
AGENCV VOR INTnMATIONAL DEVCLO.iKT FOR AID USE ONLY
WAIHINGTN. 0. C. 2021

BIBLIOGRAPHIC INPUT SHEET *3

A. PIM4AAv'

I. SUBJECT Agriculture AEIO-0000-0000

CLASSI.

8. SECONDARYFICATION

Agricultural economics

2. TITLE AND SUBTITLE

A FORTRAN executive program for continuous flow simulation models--SIMEXI

3. AUTHOR(S)

Wolf,Christopher; Manetsch,T.J.; Winer,Claudia

4. DOCUMENT DATE17 5.s 1p.., 6.AM C NUMBERNUMBER OF P'AGES

7. REFERENCE ORGANIZATION NAME AND
ADDRESS

Mich. State

8. SUPPLEMENTARY NOTES (Sponsokind Organiatlon, Pubfishers# Availability)

(In Training program paper,1974)

9. ABSTRACT

10. CONTROL NUMBER
I o PRICE OF DOCUMENT

PN-AAB-808

12. DESCRIPTORS I PROJECT NUMBER

FORTRAN

Models

14. CONTRACT NUMBER

Simulation
 CSD-2975 Res.

IS. TYPE OF DOCUMENT

AID SWO 1 I4 74)

A FRTRN EECTIVE PROGRAM FOR

CONTINUOUS FLOW SIMUL.ION MODELS - SIMEXi

Introduction

While a number of simulation languages are available for programming

continuous flow simulation models-'
/ (i.e., CSMP and DYNAMO (1,2)) it is

often necessary to use the more general programing language--FORTRAN.
This

is the case when more specialized languages such as
those cited above are

not available for a particular computer or when models must be compatible

with a wide range of types and sizes of computers. FORTRAN is also a neces­

sary choice in certain cases where models must be compatible with a wide

range of other quantitative techniques and models such as linear program­

mIngo non-linear programming, other optimization techniques such as.dynamic

programing, critical path analysis, discrete event models, etc.
The FOR-

TRA compatible language FORDYN (3) was developed to make some of the useful

features of DYNAMO (2) available to FORTRAN users.
FORDYN, however, does

not provide the user with an executive routine that readily provides for

model re-runs with various values of model parameters.

SIMEX1 is designed to fill this gap. It is a primitive executive rou-o

tine which

le
 Provides the user with a format for organizing his model.

,

-"Continuous
 flow" models are normally those described by linear or
nonlinear differential and/or difference equations.
They usually take a
tacroscopic view of the world and model the real world in terms of aggre­gation or flows of discrete entities--goods, services, people, etc.

2. 	Provides for two levels of model output (normally this takes the

form of detailed output for model development and summary output

for the decision maker using the model).

3. 	 Enables the user to specify how often he wants the two types of

output printed out. (The time interval between printouts can be

changed once during a simulation run.)

4. Permits the user to make an arbitrary number of runs with differ­

ent values assigned to selected model parameters on each run.

This primitive executive routine can be readily expanded to incorporate

other features such as monte carlo analysis, on-line decision maker inter­

action, etc. In the long run all these.functions and more will be performed

by the FORTRAN-based snimulation language under development at Michigan State

University. In the shorter run other, more powerful, versions of SINEX1 may

be developed if needs so dictate.

In whet follows we will describe the organization of SIMEX1 and how it

Is used.

3

general Description of SIMEX1

& flow chart illustrating the general organization
of SM l appears

in ligure 1. The program contains two major iterative loops.
 The outer

loop in the figure (the "run loop") controls the number of simulation runs

that are executed on a given pass on the computer. This loop indexes the

variable IRUN - 1, 2, ... 9 NRUN where NRUN is the number of simulation runs

required.
The inner or "time" loop indexes time, T, for individual simulation

runs such that'T - DT, "ZT, *.., DURvwhere DT is the time increment per simu­

lation run In appropriate time units. As seen in Figure 1 the program begins

Ina (1) by reading from a data card NRUN, the number of simulation runs

required.

Next, the index IRUN is set to one for the first simulation run. All

model initial conditions, the variable set [IC],
are given values by assign­

meat statements in (3).
 The set [IC] includes initial values for all model

state variables, intermediate rates of delays and any other model variables,

In4uding time (T), which require values at the beginning of a simulation run.

In (4) values are assigned (by assignment statements) to the set of

variable model parameters [VMP].
The set [VMP] includes all model parameters

Whdch are subject to change during a series of simulation runs. Next (5)

values are assigned to the control parameters for the various runs.
This is

thievariable set [CP] control parameters of SIMEXl are defined as follows:

DUR - Duration of the simulation run in appropriate time units.

DT - Time increment per simulation cycle in the same units as DUR.

