
AGENCY FOR INTRNATIONAL DEV,LOPMNT FORM UuSE ONLY
6ISLIOGRAPHIC I PUT SHEET 0

A. PRIMARY
I. SU BJEC T A A EOu0 0.0

CLASSI-. r ur -0-
SOECONDARYFICATION

LITEricultural economics2. TITLE AND SUmSTITLE

The computer library for agricultural systems simulation: CLASS standards

manual

3. AUTHOR(S)

(101) Mich.State Univ. Simulation Team

4. DOCUMENT DATE .S.NUMBER OF PAGES 6. ARC NUMBER1974. 17p.I AMC

7. REFERENCE ORUANIZATION NAME AND ADDRESS

Mich. State

8. SUPPLEMENTARY NOTES (Sponsorlng Organaation,Publlohers, Av.alabllity)

9. ABSTRACT

10. CONTROL NUMBER II. PRICE OF DOCUMENT

PN-AAB-794
12. DESCRIPTORS 1. PROJECT NJMER

Computer programmng
Libraries 14. CONTRACT NUMBER
Simulation Ji PrPDo UM7 V

AID 10- 14-740

P9f-A4i3- 79q.
April 4, 1974

4th Draft

'IECOMPUTER LIBRARY FOR

AGRICULTURAL SYSTEMS SIMULATION

CLASS Standards Manual

INTRODUCTION

The standards which are set out in this manual are for the Computer

Library for Agricultural Systems Simulation (CLASS). CLASS maintains and

distributes computer programs and documentations of simulation components.

The components include models designed specifically to simulate processes

and/or address problems related to the library's area of application and

utility routines which perform generally useful mathematical or logical

operations. Each component is basically an abstract concept which is

op.arationally realized in the library as computer programs and wzitten

documentations.

If CLASS is to operate effectively and efficiently in carrying out

its obligations of maintenance and distribution; and if the software is to

be of a standard which will allow the successful building of models, then

it is essential that a set of standards be defined and maintained. These

standards will pertain to the admissibility and continued inclusion of

component models and routines.

The purpose of this manual is to specify the standards to be followed

for definition, computer programming and documentation of library com­

ponents. The manual is divided into three parts: component standards,

documentation standards, and prograbning standards. Broad standards are

given for the conceptual components themselves, while standards for documenta­

tions and component computer programs are specified in greater detail. These

2

standards will help to: (i)maintain a consistency of form, basic technical

style, and type of content in the various classes of documents, and (2)

maintain a consistency of programming style and technical standards among

component computer programs.

Itmust be noted that the standards described here apply to library

components as individual system models or utility routines. Not covered

here is the relationship between individual components and a simulation

"language" system which is necessary for testing and executing the com­

ponents singly or in combination.

COMPONENT STANDARDS

Components will be evaluated for admission to, and continued inclusion

in,the library in five broad respects. These include general applicability,

theoretical and empirical validity, compatibility with other components in

the library, user orientation, and documentation. Since quantitative or

objective criteria cannot be set for many of these concepts, subjective

evaluations will have to be made. In the following two sections, however,

more precise criteria will be set for documentation and

programming standards.

General Applicability

The quality of generality is actually an open-ended, one-dimensional

continuum wherein movement in one direction is towards the more specific

and in the other towards the more general. In this sense "complete"

generality is impossible. Indeed, extreme generality in a model is as

undesirable for the library as is extreme specificity. While a model of

the latter type may be so pragmatic as to have no application but one, one

of the former type may be so abstract and unrealisitc as to have no applica­

3

tion at all. As usual, an optimum (qualitative if not quantitative) must

be found somewhere in the middle range.

In this sense, library components will be expected to be of general

interest and applicability in the library's areas of application, i.e.,

agricultural development. That is, specialized models designed to simulate

processes and/or address problems unique to a particular country or region

within a country will not be included in the library. Models built for

specific countries or regions will be eligible for admission to the library

after reworking to generalize their structure and programming and otherwise

be miade to meet the library's standards and if the processes modeled or

problems addressed are judged to be of broader interest than that for which

the models were specifically written originally.

