AQGENCY "Q' INTI;‘NATIONAL ODRVELOPMENT 'OR ‘,D us, ONLY
WASHINGTON, D. C, 20829
BIBLIOGRAPHIC INPUT SHEET 3«'@\ £ Y
v A, PRIMARY
1\ sussEct Agriculture AE10-0000-0000
CLASSI-
FICATION B, SECONDARY .
Agricultural economics

Z TITLE AND SUBTITLE . .
A FORTRAN executive program for continuous flow simulation models--SIMEXI.

3. AUTHORI(S) i,
Wolf,Christopher; Manetsch,T.J.; Winer,Claudia

4, DOCUMENT DATE 5. NUMBER OF PAGES 6. ARC NUMBER
1974 16p. ARC

7. REFERENCE ORGANIZATION NAME AND ADDRESS
Mich. State

8. SUPPLEMENTARY NOTES (Spqnomlnl Crganization, Publishers, Avaliabllity)
(In Training program paper,1974)

9. ABSTRACT"

10, CONTROL NUMBER s e T PRICE OF DOCUMENT
PN-AAB-808

12, DESCRIPTORS 13, PROJECT NUMBER

FORTRAN
Models ‘ 14, CONTRACT NUMBER
Simulation : CSD-2975 Res

18. TYPE OF DOCUMENT

AlD 8501 (4474}

CSH-2975 1fea
N 4ABG - $08

“A"FORTRAN EXECUTIVE PROGRAM FOR
 CONTINUOUS FLOW SIMULAZION MODELS - STMEX1

vf ‘fintroduction
jﬂﬁile afnﬁmbef of simulation languages are available for programming

‘§ohtinubﬁé.fiow simulatibn modelsl/ (1.e., CSMP and DYNAMO (1,2)) it is
fdﬁte; necessary to use the more general programming language--FORTRAN. This
is the case when more specialized languages such as those cited above are
not available for a particular computer or when models must be compatible
with a wide fange of types and sizes of computers. FORTRAN is also a neces-
‘éa?j'choice in,Ceftain cases where models must be compatible with a wide
'inngé of other quantitative techniques and models such as linear program-
ming, non-linear programming, other optimiz;tion techniques such as dynamic
prograﬁming, critical path analysis, discrete event models, etc. The FOR-
TRAN compatible language FORDYN (3) was developed to maike some of the useful
features of DYNAMO (2) available to FORTRAN users. FORDYN, however, does
not provide the user with an executive routine that readily provides for
model re-runs with vario;e values of model parameters.

—.. SIMEX1 is designed to fill this gap. It 1s a primitive executive roqﬁ i
vﬁInA which

1. Provides the user with a format for organizing his model.

........................

;/"Continuous flow" models are normally those described by linear or
nonlinear differential and/or difference equations. They usually take a
lacroscopic view of the world and model the real world in terms of aggre=-
gation or flows of discrete entities--goods, services, people, etc,

2. Provides for two levels of model output (normally this takes the
form of detailed output for model development and summary output
for tﬁe decision maker using the model).

3. Eﬁables the user to specify how often he wants the two types of
output printed out. (The time interval between printouts can be
changed once during a simulation run.) 7

4, Permits the user to make an arbitrary number of runs with differ-
ent values assigned to selected model parameters on each run.

This primitive executive routine can be readily expanded to incorporate
other features such as monte carlo analysis, on-line decision m;ker inter-
action, etc. In the long run all these functions and more will be performed
by the FORTRAN-based simulation langﬁage under development at Michigan State
University. In the shorter run other, more powerful, versions of SIMEX1 may
| be developed if needs so dictate.
~In whet follows we will describe the organization of SIMEX1 and how it

is used,

i

Seneral Description of.SIMEXI

A tlow chart illustrating the general organization of SIMEX1 appears

~{1u ligure 1. The program contains two major iterative loops. The outer ’
”loop 1n the figure (the "run loop") controls the number of simulation runs o
that are executed on a given pass on the computer, This loop indexes the
variable IRUN = 1, 2, ..., NRUN where NRUN is the number of simulation runs
required. The inner or "time" loop indexes time, T, for individual simulation
runs such that T = DT, 'ZﬁT, «eey» DUR'where DT is the time increment per simu-
lation run in appropriate time units, As seen in Figure 1 the program begins
‘in (1) by reading fram‘a‘data card NRUN, the number of simulatién runs
required.

