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ACCURACY IN THE SIMULATION
OF DISTRIBUTED DELAY PROCESSES IN MODELS OF

SOCIOECONOMIC SYSTEMS

M, H. Abkin
C. Wolf

Introduction

Distributed time delays occur frequently In many contexts in sbcldé:f
economic systems, and models of such systems have reflected this. Exampies 
include production lags in Industrial processes [1], age cohorts ln‘*ree
and cattle populations [2,3], transportation lags, stimulus response lags,
and po]|u+ion generation response lags [4]. In many cases, distributed
de'ay models can be used as aggregate representations of mlcro-processéé
whereln lag times of individual enti+ies are random variables [5]. Fof
example, in a mall order house the time for an Individual order to be
processed and shipped may be a randem variable. In the aggregate, however;
this stochastic discrete-event process can be modeled as a deterministic
continuous delay process looking at the flow of orders through the mail
order house, where the storage in the delay represents unfilled orders.

One mathematical mode! of distributed time delays which has proven"

very useful in socioeconomic systems models is th: k*h-order ditferential

equation:
" adk 4, . d“lyety TG T
K g4k k=1 gpk=t 7t T AdE agyity = Xt
wher2:
(2) a = —K__ fl)l
P T k=001 %) e



‘ﬁkygexpanston of . (1113 ; and where

The flrsf—order dlfferenflal equaflon resulflng when k=1. It can readily»
be shown [6] +haf (1) ls equlvalenf to k flrsf—order dalays In series.
(Flgure 1), each modeled by

(f)

dr|
+ r (+)

‘3’ T i "‘11

(ﬂ‘ B LT PRP S
Qhetefbé(f)k= x(+) and r = y(f?; Flgufe 2 shows the zero-state unit
:fmpulsé response of (1) for dlfferén? values of kK. |
- When using distributed delays to model aggregated random micro=-
proceéses, as dlscussed above, 1t has been shown [5,6] that (1) is fhé i
éqrrecf model to use Qhere random Individual lag times follow an Erléng,
distribution. In this case, t is the mean of the distribution and rz/k
lé i+s varlance; as k gets large, the distribution approaches a normal
distribution with mean t and zero variance (l.e., a discrete delay), as
Indica*ed In Figure 2.

Where the delay is a material flow delay rafher than an lnformaflor
;delay, i+ Is usually deslired to compute storages In the delay (e{g., the
number of unfilled orders In the above example). This may be done elther

by Integrating net inflow:

ds(t) _ -
(4) e x(t) - y(+)

or equivalently [6] by

k
(5) s() = =) r (.

T
Kizy

In simuiating such delays, tuier inTegrartion 1S COMmMONIY LUSeU L1,/

to solve (3),. I. e., k first-order difference equations of the form:
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kfh—Order Distributed Delay

Zero-State Unit Impulse Response



(BY7F (1) = £y (4=h) 4 h&Cr,  (h=h) = (=0, B=1,2,0.0k,

where h Is The lnfegraflon sfep S'Ze,'gi,;

recurslvely by 3

~‘g*555f)??;§(T’h;

e.ﬁSImulaflng w|+h (E) (or any. ofher numerical lnfegraflon fechn!que{
s?ablll?y conslderaflons place an upper bound on h. Accuracy problems
arlslng from fhls consfralnT and alternative ways ‘o overcome fhem are

dlscussed ln the following sections.

Sfablllfy Criterion and Problems Posed for Simulation

As shown In [6], looking at the homogeneous part of (S)p'
B et = (- nE em,

fandtsolvlng recurs!vely, we flnd that

(9) }-, (1) = r'(nh) (1-n 50 e
;for a*gtven inltial condition f (0). Soluflon stabl |ty (l.e., for fhe

solu+lon to be bounded as n increases) requlres, +herefore, fhaf
,(1;0) ‘l1-h -| <1
fwhlch lmpl!es that:

any of_.hizf.

Filgure 3 1llustrates 1o numer 1car 1wsuris 10 various vaiues oT n as
compared to the analytical solution. Obviously, a reasonable simulation

requires h < ﬁ- (we must of course have h > 0); Forrester [1] recommends

2k as a rule of thumb.

