AGRNCY FOR INTERNATIONAL DEVELOMMENT
: WASHING TON, D:- €. 20823

FOR AID USE ONLY
BIBLIOGRAPHIC INPUT SHEET

Bt 3

1. suBsECT Agriculture AE10-0000-0000

CLASSI-
FICATION | B BECONDARY

Agricultural economics
2. TITLE AND SUBTITLE

Economic analysis for agricultural sector planning,system simulation concepts

3, AUTHORI(S)
Manetsch,T.J.

4, DOCUMENT DATE 5. NUMBER OF PAGES 6. ARC NUMBER
1973 93p. Amc

7. REFERENCE ORGANIZATION NAME AND ADORESS
Mich.State

8, SUPPLEMENTARY NOTECS {Sponsoring Organization, Publishers, Availabllity)
(Presented at Workshop on Agr.Systems Analysis,Seoul, 1973)

8. ABSTRACT

10. CONTROL NUMBER o 11. PRICE OF DOCUMENT
PN~AAB-780)

12, DESCRIPTORS

13, PROJECT NUMBER

Manuals
Sector analysis 14, CONTRACT NUMBER
Simulation =

S .
"8, TYPE OF DOCUMENT

AlD 8901 (4o74)

Sshoe 3575 It

PIY-AAIS- T8O

Economic Analysis for

Agricultural Sector Planning

System Simulation Concepts

By: T. J. Manetsch

31 July 1973

: Int:oduction

This material is organized into two parts. Part 1I contains basic
underlying concepts which are important in the simulation of agricultural
systems through time. Much of this material is mathematical in nature
and for this reason may take considerable time for the reader to understand
and be able to use in solving practical agricultural sector problems.

These concepts have proven very.useful, however, in developing simulation
models in Korea and Nigeria. It is not reasonable to expect that participants
in this workshop will completely understand this material in the time
available. Rather, it is my purpose to give workshop participants some
appreciation of some practical problems that can be addressed using

simulation concepts and some idea of the things researchers must learn

to be able to appl; simulation methods to practical problems.

Part I of this material contains some simple examples of applications
of these simulation concepts. Later in the workshop we will be looking
at the KASS simulation model in some detail which represents a more
realistic (but at this time not complete) example of the use of simulation

methods. Those persons interested in further reading in the simulation

area can consult a number of references which are available.l/

1/

= Forrester, J. W., Industrial Dynamics, John Wiley and Sons,
New York, 1961.

Holland, E. P., et al., Experiments on a Simulated Underdeveloped
Economy, MIT Press, 1964.

Manetsch, T. J., et al., A Generalized Simulation Approach to
Agricultural Sector Analysis with Special Reference to Nigeria, Michigan
State University, East Lansing, 1971.

Manetsch, T. J., and G. L. Park, System Analysis and Simulation
with Applications to Economic and Social Systems Part II, (Preliminary
Edition), Michigan State University, East Lansing, January 1973,

Part I

Example 1
A Greatly Simplified Market Model

to Illustrate the Idea of a Dynamic Simulation Model

Most simulation models are dynamic in the sense that they ‘approximate

the way that the real world behaves through time. The following simple

market model illustrates this point and some other basic simulation
concepts.

The market model:

(1) D(t) = D0 + DlP(t) Demand Equation
D = Demand #/time
P = Price Won/#
t = Time
(2) s(t) = S0 + SlP(t) Supply Equation
@ EL .o o) - s Market Equation

or

P(t+DT) = P(t) + f:‘”’T C,(D(x) - S(x))dx

DT = gome small increment 1a time--=At
Putting these three equations together we get one equation that describes
the dynamic behavior of market price over time:

(4) P(t+DT) = P(t) + ft“DT Cy(Dy + DyP(x) = 5 = §,P(x))dx

In order oy simulate the behavior of market price over time we must
use a numericel method for computing the integral in Equation 4. This 1s
easily done usizg one of the integration formulas discussed in Part 1I,

pages 9-19 through 9-25. 1In this example we will use a particularly

simple numerical integration formula called Euler's method. Using this
method we make the following approximation for the integral of a function
£(x)s

(5) 4f+”T £(x)dx = DT £(t)

(Euler's method of Equation 5 comes from assuming that the function £()
is constant in the small time interval DT.)

If we apply Euler's method to the price equation above we get a
simple simulation model which can be used to easily compute the dynamic
behavior of the market price. This is Equation (6}:

(6) P(tiDT) = P(t) + DT(Cl(D0+D1P(t) - So - SlP(t)))
To illustrate we will put numbers into this recursive simulation equation
and compute price changes over time.

Let:

P(0) = 50 W/# (the initial price at the beginning of the
simulation when t = 0)

Do = 100 #/month
D, = ~1
S0 = -100 #/month

S; =1

1
C1 = 1 (W/#/month)-~determincs the speed of market adjustment
DT = .2 month (the time increment in our simulation model).
When we put these numbersz into Equation 6 we get:

(7) P(e4DT) = B(t) + .2(2(100-P(t))

From this equation it is easy to compute as follows:
P(.2) = 50 + .2(2(100-50)) = 70

P(.4) = 70 + .2(2(100-70)) = 82

P(.6) = 82 + .2(2(100-82)) = 89.2

P(») = 100 (the equilibrium price)

We can show this price behavior through time graphically as follows:

P(t) = price W/#

1004 . o e e e e o e e Equilibrium price
‘ e o t
[]
804 .

. .
604
4
404
201

l.;l"l‘ime (months)

0 T Ih ik

It 18 very easy to implement a model such as this one on a computer,

'Following is a sample FORTRAN program to illustrate:

PROGRAM MARKET
C Initialization of model data inputs
PO = 50.
DO = 100,
Dl = -1,
50 = -100.
Sl =1.
Cl=1,
DT = ,2
T=0. (T = time in months)
RLGTH = 2, (length of simulation run in months)
NCY = RLGTH/DT(number of simulation cycles)
C Execution phase oflthe model
D01 1I=1, NCY
DEM = DO + D1#P
SUP = SO + S1%P
T = T4DT
P = P + DTxClx(DEM-SUP)
PRINT OUTPUT DATA AS DESIRED (T, P, DEM, SUP)
1 CONTINUE

END

It is often very useful in modeling and simulating systems to use what

is known as a system block diagram. Such a diagram appears below for

the simple market model. Note that this is completely equivalent to
the set of equations that describes the model. The symbols used in

this diagram are completely defined on page 9-4 of the notes.

D + D(t) e, S(t)

z
0 + ;ﬁj (Demand) f)‘)\

P(t, P(t)
/dy

A 4
P(t) (Price)

@ = gummation

m = multiplication

dt] = integration with
respect to time

Block Diagram for the Market Model

Example 2

Simulation of Perennial Crop Production
(Similar to way fruit production was

simulated in the KASS model.)

Due to the fact that the yield of perennial crops is strongly
dependent upon the age of trees, etc., it is important to simulate the
age distribution of the population of p;rennials. For trees a relation-
ship such as the following exists between yield and age:

Yield (MT/ha)

I II III v

| = Age

0

In the KASS model we simulated fruit production by dividing the
life of trees into the four phases shown above.

Phase I -- period just after planting when there is no yield

Phase II -- period of rising yields

Phase III -- period of maximum yields

Phase IV -- period of declining yields
Each of these phases of growth is simulated by a distributed delay function
A distributed delay is dsed because this type of. function can represent
the fact that in the real world all perennials do not age at the same

rate--some will mature earlier than average, others later, etc. A block

diagram for this simulation appears on the next page.

"PR(t)
Planting

rate)
Ha/yr

DELl’Ki

DEL,,K,

cnl,(t) | l

DEL,,K, DEL,,K,

PHASE 0, (t) k- PHASE

I II
+ - + -
D¢ S0k

Distributed
Delays
rde dt
Nl(t) (Ha) Nz(t) (Ha)

0, (t)\

OR, (£) l CRy (£) L
o, (e k” PHASE —lo (t)% PHASE
2 _'_@——)‘ 111%1 2 7 z v
+ - + -
G
Distributed

Delays Ef%]

rde dt

v

N, (t) (Ha) N, (t) (Ha)

Block Diagram for Simulation

of Perennial Production

The variables in this model are defined as follows:
PR = new planting rate (Ha/yr)

DELl, DEL2, DEL3, DEL4 = average length of time perenniéls are
in phases 1, 2, 3, 4

Nl’ N2’ N3, N4 = number of hectares of perennials in each phase
of growth

01, 02, 03, 04 = rates perennials leave phases 1, 2, 3 and 4
Rl’ K2’ K3, K4 = parameters that determine the distribution of

perennial aging times about the average values

DELl, DEL2, DEL3 and DEL4

CR,, CR,, CR, = cutting rates (Ha/yr)--the rates that perennials
1 2 3
are removed in phases 1, 2, 3.

Experience and theory have shown that it is feasible to describe
each phase of growth by an ordinary differential equation. For example,
the following equation can be used to represent Phase I of this pro-

duction process.

K. K1
[DELI] 1 d"to, (t) DEL, do, (t)

1 dt

1

Fortunately there are computer programs available which make it
very easy to simulate equations such as these. The simulation of
perennial crops is therefore quite straightforward., A computer program
for simulating this kind of system is described on pages 10-20 through
10-23.

Given the age distribution of perennials it 1s a simple matter to
compute other important variables which depend upon age distribution.

For example total output can be calculated as

4
OUTPUT(t) = J YLD, (t) N, (t)
1=1

where:

YLDi = the yield in the ith stage of growth,

It is important to note that there are many practical phenomena
in the real world that can be simulated in exactly this manner using
distributed time delays. Some other examples include human and livestock

populations, the creation use and wearout of capital equipment, the

lags involved in shipping commodities, etc.

PART I

10

Example 3

Government Subsector of the Korean

Grain Management Model

The purpose of this example is not to discuss the grain management
model in detail. That will be done later by Mr. Forrest Gibson. The
purpose of this example is to further illustrate the kinds of mathematica
operations and theory that are necessary to simulate complex economic
systems. The block dlagram illustrates major variables and interactions
of the government subsector. We will look at some of these to get an
idea of how such a model is constructed and to gain insight into what
must be done to simulate such a model on a computer.

Clearly, the basic mathematical operations of addition, subtraction,
multiplication, division, integration, function generation and time
delay are the key elements in construction of dynamic models such as
this one. Integration is used whenever flow variables generate stocks
in the real world.

For example government inventory (stock) of the A commodity,

GINVi, is:

(IMPORTS - SALES - LOSSES)dt.

