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OF DISTRIBUTED DELAY PROCESSES IN MODELS OF
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C. Wolf
 

Introduction
 

Distributed time delays occur frequently in many contexts in soclo­

economic systems, and models of such systems have reflected this. Examples
 

include production lags in industrial processes [1], age cohorts In tree
 

and cattle populations [2,3], transportation lags, stimulus response lags,
 

and pollution generation response lags [4]. In many cases, distributed
 

de'ay models can be used as aggregate representations of micro-processes
 

wherein lag times of individual entities are random variables [5]. For
 

example, in a mail order house the time for an Individual order to be
 

processed and shipped may be a random variable. In the aggregate, however,
 

this stochastic discrete-event process can be modeled as a deterministic
 

continuous delay process looking at the flow of orders through the mail
 

order house, where the storage In the delay represents unfilled orders.
 

One mathematical model of drstributed time delays which has proven
 

very useful in socioeconomic systems models is thl kth-order differential
 

equation:
 

a+a+a d k-Iy(t)a dy(t) + (t) x(t),
 
-
k dtk k-1 dtk 1 1 dt aoy 

wherea:
 

ki
(2) a1 

ITii(k-i) (.k 



thand where 
ik'e., the, (o+61) term Inthe binomial expansion of (1+!-kad hr 

x(t) is'the input tothe delay, y(.),Is the output (i.e., lagged value 

of the linput), k Isthe order of the delay and T is the time constant 0. 

the!fIrst-order differentlal equatIon resulting when k=1. Itcan readily 

be shown [6] that (1) Is equivalent to k first-order dolays In series 

(Flgure 1), each modeled by': 

( dr t ( 

where ro(t) = x(t) and rk(t) = y(t). Figure 2 shows the zero-state unlt 

Impulse response of (1)for different values of k. 

When using distributed delays to model aggregated random micro­

processes, as discussed above, Ithas been shown [5,6) that (1) isthe 

correct model to use where random Individual lag times follow an Erlang 

distribution. Inthis case, T isthe medn of the distribution and T2k 

is its variance; as k gets large, the distribution approaches a normal 

distribution with mean T and zero variance (i.e., a discrete delay), as 

Indicated InFigure 2.
 

Where the delay isa material flow delay rather than an Informatior
 

delay, it isusually desired to compute storages Inthe delay (e.g., the
 

number of unfilled orders inthe above example). This may be done either
 

.by Integrating net inflow:
 

(4)ds(t)= x(t) - y(t) 
dt 

or equivalently [6] by
 

k 
(5) s(t) =1-1=rM(t). 

In simulating such delays, tuier iniegraTion I coURITIorIy ubuu LI,/J
 

to solve (3),. i.e., k first-order difference equations of the form:
 



1
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k 

Figure I
 

k h-Order Distributed Delay as
 
k First-Order Delays InSeries
 

T T T 

k=1 k=3 k= 10
 

Figure 2
 

kth-Order Distributed Delay
 
Zero-State Unit Impulse Response
 



k
(6) ,(t) = r,(t-h)+h-1(r, (t-h) - r(t-h)), 2 , 

where :h isthe integration step size. Likewise,',storage may be simulated
 

recursively by:
 

(7) s(t)= s(t-h) + h(x(t-h) --y(t-h))
 

or by (5)directly.
 

When simulating with (() (or any other numerical integration'2technique)
 

stabilityconsiderations place an upper bound on h. Accuracy problems
 

arising from thls constraint and alternative ways to overcome them are
 

discussed Inthe following sections.
 

Stability Criterion and Problems Posed for Simulation
 

As shown in [6], looking at the homogeneous part of (6),'
 

(8) rlt) = (1 - h k) r (t-hi, 

and solving recursively, we find that
 

(9) r(t)*= ri(nh) = (1 - hk ( 

for a glven Initial condition r(O). Solution stability (i.e., for the
 

solution to be bounded as n Increases) requires, therefore, that
 

(10) 11-h hl <
 

whlch Implles that:
 

(11) 0 <h <2 .
 

Figure 3 illustrates "ItiluIIli m.ai :uibivi Vtr lUU V:IUUb OT n d5
 

compared to the analytical solution. Obviously, a reasonable simulation
 

requires h < 1 (we must of course have h > 0); Forrester [1 recommends

k
 

h <T as a rule of thumb.

