
AidNCV PON INTERNATIONAL DEVELOPMENT FOR AID Use ONLY
WASH'INGTON.0. C. 201

BIBLIOGRAPHIC INPUT SHEET
A. PRIMARYI. SUBJECT Agriculture AEO-000-O0000

CLASSI-
FICATION IS' SECONDARy

Agricultural economics

2. TITLE AND SUBTITLE

Economic analysis for agricultural sector planning,system 	Pimulation concepts

3. AUTHORIS)

Manetsch,T.J.

4. DOCUMENT DATE 5.s NUMBER OF PAGES 6. ARC NUMBER

1973
7. REFERENCE ORGANIZATION

I 9 3 1.
NAME AND ADDRESS

ARC

Mich.State

0, SUPPLEMENTARY NOTES (Sponeoring Organization, Publieherso Availability)

(Presented at Workshop on Agr.Systems Analysis,Seoul,1973)

3. ABSTRACT

10. 	CONTROL NUMBER
Ii. PRICE OF DOCUMENT

PN-AAB-780
12. DESCRIPTORS

1. PROJECT NUMBER

Manuals

Sector analysis

14. CONTRACT NUMBERSimulation

_ ..
SD-2975 R.

$8.TYPE OF DOCUMENT

AID 590-I 14.74)

Economic Analysis for

Agricultural Sector Planning

System Simulation Concepts

By; T. J. Manetsch

31 July 1973

Introduction

This material is organized into two parts. Part II contains basic

underlying concepts which are important in the simulation of agricultural

systems through time. Much of this material is mathematical in nature

and for this reason may take considerable time for the reader to understand

and be able to use in solving practical agricultural sector problems.

These concepts have proven very useful, however, in developing simulation

models in Korea and Nigeria. It is not reasonable to expect that participants

in this workshop will completely understand this material in the time

available. Rather, it is my purpose to give workshop participants some

appreciation of some practical problems that can be addressed using

simulation concepts and some idea of the things researchers must learn

to be able to apply simulation methods to practical problems.

Part I of this material contains some simple examples of applications

of these simulation concepts. Later in the workshop we will be looking

at the KASS simulation model in some detail which represents a more

realistic (but at this time not complete) example of the use of simulation

methods. Those persons interested in further reading in the simulation

1/

area can consult a number of references which are available.­

-!/Forrester, J. W., Industrial Dynamics, John Wiley and Sons,

New York, 1961.

Holland, E. P., et al., Experiments on a Simulated Underdeveloped

Economy, MIT Press, 1964.

Manetsch, T. J., et al,, A Generalized Simulation Approach to

Agricultural Sector Analysis with Special Reference to Nigeria, Michigan

State University, East Lansing, 1971.

Manetsch, T. J., and G. L. Park, System Analysis and Simulation

with Applications to Economic and Social Systems Part II, (Preliminary

Edition), Michigan State University, East Lansing, January 1973.

Part I

Example]1

A Greatly Simplified Market Model

to Illustrate the Idea of a
Dynamic Simulation Model

Most simulation models are dynamic in the sense that they-approximate

the way that the real world behaves through time. The following simple

market model illustrates this point and some other basic simulation

concepts.

The market model:

(1) D(t) = D + DIP(t) Demand Equation

D - Demand #/time

P - Price Won/#
t - Time

(2) S(t) - S0 + S1P(t)
 Supply Equation

(dP(t) " CI(D(t) - S(t))
 Market Equation

or

P(t+DT) - P(t) + ft+DT C-(D(x) - S(x))dx

DT - some small increment In time--At

Putting these three equations together we get one equation that describes

the dynamic behavior o market price over time:

(4) P(t+DT) - P(t) + ft+DT CI(D + DiP(x) _ SO siP(x))dx

In order tj simulate the behavior of market price over time we must

use a numerics.l method for computing the integral in Equation 4.
This is

easily done usiag one of the integration formulas discussed in Part II,

pages 9-19 through 9-25.
 In this example we will use a particularly

2

simple numerical integration formula called Euler's method. Using this

method we make the following approximation for the integral of a function

f (x):

1 t + DT (5) f(x)dx a DT f(t)

(Euler's method of Equation 5 comes from assuming that the function f()

is constant in the small time interval DT.)

If we apply Euler's method to the price equation above we get a

simple simulation model which can be used to easily compute the dynamic

behavior of the market price. Thiq is Equation (6):

(6) P(t+DT) - P(t) + DT(C1 (D0+D1P(t) - S0 - S1 P(t)))

To illustrate we will put numbers into this recursive simulation equation

and compute price changes over time.

Let:

P(0) - 50 W/# (the initial price at the beginning of the
simulation when t - 0)

Do - 100 #/month

D1 =-1

S0 - -100 #/month

S 1

C1 - 1 (W/#/month)--determinos the speed of market adjustment

DT - .2 month (the time increment in our simulation model).

When we put these numbers into Equation 6 we get:

(7) P(t+DT) - P(t) + .2(2(100-P(t))

3

From this equation it is easy to compute as follows:

P(.2) - 50 + .2(2(100-50)) - 70

P(.4) - 70 + .2(2(100-70)) - 82

P(.6) - 82 + .2(2(100-82)) = 89.2

P(-) - 100 (the equilibrium price)

We can show this price behavior through time graphically as follows,

P(t)
100.

- price W/#
-------- ------------ Equilibrium price

80,

60

40

20

.'2 !4 !6 !8 V0 V2 :4Time (months)

It is very easy to implement a model such as this one on a computer.

Following is a sample FORTRAN program to illustrate:

4

PROGRAM MARKET

C Initialization of model data inputs

PO - 50.

DO = 100.

Dl = -1.

SO = -100.

S1 - 1.

Cl - 1.

DT - .2

T - 0. (T - time in months)

RLGTH - 2. (length of simulation run in months)

NCY - RLGTH/DT(number of simulation cycles)

C 	Execution phase of the model

DO1 I - 1, NCY

DEM - DO + Dl*P

SUP - SO + S1*P

T - T+DT

P - P + DT*Cl*(DEM-SUP)

PRINT OUTPUT DATA AS DESIRED (Tv P0 DEM, SUP)

1 CONTINUE

END

5

It is often very useful in modeling and simulating systems to use what

is known as a system block diagram. Such a diagram appears below for

the simple market model. Note that this is completely equivalent to

the set of equations that describes the model. The symbols used in

this diagram are completely defined on page 9-4 of the notes.

+ D(t) + St +

+ (Demand) (Supply) +

P(t: P(t)

P(t) (Price)

O - summation

QJ - multiplication

F - integration with

respect to time

Block Diagram for the Market Model

0

6

E&le 2

Simulation of Perennial Crop Production

(Similar to way fruit production was

simulated in the KASS model.)

Due to the fact that the yield of perennial crops is strongly

dependent upon the age of trees, etc., it is important to simulate the

age distribution of the population of perennials.
For trees a relation­

ship such as the following exists between yield and age:

Yield (MT/ha)

I II III IV

0 -- -Age

In the KASS model we simulated fruit production by dividing the

life of trees into the four phases shown above.

Phase I -- period just after planting when there is no yield
Phase II -- period of rising yields
Phase III -- period of maximum yields
Phase IV -- period of declining yields

Each of these phases of growth is simulated by a distributed delay function

A distributed delay is used because this type of. function can represent

the fact that in the real world all perennials do not age at the same

rate--some will mature earlier than average, others later, etc.
A block

diagram for this simulation appears on the next page.

ng) J DEL lK
PHASE I 0

1

CRI(tl)t
DEL2 'K

P(StI 0

C MC

PHASEt

DEL3,K 3

3W
3 t-

DEL4,K 4

I
PHASE 04W

Distributed
Delays

E

+

Distributed
Delays

N1 (t)(Ha) N2 (t)(Ha) N3 (t)(Ha) N4 (t)(Ha)

Block Diagram for Simulation

of Perennial Production

8

The variables in this model are defined as follows:

PR - new planting rate (Ha/yr)

DEL1, DEL2, DEL3, DEL4 ­ average length of time perennials are

in phases 1, 2, 3, 4

N1, N2, N3, N4 = number of hectares of perennials in each phase
of growth

Oi, 02, O3, 04 e rates perennials leave phases 1, 2, 3 and 4

Kl K2, K3,KK4 = parameters that determine the distribution of

perennial aging times about the average values

DEL1 , DEL2, DEL3 and DEL4

CR1 , CR2' CR3 - cutting rates (Ha/yr)--the rates that perennials
are removed in phases 1, 2, 3.

Experience and theory have shown that it is feasible to describe

each phase of growth by an ordinary differential equation. For example,

the following equation can be used to represent Phase I of this pro­

duction process.

DEL K1 dK1O (t) DEL1 dO1(t)
" ++f +l I = PS(t)

1K, K K1 dt +=Rt
1 1
dt

Fortunately there are computer programs available which make it

very easy to simulate equations such as these. The simulation of

perennial crops is therefore quite straightforward. A computer program

for simulating this kind of system is described on pages 10-20 through

10-23.