GINV, (£4DT) = GINV, (t) + ftt'*DT

“Distributed time delays are used in a number of places to simulate
importation delays (DELIMPi), the generation of new warehouse capacity
(DELWA), and loan repayment periods (DELGR and DELRP).

This model also contains some ideas from the area of automatic
control systems (cybernetics). There are three so-called "feedback
loops" expliéit or implicit in the model which regulate or control

fimportant.syatem variables. One such loop controls government stocks

“ﬁbkdesired level, GINVD; By‘§djﬁ§ting'imﬁérté;“gnoﬁher adjusts government:
storage capacity to desiredVlével, CAPIND, by regﬁlating new warehouse
acquisition. The third féedback control loop uses government sales of
the various grains to regulate market prices so that they remain near
‘the set of desired prices PDi' These are not simple control problems.
Adequate design of these complex management systems requires a number
of cpncep;s,frbm fhe éréé of dynamic system theory that time does not

permit us to discuss here.!J

- ~'For further reading in this area see one of the many texts dvailable
‘on the subject of feedback control systems,

© RBNFMUE From

oo Pree - Bar
-/

CEprr AL ’ M e . 6’”” » &’"r‘
(Brane VALYLE ‘fmfl" v WINPS Forexg PWLPY &GN O (IMPeRTS)
>RB0K i A 1 (Tmprrt) : I<PETESH
o =CIM W 7 Je—t—e 7 ke : L *'n'l('wahl'-z)
)) E‘—-[T—J‘ _ Frrecnr cpsu AVt nfs 5 ° ar
e ® percstis
Tt wom PLTCSHS "4 boe? Rl VAN
Valut of Gnin In,»ts & 1. 9 E&U MP: -
~ o ' 3
Grarn Mamgenont DELAY] —3@)— [} p——ouw | s
Calance ¢ (osm) T + v~ - o $o
! : DeLrr ORI aue —3@— £[3]
TaNRRL [T >PIPIMR: o . N ;:
Goverament + T
~WTIMPS Tmventey < . Y A &g /&mzuualr "ﬁﬁﬁfe n? - [L]
o Sy ry R) P G "3
Lt LA Tarser . — e N oINS] S
- CHt 1
(BAL; ’¢__... Jdtle R /2'.‘ (——’-’—E;—] :{ n | LossEs Touz § kL
Ryeess W’eume * . M ‘;-'a e‘"‘“s WoNPE L ' -‘—@ ;g k
LN . L < =
—reXICAP e | 3| ¢ GINVZ] | N t___ ..
€ @—‘ 14 |7 ¢ 2 CMT) DQ;!R!J L«.vemt-ty I ¢ PPAIZ PPAL; =RINT: Tll.-e‘l”’;'o‘l” t & 'S <
r w Q_,, j GINVD o prAIY 4 > m\ i {
2<Cde o
I CﬁP"o %m I _ Wom Pﬂtﬂlemts +0 - eklm" DFLRP [~ 3
- | > - terest :
T4 C‘E GOVREV: — 20| gsisz Prinzipal § Imteres
T ’, . l_@<_ <o
s = © Goerameat GovT REvsuve LoGIt
h?:_; pc ukre house . . PBItCBL TABLE -F"UN [
a S Capqc:rs 6305“”‘/?0'2
-1 i A GOVERNMENT SU8-SECTOR,
<+ -
G —;[:I eroep . PLCRY —— —-)[r;_-]-;@— OF THE GRAIN
1 Pmc:te - @ i , FANGGTIIZNT fr0DEL
: ‘ | (77 e Gx DEMVA; [pdf
@h-‘ LY 1, Loy Sreslc
:f"’ N Nequar Ti-e -Te) 6??[}2{;({)-"; (t)] Ruvised 5‘/,/"._..

Chapter 9

BASIC MATHEMATICAL OPERATIONS
FOR SYSTEM SIMULATION

Simulation of continuous flow models described by difference or
differential equations is based upon a fundamental set of mathematical
operations, These operations can be performed by an analog computer-
electronically or numerically ﬁsing a general purpose computer, Due to
the flexibility and generality of the latter approach, we will be developing
a digital approach to simulation, Our emphasis will primarily be on
applications of the approach to non-physical science systems in such areas
as pruduction, management, economics and demography,

We will first illustrate the approach by means of an example, We
will then develop techniques for numerically performing the fcllowing basic
operations: .

* Arithmetic operations (£, x, %)

* Generation of explicit and non- explicit functions.
* Integration

* Generation of time lags

* Generation of random variates from desired probability
density functions

* Various logical operations (IF, AND, OR, etc.)

A, Simulation--A Production, Inventory Example

.

Consider the example of Fig. (1) where a simplified, though repre-
sentative, model of a production-inventory system is developed in terms
of basic mathematical operations, This model is capable of computing the
impact over time of inventory and production management variables (I 4 kl,

kz and Qn) upon company profit (PFT and PFTA), production (Q), sales (S),
costs (C 1 and Cz) and inventory (1),

9-1

The notation of Fig. (1) is essentially the block diagram notation
introduced earlier. This notation is defined by Fig., (2). Note that the
variable associated with the output of each block is some function of the
variable(s) at the input. Note also that the production-inventory model of
Fig. (1) has been described in terms of these basic building blocks, Clearly,
there is a one-to-one relationship between the block diagram of Fig. (1) and
a set of equations describing the model and either can be a complete model

description,

For example, from the block diagram, inventory I, is given by
t
I(t) = 1{0) + S‘ (Q(x) "~ S(x))dx
()

where Q is the production rate and S the sales rates in production units
per unit time. The model assumes that sales are lost if stocks are not

available in inventory. Thus,

S(t) = D(t) 1>0
Sit) = 0 I<0 '
as indicated in Fig. (i). By way of further illustration, variable production

costs, Cl' are computed as
C,(t) = F,(Q) - Qt) --$/yr.

where FZ' the per unit cost, is a function of the production rate Q, The
production delay of Fig. .()) simulates the lag that takes place in changing
production rate Q. In this case Q and Qd might be interrelated by a dif-
ferential equation of the form
k k-1
dQ d’ "Q
kedEk T Pke1 gkl Toer t 2,70y
We will not present a complete madel description in equation form here; it
will suffice to illustrate that this information is really embodied in the
model block aiagram and that the block dtagram can be useful in the system
modeling process,

£-6

(Sales equals

O = Output Variable
demand . ‘
if inventory! CV = Control Variable
is available) S = Sal I Desired Invento '
= s . = Desired Inven
1 € d 4 Year is time unit,
‘[o . Ccv '

D(Demand #/vr)*H S=D, I>0

> d
S=0, I<0 a(z? *Yf

I 4%
=
S \0 Erj(_kl TV

Inventory

4“ M J - 1|" 4@

I DEL

2

o Q
Q Production| ~d
delay I

Desired production (#/yr.)
Actual production (#/yr.)

s
le\/Q FZ

P(Price
“s/F L

"normal" productio

(#/ yr_-)

C2 = Inventory
holdirng cost

($/yr.)

o

Cl = Variable production cost ($/yr.)
O <——/

-X- pgpT O PFTA - Accumulated profit ($)
/ + = Profit)S‘dt —> 0
R(Revenue r.
(Re $/yr.))'T($/vr.)

Cc = Fixed Cost ($/yr.)

A Production-Inventory System Model
Figure (1)

Name

Addition
I (t))
1 —-—-;L'Tr_———.,O(t) Multiplication
L(t)
h “)_._f_;TJ_._., o(t) | Division
f a4
L)
O(t)
), | / f——s O(t) Function
Generation
v I(Q-—-> Cdt———) 0(t) Integration
ad .
DFL
L
I(t-)-——->‘ Delay [|—p O(t) Time
Delay

‘Block Diagram Notation
. Figure (2)
. 9-4

Definition

Oft) = +1, () £ L,(1) ...
£1,0)

o(t) = I1 (t)Iz(t). . .In(t)

o(t) = Il(t)/lz(t)

0(t) = F(L(t))

t
0(t) = 0(o) +S I(x)dx
0

a) Discrete delay:
0(t) = I(t-DE L)

b) Distributed or
continuous delay:

a dkO(t)
X x Tk’
at

dk'lom ;
k=1
+a 0(t) = I(t)

From this example it is clear that given a set of building blocks (the

basic mathematical operations) and a knowledge of system structure, system
models can be synthesized by interconnecting basic building blocks in one-to-one
correspondence with the structure of the real world system being simulated,

In what follows we will develop techniques for implementing the basic operations
numerically for digital computer simulatica, We will then develop methods

for synthesizing system models from the basic building blocks. Due to the

wide applicability of FORTRAN we will develop our models in that language,
However, since the emphasis will be on basic techniques, the development will
be readily adaptable to other general purpose languages, The development

also deals with some of the subtleties that underlie the use of continuous system

simulation languages such as CSMP (2) and DYNAMO (5) and provides a
rational basis for exploiting their capabilities. '

B. Basic Operations--Arithmetic

Arithmetic ‘operations (+, -, x,) are routinely provided by general
purpose programming languages such as FORTRAN and by many simulation
languages and, therefore, pose no significant problems in digital computer
simulation, FORTRAN, for example, permits the user great flexibility in

formulating arithmetic expressions such as:

Y = A*xX+B*Z +C*Q/D’
AREA = 3,1416%R **2
F = (C1*P/3. - R)/(G + H)

In any given programming language specific rules govern the use of such arith-
metic statements. In certain languages such as DYNAMO (5) the user must

work with a finite set of arithmetic statements--complex statements

1
The FORTRAN symbols (¥), (/), (**) denote multiplication, division and
exponentiation, respectively. , ' ‘

9-5

must be synthesized from the set of allowable statements., FORTRAN on the
other hand allows the user almost unlimited freedom in the writing of
arithmetic statemerits, however; the user must still observe basic rules re.
garding tl.e precedence of operations, use of integer and real variables, etc,
In any event, the basic arithmetic operations are readily implemented on a

digital computer and present no significant problems in simulation.

C. Basic Operations--Function Generation

Two types of functions commonly are required in system simulation--
explicit functions (such as SIN, COs, TAN, EXPONENTIAL) and non- explicit
functions which may have any arbitrary shape whatsoever, The explicit func.
tions usually are available as ""canned" packages in the programming language
- selected and normally present no significant problems for the simulator. We
will devote our attention here to the general problem of function approxir.ation
or ''curve fitting" concentrating on techniques which have proven to be practical
in system simulation,

This problem is illustrated in Fig, (3).