In a large model containing several such delays, the requirement

h <

becomes:
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' ffennlead To exTremely

Thls can:o

i{small‘values for h and fhus, for arge complex n“dels, exnenslve s!mulaflons.§
E;Llewellyn [7] suggests that a vajue for h be chosen for fhe model as a H
:iwhole consistent with accepfable lnfegraflon error and wlfh compufaflonal
»{efflelency and that, for +hose,delays J for wnlch TJ/ZKJ < h, h be dlvlded

.'nfo subinfervale of lengfh h! = h/al, where: ’

(i
s~f4j<13) ay = [1 +h—i], |

fgso,fhaf ht < TJIZKJ and aJ Is .integer. Notice that.when h < 1./2k..a:
fwlll be one and hj ’/
leen a, Llewellyn s subrou+Ine, DELDT (Flgure 4) —/ dlvldes the Tlme‘

}Inferval (f—h, +] Info a sublnfervals of lengfh h' h/a and solves (6)

3 "’ + h'-k-<r' <+J-h') -'l’}(*j'h'))» i g

it ‘ g 0
;lllusfraflve purposes, Flgure 5 assumes rk(v) > 0 for ve(f—h

TS 1) = RN 1] ot = e, Gor

;The lnpuf X and Infermedlafe rates ry are reduced byfiftuﬁ
:(fhe r' are so reduced by vlr+ue of x(t) and " (0) belng ‘so" reduced

;fhenou+pu+ Is computed as:

1/ln what follows, we will assume a particular: delay J and so wlll
drop the subscript ] for convenience.

2/in DELDT, RINR
IDT = a, DT = h and K

" on

x, ROUTR = vy, CROUIKyI) = ri = r‘/a,‘DELf=‘rQF



SUBROUT INE DELDT (RINR, ROUTR,CROUTR, DEL, 10T, DT; K).
DIMENSION CROUTR(1) | -
DEL1 = DEL*FLOAT(IDT)/(FLOAT(K)*DT) -

ROUTR = 0.0 o

00 2 J=1, 10T

RIN RINR/FLOAT(lDT)

DO 1 1=1,K

ABC CROUTR( 1)

CROUTR( )= ABC+(RIN-,-ABG)1/b|T£’Li1‘_

‘,v“RlN |

2 ”_ROUTR = ROUTR+CROUTR(K)

)i.'RETURN




%¥(+-h+h' f+h'] rafher |

t‘ (fJ) "‘l" (fJ-h') + h'h(ri 1(1'J‘h') - r'(f "h')) '=1)-oa;k;

ﬁ7 ]i The dlfference Is readlly apparen+ in Table | where the results of

fDELDT and DELF are compared with the analytical soluflon for y(+) for

ffhe;fesf lnpuf x(+) = 100u(t) and with t=3, k=3 and h=.25. The analy+fcél

;soluflon ln fhls case Is:

"{(18) -u.;v*‘(‘r) = 100[1 - e ( 51' +++1)]

gAlThough h < t/2k and fhus a=1 by (13), a was arblfrar!ly sef +o 4 for
ffhls IIIusfra?lon. 4/ Notice Thaf when c 1 and h = .0625 DELDT and DELFf
fglve +he same results; and those of DELF are fhe same as for a 4 and -
fh = ,25, as they should be. H

When modeling delays in physical flows; however, storage In the delay
--computed by (4) or (5)--may be of more concern than the output rate, In

which case DELDT and, to a lesser extent, DELF both have problems. An

é/ln DELF, RIN = x, ROUT ="y, R(l) = M e 417 DEL = 1, IDT =
DT = h and ¥ = K.

ﬂ/SeTTing o > 0 even though h < t/2k may be desirable in certaln

cases where greater integration accuracy is required.



~, 7
)

rk(fa) = rk(f)
rk(Ta_I)
rk(fa_z)

rk(fz)

rk(+1)

Subiftaryals Created by DELDT and Output y(+)

Wheh £,(v)' >0, velt-h,t1°



SUBROUTINE: OELF (RIN,ROUT,R, L, 107,071

IFCKEQ.1) GO'TO 15
o010 et
RO =RODHAR(RCI+H)=R( 1))
;}OerNfINUEf |
15 RIK) = R(K)+Afjh1N;ﬁkkii;
~20ﬁchT|NQE

ROUT=R(1) -

RETURN'

END

“Flgure 6

Subroutine DELF.