Given the age distribution of perennials it is
a simple matter to

compute other important variables which depend upon age distribution.

For example total output can be calculated as

9

4

OUTPUT(t) X YLDi(t) NiCt)

i-i

where:

YLDi ­ the yield in the Ith stage of growth.

It is important to note that there are many practical phenomena

in the real world that can be simulated in exactly this manner using

distributed time delays.
 Some other examples include human and livestock

populations, the creation use and wearout of capital equipment, the

lags involved in shipping commodities, etc.

PART I

10

Example 3

Government Subsector of the Korean

Grain Management Model

The purpose of this example is not to discuss the grain management

model in detail. That will be done later by Mr. Forrest Gibson. The

purpose of this example is to further illustrate the kinds of mathematica

operations and theory that are necessary to simulate complex economic

systems. The block diagram illustrates major variables and interactions

of the government subsector. We will look at some of these to get an

idea of how such a model is constructed and to gain insight into what

must be done to simulate such a model on a computer.

Clearly, the basic mathematical operations of addition, subtraction,

multiplication, division, integration, function generation and time

delay are the key elements in construction of dynamic models such as

this one. Integration is used whenever flow variables generate stocks

in the real world.

For example government inventory (stock) of the ith commodity,

GINVi, is:

GINVi(t+DT) - GINVi (t) + $ +DT (IMPORTS - SALES - LOSSES)dt.

Distributed time delays are used in a number of places to simulate

importation delays (DELIMPi), the generation of new warehouse capacity

(DELWA), and loan repayment periods (DELGR and DELRP).

This model also contains some ideas from the area of automatic

control systems (cybernetics). There are three so-called "feedback

loops" explicit or implicit in the model which regulate or control

important system variables. One such loop controls government stocks

to desired level, GINVD, by'adjusting imports, another adjusts government

storage capacity to desired level, CAPIND, by regulating new warehouse

acquisition.
The third feedback control loop uses government sales of

the various grains to regulate market prices so that they remain near

the set of desired prices PDi.
 These are not simple control problems.

Adequate design of these complex management systems requires a number

of concepts from the area of dynamic system theory that time does not

permit us to discuss here.A/

'&Forfurther reading in this area see one of the many texts available
on the subject of feedback control systems.

>R80K w a I*fem5~~ VW PWL "~ &Mgj~ ~)(f~ t

-CallPwc
7w

Y k t t %f -Fiu t.a"4 &pl ft A P*f t A

DELAY
MA4.

P!

am"RR 4aet EA rfA

eoline Cbf DELA

£EV~

fdt OTRAT 4 IO4~
ASlj SAE e

: R _f COX r S ite Las s e V .ALS nt t
~VRV1

EXICAP ~
I~A.

hogs.
//79

IU
c as op t Fd-4

+ mtcs

0AL
Par -IN

>_rL Ap
ir*lr(v:t1~ '&

emt to
rw-Fl bt r s

E#A3p

OP 71 OfAns

-OE
LOhouse

Chapter 9

BASIC MATHEMATICAL OPERATIONS
FOR SYSTEM SIMULATION

Simulation of continuous flow models described by difference or
differential equations is based upon a fundamental set of mathematical

operations.
 These operations can be performed by an analog computer­electronically or numerically using a general purpose computer. Due to
the flexibility and generality of the latter approach, we will be developing
a digital approach to simulation. Our emphasis will primarily be on
applications of the approach to non-physical science systems in such areas
as pruduction, management, economics and demography.

We will first illustrate the approach by means of an example. We
will then develop techniques for numerically performing the fcllowing basic
operations:

" Arithmetic operations (±, X, ")
* Generation of explicit and non-explicit functions.
* Integration

* Generation of time lags
* Generation of random variates from desired probability

density functions
* Various logical operations (IF, AND, OR, etc.)

A. Simulation. -A Production Inventory Example

Consider the example of Fig. (1) where a simplified, though repre­
sentative, model of a production- inventory system is developed in terms
of basic mathematical operations. This model is capable of computing the
impact over time of inventory and production management variables (Id, kl,
k. and 0n) upon company profit (PFT and PFTA), (S),production (Q), sales
costs (C1 and Cz) and inventory (I).

9-1

The notation of Fig. (1) is essentially the block diagram notation

introduced earlier. This notation is defined by Fig. (2).
 Note that the

variable associated with the output of each block is
 some function of the

variable(s) at the input.
 Note also that the production-inventory model of

Fig. (1) has been described in terms of these basic building blocks.
 Clearly,
there is a one-to-one relationship between the block diagram of Fig. (1) and
a set of equations describing the model and either can be a complete model

description.

For example, from the block diagram, inventory I, is given by

t

I(t) = 1(0) + Yo(Q(x)'- S(x))dx

0

where Q is the production rate and S the sales rates in production units
per unit time. The model assumes that sales are lost if stocks are not

available in inventory. Thus,

S(t) = D(t) I> 0

S(t)- I< 0
as indicated in Fig. (i). By way of further illustration, variable production
costs, Cl, are computed as

CI(t) = F 2 (Q(t)) • Q(t) -- $/yr.

where F 2 , the per unit cost, is a function of the production rate Q. The
production delay of Fig. .(J) simulates the lag that takes place in changing
production rate Q. In this case Q and 0d might be interrelated by a dif­
ferential equation of the form '

dkQ dk'lQ+..aQQ
k d+al

k dtk k-i dtk-1 a d

We will not present a complete model Oiescription in equation form here; it
will suffice to illustrate that this information is really embodied in the
model block diagram and that the block diagram can be useful in the system

modeling process.

9-02

D(Demand #/yr)

$/#

C 2 = Inventory
holding cost

($/yr.)

(Sales equals
demand 0 : Output Variable
if
is

inventory.?
available) CV = Control Variable

S = Sales d = Desired Inventoryunit.

:
S 1>0

--- S0\0 0 -- k I CV

] "" Invenory

Production d
d EQn "normal" productiolI t(#/yr.

I. +

)
r Desired production (#/yr.)

Actual production (#/yr.)

O

Cl = Variable production cost ($/yr.)

- - PFT o __j PFTA - Accumulated profit ($)
R(Revenue /r.) profit o

($/yr.)

C = Fixed Cost ($/yr.)

A Production- Inventory System Model
Fig!ure (I)

Symbol Name Definition

I (t)

II (t)
++± ± .

0(t) Addition 0(t) = +I (t) ± Iz(t) ...

± + In(t)±I~(t

(t)2i(t)

t) 0r(t) Multiplication 0(t) = II (t)Iz(t). s In(t)

1t2t)

I-t) + 0(t) Division O(t) = I(t)/12 (t)

t()0(t)

I(t)....." 0(t) Function 0(t) F(1()
Generation

t

0(t) Integration 0(t) =0(o) +SYI(x)dx

DFL

a) Discrete delay:
D - 0(t)0(t) Time O(t) = I(t-DFL)

Delay b) Distributed or
continuous delay:

akdk0(t)
+ aki

dtk

d 0(e) +...
dtk-l

+ a0 0(t) 1 (t)
,Block Diagram Notation

Figure (Z)

9-4

From this example it is clear that given a set of building blocks (the

basic mathematical operations) and a knowledge of system structure, system

models can be synthesized by interconnecting basic building blocks in one-to-on

correspondence with the structure of the real world system being simulated.

In what follows we will develop techniques for implementing the basic opera.tions

numerically for digital computer simulatiC. We will then develop methods

for synthesizing system models from the basic building blocks. Due to the

wide applicability of FORTRAN we will develop our models in that language.

However, since the emphasis will be on basic techniques, the development will

be readily adaptable to other general purpose languages. The development

also deals with some of the subtleties that underlie the use of continuous system

simulation languages such as CSMP (2) and DYNAMO (5) and provides a

rational basis for exploiting their capabilities.

B. Basic Operations- -Arithmetic

Arithmetic operations (+, -9 xv, 4-) are routinely provided by general

purpose programming languages such as FORTRAN and by many simulation

languages and, therefore, pose no significant problems in digital computer

simulation. FORTRAN, for example, permits the user great flexibility in

formulating arithmetic expressions such as:

Y = A*X+B*Z+C*Q/D 1

AREA = 3.1416*R**2

F = (CI*P/3. - R)/(G+H)

In any given programming language specific rules govern the use of such arith­

metic statements. In certain languages such as DYNAMO (5) the user must

work with a finite set of arithmetic statements--complex statements

The FORTRAN symbols (*), (/), (**) denote multiplication, division and

exponentiation, respectively.

9-5

must be synthesized from the set of allowable statements. FORTRAN theon

other hand allows the user almost unlimited freedom in the writing of

arithmetic statements, however; user must
the still observe basic rules re.
garding tl.e precedence of operations, use of integer and real variables, etc.
In any event, the basic arithmetic operations are readily implemented on a

digital computer and present no significant problems in simulation.