Y = g(x)
y = £(x)

-
-
Pl

£(x), g(x)

(approximation error
exaggerated)

0 pecoew
o

Function Approximation
Figure (3)

We seck a function g(x) which is an "adequate" approximation of a function £(x)
over some interval of the independent variable, say, (a,b). There are many

approaches to this problem including use of algebraic polynomial approximation

9-6

f(x)

| ((L
IJI L J

4 $ $ x
X1 *2 %3 TXNLL N XN+l

T g
[x /

Function Approximation by Linear Interpolation
Figure (4) -

*

linear interpolation, and fitting with orthogonal 1 .nctions such as sines, cosines

and Bessel functions, We will first consider the linear mterpolatxon method -

a method which is widely used in both digital and analog simulation, We will

then discuss an alternative approach - polynomial approximations based on

Lagrange interpolation polynomials, In addition to its relevance to the problem
of function approximation the Lagrange method will lay a foundation for the

derivation of numerical integration formulas - our next major topic for dis-

cussion,

We turn now to function approximation by linear interpolation (see
Fig, 4). Inthis casethe desired function is approximated by a series of straight
line segments. Advantages of the approach are the ease and speed with which
it can be implemented on a digital computer., The accuracy of the approxima-

tion is, of course, dependent upon the number of approximating line segments.

We will proceed by developing a FCRTRAN sub-program which will
compute a straight line approximation to a function f(x) given the number of
approximating line segments (N) and values of the function at N+l values of
the mdependent variables., We will assume here that values of the independent
variable are equally spaced with an interval DX as shown in Figure (4). This
assumption makes it possible to completely specify the independent argument
values by specifying the smallest value of the independent variable (call it XS),
the number of approximating line segments (N) and the interval between
independent values (DX). Other variable definitions necessary in our develop-

ment are shown in Fig. (5).

In the figure, FNL(X) is the desired approximation to the function f(x),
DVAL (1) ---DVAL(N+1) is an array that represents values of the function
£(+) at N+1 equally spaced values of the independent variable and XD represents
the difference (X-XS) between the independent argument and its smallest
tabular value, Note that the independent argument lies in the Ith interval
(between the Ith and (I+1)st data points).

FNL

DVAL(N+1) .
DVAL(I+]
FN(L(X))
DVAL(I)
P4
S
DVAL(3) /
DVAL(1) X-XS=XD
Dxi.‘
b —{ - e
XS m :'c-s—:(x-nn XS+N- DX
XS+(I)DX

Variable Definitions for Linear Interpolation

* Figure 5

From the figure the desired line» functional approximation is given by

(1) FNL(x) = DVAL() + (XD - (I-1) « DXI))(‘I{)VAL(IH)-DVAL(I))
Based on this relationship it is possible to write a general purpose algorithm
for carrying out this kind of function approximation. The FORTRAN sub-
program of Figure (6) is designed to provide this capability,

The first two executable statements of the progx;am determine which of

the following three cases prevails;

X < XS
XS < X < N*DX
X > XS + N*DX

If X lies outside the range of tabulated values (the first and third cases) the
program assigns the function values corresponding to DVAL(1) (for X < X8)
and DVAL(N+1) (for X 2 XS5 + N *DX), In this sense the program computes a
function which is limited to lie within a predetermined range. If XS< X < XS +
N *DX the program combputes the interval within which interpolation is to take

place (statement 8 of Fig. (6)) and then interpolates linearly within that interval
(statement 9).

In some situations it may be desirable to have a program which will
extrapolate linearly when the independent variable lies outside the interval
(XS, XS + N*DX), If such is the case it is a simple matter to provide this
capability by modifying the program of Fig. (6).

Function generation by linear interpolation is a standard feature of
simulation languages such as DYNAMO (5) and FORDYN (3). The latter
reference includes a number of FORTRAN programs for implementing the
technique. These programs permit the user to choose limiting or extrapolation
at function end points and fixed or variable increments in the independent

variable,

9-10

[
AN

O O =1 O Ui B W N -

FUNCTION FNL (DVAL, XS, DX, N, X)
DIMENSION DVAL(1)

IF (X-XS) 3, 3, 2

IF (X-XS-N#DX) 7, 5, 5

FNL = DVAL(1)

GO to 10

FNL = DVAL(N+1)

Go To 1¢

XD = X-XS

I=1.0 +XD/DX

FNL = (XD-FLOAT(I-1)*DX)}*(DVAL(I+1)-DVAL(I))/DX+DVAL(I)
RETURN :

END

. A FORTRAN Sub-Program for Function Approximatio.n
by Linear Interpolation

Figure 6

. Before leaving the subject of function generation by straight line
approxxmations we will present an example of the application of the approach
embodied in the sub- ,program of Fig, 6.

Example (1). Use the program of Fig. (6) to approximate the

L /

function
Y = 1-cosx

on the interval (0, 7). Develop the approximation on the basis of four straight
line segments,

Solutxon. Since the computer program assumes equally spaced
values of the mdependent variable we construct the following table based on

an increment (DX) of Z :

x Y
0 0
. /4 . 293
n/2 1.00
3n/4 1,707
v 2,00

The DVAL array of the program is hence:

DVAL (1) = o0,
DVAL (2) = ,293
DVAL (3) = 1.0
DVAL (4) = 1.707
DVAL (5) = 2,0

This array is, of course, read into the computer during the initialization
phase of the program which culls the FNL sub-program along with values
for N XS, and DX, For the latter three variables the following assignment

statements are required in the initialization phase of the calling program;

912

xs o |
Dx - .7854 ‘(nearly n/4)

Given this ihitializaﬁion and a‘:pre-a;signed*value for the independent
asguent (X here) the:followmg' statement computes a straight line approxima-
tion to the desired function any time it appéara in a FORTRAN simulation

program:

Y = FNL (DVAL, XS, DX, N, X)

The sub-program of Fig. (6) must, of course, be compiled along with the
calling program. Once compiled the function generation routine can be used
to campute as many different functions in the simulation model as the user

desires. This is done by defining a unique set of variables (¥, DVAL, XS, DY,

N, X) for each function to be computed, For example:

'J = FNL(DVALJ, XSJI, DXJ, NI, XJ)

A final word here. This example ia clearly for illustrative purposes
and not a very realistic one, The most practical (and accurate) way to compute
a function such as 1 - cos x would be to use the cosine or other explicit function

where provided by the programming language (FORTRAN, DYNAMO, etc.)e

“—

We will now turn our attention to another approach to the generation
£ funct-ion'al relationships between two variables - the Lagrange interpolation
polynomial, After discussing this technique and rel ated theory we will be in a

position to discuss analysis of errors inherent in the a‘traight line appruxiwnation
method just presented. '

We will assume, as before, a function £(:.‘)‘to be approximated., We will

further assume that X Xse .4. xn are n+l distinct points on which‘the'i'a‘lué}é

9-13

of the function f(x) are known, We seek a polynomial

n

(2) P(x) = al+a2x+a3xz+... ra X

n+l

with the property
(3) P(xi) = f(xi) for 1=0, 1, 2, ..., n,

The resulting algebraic polynomial is called the Lagrange interpolation
.polynomial. Since it can be readily shown that this polynomial is unique, any
method which arrives at a polynomial with the properties of Fqns. (2) and (3)

arrives at the Lagrange interpolation polynomial. We will explore two such

methods,

We begin by developing a set of n+l simultaneous equations from
Eqns, (2) and (3).

2 n
f(xo) al-l- a,%, + agx_ +.00 F an-l-lxo

(4)

e

2
(xn) = al+ azxn+ 3% +.00 2

%
n+l n

Rewriting (4) in matrix notation we obtain;

p— pow 2 ' nqr -
i(xoﬂ 1=, x7 ... x|]a
2 n
(5) f(’fl) = |1 ox % x| 8,
. [] [] [) [.z [L] .n :
f(xn) 1 x S a1
L. -l =1 -l e -

or
(6) f = Va

The (n+1) x (n+l) matzix V is called the Vandermonde matrix. Since the

Lagrange interpolation polynomial is unique and always exists, it follows thal
this matrix always has an inverse, Clearly then, one way to obtain the
Lagrange interpolation polynomial is to solve for the coefficient vector 2

- from

1

(1) a = j‘v' £ .

i_j'9:';'fl4 e

There ;Vis,f however, an easier and faster way.
Let us begin by writing P(x) in the form
(8) P(x) = Lo(x')f(xo) + Ll(x) f(xl) +.00 + Lp(x)f(xn)

where Lo(x); Ll(x) cess Ln(x) are themselves polynomials of degree < n.
P(x), then, is also a polynomial of degree < n as required by Fqn. (2), If
thelt_:oefﬁcient polynomials Lo(x), Ll(x), .o .Ln(x) (known as the Lagrange
coefficient polynomials) have the property

0 . ifi;
1 i'-'o’lc.on

@ Lyx)
L, (x,)

flxen the condition of Eqn, (3) will be satisfied and

P(xi) s f(xi) for = 0, 1. Z, soelle

Therefnre, if we can find polynomial coefficients Lo(x). oo Lx;(x) of degree
< n with the property of Fqn, (9) the polynomial of Eqn. (8) will be exactly
the Lagrange interpolation polynomial - derived by ;nother method.
Fortunately, we can readily construct a set of Li(x)'s with the necessary
properties, Consider

(x-xo)(x-x1)ooo(xex

(x -X,) (x-xn)

1-1) i+l

O LW

Clearly Li(x) is of degree n (note that the factor (x-xi) is missing from the

(l 0) Li(X) =)c oo (X.-x)
i'n
numerator). Note also that the zeros of the numerator ensure that

Li(xj) = 0 j#1iasrequired.
It ie also clear that Li(xi) is unity., The net result of this.is that we can

LN

write the Lagrange interpolation polynomial in the form of Fqn. (8) directly
by constructing the polynomial coefficients L (x). oo (x) according to Eqn. (10)

A ohorthand notation is common for L (x) We can write Eqn. (10) as

' - n (x-x)
1) L) = ?T’L
- j=0 i j

J#1

9-15

Theory is available which permits an evaluation of the error inherent
in approximation by the Lagrange interpolation polynomial., Before discus sing
error analysis we will present an example which applies the above develop-

ment to function approximation,

Example (2), Use the Lagrange interpolation polynomial to approxi.
mate the function of Example (1) (that is, v = 1-cos x) on the interval (0, m).