Table 1

Comparison of DELDT and DELF Outputs

For Step Input x(t) = 100u(t)

Percent Deviation:

1000y (1) - y*(+))/y*(+)

o =4, .25 a =1, h=.0625
Analytical
Time Qutput : R §
t y*(1) DELDT DELF DELDT DELF S
1 2 3 4 5 6
0 0 0 0 -0
1 8.03 -27.23 -7.59 ~7.59
2 32,33 -8.12 -.03 -.03"
3 57.68 -2.56 1.26 1.26
4 76.19 -.64 1.23 1.23.
5 87.53 -.00 91 91
6 93.80 .15 .59 .59
7 97.04 A5 .35 .30
8: 98.62 .10 .20 .20
9 99.38 .06 1 A1
10 - 99.72 .03 .05 .05
A 99.88 .02 .03 .03
2 99.95 - .01 .01 .01
3 99,98 .00 .01 .01
14 99.99 .00 .00 .00
15 100.00 .00 .00 .00 :




fﬂlmporfanf fealure of +hls dlsfrlbuled delay model,“(lf”orw‘3) and l+s

;?elhulallon model (6), ls that it conserves flow, l.'.,rs‘orage 1s. nelfher
E%qalned nor lost in the course of the delay and- (4) ls frue.i lf fhe -
stability criterion (12) requires a« > 1, however, slmulallon by ll4)

with DELDT or (17) with DELF does not conserve flow; | 8., whlle (4)

‘and (5) are true, the numerlcal solution (7) cannof be used (unless ' f5*
It Is execuled before The IF sfafemenf in Flgure 6), l+s use leadlng

‘elo a nof lnslgnlflcan+ sfeady-slafe error ln the case of the above Tesf $5
frlnpu+ (Table 2). Slmulallng with (5) directly, however, gives very good'5
results (Table 2), results whlch are ldentical to the case where a = 1 B
and h = .0625 for both (5) and (7). The analyflcal solution for sforage‘
In. Table 2 Is: | '

;gole);:s*(t) = 100[3;e (. 5t +2++3)]

G Al+hough this slorage compufaflon problem can be solved elfhe by
?uslng (5) or by using (7) wllh h replaced by h' (l.e.; by placlng ll
;ln the outer DO—loop and before fhe inner DO-loop in Flgures 4 and 6)
islorage will not be conservad In a larger system--of which +he delay ln'fi
question may be only a small part--when the oulpuf y(l) Is used to
represent storage leaving the delay. For-example, lf~+he delay represents
the processing and shlpblng ol orders through a mall order bouse--where
x(t) Is the rate orders are received, y(t) is the rate orders are shipped
and s(t) is unfilled orders--the number of orders shipped is the time
Integral of y(t+). |In another example, the delay may be one link of

a chain of delays modeling production stages of cocoa trees [2]--s.g.,

the gastation stage, a stage of Increasing ylelds, maturity, etc,--
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Table 2
Comparison of DELDT and DELF Storages

for Step Input x(t) = 100u(t)

Percert Deviation®: 100 (s(t) - s*(1))/s*(+)

. B b/ +ae

y Euler Integration— | By intermediate Rates—

Analytical
Time Storage
s*(t) DELDT DELF DELDT DELF
2 3 4 5 6
0 0 0 0 0 0

1 97.67 1.59 1.19
2 178.20 4,00 2.59
3 232,79 5.39 3.22
4 265.20 6.02 3.40
5 A 282.82 6.25 3.38
6 291,82 6.31 3.31
7 296.22 6.31 3.24
8 298.29 6.29 3.19
1oee 299.24 6.27 3.16
10 299.67 6.26 3.14
R A 299.86 6.26 3.13
12 299.94 6.25 3.13
13 299,97 6.25 3.13
14 299,99 6.25 3.13
15 300.00 6.25 3.13

kor 4 =4, h= .25

55ty = s(4=h) + hix(+-h) = y(+=h))

sty

T k
) r, ()
i=1

=
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where the output y, (+) of fhé fIf$nge]ay[IS;ThQ‘lhpufﬁx;(T);+o the
second delay.