2k
 

Ina large model containing several such delays, the requirement
 

becomes:
 



rl~~ (0"r(0) 
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((0),
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- a) Analytical- solution, (b) h '. 
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(0(r(0)
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(c) 1 < h < 2T 
 (d) h = 
 (e)h< 
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Figure 3
 

Numerical Solutions Depending
 
on Step Size h
 



(12") h'..MInET /2kJ 

whereJ.Indexes the de6IIys inthe modelI 
 ThIs,can often Iea'd t6:o
extremely
 

small 2:values for h and thus, for large complex models,expensive simulations
 
Llewellyn [7J suggests that a value for-h be-chosen for the model as a
 

whole consistent with acceptable Integration error and with computational
 

efficiency and that, for those delays J for which Tj/2k 
<h h be divided
 

Into subintervals of length h' = h/ai, where:
 
2k
 

(13) = [I + h 9 

so that h. < Tj/2k and aj is.integer. Notice that.when h < T./2k..,a.h1/
 

will, be one and h' h
 

'Given.a, Llewellyn!s subroutine, DELDT (FigUre 4),Z/. divides the time
 

Interval (t-h, t] Into a subintervals of length h- = h/a and solves (6) 

recursively for each subinterval .(Figure 5): 

(14) r(t-) =' r'(t'h t) + h'!k(r! 1 (t-h') - r'(tj'-h')), ....'I.jJ r j I 
for.J=1,2,...,a, where t = t-h+Jh and r' X/ (For 

+Jh' I rI,/t ' W . (o
 
illustratlve-purposes, Figure 5 
assumes k(V) > 0 for vc(t-ht].), 

The Input x and. Intermediate rates ri are reduced by a factor of ..
 

(the r,are so reduced by virtue of x(t) and r,(O) being so reduced). and
 

the.output iscomputed as:
 

-/In what follows, we will assume a particular delay'J and 'so wili

drop the subscript j for convenience.
 

2/in DELDT, RINR = x, ROUTR = y,CROuiNMI = r, rl/a, DEL T,. 
IDT a, DT = h and K = k. 



SUBROUTINE DELDT(RINR,ROUTR,CROUTR,DELj IDT,DT;'K)
 

DIMENSION CROUTR(1)
 

DELl = DEL*FLOAT(IDI)/(FLOAT(K)*DT)
 

ROUTR = 0.0
 

DO 	2 J=1,IDT
 

RIN 	= RINR/FLOAT(IDT) 

DO 	1 I=1,K
 

ABC 	= CROUTR(I) 

CROUTR(I).-= ABC+(RIN-ABC)/DEL1 . 

I 	RIh = ABC 

2 	ROUTR ,=ROUTR+CROUTR(K)
 

RETURN4
 

END
 

FIg'ure .4.
 

Subroutin'e DELDT',
 



(15) y(t) r (ft)
J=11 J Jk 

*whichi'is obviously (Figure 5) the average output over the :Interval 

(t-h+h', t+ht) rather than the Instantaneous output at.time t. 

Subroutine DELF (Figure 6),Y on the other hand, computes the instan­

*taneous output:
 

(16) y(t) = k (t.) =,rkft), 

and (14) is:replaced by: 

:(1:7 ). . rl (t i (I h )+ lVk r 
t 

for Jl,2,...,.
 

The difference Isreadily apparent In Table I where the results of
 

DELDT and DELF are compared with the analytical solution for y(t) for
 

the test Input x(t) = 100u(t) and with T=3, k=3 and h=.25. 
The analy+ical
 

solution Inthis case is:
 

(18) y*(t) = I001 (. +t+1)6 

Although h <r/2k and thus a = 1 by(13), a was arbitrarily set to 4 for
 

this Illustration.- Notice that when a 
 1 and h = .0625, DELDT and DELF 

give the same results; and those of DELF are the same as for a = 4 and 

h = .25, as'they should be. 

When modeling delays inphysical flows, however, storage In the delay 

--computed by (4)or (5)--may be of more concern than the output rate, in 

which case DELDT and, to a lesser extent, DELF both have problems. An
 

-/In DELF, RIN = x, ROUT = y, R(I) = rk_1+1, DEL = T, IDT = a,
DT = h and K = k. 

4/Setting a > 0 even though h 
< T/2k may be desirable incertain
 
cases where greater integration accuracy Isrequired.
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SUBROUT INE,DEL-F(R IN RbUT R DEL iDT,DT',' 

DIMENSION-" R(:1)::
 

A- FOAT(K)*DT(DEL*FLOAT(
( IDT)). 