C. Basic Operations- -Function Generation

Two types of functions commonly are required in system simulation-.

explicit functions (such as SIN,
 COS, TAN, EXPONENTIAL) and non- explicit

functions which may have any arbitrary shape whatsoever. The explicit func­
tions usually are available as "canned" packages in the programming language
selected and normally present no significant problems for the simulator. We

will devote
our attention here to the general problem of function approxiniation
or "curve fitting" concentrating on techniques which have proven to be practical

in system simulation.

This problem is illustrated in Fig. (3).

..y g(x)

f(x), g(x) , Y f W~x

I (approximation error
* exaggerated)

a b

Function Approximation
Figure (3)

We seek a function g(x) which is an "adequate" approximation of a function f(x)
over-some interval of the independent variable, say, (a,b). There are many
approaches to this problem including use of algebraic polynomial approximation

9-6

f(x)

-
'do

f "DX 0,

_4 xX x xI N N+I

Function Approximation by Linear Interpolation

Figure (4)

9-7

linear interpolation, and fitting with orthogonal z.nctions such as sines, cosines
and Bessel functions. We will first consider the linear interpolation method ­
a method which is widely used in both digital and analog simulation. We will
then discuss an alternative approach - polynomial approximations based on
Lagrange interpolation polynomials. In addition to its relevance to the problem
of function approximation the Lagrange method will lay a foundation for the
derivation of numerical integration formulas ­ our next major topic for dis­

cus sion.

We turn now to function approximation by linear interpolation (see

Fig. 4).
 Inthis case the desired function is approximated by a series of straight

line segments. Advantages of the approach are the ease and speed with which
it can be implemented on a digital computer. The accuracy of the approxima­
tion is, of course, dependent upon the number of approximating line segments.

We will proceed by developing a FORTRAN sub-program which will
compute a straight line ,approximation to a function f(x) given the number of
approximating line segments (N) and values of the function at N+l values of
the independent variables. We will assume here that values of the independent
variable are equally spaced with an interval DX as shown in Figure (4). This
assumption makes it possible to completely specify the independent argument
values by specifying the smallest value of the independent variable (call it XS),
the number of approximating line segments (N) and the interval between
independent values (DX). Other variable definitions necessary in our develop­

ment are shown in Fig. (5).

In the figure, FNL(X) is the desired approximation to the function f(x)
DVAL (1) --- DVAL(N+l) is an array that represents values of the function
f(.) at N+l equally spaced values of the independent variable and XD represents
the difference (X-XS) between the independent argument and its smallest
tabular value. Note that the independent argument lies in the Ith interval
(between the Ith and (I+l)st data points).

98'

FNL

DVAL(N+1)

DVAL(I+IFNL(X)
DVAL(I)

DVAL(3)

DVAL(1) XS=XD

KS 00-IID
rXS+3DIxXS+(-) 7

XS+N -DX

. XS+(I)D

Variable Definitions for Linear Interpolation

' Figure 5

From the figure the desired linep functional approximation is given by

(1) FNL(x) - DVAL(I) + (XD - ('i-1) • DX)(DVAL(I+I)-DVAL(I))
DX

Based on this relationship it is possible to write a general purpose algorithm

for carrying out this kind of function approximation. The FORTRAN sub­

program of Figure (6) is designed to provide this capability.

The first two executable statements of the program determine which of

the following three cases prevails:

X< XS

XS< X< N*DX

X > XS + N*DX

If X lies outside the range of tabulated values (the first and third cases) the

program assigns the function values corresponding to DVAL(l) (for X < XS)

and DVAL(N+l) (for X > XS +N * DX). In this sense the program computes a
function which is limited to lie within a predetermined range. If XS < X < XS +

N * DX the program computes the interval within which interpolation is to take

place (statement 8 of Fig. (6)) and then interpolates linearly within that interval

(statement 9).

In some situations it may be desirable to have a program which will
extrapolate linearl) when the independent variable lies outside the interval

(XS, XS + N* DX). If such is the case it is a simple matter to provide this

capability by modifying the program of Fig. (6).

Function generation by linear interpolation is a standard feature of

simulation languages such as DYNAMO (5) and FORDYN (3). The latter

reference includes a number of FORTRAN programs for implementing the

technique. These programs permit the user to choose limiting or extrapolation

at function end points and fixed or variable increments in the independent

variable.

9-10

FUNCTION FNL (DVAL,
DIMENSION DVAL(I)

1 IF (X-XS) 3, 3, 2

2 IF (X-XS-N*DX) 7, 5, 5

3 FNL = DVAL(1)

4 GO to 10

5 FNL = DVAL(N+I)

6 GO TO 10

7 XD = X-XS

8 I= 1.0 +XD/DX

XS, DX, N, X)

9 FNL = (XD-FLOAT(I-1)*DX)* (DVAL(I+I)-DVAL(I))/DX+DVAL(I)

10 RETURN

END

A FORTRAN Sub-Program for Function Approximation

by Linear Interpolation

Figure 6

Before leaving the subject of function generation by straight line

approximations we will present an example of the application of the approach

embodied in the sub-program of Fig. 6.

Example (I)i Use the program of Fig. (6) to approximate the

function

y = 1-cosx

on the interval (0, w). Develop the approximation on the basis of four straight

line segments.

Solution: Since the computer program assumes equally spaced

values of the independent variable we construct the following table based on

an increment (DX) of :

x X
0 0

/4 .z93

W/2/ 1.00

3w/4 1.707

IT 2.00

The DVAL array of the program is hence:

DVAL (1) = 0.

DVAL (2) = .293

DVAL (3) = 1.0

DVAL (4) = 1.707

DVAL (5) = 2.0

This array is, of course, read into the computer during the initialization

phase of the program which calls the FNL sub.program along with values

for N XS, and DX. For the latter three variables the following assignment

statements are required in the initialization phase of the calling program:

S9-12"r

DX =. 7854 (nearly fr/4)

Given this initialization and a; pre-assigned value for the independent

U&SrUSent (X here) the.following statement computes a
straight line approxima­

tion to the desired function any time it appears in a FORTRAN simulation

program:

Y = FNL (DVAL, XS, DX, N, X)

The sub-program of, Fig. (6) must, of course, be compiled along with the
calling program. Once compiled the function generation routine can be used
to compute ar many different functions in the simulation model as the user
desires. This is done by defining a unique set of variables (Y, DVAL, XS, DY,
N, X) for each function to be computed. For example:

I = FNL(DVALI, XSl, DXl, N1, XI)

I3 = FNL(DvALJ, XS3, DXJ, NJ, XJ)

A final word here. This example is clearly for illustrative purposes

and not a very realistic one. The most practical (and accurate) way to compute
a function such as 1 - cos x would be to use the cosine or other explicit function
where provided by the programming language (FORTRAN, DYNAMO, etc.).

We will now turn our attention to another approach to the generation
o! functional relationships between two variables - the Lagrange interpolation
polynomial. After discussing this technique and rel ated theory we will be in a
position to discuss analysis of errors inherent in the straight line appruxhation

method just presented.

We will assume, as before, a function f(x) to be approximated. We will
further assume thats, x 1, .. .n are n+l distinct points on which the values

9-13

of the function f(x) are known. We seek a polynomial

2n
+an+x()P(x) = a 1 +a.x+a 3x +...

with the property

(3) P(xi) = f(xi) for i-O, 1, 2, ... , n.

The resulting algebraic polynomial is called the Lagrange interpolation

polynomial. Since it can be readily shown that this polynomial is unique, ati

method which arrives at a polynomial with the properties of Fqns. (2) and (3]

arrives at the Lagrang. interpolation polynomial. We will explore two such

methods.

We begin by developing a set of n+l simultaneous equations from

Eqns. (2) and (3).
2 n

f(x) = a+ax +ax +.* +a x
0 1 3a n+lo

(4)
: Z n

f(x n) = aI+a 2 xn+a 3 xn +.,. +an+iX n

Rewriting (4) in matrix notation we obtain:

2 n
fo x0 X0 x0 a0

1 1 *0S"

° 2 nf(x) x x ,... x an+

U U n

or

(6) f =Va

The (n+l) x (n+l) matrix V is called the Vandermonde matrix. Since the

Lagrange interpolation polynomial is unique and always exists, it follows thal

this matrix always has an inverse. Clearly then, one way to obtain the

aLagrange interpolation polynomial is to solve for the coefficient vector

from

(7) a =V'sIf.

9.14

There 	is, however, an easier and faster way.

Let us begin by writing P(x) in the form

(8) 	 P(x) Lo (X)f(x) + L (x) f(x 1) + ... + L n(x)f(x n)

where 	L (x), L (x) ... , L (X) are themselves polynomials of degree < n.

P(x), then, is also a polynomial of degree < n as required by Fqn. (2). If

the coefficient polynomials Lo(x), L I(x), . L(x) (known as the Lagrange

coefficient polynomials) have the property

(9) 	 Li(xj) = 0 . j 1i

Li(xi) I i= 0,1 s..n

then th eondition of Eqn. (3) will be satisfied and

P(xi) 	 - f(x.) for 0, 1, 2, ... n.

Therefore, if we 	can find polynomial coefficients L (x)... L (x) of degree
0 n

< n with the property of Eqn. (9) the polynomial of Fqn. (8) will be exactly

the Lagrange int'erpolation polynomial - derived by another method.