in both cases--elfher;where“'(éQﬁTe

vfozbe In?egrafed or where [t- Is

the Input to anofher delay (ro ln (6)‘1 _he nafure of Euler lnfegraflon
requlres y(.) fo be consTan+ over The lnferval [f—h, t). When a > 1 &
and~h' h, y( ) Is consfanf only over [+-h, +-h+h'). Table 3vsthS{}ﬁe:
resul?s when the delay oquuJ of.fhe-fesf case of Table 1 is fhé'inpﬁ+};f
+9 another delay for which r:g and k=2, The analytical édluflonskférvaﬁfpufg

ahd s+orage of the second delay In this case are:

% o'

| '20) y*(+) = 100[1-2e *(f +141468) - 9 31 (2t-15)]

ug-, '7 ; g »wk.;v . Z¢ , 1
fSOO[]fg‘f(,5+,+101+55) - 9e 3 (+-6)].

B ."3 VR

b?i;;;+hé+ for bELF'in +He‘second delay of the Chaih, s(t) computed by -
55 fcqumns 7 and 11) ahd y{(t+) (columns 5 and 10) are not the same when -
;=4 and h=.25‘as when a=1 and h=.0625, whereas they are the same for the
first delay of the chain?(Table 1, columns 4 and 6), For this test Input,

 nevertheless, DELF results are an improvement over DELDT results.

The next section discusses al*ernaflVefways to address this problem

Alternative Solutions

Several approaches to correcting for the non4conserva+lon‘0f‘fldwa‘“'
~when a > 1 were tested, and two of the more promising ones and thelr short-
comings are reported in this section.
The first approach is based on the recognition that for Euler integra-
tion the output rate y(+) Is not Just the Insfanfanéous output at time T

but also is considered the constant output over the Interval [+, t+h),


http:300[1-et.(.5t
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Table 3
Comparison of DELDT and DELF Used as the

Second Delay in a Chain

Percent Deviation of Simulated From Analytical
| a=4, h=.25 a=1, h=.0625
Output Sforagegj S+orageE/ Output Sforagesj
Anal. | Anal. ’
Time | Outp. | Strg.
t y¥(t) | s*(t) DELDT | DELF |DELDT |DELF |DELDT | DELF (DELDT and DELF)
1 2 3 4 5 6 7 8 9 10 1
0 0 0 0 0 0 0 0 0 0 0
1 .18 2.30 -85.69| -60.08]|-66.36 |-49.52| -66.20| -49,31] -38.38 -23.44
2 2,91 20.60 -51.73| -27.68{-31.38 |-19.95 -30.20| -19.10{ -13.15 -6.83
3 11.28| 59.43 -30.63| -13.83{~16.45 | -9.34| -14.08; -7.90 -4.,73 -1.83
4 24,91 109.26 -18.42| -7.07] -9.02 | -4.5% -5.61] -2.60 -1.23 .C7
5 40.88| 158.81 ~11.13] -3.52| -4.99 | -2.10 -.76 .18 .27 77
6 56.25( 201.10 -6.69| =~1.63| -2.72 -8 2.13 1.67 .85 .95
7 69.25] 233.71 -3.96 -.62| -1.44 -.26) 3.87 2.47 .98 .89
8 79.28| 257.12 -2.30 - 13 -.72 020 4.9 2.89 I .74
9 86.52| 273.05 -1.29 091 -.34 131 5,52 3.09 75 .57
10 91.48| 283.46 - 71 A7) =14 .15 5.86 3.17 .58 42
11 94,74| 290.05 -.37 A7 =04 A3 6,06 3.19 42 .29
12 96.82| 294.11 -.18 .15 .00 .10 6.16 3.19 .30 .20
13 98.11| 296.56 -.09 1 .02 07 6.21 3.18 .20 A3
14 98.89| 298.02 -.04 .08 .02 .05 . 6.24 3.16 J31 .08
15 99,36 298.87 -.01 .05 .01 03 6.25 3.151 . .09} .05
a/ ¢ N
sh) = + ) r, ()
=1
b/ =
~5(+) = s(+-h) + h{x(1=h) = y(+-h))
74
Both methods gave identical results for s(t),
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l.e., y(f) 1s a step funcflon. However, when. a > 1 y(?) Is constant only
jover the lnferval [+, ++h'), where h' = h/a.“ To conserve flow, then, whether
Elnfagraflng the oufpuf or feedlng It Into another delay, we want not y(T)
jbuf y(+) where y(t) s the a average output over the Interval [+, ++h)

