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" SIMULATION OF AGGREGATE LOAN REPAYMENT
POLICIES USING THE VARIABLE

DISTRIBUTED TIME DELAY

In macro~econcmic simulation models it is sometimes of interest to
model the processes of borrowing and debt retirement. The emphasis in
these cases is upon an aggregate borrowing rate, the aggregate value of
outstanding loans, the aggregate unpaid balance, the aggregate répayment' iFPf
rate, the aggregate interest charges and so forth. At the micro (ihdi§idﬁéi
loan) level these processes are very straightforward and easy to descxibé‘ |
mathematically. At a macro level things are not 30 simple. In this
discussion we will describe an approach to this aggregate modeling\problgm
which uses the time varying distributed delay. 1In what follows we wiilf;'“
\describe thé theory of the quel, its computer'simu;ation,'hnd~rgég1§s‘

fbbtéiﬁed,f:om computer runs.

‘Theory of the Model
For an individual loanfﬁhe.baéic‘equafiopsthgtfdeqcrlhea_;hpFr@pgyé{

ment process is:l/
1) _—leBdAt Y « (X(t) -RINT*BAL(!:)) . BA‘L(t) 20 .

where!
BAL = the unpaid loan balance (§)
X = the payments to principle and interest ($/yr)
RINT = the interest rate on a continuously compounded basis (%/yr).
Assuming fixed payments to principle and interest, X, the solution

to this equatiorn {obtained by Laplace transform or other methods) is:

l/Thia assumes interest compounded continuously.



1BAL(0) 1srtne originai unpaid balance {the size of the loan taken out)ﬁ*

COntinuing with the assumption of fixed payments to principle and interest;@ﬁ

x ‘we can solve for the length of the loan, DELRP, from:
;)o-(mum-XanJm”“mp+MMm

18@;Vihé;th13~gqugtiohkfo:vDELRP we get:

DELRPit (ln(X/RINT) ~ ln(X/RINT ~ BAL(0))/RINT
(X > RINT*BAL(0))

fln is the natural ‘logarithm. Alternatively, for a fixed repayment pertod
DELRP we can solve Equation (3) for the corresponding fixed payments to

Principle and interest, X:
5) X = (BAL(0)#RINT#eNINT*DELRP) ) ( RINTHDELRP_, |

Tﬁeae equations giVe us insights which are helpful in developing é
méafbfmbdel appropriate for the case of many outstanding loans, aggregate
Bafrowing rates, repayment rates, etc. Consider the block diagram of
Figure (1). In this diagram the variable BR is the agpregate borrowing

"rate ($/yr). As shown, this variable is also the input to the delay
function. The output of the delay is the rate at which loans have been

paid off, The loans which are inside the delay are loans which'still require
principle and interest for their retirement. This is the variable TOL

in Pigure (1) which is calculated as:



BR(t) o=
(Borrowing
rate--$/yr)

'DELRP,K
> DELAY EPRLP(t)""(Réte at which»
' . loans. are paid
off $/yr) '
fdt .
’ l TOL(t) --Tot"a‘]'.'» outstanding loans
X (t)=£ (TOL(t) 4o 0s)

Payments to principle and interest

/ ccumulate

> fdt }=—=—=3>SX(t) {payments t
($) rinciple
and

nterest

Figure 1.

> /dt > BAL(t) (unpaid
() balance)

Block diagram of aggregate loan repayment process.



6) / TOL(t) = TOL(0) + f (BR(x);!_’_

wnere: -

#TOL = total value of outstanding loans: (S)

iBR - borrowing rate ($/yr)

RLP = rate at which loans are paid off ($/y

,Payments to principle and 1nterest, x are clearly a funcrion of the»
‘{'variable TOL as shown in the figure. Under the assumption that, forﬁfoﬂ
‘bindividual loans, payments to principle and interest are constant over thc

life of the loan, the variable X is computed as:

RINT*DELRP)/(eRINT*DELRP

7) X(t) = (TOL(t)*RINT#e -1)

;.'This follows from Equation (5) and the fact that for an individual loan
:Ethe variable BAL(0) corresponds to the ''total value of outstanding loans."
In general, we do not wish to be restrictel to the assumption of constant
payments to retire individual loans. We will consider this broader issue
a little later.
In tﬁis aggregate case we can allow for an arbitrarily changing

borrowing rate by writing:

8) 9—‘12%9- = -(X(t) ~ RINTABAL(t) - BR(t))

in place of Equation (1). (The corresponding equation for a single loan
taken out at a single point in time.) This is the formulation shown in
Figure (1).

