, when the classification is cross classification
 

the summations can be performed in either order.
 

In the example of K counties and Ni farms in the ith county, and in
 

similar examples, you may think of the data as being arranged in rows (or
 

columns):
 

XIll X12, ... , XlN 

X21, X22 ' ... , X2N2 

XKll XK2 1 
 K
 

Here are two double sums taken apart for inspection:
 

SKNN 2 N
 
- E (X(Xij-X"(1) " 1 

140.(XX') +.0"+ EK(KJ_..) (1.5) 

N1 - 2 -2 -XN2 
i(i. - (X11-.. ) +...+ (XN -Roo) 

j 1 

Equation (1.5) is the sum of squares of the deviations, (Xij-X..), of all
 

K 
values of Xij from the overall meat.. There are ENi values of Xi., and 

ii 
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KN
 

Z iiiK .
 If there wap no interest in identifying the data by counties,
 

ENi
 

i 

N -2
a single index would be sufficient. Equation (1.5) would then be E(Xi-X)
 
i
 

KN 2 N 2
 
(2) EE (Xij-Ri o) E (Xljx1
_o) +o*+ E(XKj -X (1.6)

j l
 
(
 

N 1 2 (X211-Rie)) (XlN _Rl" 

N 
 2
 

With reference to Equation (1.6) do you recognize EI(Xlj 1 )2? It involves
 

only the subset of elements for which i - 1, namely X11, X12,... X1N. Note
 

that Xl. is the average value of X in this subset. Hence, E (Xlj-.)2 is
 

J
 

the sum of the squares of the deviations of the X's in this subset from the
 

subset mean. The double sum is the sum of K terms and each of the K terms
 

is a sum of squares for a subset of X's, the index for the subsets being i.
 

Exercise 1.13. Let Xi represent the value of X for the jth farm in
 

the ith county. 
Also, .let K be the number of counties and Ni be the number
 

of farms in the ith county. Suppose the values of X are as follows:
 

Xl11 3 
 X12 i1 XI3- 5
 

X21 " 4 X22 - 6 

X31 -0 X32 -5 1 - 2X33 X3 4 

Find the value of the following expressions:
 

Expression Answer
 

K 
(1) ENi 

i 
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Expression (Continued) Answer
 

KNi
 
(2) z xt
 . 27.
 

ij
 

(3) X.. and .
 27 3
 

N
 

(4) E lX 
 x
 

(5) x2. and X3. 
 10 8
 

(6) 1. X22 and R3e 
 3 5 2
 

(7) EN iXi
 

ENL 3£Ni
 

KN 
 K
 
(8) E(Eix 4) .
2 or Ex2 245
iJ j i z
 

(9) EZ(Xi.-R.)2 
 36
 

N12
 

(10) EI(XJ-Ro )2
 

(11) Ei(X.i)2 
 8, 2, and 14 for i 1, 2,
 

and 3 respectively
 

(12) £EE(X-.)2 
 24
 
ij
 

K
 
(13) EN ­(X 2. 12
 

2
2 FKNij 


K j J
 
(14) E - Ni Nj 12
 

K
 
(15) ZN .2 - 2
 

12

iix .
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Expressions (14) and (15) in Exercise 1.13 are symbolic representations
 

of the same thing. By definition
 

Ni 
 KNi K

EiX - XXM , E.X9 . - X* , and EN N 
J. ij 
 ii 

Substitution in (14) gives
 

2 2 
E N N 
 (1.7)

i* i 2 -

Xi. 

Also by definition 

X0. Xi.
 = Xi. and - .. . Therefore - = N X and 

2

X NX2
-
 Hence, by substitution, Equation (1.7) becomes 
N 2 N-2
 

i ii
 
Exercise 1.14. 
Prove the following:
 

KN K
 
(1) EE xi.X i - Ex2
 . 


ij j ii.
 

KN
 
(2) EE .(Xij- i ) 0
 

< i>xi(i.- )Xi N.2
2 KR2 2
 

(3) ENi (X ") iENi1 " -N 0."
 

Note that this equates (13) and (15) in Exercise 1.13.
 
The proof is similar to the proof called for in part (5)
 
of Exercise 1.5.
 

KN K2N 1 K K
 
(4) EE(aiXij-bi - Eai E X.- 2Eaib.X.iji i j ii i + EN bi ii
 

1.6 THE SQUARE OF A SUM
 

In statistics, it is often necessary to work algebraically with the
 

square of a sum. For example,
 

(EXi)2 . (X1+X+...+y 2_ X2 +..x+X 2+X x 2
 
i~i2 2 21l--X+X~+­
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The terms in the square of the sum can be. written in matrix form as 

follows: 
X1X1 X1X2 .. xx ... XlXN 

x2x 1 x2x2 . x2xj 2xN
 

XiX X. XXiN
.. 


XNX 1 XNX 2 ... XNXJ ... XNXN 

The general term in this matrix is XiX where Xi and X come from the same 

set of X's, namely, X1 ,...,*X.I Hence, i and j are indexes of the same set. 

Note that the terms along the main diagonal are the squares of the value 

2of X and could be written as EX i . That is, on the main diagonal i = j 

d X . The remaining terms are all products of one value 

6f X with some other value of X. For these terms the indexes are never 

equal. Therefore, the sum of all terms not on the main diagonal can be 

expressed as EX X where i # j is used to express the fact that the summa­
iji j 

tion includes all terms where i is not equal to J, that is, all terms other
 

2

than those on the main diagonal. Hence, we have shown that (EXi) = 

EX + EX X 
i#ji j• 

Notice the symmetry of terms above and below the main diagonal: 

X1 X2 = X2Xl,X 1X3 - X3X1 , etc. When symmetry like this occurs, instead of 

EX X you might see an equivalent expression 2Z X X . The sum of all 
i j j i<i j 

terms above the main diagonal is Z X X.. Owing to the symmetry, the sum 
i<j j 
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of the terms below the main diagonal is the same. Therefore, Z X X ­

2EXX
 
i<J i j
 

4 22 
Exercise 1.15. Express the .terms of [ EX] 2 - [XI+X2+X3+X4 ] in 

i-li
 
matrix format. Let W 2,
X1 X2 - 0, X3 - 5, and X - 7. Compute the values 

2of xEi , 2EX Xj , and (EXil 2 Show that [Xi 2 . X1 
2 + 2 EXX
 

i<j 
 i<j 

An important result, which we will use in Chapter 3, follows from the 

fact that
 

[ExiJ2 . EX2 + xxj (1.8)
Si j
 

Let X - Yi-Y. Substituting (Yi-Y) for Xi in Equation 1.8 we have
 

MY¥i-b] . E(Yi-Y)2 + E (Yi-Y)(Y j-Y) 
iij 

-2 -

We know that [E(Y-Y)] 2 - 0 because E(Yi-i) 00. Therefore,
 

S(Yi-) 2 + (Yi-q) J_1) - 0
i,,j
 

It follows that E (Yi-Y) - -(yi-) 2 
(1.9)
 

Exercise 1.16. Consider
 

J (yi-1)(Yj -= i qY + 12 

M E i _ Yi - Y EjY. + E 2 
i J iAJ 
 i J
 

Do you agree that E q2 - N(N-)q2? With reference to the matrix layout, 
iY'j 

q2 appears N2 times but the specification is i 0 j so we do not want to 

count the N times that q2 is on the main diagonal. Try finding the values 
of E Xi and E X and then show that 

itj itj 
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E (Yi -1)(Yj-4) = jYj - N(N-1)Y 2 

i-i i,'j
 

Hint: Refer to a matrix layout. In E Yi how many :imes does Y1 appear? 
i#j 

Does Y2 appear the same number of times?
 

1.7 SUMS OF SQUAIS 

For various reasons statisticians are interested in components of
 

variation, that is, measuring the amount of variation attributable to each 

of more than one source. This involves computing sums of squares that 

correspond to the different sources of variation that are of interest.
 

We will discuss a simple example of nested classification and a simple 

example of cross classification.
 

1.7.1 NESTED CLASSIFICATION 

To be somewhat specific, reference is made to the example of K counties 

and Ni farms in the ith county. The sum of the squares of the deviations
 

of Xij and X.. can be divided into two parts as shown by the following 

formula: 
KN ( 2 K 2 KN (.0ZE(X- E-Ni(X -X) + -2 
iJ i i j 

The quantity on the left-hand side of Equation (1.10) is called the
 

total sum of squares. In Exercise 1.13, Part (9), the total sum of squares
 

was 36. 

The first quantity on the right-hand side of the equation involves the 

squares of (X .- X .),which are deviations of the class means from the over­

all mean. It is called the between class sum of squares or with reference 

to the example the between county sum of squares. In Exercise 1.13, 

Part (13), the between county sum of squares was computed. The answer was 

12.
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The last term is called the within sum of squares because it involves
 

deviations within the classes from the class means. was presentedIt 

previously. 
See Equation (1.6) and the discussion pertaining to it. In
 

Exercise 1.13, the within class sum of squares was 24, which was calculated 

in Part (12). Thus, from Exercise 1.13, we have the total sum of squares, 

36, which equals the 'between, 12, plus the within, 24. This verifies
 

Equation (1.10).
 

The proof of Equation 1.10 is easy if one gets started correctly.
 

Write X (Xi-i.) (Xi_..). This simple technique of adding and
 

subtracting Xi. divides the deviation (Xij-R..) into two parts. 
The proof
 

proceeds as follows:
 

KNE (Xi _ "6)2 [X -i.) + 

2 
- £[(Xij-Xi)2 + 2(xij-Xi)(Ri.-X ) + 
ij
 

- EE(Xij-Xi.)2 + 2EE(X - i . ) + E( _..)2 
iJ i. ij 

Exercise 1.17. Show'that EE(i(X.)( .) - 0 
ij 

and that ii(x E 2 

iJ i 

Completion of Exercise 1.17 completes the proof. 

Equation (1.10) is written in a form which displays its meaning rather 

than in a form that is most useful for computational purposes. For computa­

tion purposes, the following relationships are commonly used: 
KN 12 

) -.Total X) -NXEEX2 ­

iJ i " ijij
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K - 2 
 -2 -2Between - EN (XiX)2 E N2-NRKN 
i i ii
 

Within -m ij (x3) -ji ii 

N KN 
K i-i ij

where N - ENi  I X" and 

KN

Notice that the major part of arithmetic reduces to calculating EEiii iJ ' 

K -2 

ENi2X and NX

-2 
There are variations of this that one might use. 
For
 
K X2 . 

K 
example, one could use E instead of EN X2 .
 

I i iii
 

Exercise 1.18. Show that
 

KNi _ 2. E22 N -2E'iRi -- -EN X 
iiJ i iii. 

A special case that is useful occurs when N1 
 2. The within sum of
 

squares becomes
 

K2 2 2
K 2 
EE(Xij-i .) ME[(Xi1 _Xi.) + (X12-Xi.) 

ii 

Since Xi. - 2 it is easy to show that 

(Xtl_ 22)= 1 (XlX2)2 
)21
 

and (Xi2-Xid 2 l (Xi 1-X 2) 

Therefore the within sum of squares is 

1K 2
 
2 E (Xt1-Xt 2 )2


i 

which is a convenient form for computation.
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1.7.2 	CI&OSS CLASSIFICATION
 

Reference is made to the matrix on Page 15 and to Exercise 1.8. 
The
 

total sum of squares can be divided into three parts as shown by the
 

following formula:
 

KN K 
 N KN 
J j )2 N(xi,-R,,)2 )2(X-X, ,) . + K(Xj"J-X") 2 + E(Xiji- i." *j+X (1.11) 

j ii 

Turn 	to Exercise 1.8 and find the total sum of squares and the three
 

parts. They are:
 

Sum 	of Squares
 

Total 	 78
 

Rows 	 18
 

Columns 	 54
 

Remainder 	 6
 

The 	three parts add to the total which verifies Equation (1.11). In
 

Exercise 1.8, the sum of squares called remainder was computed directly
 

(see 	Part (10) of Exercise 1.8). In practice, the remainder sum of squares 

is usually obtained by subtracting the row and column of squares fromsum 

the total.
 

Again, the proof of Equation (1.11) is not difficult if one makes the
 

right start. In this 
case the deviation, (Xij-X..), is divided into three 

parts by adding and subtracting Xi. and X.j as follows: 

(Xj-X,.) M (i,-R,,) + (X.j-) + + (x j-i,-cij+..) (1.12) 

Exercise 1.19. Prove Equation (1.11) by squaring both sides of Equa­

tion (1.12) and then doing the summation. The proof is mostly a matter of
 

showing that the sums of the terms which are products (not squares) are zero.
 

KN 
For example, showing that EE(- .. )(XJ-Ri.-x.141..) - 0 

iJ
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CHAPTER II. RANDOM VARIABLES AND PROBABILITY 

2.1 RANDOM VARIABLES 

The word "random" has a wide variety of meanings. Its use in such 

terms as "random events," "random variable," or "random sample," however, 

implies a random process such that the probability of an event occurring
 

is known a priori. To select a random sample of elements from a population,
 

tables of random numbers are used. There are various ways of using such
 

tables to make a random selection so any given element will have a specified
 

probability of being selected.
 

The theory of probability sampling is founded on the concept of a
 

random variable which is a variable that, by chance, might equal any one
 

of a defined set of values. The value of a random variable on "a'partic­

ular occasion is determined by a random process-in such a way that the
 

chance (probability) of its being equal to any specified value in the set
 

is known. This is in accord with the definition of a probability sample
 

which states that every element of the population must have a known prob­

ability (greater than zero) of being selected. A primary purpose of this
 

chapter is to present an elementary, minimum introduction or review of
 

probability as background for the next chapter on expected values of a
 

random variable. This leads to a theoretical basis for sampling and for
 

evaluating the accuracy of estimates from a probability-sample survey.
 

In sampling theory, we usually start with an assumed population of N
 

elements and a measurement for each element of some characteristic X. A
 

typical mathematical representation of the N measurements or values is
 

Xi is the value of the characteristic 
X for the ith
 

Xl.9. Xi.PO XN where 

element. Associated with the ith element is a probability Pi, which is the
 

probability of obtaining it when one element is selected at random from the
 



34 

set of N. The Pt's will be called selection probabilities. If each
 

element has an equal chance of selection, Pi = The P s need not be
 

equal, but'we will specify that each P >O. When referring to the probability 

of X being equalto Xiwe will use P(Xi) instead of Pi" 

We need to be aware of a distinction between selection probability 

and inclusion probability,the latter being the probability of an element 

being included in a sample. In this chapter, much of the discussion is 

oriented toward selection probabilities because of its relevance to finding 

expected values of estimates from samples of various kinds. 

Definition 2.1. A random variable is a variable that can equal any
 

value Xi, in a defined set, with a probability P(Xi).
 

When an element is selected at random from a population and a measure­

ment of a characteristic of it is made, the value obtained is a random
 

variable. As we shall see later, if a sample of elements is selected at
 

random from a population, the sample average and other quantities calculated
 

from the sample are random variables.
 

Illustration 2.1. One of the most familiar examples of a random 

variable is the number of dots that happen to be on the top side of a die 

when it comes to rest after-a toss. This also illustrates the concept of 

probability that we are interested in; namely, the relative frequency with 

which a particular Qutcome will occur in reference to a defined set of 

possible outcomes. With a die there are six possible outcomes and we expect 

each to occur with the same frequency, 1/6, assuming the die is tossed a 

very large orinfinite number of times. Implicit in a statement that each 

side of a die has a probability of 1/6 of being the top side are some 

assumptions about the physical structure of the die and the',randomness" 

of the -toss. 
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The additive and multiplicative laws of probability can be stated in
 

several ways depending upon the context in which they are to be used. In
 

sampling, our interest is primarily in the outcome of one random selection
 

or of a series of random selections that yields a probability sample.
 

Hence, the rules or theorems for the addition or multiplication of prob­

abilities will be stated or discussed only in the context of probability
 

sampling.
 

2.2 ADDITION OF PROBABILITIES
 

Assume a population of N elements and a variable X which has a value 

Xi for the ith element. That is,we have a set of values of X, namely 

X1 ,...* XI,.,**PX. Let PI1"". PPi**'PN be a set of selection probabilities 

where Pi is the probability of selecting the i th element when a random 

selection is made. We specify that each Pi must be greater than zero and 

N 
that EP - 1. When an element is selected at random, the probability that 

iitht
 

it is either the ith element or the jth element is Pi + P This addition
 

rule can be stated more generally. Let Ps be the sum of the selection
 

probabilities for the elements in a subset of the N elements. When a random
 

selection is made from the whole set, P is the probability that the element
5 

selected is from the subset and 1-P5 is the probability that it is not from 

the subset. With reference to the variable X, let P(Xi) represent the 

probability that X equals X, . Then P(Xi)+P(X represents the probability 

that X equals either Xi or X ; and Ps(X) could be used to represent the 

probability that X is equal to one of the values in the subset. 

Before adding '(or subtracting) probabilities one should determine 

whether the events are mutually exclusive and whether all possible events 

have been accounted for. Consider two subsets of elements, subset A and 
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subset B, of a population of N elements. Suppose one element is selected
 

at random. What is the probability that the selected element is a member 

of either subset A or subset B? Let P(A) be the probability that the 

selected element is from subset A; 
that is, P(A) is the sum of the selec­

tion probabilities for elements in subset A. 
P(B) is defined similarly.
 

If the two subsets are mutually exclusive, which means that no element is
 

inboth subsets, the probability that the element selected is from either
 

subset A or subset B is P(A) + P(B). If some elements are in both subsets,
 

see Figure 2.1, then event A (which is the selected element being a member
 

of subset A) and event B (which is the selected element being a member of
 

subset B) are not mutually exclusive events. Elements included in both
 

subsets are counted once in P(A) and once in P(B). Therefore, we must
 

subtract P(A,B) from P(A) + P(B) where P(A,B) is the sum of the probabilities
 

for the elements that belong to both subset A and subset B. 
Thus, 

P(A or B) = P(A) + P(B) - P(A,B) 

"Fiur. . . 

. e 

. • , •
 

To summarize, the additive law of probability as used above could be 

statid as follows: If A and B are subsets of a set of all possible outcomes
 

that could occur as 
a result of a random trial or selection, the probability
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that the outcome is in subset A or in subset B is equal to the probability
 

that the outcome is in A plus the probability that it is in B minus the
 

probability that it is in both A and B.
 

The additive law of probability extends without difficulty to three
 

or more subsets. 
 Draw a figure like Figure 2.1 with three subsets so that
 

some points are common to all three subsets.. Observe that the additive
 

law extends to three subsets as follows:
 

P(A or B or C)-P(A)+P(B)+P(C)-P(AB)-P(A,C)-P(B,C)+P(AB,C)
 

As a case for further discussion purposes, assume a population of N
 

elements and two criteria for classification. A two-way classification of
 

the elements could be displayed in the format of Table 2.1.
 

Table 2.1--A two-way classification of N elements
 

X class
 
Y class : : Total 

* : 1 . • NN1111 "' NljPPl "'" NIs' PIs . N1.1P1.: 
• * . . 

:* . . " :
 
:* .
 . 

* . .i Nil'Pil "'" NijIP iJ "'" Nis' Pis Ni.'PN if 

t Ntl*Ptl ...Ntj ... Pts Nt :Ptj Nts N P t. 

Total: N.i1 N.j N.s : N,PI : 

The columns represent a classification of the elements in terms of criterion
 

X; the rows represent a classification in terms of criterion Y; N ij is the
 

number of elements inX class j and Y class i; and Pij3 is the sum of the
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selection plobabilities for the elements in X class j and Y class i. Any
 

one of the N elements can be classified in one and only one of the t times
 

s cells.
 

Suppose one element from the population of N is selected. According 

to the additive law of probability we can state that 

Pij 0 P.J is the probability that the element selected is from 

X class J, and 

EPI M PI. is the probability that the element selected is from 

Y class i, where 

Pij is the probability that the element selected is from 

(belongs to both) X class j and Y class i. 

The probabilities P. and P are called marginal probabilities. 