’(22) ?,'m =

9[—‘

z’u),

) = + LB =
fwhereufJ + Jh and y(fj) rk(fj) ln (17)

'L;Unforfunafely, a* flme t we canno+ know +he oufpuf for sublintervals
:ln [f. ++h) we only know l+ for sublnfervals In the previous perlod
[t=h, 1); f.e., we only know y(t-h). Notice that (22) Is very similar
fo (15), the output equation for DELDT. Where DELDT is in error is iIn
Interpreting the resulf.as y(t) rather than y(t-h+h'), l.e., as the
lnsTanfaneéus output at t to be used as the average over [t, t+h) rather
than as the average over [t-h+h!, ++h'). (This was seen above and in
Figure 5.) Running the summation Index from O to a-1 Instead of from -

1 to a (and defining TJ ; t=h+jh') glvés us y(t-h).

The problem with this approach Is that, at least for the delay{lﬁf;f
question, the normal order of simulation time sequencing has to bé
réversed, the level equation (7) would have to follow execution of the
delay rather than precede It, because y(t-h) (which would replace
y(t-h) in (7)) is determined In the delay at +ime + rather than at +ime
t=h. Similarly, a chain of such delays would have to be executed in
reverse order, i.e., a delay whoss output feeds Into the next would be

pxecuted before rather than after the next.
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There would be very real difficulties in interfacing parts of a
model having this reverse time sequencing with other parts having normal
sequencing, not to mention the increased opportunity for error. Further-
iore, y(t) is unknown at time t even though it may be needed. For example,
in a chain of n delays representing n age cohorts in a population, the

output of the last cohort ?B(T) may be considered deaths,

(23) D(t) =

fi t~10

us; () + Vn(t),

=1

where D is indlvlduals/yeéhvdylng from the pOpUIa+|on;;u'fis +he prcportion

dying per year from the iTh cohort, and Sy Is population In the I*h

cohort,
Nevertheless, a routine such as DELF1 (Figure 7) Incorporating this

procedure, when'If can approprlafély and safely be used, does malntaln

conservation of flow In, for example, a chaln of delays when a > 1;

1.e., storage computed by (7) is equivalent to that computed by (5) with

no steady-state error. Table 4 shows the results of simulating the earller

example with DELF1--that is, two delays In sequence, h=.25, a=4, r'=k1=12=3,

k,=2, x1(+) = 100u(f$, xz(f) = 7}(+) (Instead of yI(T))--as compared to

2
the analytical solutions of (18)-(21).. Only one storage column is shown
since results are ldentical for elther method. For the first delay of the
chain, results are identical to those of DELF for both output (Table 1,
column 4) and storage computed by (5) (Table 2, column 6). Note also
that, In DELF1 (Figure 7), ROUT = y(t=h) = y(+=h) for a=1, as should be
the case. In this case G=1), y(+) = y(f) = r, (+) = R(1) is also known. |
The second approach to malntaining the conservation of flow when
a > 1 takes as its point of departure the first approach, i.e., the

computation at time t+ of y(t-h). Namely, an attempt is made to project

what ;Yf) will be over the period [t, t+h) based on past values of VY-).
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SUBROUTINE DELF1 (RIN,ROUT, R, DEL, IO, DT, K)

DIMENSION R(1)

A = FLOAT(K)*DT/(DEL*FLOAT(|DT))

KM1 = gsi

ROUT = R(1)

0020 J = 1,107

IF(K.EQ.1) 60.T0 15

DO101=1K

RO = RO + ARROH) 2ROD)

10;C6NT|NUE -

15 R(K) = R(K) + AX(RIN-R(K))

" ROUT = ROUT+R(1)

20 CONT INUE
ROUT = (ROUT-R(1))/FLOATCIDT)
RETURN -
END

Figure 7
Subroutine DELF1
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Table 4