DO, 20Jl= ,'IDT
 

IF(K.EQi.) GO TO- 15
 

10 CONTINUE
 

15 R(K) = R(K)+A*(RIN-R(K))
 

20 CONTINUE
 

ROUT=R( 1)
 

RETURN'
 

END' 

FIqure -6, 

Su broutil ne,DELF.
 



Table 1
 

Comparison of DELDT and DELF Outputs
 

For Step Input x(t) = lOOu(t)
 

Percent Deviation: 100(y(t) 	- y*(t))/y*(t) 

a 4, h .25 a 1, h .0625
 

Analytical
 
Time Output
 

DELDT DELF
 
t y*(t) DELDT DELF 


5 6
1 2 	 3 4 


0
0 0 0
0 	 0 

1 	 8.03 -27.23 -7.59 -7.59 -7.59
 

2 	 32.33 -8.12 -.03 -.03 -,03
 

3 	 57.68 -2.56 1.26 1.26 1.26
 

4 	 76.19 -.64 1.23 1.23 1.23
 

-.00 .91 .91 .91
5 	 87.53 
6 	 93.80 .15 .59 .59 .59
 

.35
7 	 97.04 .15 .35 .35 


81, 98.62 .10 .20 .20 .20 :
 

.9 99.38 .06 .11 .11 .111
 

10 99.72 .03 .05 .05 .05
 
11 99.88 .02 .03 .03 003
 

12 99.95 .01 .01 .01 I01
 
.01 .01
13 	 99.98 .00 .01 


.00 .00 .00 ,.00'
14 	 99.99 

.00 .00
15 	 100.00 .00 .00 




Important feature of this distributed delay model., (1)or (3) and',its 

simulation model (6), Isthat Itconserves flow, ie., +orage isneither 

gained nor lost inthe course of the delay and (4)Istrue. Ifthe 

stability criterion (12) requires a > 1, however, simulation by (14) 

with DELDT or (17) with DELF does not conserve flow; I.e., while (4) 

and (5)are true, the numerical solution (7)cannot be used (unless 

it isexecuted before the IFstatement InFigure 6), Its use leading 

to a not Insignificant steady-state error Inthe case of the above test
 

Input (Table 2). Simulating with (5)directly, however, gives very good
 

results (Table 2), results which are identical to the case where a 


and h = .0625 for both (5)and (7). The analytical solution for storage
 

inTable 2 is:
 

(19) s*(t) 1O003'e't(.5t2+2t+3)). 

Although this storage computation problem can be solved either by
 

using (5)or by using (7)with h replaced by h' (l.e., by placing it
 

inthe outer DO-loop and before the inner DO-loop InFigures 4 and 6),
 

storage will not be conserved Ina larger system--of which the delay in
 

question may be only a small part--when the output y(t) isused to
 

represent storage leaving the delay. For exampl~p ifthe delay represents
 

the processing and shipping of orders through a mail order house--where
 

x(t) Isthe rate orders are received, y(t) Isthe rate orders are shipped
 

and s(t) isunfilled orders--the number of orders shipped isthe time
 

integral of y(t). Inanother example, the delay may be one link cf
 

a chain of delays modeling production stages of cocoa trees [2]--e.g,,
 

the gestation stage, a stage of increasing yields, maturity, etc.-­

1 
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Table 2
 

Comparison of DELDT and DELF Storages
 

For Step Input x(t) = 100u(t)
 

Percent Devlation2./: 100 (s(t) - s*(t))/s*(t)
 

By Euler IntegrationL/ By Intermediate Rates-
Analytical 

lime Storage 
t s*(t) DELDT DELF DELDT DELF 
1 2 3 4 5 6 

0 0 0 0 0 0 
1 97.67 1.59 119 .57 .57 
2 178.20 4.00 2.59 .96 .96 
3 232.79 5.39 3.22 .92 .92 
4 265.20 6.02 3.40 .70 .70 
5 282.82 6.25 3.38 .47 .47 
6 291.82 6.31 3.31 .28 .28 
7 296.22 6.31 3.24 .16 .16 
8 298.29 6.29 3.19 .09 .09 

,9 299.24 6.27 3.16 .04, .04 
10 299.67 6.26 3.14 .02 .02 
11 299.86 6.26 3.13 .01' .01 
12 299.94 6.25 3.13 .01 .01 
13 299.97 6.25 3.13 .00r .00 
14 299.99 6.25 3.13 .00 .00 
15 300.00 6.25 3.13 .00. .00 

a/For u 4, h 
= .25 
b/s(t) s(t-h) + h(x(t-h) - y(t-h)) 

c/ = k
 
s~t) k rI
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where the output y1(t)of the fIrst delay is the Inputx,(t) to the
 

second delay.
 