The model of Figure (1) also allows for the computation of the total

payments to principle and interest--an important variable in evaluating



"alternative debt retirement policies.. .This variable, denoted SX,:is

computed as:
9) SK(t) = SX(o) + [X(r)dr -

Before going on to diacussion of how this model can be modified to
jpermit payments to principle and interest which can vary over the life of
‘;1ndividua1 loans, ‘let us further discuss the real world implications of
;‘thn aggregate model of Figure (1). 1If the delay in this figure is distri-
buted the model simulates the case where the lengths of individual loans
" have an Erlang distribution with mean DELRP and parameter K. This means
.that the variance of individual loans is (DELRP)Z/K. (See Chapter 12,
" Manetsch and Park.) It should be pointed out that the aggregate model of
Figure (1) is exact on}y when K = » (this means that the delay process io
discrete, i.e., all loans have the same length--DELRP). Useful results
have been obtained when K is on the order of 20, however, more will be
said about this later.

The aggregate model can handle this case of variable payments to
principle and interest, X by msking the average loan repayment time,
bELRP. an appropriate function of X. An appropriate relationship 1is

(from Equation 4).

10) DELRP(t) = (In(X(t)/RINT)) - ln(X(t)/RINT - TOL(t))/RINT

X(t) > RINT*TOL(t)

The variable 0L replaces BAL(0) in Cquation 4 because in the aggregate
model payments to principle and interest are based upon the total value

of outstanding loans-~TOL(t). (This equation assumes that the changing



Tﬁé°“’nts X(t) are”applied*uniformly?to individual loans in the aggregatit

in proportion to the alue:of eac \individual loan). ‘That is, X (t)

}is_ptoportional to BAL (0), for i-l 2;... designating individual loans.
“In what follows we will describe tests of the aggregate model of '

| Figqre (1). As pointed out earlier this model is only abproximate for

R < w‘in the distributed delay. In the appendix we will describe another‘

(much more complicated) approach whiéh is capable, in principle, of

modeling the aggrepate situation more precisely.

Results of Tests of the Model of Figure (1)

Appendix I lists a computer program used to simulate the model of

Figur“\(l) The model assumes that the aggregate borrowing rate is:

f_‘jxll,)f' iﬁ'BR(:)‘ = 100,000 $/yr 0 <t <2 years

=0 t > 2 years

}Tﬁé “normal" ioan'repayment period, DELRPN, is 15 years. DELRPN s the
iﬁean loan repayment period when payments to principle and interest are not
Increased for accelerated repayment., That is, it is a constant. DELRP

is the, possibly variable, mean loan repayment period which corresponds to
the value of X(t) extant in particular situations. In the simulation runs
to be discussed this distributed delay parameter K is assigned the value
2C which means that tlie standard deviation of individual loan durations
about the mean DELR? is DELRP/Vk = .223 DELRF. 1In the program the variable
XMIN represents the payments to principle and interest that correspond to

the ''normal” loan repayment period DELRPN. XMI4 is computed as:

RINT#DELRPH RINTADELRPN

12) XMIN(t) = (TOL(t)*RINTwe )/ (e -1)



In general payments to principle and intergatliu the model are'cdmﬁﬁﬁgdfi

as:

!3)-vx(t) = XMIN if 0 £t <2 years
= (1 + CL*(T-2))XMIN 4f ¢t > 2

'-Tﬁé parameter Cl (if assigned valués gteétérjth§n ié:o) allows for
accelerated loan repayment when time, T,”iﬁ‘gteater than two years.