Results Uslng'DELFl to Simulate -

a Two-Delay Chain, Compatéd

to the Analytical Solutions

Percent Deviation of SImuIaTed From Analytical

First Delay

Second Delay

Time ' ' ‘ ‘
t+ | Output yl(f) Storage s,(f) Output y, (1) Storage s, (1)
1 2 3 4 5
0 0 _ 0 0 0
1 -7.59 .57 -32.15 -23.55
2 -.03 .96 =12,04 -6.95
3 1.26 W92 oo =4.46 -1.92
5 91 ' .47 ? 26 .12
6 .59 .28 .83 W91
7 .35 716 .96 .86
. 8 .20, 409 489 .72
10 .05 ' 02 .57 41
1 03 0F 42 .29
12 01 Lot .29 .20
13 01 00 20 A3
14 00 | .00 W13 .08 e |
15 v00 g =400 .09 . W05 - ]




,'ThISfapproach’efhen *assumlng a good esflmafe of y(f),."ijm{ﬁéfégﬁfagﬁﬂgkf;frf

rse. he compufaflonal sequence.’ " L
f_;;ano second-order Lagrange Inferpolaflons were fasfed as. esflmafeo
-(f),of y(f) (ther estimators tested, Includlng the 2nd~order Taylor
7fserles expanslon, led fo steady-state errors in fhe compufaflon of storage.)
1iThe esflmafors are: |

-[<24) y <+) 2y(+- ) - y<+-2h)
' /

,5for +he flrsf—order Inferpolaflon and

'.(25) 'y, <+‘7j,3[y(+-h) - y(f—Zh)J + y(+-3h)
«for fhe;second~order lnrerpola+lon

Thls approach Is fur+her reflneo by correcflng y (+) for +he error ‘
on the previous es+lma+ion, l. e., by addlng y(f— ) - y (T-h) fo (24) and‘
(25). This can be done since at time + y(t=h) Is known. The esflmaforS‘
become:
(26) yg(t) = 3ytt-h) - y(t-2h) = §_(+=h).

‘and.7

;(27) y (+)4= 4y(+-h¥ ,“,:ff‘ )+ ¥

M ). ~£27) programmed In Flgure 8 gave conslderably bef+e|
resul+s +han dld (26) and so is shown In Table 5 compared to +he ‘*f
1analy+lcal solutions for the above example. For the first delay ln’
the chalin, the Instantaneous output y1(+) (the projected average output
;;(+) Is not shown) and storage computed by (5) are identical to earller

results. For the second delay, DELF2 gives as good approximations to the
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15

20

21

SUBROUTINE DELF2(RIN,ROUT,ROUTAV,R,DEL, 1DT,DT,K)
DIMENSION R(1), ROUTAV(2)

A = FLOAT(K)*DT/(DEL*FLOAT(IDT))
KM1 = K-1

ROAV = R(1)

D0 20 J = 1,107

IF(K.EQ.1) GO TO 15

DO 10 | = 1,K

RO = RO + AR(RE[+1), = R(I)Y
CONT INUE

R(K) = R(K) + AX%(RIN.=.R(K))
ROAV = ROAV + RCT)

"CONT INUE

ROAV = (ROAV - R(1))/FLOAT(IDY)

ROUT

4,¥ROAV - 3. %ROUTAV(1) + ROUTAV(2) ‘- ROUT

ROUTAV(2) = ROUTAV(1)

ROUTAV(1)

ROAV
IFCIDT.EQ. 1)ROUT = R(1)"
RETURN

END

Figure 8
Subroutine DELF2



Table 5

Results Using DELF2 to Simulate

a Two-Delay Chain, Compared

to the Analytical Solufions

Percent Deviation of Simulated From‘Analyflcal._~i :
— .
First 6e|ay Second Delay
Output Storage 51(+) Oufpuf Storage 52(+)
~y,<+> - ’ y2(+)
| “a | b a b
2 3 4 5 6 7
1 0o | o 0 0 0 0
~1.59 .57 .75 -48,15 |[-30.60 |-30.31
-.03 .96 .97 -12.97 -6.82 | -6.63
1.26 .92 .89 -4,35 -1.71 | -1.63
- 1.23 .70 .67 -1.07 .10 .13
91 .47 .44 .32 .76 .76
.59 .28 .27 .85 .93 .91
.35 .16 .15 .96 .87 .85
.20 .09 .08 .89 .72 1
A1 .C4 .04 .73 .56 .55
.05 .02 .01 .57 .41 .40
.03 .01 .00 41 .29 .28
.01 .01 -.00 .29 .20 .19
.0t .00 -.00 .20 A3 A3
TP .00 000 -l01 008 QO6 005 ’."