DETPRT - A switch that determines whether not a detailed printout
or

of model variables is provided. (Detailed printout is pro­

vided if and only if DETPRT 0 0.)

INuwtar of
tRunI

(2)

CIC
Set Variable (4)

et Cntrol (5)

!it[CP].- ,I"

PAYl(6)

had qaw Prawter 1)

Values for

Current Run

T aT 0OT (6

Mi

10)t IsIt 11

* I.M.I~~ (tI*N)

\/e

lft

I tervalatOut FU N IS

1)

elce
1) .

Prntu printout2
Reurd•eurd

A PO PRMRA2 M TMINIICT sum

rip" (1)

5

SELPR2T - A switch that determines whether .ornot a selected printou

of model variables is provided. (Selected printout is pro'

vided if and onlyjif SELPRT # 0.)

BEGPRT - The time of first printing of model variables in approprial

units.

PRTCG - The time at which the interval between model printouts is

to change. (This control parameter makes it possible to

have printout of model variables at fine time intervals dur­

ing part of a simulation run and at coarse Intervals during

the remainder of the run.)

PRVL - Interval between model printout during the first part of the

simulation run (T < PRTCHG.)

PtTVL2 - Interval between model printout during the last part of the

simulation run (T > PRTCHG.)

It is important to note that values must be assigned to DT and DUR, DETPRT,

SIR.T, BEGPRT and PRTCHG such that the values of the latter five are equal

to K*DT where K is a positive integer.

In (6)the print interval variable PRTVL is assigned the value PRTVL1:

Next (7) new values are read from cards for the members of [VMP] that are to

be changed on the current simulation run. Note that the values assigned

[VMP] in (4) are default values--those values that will prevail if no new

values are read in (7). Also note that (3), (4), (5) and (6) in Figure 1

are executed before each simulation run. This means that all state variables

etc. (the members of [IC]) are reset to their initial values before the next

run and that all variable parameters (the members of [VMP]) are reset to

default values.

The inner or run loop begins by updating time in (8). Next (9) the

model is called to execute one simulation cycle. The "model" in (9) is

often a set of subroutines which may call others subroutines. Further remarks

should be made at this point. The subroutines which constitute the "model"

contain data statements which assign values to model parameters that are not

members of [VP]. It is also important to note that basic rules for comput­

ing sequencesmust be observed within the subroutines of the model. The com­

puting sequence in the model subroutines must be such that:

1. All state variables Si(T+DT) must be computed as functions of

rate variables Rj which carry values for T, i.e.,

Si(T+DT) - fi(R 1(T)R2(T),,'" Rm(T)) i-l,2,...,n

2. All rate variables for T+DT must be computed as functions of state

variables at T+DT, i.e.,

11(T+DT) - gj(Sl(T+DT), S2(T+DT),o...,Sn(T+DT)) j-l,2,...,m

1. All calls to model delays must take place in inverse order vis-a­

via the direction of flow through the delays.

dU.Iw aadr point to consider is the time index which applies to the variables

being printed. It is possible under certain model programming configurations

for some of the variables printed but to correspond to time T and other to

T+DT. Careful programing of the "model" and initialization can avoid this.

- In (10) of Figure 1 the question is asked if it is time to print output

data. If not,another iteration of the model is called for if the end of the

simulation run-has not been reached. If it is time to print output the pro­

gram'checks in (11) whether or not it is time to change the time interval

between printings of output. If yes, the print interval PRTVL is set equal

to PRTVL2 in (12). In (13) the next print time is scheduled as T+PRTVL.

7

In (14) to (17) it is determined whether selective and detailed printouts

are required and output data is printed accordingly.

The time loop (8) to (18) is executed until time, T, reaches DUR, the

duration of the simulation run. In (19) a test is made to determine whether

more simulation runs are called for. If no, the program stops. If yes, the

model is re-initialized for the next run. Variables requiring initial con­

ditions [IC] are reset to their initial values and variable parameters [VMP]

and control parameters [CP] are reset to default values. New parameter

values specifying the next run are read and the model is called for execu­

tion of the next run.

Organization of a Simulation Model

Udink the SIMEXI Executive Routine

In this section we will describe in some detail the structure of a simu­

lation model constructed using executivethe SIMEXI routine. This discussion
follows the flow chart of Figure 1 but contains additional detail necessary

for model prcgramming. Our discussion will take the form of the annotated

computer program below:

PROGRAM.. (Standard PROGRAM card for the particular

FORTRAN system being used.)

REAL... Include here all type statements, i.e.,

REAL, INTEGER, etc.

CGIHON/BLOCK/... Include here a labeled COMMON statement

which includes all model parameters which
are subject to change from one run to ano­
ther. (The variable sets [VMP] and [CP]
in Figure 1.)