In the first simulation run to be discussed the parameter Cl was
ass:ilgned the value zero which specifies normal (unaccelerated) loan
repayment with DELRP = DELRPN = 15 years. Some pertinent results are
shown in Table I. The distributed nature of the repayment periods for
'individual loans is evident from the second column which shows some loans
paid off before 15 years and some after. Accumulated payments to
principle and interest over the.25 year simulation are $303,200. Since:
ﬁhe total value of loans was $200,000, the interest amounts to $103,200.

The approximate nature of the model is apparent from the unpaid balance
column which shows that the Zinal unpaid balance is about $11,000. It
should, of course, be nearly zero since total outstanding loans at the end
of the simulation experiment are insignificant (5600). This error amounts
"to 5 1/2 percent of the total original loan value. This error may or may
not be significant depending upor how the model is to be used. In cases
where simulation results are relative, that is where the results of one
loan repayment policy are being compared with another, one would often
expect the error to cancel out. Simulation experiments confirm the
assertion made abouve that the model error decreases as the K parameter of

distributed delay increases. Vhen K = 40 the terminal errcr irn the unpaid



fbalance becomes about 2 5 percent. In practice, of course, the K value”'

r uld be determined by the variance 1n the duration of individual loans
:in the real world situation being modeled. In cases where the real world
1variance is large enough to tequire a K value which‘is too small for
acceptable gimulation accuracy, one approach is to disaggregate loans
into two or more categories within which variances are small enough to
prescribe acceptable K values. One would then use two or more diat:ibhted,?f
lag models in the general framework of Figure (1). .

A second simulation run was conducted which allowed for accelerated
'loan retirement. This second run was identical to the first except
that the parameter C, was assigned the value .05. This corresponded to -
(from Equation (13)) a 5 percent increase in payments to principle and
interest per loan for each year of the payback period beyond the second.
Results from this simulation run are shown in Table Ii. As seen in the
table,, the average loan repayment period, DELRP, declines after the second
year due to the accelerated repayment schedule., Accordingly, total paymente
to principle and interest are reduced to $279,100 (compared with $303,200
for the same loans with normal repayment). Again, the simulation error is
apparent in that the unpaid balance is non-zero (about $8,500) when all
loans have passed through this distributed delay (TOL = 0). This error
1s relaciveiy smaller than the corresponding error under normal repayment
(results of Table 1). Annual payments to principle and interest for the

two cases are shown graphically in Figure (2).

Conclusion
A method has been discussed for simulating an aggregate loan repay-

ment process. The model handles the case where individual loans have the



rable 1: Results of Loan Repayment Simulation: (Cy.=.U)

- v . Accumulated
Total ' Payments to . Payments to :
Outstanding Priciple and Principle and Unpaid -
S Loans - interest = Interest Balance  DELRP . -
Time . ($1000) ($1000/yr) ($1000) - ($1000) (years)..

2 20 17.69 17.69 192.6 15
s 0 022 7.3 6.3 1.

0 w988 20,14 179.4 045 s

15 a2 13.18 268.3 0 s




10

Table 2:" Results of Loan Repayment Simulatidﬁrﬁltt
s Accelerated Repayment,(c1 « ,05)

, | ' Accumulated

- Total Payments to Payments to
.-~ Outstand.ing Principle and Principle and ‘Unpaid _
" Loans - =~ Interest Interest Balance . DELRP
($1000) ($1000/yr) ($1000) - (51000)  (years)

100 7.58 .79 98.4 15,
200 - 17.69 17.69 192.6 15

199.2 23,17, 1593 121

12 163 2Bl e T

o o 279.1 Tu3 538




i1
$1000/yr (payments to principle and interest)

30 +

-clbé';os'(accelerated repaymeﬁF,?