Fortunately, we can readily construct a set of LI(x)'s with the necessary

properties. Consider

(x'x)(x'X)1 (X-i)(l)' " (X'Xn)(10) 	 =ix-)(x). (xx 1)(x)..
'

xx
L (xi-x)(xi-x)... (xi-xi.-)(x-x)... (x.-xn)

Clearly Li(x) is of degree n (note that the factor (x-xi) is missing frum the

numerator). Note also that the zeros of the numerator ensure that

Li(Xj) = 0 J i i as required.

It is also clear that Li(xi) is unity. The net result of this is that we can

write the Lagrange interpolation polynomial in the form of Fqn. (8)'directly

by constructing the polynomial coefficients L (x)... L (x) according to Eqn. (10)
10 n

A shorthand notation is common for L (x). We can write Eqn. (10) as

n (x-,c)
(11) 	 L (x) = fl

ju0 (xjXj)

9-15

Theory is available which permits an evaluation of the error inherer~t

in approximation by the Lagrange interpolation polynomial. Before discussing

error analysis we will present an example which applies the above develop­

ment to function approximation.

Example (2). Use the Lagrange interpolation polynomial to approxi­

mate the function of Example (1) (that is, V = 1-cos x) on the interval (0, ir).

Use a polynomial of degree 4 given the following function values:

X !A(
0 0

n/4 .293

/Z 1.0

31r/4 1.707

IT 2.00

From Eqn. (8) we know that the desired polynomial is of the form:

P(x) = L (x)(0) + Ll(x)(. 293) + L 2 (x)(l) + L 3 (x)(1.707) + L4 (x)(2. 00)

where, from Fqn. (Ib) or (11):

L(x) (x-o)(x-w/ 2)(x- 3w/4)(x-w)

LI(x) (,/4-0)(n/4-Ir/ Z)(r/4-3r/4)(w/4-Tr)

L 2(M) (x-0)(x-T/4)(x- 3T/4)(x-r)
2 -(in 2-o)(ir/ Z-i/4)(€/ z-3r/4)(€/ 2-1r)

L((x-O)(x-r/4)(x-lr/ 2)(x-nr)
3 (X) -(3w,/ 4-0)(3,In 4-Trl 4)(3TrI 4-TwI 2)(3ir 4-,i)

L' (x-O)(x-in/4)(x-r/ 2)(x-31/4)
4(x) (,r-0)(w-r/ 4)(Tr-Tr/ Z)(Tr- 3/4)

It is not necessary in this case to compute L (x).

This method of function approximation requires a considerable amount

of arithmetic. While this can be minimized by careful programming, the

approach is normally slower on a digital computer (for a given accuracy) than

the straight line approximation method described earlier. We will later

evaluate the approximation error of the two alternative approaches.

9-16

Turning now to the error of Lagrange approximation, we will present,

without proof, the results of a theorem from numerical analysis (4).

We suppose as before that a function f(x) is given on the distinct

points xo , 1x ... , Xn. We assume that x is-a point at which f(x) is to be

approximated by the interpolation polynomial P(x). Let I be the smallest

interval containing x, x , xle..., x S It can be shown, then, that there.0 n

exists a 9 in I which depends upon x, x , , and f(x) such that

(12) f(x) = P(x)+ R(x)

where

(f(n+l)()

-(13) R(x) = (x-x)(x-xl)... (X-Xn) (n+l)

The R(x) of Fqn. (13) is the difference or error between the function
f(x) and the approximating Lagrange interpolation polynomial, P(x). While

it is usually quite difficult to compute the error corresponding to a given x
in I, this error equation can be used in many cases to establish an upper

'bound on the approximation error in the interval I. Examples follow.

Example (3). Determine an upper bound on the error of the linear

interpolation approximation of Example (1). What is the effect on the
approximation error of doubling the number of approximating line segments ?

Since the straight line interpolation method involves the equivalent

of Lagrange interpolation (n=l) in any given interval we can use Eqn. (13) to
compute an upper bound on the approximation error. Clearly, the absolute

value maximum error will occur in that interval in which

If()(x) d 0 -xcos I cosxl
* dx

is maximum. From the nature of the cosine function we know, therefore, that
the maximum error will occur in the intervals 0 < x < Yr/4 or 31r/4 < x < ir.

From Equation (13) the error in the first interval is given by

17

R(x) : 0 <x, < w/4

and in the second by

R (x) x-31/4)(x'7)(cos) 31r/4 <x. <v
2.

In either case an absolute value upper bound on the error is

IR(x)I = -2/128 $.077

It is left for the reader to show that doubling the number of approxi­

mating line segineuts would reduce the maximum error by a factor of four.

Example (4). Determine an upper bound on the Lagrange interpolation

polynomial approximation of the function f(x) 1 - cos(x) (of Example (2)),

at the point x:= IT/8.

From Eqn. (13) this error is given by

d5
R~) = fx)(x-/4) w-2)(x_31r/4)(x_-r) (l-cosX) I

S 5dx X=

an tpper bound on the error at the desired point is therefore

IR(/8)1 -[(/8)(-lr/8)(-3/8)(-5rr/8)(-7i/8)1 (1)120
5

105 V

85
120

These examples indicate that for the particular function being approxi­

mated the Lagrange approach results in a considerably smaller error than

the straight line approximation method for a given number of data points. Due

to the nature of the error functions for the two approaches we would expect

this to be generally true. This does not necessarily mean, however, that the

Lagrange approach is gener illy to be preferred. Computing time requirements

may dictate otherwise. In many simulation problems, particularly in the socio­

economic areas, the poor accuracy of basic data may reduce considerably

Q. 18

the need for highly accurate numerical approximation methods. In such cases

the efficient straight line approximation method of function generation finds

widespread application.

In the following section we will discuss numerical integration methods-­

another fundamental mathematical operation in system simulation. Much of

this development will be based upon Lagrange interpolation and related error

analysis.

D. Basic Operations-- Integration

From earlier discussion it is clear that integration plays a key role

in the solution of differential equations. Our purpose here will be to discuss

those techniques which have proven most useful in the simulation of socio-econor

economic systems describable by differential equations. The subject of

numerical integration and its application to the solution of differential equa­

tions is a vast one and far beyond the-scope of our discussion here. It will

be possible for us, however, to accomplish our more limited objective in

what follows.

Our discuss.on of numerical integration of a function, say f(x), will

begin with a Lagrange interpolation polynomial representation of that function.

From the earlier developments of Eqns. 8, 11, 12 and 13 we can write
n

(14) 	 f(x) = Li(x)f(xi) + (x-x 0)(x-x)... (x-xn) f(n+l)
i=0 '(n+ 1)

where Li(x)i = 0, 1,... n are the Lagrange interpolation coefficients of Eqns.

(10) and (11).

We desire an expression which will approximate the integral of f(x)

over some interval, say (a,b). On integrating both sides of (14) we get

15) bf(x)dx = S . Li(x)f(xi)dx
a a i =0

(X+Xo)(x-Xl).x xx f(n+l)()

(n+l):a)19
9 9-19

http:discuss.on

where t lies in the smallest interval I containing x, x o , xl , .n.xn From (15)

it is clear that an approximation to the desired integral is

bx n f (X i) b(16) f xa; iE a Li(x)dx

a i0O 'a

(Note that the term f(xi) can be moved outside the integral because it is simply

a constant).

Equation (16) provides us with a means of deriving a host of different

integration formulas for different intervals (a, b), and points (x , x1, ..x n).

In what follows we will restrict outselves to formulas based on equally spaced

values (x0 , x ... xn) of the independent variable. The second term on the

right of (15) is an expression for the error associated with the integration

formula which in some cases enables us to derive a useful measure of the erroi

inherent in a given integration formula.

We will begin by deriving a practical integration formula and related

error equation from (15) and (16). We will ausume an interval of integration

(t, t+DT) where DT is some small increment in the independent variable. We

=will further assume that f(x) is given at xo t-DT and xI= t. This is known

as a prediction type integration formula since the interval of integration lies

in part, at least, outside the interval I including (x 0 x . .. xn). Such

formulas are of particular interest in the solution of differential equations as

will be seen later.

From Eqn. (14) we can write

(17) f() - x-t f(t-DT) + x - f (t)(t-DT)-t t - (t-DT)(t-DT)

(+ (x - (t-DT))(x-t)

t-DT < 4 < t + DT

and on integrating over the desired limits

9-20

(18) 	 'UTf(x)dx f(t-DT) t+DT + t+DT
DT (x-t)dx D-'T (x-(t-DT))dx

_t+DT

+ 	 D (x-(t-DT))(x-t) ()) dx
2t .