The probability that one randomly selected element is from X class 

j or from Y-class i is P*j + Pi. - Pij" (The answer is not P. + Pi. because 

in P. + Pi. there are N elements in X class j and Y class i that are 

counted twice.) 

If the probabilities of selection are equal, '-
ij

Ni. 

Ni 

N 
P

'P j 

N 
* 
N 

and P - e 

i N 

Illustration 2.2. 
 Suppose there are 5,000 students in a university.
 

Assume there are 1,600 freshmen, 1,400 sophomores, and 500 students living
 

in dormitory A. From a list of the 5,000 students, one student is selected
 

at random. Assuming each student had an equal chance of selection, the
 
1600
 

probability that the selected student is a freshman is 
 600- , that he is a
sophoore s 1450000 

sophomore is , and that he is either a freshman or a sophomore is 16-0 +

5000 5000
 

400- Also, the probability that the selected student lives in dormitory A
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is 50050---. But, what is thle probability that the selected student is either 

a freshman or lives in dormitory A? The question involves two classifica­

tions: one pertaining to the student's class and the other to where the
 

student lives. The information given about the 5000 students could be
 

arranged as follows:
 

: :Class 

Dormitory : : Total 
: Freshmen Sophomores Others 

A : : 500 

Other : : 4500
 

Total : 1600 1400 2000 : 5000
 

From the above format, one can readily observe that the answer to the ques­

•tion depends upon how many freshmen live in dormitory A. If the problem
 

had stated that 200 freshmen live in dormitory A, the answer would have
 

1600 500 200
 
5000 5000 5000
 

Statements about probability need to be made and interpreted with
 

great care. For example, it is not correct to say that a student has a
 

probability of 0.1 of living in dormitory A simply because 500 students out
 

of 5000 live in A. Unless students are assigned to dormitories by a random
 

process with known probabilities there is no basis for stating a student's
 

probability of living in (being assigned to) dormitory A. We are consider­

ing the outcome of a random selection.
 

Exercise 2.1. Suppose one has the following information about a
 

population of 1000 farms:
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600 produce corn
 

500 produce soybeans
 

300 produce wheat
 

100 produce wheat and corn
 

200 have one or more cows
 

all farms that have cows also produce corn
 

200 farms do not produce any .crops
 

One farm is selected at random with equal probability from the list
 

of 1000. What is the probability that the selected farm,
 

(a)produces corn? Answer: 0.6
 

(b)does not produce wheat?
 

(c)produces corn but no wheat? Answer: 0.5
 

(d)produces corn or wheat but not both?
 

(e)has no cows? Answer: 0.8
 

(f)produces corn or soybeans?
 

(g)produces corn and has no cows? Answer: 0.4
 

(h)produces either corn, cows, or both?
 

(i) does not produce corn or wheat? 

One of the above questions cannot be answered.
 

Exercise 2.2. Assume a population of 10 elements and selection
 

probabilities as follows: 

Element Xi Pi Element Xi Pi 

1 2 .05 6 11 .15 

2 7 .10 7 2 .20 

3 12 .08 8 8 .05 

4 0 .02 9 6 .05 

5 8 .20 10 3 .10 
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One element is selected at randcm with probability Pie
 

Find:
 

(a)P(X-2),.the probability that X - 2. 

(b)P(X>l0), the probability that X is greater than 10.
 

(c)P(X_2), the probability that X is equal to or less than 2.
 

(d)P(3<X>1O), the probability that X is greater than 3 and less
 

than 10
 

(e)P(X3 or X>l0), the probability that X is either equal to or less 

than 3 or is equal to or greater than 10. 

Note: The answer to (d)and the answer to (e)should add to 1. 

So far, we have been discussing the probability of an event occurring as 

a result of a single random selection. When more than one random selection 

occurs simultaneously or in succession the multiplicative law of prob­

ability is useful.
 

2.3 	MULTIPLICATION OF PROBABILITIES
 

Assume a population of N elements and selection probabilities
 
N 

P10006Pi""PN" Each Pi is greater than zero and EP - 1. Suppose 
ii
 

two elements are selected but before the second selection ismade the
 

first element selected is returned to the population. In this case the
 

outcome of the first selection does not change the selection probabilities
 

for the second selection. The two selections (events) are independent.
 

The probability of selecting the ith element first and the Jth element
 

second is,PiPj. the product of the selection probabilities Pi and P .
 

If a selected element is not returned to the population before the next
 

selection ismade, the selection probabilities for the next selection are
 

changed. The selections are dependent.
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The multiplicative law of probability, for two independent events
 

A and B, states that the joint probability of A and B happening in the
 

order A,B is equal to the probability that A happens times the prob­

ability that B happens. In equation formP(AB) - P(A)P(B). For the 

order B,A, P(BA) - P(B)P(A) and we note that P(AB) = P(BA). Remember, 

independence means that the probability of B happening is not affected
 

by the occurrence of A and vice versa. 
The multiplicative law extends
 

to any number of independent events. 
Thus, P(ABC) = P(A)P(B)P(C). 

For two dependent events A and B, the multiplicative law states that 

the joint probability of A and B happening in the order A,B is equal to 

the probability of A happening times the probability that B happens under
 

the condition that A has already happened. In equation form P(AB) = 

P(A)P(BIA); or for the order B,A we have P(BA) -
P(B)P(AIB). The vertical
 

bar can usually be translated as "given" or "given that." 
 The notation on
 

the left of the bar refers to the event under consideration and the nota­

tion on the right to a condition under which the event can take place.
 

P(BJA) is called conditional probability and could be read "the prob­

ability of B, given that A has already happened," or simply "the prob­

ability of B given A." 
 When the events are independent, P(BIA) - P(B); 

that is, the conditional probability of B occurring is the same as the 

unconditional probability of B. Extending the multiplication rule to a
 

series of three events A,B,C occurring in that order, we have P(ABC) 
-

P(A)P(BIA)P(CIAB) where P(CJAB) is the probability of C occurring given
 

that A and B have already occurred.
 

2.4 SAMPLING WITH REPLACEMENT
 

When a sample is drawn and each selected element is returned to the
 

population before the next selection is made, the method of sampling is
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called "sampling with replacement.!' In this case, the outcome of one
 

selection does not change the selection probabilities for another
 

selection.
 

Suppose a sample of n elements is selected with replacement. Let the
 

values of X in the sample be xlx 2,...,xn where x1 is the value of X
 

obtained on the first selection, x2 the value obtained on the second
 

selection, etc. Notice that x1 is a random variable that could be equal
 

to any value in the population set of values XlX 2 *...,XN and the prob­, 


ability that x1 equals Xi is Pi. The same statement applies to x2 , etc.
 

Since the selections are independent, the probability of getting a sample
 

of n in a particular order is the product of the selection probabilities
 

namely, p(xl)p(x 2)...p(xn) where p(x
1 ) is the Pi for the element selected
 

on the first draw, p(x2) is the Pi for the element selected on the second
 

draw, etc.
 

Illustration 2.3. As an illustration, consider a sample of two
 

elements selected with equal probability and with replacement from a popu­

lation of four elements. Suppose the values of some characteristic X for
 

the four elements are X1, X2 , X3 , and X4 . There are 16 possibilities:
 

x ,Xl X2,Xl X3,Xl X4 ,Xl 

x ,X 2 X2 X2 X 3X,X2 X4 ,X2 

xlX 3 X2 ,X3 XVX 3 X4 ,X3 

xlX 4 X2 ,X4 X3 ,X4 x4 ,X4 

In this illustration p(x ) is always equal to and P(x2) is always 


Hence each of the 16 possibilities has a probability of 11 
 1
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Each of the 16 possibilities is a different permutation that could
 

be regarded as a separate sample. However, in practice (as we are not
 

concerned about which element was selected first or second) it is 
more
 

logical to disregard the order of selection. Hence, as possible samples
 

and the probability of each occurring, we have:
 

Sample Probability Sample Probability
 

X1 XI 1/16 X2,X3 1/8
 

x1 x2  1/8 X2,X4 1/8
 

X ,X3 1/8 X3,X3 1/16
 

xl x4 1 X3,X4 1/8
1/8 


x2 X2  /1/16 X4,X4 1/16
 

Note that the sum of the probabilities is 1. That must always be the
 

case if all possible samples have been listed with the correct prob­

abilities. Also note that, since the probability (relative frequency
 

of occurrence) of each sample is known, the average for each sample is
 

a random variable. 
In other words, there were 10 possible samples, and
 

any one of 10 possible sample averages could have occurred with the
 

probability indicated. 
This is a simple illustration of the fact that
 

the sample average satisfies the definition of a random variable. As
 

the theory of sampling unfolds, we will be examining the properties of
 

a sample average that exist as a result of its being a random variable.
 

Exercise 2.3. With reference to Illustration 2.3, suppose the
 

probabilities of selection were P 1 1 = ,P=2 3 nd P '1
 
1l 4 P2 8~ 3 8 a4 4, 

Find the probability of each of the ten samples. Remember the sampling 

is with replacement. Check your results by adding the 10 probabilities.
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The sum should be 1. Partial answer: For the sample composed of elements

11d11 1 

2 and 4 the probability is + 168 4 4 8 16.
 

2.5 SAMPLING WITHOUT REPLACEMENT 

When a selected element is not returned to the population before the
 

next selection is made, the sampling method is called sampling without
 

replacement. In this case, the selection probabilities change from one 

draw to the next; that is, the selections (events) are dependent.
 

As above, assume a population of N elements with values of some
 

characteristic X equal to XlX 2 ...,XN. Let the selection probabilities 

for the first selection be Pl"'"'iPi'.PN where each Pi>0 and EP, = 1. 

Suppose three elements are selected without replacement. Let xI , x2 , and 

x3 be the values of X obtained on the first, second; and third random 

draws, respectively. What is the probability that = X5, x2 = X6, andxI 
x3 = X7? Let P(XsX6,X7) represent this probability,which is the prob­

ability of selecting elements 5, 6, and 7 in that order.
 

According to the multiplicative probability law for dependent events,
 

P(X 5 ,X 6 ,X 7 ) = P(X 5 )P(X 6 1X5 )P(X 7 lX5 ,x 6 ) 

It is clear that P(X5 ) = PV. For the second draw the selection prob­

abilities (after element 5 is eliminated) must be adjusted so they add 

to 1. Hence, for the second draw the selection probabilities are
 

P1 P2 P3 P4 P6 PN P 6 

1-P 5 11-P5 '5-P 5 1-P 5 1-P55x5 "" That is, - ---5 

P7 

Similarly, P(.XTX,X 6 ) 1-Ps-P 6 

P6 P7 

Therefore, P(X5 , X - (P5M-5 P5_P6) (2.1 
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P5 P7 
Observe that P(X 6 ,X5 ,X7 ) (P 6) (y- -)( 1 ~p1_p) e 

6 6 5 

P(X6,X5 ,X7) unless P5 - P6. In general, each permutation of n elements
 

has a different probability of occurrence unless the Pi's are all equal.
 

To obtain the exact probability of selecting a sample composed of ele­

ments 5, 6, and 7, one would need to compute the probability for each of
 

the six possible permutations and get the sum of the six probabilities.
 

Incidentally, in the actual processoof selection, it is not neces­

sary to compute a new set of selection probabilities after each selection
 

is made. Make each selection in the same way that the first selection
 

was made. If an element is selected which has already been drawn, ignore
 

the random number and continue the same process of random selection
 

until a new element is drawn.
 

As indicated by the very brief discussion in this section, the
 

theory of sampling without replacement and with unequal probability of
 

selection can be very complex. However, books on sampling present ways
 

of circumventing the complex problems. In fact, it is practical and
 

advantageous in many cases to use unequal probability of selection in
 

sampling. The probability theory for sampling with equal probability
 

of selection and without replacement is relatively simple and will be
 

discussed in more detail.
 

Exercise 2.4. For a population of 4 elements there are six possible
 

___ 1 1 
samples of two when sampling without replacement. Let P1 , P2 , 

P 3 " List the six possible samples and find the prob­d,andP 4 

ability of getting each sample. Should the probabilities for the six
 

samples add to 1? Check your results.
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Exercise 2.5. Suppose two elements are selected with replacement
 

and with equal probability from a population of 100 elements. Find the
 

probability: (a). that element number 10 is not selected, (b)that ele­

ment number 10 is selected only once, and (c)that element number 10 is
 

selected twice? As a check, the three probabilities should add to 1.
 

Why? Find the probability of selecting the combination of elements 10
 

and 20.
 

Exercise 2.6. Refer to Exercise 2.5 and change the specification
 

"with replacement" to "without replacement." Answer the same questions.
 

Why is the probability of getting the combination of elements 10 and 20
 

greater than it was in Exercise 2.5?
 

2.6 SIMPLE RANDOM SAMPLES
 

In practice, nearly all samples are selected without replacement.
 

Selection of a random sample of n elements, with equal probability and
 

without replacement, from a population of N elements is called simple
 

random sampling (srs). One element must be selected at a time, that is,
 

n separate random selections are required.
 

First, the probability of getting a particular combination of n
 

elements will be discussed. Refer to Equation (2.1) and the discussion
 
1
 

preceding it. The Pi's are all equal to - for simple random sampling.
 

Therefore, Equation (2.1) becomes P(X5,X69X7) N ) All per­

mutations of the three elements 5, 6, and 7 have the same probability of
 

occurrence. There are 3! 6 possible permutations. Therefore, the
 

probability that the sample is composed of the elements 5, 6, and 7 is
 

(1)(2)(3) Any other combination of three elements has the same
 
N(N-I)(N-2) o
 
probability of occurrence*
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In generl, all possible combinations of n,elements, have the same 

According to a theorem on number of combinations, there are N
 

chance of selection and any particular combination of n has the following 

probability of being selected: 

.(l)(2)(3)... (n) 
N(N-l) (N-2)... (N-n+l) 

nn!(N-n)I 
N! 

(2.2) 

N! 

possible combinations (samples) of n elements. If each combination of
 

n elements has the same chance of being the sample selected, the probability
 

of selecting a specified combination must be the reciprocal of the number
 

of combinations. This checks with Equation (2.2).
 

An important feature of srs that will be needed in the chapter on 

expected values is the fact that the jth element of the population is as
 

likely to be selected at the ith random draw as any other. A general
 

expression for the probability that the jth element of the population is
 

selected at the ith drawing is
 

N-i N-2 N-3 N-i+l 1 1 (2.3)
( • %N-i+2 - ('.N""-2 -) 

Let us check Equation 2.3 for i - 3. The equation becomes 

N-l N-2 1 1 

The probability that the jth element of the population is selected at the 

third draw is equal to the probability that it was not selected at either
 

the first or second draw times the conditional probability of being
 

selected at the third draw, given that it was not selected at the first
 

or second draw. (Rememberthe sampling is without replacement). Notice 

.that N to the probability that the jth element is not selected at the
 

N-2first draw and is the conditional probability that itwas not selecteda~t he w TeeorN-secnd drw ­
at N-1 N-2 t pb l tththe second draw. Therefore, ( )in the probability that the J
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element has not been selected prior to the third draw. When the third
 

draw is made, the conditional probability of selecting the jth element
1 t
 
is 1 Hence the probability of selecting the jth element at the third
 

N-l N-2 1 =1 This verifies Equation (2.3) for i - 3.
 

To summarize, the general result for any size of sample is that the 
th 1jth element in a population has a probability equal to lof being selected 

at the ith drawing. It means that x (the value of X obtained at the ith 
1 

draw) is a random variable that has a probability of - of being equal to 

any value of the set Xl,., XN'. 

What probability does the j th element have of being included in a1 
sample of n? We have just shown that it has a probability of-! of being
 

selected at the ith drawing. Therefore, any given element of the popula­
1 

tion has n chances, each equal to - , of being included in a sample. TheN 
element can be selected at the first draw, or the second draw,..., or the
 

nth draw and it cannot be selected twice because the sampling is without
 

replacement. Therefore the probabilities, . for each of the n draws, can
N
 
be added which gives a as the probability of any given element being 

included in the sample. 

Illustration 2.4. Suppose one has a list of 1,000 farms which includes 

some farms that are out-of-scope (not eligible) for a survey. There is no 

way of knowing in advance whether a farm on the list is out-of-scope. A
 

simple random sample of 200 farms is selected from the list. All 200 farms
 

are visited but only the ones found to be in scope are included in the
 

sample. What probability does an in-scope farm have of being in the sam­

ple? Every farm on the list of 1000 farms has a probability equal to 1
 
5 
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of being in the sample of 200. All in-scope farmp in the sample of 200
 

1 
are included in the final sample. Therefore, the answer is
 

Exercise 2.7. From the following set of 12 values of X a srs of
 

three elements is to be selected: 2, 10, 5, 8, 1, 15, 7, 8, 13, 4, 6,
 

and 2. Find P(x>12) and P(3<<12). Remember that the total possible
 

number of samples of 3 can readily be obtained by formula. Since every
 

possible sample of three is equally likely, you can determine which sam­

ples will have an x<3 or an i>12 without listing all of the numerous
 
possible samples. Answer: P(>12) = 9 208 

• -220 P(<3) 220 220.
 

2.7 SOME EXAMPLES OF R"STRICTED RANDOM SAMPLING 

There are many methods other than srs that will give every element 

an equal chance of being in the sample, but some combinations of n ele­

ments do not have a chance of being the sample selected unless srs is 

used. For example, one might take every kth element beginning from a 

random starting point between 1 and k. This is called systematic sam­

pling. For a five percent sample k would be 20. The first element for 

the sample would be a random number between 1 and 20. If it is 12, then 

elements 12, 32, 52, etc., compose the sample. Every element has an 

equal chance, of being in the sample, but there are only 20 com­

binations of elements that have a chance of being the sample selected. 

Simple random sampling could have given the same sample but it is the
 

method of sampling that characterizes a sample and determines how error
 

due to sampling is to be estimated. One may think of sample design as a
 

matter of choosing a method of sampling; that is, choosing restrictions
 

to place on the process of selecting a sample so the combinations which
 



have a chance of being the sample selected are generally "better" than
 

many of the combinations that could occur with simple random sampling.
 

At the same time, important properties that exist for simple random sam­

ples need to be retained. The key properties of srs will be developed in
 

the next two chapters.
 

Another common method of sampling involves classification of all
 

elements of a population into groups called strata. A sample is selected
 

from each stratum. Suppose Ni elements of the population are in the ith
 

stratum and a simple random sample of ni elements is selected from it.
 

This is called stratified random sampling. It is clear that every ele­

ment in the ith stratum has a probability equal to n. of being in the
 
ni i 

sample. If the sampling fraction, N- , is the same for all strata, 
i ni 

every element of the population has an equal chance, namely N.- of
 

being in the sample. Again every element of the population has an equal
 

chance of selection and of being in the sample selected, but some combi­

nations that could occur when the method is srs cannot occur when
 

stratified random sampling is used.
 

So far, our discussion has referred to the selection of individual
 

elements, which are the units that data pertain to. For sampling purposes
 

a population must be divided into parts which are called sampling units.
 

A sample of sampling units is then selected. Sampling units and elements
 

could be identical. But very often, it is either not possible or not
 

practical to use individual elements as sampling units. For example,
 

suppose a sample of.households is needed. A list of households does not
 

exist but a list of blocks covering the area to be surveyed might be avail­

able. In this case, a sample of blocks might be selected and all households
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within the selected blocks included in the sample. The blocks are the
 

sampling units and the elements are households. Every element of the
 

population should belong to one and only one sampling unit so the list of
 

sampling units will account for all elements of the population without
 

duplication or omission. Then, the probability of selecting any given 

element is the same as the probability of selecting the sampling unit 

that it belongs to. 