Similarly, utility routines will be included if they are judged to be

of general usefulness. These may include matrix operations, simplex

algorithms, gradient search procedures, distributed and discrete delays,

table look-up functions, plot routines, etc.

Theoretical and Empirical Validity

Generalized models cannot be completely validated to the extent of

faithfully representing a particular real-world system. Such a validation

can only be made once the models have been adapted in a specific application.

Nevertheless, a model's validity can and will be evaluated with respect to

its own internal logical consistency and its conformity with empirical obser­

vations and with accepted social and economic theory.

Compatibility

Since models and routines will be combined in a variety of configurations

as required for specific applications, library components will be expected

4

to be compatible with one another. Compatibility will be insured and facili­

tated by the use of a common programming language, a standard programming

style, clearly specified and compatible (as to definitions and formats)

inputs and outputs, and documentation illustrating how component combinations

may be made. Programming and documentation standards are discussed below.

User Orientation

For CLASS to be used extensively and successfully, its components and

associated documentations must be user oriented; that is, they must be

both comprehensible and easy to use. The various forms of documentation

and the computer program coding (see the following sections) must be clear

and readable for their respective audiences. Necessary data--initial

conditions and system parameters--must be clearly specified and input means

and formats easy to use. In particu'ar, the policy maker's access to a

model--including policy input and output formats--must be quick and un­

complicated and must allow the option of man-machine interactions where

results may be evaluated and policies changed during the course of a simula­

tion run.

Documentation

One of the most crucial elements of any library component is its

documentation. Itwill be primarily through the documentation that users

will be able to identify the components that best serve their purposes and

then to implement, modify, test and interpret those components. While

the last section of this manual defines standards for another crucial

component element, the computer program, the next section outlines standards

which the component documentation must meet for inclusion in the library.

5

CLASS maintains three types of documents for each-component it

inventories:
 announcement, abstract and documentation. Format and

content standards for each of these will be discussed separately follow­

ing some general considerations.

General

Standard identifying information will appear on the first page of

each of the three document types for a component. This information will

include:

1. the component's symbolic name--up to six alphanumeric characters,

the first of which must be alphabetic, and preferably the same

name as the primary subroutine of the computer program;

2. the full name, for which the symbolic name is a mnemonic acronym;

3. the component type, i.e., model or routine;

4. the version number--a number and a letter representing the

component version and documentation release, respectively,

where the original release of a component is numbered MA.

The layout of the above information will appear on the first page of

each type of document as in the attached sample (Figure 1). In addition,

the first (and only) page of the announcement and of the abstract will

contain the body of the announcement or abstract. The first page of the

documentation will contain a table of contents following the identify­

ing information, with the body of the documentation beginning on the

second page.

In order to assure completeness, accuracy and clarity,* a technical

editor will participate with modelers and programmers in the preparation

of tf
 three types of documents and will have primary responsibility for

seeing that documentations meet the standards set forth in this manual.

*National Aeronautics and Space Administration, "Computer Program

Documentation Guideline," NHB 2411.1, July 1971.

6

CLASS

Document

. Symbotic Name 2. Name 3. Type 4. Vezrion No.

Figure 1

Sample Document Heading

7

In addition, accuracy and, to a lesser degree, clarity and complete­

ness will be checked by at least two reviewers for each component's set

of documents. A computer-oriented re,.iewer will evaluate primarily the

documentation and the computer program itself in terms of:

(a) the accuracy and efficiency of the program as a computer model

of the mathematical model described in the documentation; and

(b) the sufficiency of the documentation for implementing the

computar program.

The other reviewer will have expertise in the subject areas (disciplines)

covering the problem or process addressed by the component. His evalua­

tion will deal with:

(a) the theoretical and empirical validity of the mathematical

model described in the documentation, and Lhe appropriateness

of the component as a whole, in terms of its intended applica­
tions; and

(b) the sufficiency of the documentation for understanding the

component and its intended applications (e.g., the complete­
ness of the discussion of implicit and explicit assumptions of

the model) and as a basis for deciding the appropriateness of

the component for any particular application.

Announcement

Component announcements will be published and distributed to actual

and potential library users as a means of publicizing what CLASS has to

offer. Thus, in most cases it will be on the basis of announcements that

a user will decide, at least initially, whether certain components may be

useful to him and, hence, whether to seek further information by request­

ing the abstract, documentation and/or consultation with the library staff.