N\ ©y "0 (normal repayment

" Figure 2. - Annual payments to principle and interest tnder
7 .- normal and accelerated repayment. |



fcomputes, ovar time,tthe‘total value of outstanding loany, aggtegate'

’payments to principle and interest and total unpaid balance as they are‘
“influenced by loan repayment policies which may vary over a given
gimulation run. That is, the model is not restricted to the assumptionj
of fixed payments to principle and interest for individual loans. The;q
vis_a simulétion error inherent in the nfoéedure tngt approaches zero aéj
‘K (the order of the distributéd delay used to simulate loan durationjv:
:approaches o, Useful results have been obtained for K = 20 or greater.
This corresponds to a standard deviation of individual loans about.the
mean,.DELRP of .223 DELRP or less. If this assumption is not realistic
in the real world, the total population of loans can be disaggregated 1ntoj]
categories within which this assumption is a valid one. Appendix II | |
‘discusses an.approach, which with more research, may iead to more exact

gimulation of these aggregated loan repayment procésseé.
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APPENDIX I

A Fortran program for simulating the aggregate loan repayment model

of Figure (1).



B TS0

PROGRAM LNTST(INPUT»OUTPUT) -
DIMENSION R(40) ‘ o
RLGTH=]190.

RLGTH=20.
RLGTH=3u.
Cl=.05
Cl=0.
K=3
K=16
K=49D
- K=20

DELRPN=2.
DELRPN=50
DELRPN=15.
T=0.
DT=.125
DT=405
PDT=e25V
TOL=0.
ToLI=v,
BAL=0.
SX=0,
SBR=).
SRLP=0.
RINT=.56
DELRP=DELRPN
DELP=DELRPN
NIT=RLGTH/DT
PNTINT=1,
NIPP=PNTINT/DT
NIOL=NIT/NIPP ,
Al=EXP (RINT#DELRPN)

, DI ly J=1eK

19 RUJ)=0,
RLP=R(])
PRINT 101 N

“rour

101 FORMAT(5Xs110HT .« “RLP “TOL..o
DELRP KT ea e T BAL

|
2 )
DO 1 1I=14NIOL
DO 11 I1=19NIPP
T=T+07
BR=100.
CXMIN==RINT#TUL#Al1/(1e=Al)
IF (T.Gle2.0) GO TO 2
X=XMIN
60 TO0 3
2 X=(1.+Cl¥#(T-24))#AMIN
BR=0.
3 AZ2=A/RINT
SBR=SHR+NT*HR
BAL=BAL+DT#* (BR+RINT#*BAL=X)
SAX=SX+DTH#X
IF (T.6T.DT) GO TO 4
DELRP=DELRPN
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290

30

Ui &

15

G0 TO s
DELRP=(ALOG (AZ}=ALOG (A2=TOL) ) /RINT
TOL1=TOLI+UT*(BR=-KRLP)

CALL DELVF (BRy RLPonTULoDELRPvDELPoUTvK)
SKLP=SKLP+DT#RLP

CONTINUE

PRINT lUU!T9RLPOTOL,TOL1QDtLRPOXQSXQBAL
PRINT 1u2sSBKeSRLP

FORMAT (B(5XsElVe&))

FORMAT (2(5XsE10,4))

CONTINUE

END

SUBROUTINE DELVF(RINvROUTs ’bTRGODtL’DhLP’DTva
DIMENSIUN R(1) .
FK = FLUAT(n)

B = 1o + (DEL-LBELP)Z(DT#FK)
IOT = 1o + 4.%0THFK/DELP#AMAX]L (B 0e)

e

IUT = 1, ¢+ Y. HUT#FK/VELP#*AMAXL(By 04)
IDT = 1. + 2.“DT¢FK/UELP“AMAA1(89‘0.)
A = FKEDT/(DELPH*FLOATCIDT))

DELP = DEL

KMl = K=1

DO 20 J=1,10T

DO 1G I=14nM]

R(I) = R(I) + A*(H(l*l)'B*R(I)I
CONTINUE

R(n) = R(K) + A*(RIN-B*R(K)
CONTINUE

STRU - 00

DO 3Y 1=)eK

STRG = STRG ¢ RUL)H#DEL/FK
CONT [ NUE

ROUT = R(1)

RETURN

END



,?9w§pd aanmbtov?dvné£5§a3of Siﬁﬁlaéihg 7

Aggregaﬂi"e Loan Rébgyment Processes .
; | o K J

:9§ﬁ§idef an individual loan taken out at time zero with dnration Di;
fi@;é;ééclfate R and value BRi' We can view the loan repayment process
:;ét; discrete delay with duration Di’ input BRiG(t) «.. (an impulse
fﬁhction) and output RLPi(t). The variable RLP is the rate at which
the loan is paid off. 1In this case the total value of the outstanding

‘loan is TOL given by:

106 2 o I ) ROl

o biebs

= BR, .