Changing variables to simplify (z = x-t) and dropping the error term for the

moment we get

t+DT(19) (xx f 	t- DT DT
(1)f(x)dx ft- z dz + (z+DT).dz DT z DT(

00

on carrying out the integration we get the desired integration formula:

t+DT ;;DT
(20) f(x)dx i- [3 f(t) - f(t-DT)

Error analysis - We will later discuss applications of integration

formulas such as this one
but let us turn our attention now to the error term
associated with (20). From Eqn. (18) the integration error in the interval

(t, t+DT) is given by

(el) E t+DT (-	 f(x(x)) dx

t-DT < 9 < t+DT

Due to the term f(z)(4(x)) embedded in the integrand, this integral is difficult
to evaluate in general. (The exact functional form of 9(x) is normally not

--known.) In certain cases, ithowever, is possible to 	establish an upper
bound for (21). A theorem from numerical analysis will help us accomplish

this for the error of Eqn. (21)
 and that of a number of other important

integration formulas.

It can be shown that given f(x) continuous on the interval (a, b) and g(x)
intograble and without sign change on (a, b) there exists a point L in (a, b)

such that

(z) b 	 b

f(x)g(x)dx = f(L) g(x)dx

a-a

9-21

http:z+DT).dz

The proof of this theorem follows from the intermediate value theorem. In
this case (from Eqn. 	 (15))

f(x) = f(n+l)I (a,) 	 andri+l.!
g(x) (x-xo)(x-xI)... (x.xn)

It is clear that g(x) will have no sign changes in (a, b) if any one of the

following three conditions is satisfied:

i) a<b<x

ii) x < a < b

iii) x. < a < b
 < xi+ 1 i= 0, ,...,n-1

Assuming that g(x) has the required properties the error term of Eqn.

(15) 	can be written as

f(n+l)(()
 S(23) E (n+l)! b (x-x 0)(X- 1)...(x-x)dx

a < L< b

Since 9(x) is contained in I (the smallest interval containing x, X, XI.. .x n) we

can write (23) as

(24) E = f a (X-X)(X-X) .. (X-X)dxI

where ILis contained 	in the interval I. From (24) we can compute an upper
bound on E by finding a I in I that ma:imizes f(n+l) and carrying out the

indicated integration.

As an example of the application of this technique we will apply it to the
error of Eqn. (21). Since this equation satisfies the conditions of the theorem

we can write (21) as

(25) = f(()t+DT

4E f 	 (x-(t-DT))(x-tdx

t'DT< IL <.t+VT

on carrying out the integration the error equation for the integration formula

of (20) becomes

(26) 	 E 5 DT 3f(2)(O)

=12

Note that for small DT this error term can become small. This is encouraging

as it indicates that, assuming the second derivative term, f(Z)(L), is bounded,

we can achieve any level of accuracy desired by shrinking DT.

By the theory developed above we can derive many useful integration

formulas. Following are some predictor type formulas, useful in the solution

of differential equations.

t+TThese formulas are predictors in the sense that they predict a value

for f(x)dx on the basis of values of f(.).at times prior to t+DT:

t+DT 	 DT2

2
(27) f(x)dx = DT f(t) + - f'(1)

t < iL< t+DT

t+DT DT 	 T3 f(2)I
(Z8) f(x)dx 	 -j [3f(t) - f(t-DT)] + DT f 04

t-DT <1 <_ t+DT

t+DT DT
(29) f(x)dx -. [-9 f(t-3DT) + 37f(t-ZDT)

-	 59f(t-DT) + 5S f(t)] + 251 DT5 f(4)()

720

.t-wDT < 1 < t+DT

Predictor type formulas are usually necessary in numerically solving differential

equations because f(t+DT) is usually not known and available for the computation
t+DT

O9 f2(x)dx.

9-o 3'

The following formulas, while not 	predictors, also find application

correctors in the predictor-correctorin the solution of differential equations as

method to be discussed later. These formulas also can be derived from the

theory developed above.

t+DT DT 	 DT 3 f(2)
(33) f(x)dx 2 (f(t) + f(t+DT)) - =1 fl()0

t < L < t+DT

t+DT DT
(34) f(x)dx 2-4 (9f(t+DT) + 19 f(t) - 5 f(t-DT) + f(t-2DT))

19DT 5 f(4)
72G (

t-ZDT < IL< t+DT

Equation (33) is the familiar "trapezoidal rule."

We will now present a simple example of the application of numerical

integration to the simulation of a system described by differential equations.

More realistic examples will be presented later but this one will demonstrate

the general approach.

Develop a FORTRAN program that will simulate theFxample 4.

behavior over time of the population model described below, This model

,night approximate the behavior of populations of wild or domesticated anima. s,

The model as it stands doesntt include management-fish, insects, etc.

variables which control the populations, i.e., hunting and fishing regulations.

These aspects can be readily incorporated into such a model). Use the Euler

integration formula of Eqn. (27).

9.45

PROGRAM PEX4

1 FORMATW, (4k; 1.4 1)

2 C=.Z5

CZ =.I

4 C3-= .15
5 PM.-:1000o.

6 PF = 20000.

7 .Tf=f0.

8 DT .02

9 DRM='C2* PM

10 DRFff C3 * PF

11 BRF -CI * PF

12 BRM BRF

13 DO21 I= 1, 500

14 T T+DT

15 PF : PF + DT * (BRF-DRF)

16 PM = PM + DT * (BRM-DRM)

17 BRF= C1 * PF

.18 BRM: BRF

19 DRM= CZ* PM

20 DRF C3 PF

21 PRINT 1, T, PF, PM

END

A FORTRAN ;rog~am for the Population Model of Fxample (4)

Figure (;7)..

9-27

We can now apply Euler integration from Eqn. (27) to these equations and
obtain, in FORTRAN notation:

PM PM +DT* (BRM -DRM)

PF PF +DT*(1BRF-DRF)

Note that variables on the right of these equations correspond to time "t" while
those on the left correspond to time t+DT. A complete FORTRAN program for
simulating system behavior over a ten year time horizon appears in Fig. (7).

Statements (2-12) constitute what we will call the "initialization" phase
of the program. Here, values are assigned to the constants of the model,
initial values assigned to the state or level variables of the model (the outputs

of the integrators for PM and PF),and initial values are assigned to the rate
variables which determine the integrands of the integration equations (DRM,
DRF, BRF and BRM). Statements (13-21) we will call the "execution phase"
of the simulation program. In this phase, tine (T) is incremented by intervals
of DT by means of the DO statement. For each value of time (DT, ZDT, ...

500 DT) the values of all model variables are computed by statements (15-20).
Note that the sequence of computation is to first determine the value of all
integral (state or level variables) for time t+DT then to compute the integrand
or rate variables for the next solution time t+ZDT. This is in accordance
with the computation procedure dictated by the integration formula being applied.

Statement 21 provides for the printing of model output variables for each time
period. (In many cases it may not be necessary or desirable to produce output
at such frequent intervals. The introduction of another DO statement to control
printing can produce output at less frequent time intervals).

It wiLl be seen that the notions of "initialization phase, " "execution phase'
and computing sequence introduced in this example are general in nature and
will apply to most of. the simulation models we will be developing.

As stated earlier, the so-called Euler integration employed in the above
example is the simplest and least precise method for carrying out numerical

9-28

integration. While the technique can be made as precise as desired by shrinking

increment DT, this may not be the most efficient way to obtain solution accuracy,

For this reason it is of interest to discuss more sophisticated methods for

solving differential equations numerically and we will be looking at some of

these below. We will, however, be returning to the Euler approach later

because experience has shown that it is entirely adequate for many simulation

applications where high solution accuracy is not necessary. Indeed

DYNAMO (5) and FORDYN (3),languages developed for the simulation of

business and industrial systems, are based on Euler integration. Further, the

Euler approach, by virtue of its simplicity, reduces the time and effort re­

quired in developing operational models.

Use of More Complex Integration Formulas--We will now consider

advantages that may be derived, in certain cases, from using more sophisti­

cated integration formulas (.such as those of Eqns. (28) and (29)). We will

also address special problems that arise in the application of these formulas.

Let us begin by looking more carefully at the error terms of the

predictor formulas (Eqns. (Z7-29)). For convenience the error terms are

tabulated below along with the number of terms in the corresponding integration

formula:

Error Term

Formula Number of terms (n+l) (t. < p. < t+DT

E~qn. (2?) 1 2

Eqn. (28) 2 ' DT 3f(2)(1)

Eqn. (29) 4 251 DT'f (4)(4)720

Recall that n is the order of the Lagrange polynomial used in the

derivation of the integration formula.

9-29

The errors tabulated are, of course, the errors in one iteration of the

integration formula occurring in the interval (t, t+DT). The errors inherent

in iterative use of the formulas over an extended interval would be different

and perhaps significantly greater. Clearly, the magnitudes of the error terms

above depend crucially upon the nature of the function f(.) being integrated

and its derivatives. If the magnitude of f(n+l)(x) does not increase with in­

creasing n we have rearon to hope that the integration error term will shrink

as we move to more complex integration formulas (DT is usually "small" which

ensures that DT n + will decrease with n).

Fortunately in the simulation of many real world systems we often

encounter situations in which f(n+l) (x) does, in fact, decrease with increasing

n. As an example let us reconsider the population model above.