An announcement, therefore, while it must be brief (ashort paragraph),

must include enough information so Lhe above decision may be made. As

a minimum, an announcement must give a verbal, non-technical statement of

what the component does, i.e., the problem or process simulated by the

8

model or the utility function or algorithm performed by the routine,

including any special features of the component which may distinguish

it from other possible models of the same process or similar processes.

In addition, examples may be given of possible uses of the component,

e.g., larger models into which it may be embedded.

Abstract

Component abstracts are intended to provide technical experts, analysts

and adv.sors with brief (about half a page) technical descriptions of

CLASS components for use in preliminary component evaluation and selection.

In addition to a more technical presentation, where appropriate, of the

information contained in the announcement (the announcement itself is

included in the abstract as the first paragraph), an abstract states the

inputs required by the component, the outputs it supplies, and the core

storage and sample run execution time for the computer on which it was

tested.

Documentation

There are actually three audiences for which documentations are

intended: managers or policy makers, consultants and analysts, and programmers,

One effective way of meeting the needs of these three distinct audiences

is to compartmentalize the documentation, either in three separate documents

or in three clearly identifiable sections. The first document ot section

would include much explanatory material whi7., the manager would require

in order to understand what the component does and where itmay properly

be used; the second would go deeper into the theoretical and mathematical

detail required by the professional analyst; and the third would provide the

information a computer programmer would need in order to successfully

implement the component at the local computer installation. The documentation

9

will be essential in: (1)selecting appropriate components for a

particular application, (2)validating models composed of a number of

components, (3)analyzing the results of simulation experiments, (4)

operationalizing a component on a local computer in the context of a larger

program comprising a model, and (5)making modifications to a component

as necessary to suit a specific need.

In order to meet these objectives documentation will be in a single

document with three main sections, and the following outline will be

required, each major section starting on a new page:

Abstract

I. Problem or process description

II. Technica! description

A. Mathematical model

B. Sample computer run and, for models, sensitivity test results

III. Program information

A. Program description

B. Program implementation

C. Program lists

1. Of sample run executive

2.. Of component

Bibliographic references

The abstract described above will be included in the component

documentation as introductory material.

I. This section will present a non-technical description of the

problem or process the component simulates and suggest possible applica­

tions of it. In the case of a utility routine, the mathematical function or

operation performed will be discussed. In essence, the objective of the

10

discussion is to describe the need and rationale Justifying the component.

The use of tables and figures is encouraged where such use contributes to

the efficiency and clarity of the discussion. In addition, an example

of the component's use will be developed and carried through the rest of

the documentation. Any references cited will be listed at the end of

the documentation rather than in footnotes.

IIA. The technical description of the mathematical model will be

presented in the context of the example developed in section I and will

include (in addition to equations) process flow diagrams, graphs, etc.

as necessary to enhance the efficiency and clarity of the discussion of

the model equations. The discussion itself will state the assumptions

embodied in the equations, identify the input and output variables of

the component and indicate limitations and weaknesses of the model.

Again, any references cited will appear in the bibliography at the end.

IIB. The sample run will be based on the example developed in

section I. Included in the discussion will be the data input used, the

equations and assumptions used to generate input variables exogenously

and the output produced by the component. In addition, for models,

results of sensitivity tests using the sample run data as a base will be

reported so users will have information on the relative sensitivity of

data input requirements.

liA. The program description will discuss the:

a) operating environment

The machine, operating system, and compiler used for

test runs will be specified, including thecomponent's

sample run central processor compile and execution times

and core storage requirements. All necessary FORTRAN

library functions will be listed and any tape and file

requirements as well as special hardware requirements will

be stated.

b) program struc_...

This dicusssion will include a list of all subprograms

supplied as part of the software component with a brief

description of the purpose of each. COMMON block structure

and usage will be explained. If the component uses overlays,

their structure will be explained. Where necessary to meet

the standards of clarity and completeness, appropriate sub­

program flow charts and calling sequence diagrams will be

provided.