Illustration 2.5. Suppose a population is composed of 1800 dwelling 

units located within 150 well-defined blocks. There are several possible 

sampling plans. A srs of 25 blocks could be selected and every dwelling 

unit in the selected blocks could be included in the sample. In this 
1 

case, the sampling fraction is - and every dwelling unit has a probability
6 

of - of being in the sample. Is this a srs of dwelling units? No, but
 

one could describe the sample as a random sample (or a probability sample)
 

of dwelling units and state that every dwelling unit had an equal chance
 

of being in the sample. That is, the term "simple random sample" would 

apply to blocks, not dwelling units. As an alternative sampling plan, if 

there were twelve dwelling units in each of the 150 blocks, a srs of two 

dwelling units could be selected from each block. This scheme, which is an 

example of stratified random sampling, would also give every dwelling unit 

a probability equal to 1- fbigi h ape 

Illustration 2.6. Suppose that a sample is desired of 100 adults
 

living in a specified area. A list of adults does not exist, but a list
 

of 4,000 dwelling units in the area is available. The proposed sampling
 

plan is to select a srs of 100 dwelling units from the list. Then, the
 

field staff is to visit the sample dwellings and list all adults living
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in each. Suppose there are 220 adults living in the 100 dwelling units.
 

A simple random sample of 100 adults is selected from the list of 220.
 

Consider the probability that an adult in the population has of being in
 

the sample of 100 adults.
 

Parenthetically, we should recognize that the discussion which 

follows overlooks important practical problems of definition such as the
 

definition of a dwelling unit, the definition of an adult, and the defini­

tion of living in a dwelling unit. However, assume the definitions are
 

clear, that the list of dwelling units is complete, that no dwelling is 

on the list more than once, and that no ambiguity exists about whether 

an adult lives or does not live in a particular dwelling unit. Incom­

plete definitions often lead to inexact probabilities or ambiguity that
 

gives difficulty in analyzing or interpreting results. The many practical
 

problems should be discussed in an applied course on sampling.
 

It is clear that the probability of a dwelling unit being in the
 
1 

sample is 1 . Therefore, every person on the list of 220 had a chance 

of L 
40 

of being on the list because, under the specifications,a person
 

lives in one and only one dwelling unit, and an adult's chance of being
 

on the list is the same as that of the dwelling unit he lives in.
 

The second phase of sampling involves selecting a simple random
 

sample of 100 adults from the list of 220. The conditional probability
 
100 5 

of an adult being in the sample of 100 is 1 - . That is, given the 

fact that an adult is on the list of 220, he now has a chance of ! 11of


being in the sample of 100.
 

Keep in mind that the probability of an event happening is its rela­

tive frequency in repeated trials. If another sample were selected
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following the above specifications, each dwelling unit in the population 

would again have a chance of T of being in sample; but, the number of 

adults listed is not likely to be 220 so the conditional probability at 

the second phase depends upon the number of dwellings units in the sample 

blocks. Does every adult have the same chance of being in the sample?
 

Examine the case carefully. An initial impression could be misleading.
 

Every adult in the population has an equal chance of being listed in the
 

first phase and every adult listed has an equal chance of being selected
 

at the second phase. But, in terms of repetition of the whole sampling
 

plan each person does not have exactly the same chance of being in the
 

sample of 100. The following exercise will help clarify the situation
 

and is a good exercise in probability.
 

Exercise 2.8. Assume a population of 5 d.u.'s (dwelling units) with
 

the following numbers of adults: 

Dwelling Unit No. of Adults 

1 2 

2 4 

3 1 

4 2 

5 
3 

A srs of two d.u.'s is selected. A srs of 2 adults is then selected from 

a list of all adults in the two d.u.'s. Find the probability that a speci­

fied adult in d.u. No. 1 has of being in the sample. Answer: 0.19. Find
 

the probability that an adult in d.u. No. 2 has of being in the sample.
 

Does the probability of an adult being in the sample appear to be related
 

to the number of adults in his d.u.? Inwhat way?
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An alternative is to take a constant fraction of the adults listed 

instead of a constant number. For example, the specification might have 

been to select a random sample of - of the adults listed in the first2 

phase. In this case, under repeated application of the sampling speci­

fications, the probability at the second phase does not depend on the 

outcome of the first phase and each adult in the population has an equal 

chance, ( 1 1 - , of being selected in the sample. Notice that 

under this plan the number of adults in a sample will vary from sample 

to sample; in fact, the number of adults in the sample is a random variable. 

For some surveys, interviewing more than one adult in a dwelling unit 

is inadvisable. Again, suppose the first phase of sampling is to select 

a srs of 100 dwelling units. For the second phase, consider the following: 

When an interviewer completes the listing of adults in a sample dwelling, 

he is to select one adult, from the list of those living in the dwelling, 

at random in accordance with a specified set of instructions. He then 

interviews "the selected adult if available; otherwise, he returns at a 

time when the selected adult is available. What probability does an adult 

living in the area have of being in the sample? According to the multi­

plication theorem, the answer is P'(D)P(AID) where P"(D) is the probability 

of the dwelling unit, in which the adult lives, being in the sample and 

P(AID) is the probability of the adult being selected given that his 

dwelling is in the sample. More specifically, P'(D) - and P(AID) ­

is~~t thebe of a u tsnui h

where ki is the number of adults in the i dwelling. Thus, an adult's 

chance, 0 of being in a sample is inversely proportional to the 

number of adults in his dwelling unit. 

Exercise 2.9. Suppose there are five dwelling units and 12 persons 

living in the five dwelling units as follows: 
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Dwelling Unit Individuals
 

1 1, 2
 

2 3, 4, 5, 6
 

3 7,8
 

4 9
 

5 10, 11, 12
 

1. A sample of two dwelling units is selected with equal probability
 

and without replacement. All individuals in the selected dwelling units
 

are in the sample. What probability does individual number 4 have of being
 

in the sample? Individual number 9?
 

2. Suppose from a list of the twelve individuals that one individual
 

is selected with equal probability. From the selected individual two
 

items of information are obtained: 
his age and the value of the dwelling
 

in which he lives. Let XI, X2 **. X1 2 represent the ages of the 12 indi­

viduals and let YI"'"0Y5 represent the values of the five dwelling iunits.
 

Clearly, the probability of selecting the ith individual is 1- and there­
21


fore P(Xi) -1- Find the five probabilities PY1909y5).Do you
 

agree that P(Y3) = ? As a check, rp(y should equal one.

3P(12
 

3. 
Suppose a sample of two individuals is selected with equal prob­

ability and without replacement. Let Y 
 be the value of Y obtained at
 

the first draw and Y 
 be the value of Y obtained at the second draw.
2j j 
Does P(Y1j) = P(Y2j)? That is, is the probability of getting Y on the 

second draw the same as it was on the first? If the answer is not evident, 

refer to Section 2.5. 

Exercise 2.10. A small sample of third-grade students enrolled in 

public schools in a State is desired. The following plan is presented only 

http:PY1909y5).Do
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as an exercise and without consideration of whether it is a good one: A
 

sample of 10 third-grade classes iq to be selected. All students in the
 

10 classes will be included in the sample.
 

Step 1. Select a srs of 10 school districts.
 

Step 2. Within each of the 10 school districts, prepare a list
 

of public schools having a third grade. Then select one
 

school at random from the list.
 

Step 3. For each of the 10 schools resulting from Step 2, list
 

the third-grade classes and select one class at random.
 

(Ifthere is only one third-grade class in the school,
 

it is in the sample). This will give a sample of 10 classes.
 

Describe third-grade classes in the population which have relatively
 

small chances of being selected. Define needed notation and write a
 

mathematical expression representing the probability of a third-grade
 

class being in the sample.
 

2.8 TWO-STAGE SAIPLING
 

For various reasons sampling plans often employ two or more stages
 

of sampling. For example, a sample of counties might be selected, then
 

within each sample county a sample of farms might be selected.
 

Units used at the first stage of sampling are usually called primary
 

sampling units or psu's. The sampling units at the second stage of sam­

pling could be called secondary sanpling units. However, since there has
 

been frequent reference earlier in this chapter to "elements of a popula­

tion," the samnling units at the second stage will be called elements.
 

In the simple case of two-stage sampling, each element of the popu­

lation is associated with one and only one primary sampling unit. Let i
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be the index for psu's and let j be the index for elements within a psu.
 

Thus Xij represents the value of some characteristic X for the jth element
 

in the ith psu. Also, let
 

M - the total number of psu's, 

m= the number of psu's selected for a sample, 

Ni = the total number of elements in the ith psu, and 

=ni the number of elements in the sample from the ith psu. 

Then, 

M
ENi M N, the total number of elements in the population, and
 
i
 

m
 
Zn = n, the total number of elements in the sample.
 
ii
 

Now consider the probability of an element being selected by a two
 
step process: 
 (1) Select one psu, and (2) select one element'within the
 

selected psu. Let,
 

Pi - the probability of selecting the ith psu, 
P = the conditional probability of selecting the jth 

element in the ith psu given that the ith psu has already 

been selected, and 

PiJ U the overall probability of selecting the jth element in
 

the ith psu.
 

Then,
 

Pii PiPjIli 
If the product of the two probabilities, Pi and PJji, is constant for
 

every element, then every element of the population has an equal chance of
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being selected. In other words, given a set of selection probabilities
 

PI,...,PM for the psu's, one could specify that P = 1 ad compute

fo teij N jji
 

where P~1 so every element of the population will have an equal

fi NP
 

chance of selection.
 

Exercise 2.11. Refer to Table 2.1. An element is to be selected by
 

a three-step process as follows: (1) Select one of the Y classes (a row)

N.
 

with probability N , (2) within the selected row select an X class (a
 

ij 
column) 	with probability , (3) within the selected cell select anNi.
Ni

element with equal probability. Does each element in the population of N
 

elements have an equal probability of being drawn? What is the probability?
 

The probability of an element being included in a two-stage sample
 

is given by
 

P - Pi i(2.4)
 

where
 

P' the probability that the ith psu is in the sample
 

of psu's, and
 

Pl 	 the conditional probability which the j element has
 

of being in the sample, given that the ith psu has
 

been selected.
 

The inclusion probability Pj will be discussed very briefly for three
 

important cases:
 

(1) Suppose a random sample of m psu's is selected with equal prob­

ability and without replacement. The probability, P' , of the ith psu 

being in the sample is fl - where fl is the sampling fraction for the 

first-stage units. In the second stage of sampling assume that, within 

each of the m psu's, a constant proportion, f2' of the elements is selected. 
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That is, in the i t h p'u in the sample, a simple random sample.of n ele­

ments out of Ni is selected, the condition being that ni - f2Ni. Hence, 

the conditional probability of the jth element in the ith
ni psu being in
 
°the sample is P'j -2 Substituting in Equation 2.4, we have 

P 
* f f which shows that an element's probability of being in the
ij 1 2
 
sample is equal to the product of the sampling fractions at the two stages.
 

In this case P' is 
constant and is the overall sampling fraction.

ij
 

Unless N 
is the same for all psu's, the size of the sample,
 

ni = f2Ni , varies from psu to psu. 
Also, since the psu's are selected
m Mat random the total size of the sample, n - Eni = f2 EN ,is not constant
 
i t i I 

with regard to repetition of the sampling plan. 
In practice variation in
 

the size, ni, of the sample from psu to psu might be very undesirable. If
 

appropriate information is available, it is possible to select psu's with
 

probabilities that will equalize the sample sizes ni and also keep P*j

i ii
 

constant.
 

M(2) Suppose one psu is selected with probability Pi Ni This= N-

is commonly known as sampling with pps (probability proportional to size).
 

Within the selected psu, assume that a 
simple random sample of k elements
 

is selected. 
(Ifany Ni are less than k, consolidations could be made so
 

all psu's have an Ni greater than k). Then, 

N1 k andP Ni k k 
i N'jji N ' j -N -N 

which means 
that every element of the population has an equal probability,
 

k
 
, of being included in a sample of k elements.
 

Extension of this sampling scheme to a sample of m psu's could
 

encounter the complications indicated in Section 2.5. 
 However, it was
 

http:sample.of


61
 

stated that means exist for circumventing those complications. Sampling
 

books 1/ discuss this matter quite fully so we will not include it in this
 

monograph. The point is that one can select m psu's without replacement
 
Ni
 

in such a way that m - is the probability of including the ith psu in
N Ni
 

the sample. That is, P' - m - f a random sample of k elements is 

selected with equal probability from each of the selected psu's, 

Pj " k and
j i Ni P AN i k i k n
 

~j(m~-()i~
 

Thus, if the Ni are known exactly for all M psu's in the population,
 

and if a list of elements in each psu is available, it is possible to
 

select a two-stage sample of n elements so that k elements for the sample 

come from each of m psu's and every element of the population has an equal
 

chance of being in the sample. In practice, however, one usually finds
 

one of two situations: (a) there is no information on the number of ele­

ments in the psu's, or (b) the information that does exist is out-of-date. 

Nevertheless, out-of-date information on number of elements in the psu's 

can be very useful. It is also possible that a measure of size might 

exist which will serve, more efficiently, the purposes of sampling. 

(3) 	Suppose that characteristic Y is used as a measure of size. Let
 

Y eth fr th yi
aleof
Yi 	 be the value of Y for the i psu in the population and let Pi "0-M 

where Y- . * A sample of m psu's is selected in such a way that 

Y 
 ith

P" m - is the probability that the i psu has of being in the sample.

i y 

1/ For example, Hansen, Hurwitz, and Madow. Sample Survey Methods and
 
Theory. Volume I, Chapter 8. John Wiley and Sons. 1953.
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With regard to'-thesecond stage of sampling, letf 21 be thesampling
 

fraction for selecting a simple random sample within the ith psu in the
 

sample. That is, Piii m f2i * Then, 

Yi
 
Pij - (m )(f21) (2.5)
 

In setting sampling specifications one would decide on a fixed value
 

for P. In this context P'j is the overall sampling fraction or propor­

tion of the population that is to be included in'the sample. For example,
 

if one wanted a 5 percent sainple, P' would be .05. Or, if one knew there

ij
 

were approximately 50,000 elements in the population and wanted a sample
 

of about 2,000, he would set P' - .04. Hence, we will let f be the over­

all sampling fraction and set P' equal to f. Decisions are also made on
 

the measure of size to be used and on the number, m, of psu's to be selected.
 

In Equation 2.5, this leaves f2i to be determined. Thus, f2i is computed
 

as follows for each psu in the sample:
 

f21 fy
mY 

Use of the sampling fractions f21 at the second stage of sampling will give
 

every element of the population a probability equal to f of being in the
 

sample. A sample wherein every element of the population has an equal
 

chance of inclusion is often called a self-weighted sample.
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CHAPTER III. EXPECTED VALUES OF RANDOM VARIABLES
 

3.1 	INTRODUCTION
 

The theory of expected values of random variables is used exten­

sively in the theory of sampling; in fact, it is the foundation for
 

sampling theory. Interpretations of the accuracy of estimates from
 

probability samples depend heavily on the theory of expected values.
 

The definition of a random variable was discussed in the previous
 

chapter. It is a variable that can take (be equal to) any one of a
 

defined set of values with known probability. Let Xi be the value of X
 

for the ith element in a set of N elements and let Pi be the probability
 

that the ith element has of being selected by some chance operation so
 

that Pi is known a priori. lbat is the expected value of X?
 

Definition 3.1. The expected value of a random vhriable X is
 

N N
 
E PiXi where Z Pi=l. The mathematical notation for the expected value
 

i=l i=l
 
N
 

of X is E(X). Hence, by definition, E(X) = S PiXi
 
i=l
 

Observe that EPiX is a weighted average of the values of X, the
 

weights being the probabilities of selection. "Expected value" is a
 

In other words, E means "the
substitute expression for "average value." 


average value of" or "find the average value of" whatever follows E. For
 

example, E(X2), read "the expected value of X2"refers to the average value
 

That is, by definition,
of the squaresof the values that X can equal. 


N 
 2
" 
E(X) EPXi •
 
i-l
 

If all of the N elements have an equal chance of being selected, all
 

values of Pi must equal 1 because of the requirement that EP, W 1. In
 



64 
N1 ZXi
 

scase, EM 
 E Xi - X , which is the simple average of X 

for all N elements.
 

Illustration 3.1. Assume 12 elements having values of X as follows:
 

X - 3 X5 =5 10X9 

X2 9 X6 -3 X10 -3 

X3 -3 X7 =4 8X11 

X4 =5 X8 =3 X12 -4 

For hisset E() =3+9+...+4
 
For this setE(X) 12 - 5, assuming each element has the same
 

chance of selection. Or, by counting the number of times that each
 

unique value of X occurs, a frequency distribution of X can be obtained
 

as follows:
 

X N
 

3 5 

4 2 

5 2 

8 1 

9 1 

10 1
 

where X is a unique value of X and N 
is the number of times X occurs.
 

We noted in Chapter I that EN = N, EN X x= EXi, and that N- ­jj i EN N X . 
Suppose one of the X 
values is selected at random with a probability equal
 

N N
 
to whNr aN .Wat isthe expected value of X ? By
j ENj 
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N EliX 
definition E(X) E -XE:X - = . The student may verify
 

j j j N j N
 

that in this illustration E(Xj) - 5. Note that the selection specifica­

tions were equivalent to selecting one of the 12 elements at random with
 

equal probability.
 

Incidentally, a frequency distribution and a probability distribution
 

are very similar. The probability distribution with reference to X would
 

be:
 
X 

P
 

3 5/12
 

4 2/12
 

5 2/12
 

8 1/12
 

9 1/12
 

10 1/12
 

The 12 values, Pi for the 12 elements are also a probability distri­

bution. This illustration shows two ways of treating the set of 12
 

elements.
 

When finding expected values be sure that you understand the defini­

tion of the set of values that the random variable might equal and the
 

probabilities involved.
 

Definition 3.2. When X is a random variable, by definition the
 

expected value of a function of X is
 

N
 
E[f(X)] - E P1
i[f(Xi)] 

iml 

Some examples of simple functions of X are: f(X) - aX, f(X) - X , 

2 -2 
M) - a + M + cX , and f(X) - (X-X) . For each value, Xi , in a 

defined set there is a corresponding value of f(Xi). 
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Illustration 3.2. Suppose f(X) - 2X+3. With reference to the set
 

of 12 elements discussed above, there are 12 values of f(X ) as follows: 

f(X1) 	= (2)(3) + 3 = 9 

f(X2 ) - (2)(9) + 3 = 21 

f(X 2 ) = 2(4) + 3 = 11 
1
 

Assuming Pi = the expected value of f(X) = 2X+3 would be
 

121 1 1 1 
E(2X+3) = E i(2Xi+3) = (i2)( 9 )+(i2)( 2 1)+...+(t2)(11) = 13 (3.1) 

i 

In algebraic terms, for f(X) - aX+b, we have 

N
 
E(aX+b) = E Pi(aXi+b) = EPi(aXi) + EPib
 

i=l
 

By definition ZP1 (aXi) - E(aX), and EPib = E(b). Therefore, 

E(aX+b) = E(aX) + E(b) (3.2) 

Since b is constant and EPi = 1, EPib - b, which leads to the first 

important 	theorem in expected values.
 

Theorem 3.1. The expected value of a constant is equal to the
 

constant: E(a) = a. 

By definition E(aX) = EPi(aXi) - aEPiXi. Since EPiX = E(X), we have 

another important theorem:
 

Theorem 3.2. The expected value of a constant times a variable equals 

the constant times the expected value of the variable: E(aX) = aE(X). 

Applying these two theorems to Equation (3.2) we have E(aX+b) ­

aE(X) + b. Therefore, with reference to Illustration 3.2, E(2X+3) = 

2E(X) + 3 = 2(5) + 3 - 13, which is the same as the result found in 

Equation (3.1). 
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Exercise 3.1. Suppose a random variable X can take any of the 

following four values with the probabilities indicated: 

X1 =2 X2 =5 X3 = 4 X4 -6 

=P1 -2/6 P2 	=2/6 P3 . 1/6 P4 - 1/6 

(a) 	 Find E(X) Answer: 4
 

2 12 2
(b) Find 	E(X2) Answer: 18. Note that E(X ) 0 [E(X)]
3.
 