In both cases--elther where y(,-) Isto be Integrated or where it is
 

the Input to another/delay (r in (6))--the nature of Euler Integration
0 


requires y(.) to be constant over the interval Et-h, t). When a > 1 

and hl h, y(.) IsConstant only over Et-h, t-h+h'). Table 3 shows the
 

results when the delay outpu1 of the test case of Table I isthe Input
 

to another delay for which T=3 and k=2. The analytical solutions for output:
 

and storage of the second delay Inthis case are:
 

-2 
'20) y*(t) = 100[1-2e't(t2+14t+68) - 9e 3'(2t-15)J] 

2,).t 2 ­
21) s*(t) 300[1-et.(.5t +1Ot+55) 3 (t-6)].-9e 


lotice that for DELF inthe second delay of the chain, s(t) computed by
 

5) (columns 7 and 11) and y(t) (columns 5 and 10) are not the same when
 

=4 and h=.25 as when a=1 and h=.0625, whereas they are the same for the
 

first delay of the chain (Table 1,columns 4 and 6). For this test Input,
 

nevertheless, DELF results are an Improvement over DELDT results.
 

The next section discusses alternative ways to address this problem
 

Alternative Solutions
 

Several approaches to correcting for the non-conservation of low 

when a > 1 were tested, and two of the more promising ones and their short­

comings are reported inthis section. 

The first approach is based on the recognition that for Euler Integra­

tion the outpui rate y(t) Isnot Just the instantaneous output at time t
 

but also Isconsidered the constant output over the interval [t, t+h),
 

http:300[1-et.(.5t
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Table 3
 

Comparison of DELDT and DELF Used as the
 

Second Delay in a Chain
 

Percent Deviation of Simulated From Analytical
 

a = 4, h = .25 a 1, h = .0625
 

Output 
aI/

Storage / 
b

Storage-. Output Storage-/ 

Anal. Anal. 
Time 
t 
1 

Outp. 
y*(t) 
2 

Strg. 
s*(t) 
3 

DELDT 
4 

DELF 
5 

DELDT 
6 

DELF 
7 

DELDT 
8 

DELF 
9 

(DELDT and DELF) 
10 11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

0 
.18 

2.91 
11.28 
24.91 
40.88 
56.25 
69.25 
79.28 
86.52 
91.48 
94.74 
96.82 
98.11 
98.89 

0 
2.30 

20.60 
59.43 
109.26 
158.81 
201.10 
233.71 
257.12 
273.05 
283.46 
290.05 
294.11 
296.56 
298.02 

0 
-85.69 
-51.73 
-30.63 
-18.42 
-11.13 
-6.69 
-3.96 
-2.30 
-1.29 
-.71 
-.37 
-.18 
-;09 
-.04 

0 0 
-60.08 -66.36 
-27.68 -31.38 
-13.83 -16.45 
-7.07 -9.02 
-3.52 -4.99 
-1.63 -2.72 
-.62 -1.44 
-.13 -.72 
.09 -.34 
.17 -.14 
.17 -.04 
.15 .00 
.11 .02 
.08 .02 

0 0 
-49.52 -66.20 
-19.95 -30.20 
-9.34 -14.08 
-4.51 -5.61 
-2.10 -.76 
-.87 2.13 
-.26 3.87 
.02 4.91 
.13 5.52 
.15 5.86 
.13 6.06 
.10 6.16 
.07 6.21 
.0 6.24 

0 
-49.31 
-19.10 
-7.90 
-2.60 

.18 
1.67 
2.47 
2.89 
3.09 
3.17 
3.19 
3.19 
3.18 
3.16 

0 
-38.38 
-13.15 
-4.73 
-1.23 

.27 

.85 

.98 

.91 

.75 

.58 

.42 

.30 

.20 

.13 

0 
-23.44 
-6.83 
-1.83 
.07 
.77 
.95 
.89 
.74 
.57 
.42 
.29 
.20 
.13 
.08 

15 99.36 298.87 -.01 .05 .01 .03 6.25 3.15 .09 ,05 

a/s(t) = 
Th
I r=I 

-/s(t) = s(t-h) + h(x(I-h) - y(t-h))
 