Use a polynomial of degree 4 given the following function values:

x £(x)
0 0
n/ 4 .293
n/2 1.0
3n/4 1.707
w 2,00

From Eqn. (8) we know that the desired polynomial is of the form:
P(x) = Lo(x)(O) + Ll(x)'(. 29;) + Lz(x)(l) + L3(x)(l.707) + L4(x)(2.00)
where, from Faqn. (10) or (11):

(x-0)(x-m/ 2)(x-31/4)(x-m)

L&) = 74-0)n/ 4w/ 2)(x/ 2-3n7 &)(n] 4-m)
L.(x) = (x-0)(x-7/4)(x-37/4)(x-m)

2 T (n/2-0)(n/ 2-n/4)(n/2-3u/4)(n/ 2-7)

L _ (x-0)(x-m/4)(x-w/ 2)(x-n)

3lx) = (3w/4-0)(3n/ 4-n/4)(3n/4-n/2)(3n/ 4-7)

L (x=-0)(x-m/4)(x-u/2)(x-3w/ 4)
4t} = (4=0)(n-n/ 4)(m-7/ 2)(n-3w/ 4)

It is not necessary in this case to compute Lo(x).

This method of function approximation requires a considerable amount
of arithmetic. While this can be minimized by careful programming, the
approach is normally slower on a digital computer (for a given accuracy) than
the straight line approximation method described earlier, We will later

evaluate the approximation error of the two alternative approaches,

9-16

Turning now to the error of Lagrange approximation, we will present,

without proof, the results of a theorem from numerical analysis (4);

We suppose as before that a function f(x) is given on the distinct
points X xl, coerX o We assume that x is-a point at which f(x) is to be
approximated by the interpolation polynomial P(x), Let I be the smallest
interval containing x, X le. ceer X It can be shown, then, that there

exists a § in I which depends upon x, X0 Xppeees X and f(x) such that

(12) f(x) = P(x) + R(x)

where f(n+l) :

(13) R(x) = (x-xo)(x-xl)...(x-xn) i)

The R(x) of Eqn, (13) is the difference or error between the function
£(x) and the approximating Lagrange interpolation polynomial, P(x), While
it is usuaily quite difficult to compute the error corresponding to a given x
in I, this error equation can be used in many cases to establish an upper

‘bound on the approximation error in the interval I. Examples follow,

Example (3), Determine an upper bound on the error of the linear
interpolation approximation of Example (1), What is the effect on the

approximation error of doubling the number of approximating line segments ?

Since the straight line interpolation method involves the equivalent
of Lagrange interpolation (n=1) in any given interval we can use Eqn, (13) to
compute an upper bound on the approximation error. Clearly, the absolute

value maximum error will occur in that interval in which

~ -

2
1) = ldild;{“"’l = |cosx|

is maximum, From the nature of the cosine function we know, therefore, that
the maximum error will occur in the intervals 0 <x<n/d4or3n/4<x<m,

From Equation (13) the error in the first interval is given by

17

x(x-v,'4)(cosl§)

R(x) = 5 0<x 6 <n/4
and in the second by
' R(x) = (x-31r/4)(z;.<-1r)(cos g - nf4<x §<n

In either case an absolute value upper bound on the error is
IR(x)| = n°/128 o .077

It is left for the reader to show that doubling the number of approxi-

mating line segments would reduce the maximum error by a factor of four,

Example (4). Determine an upper bound on the Lagrange interpolation
pulynomial approximation of the function f(x) = 1 - cos(x) (of Example (2)),

at the point x = /8,

From Eqn, (13) this error is given by

R(x) =

(%) (x-1/ 4)(x-7/ 2) (x- 31/ 4)(x-7) a° (1-cos x)
5! de
x=§

an upper bound on the error at the desired point is therefore

.

IR(x/8)| = l(u/8)(-«/8)(-31;/2?(-5“/3)(-7"/3)|)

5
= LQ.E_’_’L;. ~ ,008
1208

These examples indicate that for the particular function being approxi-
mated the Lagrange approach results in a considerably smaller error than
the straight line approximation method for a given number of data points, Due
to the nature of the error functions for the two approaches we would expect
this to be generally true, This does not necessarily mean, however, that the
Lagrange approach is generilly to be preferred, Computing time requirements
may dictate otherwise. In many simulation problems, particularly in the socio-

economic areas, the poor accuracy of basic data may reduce considerably

9.18

the need for highly accurate numerical approximation methods, In such cases

the efficient straight line approximaticn method of function generation finds

widespread application,

In the following section we will discuss numerical integration methods--
another fundamental mathematical operation in system simulation. Much of

this devclopment will be based upon Lagrange interpolation and related error

analysis.

D. Basic Operations--Integration

From earlier discussion it is clear that integration plays a key role
in the solution of differential equations, Our purpose here will be to discuss
those techniques which have proven most useful in the simulation of socio-econor

economic systems describable by differential equations, The subject of

numerical integration and its application to the solution of differential equa-
tions is a vast one and far beyond the scope of our discussion here. It will
be possible for us, however, to accomplish our more limited objective in

what follows.

Our discuss’on of numerical integration of a function, say f(x), will
begin with a Lagrange interpolation polynomial representation of that function.

From the earlier developments of Eqns. 8, 11, 12 and 13 we can write

n
i . (nt1) (£(x))
== A e = B L) el) (o) S

where Li(x)i =0,1,...n are the Lagrange interpolation coefficients of Eqns.
(10) and (11).

We desire an expression which will approximate the integral of f(x)
over some interval, say (a,b). On integrating both sides of (14) we get

b n
(15) S‘ f(x)dx = 5 izo Li(x)f(xi)dx
a a i=

b - (n+1)
£

’ 9-19

http:discuss.on

where £ lies in the smallest interval I containing x, Xy XppeeeX o From (15)

it is clear that an approximation to the desired integral is

b

b
(16) S; £(x)dx s izof(x) S; L, (e)dx

(Note that the term f(xi) can be moved outside the integral because it is simply

a constant).

Equation (16) provides us with a means of deriving a host of different

integration formulas for different intervals (a, b), and points (xo, X oyeo .xn).

In what follows we will restrict outselves to formwulas based on equallly spaced
values (xo, SYREY xn) of the independent variable, The second term on the
right of (15) is an expression for the error associated with the integration
formula which in some cases enables us to derive a useful measure of the erro:

inherent in a given integration formula.

We will begin by deriving a practical integration formula and related
error equation from (15) and (16). We will agsume an interval of integration
(t, t+DT) where DT is some small increment in the independent variable, We
will further assume that f(x) is given at x) = t-DT and xl- t. This is known
as a prediction type integration formula since the interval of integration lies

in part, at least, outside the interval I including (xo, X oo .xn). Such

1
formulas are of particular interest in the solution of differential equations as

will be seen later,
From Eqn. (14) we can write

x-t X = !t-DT!
0N) = gpmy (4-DT) T eoT)

¥ (% = (-DT))(x-t) ——‘gii‘ﬂ

£(t)

t-DT < § <t +DT

and on integrating over the desired limits

9-20

t+DT t+DT

UL J O
(18) X f(x)dx = -ﬂ-t-;%ﬂi (x~t)dx +%§rl i (%= (t-DT))dx

t4DT 2)
+£ (x-(t-DT))(x-t) B 4

2

Changing variables to simplify (z = x-t) and dropping the error term for the

moment we get

t+DT DT DT
_£(t-DT) £(t)
(19) X £(x)dx ~ =57 S; zdz + 2 X (2+4DT)dz

on carrying out the integration we get the desired integration formula;

. t4DT
(20) i fedx = 2L [34(t) - £(t-DT))

Error analysis - We will later discuss applications of integration
formulas such as this one but let us turn our attention now to the error term
associated with (20). From Eqn, (18) the integration error in the interval
(t, t+DT) is given by

t+DT f(z)

(21) E = i (x - (t.D'r))(x-t)———f,_g—-‘-’ﬂz dx

t-DT € § < t+DT

Due to ‘the term t(z)(§ (x)) embedded in the integrand, this integral is difficult
to evaluate in general. (The exact functional form of E(x) is normally not
--known,) In certain cases, however, it is possible to establish an upper
bound for (21). A theorem from numerical analysis will help us accomplish
this for the error of Eqn, (21) and that of a number of other important

integration formulas,

It can be shown that given i(x) continuous on the interval (a, b) and g(x) ‘
integrable and without sign change on (a, b) there exists a point L in (a, b)
such that
b RN
@) (" tgpoax - f(n) { gxa
a

(1
9-21

http:z+DT).dz

The proof of this theorem follows from the intermediate value theorem, In
this case (from Eqn. (15))

f(x) = £(n+l)'&%%)[and

g(x) (x-xo)(x-xl). .o (x-xn)

It is clear that g(x) will have no sign changes in (a, b) if any one of the

following three conditions is satisfied:

) a<bgx
) x <a<hb
n-
iii) xi S a < b S- xi+l i= o'l.oto’n-l

Asshming that g(x) has the required properties the error term of Eqn.

(15) can be written as

(n+l) a
f L
= L R
| a<L<b

Since £(x) is contained in 1 (the smallest interval containing x, 5:0, X.yee .xn) we

1
can write (23) as

f(rH-l)(_l

(24) E = (n+1)!

a
i (x"x‘,,)(x-x1 Yoo (x-xn)dx

where [is contained in the interval I. From (24) we can compute an upper
bound on E by finding a u in I that maximizes f(nH) and carrying out the

indicated integration,

As an example of the application of this technique we will apply it to the
error of Eqn, (21). Since this equation satisfies the conditions of the theorem

we can write (21).as

(2) t+DT
| “_25) E = !leﬂ i (x-(t-DT))(x-t)dx

t-DT < u < t4DT

on carrying out the integration the error equation for the integration formula
of (20) becomes

- 3.(2)
() E = lzD'rf (1)

Note that for small DT this error term can become small, This is encouraging
as it indicates that, assuming the second derivative term, f(z) (k), is bounded,

we can achieve any level of accuracy desired by shrinking DT.

By the theory developed above we can derive many useful integration
formulas. Following are some predictor type formulas, useful in the solution

of differential equations.