We can readily see that an exact solution for PF(t) in Example (4)

is:

(35) 	 PF(t) PFO (CI-C3)t

In this case the function f(.) (in the integration error term) is

(36) 	 dPF(t) = (Cl-63) PFO a(C l -C3)t
dt

The error terms corresponding to the three integration formulas (27), (28) and

(29) are hence respectively

DT2 	 11-} (CI " C3
}IL

(37) 	 E = . (C-C3) PFO a7 Z 	 -7z
5 3 3 I"CO

(38) 	 E8 a jZ DT (Cl-C3) PFO e

"C3
}&Aand 	 2 5 5 (CI

(39) 	 E2 9 251 DT7(Co-C3) Proe

where t - p S t+DT.

In-this particular problem (Cl-C3) is inherently lese than one (on the order

of . 1). For DT aiiall, then, the integration error decreases very, rapidly an

9-30

moves to predictors with increasing numbers of terms. It follows,one

therefore, that for a given integration error more complex integration formulas

can tolerate larger values for DT, require fewer iterations to simulate over

aa specified time horizon and may well consume less computer time for

given simulation run. There are some problems created, however, when one

moves from Zuler integration to a more complex prediction such as Eqn. (28)

or (29). The following example illustrata.s.

Example 5. Repeat Example (4) using the integration formulauf Eqn. (28;

Choose a new value for DT such that the simulation accuracy will be at least

that of Euler's method in Example (4).

We begin by determining a value for DT such that the error in applying

Eqn. (28) on a given iteration is less than or equal to the error in one iteration

of Euler's formula. That is, we seek (from Eqns. (37) and (38)):

bT (Cl-C3) PFO eCl'C3)g <

e (' C)DTZ(CI-C3)2pFODT1Z 2 (Cl 0

where DT 1 is the value assigned to DT in Example (4). On substituting values:

F 12(.02)2 1/3= 17

DT (5)(2)(.25j..)

,,,We will select DT subject to this condition and, for convenience, subject also

to the condition that 1/DT be an integer. In this case we will conservatively

take DTz .10.

Note here that the number of terms is (n+l) where n is the order of the

Lagrange interpolation polynomial from which the integration formula

is derived.

9-31

In this example, then, we see that 100 iterations of the integration

formula (28) are required to simulate 10 years of system behavior. In

Example (4) 10/.02 or 500 iterations of Eqn. (27) are required. Since we

have ensured that the error on any given iteration of (28) is less than that of

(27) we reason that the overall error in 10 years of simulation will be less in

this case since only 100 iterations are required.*

We now apply our new integration formula to the integration of

t+DT
PM(t+DT) PM(t) + (BRM(x) - DRM(x))dx

t+DT
PF(t+DT) PF(t) + (BRF(x) - DRF(x))dx

Application of (28) to these equations gives us

(40) PM(t+DT) PM(t) + DT [3BRM(t) - DRM(t))

- (BRM(t-DT)- DRM(t-DT))]

DT[3BFt DRt)
(41) PF(t+DT) PF(t) + -- [3(BRF(t) - DRF(t))

- (BRF(t-DT) - DRF(t-DT))]

This is quite straightforward but there is a complication, In order to start

integration by these formulas we require values of BRM, DRM, BRF and DRF

at t =-DT as well as at t = 0. Unfortunately this information is not available

for t; -DT from the problem specification. Our approach will be to use

another integration procedure (Euler's method) to compute BRM(DT), DRM(DT).

BRF(DT) and DRF(DT). We can then switch to (40) and (41) to compute PM(2DT),

PF(ZDT), ... PM(100DT), PF(100DT). The FORTRAN program of Figure (8)

illustrate s.

This assutmption is not necessarily valid if the function f(.) and its

derivatives (Eqn. (36)) change sign during a simulation run. The subject
of long run simulation error is, in general, a complex one.

9-32

1

PROGRAM EX 5

FORMAT(3EI2.4)

2 C1 = .25

3 CZ=.1

'4 C3 .15
5 PM = 10000.
6 PF= 20000.
7 T=0.
8 DTI=.02
9 DTZ=.1

10 DRM CZ* PM

11 DRF C3*PF
12 BRF= C1*PF
13 BRM =BRF
14 DRMO = DRM
15 DRFO= DRF
16 BRFO BRF
17 BRMO = BRM
18 DO25 I= 1, 5
19 T= T+DTI
20 PF PF + DT1 * (BRF-DRF)
21 PM PM + DT1 * (BRM-DRM)
22 BRF CI*PF
23 BRM= BRF
24 DRM =CZ* PM
25 DRF C3*PF
26 PRINT 1, T, PF, PM
27 DO 391= 1, 99
28 T - T + DTZ
29 PF PF + DTZ * (3* (BRF-DRF) -(BRFO-

30 PM PM + DTZ* (3* (BRM-DRM)-(BRFO-
31 BRFO BRF
32 BRMO = BRM
33 DRFO =DRF
.41 DRMO =DRM
is BRF =CI * PF
36 BRM = BRF
37 DRM CZ PM
38 DRF C3 *PF

39 PRINT 1, T, PF, PM
END

DRFO))/2.

DRMO))/Z.

A FORTRAN Program for the Population Model of Example (5)

Figure (8)

9-33

Statements (2-17) of this figure initialize constants, state variables
and variables used on the right side of integration formulas at t = DT. The
variables DRMO, DRFO, BRFO, BR.MO (statements 14-17) store initial valuesfor DRM, DRF, BRF and BRM since these latter variables are updated by
application of Euler's formula and the former are required for starting inte­gration by (28). The DO loop beginning with statement 18 and ending with

statement 25 computes PF(. I),
 PM(. 1), BRF(. 1), BRM(. 1), DRM(. 1) and

DRF(. l)--the remnaining
 values needed for starting integration by Eqn. (28).
Statements (27-39) carry out integration by this equation, compute relevant
model variables ver the required 10 year period, and print; output variables
at ten intervals of T = . 1 years. Note that statements (31-3.4) store values

for BRF, BRM, DRF,
 DRM which correspond to time t - DT2 on the next
iteration of the integration formula (statements 20 and 21).

Example (5) has demonstrated the application of higher order integra­
tion formulas to the solution of differential equations. It has been seen that

the basic problem has been
one of getting starting values for formulas %hich
require values for the integrand at (t- DT), (t- ZDT), .. . It has been seen that
Euler's formula, with an appropriately small r)T, can be used to provide
starting values. Ot1aer methods for obtaining tarting values include the

application of Runga-Kutta formulas
or formulas based on Taylor's series
expansions. These will not be discussed here, however. The interested

reader can pursue this
topic further (4, 1, 6).

We have thus far discussed two methods of achieving simulation

accuracy
(if such accuracy is needed in light of basic data accuracy):

i) Use of a relatively simple integration formula with a"small" solution interval, DT.
H1) Use of a more complex integration formula which permitsa relatively larger DT for a given level of accuracy.

Approach (i) leads to relatively simple simulation programs requiring aminimum of programming time. This approach, however, requires more
computer time than (ii) for a given level of simulation accuracy. In certain
cases, particularly where a given model is to be used on a long run basis
once programmed, approach (ii) would be preferred over (i). Another factor,
computer memory requirements, might also be a factor to consider in cer­
tain cases. Approach (ii) leads inherently to increased memory requirements
since more values of the integrands must be stored for higher order integra­
tion formulas.

9-34

Chapter 9

BIBLIOGRAPHY

1. 	 Hamming, R. W., Numerical Methods for Scientists and Engineers,
McGraw-Hill, New York, 1962.

2. 	 IBM Corporation, System/360 Continuous System Modeling Program
User's Manual, Program Number 360A-CX, 16X, 1972.

3. 	 Llewellyn, Robert W. ,"FORDYN--An Industrial Dynamics Simulator,
Deparmnent of Industrial Engineering," North Carolina State University,
Raleigh, 1965.

4. 	 Moursund, David G. and Charles S. Duris, Elementary Theory and
Application of Numerical Analysis, McGraw-Hill, New York, 1967.

5. 	 Pugh, Alexander L., Dynamo II User's Manual, MIT Press,
Cambridge, 1970.

6. 	 Stark, Peter A., Introduction to Numerical Methods, The MacMillan
Co., London, 1970.

9-43

CHAPTI R (10)

SIMULATION OF CIME DELAYS

Clearly time delays occur naturaly in virtually all real world processes

and systems. The arrival of goods and-material occurs some time acer the

goods or materials are sent due to inhetent transportatlon lags. Some finite

time is required to analyze information and arrive at decisions. Thus, the

making of decisions lags behind the var ables upon which the decisions are

based. There are inherent lags in pro essing materials, i. e. , production

lags, delays inherent in chemical reactions, etc. Delays are inherent in all

biological processes--gestation delays {n the reproducted process, maturation

delays as living entities become ready for reproduction and so forth(l, 2,5).

Economic systems are subject to beha oral lags as both consumption and

production respond with delays in response to causal variables and the

growth of productive capital in an economy is a lagged function of investment

decisions due to inherent gestation dela s in capital formation(3, 5).