Next, the index IRUN is set to éne for Ehe first simulation run. All"
model initial conditions, the variable set [IC], are given values by assign-
meat statements in (3). The.set {IC] includes initial values for all model .
state variables, intermediate rates of delays and any other model variables,
including time (T), which require values at the beginning of a simulation run.
~ In (4) values are assigned:(by assignment statements) to the set of
vnri&ble model parameters [VMP]. The set [(WP] includes all model parameters
which are subject to chaqge during a series of simulation runs. Next (5)
values are assigned to tﬁe control parameters for the various runs. This 1is
gﬁhfvariable set [CP] control parameters of SIMEX1 are defined as follows:

DUR = Duration of the simulation run in appropriate time units,

DI = Time increment per simulation cycle in the same units as‘DUR.

DETPRT = A switch that determines whether or not a detailed printout
of model variables is provided. (Detailed printout is pro-

vided 1if and only if DETPRT # 0.)

Read m
Mader of

(NRUN)

[1)

st 1V
Inftial
Conditions
{ic)

Set Varfable
) Parametars
{ve]

Paramaters
{cr)

4

sot Controt |1

(6}

Read New Paraseter
Yalues for
Current Run

TR = TRUN+)

TeToOT

Cal)
Nodel

Is 1t
Time to
'fint Output?
T = PRTINED)

(s)

{1

PRTVL = PRTR2

()

PRTINE = ToPRTVL

(13 .

(21)
G

OVERALL FLOMCHART FOR THE SIMULATION EXECUTIVE PROJAAN SIMEXY
Figure {1)

(16)

14)

1s
Selected
Printout

Required?
{SELPRT # O7)

et |19)
Selected
Output

SEtPRI = A gwitch that determines whether or not a selected printou
' of model variables is provided. (Selected printout is pro
vided 1f and only if SELPRT # 0.) | | .
BEGPRT = The time of first printing of model vatidbleefiu’eppropfiei
o _units.
PRICHG - The time at which the interval between model printouts is
to change. (This control parameter makes it possible to |
3yhaye_printout of model variables at fine time intervals dur-
iug part of a simulation run and atcoarse intervals during
the remainder of the run.)
fPRIVLl = Interval between model printout during the first part of the
i | simulation run (T < PRTCHG.)
E?QIVLZ = Interval between model printout during the last part of the
' simulation run (T > PRICHG.)
' It ie important to note that values must be assigned to DT and DUR, DETPRI,
‘fSBLPRI, BEGPRT and PRICHG such that the values of the latter five are equal
; to K*DT where K is a positive integer.
In (6) the print interval variable PRIVL is assigned the value PRTVLL.
“Next (7) new values are read from cards for the membersof [VMP] that are to
be changed on the current simulation run. Note that the values assigned
[!M?] in (4) are default values--those values that will prevail 1f no new
values are read in (7) Also note that (3), (4), (5) and (6) in Figure 1

are executed before each simulation tun., This means that all state variables

etc. (the members of [IC]) are reset to their initial values before the next
run and that all.Variable parameters (the members of [VMP]) are reset to

default values.

_ The inner or run loop begins by updating time in (8). Next (9)bthe
model is called to execute one simulation cycle, The "model” in (9) is
often a set of subroutines which may call others subroutines. Further remarks
should be made at this point. The subroutines which constitute the "model"
contain data statements which assign values to model pérameters that are not
members of [VMP]. It is also important to note that basic rules for comput-
ing sequencesmust be observed within the subroutines of the model. The com=