(c) Find 	E(X-X) Answer: 0 Note: By definition
 

4 
E(X-X) = E Pi(Xi-X) 

i=l 

(d) Find 	E(X-X) 2 Answer: 21. Note: By definition
3 

E(X-X) = 	 iiP i(Xi-X) 
i=l 

Exercise 3.2. From the following set of three values of Y one
 

value is to be selected with a probability P':
i 

Y1 -- 2 	 Y = 2 Y = 4 

1/4 P 2/4 P 1/4
 
1 2 3
 

(a) Find 	E(Y) Answer: 
1 	 1 

(b) 	 Find E() Answer: 3/16. Note: # Et()
 

-2 3
(c) Find 	E(Y-Y) Answer: 4t 

3.2 EXPECTED 	 VALUE OF THE SUM OF TWO RANDOM VARIABLES 

The sum of two or more random variables is also a random variable.
 

If X and Y are two random variables, the expected value of X + Y is equal
 

to the expected value of X plus the expected value of Y:E(X+Y) - E(X)+E(Y).
 

Two numerical illustrations will help clarify the situation.
 

Illustration 	3.3. Consider the two random variables X and Y in 

Exercises 	3.1 and 3.2:
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x - 2 P1 - Y -2 PA -

X2 
.5 P 2

2 i6 
Y 

2 
2 

2 
2 
4 

4i 4 1 
3 - 3 P 

x4 - 6 P4 
1 

Suppose one element of the first set and one element of the second
 

set are selected with probabilities as listed above. What is the expected
 

value of X + Y? The joint probability of getting.Xi and Y is P P' because
 

the two selections are independent. Hence by definition
 

4 3 
E(X + Y) - E Z P P' (Xi + Y (3.3)
 

i-i J=l i J Y 

The possible values of X + Y and the probability of each are as follows:
 

X + Y PiP0 X + Y P-___ 

X + Y1 - 0 PlP. 2 X + Y1 2 P3PA I
1 1 1 24 3 1 1 24 

X + Y2 4 P PO 4 X +Y = 6 PP, 2 
12 24 3 32
2 4 

X1 + Y3 6 P P 2 X + Y 8 P3PA 1 
131 3 
 24 '3 3 3 3 24
 

24 4 41
1 24 

X + Y =7 PP 4 X + Y =8 PP 2
2 2 2 2 24 4 2 4 2 24
 

X2 + Y =9 P2P2 X + Y 10 PP 12 3 2 3 24 x4 +Y 3 4 3 24 

As a check the sum of the probabilities must be I if all possible 

sums have been listed and the probability of each has been correctly 

determined. Substituting the values of X + Y and P P' in Equation (3.3)

j i i 

we obtain 5.5 as follows for expected value of X + Y: 

2 4 1
2-"()+ ( 1)(4) + .. + (--(0 . 

http:getting.Xi


69 

From Exercises 3.1 and 3.2 we have E(X) ­ 4 and E(Y) = 1.5. There­

fore, E(X) + E(Y) = 4 + 1.5 = 
5.5 which verifies the earlier statement
 

that E(X + Y) - E(X) + E(Y).
 

Illustration 3.4. 
 Suppose a random sample of two is selected with
 

replacement from the population of four elements used in Exercise 3.1.
 

Let x1 be the first value selected and let x2 be the second. Then x1 and
 

x2 are 
random variables and x1 + x2 is a random variable. The possible 

values of xI + x2 and the probability of each, P(x ,x 2 ),are listed below. 

Notice that each possible order of selection is treated separately. 

x. x2 P(XlX 2) x1 +X2 P(x 1 1X2) x +X2 

X1 X1 4/36 4 X3 1 2/36 6
 

X1 X2 4/36 7 X3 X2 2/36 9
 

X1 X3 2/36 6 X3 X3 1/36 8
 

X1 X4 2/36 8 X3 X4 1/36 10
 

X2 X1 4/36 7 X4 X1 2/36 8
 

X2 X2 4/36 10 X4 X2 2/36 11
 
X2 X3 2/36 9 X4 X3 1/36 10
 

X2 X4 2/36 11 X4 X4 1/36 12
 

By definition E(x1 + x2) is
 

+ +3 (4) L(7) !-(6) + ... + (12) = 8 

In Exercise 3.1 we found E(X) = 4. Since x1 is the same random variable
 

as X, E(x1 ) = 4. Also, x2 is the same random variable as X, and E(x2) - 4. 

Therefore, E(x) + E(x2) = 8, which verifies that E(x 1 +X2 ) = E(xI) + E(x2). 

In general if X and Y are two random variables, where X might equal 

X1,..,XN and Y might equal Y,*..,YM, then E(X + Y) - E(X)+E(Y). The 
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proof is as follows: By definition E(X+Y) -
NM 
ZZ pij(Xi+Yj) where is
 
iJi
 

the probability of getting the sum Xi + Yjand U Pij 
- 1. The double
 

summation 
is over all possible values of Pij(Xi+Yj). According to
 

the rules for summation we may write
 

NM NM 
 NM
 
iJ Ez i PPj jXx iJ jZE Pij(Xi+YPJJ - + ZE j 

(3.4)
 

In the first term on the right, Xi is 
constant with regard to the summation
 

over J; and in the second term on the right, Yj is constant with regard
 

to the summation over i. Therefore, the right-hand side of Equation (3.4)
 

can be written as
 

N M M N
 
E Xi E Pi + E YiEP
 

i i j i i
 

M N
And, since jEPPii Pi and EijP PiJP, Equation (3.4) becomes 

NM N M
 
£Z Pij(X1 +Yj) = E XiPi + E YjP

iJ 
 i J
 

N M

By definition Z XiP, = E(X) and Z YiP E(Y)


i j 

Therefore E(X+Y) = E(X) + E(Y) 

If the proof is not clear write the values of Pij(Xi+Yj) in a matrix 

format. Then, follow the summation manipulations in the proof.
 

The above result extends to any number of random variables; that is,
 
the expected value of a sum of random variables is the sum of the expected
 

values of each. 
In fact, there is a very important theorem that applies
 

to a linear combination of random variables.
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Theorem 3.3. Let u - aIu1 +...+ akUk, where Ul,..*,uk are random 

variables and al,...,ak are constants. Then 

E(u) - a1E(ul) +...+ ak E(uk) 

or in summation notation 

k 	 k 
E(u) -E 	E aiui - Z aiE(ui)
 

i i
 

The generality of Theorem 3.3 is impressive. For example, with refer­

ence to sampling from a population XI X, u1 might be the value of X
 

obtained at the first draw, u2 the value obtained at the second draw, etc.
 

The constants could be weights. Thus, in this case, u would be a weighted 

average of the sample measurements. Or, suppose xl,x 2 ,...,xk are averages 

from a random sample for k different age groups. The averages are random 

variables and the theorem could be applied to any linear combination of the 

averages. In fact ui could be any function of random variables. That is, 

the only condition on which the theorem is based is that tYTj iust be a
 

random variable.
 

Illustration 3.5. Suppose we want to find the expected value of 

(X+ Y)2 where X and Y are random variables. Before Theorem 3.3 can be 

applied we must square (X + Y). Thus E(X + Y)2 = E(X2 + 2XY + Y2) . 

.
The application of Theorem 3.3 gives E(X + Y)2 = E(X)2 + 2E(XY) + E(Y)2


Illustration 3.6. We will now show that
 

E(X-X)(Y-q) - E(XY) - N where E(X) - X and E(Y) -

Since (X-X)(Y-Y) - XY - Y- XY + RV we have 

E(x-) (Y-1) - E xY-Ry--x) 

and application of Theorem 3.3 gives
 

E(X-X)(Y-Y) - E(XY) - E(XY) - E(YR) + E(XY) 



72
 

Since 	X and Y are constant, E(XY) - X E(Y) - x, E(YX) YX, and E(XY) q.-


Therefore, E(X-X)(Y-Y) = E(XY) -


Exercise 3.3. Suppose E(X) ­ 6 and E(Y) 4. Find
 

(a) 	E(2X+4Y) Answer: 28
 

(b) 	[E(2X)]2 Answer: 144
 

(c) 	/E(Y) Answer: 2
 

(d) E(5Y-X) Answer: 14 

Exercise 3.4. Prove the following, assuming E(X) = X and E(Y) -

(a) 	E(X-X) = 0
 

(b) 	E(aX-bY) + cE(Y) - aX + (c-b)Y
 

(c) 	E[a(X-R) + b(Y-q)] - 0 

2

(d) 	E(X+a)2 . E(X2) + 2aX + a


(e) 	E(X-X)2 .E(X2) - R2
 

(f) 	E(aX+bY) - 0 for any values of a and b if E(X) = 0 and E(Y) 0. 

3.3 	EXPECTED VALUE OF AN ESTIMATE
 

Theorem 3.3 will now be used to find the expected value of the mean
 

of a simple random sample of n elements selected without replacement from
 

a population of N elements. 
The term "simple random sample" implies equal
 

probability of selection without replacement. The sample average is
 

-	 X +."+x 

n
 

where xi is the value of X for the ith element in the sample. Without
 

loss of generality, we can consider the subscript of x as corresponding
 

to the ith draw; i.e., x1 is the value of X obtained on the first draw,
 

x2 the value on the second, etc. As each x is 
a random variable, ;
 

is a linear combination of random variables. 
Therefore, Theorem 3.3
 

applies and
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1
 

E(x) - [E(x ) +...+ E(xn)]
 
n 1n
 

In the previous chapter, Section 2.6, we found that any given element of
 
1
 

the population had a chance of - of being selected on the ith draw. 

This means that x is a random variable that has a probability equal to­
i N 

of being equal to any value of the population set Xl,...,XN. Therefore,
 

E(x1) = E(x2) - ... = E(xn ) 


Hence, E(x) R + ...+ X - R. The fact that E(x X is one of the veryn 

important properties of an average from a simple random sample. Inciden­

tally, E(x) - X whether the sampling is with or without replacement.
 

Definition 3.3. A parameter is a quantity computed from all values
 

in a population set. The total of X, the average of X, the proportion of
 

elements for which Xi<A, or any other quantity computed from measurements
 

including all elements of the population is a parameter. The numerical
 

value of a parameter is usually unknown but it exists by definition.
 

Definition 3.4. An estimator is a mathematical formula or rule for
 

making an estimate from a sample. The formula for a sample average,
 

Xi
 x -- , is a simple example of an estimator. It provides an estimate ofn 

- i " X 
the parameter 


Definition 3.5. An estimate is unbiased when its expected value 

equals the parameter that it is an estimate of. In the above example, 

is an unbiased estimate of X because E(x) - R. 

Exercise 3.5. Assume a population of only four elements having values 

of X as follows: X1 = 2, X2 - 5, X3 - 4, X4 - 6. For simple random samples
 

of size 2 show that the estimator Nx provides an unbiased estimate of the
 

population total, EXi - 17. List all six possible samples of two and
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calculate Nx for each. This will give the set of values that the random
 

variable Nx can be equal to. Consider the probability of each of the 

possible values of Nx and show arithmetically that E(Nx) - 17. 

A sample of elements from a population is not always selected by
 

using equal probabilities of selection. Sampling with unequal probability
 

is complicated when the sampling iswithout replacement,so we will limit
 

our discussion to sampling with replacement.
 

Illustration 3.7. The set of four elements and the associated prob­

abilities used in Exercise 3.1 will serve as an example of unbiased
 

estimation when samples of two elements are selected with unequal prob­

ability and with replacement. Our estimator of the population total,
 

n x
 
E 

2+5+4+6 = 17, will be x' = lPi. The estimate x' is a random variable.
 n 

Listed below are the set of values that x' can equal and the probability
 

of each value occurring.
 

Possible Samiles __ _j 

x1 x1 6 4/36 

x1 x2 10.5 8/36
 

I x3 15 4/36
 

x1 x4 21 4/36
 

x2 x2 15 4/36
 

x2 x3 19.5 4/36
 

x2 x4 25.5 4/36
 

x3 x3 24 1/36 

x3 x4 30 2/36 

x4 x4 36 1/36
 



75 

Exercise 3.6. Verify the above values of x' and P 
and find the
 
j
expected value of x'. By definition E(x") =EP x*. Your answer should
 

i J
 
be 17 because x' is an unbiased estimate of the population total.
 

To put sampling with replacement and unequal probabilities in a
 

general setting, assume the population is XI,.X ,.$,N and the selec­

tion probabilities are Pl""*'PJ"'*9PN" 
Let xi be the value 	of X for
 

the ith element in a sample of n elements and let p be the probability
 

n xi
E I­

which that element had of being selected. Then x ili 
 is an unbiased
 
n
 

estimate of the population total. We will now show that E(x') = 
N
E X
 

jol .1 

To facilitate comparison of x' with u in Theorem 3.3, x' may be
 

written as follows:
 

x nn P n
1 n(lnn
p.. 

1 
 xi
 

It is now clear that a 
 andu i. Therefore,
i n 
 i
 
E~~ 1 Xl
 

-[E(-) +...+ E(-)](.)x
 
1
 

The quantity - , which is the outcome of the first random selection from
 

the population, is a random variable that might be equal to any one of the
 
set of values 
1 so.*$P PN The probability that Pl equals p j
 

Therefore, by definition
 

N X N
 
E(-) ='2 P( J) = E
 

xi
 
Since the sampling is with replacement it is clear that any - is the same
 

x 
 Pi
 
random variable as 	- . ' -

P1 
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Therefore Equation (3.5) becomes
 

E1N N 

;x)nE X . E XJ 
"j j
 

Since there are n terms in the series it follows that 

N
 

E(x) . X
 

Exercise 3.7. As a corollary show that the expected value of 	!'is 
n 

equal to the population mean.,
 

By this time, you should be getting familiar with the idea that an
 

estimate from a probability sample is a random variable. Persons respon­

sible for the design and selection of samples and for making estimates
 

from samples are concerned about the set of values, and associated 

probabilities, that an estimate from a sample might be equal to.
 

Definition 3.6. The distribution of an estimate generated by 	prob­

ability sampling is'the sampling distribution of the estimate,
 

The values of x' and P in the numerical Illustration 3.7 are 	an
 

example of a sampling distribution. Statisticians are primarily :nter­

ested in three characteristics of a sampling distribution: (1) the mean
 

(center) of the sampling distribution in relation to the value of the 

parameter being estimated, (2) a measure of the variation of possible 

values of an estimate from the mean of the sampling distribution, and 

(3) the shape of the sampling distribution. We have been discussing the
 

first. When the expected value of an estimate equals the parameter being
 

estimated, we know that the mean of the sampling distribution is equal to
 

the parameter estimated. But, in practice, values of parameters are
 

generally not known. To judge the accuracy of an estimate, we need
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information on all three characteristics of the sampling distribution.
 

Let us turn now to the generally accepted measure of variation of a random
 

variable.
 

3.4 VARIANCE OF A RANDOM VARIABLE
 

The variance of a random variable,X is the average value of the squares
 

-2
of the deviation of X from its mean; that is, the average value of (X-X)
 

The square root of the variance is the standard deviation (error) of the
 

variable.
 

Definition 3.7. In terms of expected values, the variance of a random 

variable, X, is E(X-X) 2 where E(X) = X. Since X is a random variable, 

(X-N)2 is a random variable and by definition of expected value, 

E(X-X)
2 
-

N
E Pi(Xi-X)2 

i
 
1 

In case P ?M-1we have the more familiar formula for variance, namely, 

N -2 
-2(x -X) 2
 

a
E(X-R)2 i 


N X
 

Commonly used symbols for variance include: a 2 , a2 V2 , S2 , Var(X) 
-29 

E(Xi-N) 2 

and V(X). Variance is often defined as N-1 . This will be discussed 

in Section 3.7.
 

3.4.1 VARIANCE OF THE SUM OF TWO INDEPENDENT RANDOM VARIABLES
 

Two random variables,X and Y,are independent if the joint probability,
 

PiJ' of getting Xi and Y is equal to (Pi)(P ), where Pi is the probability
 

of selecting Xi from the set of values of N and P is the probability of
 

selecting Y from the set of values of Y. The variance of the sum of two
 

independent random variables is the sum of the variance of each. That is,
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2 2 2 
aX+Y ax y
 

Illustration 3.8. 
 In Illustration 3.3, X and Y were independent. We
 

had listed all possible values of Xi+Y 
 and the probability of each. From
 

that listing we 
can readily compute the variance of X+Y. By definition
 

a y2 E[(X+Y)-(X+) ] 2= Z Pipj[(Xi+Yj)_(R+) ]2 (3.6) 

Substituting in Equation (3.6) we have
 

-(4-5.5)2 +...+ 1 (10-5.5)2 85aX+Y 2 4(0-5.5) + T424X+Y 2412
 

The variances of X and Y are computed as 
follows: 

2 =,-)22 (2-4)2 21 21 27
 
aX= I(XX) 2 + + (44) + 6 = 

2
2 E(Y) 1(-2-15) 2 + 1(2-1.5)2 + .14-1.5)2 19 

tie 2 2 .7 19 85
now have a + ++ L = 5 which verifies the above statement thatX n h 4 12
 
the variance of the sum of two independent random variables is the sum of
 

the variances.
 

Exercise 3.8. Prove that E[(X+Y)-(+q)]2 = E(X+Y) 2 _ (X+Y) 2. Then 

calculate the variance of X+Y in Illustration 3.3 by using the formula 

2 2 -- 22 E(X+Y)2 (+V) . The answer should agree with the result obtained
 

in Illustration 3.8.
 

Exercise 3.9. Refer to Illustration 3.3 and the listing of possible
 

values of X + Y and the probability of each. Instead of Xi+Y 
list the 

products (XiX)(Yj-V) and show that E(Xi-,)(Yj-q) - 0. 

Exercise 3.10. Find E(X-X)(Y-V) for the numerical example used in 

Illustration 3.3 by the formula E(XY) -
XY which was derived in Illustra­

tion 3.6.
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3.4.2 VARIANCE OF THE SUM OF TWO DEPENDENT RANDOM VARIABLES 

The variance of dependent random variables involves covariance which
 

is defined as follows: 

Definition 3.8. The covariance of two random variablesX and Yis 

E(X-X)(Y-Y) where E(X) - R and E(Y) - q. By definition of expected value 

E(X-X)(Y-Y) - EZ Pij (Xi-X)(Y j-Y) 
ii 

where the summation is over all possible values of X and Y. 

Symbols commonly used for covariance are axy, SXy, and Cov(X,Y). 

Since (X+Y) - (-+) - (X-X) + (Y-Y) we can derive a formula for the 

variance of X+Y as follows:
 
a2 - E[(X+Y) - ]2 

(X+y 

- E[ (X-X) + (Y-) I 

- E[(X-X) 2 + (Y-Y) 2 + 2(X-X)(Y-q)] 

Then, according to Theorem 3.3,
 

°X+y2 . E(X-X) 2 + E(Y-Y) 2 + 2E(X-X)(Y-Y) 

and by definition we obtain,
 
22 + a2 +
 

aX+ Y = aX + aY + 2 aX y
 

Thus
Sometimes a is used instead of a 2 to represent variance. 


aX %a2x+ n aX + ay + 2Oy 

For two independent random variables, Ptj - PtPi " Therefore 

E(X-X)(Y-Y) - EE pip (Xi-R)(Yj-Y) 
ij
 

Write out in longhand, if necessary, and be satisfied that the following
 

is correct:
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ZE PiPj((Xxi-)EP
 
4(Y -q) - 0 	 (3.7)

iji 	 j 
. 

which proves that the cavariance aXy is zero when X and Y are independent.
 

Notice that in Equation (3.7) EPi (Xi-X) - E(X-X) and EP 1(Y-y) E(Y-Y)
= 

i j

which, for independent randpm variables, proves that E(X-X)(Y-1) -

E(X-X) E(Y-Y). When working with independent random variables the following
 

important theorem is frequently very useful:
 

Theorem 3.4. 
 The expected value of the product of independent random
 

variables u., u2,..., 
uk is the product of their expected values:
 

E(ulu2...uk) ­ E(ul)E(u2)...E(Uk)
 

3.5 	 VARIANCE OF AN ESTIMATE 

The variance of an estimate from a probability sample depends upon
 
the method of sampling. 
We will derive the formula for the variance of x,
 

the mean of a random sample selected with equal probability, with and
 
without replacement. 
Then, the variance of an estimate 6f the population
 

total 	will be derived for sampling with replacement and unequal probability
 

of selection.
 