C/Both methods qave Identical results for s(t).
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I.e., y(t) Isa step function. However, when a >,1,y(t) isconstant only
 

over the Interval Et, t+h'), where h' h/a. To conserve flow, then, whether
 

integratlng the output or feeding ItInto another delay, we want not y(t)
 

but y(t), where y(t) Isthe average output over the Interval Et, t+h),
 

a-1
 
(22) 7(t) I= y(t 


where t t+ Jh'and yin (17)
 

Unfortunately, at time ±we cannot know the output for subintervals
 

InCt, t+h); we only know itfor subintervals Inthe previous period,
 

[t-h, t); i.e., we only know y(t-h). Notice that (22) Isvery similar
 

to (15), the output equation for DELDT. Where DELDT is inerror is in
 

Interpreting the result as y(t) rather than y(t-h+h'), i.e., 
as the 

instantaneous output at t to be used as the average over [t, t+h) rather 

than as the average over [t-h+h', t+h'). (This was seen above and In 

Figure 5.) Running the summation Index from 0 to a-l Instead of from 

1 to a (and defining tj = t-h+Jh') gives us y(t-h). 

The problem with this approach Isthat, at least for the delay in 

question, the normal order of simulation time sequencing has to be 

reversed, the level equation (7)would have to follow execution of the 

delay rather than precede It,because y(t-h) (which would replace
 

y(t-h) in(7)) isdetermined Inthe delay at time t rather than at time
 

t-h. Similarly, a chain of such delays would have to be executed in
 

reverse order, i.e., a delay whoso output feeds Into the next would be
 

axecuted before rather than after the next.
 



17
 

There would be very real difficulties in interfacing parts of a
 

model having this reverse time sequencing with other parts having normal
 

sequencing, not to mention the increased opportunity for error. Further­

;:*re, y(t) is unknown at time t even though it may be needed. For example,
 

In a chain of n delays representing n age cohorts in a population, the
 

output of the last cohort yn(t) may be considered deaths,
 

n 
(23) D(t) = llt + ynt)
Is M 


where D is individuals/year dying from the populationp p, Is the prcportlon
 

th th
 
dying per year from the Ith cohort, and sI Is population In the I cohort.
 

Nevertheless, a routine such as DELFI (Figure 7) Incorporating this
 

procedure, when it can appropriately and safely be used, does maintain
 

conservation of flow in, for example, a chain of delays when a > 1;
 

i.e., storage computed by (7) Is equivalent to that computed by (5) with
 

no steady-state error. Table 4 shows the results of simulating the earlier
 

example with DELF1--that is, two delays In sequence, h=.25, a=4, T1=kI 2=31
 

k2=2, x1(t) = tOOu(t), x2 (t) = yl(t) (instead of yl(t))--as compared to
 

the analytical solutions of (18)-(21). Only one storage column Is shown
 

since results are Identical for either method. For the first delay of. the
 

chain, results are identical to those of DELF for both output (Table 1,
 

column 4) and storage computed by (5) (Table 2, column 6). Note also
 

that, in DELFI (Figure 7), ROUT = y(t-h) = y(t-h) for a=l, as should be
 

= 

the case. In this case i=I), y(t) = y(t) = rk(t) R(1) is also known. 

The second approach to maintaining the conservation of flow when
 

a > I takes as its point of departure the first approach, i.e., the
 

computation at time t of y(t-h). Namely, an attempt Is made to project
 

what y(t) will be over the period [t, t+h) based on past values of y(.).
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SUBROUTINE DELF1 (RINROUTRoDEL,IDT,DTsK)
 

DIMENSION R(1)
 

A FLOAT(K)*DT/(DEL*FLOAT( IDT)
 

I11 = K-I
 

ROUT = R(1)
 

DO 20.J = IDT
 

IF(K.EQ,1) GO TO 15
 

DO 101I = 1,K
 

R(I) = R(I) + A*(R(I+1) -R(I))
 

10 CONTINUE 

15 R(K) = R(K) + A*(RIN-R(K)) 

ROUT = ROUT+R(1) 

20 CONTINUE 

ROUT = (ROUT-R(1))/FLOAT(IDT) 