Eheae formulas are predictors in the sense that they predict a value

for S f(x)dx on the basis of values of £(«) at times prior to t+DT:
R prior to

t+DT 2

(27) S" f(x)dx = DT £(t) +9-'§-— £1(4)

tf_-p._<_ t+DT

t+DT 5

(28) & fax = ZX [31() - £¢-DT)] +73 DT’ (Pp)

t-DT < g < t4DT

t4DT o
(29) X fx)dx = 2 [-9 £(£-3DT) + 374(t-2DT)

251

(4)
550 DT £7(1)

- 59£(8-DT) + 55£(t)] + 755

t=nDT < p < t+DT

Predictor t'ype formulas are usually necessary in numerically solving differential

equntions because £(t+DT) is usually not known and available for the computation

of S f (x)dx,

The following formulas, while not predxctors, alao ﬁnd application
in the solution of diiierential equations as correctors in the predictor -corrector
method to be discussed later. These formulas also: can be derived from the |

" theory developed above,

t+DT 3
DT DT .(2)
= (£(t) + ;(thT)) -1 ££77(1)

(33) K f{x)dx

t < p < t4DT

t+DT

(34) i fx)dx = DF (9£(t4DT) + 19£() - 5 £(t-DT) + £(t-2DT))

5
19DT (4)

t-2DT < p < t4DT

Equation {33) is the familiar "trapezoidal rule, "

We will now pre.ent a aimple' example of the application of numerical
integration to the simulation of a system described by differential equations.
More realistic examples will be presented later but this one will demonastrate

the general approach,

Fxample 4, Develop a FORTRAN program that will simulate the
behavior over time of the population model described below, This model
might approximate the behavior of populations of wild or domesticated animals,

';“ﬁlh, insects, etc. The model as it stands doesn’t include management
variables which contfol the populations, i.e,, hunting and fishing regulations,
These aspects can be readily incorporated into such a model), Use the Euler

integration formula of Eqn. (27),

“aeas

O ® N R W N e

PROGRAM EX'4

- FORMAT/(3E12.4)
‘Cl=.25
Cezenr
C3=.15
PM = 100600,
PF = 20000,
T=0,
DT =, 02
DRM = C2* PM
DRF = C3 * PF
BRF =C1 * PF
BRM = BRF
DO21'I=1, 500
T = T+DT
" PF = PF + DT * (BRF

-DRF)

PM = PM + DT * (BRM-DRM)

-BRF = Cl * PF

BRM = BRF

DRM = C2 * PM

DRF = C3 * PF
PRINT 1, T, PF, PM
:END

.,'Af,_l"ORTRAN Program for

the Population Model of Fxample (4)

Figure (7). .

9-27

We can now apply Euler integration from Fqn, (27) to these equations and
obtain, in FORTRAN notation:

PM = PM + DT%*(BRM - DR M)
PF = PF + DT* (BRF - DRF)

Note that variables on the right of these equations correspond to time "t while
those on the left correspond to time t+DT. A complete FORTRAN program for

simulating system behavior over a ten year time horizon appears in Fig, (7).

Statements (2-12) constitute what we will call the "initialization" phase
of the program. Here, values are assigned to the constants of the model,
initial values assigned to the state or level variables of the model (the outputs
of the integrators for PM and PF), and initial values are assigned to the rate
variables which determing the integrands of the integration equations (DRM,
DRF, BRF and BRM). Statements (13-21) we will call the "execution phase"
of the simulation program, In this phase, time (T) is incremented by intervals
of DT by means of the DO statement., For each value of time (bT, 2DT,...
500 DT) the values of.all model variables are computed by statements (15-20),
Note that the sequence of computation is to first determine the value of all
integral (state or level variables) for time t+DT then to compute the integrand
or rate variables for the next solution time t+2DT. This is in accordance
with the computation procedure dictated by the integration formula being applied,
Statement 21 provides for the printing of model output variables for each time
period. (In many cases it may not be necessary or desirable to produce output
at such frequent intervals., The introduction of another DO statement to control

printing can produce output at less frequent time intervals),

It will be seen that the notions of "initialization phase, "' "execution phase’
and computing sequence introduced in this example are general in nature and

will apply to most of the simulation models we will be developing,

As stated earlier, the so-called Euler integration employed in the above

-example is the simplest and least precise method for carrying out numerical

9-28

integration. While the technique can be made as precise as desired by shrinking
increment DT, this may not be the most efficient way to obtain solution accuracy,
For this reason it is of interest to discuss more sophisticated methods for
golving differential equations numerically and we will be looking at some of

these below, We will, however, be returning to the Euler approach later
because experience has shown that it is entirely adequate for many simulation
applications where high solution accuracy is not necessary, Indeed

DYNAMO (5) and FORDYN (3),languages developed fo; the simulation of

business and industrial systems, are based on Euler intt;.gration. Ftln'ther, the
Euler approach, by virtue of its simplicity, reduces the time and effort re-

quired in developing operational models.

Use of More Complex Integration Formulas--We will now consider
advantages that may be derived, in certain cases, from using more sophisti-
cated integration formulas (.such as those of Eqns. (28) and (29)). We will

also address special problems that arise in the application of these formulas.

Let us begin by looking more carefully at the error terms of the
predictor formulas (Eqns, (27-29)). For convenience the error terms are

tabulated below along with the number of terms in the corresponding integration

formula:
* Error Term
Formula Number of terms (n+l) (t. < p < t+DT
2
Eqn. (27) | D—T-ég-(ﬂ
Eqn. (28) 2 12 proe)
. ' , 251 _ 5.(4)
Eqn, (29) 4 320 —DT £ (1)

Recall that n is the order of the Lagrange polynomial used in the
derivation of the integration formula,

]

9-29

The errors tabulated are, of course, the errors in one iteration of the

integration formula occurring in the interval (t, t+DT). The errors inherent

in iterative t;xse of the formulas over an extended interval would be different

and perhaps significantly greater, Clearly, the magnitudes of the error terms
above depenzl "cru'cially upon the nature of the function f(-) being integrated

and its derivatives, If the magnitude of £(n+1)(x) does not increase with in-
creasing n we have reacon to hope that the integration error term will shrink
as we move to more complex integration formulas (DT is usually "small'' which

ensures that D’I‘m'2 will decrease with n),

Fortunately in the sirulation of many real world systems we often
encounter situations in which £(n+l)(x) does, in fact, decrease with increasing

n. As an example let us reconsider the population model atove,

We can readily sce that an exact solution for PF(t) in Example (4)

is:

(35) PF(t) = FFO o{C1-C3jt

In this case the function £(*) (in the integration error term) is
36) EEY . (c1.c3) pro ofC1-CO"
The error terms corresponding to the three integration formulas (27), (28) and
(29) are hence respectively
2 (C,-C,)p
DT (c1-c3®proe ! ?

21z
(C,-Cyu
2 pr’(c1-c»’ proe 1

(37) E

(38) E

28

and
. (C,-C,)n
251 5 5 1 73
(39) Ez9 730 DT (C1-C3)" PFO e

where t< i < t+DT,

In this pa’rticulai problem (C1-C3) is inherently less than one (on the order
ol . l.). For DT sriiall, then, the integration error decreases very rapidly as

9-30

one moves to predictors with incteasiné numbers of terms, * It follows,
therefore, that for a given integration error more complex integration formulas
can tolerate larger values for DT, require fewer iterations to simulate over

' a specified time horizon and may well consume less computer' time for a
given simulation run, There are some problems created, however, when one
moves from Fuler integration to a more complex prediction such as Eqn. (28)

or (29). The following example illustrates,

Example 5. Repeat Example (4) using the integration formulauf Eqn. (28,
Choose a new value for DT such that the simulation accuracy will be at least

that of Fuler!s method in Example (4).

We begin by determining a value for DT such that the error in applying
Eqn. (28) on a given iteration is less than or equal to the error in one iteration

of Fuler's formula, That is, we seek (from Eqns, (37) and (38)):

2.
12
DT

—3‘— (€1-c3)2 PFO e

br(c1-c3)’ pro (€1 <
2

(C1-C3)p

where DT, is the value assigned to DT in Example (4). On substituting values:

1
5 1/3
12(,02)]
DT 2 | By 25- . 15) = .17

~.We will select DT subject to this condition and, for convenience, subject also
to the condition that 1/DT be an integer. In this case we will conservatively
take DT = .10.

-

Note here that the number of terins is (n+1) where n is the order of the
Lagrange interpolation polynomial from which the integration formula
is derived,

9-31

In this example, then, we see that 100 iterations of the integration
formula (28) are rcquired to simulate 10 years of system behavior, In
Example (4) 10/,02 or 500 iterations of Eqn, (27) are required. Since we
have ensured that the error on any given iteration of (28) is less than that of
(27) we reason that the overall error in 10 y'eara of simulation will be less in

this case since only 100 iterations are required.*
* We now apply our new integration formula to the integration of

t+DT
PM(t+DT) = PM(t) +X (BRM(x) - DRM(x))dx -

t+DT
PF(t4+DT) = PF(t) +£ (BRF(x) - DRF(x))dx

Application of (28) to these equations gives us

(40) PM(t+DT) ~ PM(t) + 2% [3(BRM(t) - DRM(t))
2

- (BRM(t-DT)- DRM(t-DT))]

" (41) PF(t+DT) ~ PF(t) + %?- [3(BRF(t) - DRF(t))

- (BRF(t-DT) - DRF(t-DT))]

‘This is quite straightforward but there is a complication, In order to start
integration by these formulas we require values of BRM, DRM, BRF and DRF
att =-DT as well as at t = 0, Unfortunataly this information is not available

for t = -DT from the problem specification. Our approach will be to use
anotl{er integration procedure (Euler's method) to compute BRM(DT), DRM(DT),
BRF(DT) and DRF(DT). We can then switch to (40) and (41) to compute PM(2DT),
PF(2DT), ... PM(100DT), PF(100DT), The FORTRAN program of Figure (8)

illustrates,

» This assumption is not necessarily valid if the function £(*) and its

derivatives (Eqn., (36)) change sign during a simulation run. The subject
of long run simulation c¢rror is, in general, a complex one,

9-32

O OO0 d W

PROGRAM EX 5

FORMAT(3E12,4)
Cl=.25
C2=z.,1
C3=.,15

PM = 10000.
PF = 206000,
T=0,

DTl = .02
DT2=.,1

DRM = C2*% PM
DRF = C3*PF
BRF = Cl1*&F
BRM = BRF
DRMO = DRM
DRFO = DRF
BRFO = BRF
BRMO = BRM
DO251=1, 5
T = T+DT1

PF = PF + DT1 * (BRF-DRF)
PM = PM + DT1 * (BRM-DRM)

BRF = C1 *PF

BRM = BRF

DRM = C2* PM

DRF = C3*PF
PRINT 1, T, PF, PM
DO391=1, 99
T=T+DT2

PF = PF + DT2 * (3% (BRF-DRF) -(BRFO- DRFO))/2.
PM = PM + DT2* (3% (BRM-DRM) -(BRFO- DRMO))/2.