In these, and many other ways, delays are intrinsic in the v rld we

live in. Interestingly, the mathematic 1 relationships that describe these

delays often look the same whether we' e talking about economic, social,

bioligical or physical processes. In ot er words with a relatively small

number of delay models we can describ many qualitatively different phe­

nomena. We will concentrate here on iiodels ot detlay processes that have

proven to have wide applicability in t e sense degcribed. This

10.

material should'be of interest, therefore$ to a rather wide audience

includin8 those interested in comprehensive models that span a number of

the processes mentioned above.

Inwhat follows, we will define two types of commonl4 encountered

delays-so called discrete delays and continuous or distributed delays.

We will describe these mathematically and develop practical means of

simulating them on a digital computer.

A. Discrete Delays

A discrete delay is defined by the following equation where I(t)

represents unlagged variable (the "input" to the delay) and O(t)the

lagged variable (the "output" of the delay):

1) O(t)- t-)

The delayed variable is simply the unlagged variable shifted in time by

T time units. Clearly this type of delay would describe transportation

lags in moving entities from one place to another. Here, rwould correspond

to the transport time inherent in the process. As an example, let I(t)

represent the number of letters per day sent from station x to station y.

Assuming a fixad transportation delay, T, between x and y the rate at

which letters arrive at station y, 0(t). would be I(t-r). This type of

delay is also commonly encountered in decision processes. Let I(t)

represent the current value of some variable used in a decision process.

Due to inherent human and information processing lags, decisions are not

10-2

always made on the basis of current information. In this case the

variable actually used in the decision process would be I(t-r) where

T 	represents the overall delay between current information and that

actually used in decision making. The reader can undoubtedly think of

many other ways in which this particular phenomenon occurs in the real

world.

Simulation of this type of delay is particularly straightforward

with a digital computer. In what follows we will develop a mathematical

procedure for simulating such delays. We will then present and describe

a 	subroutine which implements this procedure in FORTRAN.

Wie begin by assuming that the discrete delay, T, is an integer

multiple of DT, the basic time increment used in the simulation. Thus,

2) 	r flDT

where N is an integer. From the definition of the discrete delay (Equation

(1)) we can write:

3)	0(t)'- 01(t-DT)

01(t)a 02(t-DT)

OX.1(t) a I(t-DT)

where, as before, 0 is the lagged variable and I the unlagged. The variables

01, 02 ,..0, are intermediate variables necessary in computation.

• 	 .10.3

.'Equation (3)can be written matrix form as:

4)	O(t) 0la .o O(t-DT) 0

0t(t) o o 100 0 Oi(t-DT) 0

02(t) - oo 1 o 02(t-DT) + o I(t)
* , 0 0

* 000, ,0

ONPl(t) 0 0 . o. o .(t-DT)j

This Equation is seen to be a special case of the discrete state model

discussed in earlier chapters. This form is inefficient for computation

and would not normally be used in practice.

The FORTRAN subroutine of Figure (1), based upon Equation (3), is

a more efficient way of simulating discrete delays.

SUHROUTINIr DCTDEL (VIN, VOUT, VINT, N1)

DIMSION VINT(1)

VOUT - VIUT(l)

DO I I - 2N

1 V'INT(I-.) - VINT(I)

VINT(N) - VIN

,ETURN

END

A FORTRAN Subroutine for Simulating

Discrete Delays

Figure (1)

10-4

In Figure (1)VIN corresponds to the input (unlagged) variable aud

VOUT to the output (lagged) variable. The array VINT corresponds to the

intermediate variables 01, 02, *.. ON in Equation (3)and must be dimen­

sioned to N in the simulation program calling the discrete delay subroutine.

This array must also 1:e assigned initial values which correspond to the

value of the unlagged variaible before the start of a given simulation

run.
The integer N is chosen such that N.DT is equal to the discrete

delay being simulated as required by Equacion (2).

Figure (2)illustrates the operation of this subroutine for a
parti­

cular input X(t) and a lag T - 3DT.

(t) - unlgged variable
4

2

4 L 6 Time

-3DT -2DT -DT 0
 DT 2DT 3DT 4DT 5DT

y(t) - lagged variable
4.

3

2 	 LAU T JDT
y(t) X(t-T)

" ' Time

0 DT 2DT 3DT 4DT 5DT 6DT

Graphical Representation of a Discrete Lag

Figure (2)

10-5

In this ecase the intermediate variables VIrr(1), VINT(2) andVINT(3)

must be assigned the initial value 3 in the calling program. Since

on the first call of the DCTDEL subroutine the time variable will have

the value DT, the VINT array must be initialized as follows:

VINT(l) a x(-2DT)

VINT(2) - x(-DT)

VfNT(3) - x(0)

As an illustration, Figure (3)is a FORTRAN program which uses the DCTDEL

subroutine to simulate the discrete lag of Figure (2).

PROGR! DrTAY

DI!-rNSION VIIT(3)

N- 3

DT - 1.

T 0.

VIMr(1) - 4.

VINT(2) a 4.

VIT(3) n 3.

PO 2 J a 1, 10

T T + DT

Xl.-3. -T

X " ?AX(XIO.]

CALL DCTDEL (X,Yo VINT, N)

PRINT ----

END

A FORTRAN Program Illustrating the Use of the DCTDEL Subroutine

Figure (3)

10.6

2

While the DCTDEL subroutine can exactly simulate the discrete time

delay (at least at discrete time points) it is sometimes computationally

inefficient. In cases where the magnitude of the delay, T, is long with

respect to the DT being used in the simulation model computation times and

memory requirements can be excessive. In these cases an approximate

simulation of the discrete delay will often suffice and considerably reduce

computation time and memory requirements. The "Boxcar" function of DYNlAMO

(6)and the BOXC subroutine of FORDYN(4)--(written in FORTRAN) are

essentially approximate discrete delays. Figure (4)illustrates the

nature of the approximation inherent in these routines.

Hlathematically this approximation is given by:

NC-1

5) y(t), y8a(t+DT)l .. , ya(t+(NC-l)DT) - x(t-(N-i)DT)

imo

t=O, XC, 2NC, ... I*NC (I,NC, N, integers)

Under this approximation the lagged variable changes value every NC

simulation cycles and is equal to the average of NC prior values of the

unlagged variable. An important property of this approximation is that

its time summation is .xactly the some as the summation of a variable

-ithjich has been lagged rtith a true discrete delay.

We turn our attention now to a discussion of the continuous or

distributed delay. We will be concerned with how these delay processes

occur in the real world and how to simulate them.

,10-.7

x(t

0Time

0 o 0"OD- -T 8DT 16DT 24 6T
eoooe0

• 6

ya(t)

ITmm

0 8DT 16DT 24DT 32DT

10G8
MC -2 (See Equation 5)

The Approximae Delay

Figure (4)

B. Continuous or Distrihuted Dolayn

The terms "continuous" and "distributed" are used synonomously. In

what follows we will generally refer to distributed delays. The distri­

buted delay will be defined by the following linear differential equation:

6) dt (tdkly(t) ad . , aly(t)+ + . + - x(t)dt- dtk-1

where:

x(t) a the unlagged variable

y(t) - the lagged variable

The order of the delay will be defined as the order of the definin­

differential equation; namely, k in Equation (6). Figure (5)will help

illustrate the difference between this type of delay and t.he discrete

delay.

Vote from the figure that the distributed delay adjusts gradually

to changes in the input. This type of delay is frequently encountered

in aggregative processes where streams or flows made up of many entities

are subject to delays which vary from entity to entity. 'any examples

are possible. We will mention a few. The rate of adoption of an attitude,

innovation, etc. in a population will he a distributively lagged function

of the stimulus (input) because of the inherently different response times

of individual people. The aggregate growth of capital in an economy

is a distributively lagged function of investment decisions because

10-9

x t)

tt

YI 0

rt

Yl 0 typical response of a discrata delay to Input x(t)

72 typical response of a distributed delay to input x(t)

Discrete & Distributed Delays Compared

Figure (5)

10-10

individual investments have different gestation periods. The rate at

which plants reach maturity can be simulated as a distributively lagged

function of the planting rate because of intrinsic differences in maturation

times amongplhn-s. Uiora many entities are being transported from point

to point,a distributed delay applies whenever individual entities are

subject to different transport times. There are also many examples of

this type of delay to be found in the physical sciences.

In Chapter (12)e will more carefully examine the relationship

between the specific mathematical description of a distributed delay and

the statistical nroperties of the micro process it represents. In certain

cases we can derive the distributed delay model directly from a knowledge

of the probability density function which applies to the delay of individual

entities in an aggregative flow. At this point, however, we will move

on to examine means whereby te can simulate these delays as a basic

building block of our simulation methodology.

1. 	Simulation of Flow Conserving Distributed Delays

Without significant loss of generality we can represent the distributed

-.elay by the following transfer function:

M.I7) M,k1I
• .X{(s) t=1 DiA+---­

where:

y(s) a The Laplace transform of the lagged (output) variable

i~s) " The Laplace transform of the unlagged (input) variable

Di A set of parameters to be discussed later.