COMON/BLOCK/...
 Include here other COMMON statements

needed in model construction. It is
desirable to put all variables passed to

and from major model subroutines into
COMHDN/BLOC1q/,.?
 COMMON statements.

DATA NAMVAR/. 	 This data statement contains the names of
the parameters subject to change between
simulation runs. (The variable set (VMP].)

XXX is the number of variables in the set
DATA NVAR/XXX/...

VMP].

DIMENSION NAMVAR (XXX) 	 1X= is the number of entries in the NANVAR
array.

READ 900, NRUN 	 Read the number of simulation runs to be
made on the given computer pass.

900 FORMAT (I1)

Begin the DO loop that controls model re-runs.

DO 500 IRUN - 1, NRUN

Set model initial conditions using assignment statements, i.e.,
set the values for the members of the set [IC].

IC -

IC2 -

Set, by assignment statements, default values for the variable

model parameters [VMP]:'

VMP1 a ...

Next,.default values for the model control parameters are assigned.
Control parameters receiving default values are defined as follows:

DUR - Duration of the simulation run in appropriate time units.

DT u Time increment per simulation cycle (in the same units as DUR).

DETPRT y 0. If a detailed printout of model variables is desired.

SELPRT 0. If a selected printout of model variables is desired.

BEGPRT - The simulation time at which model printing is to begin (an
integer multiple of DT).

PRCHG -The simulation time at which the time interval between

model printouts is to change (also an integer multiple of

DT).

PRTVL1 = Time interval between printouts before T.- PRTCHG (an inte­
ger multiple of DT).

PRTVL2 = Time interval between printouts after T = PRTCHG (also an

integer multiple of DT).

The.following statement labels a printout of non-default para­
meter vaues for the current run.

WRITE (2,901) IRUN

FORMT (37H2NON-DEFAULT PARAMETER VALUES FOR RUN, 12)

The following call to NAMLST reads in non-default values for

parameters for the current run.

CALL 	 ITAMLST (NANVAR, NVAR I, ERROR)

The following statement stops the program if there was erroran
in setting new parameter values in the NAMLST call.

IF (EnRROR.NE.O.) STOP

NITER - DUR/DT

NITER - number of simulation cycles in a simulation run.

The following statement en.'-s that same output is printed.

IF. (DETPRT.EQ.O.) SELPRT - 1.

T - 0.

PRTDIME - BEGPRT

"PRTVL - PRTVLI

Begin the tima loop that 'cycles a model through a simulationrun
of duration DUR.

DO 400 ITER - 1, NITER

T T+DT (update TIME)

• Call the routines that compute one cycle of the simulation model.
Normally this will involve calls to a number of,subroutines.

Test to determine if it is time tO print output.

1F (T.LT.PRTIME) GO TO 200

Begin printing results as prescribed. i.

IF (T.EQ.PRTCHG) PRTVL - PRTVL2

PRTIHE - T + PRTVL

17 (SELPRT.EQ.O.) GO TO 100

Print selected output.

PRINT XCX, V1, V2,

100 IF (DETPRT.EQ.O.) GO TO 200

Print detailed output..

PRINT XXX, VA, VB,s.

200 CONTINUE

40 CONTINUE

500 CONTINUE

mxx FORMAT (..

STOP

EraD

This is the last card in the SIMEXI executive routine. Next follows a list­

ing all the model subroutines including NAMLST. Because it is an essential

part of SIMEX1 the operation of NAMLST is described in detail in the next

section.

'Deetiptionof Subroutite 'NAMLST

The NAMLST subroutine is for use with FORTRAN compilers which,do not

have a NAMELIST statement and provides a similar function. It permits the

input of character strings consisting of names and values. It i.e used to

Turn off error switch

ERROR 0

Read Input Card

+"End of ' RETURN:

NO

Set Card Index

Nae(7)
=B lan k?

YES

NO
Search NAVRfrTurnSerhNANVAR for

variable sw

on error

i

aWrite

ariable name
correct?

NO

out

error
message

Return

YES

Write out
parameter

names nw­values

Set variable equal to new
value

IsNO
there more

put?

YES

in-
Return
Rtr

OVERALL FLOWCHART FOR NAMLST

Figure (2)

12

enter the values of the [CPJ and[VMP] that are to'be changed from their

default values for the current run. Up to fourvariables may be entered

on one input card in the following format:

Col.

1-6 	 Name of the variable whose value is to be
changed, the'name should start in column
one.

7 	 Blank

8. 	 Indicates whether the variable is an integer

(the variable is integer if and only if

column 8 is non-blank).

9-. 	 The new value of the parameter. It iq entered
into a field that is formatted E941/

18 	 $ indicates the end of the list, otherw.5o
column 18 is left blank.

19-36 	 Same as 1-18.

37-54 	 Same as 1-18.

55-72 	 Same as 1-18.