BRFO = BRF
BRMO = BRM
DRFO = DRF
DRMO = DRM
BRF = Cl * PF
BRM = BRF

" DRM = C2 * PM

DRF = C3 * PF
PRINT 1, T, PF, PM
END

A FORTRAN Program for the Population Model of Example (5)

Figure (8)

9-33

Statements (2-17) of this figure initialize constants, state variables
and variables used on the right side of integration formulas at t =DT, The
variables DRMO, DRFO, BRFO, BRMO (statements 14-17) store initial values
for DRM, DRF, BRF and BRM since these latter variables are updated by
application of Fuler's formula and the former are required for starting inte-
gration by (28). The DO loop beginning with statement 18 and ending with
statement 25 computes PF(, 1), PM(. 1), BRF{(. 1), BRM(. 1), DRM(. 1) and
DRF(. 1)--the rernaining values needed for starting integration by Eqn. (28).
Statements (27-39) carry out integration by this equation, compute relevant
model variables cver the required 10 year period, and print output variables
at ten intervals of T =, 1 years, Note that statements (31-34) store values
for BRF, BRM, DRF, DRM which correspond to time t - DT2 on the next
iteration of the integration formula (statements 20 and 21).

Example (5) has demonstrated the application of higher order integra-
tion formulas to the solution of differential equations. It has been seen that
the basic problem has been one of getting starting values for formulas which
require values for the integrand at (t- DT), (t-2DT), It has been seen that
Euler's formula, with an appropriately small DT, can be used to provide
starting values, Other methods for obtaining starting values include the
application of Runga-Kutta formulas or formulas based on Taylor's series
expansions, These will not be discussed here, however, The interested
reader can pursue this topic further (4, 1, 6),

We have thus far discussed two methods of achieving simulation
accuracy (if such accuracy is needed in light of basic data accuracy):
i) Use of a relatively simple integration formula with a
"'small" solution interval, DT,

{i) Use of a more complex integration formula which permits
a relatively larger DT for a given level of accuracy,

Approach (i) leads to relatively simple simulation pPrograms requiring a
minimum of programming time, This approach, however, requires more
computer time than (ii) for a given level of simulation accuracy, In certain
cases, particularly where a given model is to be used on a long run basis
ounce programmed, approach (ii) would be Preferred over (i). Another factor,
computer memory requirements, might also be a factor to consider in cer-
tain cases, Approach (i1) leads inherently to increased memory requirements
since more values of the integrands must be stored for higher order integra-
tion formulas,

9-34

L.

2,

3.

Chapter 9
BIBLIOGRAPHY

Hamming, R. W., Numerical Methods for Scientists and Engineers,
McGraw-Hill, New York, 1962,

IBM Corporation, System/360 Continuous System Modeling Program
User's Manual, Program Number 360A-CX, 1 X, 1972,

Llewellyn, Robert W, ,"FORDYN--An Industrial Dynamics Simulator,
Deparunent of Industrial Engineering' North Carolina State University,
Raleigh, 1965.

Moursund, David G. and Charles S. Duris, Elementary Theory and
Application of Numerical Analysis, McGraw-Hill, New York, 1967,

Pugh, Alexander L., Dynamo II User's Manual, MIT Press,
Cambridge, 1970, |

Stark, Peter A., Introduction to Numerical Methods, The MacMillan
Co., London, 1970,

9-43

CHAPTER (10)
SIMULATION OF TIME DELAYS

Clearly time delays occur naturaliy in virtually all real warld processes
and systems, The arrival of goods andimaterial occurs some time atcer the
goods or materials are sent due to inhefent transportation lags, Some finite
time is required to analyze informationjand arrive at decisions. Thus , the
making of decisions 1ags behind the varjables upon which the decisions are
based, There are inherent lags in processing materials, i, e., production
lags, delays inherent in chemical reactions, etc, Delays are inherent in all

biological processes--gestation delays in the reproducted process, maturation

delays as living entities §ecome ready for reprbduction and so forth(l,2,5).
Economic systems are subject to behavjoral lags as both consumption and
production respond with delays in resp&nse to causal variables and the

. growth of productive capital in an econamy is a lagged function of investment
decisions due to inherent gestation delays in capital formation(3,5).

In these, and many other ways, delays are intrinsic in the vo rld we
live in. Interestingly, the mathema.tic 1 relationships that describe these
delays often look the same whether we'te talking about economnic, social,
bioligical or physical processes, In otHer words with a relatively small
number of delay models we can describ many qualitatively different phe-
nomena. We will concentrate here on thodels ot dalay processes that have

proven to héve wide applicability in tHe sense described, This

v @aterial should be of 1hterest, therefore, to a rather wide audience
vinclﬁding those interested in comprehensive @odels that span a number of
the processes mentioned above,

In what follows, we will define two types of commonli encountered

delays--so called discrete delays and continuous or distributed delays.,

We will describe these mathematically and develop practical means of

gsimulating them on a digital computer,

A, Discrete Delays
A discrete delay is defined by the following equation where I(t)

represents unlagged variable (the "input" to the delay) and O(t) the

lagged variable (the "output" of the delay):
;) o(t) = I(t=1).

The delayed variable is simply the unlagged variable shifted in time by

Tt time units. Clearly this type of delay would describe transportation

lags in moving entities from one place to another, Here, T would correspond
to the transport time inherent in the process. As an example, let I(t)
represent the number of letters per day sent from station x to station y.
Assuming.a fixad transportation delay, t, between x and y the rate at

- which letters arrive at station y, o(t), would be I(t=1). This type of
delay is also commonly encountered in decision processes, Let I(t)
represent the current value of some variable used in a decision process.

Due to inherent human and information pcocessing lags, decisions are not

102

alvays made on the basis of current information, In this case the
variable actually used in the decision process would be I(t=t) where

T represents the overall delay ‘between current information and that
actually used in decision making, The reader can undoubtedly think of
many other ways in which this particular phenomenon occurs in the real
world.

Simulation of this type of delay 1s particularly straightforward '
with a digital computer. In what follows we will develop a mathematical
procedure for simulating such delays. We will then present and describe
a subroutine vhich implements this procedure in FORTRAN,

We begin by assuming that the discrete delay, 1, is an 1ntéger

multiple of DT, the basic time increment used in the simulation. Thus,

2) t = NeDT

vhere N is an integer. From the definition of the discrete delay (Equation

(1)) ve can write:

3) o(e) = o, (t-DT)
0,(t) = g,(t-DT)

| lel‘t) = I(t=DT)

4whc:e. as before, 0 is the lagged variable and I the unlagged. The variables

044 0, oo Oy.q are intermediate variables necessary in computation,

1043’

"\Eqdagioh'(é) can Séf@ritﬁen~métrix'fotm as:

- - H T r l B ’:
 4)?9(:) olo, .o rrO(t-DT) ‘ o
log(e) oolo. o" 01(t=DT) o0 '
02(t) = looo01l.0| [0a(t-DT) + Jo | I(t)
: ; e 8 & 1 : :
Ons.l(t-)J 00+ ¢ 0] _Ox.l(t-DT)J (1

This Equation is seen to be a special case of the discrete state model
discussed in earlier chapters, This form is inefficient for computation
and would not normally be used in practice,

The FORTRAN subroutine of Figure (1), based upon Equatioa 3), is ‘

a more efficient way of simulating discrete delays.

SULROUTINE DCTDEL (VIN, VOUT, VINT, M)
DINENSION VINT(L)
VOUT = VINT(1)
DO1 I =2,N
1 VINT(I-1) = VINT(I)
VINT(N) = VIN
RETURN
END
A FORTRAN Subroutine for Simulating
Discrete Delays

Figure (1)

10-4

In Figure (1) VIN corresponds to the inpdt (unlagged) variable and

VOUT to the output (lapgped) variable. The array VINT corresponds to the

intermediate variables 01» 02, ¢ Oy in Equation (3) and must be dimen-

sioned to N in the sinulation program calling the discréte delay subroutine,

This array must also l:e assigned initial values which correspond to the

value of the unlagged varinble before the stavrt of a given simulation

run, The integer N is chosen such that ﬁ?DT is equal to the discrete

delay being simulated as requiréd by Equacion (2).

Figure (2) illustrates the operation of this subroutine for a parti-

cular input x(t) and a lag T = 3DT.

(t) - unldpged variable
4

2
,
—— — . Time
~3DT =2DT -DT O DT 2DT 3DT 4DT SDT
y(t) - lagged variable
4) .

2 ¢ LAG Tw 3T -

: y(t) = x(t=t)
$ $ 4 } s $ + $ } Tim‘
0 DT 2DT 3NT 4DT SDT 6DT e

Graphical Representation of a Discrete Lag

Figure (2)

10.5.

rIn this case the 1ntermediate vatiables VIN"‘(I). VInT(Z) and VINT(B)
must be assigned the initial value 3 in the calling program.' s:lnce)

on the first call of the DCTDEL subroutine the tlme variable will have

the value DT, the VINT atray must be initialized as follows:

VINT(I) = x(-2DT)
VINT(2) = x(-DT)
VINT(3) = x(0)

As an illustration, Figure (3) is a FORTRAN program which uses the DCTDEL

subroutine to simulate the discrete lag of Figure (2),

PROGRAM DELAY

DIMENSION VINT(3)

Nw=3

DT ~ 1,

Te0

VINT(1) = 4.

VINT(2) = 4

vInT(3) = 3.

PO2 J=1, 10

TwT+Dr

XL=3, T

X = MAX[X1,0.]