_puting sequence in the model subroutines must be such that:
1. All state variables Si(T+DT) must be computed as fuﬁctibns of
rate variables‘Rj which carry values for T, i.e.,
84 (T4DT) = fi(RlcT)'RZ(T)’f"’Rm(T)) i=1,2,,44,n
v2. All rate variables for T4DT must be computéd as functions of state
o vnriables.at T+DT, i.e.,
Ry (T+DT) = éj(slc'rw'r). So(T+DT) 4«0 S, (THDT)) 3=1,2,000,m
Jo All calls to model delays must take place in inverse order vis-a-
vis the direction of flow théough the delays.
auuvend point to consider is thé time index which applies to the variables
" being printed. It is possible under certain model programming configurations
for some of the variables printed but to correspond to time T and other to
' T*DT. Careful progrémming of the "model" and initialization can avoid this.
==~ In (10) of Figure 1 the question is asked if it is time to print output
data. If not,another iteration of the model is called for if the end of the
limulation.tun has not been reached. If it is time to print output the pto-
gram checks in (11) whether or not it is time to change the time interval
between printings of output. If yes, the print interval PRTVL is set equal

to PRTVL2 in (12). 1In (13) the next print time is scheduled as T+PRTVL.

7

In (14) to (17) it is‘determined whether selective and detailed printouts

: agéirequired and output data is priﬁted accordingly,

“ The time ioop'(8) to (18) is executed until time, T, reaches DUR, the
‘duration of the simulation run. In (19) a test is made to determine whether
more simulation runs are called for. If no, the progrum stops. If yes, the
model is re-initialized for the next run, Variables requiring initial con-
"ditions [IC] are reset to their initial values and variable parameters [VMP]
and control parameters [CP] are reset to default values. New parameter
values specifying the next run are read and the model is called for execu-
tion of the next run.

" 'Organization of a Simulation Model
" 'Using the SIMEX1 Executive Routine

In this section we will describe in some detail the stfuctute of a simu~
lation model constructed using the SIMEX1 executive routine. This discussiou'
follows the flow chart of Figure 1 but contains additional detail necessary
for model pregramming. Our discussion will take the form of the annotated

computer program below:

PROGRAM., ., (Standard PROGRAM card for the particular
FORTRAN system being used.)

REAL... Include here all type siatements, i.e.,
REAL, INTEGER, etc.

COMMON/BLOCK/. . . Include here a labeled COMMON statement
: which includes all model parameters which
are subject to change from one run to ano-
ther. (The variable sets [VMP] and [cP]
in Figure 1.)

COMMON/BLOCK1/s s «. Include here other COMMON statements
. needed in model construction. It is
desirable to put all variables passed to

- and from major model subroutines into
COMMON/BLOCKq/, . , COMMON statements.

DATA NAMVAR/. This data statement contains the names of
‘ ' the parameters subject to change between
simulation runs. (The variable set [VMP].)

DATA NVAR/XXX/... XXX is the number of variables in the set
' [VMP] .
" DIMENSION NAMVAR (XXX) XXX is the number of entries in the NAMVAR
array. |
READ 900, NRUN | Read the number of simﬁlation runs to be

made on the given computer pass. ..
900 FORMAT (I1) - |
. Begin the DO loop that controls model re-runms.
DO 500 IRUN = 1, NRUN

Set model initial conditions using assignment statements, i.e.,
set the values for the members of the set [IC]. ’

ICl = ...
IcC2 = ,..

Set, by assignment statements, default values for the variable
model parameters [VMP]:°

ml. [X N)
w2 = ,,,

Next, default values for the model control parameters are assigned.
Control parameters receiving default values are defined as follows:

DUR = Duration of the simulation run in appropriate time units,

DT = Time increment per simulation cycle (in the same units as DUR).
' DETPRI ¥ 0. If a detailed printout of model variables is desired.

SELPRT # 0. If a selected printout of model variables is desired.

BEGPRT = The simulation time at which model printing is to begin (an
integer multiple of DT).

vj;;PRICHG ‘The simulation time at which the time interval hetween
.. ' . ' model printouts is to change: (also an 1nteger multiple of
DT). .

RRV PRIVLI Time interval between printouts before T= PRICHG (an inte-
' ger multiple of DT). ‘ :

“'PR$VL2 = Time interval between printouts after T = PRICBG (alao an-
integer multiple of DT).

" The. following statement labels a printout of non-default pata—
“meter vaues for the current run.