3.5.1 	EQUAL PROBABILITY OF SELECTION
 

The variance of x, 
the mean of a random sample of n elements selected
 

with equal probabilities and with replacement from a population of N, is:
 

N 2 

i, aX( whraVar(x)r " X where ax - NN 

The proof follows:
 

By definition, Vat(x) E[x-E(i)] . We have shown that E(x) = 
 X. Therefore,
 
Var(x) - E(-x-X) 2.
 By substitution and algebraic maninulatinn-.. nh a4
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Var(i) - E[ n - 2 

E(x1-R)+..-+(xn-3) 2- __ ___ __ __ .__2 
n
 

1~ n 2- ­

!-E (x1 -X)2 + Z Z(xEi-X)(xjX)]. 
n i-l i~j 

Applying Theorem 3.3 we now obtain
 

n
 

Var(i) 2 E(xi-R)2 + Z ZE(xi-X) -R)] 	 (3.8)
-	 j(x 


n i-i i~j
 

In series form, Equation (3.8) can be written as
 

Var(x)- 1 -Ex -2 

n- [E(X 1-X)

2 
+ E(x2-X) +...+ E(x l-)x2_-X 

--

) + E(x(x_-)(x3_)+ ...]
 

Since the sampling is with replacement xi and xj are independent and 

the expected value of all of the product terms is 
zero. For example, 

E(xi-R) (x2 -R) - E(x1-R) E(x2-X) and we know that E(x1-R) and E(x2-R) are
 

zero. Next, consider E(x1-X)2. We have already shown that xI is a
 

random variable that can be equal to any one of the population set of
 

values X1,...,X with equal probability. Therefore
 

N -Z(X _X)2
 

E(x1-X)2 = N =0
 

The same argument applies to x2 , x3 , etc. Therefore,
 
n
n -2 2 2 2 	 2
 

a-
EEixiX) a +...+ a2 no2 and Equation (3.8) reduces to Var(x) - n 
i-l-

The mathematics for finding the variance of x when the sampling is
 

without replacement is the same as sampling with replacement down to and
 

including Equation (3.8). The expected value of a product term in Equation
 

(3.8) is not zero because xi and xj are not independent. For example, 	on
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the first draw an element has a probability of 1 of being selected, but
 

on 
the second draw the probability is conditioned by the fact that the
 

element selected on the first draw was not replaced. Consider the first
 

product term inEquation (3.8). To find E(x
1-X)(x 2-R)we need to consider
 
the set 	of values that (Xl-X)(x 2 -?) could be equal to. Reference to the 

following matrix is helpful:
 

(x2-5) (X1- ) (X2-) 2.• (X2-X)(XN-R) 

(XN.-) (X1-_) (XN) (X2-) .. (X-X)2 

The random variable (x
1-9)(x 2-R) has an equal probability of being any of
 

the products in the above matrix, except for the squared terms on the main 

diagonal. There are N(N-l) such products. Therefore, 

NNE E (xi-R)(xj-R)
E(Xl-R) 	(x2-X) A- T
 
1 - N(N-l)
 

According to Equation (1.9) in Chapter 1, 

NN N 2
 
E E (Xi-R)(xi- = - E (Xi-x)i~j i 

Hence, 

E(Xi-X) a2 
E(Xl-X (x-) = i X1 2 N(N-) - N-1 

The same evaluation applies to all other product terms in Equation (3.8). 

There are n(n-1) product terms in Equation (3.8) and the expected value of 

2 
each is 	- -- . Thus, Equation (3.8) becomes 
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n 

2Var(x) =1 [E E(xi-R) - n(n- ) -f'] 

n i 

Recognizing that E(x 
 2X- a2 and after some easy algebraic operations
 

the answer as follows is obtained:
 

2 

Var() N- n (3.9)

N-n
 

The factor N-n is called the correction for finite population because it
 

does not appear when infinite populations are involved or when sampling
 

with replacement which is equivalent to sampling from an infinite population.
 

For two characteristics,X and Y, of elements in the same simple random
 

sample, the covariance of x and y is given by a formula analogous to
 

Equation (3.9); namely,
 

Co-x - N-n X 
N- an 


(3.10)
 

3.5.2 UNEQUAL PROBABILITY OF SELECTION
 

n x i 

i Pi 
In Section 3.3 we proved that x' -j--n is an unbiased estimate
 

of the population total. This was for sampling with replacement and
 

unequal probability of selection. We will now proceed to find the vari­

ance of x'
 

N
2
By definition Var(x*) - E[x- E(x')] . Let X = E X, . Then since 
i 

E(x) - X, it follows that 
xI x 
- +...+ 

____n 
n-

Xl xn 
Var(x') = E[" 

n_ 
-]X = 

.r.( 
-

2 
n 

- X)+x+(1xn-
X_)2X) -X))

1 

n 

n 

=1 E, ix_X2 +E x Xx )
n ~Z 2(--x)(--Pi)P
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Applying Theorem 3.3, Var(x') becomes
 

a 2 xi xk 
Va~)-~ 1- E(-x, - X) + Z I:E(-!- X)(- - X)] (3.11) 

Notice the similarity of Equations (3.8) and (3.11) and that the steps 

leading to these two equations were the same. Again, since the sampling 

is with replacement, the expected value of all product terms in Equation 

(3.11) is zero. Therefore Equation (3.11) becomes
 

n 
Var(x-) - 12r E(-- X)2
 

n i Pi
 

x 2 N X 2 
By definition E(- - X) - iPi( - X)
 

Pi i i
 

N 	 X 2

Z Pi(Pi x) 2
 

Therefore Var(x*) - i 


z --) 

(3.12)

n 

Exercise 3.11. (a)Refer to Exercise 3.1 and compute the variance
 

of x for samples of two (that is,n - 2) using Equation (3.12). (b)Then 

turn to Illustration 3.7 and compute the variance of x' from the actual 

values of x'. Don't overlook the fact that the values of x' have unequal 

probabilities. According to Definition 3.7, the variance of x' is 

10 
-X 

2 
Z P (xj -X) where X - E(x*), x' is one of the 10 possible values of x",J 
and P is the probability of x' 

3.6 	 VARIANCE OF A LINEAR COMBINATION
 

Before presenting a general theorem on the variance of a linear
 

combination of random variables,a few key variance and covariance rela­

tionships will be given. In the following equations X and Y are random
 

variables and a, b, c, and d are constants:
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Var(X+a) - Var(X)
 

Var(aX) - a2Var(X)
 

Var(aX+b) - a2Var(X)
 

Cov(X+a,Y+b) - Cov(X,Y)
 

Cov(aX,bY) - abCov(X,Y)
 

Cov(aX+b,cY+d) - acCov(X,Y)
 

Var(X+Y) - Var(X) + Var(Y) + 2Cov(XY)
 

Var(X+Y+a) - Var(X+Y)
 

Var(aX+bY) - a2Var(X) + b2Var(Y) + 2abCov(X,Y)
 

Illustration 3.9. The above relationships are easily verified by 

using the theory of expected values. For example, 

Var(aX+b) - E[aX+b-E(aX+b)]2 

- E[aX+b-E(aX)-E(b) ]
2 

2 
= E[aX-aE(X)] 

2 
- E[a(X-X)J 

- a 2E(X-R) 2 = a2Var(X) 

Exercise 3.12. As in Illustration 3.9 use the theory of expected 

values to prove that 

Cov(aX+bcY+d) - acCov(X,Y) 

As in Theorem 3.3, let u - a1u1+...+akuk where al,...,ak are constants 

and ul,...,uk are random variables. By definition the variance of u is 

Var(u) - E[u-E(u)]2 

By substitution 

Var(u) - E[a 1 u1 +...+akuk-E(alul+...+akUk) 2 

= E[al(Ul-Ul)+...4 .(uk-uk)] 2
 where E(ut) ­
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By squaring the quantity in [ ] and considering the expected values of 

the terms in the series, the following result is obtained.
 

Theorem 3.5. 
 The variance of u, a linear combination of random
 

variables, is given by the following equation
 

k 22
 
Var(u) -E a oI + E Ea a a
 

i i i,'jiij
 

where o is the variance of ui and a is the covariance of ui and uj.
 

Theorems 3.3 and 3.5 are very useful because many estimates from
 

probability samples are linear combinations of random variables.
 

Illustration 3.10. Suppose for a srs 
(simple random sample) that
 

data have been obtained for two characteristics X and Y, the sample
 

values being xl,...,x and yl,...,y n.
n What is the variance of x-y?
 

From the theory and results that have been presented one can proceed
 

immediately to write the answer. 
From Theorem 3.5 we know that Var(x-y)
 

Var(x) + Var(y) -2Cov(xy). 
From the sampling specifications we know the
 

variances of x and y and the covariance. See Equations (3.9) and (3.10)
 

Thus, the following result is easily obtained:
 

Va~x~)-N-n 1 2 2

Vat(x-y) = (!))(o + Oy - 2ay (3.13)
 

Some readers might be curious about the relationship between covar­

iance and correlation. 
By definition the correlation between X and Y is
 

r. Cov(X,Y) = 0XY 

'Var(X)Var (Y) aXaY 

Therefore, one could substitute rig Yay for aXy in Equation (3.13).
 

Exercise 3.13. In a statistical publication suppose you find 87
 

bushels per acre as the yield of corn in State A and 83 is the estimated
 

yield for State B. The estimated standard errors are given as 1.5 and
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2.0 bushels. You become interested in the standard error of the differ­

ence in yield between the two States and want to know how large the
 

estimated difference is in relation to its standard error. Find the
 

standard error of the difference. You may assume that the two yield
 

estimates are independent because the sample selection in one State was
 

completely independent of the other. Answer: 2.5.
 

Illustration 3.11. No doubt students who are familiar with sampling
 

have already recognized the application of Theorems 3.3 and 3.5 to several
 

sampling plans and methods of estimation. For example, for stratified
 

random sampling,an estimator of the population total is
 

x" =N1XI +...+ Nx = ZNix I
 

where Ni is the population number of samplin, units in the ith stratum
 

and xi is the average per sampling unit of characteristic,X, from a sample 

of ni sampling units from the i t h stratum. Accordlnr to Theorem 3.3 

E(x') = ETNix, = ENiE( d
 

If the sampling is such that E(xi) Xi for all strata, x' is an unbiased 

estimate of the population total. Accordinr, to Theorem 3.5 

= N
2 
1 Var(x) 

­

Var(x2) 
-2 

+..+ Nk Var(xk) (3.14)
 

There are no covariance terms in Equation (3.14) because the sample selection
 

in one stratun is independent of another stratum. Assuming a srs from each
 

stratum, Equation (3.14) becomes
 

N -n N- a 
2 N1 1% 1 2 k k22th
Var(x') = ine o1 n n N w 

where a2 is the variance of X among sampling unt ihntei t h srtm 
unt ihnte srtm 
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Illustration 3.12. Suppose xl,... , 
 are independent estimates of
 

the same quantity,T. That is, E(x) 
- T. Let a2 be the variance of x'Si
 
Consider a weighted average of the estimates, namely
 

X' +..*.+ w X(3.15) 

where rwi l Then
1.. 


E(x') W1 E(xj) +...+ wk E(xk) 
 T 	 (3.16)
 

That is, for any set .ofweights where Ewi - 1 the expected value of x' is 

T. flow should the weights be chosen?
 

The variance of x' is
 

Var(x') w2a1 1lo..
+...++ w2 a2 k ak

=1 

If we weight the estimates equally,wi j1 and the variance of x' is
 

2
 
Var(x') = -1 
 (3.17)
 

which is the average variance divided by k. However, it is reasonable to
 

give more weight to estimates having low variance. Using differential
 

calculus we can find the weights which will minimize the variance of x'.
 

The optimum weights are inversely vroportional to the variances of the
 

estimates. That is, w1 	 1_2 

°i
 

As an example, suppose one has two independent unbiased estimates of
 

the same quantity which originate from two different samples. The optimum
 

weighting of the two estimates would be
 

1 02 2
 

1 1
 

01 a2 
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As another example, supoose x',. ' are the values of X in a sample
 

of k sampling units selected with equal probability and with replacement.
 
- 1 

In this case each x' is an unbiased estimate of X. If we let wi =1 , x. 
ik 

is x, the simple average of the sample values. Notice, as one would expect,
 

Equation (3.16) reduces to E(;) - X. Also, since each estimate, x; , is the 

same random variable that could be equal to any value in the set X,. XNI
-2 

-2,s usbeeult 2 £(Xt x) e 
it is clear that all of the s must be equal to a 2 z N Hence,

2 

Equation (3.17) reduces to 0_ which agrees with the first part of Section 
n 

3.5.1.
 
xi
 

Exercise 3.14. If you equate Y' in Equation (3.15) with - in
 
pi
 

Section 3.5.2 and let wi - and k - n, then x' in Equation (3.15) is the 

same as x' n- in Section 3.5.2. Show that in this case Equation (3.17) 

becomes the same as Equation (3.12). 

3.7 ESTIMATION OF VARIANCE
 

All of the variance formulas presented in previous sections have 

involved calculations from a population set of values. In practice, we 

have data for only a sample. Hence, we must consider means of estimating, 

variances from sample data. 

3.7.1 SIMPLE RANDOM SAMPLING 

In Section 3.5.1, we found that the variance of the mean of a srs is
 

2 

Var(i) - Nn O- (3.18)
 
N-i n
 

N -2 
I(xi-x) 

2
a " where 

X N 



n " 90
 

As an :estimator of oX '''. n: 
 ....seems 'likeia natural firs't choice for
 

conideatin. inie ppultiosit -iScustomary
oweerwhe~sapiiig 


to define variance amng units of the:poplation as folows:
 

-2

N - 2
 
(X .)X ,
 

.
cnideo t
 H vn-i as an estimator of Sf A reason
i for this
 

2

wilbecome, apparent when we flid °'tdeexpected value o:f s as follows:
 

:The, formula for s2 can be written in a form that is 
more ennvenfmnt
 
i i


for findingE"s : ThS ­

2
2ti x)-x 2 - nx

" n-i n-i'
 

,:il, coe-pae 'e h Nve rdte4~c auo olw 

2
have.shon 


probabliy of being any .value in the set Xl 


We.. previously that xi is a random variable that has an equal
 
,.
of.., Therefore
 

E-1
 

E-s Ee, , 2 ( ) 
pibblt~fbigay.au
~ ~ u+ ntestX .QX.Therefore, 

27 
We kno;w, by definitiOni that' 
 E2x:X)2 and :it is-easy to show that
 

2 ­
aeeoeIr ":E(x 2) - +E(x -E:2 


http:pibblt~fbigay.au
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By substitutinin: Equation (3.19)Fe taih
 

EXI -

E(s2) d "---"' - 2
 

By , 2 <xi-i2 i x and since the specified method of 

2 2
 
2 N-n 2X n 2 N-n an
 

-sampling was srs, a,= i we have E(s2) - -1 

which after simplification is
 

2 N. a2
E(s


Note from the above definitions of d2 and S2 that
 

2 T-- aX2 

S2
E(s2) = Therefore 


Since s2 is an unbiased estimate of S , we will now substitute -1 S2 for 
2N 

2 in Equation (3.18) which gives
 
x2 

S2 (.0Var(i) "NN-n n (3.20) 

Both Equations, (3.18) and (3.20), for the Var(x) give identical results
 

-2
and both agree with E(x-X) as a definition of variance. We have shown
 

2 2that s22 is an.unbiased estimate of S22. Substituting s for S in Equation 

(3.20) we have
 
2

2Nw-n s--arF) (3.21)N-n
n
 

as an estimate of the variance of x. With regard to Equation (3.18), 

N-1 2 isen.uN-ibse 2 2 i
S is an unased estimate of x When is substituted for 

2 oX , Equation (3.21) is obtained.
 
onEquation"(3. mfnus th"e sampling fractior 

a" eiactly do 

and a. is an unbias-d' estimate',of S , thre'is-some advantage ,to uig 

Sinc ~ 20) N-n' 1 



Equation (3.20) and S 
, 
 ll as a definition of-varianceamong
 

samplIng,units in the population.
 

E:cercise 3.15. For a small population of 4 elements suppose the
 

values .-f X are X1 -2, X2 = 
 5, = 3; and X4-6. Consider simple
 

random samples of size 2. There are six possible samples.
 

(a) For each of the six samples calculate x and s2. That is,
 

find the sampling distribution of x and the sampling
 

distribution of s
 

(b) Calculate S2 , 
then find Var(x) usinq Equation (3.20).
 

(c) Calculate the variance among the six values of x and compare
 

the result with Var(i) obtained in (b). The.results should
 

be the same.
 

(d)'From the sampling distribution of s2 calculate E(s2) and
 
verify that E(s2 2.
 

3.7.2 UNEQUAL PROBABILITY OF SELECTION
 

In Section 3.5.2, we derived a formula for the variance of the
 

estimator x* where
 

x 

X.- = (3.22)
n
 

The sampling was with unequal selection probabilities and with replacement.
 

We found that the variance of-x' was given by
 

N X 2 
, -EXPIX).
 

Var x) n 
 (3.23)
 

As a formula for estimating, Var(xA) froma%sample one might be inclined, 

as,,a first guess', to try a formula of the same form ,asEuation(3.23) 
but
 

http:asEuation(3.23
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that does not work. Equation' (3.23) is aweighted average of-the-. squares. 

of deviations (- X) which reflects the unequal:selecton probabilities. 

formula for estimating
If one applied the same weighting-system in a 


variance from a sample he would in effect be applying the weights 
twice;
 

first, in the selection process itself and second, to the sample 
data.
 

The unequal probability of selection is already incorporated into 
the
 

sample itself. 

As in some of 4.he previous discussion, look at the estimator as follows: 

xo
3 +.Do+ 

P 

xn 
_.9.x" 
n i 

n where x' = 
n n i 

Since

Each x' is an independent unbiased estimate of the population total. 

each value of x0 receives an equal weight in determining x" it appears that 

the following formula for estimating Var(x') might work: 

2 
(3.24)var(x') = 


n 2
 
Z(x'*-x) 

2 =iwhere n-1
 

By following an approach similar to that used in Section 3.7.1, 
one can
 

prove that
 

2 N X 2
 
E(s2 ) - Pi(i - X) 

i i
 

That is, Equation (3.24) does provide an unbiased estimate 
of Var(x') in
 

an exercise.
Equation (3.23). The proof is left as 


Reference is made to Exercise 3.1, Illustration 3.7,
Exercise 3.16 .
 

In Illustration 3.7 the sampling distribution of x
and Exercise 3.11. 




--
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(See Equation (3.22)) is, given ,forsamples,of 2 from the',population-of
 

4 'e1ements that was gven in Exercise 3.1. 

2 
(a) Compute var(x) - , (Equation (3.24)) for each of the 10 

n.
 
possiblie samples. 

(b) Compute the expected value: of var(x) and compare it with the 

result obtained in Exercise 3.11. The results should be the 

same. Remember, when finding the expected value of var(x'), 

that the x"s do not occur with equal frequency. 