-/The number may be entered either with or without an exponent. An
 exponent is designated by an E or + or -. For example, 1.23 x 105 could

be represented as 123000., 1.23E5, 1.23E+5, or 1.23+5 and 4.56 x 10
-3 could

be represented as .00456, 4.56E-3 or 4.56-3.
Any blank columns In the

field (which includes columns 9 through 17) are interpreted by the machine

Gs zeros, so the data should be right justified. The decimal point may

be omitted. If it is not plesent it is assumed to be four places to the

left of the last significant digit (not including the exponent). If the

input data was 123456789, it would bc read in as 12345.6789. If the input

was 24683E+3 it would be read in as 2.4683 x 103 or 2468.3. Since blanks

are interpreted as zeros,
the data should be right justified.

http:otherw.5o

13

A-PENDL(NAMLST

This appendix describes the programming of the subroutine NAMLST in

detml. An overall flow chart appears in Figure 2 and a detailed discussio

of the program follows.

SUBROUTINE NAMLST (NAMVAR, NVAR, ERROR)

NAMVAR is an array which contains the names of the variables in
CCP] and [VMP] for which the user may change the value. The names are
stored in hollerith form (character string). NVAR contains the number
of variables which may change, it is also the dimension of NAMVAR.
ERROR is a switch which indicates an unsuccessful completion of NAMLST.

INTEGER BLANK, DOLLAR

DIMENSION DUMMY (1), IDUMMY (1), NAMVAR (1)

Since the actual storage allocation is done in the main program,

these var-ables can be dimensioned to a size of one in this subrou­
tine and it can then be used with any main program and any size list

of input variables.

DIMENSION INT (4), LAST (4), NAME (4), VALUE (4)

COMMON/BLOCK/DUMMY

EQUIVALENCE (DUMMY (1), IDUMMY (1))

The common block labeled BLOCK, contains the variables which may

change. By equivalencing DUMMY and IDUMMY, data may be entered dir­
ectly whether it is in integer or real form.

DATA BLANK, DOLLAR/IH, IH$/

ERROR - 0.

The switch ERROR is set to zero initially.

10 READ (1, 900) (NAME (I), INT (I), VALUE (I), LAST (), I'-, 4)

IF (EOF (1) NE.O) RETURN

Here the next input card is read and an qnd-of-file,chock is
made. o -

DO 50 I - 1, 4

IF (NAME (T,. EQ. BLANK) GO TO 45

14

This DO loop processes one card which contains up to four vari­

able names and their new values. If there is no name, a check is
made for the end of data indicator.

DO 30 J - 1, NVAR

IF (NAME (I). EQ. NANVAR (J)) GO TO 35

30 CONTINUE

Match the name from the Inputwith thename in the NAMVAR.array.

WRITE (2, 901) NAME (I)

ERROR - 1.

RETURN

If the name on the input card does not match any of the names
ii, the NAMVAR array, the ERROR switch is set to one and the subrou­
tine returns.

5 WRITE (2,902) NAME (I), VALUE (I)

IF (INT (I). NE. BLANK) GO TO 40

DUII4Y (J) - VALUE (I)

GO TO 45

40 IDUMff (J) -VALUE w.L)

The field INT(I) will be non-blank if the variable is an integer

and blank if it is real. The value is then stored in either IDUMMY

t DUMMY respectively. Since DUMMY and IDUMKY were equivalenced, the

-(ata is stored in he correct place. Note that integer values must

lie read in according to an E9.4 format and then converted to integer.

17 (LAST (I). EQ. DOLLAR) RETURN

50 COtNUE

GO TO 10

If LAST (I) is a $, this indicates that there are no more vari­
ables to be changed. Statement 50 finishes up the DO loop which pro­
cesses one card. The program then goes to statement 10 to read the
next card.

15

100 *OR.AT (4 (A6, X, Al, E9.4, Al))

101, -ORMAT (24H0**ERROR** VARIABLE NAMEA7,10H NOT FOUND)

)02 FQRMAT, (lHOA6,3H - ,E12.4)

EN

. 16

Bibliography

1. 	IBM Corporation, System/360 Continuous System Modeling Program User's

Manual. Program number 360A-CX-16X, GH20-0367-4, 1972.

2. 	Pugh, Alexander L. Dynamo User's Manual. Cambridge: The M.I.T.

Press, 1963.

An Industrial Dynamics Simulation.
3. 	Llewellyn, Robert W. FORDYN --

Raleigh: North Carolina State University, 1965.

4. 	Manetsch, T. J. and G. L. Park, "Systems Analysis and Simulation with

Applications to Economic and Social Systems," Part II, Chapter 11,

(Preliminary Edition), Department of Electrical Engineering and Systems

Science, Michigan State University, East Lansing, 1973.