 WRITE (2, 901) IRUN
901 FORMAT (37HINON-DEPAULT PARAMETER VALUES FOR RUN, I2)

The following call to NAMLST reads in non-default values for
parameters for the current run.

. CALL NAMLST (NAMVAR, NVAR, ERROR)

The following statement stops the program if there was an error
in getting nev parameter values in the NAMLST call. -

IF (ERROR.NE.O.) STOP

NITER = DUR/DT

The fﬁ'ﬁﬁi;g":‘é‘iiimgﬁt°§’3§-135§°2h2¥°§§§eiﬁui‘p:%”‘i’i“ﬁiiﬁciﬁ?'
IF (DETPRT.EQ.O0.) SELPRT = 1.

T =0,
" PRTIME = BEGPRT

'rm = PRTVL1

\ Begin the time loop that cycles a modal through a oimnlation run
of duration DUR.

" DO 400 ITER = 1, NITER
. T = T4DT (update TIME)

Call the routines that compute one cycle of the simulation model.
Normally this will involve calls to a number of subroutines.

Test to determine if it 1s time to print output.
IF (T.LT.PI.{TIME) GO TO 200
_Begin printing results as pfesﬁf;béi}?g
IF (T.EQ.PRTCHG) PRTVL = PRTVL2
PRTIME = T + PRIVL -
IF (SELPRT.EQ.0.) GO TO 100
4 | Print selected outpdt(i
PRINT XXX, V1, V2, voo
100 * TP (DETPRT.EQ.0.) GO 70 200
| _P;int detailed output.,
. PRINT XXX, VA, VB, ...
200 CONTINE |
400 CONTINUE
500 CONTINﬁE
XXX FORMAT (..

§708
This 1s the last card in the SIMEX1 executive routine. Next follows a 11st-
ing all the model subroutines including NAMLST. Because it is an essential
pg;? of SIMEX1 the operation of NAMLST is described in detail in the next

section,

*‘Deseription of Subroutine NAMLST

The NAMLST subroutine is for use with FORTRAN compilers which(dp_#étﬂ;

have a NAMELIST statement and provides a similar function. It péthit@fﬁﬁé"?ﬁ

input of character strings consisting of names and values. It 1égﬁ§§§ﬂfq i

Turn off error swiltch
ERROR = 0

J

Read Input Card

Set Card Index
I=]

Search NAMVAR for T:;:c:ﬂ error
variable Name : %RROR-I

Write out
error
message

‘ ariable name

Return
correct?

Write out
parameter

names & new-
values

-].Set variable equal to new
value

there more in-

OVERALL FLOWCHART FOGR NAMLST
Figure (2)

12
enter the values of the [CP) and’[VMP]iﬁhg:;a;ggtpibgfqhgqgeg_f;om their
default values for the currgnt ruh.:_U# ;b:f&ﬁgﬁﬁéﬁ@dbiééfmay'be'entered

on one input card in the fﬁiibﬁingiforﬁat:

Col,

1-6 Name of the ?&giéble whose value is to be
changed, the name should start in column
one.

-7 Blank

;8f Indicates whether the variable is an integer

' (the variable is integer if and only if
column 8 is non-blank).

'b;_. The new value of the parameter. It ig entered

e into a field that is formatted E9.4.1

313; $ indicates the end of the list, otherwise

Lot column 18 is left blank.

£19-36' Same as 1-18.

3754 Same as 1-18.

;55-72' Same as 1-18.

b,

The number may be entered either with or without an exponent., An
exponent is designated by an E or + or -. For example, 1.23 x 105 could
be represented as 123000., 1.23E5, 1.23E+5, or 1.23+5 and 4.56 x 10~3 could
be represented as .00456, 4.56E-3 or 4.56-3. Any blank columns in the
fleld (which includes columns 9 through 17) are interpreted by the machine
88 zerog, so the data should be right justified. The decimal point may

be omitted. If it is not present it is assumed to be four places to the
left of the last significant digit (not including the exponent)., If the
input data was 123456789, it would bc read in as 12345.6789, 1If the input
was 24683E+3 1t would be read in as 2.4683 x 103 or 2468.3. Since blanks
are interpreted as zeros, the data should be right justified.

http:otherw.5o

13

APPENDIX NAMLST

Thia appendix describes the programming of the subroutine NAMLST in

dotail. An overall flow chart appears in’ Figure 2 and a detailed discussim

of the program follows.