3.8 RATIO OF TWO RANDOH VARIABLES 

In sampling theory and practice one' frequently encounters estimates 

that are ratios of random variables. It was pointed out earlier that 

uE(u)
E(-) 0 - where u and w are random variables. Formulas for the expectedw E(W) 

value of a ratio and for the variance of a ratio will now be Oresented 

without derivation. The formulas are approximations: 

- - a2 p a a 
, . + M U1.7 wu (3.25)
w - --2 ­w w w uw 

a2 a2 2pw a a
 
Var(--) 2[u - uw -w
2 U - U (3.2.6) 

U [4 
w u w U14 

where u E(u) 

E
E(w) 
2
a , E(u-u)2 
u
2 -2 
2 E(w-) 2
 

w
 

and uw.a
 
duw: '-uw where au= E(u-u)(w-wj) 

For a discussion of the conditions utider which Equations (3.25) and 

(3.26) :are good approximations, reference is made to Hansen, Hurwitz, and 
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Madow. 2/ The conditions are usually satisfied with regard to estimates
 

from sample surveys. As a rule of thumb the variance formula is usually 

accepted as satisfactory if the coefficient of variation of the variable 

in the denominator is less than 0.1; that is, if _ < 0.1. In other words, 

this condition states that the coefficient of variation of the estimate in
 

the denominator should be less than 10 percent. A larger coefficient of
 

variation might be tolerable before becoming concerned about Equation (3.26)
 

as an approximation. 
a 

The condition -! < 0.1 is more stringent than necessary for regarding 

the bias of a ratio as negligible. With few exceptions in practice the 

bias of a ratio is ignored. Some of the logic for this will appear in 

the illustration below. To summarize, the conditions when Equations (3.25) 

and (3.26) are not good approximations are such that the ratio is likely to
 

be of questionable value owing to large variance.
 

If u and w are linea', combinations of random variables, the theory 

presented in previous sections applies to u and to w. Assuming u and w 

are estimates from a sample, to estimate Var(U take into account the 
2 2
 

sample design and substitute in Equation (3.26) estimates of ;, w-,a, a


and pu.6 Ignore Equation (3.25) unless there is reason to believe the bias
 

of the ratio might be important relative to its standard error. 

It is of interest to note the similarity between Var(u-w) and Var(u). 
w 

According to Theorem 3.5, 

Var(u-w) - a2 + 2 _ 2p aa 
u w uw uw
 

2/ Hansen, Hurwitz, and Madow, Sample Survey Methods and Theory, 
Volume I, Chapter 4, John Wiley and Sons, 1953.
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By definition, the relative, variances of,,an estimate is the ,variance .of the 

estimate divided by. the, square of its -expected, value. Thus, in, terms of: 

the relative-variance,of,a ratio, Equation 	 (3.26) can be written 

Rel Vat ) u-M - 2prs __ 
u w uw 

The similarity is an aid to remembering the formula for Var(-).w 

Illustration 3.13. Suppose one has a simple random sample of n
 

elements from a population of N. Let x and y be the sample means for 

characteristics X and Y. Then, u = x, w 	 y 
S2S2 


02 N-n SX 2 N-n y
u - N n and Ow - fu N n w N n 

0
 
Notice that the condition discussed above, -w < 0.1, is satisfied if the 

sample is large enough so 
N-n Sy 2 

N - < 0.12 

nY2
 

Substituting in Equation (3.26) we obtain the following as the variance of
 

the ratio:
 

2 S2 2 2x N-n 1 X x + sy xySxS Y 

y 	 X Y 

The bias of as an estimate of - is given by the second term of 

Equation (3.25). For this illustration it becomes
 

N-nX1)X F Y 0XY I 

As the size of the sample increases, the bias decreases as whereas the
 
n 

standard error of.-the ratio decreases at a slower .rate, namely 
/nF 
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Thus, we need not be concerned about a possibility of the bias becoming
 

important relative to sampling error as the size of the sample increases.
 

A possible exception occurs when several ratios are combined. An example
 

is stratified random sampling when many strata are involved and separate
 

ratio estimates are made for the strata. This is discussed in the books
 

on sampling.
 

3.9 	 CONDITIONAL EXPECTATION
 

The theory for conditional expectation and conditional variance of a
 

random variable is a very important part of sampling theory, especially
 

in the theory for multistage sampling. The theory will be discussed with 

reference to two-stage sampling. 

as
The notation that will be used in this and the next section is 


follows: 

M is the number of psu's (primary sampling units) in the population. 

m is the number of psu's in the sample.
 

Ni is the total number of elements in the ith psu.
 

M
 
N - EN is the total number of elements in the population. 

ii 

ni is the sample number of elements from the ith psu.
 

m
 
n = En is the total number of elements in the sample.
 

ii
 

- n
 
m
 

X j 	is the value of X for the j th element in the ith Vsu. It 

refers to an element in the population, that is, j * 1,..., Nis 

and i = 1,..., M. 
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xij 	IbS -the-.value of X 'for the J 4'element, in the sample from the 

ith psu in the sample; that is, the- indexes i.and j refer to 

theiset,of psu's and elements in the sample.
 

N , .. 
X EX is the population total for the ith psu. 

- -
 is the a,'erage of X for all elements in the ith psu•
Xi. Ni 

MNi M
 
X. EX 

so N T- is the average of all N elements. 

M 

iX.
 
R.= i is the average of the psu totals. Be sure to note the 

difference between X and X.
 

n 
 th
 
xi. E xii is the sample total for the i psu in the sample.
 

i 

x 
xi = n is the average for the ni elements in the sample from 

the ith psu.
 

Mni
 
ZE xi
 

x n 
 is the average for all elements in the sample.
ee 	n
 

Assume simple random sampling, equal probability of selection without
 

replacement, at both stages. Consider the sample of ni elements from the
 

ith 	psu. 
We know from Section 3.3 that xi. is an unbiased estimate of the
 

psu mean X ; that is, E(;i) Xi. and for a fixed i (a specified psu) 

ENii. = NiE(xi) - NiXi. i. But, owing to the first stage of sampling,
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ENixi must be treated as a random variable. Hence, it is necessary to 

become involved with the expected value of an expected value. 

First, consider X as a random variable, in the context of single­

stage sampling, which could equal any one of .the values X in the 
M 

population set of N - EN . Let P(ij) be the probability of selecting 
ii 

the jth element in the i h psu; that is, P(ij) is the probability of X 

being equal to Xj. By definition 

MNi 
E(X) = EE P(ij)Xij (3.27) 

ij 

Now consider the selection of an element as a two-step procedure: 

(1) selected a psu with probability P(i), and (2) selected an element
 

within the selected psu with probability P(J.i). In words,P(Jli) is the
 

probability of selecting the jth element in the ith psu given that the
 

ith psu has already been selected. Thus, P(ij) = P(i)P(JIi). By sub­

stitution,Equation (3.27) becomes 
MN 

E(X) = EZ P(i)P(Jli)Xij 

Mij N 

or E(X) - EP(i) E p(JNi)X j (3.28) 
i j 

N
 

By definition, EiP(Jli)X j is the expected value of X for a fixed value
j
 

of i. It is called"conditional expectation."

N
 

Let E2 (Xii) _ EiP(Jli)X where E2 (Xii) is the form of notation we

2j)
 

will be using to designate conditional expectation. To repeat, E2 (X[i)
 

means the expected value of X for a fixed i. The subscript 2 indicates
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that the conditional expectation applies to the second stage of sampling.
 

E1 and E2 will refer to expectation at the first and second stages,
 

respectively.
 

Substituting E2(Xji) in Equation (3.28) we obtain
 

E(X) - MEP(i) E2(xi) (3.29)
 

i
 

There is one value of E2 (Xji) for each of the M psu's. In fact E2 (Xji)
 

is a random variable where the probability of E2 (XIi) is P(i). Thus the
 

right-hand side of Equation (3.29) is, by definition, the expected value 

of E2(Xji). This leads to the following theorem: 

Theorem 3.6. E(X) - E1E2(Xi) 

Suppose P(Jli) L and P(i) Then,

N
 

E2(X i) E (N) iiX ­-


= )
and E(X) - E1 (Xi) (1 ) i­

i 

In this case E(X) is an unweighted average of the psu averages. It is 

important to note that,if P(i) and P(lji) are chosen in such a way that 

P(ij) is constant, every element has the same chance of selection. This 

point will be discussed later. 

Theorem 3.3 dealt with the expected value of a linear combination of 

random variables. There is a corresponding theorem for conditional expecta­

tion. Assume the linear combination is 

k 
+a A
U -aul+. . = atut
tul
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where al1 ..,ak are constants and ul,...,uk are random variablesi Let
 

E(U~ci) be the expected value of U under a specified condition c~iwhere
 

Ci is one of the conditions out of a set of M conditions that could occur.
 

The theorem on conditional expectation can then be stated symbolically as
 

follows:
 

Theorem 3.7. E(UIci) W a1E(ulci) +...+ akE(uklci)
 

k
 
or E(UIci) - Eat E(utlc
 

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like
 

Theorem 3.3 except that conditional expectation is applied. Assume c is
 

a random event and that the probability of the event ci occurring is P(iY.
 

Then E(UIci) is a random variable and by definition the expected value of
 

M
 
E(UI ci) is EP(i)E(UIci) which is E(U). Thus, we have the following 

i 
theorem:
 

Theorem 3.8. The expected value of U is the expected value of the
 

conditional expected value of U, which in symbols is written as follows:
 

(3.30)
E(U) - EE(U ci) 


Substituting the value of E(Uj 
ci) from Theorem 3.7 in Equation 

(3.30)
 

we have 
k 

E(U) - E[alE(ullci)+.•.+akE(ukl ci)] - E(EatE(utlci)] (3.31) 
t
 

Illustration 3.14. Assume two-stage sampling with simple random
 

sampling at both stages. Let x', defined as follows, be the estimator of
 

the population total:
 

E x j (3.32)
X - - N.1m i ji 
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Exercise 3.17. -,Examine the estimator, x", Equation, (3.32).: Express
 

it in other -fokm that might help show its'logical structure. For, example,
 

N 'ni
 
for a fixed i what is- E x ? Does it seem like a reasonable way of
 

estimating the population. total?
 

To display x' as a linear combination of random variables it is
 

convenient to express it in the following form:
 

S[xl 
 N I N]m x t N+m (3.33)

in1 11 in n 1 m n ml + +mn mn
 

Suppose we want to find the expected value of x' to determine whether it 

is equal to the population total. According to Theorem 3.8, 

E(x') - E E2 (x'1) (3.34) 

E~* iE2mNI ni[ 
E(x') - E - E x li} (3.35)

i n j ij 

Equations (3.34) and (3.35) are obtained simply by substituting x, as 

the random variable in (3.30). The ci now refers to any one of the m 

psu's in the sample. First we must solve the conditional expectation, 
Ni
 

E2(x'Ii). Since - and - are constant with respect to the conditional2 m ni
 

expectation, and making use of Theorem 3.7, we can write
 

2(m Nin 2 
E"(x i) - E - EE (xji) (3.36)

m i n j 

We know for any given psu in the sample that x is an element in a
 
ii, 

simple random sample from the psu and according to Section 3.3 its 

expected value is the psu mean, X That is, 

E2 (xi i) = 
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n
 

and E E2 (xij Ii) -'ni Xi (3.37) 

Substituting the result from Equation (3.37) in Equation (3.36) gives
 

E-(xi) -- .
LZ 	N (3.38)

2min mi ixi.
 

Next 	we need to find the expected value of E2 (x' 1). In Equation
 

(3.38), Ni is a random variable, as well as Xi., associated with the first 

stage of sampling. Accordingly, we will take Xi, = NiXis as the random 

variable which gives in lieu of Equation (3.38). 

2M mm
E2(x'li) 


in 

Therefore, m
 

E(x') m i ]
 

From Theorem 3..3 

1lm xi.] m-EEi 1(xl. 

Since
 

M 

1
 
ili
 

M
Mm
E1 im 	ZX..i EX x
 
i i 
 i
 

M 
Therefore, E(x") - E X - X.. This shows that x' is an unbiased
 

i
 

estimator of the population total.
 

3.10 	CONDITIONAL VARIANCE 

Conditional variance refers-to the variance of a variable under a 

specified condition or limitation. It is related to conditional prob­

ability and to conditional expectation.
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.To -find the variance of x (See, Equation(3.32)' or (3.33))"he following 

,
important theorem will be used: 

Theorem 3.9. The variance of x "'Isgiven by
• ~~r "X : V~ -*i)~ !
 

VW(x )= V C 2(Xii) +
 

,where V1 is'the variancefor the: first,:stage of. sampling andV 2 .s the 

."conditional! variance for the sec6nds stage..,-.. 

We have discussed :E2 (x'ii)riand noted there is one value of E2 (xi") 
•Hnce ,V- t (x ). ssmply;. the., variance; 

for each, psu. in. the population.!., Hec 1 2 (xi. ipytevrac 

of the I values of E2 (xl i). 

In Theorem 3.9 the conditional variance, V2(x i), by definition is 

2V2(xj)'i). - E2 [x-E 2(xii)] iil 

To understand V2 (x' i).think of "x' as a linear combination of random 

variables (see Equation (3.33)., Consider -the variance of x' when i ile 

held constant. All terms (random variables) in -the linear combination 

are -now constant except those originating from sampling within the ith
 

..psu. Therefore, V2(xIi.) is associated with variation among elements in 

the ith psu. v2(x'Ii) is a random variable with Mvalues in the set, one 

for each.. psu. Therefore, EiV2(x' i) by definition is 

E V 2 (x'i)= V2 (xi ) oP(i) 

•That is, .EV(x.i)s an average values of 2 (x ii) -fweighted, by 

P(i), the'.probability -that thei
th

psu had of being in the sample. 

Three illustrations of the application of Theorem 3.9 will be given. 

In each case there will be five steps in finding the variance of.x: 

Step 1, find E2(xIi) 

Step :2, find V1 E2 (xii) 

http:Equation(3.32
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Step 3, find V2(Xfi)
 

Step 4, find E V2(xli)
 

Step 5, combine results from Steps 2.and 4.
 

Illustration 3o15' ,.This,is a simple illustration, selected because
 

we know what the answer is from previous discussion and a linear combina­

tion of random variables is not involved. Suppose x' in Theorem 3.9 is
 

simply the random variable X where X.has an equal probability of being
 

any one of the Xij values in the set of N - EN We know that theii"
 

variance of X can be expressed as follows:
 

V(x") r(X)j-x" ) 
 (3.39)
 
ij
 

In the case of two-stage sampling an equivalent method of selecting a
 

value of X is 
to select a psu first and then select an element within the
 

psu, the condition being that P(ij) - P(i)P(Jji) -1 . This condition is

Ni ._1
 

satisfied by letting P(i) - - and i " We now want to find
 

V(X) by using Theorem 3.9 and check the result with Equation (3.39). 

Step 1. From the random selection specifications we know that 

E2(x i) a . • Therefore, 

Step 2. VE2(x'ji) - V(.) 
- Ni
 

We know that " is a random variable that has a probability of of being
 

equal to the i 
 value in the set X,•.,o . Therefore, by definition 

of the variance of a random variable, 

-
.....V.: i.,, . - ME N2 ( i -R (3.40)
 

M
 

M N _ EX.
 
where 
 Roo = £ '-X. =,1N 



Step- 3., :By'definition
 

s 1 )2
 
V2 (xi i) - i ­j si j 

Ni
 
Step £. Since.each value of V2 (x- i),has a probability N 

ii2­

E1V2(x'Ii) - E - (Xij-Xi) (3.41) 

Step. a. ,FromEquations (3.40) and (3.41) we obtain 

1M 2 MNV(x) 1 E E. (X -X 22 (3.42)
N[ Ni( i ) ++ ij id 

The fact that Equations (3.42) and (3.39) are the same is verified
 

by Equation (1.10) in Chapter I.
 

Illustration 3.16. Find the variance of the estimator x' given by
 

Equation (3.32) assuming simple random sampling at both stages of sampling.
 

Step 1. Theorem 3.7 is applicable. That is,
 

i 
 I
E2(x* i) - EE E2 nxli]­

ij i
 

which means "sum the conditional expected values of each of the n terms
 

in Equation (3.33)." 

With regard to any one of the terms in Equation (3.,33), the
 

conditional expectation 
is'
 

Ni NN X. 

MNi N H N Mi.E2 E (x i)
2 7jxijI m ' j m ni i. m ni 

Therefore' 
ni M Xi.
 

IE2 (x i) Z - -- (3.43)
SE ij m n i 

Witlh','eference to Equation (3.43) and "summing-with respect to J, we have 
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nXi,	M '.1- ;M
 
m n~ M i'
 

Hence Equation 	 (3.43) becomes 

mm
 

(3.44) is the mean of a random sample of m from the set of psu totals
 

XI.,.,.• 	 Therefore, 

V1E 2(x'i) = M -2 
2 1-me bl	 (3.45) 

where
 
M 2M
£ (Xi'_R.) 2Xi..

2 
 a	 i 

abl = M anM 

In the subscript to a2 , the "b" indicates between psu variance and 'T' 

distinguishes this variance from between psu variances in later illustra­

tions.
 
Step 3. Finding V2(xli) , 
is more involved because the conditional
 

variance of a linear combination of random varables must be derived.
 

However, this is analogous to using Theorem 3.5 for finding the variance
 

of a linear combination of random variables. 
 Theorem 3.5 applies except

that V(uli ) replaces V(u) and conditional variance and conditional co­

variance replace the variances and covariances in the formula for V(u).
 

As the solution 	proceeds, notice that the strategy is to shape the problem 
so previous results can be used.
 

Look at the estimator x', Equation (3.33), and determine whether any
 

covariances exist. 
An element selected from one psu is independent of an
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element selected from another; but within a psu the,situation is the same 

as the one we had when finding the variance of the mean of a simple random 

sample. This suggests writing x" in terms of xi because the xi.'s are 

independent. Accordingly, we will start with 

Mm
 

lence 

V2(x'Ii) -V2 ([m E Nii lli 
i 

Since the sl. are independent 

mV2 (x' i) - !22 V (N i i)
 

m i
 

and since Ni is constant with regard to the conditional variance
 

L,2 m 2 
i t )V2 (x*ii) = 12 N i V22(i (3.46) 

rn i 

Since the sampling within each psu is simple random sampling
 

2NiniV2xi. i -N- ) nri (3 .4 7) 

where
 

2 N 12oi- £1 (Xij-xi)
i ij
 

Step 4. After substituting the value of V2(xi.Ii) in Equation (3.46),
 

and then applying Theorem 3.3, we have
 

2 N -n a2
 

E V (*I M E E [N2 i a1
 

Since the first stage of sampling was simple random sampling and each psu
 

had an equal chance of being in the sample,
 

http:V2(xi.Ii
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El[N2 N-n n a2 1 M Nna2 
N- n 

11NI 1 n1 H i N1- nl 

Hence
 

H H 2 N-ni o
M 2
EV2(xli) - i N i N 1 n (3.48) 

i
 

Step 5. Combining Equation (3.48) and Equation (3.45) the answer is
 

a2 H na2
 

V(x) - M 2 M-m bl EN2 'n 134
H-i M m i N-i n 
 (349)
 

Illustration 3.17. 
The sampling specifications are: 
 (1)at the first
 
Ni
 

stage select m psu's with replacement and probability P(i) R- , and (2)
 

at the second stage a simple random sample of n elements is to be selected
 

from each of the m psu's selected at the first stage. This will give a sam­

ple of n - mn elements. 
 Find the variance of the sample estimate of the
 

population total.
 

The estimator needs to be changed because the psu's are not selected
 

with equal probability. 
Sample values need to be weighted by the recip­

rocals of their probabilities of selection if the estimator is to be
 

unbiased. Let
 

P*(ij) be the probability of element iJ being in the sample,
 

.
P (i) be the relative frequency of the ith
 psu being in a sample
 

of m, and let
 

P'*(Jli) equal the conditional probability of element iJ being in
 

the sample given that the ith psu is already in the sample.
 

Then
 

P,(ij) = P'(i)P'(Jli)
 

Ni
According to the sampling specifications P( ) m- . This prob­
ability was described as relative frequency because "probability of being 
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in a sample of m psu's" is subject to misinterpretation. The ith psu
 

can appear in a sample more than once and it is counted every time it
 
i~th
 

appears. That is, if the i psu is selected more than once, a samDle of
 

h is selected within the ith psi, every time that it is selected. By
 

substitution
 
N­

pN(ij) _ [m mn n 	 (3.50)
 

Equation (3.50) means that every element has an equal probability of being
 

in the sample. Consequently, the estimator is very simple,
 

mn 
N Z .x (3.51)
 
mn ij i
 

Exercise 3.18. Show that x', Equation (3.51), is an unbiased estimator
 

of the population total. 

In finding V(x') our first step was to solve for E2(x i). 