RETURN 

END
 

Figure 7
 

Subroutine DELFI
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Table 4
 

to Simulate..
Results Using DELF1 


a Two-Delay Chain, Compared
 

to the Analytical Solutions
 

Percent Deviation of Simulated From Analytical'
 

First Delay 	 Second Delay
 

Time
 
t Output y1(t) Storage 	sl(1) Output Y2 (t) Storage s2(t)
 

1 2 3 	 4 5
 

0
0 0 0 0 

-32.15 -23.55
1 -7.59 .57 


-.03 .96 -12.04 -6.95
2 

3 1.26 	 .92 -4.46 -1.92
 

4 1.23 	 :.70 -1.18 .00
 

5 .91 47 	 .26 .72
 

6 .59 .28 	 .83 .91
 

7 .35 .16 	 .96 .86
 

8 .20. .09 	 .89 .72
 

9 	 .11 :04 . .74 .56
 
.57 .41
10 .05 	 .02 


11 .03 	 .01. .42 .29
 

12 	 .01 .01 .29 .20
 
.00. .. .13,,
20
13 .01 


14 	 .00 .00 .13 .08
 
O0 .05.
15 V.00 	 .09 




This approach, then, assuming a 
good estimate of y(t),. eliminates the 

need to reverse the computational sequence. 

.First- andi-second-order Lagrange interpolations were tested as estimateai 

Ye(t) of y(t)." (Other estimators tested, including the 2nd-order Taylor
 
series expansion, led to steady-state errors Inthe computation of storage.)
 

The estimators are:
 

(24) (t) = 2y(t-h) - y(t-2h) 

for the first-order interpol ation and
 

(25) 7e(t)= 3[7(t-h)- 7(t-2h)].+ 7(t-3h) 

for the second-order Interpolation.
 

This approach Is further re+ined by correcting yCt) for the error
 

on the previous estimation, i.e., by adding y(t-h)-.Ve(t0h) to (24) and
 

(25). This can 
be done since at time t y(t-h) is known. The estimators
 

become:
 

(26) e(t) 37(t-h) - y(t-2h) - e(t-h)Y 

and 

(27) e t)= 4(t-hi-

e 

3(t-2h) + 7(t-3h) (t-h). 

e 
Estimator (27), programmed in Figure 8, gave considerablytbettei
 

results than did (26) and so Isshown InTable 5 compared to the
 

analytical solutions for the above example. 
For the first delay In
 

the chain, the Instantaneous output y1(t) (the projected average output
 

Ye(t) Isnot shown) and storage computed by (5)are identical to earlier
 
results. 
 For the second delay, DELF2 gives as good approximations to the
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SUBROUTINE DELF2(RIN,ROUT,ROUTAV,R,DEL, IDT,DTK) 

DIMENSION R(1), ROUTAV(2) 

A = FLOAT(K)*DT/(DEL*FLOAT(IDT)) 

KMI = K-i 

ROAV = R(1) 

DO 20 J = 1,IDT 

IF(K.EQ.1) GO TO 15 

DO 10 I = 1,K 

R(I) = R(I) + A*(Rij)I -. R(i)) 

10 CONTINUE 

15 R(K) = R(K) + A*(RIN,'[-R(K)) 

ROAV = ROAV + R(1) 

20 	CONTINUE 

ROAV = (ROAV - R(1))/FLOAT(IDY) 

ROUT = 4.*ROAV - 3.*ROUTAV(l) + ROUTAV(2):-,ROUT 

ROUTAV(2) = ROUTAV(1) 

ROUTAV(1) = ROAV 

IF(I.DT.EQ.1)ROUT = R(1) 

RETURN 

END 

Figure 8
 

Subroutine DELF2
 



Table 5
 

Results Using DELF2 to Simulate
 

a Two-Delay Chain, Compared
 

to the Analytical Solutions
 

Percent Deviation of Simulated From Analytical
 

First l6elay Second Delay
 

Output Storage sl(t) Output Storage s (M)
I2
 
Tim Y(t) Y2 (t)
 