3

ams(t) = ] e
ER A Ll I

b==s(4) = s(t-h) + hix(t=h) = 7, (+-h)).
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output and sforage,.for the most part, as does DELF1 (Table 4, columns 4 aﬁd5)
and much better ones than does DELF (Table 3,qulumns 5 and 7).
As for maintaining conservation of flow, comparing columns 3 and 4 of
Table 5 with columns 6 and 4 (respectively) of Table 2, and cclumns 6 and 7 of
Table 5 with columns 7 and 8 of Table 3, DELF2 clearly removes the discrepancy
(well within reasonable tolerances considering overall simulation accuracy)
between the two methods of computing storage when & > 1. In particular,
there Is no steady-state error when using Euler Integration with DELF2
as there Is with DELF and DELDT. B
There are two major shortcom!ngs with DELFZ,vhbwevér. First, the
. projected average output does not deQeneraTe to Tﬁe thfanfaneous ou*pQ+ 
when o = 1, as it.does in DELF1. Hence the logic to do this is included
“at th end of the program in Figure 8. , T |
Second!y and more seriously, alfhough.fho esflma;or (27) W6rks wel |

for this example, in general It Is sensitive to the Input function x(e)

and the parameters h, t and k. The’erfgg In the 2nd-order Lagrange

-interpolation of (27) is:

- 3 ¢oy(z)
(28) Ey (1) =h -—13—- evaluated at z=t, -
dz :

which, from (22) and (3), becomes for k > 3

- n2 % g3z
(29) Ey (t) =+ ] E£XEL evaluated at z=t
ol ¥ i g7
1, k3 % :
= —(h2) Jgo[rk_:,,(fj) = 3y pth) 30 () - CRME

where fJ = ++jh' and y(TJ) = rk(+J). The Input x(+) and its derivatives

appear directly in (29) when k < 3 and Indirectly for any k in the relative

values of rl(-), i=1,2,...,k, so that a rapidly changing input will increase



the error In V;(f). In additlion, short high-order delays will havé greater
'p,error in ;;(f) because of the faéfor (hk/r)s. The estimation Is good In
this example because k=3, t=3 and x(t) = 100u(t) for the first delay in
' the chain, and k=2,,r=3‘and x(+) Is smooth (equation (18)) for the second .

‘delay.

Compllcaflons for Nonconservaflve and Varlable Delays

If h ls ohosen to satisfy (12) for all delays J In a model, In spife
of +he lnefflclencles created, none of +he above problems wlll occur. |
’However, when (3) is genera‘*zed fo Include cases of variable delay flmes
r(?) ‘and" sforage Iossas. followlng (12) for all delays won't work because
+he sfablllfy criterion for h,’l e., Its upper bound, becomes a time
varlablel ‘ o _ B

The generallza+lon of (3) ls"f

dr'(f) k -

<+)74 | <+><1 "*’

1 dt(f))

A(?) +

4 t@;;_ r(f)“rl 1, (e

rJ(f)'

NGESNGING +'kJJ'

J J

:Néfé that (31) degenerates to (12) when ij(f)f%;b?ﬁﬁdkﬁ}(fiﬁé5b§;§iﬁf§
D= h'(+) and a, = a,(+). "

Implies +ha+.hJ ] ] ]

Summary and Conclusion

A k+h—order distributed delay model was described, and Its application

to aggregations of random delays of discrete micro processes as well as

to continuous flow delays was discussed. The stabllity criterion associated
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with the use of numerical Integration techniques and the |imitation l+

places on the integration step size were presented along with two subroutines,

DELDT [7] and DELF, which have been proposed to deal wlfh fhéf fimitation.
DELF Is proposed in order to siﬁpllfy and clear up Inconsistencies and
misinterpretations In DELDT. Both routines fail to conserve flow under
certain conditions, however. This problem was outlined, and two approaches
to overcoming it were presented. Both approaches have shortcomings,
however, and the user s cautioned to use them only where appropriate

and where the error is acceptable.
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