Step 1. By definition 

E2(x'ji) -E 2 [L EEx 1 ]lit 

mn ij 

Since i is constant with regard to E2$ 

mn 
E2 (x-Ii) N EE2(x 1 i) (3.52) 

m; ij 

Proceeding from Equation (3.52) to the following result is left as 
an
 

exercise:
 

E (x-1i) NOX (3.53)
 
2' m i i
 

Step 2. From Equation (3.53) we have
 

m 

V1E2(x'Ii) - VNl( 	 ZR )
 

i
 



Since the Xi.'s are independent
 

- N2V1E2(xji) m Vl(Xi)
 
m i
 

Because the first stage of sampling is sampling with probability propor­

tional to Ni and with replacement,
 

.1 Ni 22 
VI(xi.) = z - (Xi.-x..) (3.54) 

i 

Let 

- 2VI(Xi.) ffb2
 

Then
 

N2VE i) = 2 N 2 (3.55)1 2 (x i m - (b2) = M b2 

Exercise 3.19. Prove that E(Xi) =X. which shows that it is 

appropriate to use X.. in Equation (3.54). 

Step 3. To find V2 (x'li), first write tile estimator as 

-m 
x' I E

i 
x. (3.56) 

Then, since the x .'s are independent 

V2 (x"Ii) - 2 
2(i)E V_


m i 

and 2 
N -n aV2(i.)= -i - n ­

where 

2 Ni - 21 
, X N (Xij-X)i 
i i 
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Therefore
 
2 i- 2
m N .
V - r °-i2x1 


i ii n 

Step 4.
 

N2 
 1 m Ni-n 2
 
m 2 - E E1(F -- ai)

Mi n i 
Ni 
-
Since the probability of V2 (x**i) is 


2 m MN iN--n 
E1V2 (x -. 2 E N (N--)ai] 

m n ii i 

which becomes
 

V(x'Ii) N i i-n 2
1 2-- i - r (3.57)Si N i-1i
 

Step 5. Combining Equation (3.55) and Equation (3.57) we have the
 

answer 
2 

V(x) N2 tb2 1 Ni Ni-n 2 
in-'- - N- (I--)oi (3.58) 
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CHAPTER IV. THE DISTRIBUTION OF AN ESTIMATE 

4.1 PROPERTIES OF SIMPLE RADOM SAMPLES 

The distribution of an estimate is a primary basis for judging the 

accuracy of an estimate from a sample survey. 
But an estimate is only
 

one number. How can one number have a distribution? Actually, "distri­

bution of an estimate" is a phrase that refers to the distribution of
 

all possible estimates that might occur under repetition of a prescribed
 

sampling plan and estimator (method of estimation). Thanks to theory
 

and empirical testing of the theory, it is not necessary to generate
 

physically the distribution of an estimate by selecting numerous samples
 

and-making an estimate from each. 
However, to have a tangible distribu­

tion of an estimate as 
a basis for discussion, an illustration has been
 

prepared.
 

Illustration 4.1. Consider simple random samples of 4 from an
 

assumed population of 8 elements. There are 
 NI - 1 70 possible
nl(N-n)t 41 

samples. In Table 4.1, the sample values for all of the 70 possible sam­

ples of four are shown. The 70 samples were first listed in an orderly
 

manner to facilitate getting all of them accurately recorded. The mean, 

x, for each sample was computed and the samples were then arrayed 

according to the value of i for purposes of presentation in Table 4.1. 

The distribution of i is the 70 values of x shown in Table 4.1, including 

the fact that each of the 70 values of x has an equal prObdbillity of biing 

the estimate. These 70 values have been arranged as a frequency distribu­

tion in Table 4.2.
 

As discussed previously, one of the properties of simple random
 

sampling is that the sample average is an unbiased estimate of the popu­

lation average; that is, E(i) - R. This means that the distiibution of
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abl4.-.-Samplesofourielements froma population ofeight 1/ 

Valuesoff 

Table .. .ap i.. .- l' . . . .. .. . .. .. 

: e Vaues:of 

Sple : 2 : Sample:.
number : xi : : number: x x s2 

lc 
2 
3 
4 
5 

,1,64-
2,1,4,7 
2,1,4,8 
2,1,6,7 
2,1,4:9 

3.25. 
.3.50 
!3.75 
4.00 
4.00 

4.917 : 36s 
7.000 : 37s 
9.583 : 38s 
8.667 : 39s 

12.667 : 40s 

1,6,8,9 
1,4,8,11 
2,6,8,9 
2,4,8,11 
1,6,7,11 

6.00 
6.00 
6.25 
6.25 
6.25 

12.667 
19.333 
9.583 

16.250 
16.917 

6 
7 

2,1,6,8 
2,1,6,9 

4.25 
4.50 

10.917 : 41s 
13.667 : 42 

1,4,11,9 
1,7,8,9 

6.25 
6.25 

20.917 
12.917 

8 2,1,4,11 4.50 20.333 : 43cs 6,4,7,8 6.25 2.917 
9cs 

10 
2,1,7,8 
1,6,4,7 

4.50 
4.50 

12.333 : 44s 
7.000 : 45s 

2,6,7,11 
2,4,11,9 

6.50 
6.50 

13.667 
17.667 

11s 2,1.7,9 4.75 14.917 : 46 2,7,8,9 6.50 9.667 
12 2,6,4,7 4.75 4.917 : 47s 1,6,8,11 6.50 17.667 
13 
14 
15s 

.1,6,4,8 
2,1,6,11 
2,1,8,9 

4.75 
5.00 
5.00 

8.917 : 48s 
20.667 : 49s 
16.667 : 50s 

6,4,7,9 
2,6,8,11 
1,6,11,9 

6.50 
6.75 
6.75 

4.333 
14.250 
18.917 

16 2,6,4,8 5.00 6.667 : 51 1,7,8,11 6.75 17.583 
17 1,6,4,9 5.00 11.337 : 52s 6,4,8,9 6.75 4.917 
18s 1,4,7,8 5.00 10.000 : 53s 2,6,11,9 7.00 15.333 
19s 2,1,7,11 5.25 21.583 : 54 2,7,8,11 7.00 14.000
 
20 2,6,4,9 5.25 8.917 : 55 1,7,11,9 7.00 18.667 

21s 2,4,7,8 5.25 7.583 : 56s 6,4,7,11 7.00 8.667
 
22s 1,4,7,9 5.25 12.250 : 57 4,7,8,9 
 7.00 4.667
 
23s 2,1,8,11 5.50 23.000 : 58 2,7,11,9 7.25 
 14.917
 
24s 2,4,7,9 5.50 9.667 : 59 1,8,11,9 7.25 18.917
 
25 1,6,4,11 5.50 17.667 : 60s 6,4,8,11 7.25 8.917
 

26s 1,6,7,8 5.50 9.667 : 61 2,8,11,9 7.50 15.000

27s 1,4,8,9 5.50 13.667 : 62cs 6,4,11,9 7.50 9.667
 
28cs 2,1,11,9 5.75 24.917 : 63 6,7,8,9 7.50 1.667
 
29 2,6,4,11 5.75 14.917 : 64 4,7,8,11 7.50 8.333
 
30s 2,6,7,8 5.75 6.917 : 65 4,7,11,9 7.75 8.917
 

31s 2,4,8,9 5.75 10.917 : 66 6,7,8,11 8.00 4.667 
32s 1,6,7,9 5.75 11.583 : 67 4,8,11,9 8.00 8.667 
33s 1,4,7,11 5.75 18.250 : 68 6,7,11,9 8.25 4.91"7
34s 2,6,7,9 6.00 8.667 : 69 6,8,11,9 8.50 4.323

35s 2,4,7,11 6.00 15.333 : 70c 7,8,11,9 8.75 2.917
 

1/ Values of X for the population of eight elements are X1 = 2,X2 - ,
X3 6, X - 4, X5 - 7,,X6 - 8, X- 11, X8 - 9; X " 6.00; and 

-

" N-I . 12. 

2 
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x 

Table 	4.2--Sampliag distribution of x
 

' 
* 	 : Relative frequency of x ­

: Simple random u s:Stratified random
 
samping 'Cluster sampling ­:I sampling 4 Illustration 4.2 : usampling


:Ilutrtin .1:Illustration
* 	 4.2
 . 

3.25 1 	 1
 

3.50 	 1
 

3.75 	 1
 

4.00 	 2
 

4.25 	 1
 

4.50 4 	 1 
 1
 

4.75 	 3 
 1
 
5.00 	 5 
 2
 

5.25 	 4
 

5.50 	 5 
 4
 

5.75 	 6 
 1 	 5
 

6.00 	 4 
 4
 

6.25 	 6 
 1 	 5
 
6.50 	 5 
 4
 
6.75 	 4 
 3
 

7.00 	 5 
 2
 

7.25 	 3 
 1
 

7.50 	 4 
 1 	 1
 
7.75 	 1
 

8.00 	 2
 

8.25 	 1
 

8.50 	 1
 

8.75 
 1 	 1
 

Total 	 70 
 6 	 36
 

Expected value
 

of x 6.00 6.00 6.00
 

Variance of x 1.50 
 3.29 	 0.49
 



116
 

ax. is" centered on X. If,the theoryis correc't, the avera'ge of for the 

70 samples, which are equallylikely to occur, should be equal to the
 

population average, 6.00. The average of the 70 samples does'equal 6.00.
 

From the: theory of expected values, Ve also know that the variance 

of is: given by 

S N-n S2 (4.1) 
x N n 

where
 

N 2 
s2 __ x 

_ ' 
__I(Xi-x)
 

S 
 N-1
 

With reference to Illustration 4.1 and Table 4.1, S2 - 12.00 and S3 ­
x 

8-412 1.5 . The formula (4.1) can be verified by computing the 

variance among the 70 values of x as follows: 

(3.25-6.00)2 + (3.50-6.00)2 +...+ (8.75-6.00)2 
70 = 1.5 

Since S2 is a population parameter, it is usually unknown. Fortu­

nately, as discussed in Chapter 3, E(s2 ) = S2 where 

n 2
 
E(xi_;)
 

~2 1
 a 
 n-i
 

In Table 4.1, the value of s 2 is shown for each of the 70 samples. The 

average of the 70 values of s2 is equal to S2 . The fact that E(s 2 ) S2 

is another important property of simple random samplen. In practice a2 is 

.used as an estimate of S That is, 

2 
3-. N-n s
x N n 

is an unbiased estimate of the variance of x. 

To recapitulate, we have Just verified three,important properties of 

simple random samples: 
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(1), Ex I 

(2) 	 Smfn . 
2 2 

(3)" E(7. S 

The standard error of x, namely S , is a measure ofthow'much varies 

under repeated sampling from X. Incidentally, notice that Equation (4.1) 

shows how the variance of x is related to the size of the sample. Now 

we need to consider the form or shape of the distribution of x. 

Definition 4.1. The distribution of an estimate is often called the 

samplin.g distribution. It refers to the distribution of all possible 

values of an estimate that could occur under a prescriL .; sampling plan. 

4.2 SHAPE OF THE SAMPLING DISTRIBUTION 

For random sampling there is a large volume of literature on the
 

distribution of an estimate which we will not attempt to review. 
In
 

practice, the distribution is generally accepted as being normal (See
 

Figure 	4.1) unless the sample size is "small." The theory and empirical 

tests show ,.that the distribution of an estimate approaches the normal
 

distribution rapidly as the size of the sample increases. The closeness
 

of the distribution of an estimate to the normal distribution depends on:
 

(1) the 	distribution of X (i.e., the shape of the frequency distribution
 

of the values of X in the population being sampled), (2) the form of the 

estimator, (3) the sample design, and (4) the sample size. It is not 

possible,<to giveo a :few simple, exact guidelines for deciding when the 

degree of approximation is good enough. In practice, it is generally a 

matter of working as though the distribution of an estimate is normal but 

being mindful.of: the possibility that the distribution might differ 

http:mindful.of
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E(x')-2 X .. E(x')- x .  E(x') , E(x')+o--, E(xA) 2co. 

Figure 4.1--Distribution of an estimate (normal distribution)
 

considerably from normal when the ,sample is very small and the population
 

distribution is-highly.,skewed. 3/
 

It is".very,-fortunate that the-sampling distribution:-is approximately
 

normal -asit -:gives' a basis- for probability statements about the precision 

of an estimate. - As ,notation',x' will-bethez general expression-for any 

estimate, and" ox,- is .the standard error, of x .' 

Figure 4 .lis -a graphical'arepresentation of the!sampling distribution 

of an estimate.' It is;,:the normal distribution. In 'the mathematical 

equation for the norml distribution of' a, variable there are two parameters: 

the average value- of the variable, and the.fstandard- error:, of ,the variable: ". 

3/ For a good discussion ,.of-thei.distribution of.,a-sample estimate,: see 
Vol. I, Chapter i, Hansen, Hurwitz, and Madow, Sample Survey Methods and. 
Theory, John Wileyand Sons,. 1953. 
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Suppose x is an estimate from a probability sample. The characteristics 

of the sampling distribution of x are specified by three things: (1)the 

expected value:of x", E(x'), which is the mean of the distribution; (2)the 

standard error of x*, axC, and (3)the assumption that the distribution is 

normal. If x" is normally distributed, two-thirds of the values that x' 

could equal are between [E(x*) - x.] and [E(x') + ax], 95 percent of the 

possible values of x' are between [E(x*) - 2aA] and [E(x*) + 2a .], and 

99.7 percent of the estimates are within 3ax, from E(x*). 

Exercise 4.1. With reference to Illustration 4.1, find E(x) - a- and
 x 

E(x) + a- Refer to Table 4.2 and find the propr.rtion of the 70 valuesx 

of x that are between EGx) - a- and E(i) + a- . How does this compare with x x 

the expected proportion assuming the sampling distribution of x is normal? 

The normal approximation is not expected to be close,owing to the small
 

size of the population and of the sample. Also compute E(x) - 2a- and 

E(x) + 2o- and find the proportion of the 70 values of x that are between 
x 

these two limits. 

4.3 SAMPLE DESIGN 

There are many methods of designing and selecting samples and of making 

estimates from samples. Each sampling method and estimator has a sampling 

distribution. Since the sampling distribution is assumed to be normal,
 

2alternative methods are compared in terms of E(x*) and ax. (or a .).x x 

For simple random sampling, we have seen, for a sample of n, that 

every possible combination of n elements has an equal chance of being the 

sample selected. Some of these possible combinations (samples) are much 

better than others. It is possible to introduce restrictions in sampling 

so some of the combinations cannot occur or so some combinations have a 
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higher probability of occurrence than others. This. can b .done without 

Introducing bias in the extimate x and without losing a basis for esti­

mating a., Discussion of particular sample designs is not a primary 

purpose of this chapter. However, a few simple illustrations will be 

used to introduce the subject of design and to help develop concepts of 

sampling variation.
 

Illustration 4.2. Suppose the population of 8 elements used in
 

Table 4.1 is arranged so it consists of four sampling units as follows:
 

Sampling Unit Elements Values of X Sample Unit Total 

1 192 X1 = 2, X2 - 1 3 

2 3,4 X3 - 6, X4 4 10 

3 5,6 X5 a 7, X6 - 8 15 

4 7,8 X7 = I, X8 = 9 20 

For sampling purposes the population now consists of four sampling 

units rather than eight elements. If we select a simple random sample of 

two sampling units from the population of four sampling units, it is clear 

that the sampling theory for simple random sampling applies. This illus­

tration points out the importance of making a clear distinction between a 

sampling unit and an element that a measurement pertains to. A sampling 

unit corresponds to a random selection and it is the variation among sam­

pling units (random selections) that determines the sampling error of an 

estimate. When the sampling units are composed of more than one element. 

the sampling is .commniy referred to as cluster sampling because the ele­

ments in'a samping unit are usually close together geographically. 
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For a simple random sample of 2 sampling units, the variance of
 

where c is the sample average per smpling unit, is 

22 

S3 -- . 13.17 
- x ~N -n 

where 

N w4, n-- 2, and S2 (3-".2) 2. (10-12)2 + -(15-12)2 + (20-12)2 158 
C 3 3 

Instead of the average per sampling unit one will probably be interested 

in the average per element, which is x - C , since there are two elements 

in each sampling unit. The variance of x is one-fourth of the variance 

of xc. Hence, the variance of x is 4 3.29. 

There are only six possible random samples as follows:
 

Sample average per 2
 
Sarple Sampling Units sampling unit, i a
 

1 1,2 6.5 24.5
 

2 1,3 9.0 72.0
 

3 1,4 11.5 144.5
 

4 2,3 12.5 12.5
 

5 2,4 15.0 50.Q
 

6 3,4 17.5 12.5
 

n 2 
E(xi- )

whr2 - i' 
where ac n-1 and xi is a sampling unit total. Be sure to notice 

that (which is the sample estimate of S2) is the variance among samplingC c 

units in the sample, not--the variance among individual elements in the
 

sample. From the list of six samples, it is easy to verify that x is an
 
C 

unbiased estimate of the population average per sampling unit and that 
s c 

is n ubiaed 
stiateof158
 
is an unbiased estimate of -- , the variance among the four sampling 



in"the population. 

13.17:which agrees with the formula. 

The six possible cluster samples are among the 70 samples: listed in 

Table 4.1. Their sample numbers in Table 4.1 are 1, 97; 28, 43, 62, and 

units ' Also, the variance among the six values of x is
 

70. A'ct fo11owsF these Sample numbers. The sampling distribution for
 

the six s~mples is shown in Table 4.2 for comparison with simple random
 

sampling. It is clear from inspection that random selection from these
 

six is less desirable than random selection from the 70. For example,
 

one of the two extreme averages, 3.25 or 8.75, has a probability of 1 of 
3
 

occurring for the cluster sampling and a probability of only 
 -when
 

selecting a simple random sample of four elements. 
 In this illustration,
 

the sampling restriction (clustering of elements) increased the sampling
 

variance from 1.5 to 3.29.
 

It is of importance to note that the average variance among elements
 

within the four clusters is only 1.25. (Students should compute the within
 

cluster variances and verify 1.25). 
 This is much less than 12.00,the
 

variance among the 8 elements of the population. In feality, the variance
 

among elements within clusters is usually less than the variance among all
 

elements in the population, because clusters (sampling units) are usually
 

composed of elements that are close together and elements that are close
 

together usually show a tendency to be alike.
 

Exercis'e4.2. In Illustration 4.2, if the average variance among 

elements within clusters had been greater than 12.00, the sampling variance 

for cluster-sampling would have been less than the sampling variance for a 

simple rando;m sample of elements. Repeat what was done in Illustration 4.2
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using as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7. 

Study the results. 

Illustration 4.3. Perhaps the most common method of sampling is to 

assign sampling units of a population to groups called strata. A simple
 

random sample is then selected from each stratum. Suppose the population 

used in Illustration 4.1 is divided into two strata as follows:
 

Stratum 1 X- 2, X2 - 1, X3 = 6, X4 4 

Stratum 2 X5 - 7, X6 - 8, X7 = 11, X8 m 9 

The sampling plan is to select a simple random sample of two elements 

from each stratum. There are 36 possible samples of 4, two from each 

stratum. These 36 samples are identified in Table 4.1 by an s after the 

sample number so you may compare the 36 possible stratified random samples 

with the 70 simple random samples and with the six cluster samples. Also, 

see Table 4.2. 

Consider the variance of x. We can write
 

- X1+X2 

2 

where x1 is the sample average for stratum 1 and x2 is the average for
 

stratum 2. According to Theorem 3.5
 

.=,()(S-+ S- + 2S-)

x 4x
 

2 xIx2
 

We know the covariance, Sx--, is zero because the sampling from one
 
x1X2
 

stratum is independent of the sampling from the other stratum. 
And, 

since the sample within each stratum is a simple random sample,
 

N 
(Xi
21 1 


S5 - n 1 where S2 = i 
xI N1 n $1 N1-1 
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The subscript .l1.refersto stratum s1..,- i'x2 of theasame form as Sixl 
Therefore, 

2. ~~"[- - n N -n'2. 2 
2 
n2 

x 4 N1 n1 N2 
Since 

Nl-n 

N 
1ln N2-n2 

N 
2 1 d 

2 and n 
-
-n2 2, 

2 2
 

s3 1 +S2 1 4.92+2.92 0.49
x 8 - 8 2
 

The variance, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in
 

Illustration 4.2.
 