=0 e>D,

‘In temis of the Laplace transformation ve:can write:

l;e’nis ‘
A2) TOL,(S) = BR,[==5—=]

ggrom;gguag;on (5) we know that“thé4p§j¢é§t9f£Q pr;pq1p%§fandainte:egc‘On

i§; 6§nfare:
'rOLi'(t)-R

-RD

A3) X (t)
l-e 1

From Equation (8) we can write the following Equation for the unpaid

balance BALi:

dBAL,
M) —== = =X () + R+BAL, (t) + BR, (t)
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Taking Laplace transforms and solving fd:‘BALi(ﬁ)}iﬁf(A&).wécgét:*

-Xi(S) + BRi

S-R

A5) BALi(S) =

Combining Equations (A2) and (AS)?afﬁgtiLéfiéééwfigiﬁféfmiﬁé-(A3y;ﬁ§-

get:

R'BRi [? e 1§]

A6) X, (S) = ——
S i l-e RDy _J
iNow put (A6) into (AS) to eliminate & and obtain for BAL (s)
} e | RBR s']
: 1-e” i

: We will now use Equations (A6) and (A7) to develop an aggregate

model which represents the case of a large number of loans of varying
‘durations (Dl"DZ’ cony Dn). In doing so we assume that (Dl’ Dz, coes
Dd) 18 a set of random observations from a probability density function

£(D). The aggregate unpaid balance is then:

Z R E 1-¢7D,S n BR,
A8) BAL, (8) = - srs_gy L BR = + SR
S e SG-R) yu1 1 (1-eFPyy  ymy SR

“Further, we can take the expected value of (A8) ... (aesumingﬁtha£;ﬂ ﬁ

BRi and Di are independent):

n BR

-0
A9) E[ Z BAL ()] = | o= Bty Ry 1 44,
im1 =y SR 1-eT0y" 5 "Ry }

Equation (A9) gives us an operational way of computing ar unbiased
estimate of the aggregate borrowing rate if we can develop tractable

models for:



:!-8

The latter term can be computed given theispécific‘pfobabi;itifdgﬁqiﬁj;
function £(D) since:

| 1 > _£(D)
CA10) E[—=] = f 2L gp
e, 0 KD

In many cases (including the case of £(D) a member of the Zrlang family
of density functions) a closed form for this integral does not exist and

a series or other approximation must be used. In any event the problem

-D,S
is manageable. Developing a computable model for E[E——%ﬁﬁ-] is a
l-e 1

tougher problem. We can writo:

-D,$ D8
All) E[E—-f-ﬁ-ﬁ-] - Jg 3——:%‘-’1 d(D) = J:f(D)e-Dsll-!-e RD,o=2RD, 14D
l-e 4 l-e

Using the S-ghift property of the Laplace transform this becomes:

-D.S ®
A12) E-S—] = ] R(sHaR)
: -e 1 q=0

where:

Fe@e™%n = ¥1£(D)] = B(S)

Equation (Al12) tells us that in theory we need an infinite number of
distributed delays (assuming f(») 1is Erlang) to simulate the loan

repayment process. In any event using Equation (Al2) we would need a large
number since this infinite serics converges slowly. More research is
needed to explore ways of representing, or approximating, Al2 in a

manner that leads to a tractable simulation model.
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The same problem described above occurs in developing equations that
will compute X(t), the aggregate payments to principle and interest.

Summing over xi(S) in (A6) to get the aggregate and taking expected values

gives:
% % R~BRi { 1 e-DS }
Al3) E[ ) X,(8)] = E[—= } -E [—=5—
qm * ym S 1-e Ry 1.e7RDy

Therefore, given a compazt method of,approiimatingi;

e D48 S
El—57] = ] £(5+qR)

l-e 1 q=0

one can readily compute both X(t) and BAL(t). Some time would be~wgii};

spent in investigating this problem further.