CALL DCTDEL (X, Y, VINT, N)
2 mOT----

END

A FORTRAN Ptosram Illustrating the Use of the DCTNEL Subroutine
Piguu (3)

10-6

While the DCTDEL subroutine can exactly simulate the discrete time
delay (at least at discrete time points) it is sometimes computationally
inefficient. In cases where the magnitude of the delay, t, is long with
respect to the DT being use@ in the simulation model computation times and
memory requirements can be excessive. In these cases an approximate
simulation of the discrete delay will often suffice and considerably reduce
computation time and memory requirements. The "Boxcar" function of DYNAMO
(6) and the BOXC subroutine of FORDYN(4)--(written in FORTRAN) are
essentially approximate discrete delays. Figure (4) illustrates the
nature of the approximation inherent in these routines,

Mathematically this approximation is given by:

Ne-1
. 5) ya(t), y (eHOD), ou., ya(t#(NC-1)DT) =] X(e=(N-1)DT)

NC
i=0

t=0, NC, 2NC, ... I*NC (I, NC, N, integers)
Under this approximation the lagged variable changes value every MNC
simulation cycles and is equal to the average of NC prior values of the
unlagged variable. An important property of this approximation is that
its time summation is ixactly the same as the summation of a variable
~Which has been lagged with a true discrete delay.

e turn our attention now to a discussion of the continuous or

distributed delay. We will be concerned with how these delay processes

~oceur in tﬁe real vorld and how to simulate them.

x(t)
o ¢
0. .0 o' v
9 'y L e?tooeg
!..'.0 0..
4 ¢ ' Time
0 8DT 16DT 24 DT
Ya(t)
[X J
X) 00
o0
o0 oo . oo sef00oo
. oo". 00 o
a a ry ATime
¥ T v e
0 . 8T 160T 24pT 3t
N =8

NC = 2 (See Equation 5)

The Approximate Discrete Delay
' Figure (4)

1058

B, Continuous or Distributed Delayn

The terms "continuous" and "distributed” are used synonomously., In
what follows we will generally refer to distributed delays. The distri-

buted delay will be defined by the following linear differential equation:

6) auggfé£; + ak_lék:éZ{El + .0 .+ agy(t) = x(t)
de™”

where:
x(t) = the unlagged variable

y(t) = the lagged variable

The order of the delay will be defined as the order of the defining
d%ffetential equation; namely, k in Equation (6). Figure (5) will help
illustrate the difference between this type of delay and the discrete
delay. |
. Hlote from the figure that the distributed delay adjusts gradually

to changes in the input. This type of delay is frequently encountered

in aggregative processes where streams or f;ows made up of many entities
are subject to delays which vary from entity to entity. Many examples

are possible, We will mention a few. The rate of adoption of an attitude,
~;;novation, etc. in a population will he a distributively lagged function
of the stimulus (input) because of the inherently different response times

of individual people. The aggregate growth of capital in an economy

is a distributively lagged function of investment decisions because

10-9

" x(t)

f
*J
t
yl(t)
{
]
!
Y, (t)

¥1 ® typical response of a discrcte delay to input x(t)

Y3 = typical response of a distributed delay to input x(t)

Discrete & Distributed Delays Compared

FPigure (5)

10-10

individual investments have different sestation periods. The rate at
which plants reach maturity can be simulated as a distributively lagged
function of the planting rate because of intrinsic differences in maturation
times amongplan:s. '"herc many entities are being transported from point
to point,a distributed delay applies wvhenever individual entities are
subject to different transport times. There are also many examples of -
this type of delay to be found in the physical sciences.

‘In Chapter (12) ve will more carefully examine the relationship
between the specific mathematical description of a distributed delay and
the statistical nroperties of the micro process it represents. In certain
cases we can derive the distributed delay model directly from a knowledge
of the probability éensity function which applies to the delay of individual
entities in an agprepative flow. At this point, however, we will move
on to examine means whereby ve can simulate these delays as a basic

building block of our simulation methodology.

1. Simulation of Flow Conserving Distributed Delays
| Without significant loss of generality we can reprosent the distributed
delay by the following transfer function:
NI T

1
X(s) ju] Dys+l

!

where:
Y(s) = The Laplace transform of the lagged (output) variable
X(s) ™ The Laplace transform of the unlagged (input) variable

Dy = A set of parameters to be discussed later,

10-11

An important attribute of this particular mathematical representation

is that it conserves flow, that is, no flow is added or lost in the delay process,

The development here, hence, applies to real world phenomena, in which
flow is conserved. We can easily see that Equation (7) has this prop-

erty. In order to show this we must establish that:
d
8) x(t) = y(t)+-ﬁ Q(t)

"where Q(t) is the quantity of flow stored in the delay process and x(t)
and y(t) are respectively the input and output of the process, From

Equation (7) and the properties of the transfer function we can decompose

the kth
(6).

order delay into k cascaded first order delays as shown in Figure

X 1 [rae) 1 Ry (s) 4@ | L | R(s) = ¥(s)
(Rﬁ B1eFl | Dpstl Y == “em—3l Distl
x(e), sr,;cs lr1(e) srgcz Tp(t) _ Tgea(t) srﬁcz Ty (£ =g (t)

Decomposition of a kth Order Distributed Delay

Figure 6

10-12

Therefore if we can show that conservation of flow applies to any arbi-
trary delay in this chain, say the ith, we can reason that conservation
of flow applies to the entire delay process of k similar delays,

The equation for the ith stage of Figure (6) is

dr,(t)

8) Di T3 +r (t) = T, (t)

where ri(t) is the output of the ith

stage and Ty 1(t;) its input. We consider
the response of an individual delay stage to a unit impulse function §(t) as

input, That is,

dr,(t)
9) D3 30—t r(t) = (L) ri(O) =0
The solution to thi; equatlon is just
t

D
1 i
10) ri(t) = b—;e

To show conservation of flow in this case we must show

1) Smb(t)dt - Sm r,(t)dt
Oe O=

This is clearly the case since
.
2, 5“” 1 Dy
| 6(t)dt = 1 = e dt
o o- D

Since 8) is a linear squation it follows from the superpositior. property that
flow is also conserv:d when the input to the delay stage is a sequence of

‘impulses:

10-13

‘ 13) ri-l(t)'= n%l f(n At) * At §(t - nAt),
Since any time function can be represented in the form of (13) it follows that
flow is conserved for the ith stage for any input, Since all stages are
identical it follows that flow is conserved for the entire delay process of
Figure (6).
Another statement of the conservation of flow property is that the rate

of change of storage, Q, in an entity

14) 2%{9- = IN(t) - OUT(t)

where IN is the flow in and OUT the flow out of the entity, From the above
discussion then it is clear that for the ith stage of the delay process
aq) _ Didnlt)

dadt - dt

We not: turn to discussion of numerical methods for simulating the

15)

distributed delay process of Equation (7) and Figure (6)., Clearly we

can represent this process by the following set of linear first order

differential equations:

16) drpfe) oy

m 5y TL(8) + 5 x(®)
dra(t) 1 .1
dry (t)

de D k-0 - 51'-1- r, (t)

These equations can in turn be written in matrix form ass
10- 14

- AT M 1 7
17) ry (t) -1l o o- o]]|n() L
D; . D
ra(t) L-l o o f]ryt) 0
Dy D
d [] - L] L] ® o e . 9 [+ .
'a? . ., X(t)
. (t) o o 1 =1 i (t) o
k Dk Dk k
L J L | 1 R I
or
18) a%r(t) = Ar(t) + Bx(t)
where r and B are k x 1 column vectors, A is a k x k matrix and

h order distributed

x(t) 1s a scalar function. We thus see that the kt
delay can be represented by a linear state model. Numerical solutions
for 17) or 18) are readily obtained by the approach of Chapter (). We

can write:

19) r(t+DT) = eADT p(¢) + !:*DT AEHDT=A) 5o yan

.

At this point we will assume that DT is small and that x(t) is constant in the
interval (t,t+DT) so 19) simplifies to:

20) r(e+0T) = M PTr(e) + ft*DT.““*DT‘*’aanxcz)

© 10-18

In order to proceed We must obtain an explicit representation for the

matrices DT and eA(t+DT‘A). As scenip Chapter (6) we can approximate

/

the matrix eh(t-to) by the serics:

21) eA(Et0) u 1 4+ A(t-to) + A2 St}f")z + adt=to)3
Y

where I is the unit matrix and A is defined by Equations 17 and 18, The

A

matrix e DT {¢ hence given by:

2
22) eA'DT-I+A-DT+A29%+A3E.§% P

and

. . 2 P ¥
2 QA(t'i'DT-l) o I 4+ A(LHDT=)) + AZSC'PDT-AZ 3 (t+DT=A)
3) () 1 + A =7

In practice we approximate these matrices by series with a finite number
of terms. As an oxample, let these matrices be approximated initially

by two terms of the series in which case e?*DT ang e (t4DT=1) gare approxi~

mated ‘respectively by:
26) e*PT a1 4 At
25) e(EHT-D) o 1 4 a(esDT-2)

!quatioﬁ (20) then becomes:

t40T
26) r(t4DT) = (L+ADT)E(t) + [, [I+A(L+DT-1)1dABK(t)

10-16

which, upon carrying out the integration and re~arranging reduces to:

2
27) r(t+DT) = r(t) + DT[Asr(t) + Bx(t)] + DT °§ ABx(t)

On dropping the term containing DT (which becomes insignificant for small

DT) and expanding 27) we get:

DT -
28) 1) (eDT) = ry(t) * 5 [x(t) = £y (t)]

r, (t4DT) = r,(t) +-- (ry(e) - tz(t)]

(c+nr) - 1 (t) + ['k-l(t) - 1, (t)]

Equation 28) represents one practical way of simulating the distributed

delay. (Ve could also arrive at (28) by applying Euler integration to
Equation (17).) This approach has tlie advantages of simplicity, minimal

computer memory requirements and, in fact, is essentially the numéricél
approach used by DYNAMO (6) and FORDYM (4) in the sirulation of distri-

buted delays,

2.. Simulation of Distributed Delays by Luler's Method

Bccause of the usefulness of this procedure as a simulation building
block, we include FORTRAN subroutines for its implementation (See
Figures (7) and (8).). The first subroutine is a generalized version of
DYNAMO's third order delay. It is general in the sense that it applies

for arbitrary order k and permits the user to specify a different constant

10-17

pfﬁot?ehch‘delay gtage. In some cases the user may'ﬁrafer to assign
1&§ng1cal D values to all delay stages, In that case the subroutine of
Figure (8) is more appropriate; |
SUBROUTINE DELAY1l (VIM, VOUT, R, D, DT, K)
DIMENSION R(1), D(1)
KMl = K= 1
D01 I=1, M
1 R(I) = R(I) + (DT/D(I))*(R(I+1) - R(I))
R(K) = R(K) + (DT/D(K))*(VIN - R(K))
VOUT = R(1.
RETURN
"END

| Variable Definitions:
VIN = Input variable to delay (unlagged variables)
VOUT = Output variable of the delay (lagged variable)
R = An array of K rates
R(1) = ry, R(K) = r, of Equation 28 (tho output of the first
delay stanc iun Figure (6))(lNlote that for cfficient computatiorn,
indexing of delay stages has been reversed from that of Figure .
6 i.e., in this subroutine the last stage is indexed "1", &tc.)
D= An array of K delay parameters in Equation 28
K = QOrder of the delay.
A Subroutine for Euler Simulation of the
Distributed Delay (D values Arbitrary)

Pigure 7
10-18

SUBROUTINE DELAYZ (VIN, VOUZ, R, DEL, DT, K)
DIMENSION R(1) o
KMl =K-1
A = DT*FLOAT (K) /DEL
D01l Iel, KM
1 R(I) = x'(z) + A*(R(I+1) = R(I)
R(k) = R(k) + A*(VIN = R(K))
VOUT = R(1)
RETURN
END
Note: Delay of an individual stage = DEL/K

. A Subroutine for EFuler Simulation
of the Distributed Delay
(D values identical)

Figure 8

Before considering other theoretical matters related #o distributed
delays e.d their simulation. Ve will illustrate an application of the
distributed delay and the use of the foregoing subroutines in its simulation.
Consider the process by which productive capital is generated and depreciates
.1n an economy. We can illustrate this process diagramatically as shown in
Figure (9). The variable I(t) represents the rate at which the construc-
tion of new productive capacity is started in an economy or sector of an

economy. I(t) 1s measured in terms of units of production capacity

(for exampie, tons of steel per year) per unit time, If there are many

firms in the industry waking many decisions to 2xpand plants and build new

plants, I(t) can be viewed as a flow variable. -

.