t a b a b 
1 2 3 4 5 6 7
 

0 0 0 0 0 0 0 
1, .­7.59 .57 .75 -48.15 -30.60 -30.31 
2
.3 

-.03
1.26 

.96 

.92 
.97 
.89 

-12.97 
-4.35 

-6.82 
-1.71 

-6.63 
-1.63 

4 
,5 

1.23 
.91 

.70 

.47 
.67 
.44 

-1.07 
.32 

.10 

.76 
.13 
.76 

6 .59 .28 .27 .85 .93 .91 
7: .35 .16 .15 .96 .87 .85 
8 .20 .09 .08 .89 .72 .71 
9 .11 .C4 .04 .73 .56 .55 
10 .05 .02 .01 .57 .41 .40 
11 .03 .01 .00 .41 .29 .28 
12 .01 .01 -.00 .29 .20 .19 
13 .01 .00 -.00 .20 .13 .13 
14 .00 .00 -.01 .13 .09 .08 
15 .00 .00 -.01 .08 .06 .05 

s kt 


b-'.s(t) =s(t-h) +h(x(t-h) -y_(t-h)).
 
e6
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output and storage, for the most part, as does DELF1 (Table 4, columns 4 and5)
 

and much better ones than does DELF (Table 3, columns 5 and 7).
 

As for maintaining conservation of flow, comparing columns 3 and 4 of
 

Table 5 with columns 6 and 4 (respectively) of Table 2, and columns 6 and 7 of 

Table 5 with columns 7 and 8 of Table 3, DELF2 clearly removes the discrepancy 

(well within reasonable tolerances considering overall simulation accuracy) 

between the two methods of computing storage when a > 1. In particular, 

there is no steady-state error when using Euler Integration with DELF2 

as there is with DELF and DELDT. 

There are two major shortcom!iigs with DELF2, however. First, the
 

.projected average output does not degenerate to the Instantaneous output
 

when a = 1, as It.does in DELFt. Hence the logic to do this Is Included
 

at th" end of the program In Figure 8.
 

Secondly and more seriously, although tho estimator (27) works well
 

for this example, in general It Is sensitive to the Input function x(-)
 

and the parameters h, T and k. The error In the 2nd-order Lagrange
 

interpolation of (27) is:
 

Ey-(t) = h3 d y(z) evaluated at z=t,(28) e dz3 

which, from (22) and (3), becomes for k > 3
 

= 3
(29) Eya(t) c 4Y..Ldz evaluated at z=t
 

4 3 a [rk(t)3r + 3r (t)-r(t

J=O k k-2(tj k-i kk
 

where t = t+jh' and y(tj) rk(tj), The input x(.) and its derivatives
 
jk
 

appear directly In (29) when k < 3 and Indirectly for any k In the relative 

values of ri(1), i=1,2,...,k, so that a rapidly changing input will Increase 



the error in ye(t). Inaddition, shorj high-order delays will have greater
 

3
error in y (t) because of the factor (hk/T). The estimation is good In
 e
 

this example because k=3, T=3 and x(t) = 100u(t) for the first delay in
 

the chain, and k=2, .T=3 and x(t) is smooth (equation (18)) for the second
 

delay.
 

Complications for Nonconservative and Variable Delays
 

If h Is chosen to satisfy (12) for all delays J In a model, In spite
 

of the inefficiencies created, none of the above problems will occur.
 

However, when (3) Is generai.lzed to Include cases of variable delay times
 

t(t) andstorage lossses, following (12) for all delays won't work because
 

the stability criterion for h, i.e., Its upper bound, becomes a time
 

variable!
 

The generalization of (3) is:
 

d t _M ... I dT(t) 

(30) t) k (,),k dt 

for i=1,2,...,k and where AM(t) Isthe proportional storage loss.rate per
 

unit time from the delay. In'this.case, thestability criterion for Euler
 

integration Is:
 

I Mt),m n[l ­
(3) 0 < h < 


2 fM t+ X MtT Mt)+k~ 

Note that (31) degenerates to (12) when f (t)= 0.and X.1() O. This 

Implies that h' = hI(t) and a = a (t).
.j j
 

Summary and Conclusion
 

A kth-order distributed delay model was described,.and Its application
 

to aggregations of random delays of discrete micro processes as well as
 

to continuous flow delays was discussed. The stability criterion associated
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with the use of numerical integration techniques and the limitation It
 

places on the Integration step size were presented along with two subroutines,
 

DELDT [7] and DELF, which have been proposed to deal with that limitation.
 

DELF is proposed In order to simplify and clear up Inconsistencies and
 

misinterpretations In DELDT. Both routines fail to conserve flow under
 

certain conditions, however. This problem was outlined, and two approaches
 

to overcoming It were presented. Both approaches have shortcomings,
 

however, and the user is cautioned to use them only where appropriate
 

and where the error is acceptable.
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