!IIB. 	The program implementation information includes:

a) internal data requirements

A list of all variables whose initial values are set

within the program, either in DATA statements or assignment

statements, should be provided.

b) input

An explanation of all exogenous data requirements of the

program--including the logical units used, file descriptions

and formats--should be included.

c) output

A description of all intermediate and final output formats

(i.e., WRITE statements), different types of output available,

logical units used and a rough guide to the number of records

of output produced should be included.

d) error conditions and program restrictions

12

All known conditions which will cause improper program

functioning should be explained.

e) special instructions (if any)

IIIC. Lists of the computer program of the sample run executive

program and of the component itself will be included.

Bibliographic references, if any, will appear at the end.

PROGRAMMING STANDARDS

Objectives

The objectives of programming standards are to:

(1) maintain a consistent programming style

(2)maintain compatibility among component computer programs

(3) ensure adequate error checking

(4) facilitate further developments

(5) enhance readability

(6) ensure compatibility as much as possible across computer models

and across compilers

These objectives have beEd set with the belief that their attainment will

resolve a large number of problems which might otherwise be encountered

by users of CLASS software components.

13

1. 	 Language

a) 	The language to be used Is FORTRAN. In general, the version

of FORTRAN which is used must be compatible with the compilers

currently in use at MSU and on the IBM 360/370 series computers.

Effort should be made to ensure that the FORTRAN standard used

is compatible with as large a number of additional compilers

as possible. Within this general requirement, the specific

points which follow are not at all to be considered cxhaustive.

b) 	11AMELIST's will not be used.

c) 	If a state-went is continued to following cards, no comments

shall appear between the continuation cards comprising the statement.

d) 	Hollerith constants shall not appear in replacement statements.

a) 	If variables in labeled COMMON are to be initialized in DATA

statements, this must be done in a BLOCK DATA subourinte.

f) No mixed mode arithematic is permitted-use FIX and FLOAT functions

where necessary.

g) 	Hollerith shall be used in FORMAT statements rather than

asterisks or apostrophes.

h) 	The following form of READ and WRITE statements shall be used for

normal data input and printing (or other output mode):

READ (lu, fn)

WRITE (lu, fn) -­

where "'lu" is a logical unit number and "fn" is the statement

label of a FORMAT statement. PRINT statements will not be used.

i) 	No array should have more than three FORTRAN dimensions. For

a larger number of dimensions, an Index-generating function

should be used.

2. 	Coding Format

As a minimum for readability and consistency:

a) 	Continuation cards should be indented to the column following

the end of the statement name (e.G., IF,CALL, FORMAT, etc.)

or following the equal sign in an assignment c..tatement.

b) 	When continuation cards are required the break should not occur

vithin a symbolic name,

14

C) 	Blanks will be used: before and 	after equal signs, after
conas between symbolic entities in COMMON, DIMENSION and
DATA statements. In particular, arrays in DATA statements
 may 	be arranged in tabular fashion for readability.
A blank
should appear before and after each relational, logical and
arithmetic operator.
Elsewhere, blanks are optional with due

rigard to readability.

d) 	For reference purposes, columns 73-80 should contain an
Identifter consisting of four alphanumeric characters which identify
the
routine and a four digit sequence number. For example,
a routine called MAIN would have in columns 73-80:

MKAN0005
MAIN0010

MAIN0015

corrections in later versions should be numbered with a two
digit correction set number and two letters identifying the
programming followed by the four digit sequence number.

For 	example:

A - 0 + P MAINOlOO

C - CA + 3)/10 olCW01o2

D - A + B
 MAIN0105

3. 	Ordering

a) 	PROGRAM, SUBROUTINE or FUNCTION
statement

b) 	 COMMON
c) 	Type statements

d) DIMENSION

e) EQUIVALENCE

f) DATA

g) 	Statement functions

h) 	Executable statements

1. 	Initialization

2. 	Body

3. 	 RETURN.(i. requirei
4. 	 END

i. Counents

a) 	 All comments should be preceded followed byand a blank line.
b) 	Title heading comments should include a brief description of
what the routine does, all inputs to the routine, any formal
arguments, and any technical restrictions as to variable type,

array, size, numeric or alphanumeric data.