In Illustration 4.2, the sampling units were groups of two elements and
 

the variance among these groups (sampling units) appeared in the formula
 

for the variance of x. In Illustration 4.3, each element was a sampling
 

unit but the selection process (randomization) was restricted to taking
 

one stratum (subset) at a time,so the sampling variance was determined by
 

variability within strata. As you study sampling plans, form mental pictures
 

of the variation which the sampling error depends on. 
With experience and
 

accumulated knowledge of what the patterns of variation in various popula­

tions are like, one can become expert in judging the efficiency of alterna­

tive sampling plans in relation to specific objectives of a survey.
 

If the population and the samples in the above illustrations had been
 

larger, the distributions in Table 4.2 would have been approximately nor­

mal. Thus, since the form of the distribution of an estimate from a prob­

ability sample survey is accepted as being normal, only two attributes of
 

an estimate need to be evaluated, namely its expected value and its
 

variance.
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In the above illustrations ideal conditions were implicitly assumed.
 

Such conditions do not exist in the real world so the theory must be 

extended to fit, 'more exactly, actual conditions. There are numerous 

sources of error or variation to be evaluated. The nature of the rela­

tionship between theory and practice is a major governing factor deter­

mining the rate of progress toward improvement of the accuracy of survey
 

results.
 

We will now extend error concepts toward more practical settings.
 

4.4 RESPONSE ERROR
 

So far, we have discussed sampling under implicit assumptions that 

measurements are obtained from all n elements in a sample and that the 

measurement for each element is without error. Neither assumption fits,
 

exactly, the real world. In addition, there are "coverage" errors of 

various kinds. For example, for a farm survey a farm is defined but 

application of the definition involves some degree of ambiguity about 

whether particular enterprises satisfy the definition. Also, two persons 

might have an interest in the same farm tract giving rise to the possibility 

that the tract might be counted twice (included as a part of two farms) or
 

omitted entirely.
 

Partly to emphasize that error in an estimate is more than a matter 

of sampling, statisticians often classify the numerous sources of error 

into one of two general classes: (1) Sampling errors which are errors 

associated with the fact that one has measurements for a sample of elements 

rather than measurements for all elements in the population, and (2) non­

sampling errors--errors that occur whether sampling is involved or not. 

Mathematical error models can be very complex when they include a term for 
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each of may sources of error, and attempt to represent, exactly the-real 

world. However.,-$complicated, error models are not always necessary, 

depending upooni the purposes.
 

For purposes of discussion, two oversimplified response-error models
 

will be used. This will introduce the subject of response error and give
 

some clues regarding the nature of the impact of response error on the
 

distribution of an estimate. 
For simplicity, we will assume that a
 

measurement is obtained for each element in a random sample and that no
 

ambiguity exists regarding the identity or definition of an element. Thus,
 

we will be considering sampling error and response error simultaneously.
 

Illustration 4.4. 
Let T1 ,...,TN be the "true values" of some variable
 

for the N elements of a population. The mention of true values raises
 

numerous questions about what is 
a true value. For example, what is your
 

true weight? 
How would you define the true weight of an individual? We
 

will refrain from discussing the problem of defining true values and simply
 

assume that true values do exist according to some practical definition.
 

When an attempt is made to ascertain Ti, some value other than Ti might
 

be obtained. 
Call the actual value obtained Xi. The difference, ei -

Xi - Ti, is the response error for the ith element. If the characteristic, 

for example, is a person's weight, the observed weight, Xi, for the ith 

individual depends upon when and how the measurement is taken. However,
 

for simplicity, assume that Xi is always the value obtained regardless of
 

the coditions under which the measurement is taken. In other words,
 

assume that the response error, ei, is 
constant for the ith element. In
 

this hypothetical case, we are actually sampling a 
population set of values 

X1 ,., set of true values Tl,...,TN.60 instead of: a 
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Under,the conditions as stated, the sampling theory applies exactly
 

to the set of population values X1,..0.,X. If a simple random sample of
 

elements is selected and measurements for all elements in the sample are
 

N
 
ETi 

obtained, then E(x) - X. That is, if the purpose is to estimate i i 'INN 

the estimate is biased unless T happens to-be equal to X. The bias is 

S- T which is appropriately called "response bias." 

Rewrite ei - X - Ti as follows: 

Xi - Ti + ei (4.2)
 

Then, the mean of a simple random sample may be expressed as
 

n n
 

E i E(ti+ei)
 

nI n 

or, as +e. 

From the theory of expected values, we have 

E(i) - E(I) + E(;) 

Since E(x) - R and E(t) - T it follows that 

R - T + E(;) NEei 

Thus, x is a biased estimate of T unless E(e)- 0, where E(;) * - T 

That is,E(;) is the average of the response errors, ei, for the whole 

population. 

For simple random sampling the variance of x is 

N -2 

2 N-n Sx 2 1i
 
x " nN wX 
 N-1
 

How does the response error affect the variance of X and of x? We have
 

already written the observed value for the ith element as being equal to
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its trueyValue p 4usaresponse error ,;thatis T-,X +,e. Assuming"
 

random sampling and e. are ,randbm 
i i
 

variables. We can use-Theorem 3.5
 

from Chapter IM.and .rite
 

SX2 "ST2 +Se2 2 STe (4.3) 

2 vraco 2 is the 
 respos
 
where SX is the variance of X, ST is the variance of T, Se is t esponse
 
variailce (that is, the variance of e), and ST, e is the covariance of T and 

e. The terms on the right-hand side of Equation (4.3) cannot be evaluated
 

unless data on X and Ti are available; however, the equation does show how
 

the response error influences the variance of X and hence of i.
 

As a numerical example, assume a population of five elements and the
 

following values for T and X:
 

Ti Xt ei 

23 26 
 3
 

13 12 
 -1
 

17 23 
 6
 

25 25 
 0
 

7 9. 2
 

Average 17 19 2 

Students may wish to verify the following results, especially the variance 

of e and the covariance of T and e: 

S22 2 7.5 - 0.5 
x ST 4.0 e T,e 

As a verification of Equation (4.3) we have
 

62.5 - 54.0 + 7.5 + (2)(0.5) 
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n 2 

s 2 2 E(xi-x)
From data in a simple random sample one would compute -1 

x n-i 
2N-n
 

and use -n n as an estimate of the variance of x. Is it clear that
2 F n2 2 
is an unbiased estimate of SX rather than of ST and that the impact of 

variation in ei is included in s, ? 

To sumarize, response error cagsed a bias in x as an estimate of 

that was equal to X - T. In addition, itwas a source of variation included 

*in the'standard error of x. To evaluate bias and variance attributable to 

response error, information on Xi and Ti must be available. 

Illustration 4.5. In this case, we assume that the response error 

for a given element is not constant. That is, if an element were measured 

on several occasions, the observed values for the ith element could vary 

even though the true value, Ti, remained unchanged. Let the error model be 

X -T + e"
 
ii i ii 

where Xij is the observed value of X for the i t h element when the 

observation is taken on a particular occasion, J, 

Ti is the true value of X for the ith element,
 

and e.. is the response error for the ith element on a particular
 

occasion, J. 

Assume, for any given element, that the response error, ej, is a random 

variable. We can let e' -e + Gii, where e is the average value of eij
ij i o ij 

for a fixed i, that is, ei = E(eiji). This divides the response error 

for the ith element into two components: a constant component, ei, and a 

variable component, eij. By definition, the expected value of eij is zero 

for any given element. That is, E(eij Ii)- 0. 
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Substituting ei + eij for e'j, the model becomes
 

X 1 T eej (4.4)
 

The'model, Equation (4.4), is now in a good form for comparison with
 

the model in Illustration 4.4. In Equation (4.4)9 ei, like-e in
 

Equation (4.2) is constant for a given element. 
Thus, the two models
 

are alike except for the added term, eij, in Equation (4.4) which allowi
 

for the possibility that the response error for the ith element might not
 

be constant.
 

Assume a simple random sample of n elements and one observation for
 

each element. According to the model, Equation (4.4), we may now write
 

the sample mean as follows:
 

iei 

x Eeij
_--i + 
i +
 
n n 
 n
 

Summation with respect to j is not needed as there is only one observation
 

for each element in the sample. Under the conditions specified the expected
 

value of x may be expressed as follows:
 

E(;) - + 

N N
 

where iIN and miNN 

The variance of x is complicated unless some further assumptions are
 

made. Assume that all covariance terms are zero. 
 Also, assume that the,
 

conditional variance of e i's -constant for all values of i; that is, liet
ij
 
V(eij, i). 2e Then, the :variance. of' iS' 

N-. _+ N-n e
S3_ N-S
x"N22 

n en 
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N-. i N 2, 2 ,I: 

2' 2
s__ Zei e 

where ST N-i , e N-i 
is the conditional variance of, t is,Ve .1i) For this 

e -iiij
 

model the variance of x does not diminish to zero as n-N. However, assuming 

S2
 

-N is large, the variance of x,which, becomes negligible.. 

Definition 4.2. :Mean-SquareError. In,terms of the theory of expected 

values the mean-square error of an estimate, x', is E(x'-T) where T is the 

target value, .that is, the value being estimated. From the theory"it is 

easy to show-that
 

2, 2 2
E(x',) - [E(x')-T] + E[x'-E(x )] 

Thus, the mean-square error, mse, can be expressed as follows: 

2 2 
mse - B + ax. (4.5) 

where B - E(x") - T (4.6) 

and .2. - ZE[x*'E(x')] 2 (4.7) 

Definition 4.3. Bias. In Equation (4.5), B is the bias in x' as
 

an estimate:of T.
 

Defiitio" 4.4. Precision. The precision of an estimate is the
 

standard error of the estimate, namely, a x.in Equation (4.7). 

Precision is a measure of repeatability. Conceptually, it is a 

measure of the dispersion of estimates that would be generated by repetition 

of the same sampling and estimation procedures many times under the same 

conditions. With reference to the sampling distribution, it is a measure 

of the dispersion of the estimates from the center of the distribution and 
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does not ; include: any iidication of where, the center of the"distribution 

is in relation to a target.
 

tInlIllustrations 4.1, 4.2, and 4.3, the targetlvalue was implicitly
 

assumed to be R; that is, T was equal to . Therefore, B was zero and 

the mean-square error of x was the same as the variance of x'. In 

Illustrations, 4,4 and 4.5 the picture was broadened somewhat by intro­

ducing response. error and examining, theoreticall the ,impact' of response 

error on E(x') and a .. In practice many factors have potential for 

influencing,the,sampling distribution of x., That,.is, the data in a 

sample are subject to error that might be attributed to several sources.
 

From sample data an estimate, X, is computed and an estimate of the 

variance of x' is also computed. How does one interpret the results? In
 

Illustrations 4.4 and 4.5 we found that response error could be divided
 

into bias and variance. The error from any source can, at least c9ncep­

tually, be divided into bias and variance. An estimate from a sample is
 

subject to the combined influence of bias and variance corresponding to
 

each of the several sources of error. When an estimate of the variance
 

of x' is computed from sample data, the estimate is a combination of 

variances that might be identified with various sources. Likewise the
 

difference between E(x,) and T is a combination of biases that might be 

identified with various sources.
 

Figure 4.2 illustrates the sampling distribution of.x" for four 

-
different cases s A, no bias and low standard error; B, 
no bias and large
 

standard error; C, large bias and low standard error; and D, large bias
 

and large standard error. The accuracy of 4n estimator is sometimes defined 

as the square root of the mean-square error of the estimator. According 

http:That,.is
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T T 
E(x#) E(x') 

A: No bias--lowstandard error B: No bias--large standard error 

I*I 	 I 

T E(X') 	 T E(x') 

C: 	 Large bias-.-low standard error D: Large bias--large standard error 

Figure 4.2--Examples of four sampling distributions 

T
 

Figure 4.3-.-Sampling distribution--
Each small 	dot corresponds to an estimate
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to that definition, we could'describe estimators having the four sampling 

distributions in Figure. 4.2 as follows: In case A the estimator is precise 

and accurate; in B the estimator lacks precision and is therefore inaccurate; 

in C the estimator is precise but inaccurate because of bias, and in Dothe 

estimator is inaccurate because of bias and low precision. 

Unfortunately, it is generally not possible to determine, exactly,
 

the magnitude of bias in an estimate, or of a particular component of bias. 

However, evidence of the magnitude of bias is often available from general 

experience, from knowledge of how well the survey processes were performed, 

and from special investigations. The author accepts a point of view that 

the mean-square error is an appropriate concept of accuracy to follow. In
 

that context, the concern becomes a matter of the magnitude of the mse and 

the size of B relative to x..* That viewpoint is important because it is 

not possible to be certain that B is zero. Our goal should be to prepare
 

survey specifications and to conduct survey operations so B is small in
 

relation to ax'. Or, one might say we want the mse to be minimum for a
 

given cost of doing the survey. Ways of getting evidence on the magnitude
 

of bias is a major subject and is outside the scope of this publication.
 

As indicated in the previous paragraph, it is important to know some­

thing about the magnitude of the bias, B, relative to the standard error,
 

ax'.0 The standard error is controlled primarily by the design of a sample
 

and its size. For many survey populations, as the size of the sample
 

increases, the standard error becomes small relative to the bias. In fact,
 

the bias might be larger than the standard error even for samples of
 

moderate size, for example a few hundred cases, depending upon the circum­

stances. The point is that if the mean-square error is to be small, both
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B and 	Cy.. must be small. The approaches for reducing B are very different 

from 	the approaches for reducing OX.. The greater concern about non­

sampling error is bias rather than impact on variance. In the design and
 

selection of samples and in the processes of doing the survey an effort is
 

made to prevent biases that are "sampling" in origin. However, in survey
 

work one must be constantly aware of potential biases and on the alert to
 

minimize biases as well as random error (that is, ax.). 

The above discussion puts a census in the same light as a sample. 

Results from both have a mean-square error. Both are surveys with refer­

ence to use of results. Uncertain inferences are involved in the use of
 

results from a census as well as from a sample. The only difference is
 

that in a census one attempts to get a measurement for all N elements,
 

but making n - N does not reduce the mse to zero. Indeed, as the sample
 

size 	increases, there is no positive assurance that the mse will always
 

decrease; because, as the variance component of the mse decreases, the 

bias component might increase. This can occur especially when the popu­

lation is large and items on the questionnaire are such that simple, 

accurate answers are difficult to obtain. For a large sample or a census, 

compared to a small sample, it might be more difficult to control factors
 

that cause bias. Thus, it is possible for a census to be less accurate
 

(have a larger mae) than a sample wherein the sources of error are more
 

adequately controlled. Much depends upon the kind of information being
 

collected.
 

4.5 	 BIAS AND STANDARD ERROR 

The words "bias," "biased," and "unbiased" have a wide variety of 

meaning among various individuals. As a result, much confusion exists,
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especially since the terms are often used loosely. Technically, it seems 

logical-to define the bias in an estimate as being equal to B in Equation 

(4.6),,which is the difference between the expected value of an estimate 

and the target value. But, except for hypothetical cases, numerical values 

do not exist for either E(x') or the target T. Hence, defining an unbiased 

estimate as one where B = E(x) - T = 0 is of little, if any, practical 

value unless one is willing to accept the target as being equal to E(x'). 

From a sampling point of view there are conditions that give a rational 

basis for accepting E(x') as the target. However, regardless of how the 

target is defined, a good practical interpretation of E(x') is needed.
 

It has become common practice among survey statisticians to call an 

estimate unbiased when it is based on methods of sampling and estimation 

that are "unbiased." For example, in Illustration 4.4, i would be referred 

to as an unbiased estimate--unbiased because the method of sampling and 

estimation was unbiased. In other words, since x was an unbiased estimate 

of X, i could be interpreted as an unbiased estimate of the result that 

would have been obtained if all elements in the population had been 

measured. 

In Illustration 4.5 the expected value of x is more difficult to 

describe. Nevertheless, with reference to the method of sampling and 

estimation, x was "unbiased" and could be called an unbiased estimate 

even though E(x) is not equal to T. 

The point is that a simple statement which says, "the est inatc is 

unbiased" is. incomplete and can be very misleading, ,especially if one is 

niot familiar with the context and concepts of bias. Calling an estimate 

unbiased is equivalent to saying the estimate is an unbiased estimate of 
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its expected value. Regardless of how "bias" is defined or used, E(x")
 

is the mean of the sampling distribution of x; and this concept of E(x*) 

is very important because E(x') appears in the standard error, ax., of x 

as well as in B. See Equations (4.6) and (4.7). 

As a simple concept or picture of the error of an estimate from a
 

survey, the writer likes the analogy between an estimate and a shot at
 

a target with a gun or an arrow. Think of a survey being replicated
 

many times using the same sampling plan, but a different sample for each
 

replication. Each replication would provide an estimate that corresponds
 

to a shot at a target.
 

In Figure 4.3, each dot corresponds to an estimate from one of the 

replicated samples. The center of the cluster of dots is labeled E(x') 

because it corresponds to the expected value of an estimate. Around the 

point E(x *) a circle is drawn which contains two-thirds of the points. 

The radius of this circle corresponds to ax the standard error of the, 


estimate. The outer circle has a radius of two standard errors and con­

tains 95 percent of the points. The target is labeled T. The distance 

between T and E(x') is bias, which in the figure is greater than the 

standard error. 

In practice, we usually have only one estimate, x', and an estimate, 

,xI, of the standard error of x'. With reference to Figure 4.3, this 

means one point and an estimate of the radius of the circle around E(x') 

that would contain two-thirds of the estimates in repeated samplings. We 

do not know the value of E(x'); that is, we do not know where the center 

of the circles is. However, when we make a statement about the standard 

error of x, we are expressing a degree of confidence about how close a 
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x 

particular estimate prepared from a survey is to E(x); that is, how
 

close one of the points in Figure 4.3 probably is to the unknown point
 

E(x'*). A judgment as to how far E(x*) is from T is a matter of how T
 

is defined and assessment of the magnitude of biases associated with
 

various sources of error.
 

Unfortunately, it is not easy to make a short, rigorous, and complete
 

interpretative statement about the standard error of x". 
 If the estimated
 

standard error of x' is three percent, one could simply state that fact
 

and not make an interpretation. 
It does not help much to say, for example,
 

that the odds are about two out of three that the estimate is within three
 

percent of its expected value, because a person familiar with the concepts
 

already understands that and it probably does not help the person who is
 

unfamiliar with the concepts. 
Suppose one states, "the standard error of
 

means the odds are two out of three that the estimate is within three
 

percent of the value that would have been obtained from a census taken
 

under identically the same conditions." 
 That is a good type of statement
 

to make but, when one engages in considerations of the finer points,
 

interpretation of "a census taken under identically the same conditions"
 

is needed--especially since it is not possible to take a census under
 

identically the same conditions.
 

In summary, think of a survey as a fully defined system or process
 

including all details that could affect an estimate, including: the method
 

of sampling; the method of estimation; the wording of questions; the order
 

of the questions on the questionnaire; interviewing procedures; selection,
 

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is then replicated many times, holding 

all specifications and conditions constant. This would generate a sam­

pling distribution as illustrated in Figures 4.2 or 4.3. We need to
 

recognize that a change in any of the survey specifications or conditions,
 

regardless of how trivial the change might seem, has a potential for
 

changing the sampling distribution, especially the expected value of x'.
 

Changes in survey plans, even though the definition of the parameters 

being estimated remains unchanged, often result in discrepancies that
 

are larger than the random error that can be attributed to sampling. 

The points discussed in the latter part of this chapter were included
 

to emphasize that much more than a well designed sample is required to
 

assure accurate results. Good survey planning and management calls for
 

evaluation of errors from all sources and for trying to balance the effort
 

to control error from various sources so the mean-square error will be
 

within acceptable limits as economically as possible.
 