10

SUBROUTINE NAMLST (NAMVAR, NVAR, ERROR)

NAMVAR is an array which contains the names of the variables in
[CP] and [VMP] for which the user may change the value. The names are
stored in hollerith form (character string). NVAR contains the number
of variables wnich may change, it is also the dimension of NAMVAR,
ERROR 1is a switch which indicates an unsuccessful completion of NAMLST.

INTEGER RLANK, DOLLAR
DIMENSION DUMMY (1), IDUMMY (1), NAMVAR (1)
Since the actual storage allocation is done in the main program,

these var.ables can be dimensioned to a size of one in this subrou-

tine and it can then be used with any main program and any size list
o input variables.

DIMENSION INT (4), LAST (4), NAME (4), VALUE (4)
COMMON/BLOCK /DUMMY '

EQUIVALENCE (DUMMY (1), IDUMMY (1))

The common block labeled BLOCK, contains the variables which may
change. By equivalencing DUMMY and IDUMMY, data may be entered dir-

ectly whether it 1s in integer or real form.

DATA BLANK, DOLLAR/IH, IH$/
ERROR = 0.
The switch ERROR is set to zero 1nicially.
nmn (1, 900) (NAME (I), INT (I) VALUE (1), LAST (1:), t= 1. 4)
IF (EOF (1) .NE.O) RETURN

Here the next input card is read and an end-of-file chack 18
made. SO

DOS0I=1, 4

IF (NAME (7)., EQ. BLANK} GO TO 45

5

43

e N

50

C?izf

!

. This DO loop processes one card which contains up to fouf vat;¥
able names and their new values. If there is no name, a check is =
mede for the end of data indicator. -

D0 30 J = 1, NVAR

IF (NAME (I). EQ. NAMVAR (J)) GO TQ 35
CONTINUE
Match the pame from the inmput withithe name in.the NAMVAR array.
WRITE (2, 901) NAME (I)
ERROR = 1.
RETURN

. If the nare on the input card does not métch any of the names
in the NAMVAR array, the ERROR switch is set to one and the subrou-

"tine returns.

WRLTE (2, 902) NAME (I), VALUE (I)

IF (INT (I). NE. BLANK) GO TO 40

DUMMY (J) = VALUE (1)

GO TO 45
IDUMMY (J) = VALUE (1)

The field INT(I) will be non-blank 1f the variable is an integer
and blank if it is real. The value is then stored in either IDUMMY
% DUMMY respectively. Since DUMMY and IDUMMY were equivalenced, the
{ata is stored in the correct place. Note that integer values must
be read in according to an E9.4 format and then converted to integer.

IF (LAST (I) . EQ. DOLLAR) RETURN

- CONTINUE

G0 TO 10

If LAST (I) is a §, this indicates that there are no more vari-
ables to be changed. Statement 50 finishes up the DO loop which pro-

cesses one card. The program then goes to statement 10 to read the
next card.

1

W TORT (66, X, K1, 296, A2)

J01) FORMAT. (24HO#AERRORW* VARTABLE NAME,A7,10R NOT FOUND)
02 FORMAT (1HO,A6,3H = ,E12.4)

1.

2.

3.

4.

16

Bibliography

1IBM Corporation, System/360 Continuous System Modeling Program User's

Manual. Program number 360A-CX-16X, GH20-0367-4, 1972.

Pugh, Alexander L. Dynamo User's Manual, Cambridge: The M.I.T."
Press, 1963.

Llewellyn, Robert W. FORDYN -- An Industrial Dynamics Simulation.
Raleigh: North Carolina State University, 1965.

Manetsch, T. J. and G. L. Park, "Systems Analysis and Simulation with
Applications to Economic and Social Systems," Part II, Chapter 11,

(Preliminary Edition), Department of Electrical Engineering and Systems
Science, Michigan State University, East Lansing, 1973.