15

c) A coent should be placed at the beginning of each logical
section of the routine, briefly describing its function.

d) 	Any call to an entry point of a subroutine other than by the
subroutine's name should have a comment telling what subroutine
contains the entry point and on what line it
can 	be found.

e) Variable name definition consisting of an explanation of each
nontrivial variable or array name which is used in the com­ponent. Definitions should appear in the primary subroutine
of the component. The definition of variables In COMM*ENTs
will take the following format (capitalized words will appear

in the definition):

Name(IJ,K). Definition IN units.
Type (REAL or INTEGER-­if other than indicated by the initial letter).
(definition of I, definition of J, definition of K).
/COMMON block name/.
DEF: subprograms were defined.

USED: subroutines where used.

f) 	Any unusual circumstances or any information which would be
of help to someona unfamiliar with the routine should be
included in the comments.
Also, any variations from these
standards should be noted.

5. 	Statements

A) 	PROGRAM statement ­ logical unit names should be numbered
by function; i.e.: TAPE01 -TAPE30 for input files; TAPE31
-TAPE60 for output files; and TAPE61 -TAPE99 for input­
output files.

b) All common blocks should be labeled, separate COMMON statements
should be used for each block.
They should.be ordered alphabetically.

c) Separate DIMENSION statements should be used for the variables
of each common block and they should appear in the same order
DIMENSION statements for local variables should appear last.

d) 	Initializatijn statements should be separated into groups
by their function.
Each group should be prefaced with a
comment explaining what they are.
Initialization for local

use should appear last.

e) Parenthesis should not be nested more than three or four

levels deep.

f) 	Statement labels should be in numerical order.

s)Symbolic naming
1. 	 The names of variables, arrays, subroutines functionsand common blocks shall be no more than six characters long.
2. 	 Except for DO loop parameters, the choice of names

should be an acronym reflecting as closely as possible
the 	meaning of the variable.

http:should.be

16

3. No symbolic name may be used in more than one of the

following contexts: variable name, common block

label, subprogram name.

h) 	Use of the assigned go to should be avoided.

i) 	Control should never be transferred to a statement earlier

in the routine except in a loop.

J) A comment should appear with a computed o to explaining

what the different choices represent, if it is not clear

from the context.

k) 	IF statements.

1. 	The logical expression should reflect as closely as

possible the "natural" way of looking at the question

(i.e., optimization should be avoided where possible.)

2. 	If more than one line IF is needed, the following structure

should be used:

IF 	(logical expression) GO TO £1

as
1

GO 	TO 12

tl

tm

P2 	 CONTINUE

m) 	Loops

1) 	Loops will be DO loops rather than programmed

IF()GOTO. If the limit of the DO is not

known, 99,999 should be used.

2) 	All DO loops should end on a unique CONTINUE statement.

3) 	Nested DO loops should be coded as follows:

7

Al

DO 30 I-, 10

DO 20 J-1, 20

DO 10 KmS, 25

10 CONTINUE

20 CONTINUE

30 CONTINUE

4) An e-zit out of a DO loop should be unique and should

be the last statement before the terminating continue.

If another exit from the DO loop is necessary it should

be noted and a comment should appear before the terminating

continue listing the locationof all such exits.

n) All format statements should be grouped together as the last

statements before the RETURN or END. Any format statement

that is used by more than one READ or WRITE should be followed

with a comment indicating how many statet..nts use it and the line

numbers where they can be found.

6. 	Error Messages

a) 	Error messages will be included in association with data

checking and any other checks made within the program.

b) 	Error messages will include the following formation:

1. 	the subprogram generating the error message

2. 	where in the program and at what stage of execution (usually

represented by the current incremental value of some DO

loop) the error occurred

3. 	what the error was (incorrect data values, an incipient attempt

to divide by zero, etc.)

4. 	the actual value of the offending piece of data and if

possible what it should be.

Overlays

a) 	All variables to be saved will be in common in the main overlay

written out onto disks or tape and read back in after the

subprogram has been replaced in core.

b) 	Except for unchanging variables, all variables initialized

In data statements must be so initialized in the main overlay.

c) 	Variables in COMMON in the main overlay must not be in data

statements In lower level overlays.