10-19

1¢e)| cestarzon | 0p(t) JjPropucTIVE | 0p(t) >Jmamzou'r oy o

7| PERIOD [PERIOD PERIOD
(DG) (DP) ow
L Y B ¢ J&—
.
fdt Jat Jat
! | .
Ca(t) Cplt) - C,(t)

1(¢) -'R;tefit»which constru~tion of new productive capital is started
(units of production/timez)

01(t) = Rate at which productive capital enters production (same units
as I(t))

Oz(t) = Rate at which productive capital enters a wearout phase
characterized bf high depreciation and maintenance (same units
as I(t))

03(t) = Rate at which ptoducfive capital is scrapped (same units as I(t))

cglt), Cp(t); Cy(t) = Quantity of capital in each of the respective

R . ' periods,

- 'A Model of the Capital Generation - Depreciation Process

Figure (9)

10-20

After a gestation delay (DG), which corresponds to the average time
required to build. the new productive capacity and bring it into production,
the new capital enters a productive phase, the variable 0;(t) in the
Figure. This productive period extends over much of the useful life of
the new plants and is represented by the delay DP, in the figure. The
variable DP corresponds to the average useful life before the productive
capital enters a wearout phase characterized by high depreciation and

maintenance. The variable Oz(t) is the rate capital enters the wearout

phase which is represented by a delay DV in the figure. Other relevant
factors such as depreciation, cost uf maintenance, interest payments,
debt service, etc., could be included in the model in a straight forward
manner but these would obscure the main points of interest here,

Distributed delays will be approbriate in modelling this process
bécause individual entities (production plants) in the flow will generally
have different gestation, productive and wearout periods distributed about
some mean values - the DG, DP and DY of Figure (9). We turn now to
simulation of this process u;ing the delay subroutine of Figure (&),
Figure (10) is a FORTRAN program for simulating this process over a 20=-
..year time period. The rate of new capital construction is assumed to be
exponentially expandihg for purposes of this illustration. .

étatements 1-11 of Figure (10) initialize constants used in the
model, Stﬁtemenéz (12-19) initialize the rates for the delays of the
model, These initial rates determine initial values for the quantities

of‘élpitll in the three phases of Figure (9) (More will bé said about this

10-21

O 00 OO N OO0 W N

T L T = T R N >
aqmuaunzo

-
o

PROGRAM CAPITAL

REAL IN

DIMENSION RG(6), RP(3), RW(6)
INITIALIZATION PRASE
DG = 3,

DP = 10,

DY = 5,

DT = .25

T=0.

KG = 6

KP = 3

KW = 6

KM =6

A= .03

RLNGTH = 20.

M = RLNGTH/DT

PO U J=1,6
RG(J) = 190,

RW(J) = 100.

DO 16 J=1,3
RP(J) = 100.

oUT1 = 100,

oUT2 = 100.

oUT3 = 100,

BEGIN smuuuotg PHASE

10.22

20
21

22

23

24

25

26
27

29

30
k) §
32

3

34

5
%

DO 38 I =1,

T =T +0T

COMPUTE INPUT

IN = 190,%CXP (A*T)

COMPUTE OUT3

CALL NCLAY 2 (out2, OuT3, RW, DW, DT, KW)
COMPUTE OUT2

CALL DLLAY 2 (OUT1, OUT2, RP, DP, DT, KP)
COMPUTE OUT1 '
CALL DELAY 2 (Iu, ouTl1, RG, DG, DT, KG)
COMPUTE CAPACITY IN GESTATION PERIOD (CG)
D= 0. '

DO 28 J =1, KG

D = D + RG(J)

€G = DADG/KG

COMPUTE CAPACITY IN PROMIGTIVE PERIOD (CP)
D = 0.

DO 32 Je1,KP

D = D + RP(J)

CP = DADP/KP |

COMPUTE CAPACITY IN WEAROUT PERIOD

D = 0,

70 36, Je1, KW

D = D + RW(J)

10,23

Y}

38

CW = D*NY/KW
PRINT OUTPUT AS DRSIRED
CONTINUE
ElD
A FORTRAN Program for Simulating
the Capital Generation Process of Figure (9)

Figure (10)

matter of initial conditions later, The simulation phase of the program
(statements 20-37) centers around three calls to the DELAY2 subroutine
which compute OUT3, OUT2, and OUT] (the 0,, O

and O, of Figure (9)).

2 1
Statements (26-37) compute the quantity of capital in the three phases at
any time during the simulation (as discussed in Section C).

This same approach, the use of cascaded distributed delays, is use-
ful in modeling many other processes in the real world. Examples include

the aging and maturation of plants, trees, animals and other living entities,

certain transportation processes, social diffusion, etc. (1,2,3,5).
—

3, Another Approach to the Simulation of Distributed Delays
In the previous section we looked at a particular method of simulating
distributed delays involving two terms of the series of Equations (22) and (23)

to approximate the matrices e DT g ¢A(tHDT-1)

. In this section we will
develop a different approach to the simulation of these delays. It is possible
to proceed in at least two directions. We could employ higher order integra-
tion formulas such as those discussed in Chapter (9) to the set of first order
differential equations of Equation (16), or, we could continue with the approact!
of Equation (20) taking more terms to approximate the matrices eA DT and
eA(HDT'” (to improve solution accuracy). We will employ the former
- ?pproach since it readily provides information relating to solution error,

-,

A host of subroutines can be developed for simulating distributed

delays by implementing various integration formulas of the type discussed
ir Chapter (9). For illustration we will apply Equation (20) of Chapter (9) to

Equation (16). This integration formula reads as Equation (29) here:

9 £ PT tax = BT [3e) - ge-p1)]

110-25

The integration error associated with this formula in the interval

(t, t+DT) was found to be:

30) E= -1—2- DT3£(2)(0)

t = DT < u < t4DT

On applying this formula to the differential equations describing the

distributed delay (Fquation (16)) we get:

31) rl(c+DT) s rl(t) + DT _[3(x(t) - rl(t)) - (x(t=-DT) - rl(t-DT))]
2D1

£, (£40T) = £,(t) + %ZIB(tl(-t) - £p(£)) = (r)(E-DT) = rp(e=DT))]

rk(t:-H)T) - tk(t) + %klil(rk(t) - tk"l(t)) - (th(c-DT) - rk_l(t-DT))]
The desipgn of a FORTRAN program for implementing (31) is straight

forward, The design of an efficient propram for doing so may be another

matter.

The integration error analysis of Chapter (9) applies here and can
provide insight into the relative advantages of integration formulzs of

various orders. Also, the predictor-corrector methods discussed in the

previous chapter can be applied 1if highly accurate simulations of distributed

10-26

e JPON

delays are required. This is usually not the case in socio-economic
models as the mathematical formulation being solved numerically is gener-
ally an approximation of real world phenomena in the first place and data

errors may overshadow computational errors in the second place,

C. Storage in Delay Processes

From earlier discussion of conservation of flow in distributed delays,
it is clear that there is alvays storage assoclated with a flow variable
in a delay process, In the example of Figure (9) the storage variable vas
the amount of productive capacity in various stages of obsolescence. In
a transportation system involving transport lags the storage variable is
the quantity of goods in the transportation pipeline, These storage
variables are usually of interest to decision makers and relevant
endogenous system variables, Therefore, it is important to develop
efficient means for computing them. This is the objective of this section.
We will first consider storage in distributed delays. We begin by examin-
ing the differential cquation describing the ith stage of the distributed

delay process (See i"igure 6):

8 D drq(t)
) 174t

= ri_l(t) - ti(t)

It was oeen earlier that ry(t) is the total outflow from the delay stage

and ry.)(t) the total inflow, Clearly the right side of 8) 1s the rate of

change of storage in the ith delay stage., lence:

dei(t) |4
32) Dy dt Qéét)

10-27

Where 0y is the storage in the 1th stage, On integrating 32) we get:
33) Qq(t) - Q4(o) = Dyry(t) = Dyry(o)

It can be readily shown that Qi(o) = Diri(o) and hence
34) Qq(t) = Dyry(t)

for all t. The total storage, 0(t), in a k stage delay process (See

Pigure (6)) is, therefore:

k
35) Q(t) = [Dyry(e)
1=)

This relationship was.used in the example of Figure (10) to compute the
productive capacity in various phases of life (See statements 26-37 of
Figure (10)).

An anologous relationship applies to the computation of storage in
discrete delays. For cxample the storage in the discrete delay of the
DCTDEL subroutine of Figure (1) is:

N
36) q(t) = DT J vInr(D).
I=1

10-28

1.

3.

4,

5.

BIBLIOGRAPHY
Chapter (10)

Abkin, Michael H., Policy Making for Economic Development: A
System Simulation Model of the Agricultural Economy of fouthern
Nigeria, wnpublished Ph, D. Dissertation, Michigan State University,
1972,

Abkin, Michael H, and Thomas J. Manetsch, "A Development Planning-
Oriented Model Simulation Model of the Agricultural Economy of South-
ern Nigeria, IEEE Transactions on Systems, Man and Cybernetics,
2:422-486, September, 1972,

Holland, E. P. with Robert W, Gillespie, Experiments on a Simu-
lated Underdeveloped Economy: Development Plans and Balance-of-
Payments Policies, The MIT Press, Camrbridge, 1963,

Llewellyn, Robert W,, FORDYN--An Industrial Dynamics Simulator,
Department of Industrial Engineering, North Carolina State University,
Raleigh, 1966,

Manetsch, Thomas J., et al,, A Generalized Simulation Approzch to
Agricultural Sector Analysis with Special Reference to Nigeria (East
Lansing: Michigan State University, Nov. 30, 1971).

Pubgh, Alexander L,, DYNAMO User's Manual, MIT Press, Cambridge,
1963.

- 10=38