10-11

An important attribute of this particular mathematical representation

is that it conserves flow, that is, no flow is added or lost in the delay process.

The development here, hence, applies to real world phenomena, in which

flow is conserved. We can easily see that Equation (7) has this prop­

erty. In order to show this we must establish that:

8) x(t) = y(t)+ t Q(t)

where Q(t) is the quantity of flow stored in the delay process and x(t)

and y(t) are respectively the input and output of the process. From

Equation (7) and the properties of the transfer function we can decompose

the kth order delay into k cascaded first order delays as shown in Figure

(6).

Die+---
 1xC0 Ri(s) D28+1 R2 (6) RklRs)1 k+
*y

x(t) STACE rt) STAGE r2 (t). Yk-1 (t) STAGE r Ct)-y,(t)

Decomposition of a kth Order Distributed Delay

Figure 6

10-12

Therefore if we can show that conservation of flow applies to any arbi.

trary delay in this chain, say the ith, we can reason that conservation

of flow applies to the entire delay process of k similar delays.
th

The equation for the i stage of Figure (6) is

8) dr (t) + r(t) r M.(t)i =

where ri(t) is the output of the ith stage and ri. I(t) its input. We consider

the response of an individual delay stage to a unit impulse function 6(t) as

input. That is,

dri(t)

9) D t + ri(t) = 6(t) ri(0) = 0

The solution to this equation is just

-t

10) r(t) eDi

To show conservation of flow in this case we must show

11) 6(t)dt = r1 (t)dt

This is clearly the case since

t

12) 5 W (t)dt = 1 =r a-e I dt

Since 8) is a linear equation it follows from the.superpositior, property that

flow is also conservd when the input to the delay stage i, a sequence of

Impulses:

10-13

N

13) ri 1 l(t). = f(n At)I At' 6(t - nAt)

n=l

Since any time function can be represented in the form of (13) it follows that

flow is conserved for the i stage for any input. Since all stages are

identical it follows that flow is conserved for the entire delay process of

Figure (6).

Another statement of the conservation of flow property is that the rate

of change of storage, Q, in an entity

14) dQ(t) = IN(t) - OUT(t)
dt ­

where IN is the flow in and OUT the flow out of the entity. From the above

discussion then it is clear that for the ith stage of the delay process

i dri(t))
dQ(t)
15) dt - dt

We not: turn to discussion of numerical methods for simulating the

distributed delay process of Equation (7)and Figure (6). Clearly we

can represent this process by the following set of linear first order

differential equations:

.1)drt) 1rl(t) + -1..x(t)
S6 dt Dl'1r(t DI

dr2(t) 1
r -rl(t) - r2 (t

dtdt 2(t)r2

dr k (t)(kdt DkL,.4(t) J. rk(t)

These equations can in turn be written inmatrix form S#

10- 14

17) 	 r1(t) - 1 o 0 0 rl(t)

r2 (t) _1 _1 0 .0 r2(t)
 0

rk(t) o o.1 - 1 rk(t) 0
Dk Dk

or

18) -ir(t) * Ar(t) + fx(t)

dt

where r and B are k x 1 column vectors, A to a k x k matrix and

x(t) Is
a scalar function. We thus see that the kth order distributed

delay can be represented by a linear state model. Numerical solutions

for 17) or 18) are readily obtained by the approach of Chapter (q). le

can write:

19) r(t+DT) a eA'DT r(t) + jt+DT eA(t+DT.)-t B x(A)dA

At this point we will assume that DT is small and that x(t) is constant in the

interval (tet+DT) so 19) simplifies to:

20) r(t+lT) - eADTr(t) + ft+DT^A(t+DTA)dABx(t)
t

In order to proceed we must obtain an explicit representation for the

matrices eA*DT and eA(t+DT-A). As s00 nin Chapter (6) we can approximate

-the matrix eA(t to) by the series:

21) eA(t'tO) - I + A(t-*to) + A2 (tt°)2 + A3.(tt °)3

21 31

where I is the unit matrix and A is defined by Equations 17 and 18. The

matrix eA*DT is hence given by:

A DT A2 DT2 A3 PT3
22) e - I + A.DT +

-21 31

and

A(t+DT-X) + A2(t+DT-)
2 + A3 (t+DT-AY

23) eA(t+DT-A) =I +

3
21

In practice we approximate these matrices by series with a finite number

of terms. As nn example, let these matrices be approximated initially

by two terms of the series in which case eA-DT and •(t4DT-X) are approxi­

mated respectively by:

24) eA *DT a I + A-DT

25) •(t+T, 'A) . I + A(t+DT-A)

Equation (20) then becomes:

t+DT

26) r(t+DT) w (I+A.DT)r(t) + ft (I+A(t+DT-,)jdABX(t)

10-i6

which, upon carrying out the integration and re-arranging reduces to:

27) 	 r(t+DT) - r(t) + DT[A-r(t) + Bx(t)] + DT2 ABx(t)
2

On dropping the term containing DT2 (which becomes insignificant for small

DT) and expanding 27) we get:

28) r1 (t+DT) = rl (t) + D [x(t) rrtI

DlI

r2(t+DT) - r2 (t)+ D [rl(t) - r2(t)]
I

i
I

I

rk(t+DT) - rk(t) + - rl(t)- rk(t)]

Equation 28) represents one practical way of simulating the distributed

delay. (Ile could also arrive at
(28) by applyinG Euler integration to

Equation (17).)
 This approach has the advantages of simplicity, minimal

computer memory requirements and, in fact, is essentially the numerical

approach used by DYNAMO (6)and FORDYN (Y) in the simulation of distri­

buted delays.

2. 	 Simulation of Distributed Delays by Euler's Method

Because of the usefulness of this procedure as a simulation building

block, we include FORTRAN subroutines for its implementation (See

ligurea (7)and (8).).
 The first subroutine is a generalized version of

DYNAMO's third order delay.
 It is general in the
sense that it applies

for arbitrary order k and permits the user to specify a different constant

10-17

D for each delay itage. In some cases the user may prefer to assign

In that case the subroutine ofidentical D values to all delay stages.

Figure (8)is more appropriate.

SUBROUTINE DELAY1 (VINO VOUT, R, Do DT, K)

DIMENSION R(l), D(l)

IMKIl' K" 1

DO 	1 1" 1# Ma

1 	(I)- R(I) + (DT/D(I))*(R(I+l) - R(I))

R(K) - R(K) + (DT/D(K))*(VIN - R(K))

VOUT - R(l:

RETURN

'Eid

Variable Definitions:

VIN n Input variable to delay (unlagged variables)

VOUT - Output variable of the delay (lagged variable)

R * 	An array of K rates

R(l) - rkv R(K) -r 1 of Equation 28 (tho output of the first

delay staze in Figur.e (6))(ilota that for efficient computationj

indexing of delay stages has been reversed from that of Figure

6 i.e., in this subroutine the last stage is indexed "1", etc.)

D • An array of K delay parameters in Equation 28

K " Order of the delay.

A Jubroutine for Euler Simulation of the

Distributed Delay (D values Arbitrary)

Figure 7

10-18

SUBROUTINE DELAYZ (V'IN, V0UT, R, DEL, DT, K)

DIMENSION R(l)

Dli a K - 1

A a DT*FLOAT(K)/DEL

DO 1 I 1, Mi,

1 	 R(I) is R(I) + A*(R(I+1) - R(1)

R(k) - R(k) + A*(VIN - R(K))

VOUT a R(1)

RETURN4

END

Note: Delay of an individual stage = LUL/K

A Subroutine for Euler Simulation

of the Distributed Delay

(Dvalues identical)

Figure 8

Before considering other theoretical matters related .odistributed

delays s;1d their simulation. We will illustrate an application of the

distributed delay and the use of the foregoing subroutines in its simulation.

Consider the process by which productive capital is generated and depreciates

in an economy. We can illustrate this process diagramatically as shown in

Figure (9). The variable I(t) represents the rate at which the construc­

tion of new productive capacity is started in an economy or sector of an

economy, I(t) is measured in terms of units of production capacity

(for example, tons of steel per year) per unit time. If there are many

firms in the induatry making many decisions to ixpand plants and build new

plants, I(t) can be viewed as a flow variable.

I0-19

I(t GESTATION
PERIOD

01(t) PRODUCTIVE
'PERIOD

O() WEAROUT
PERIOD

03, -

(DG) (DP) (DW)

dt ttfT

COt) Cp(t) Cw(t)

1(t) - Rate at which construr:tion of new productive capital is started

(units of production/time2)

01(t)= Rate at which productive capital enters production (same units

as 1(t))

02 (t)- Rate at which productive capital enters a wearout phase

characterized by high depreciation and maintenance (same units

as I(t))

03(t) - Rate at which productive capital is scrapped (same units as 1(t))

CO(t), Cp(t), Cw(t) w Quantity of capital in each of the respective

periods.

A Model of the Capital Generation - Depreciation Process

Figure (9)

1040

After a gestation delay (DG), which corresponds to the average time

required to build, the new productive capacity and bring it into production,

the new capital enters a productive phase, the variable 01 (t)in the

Figure. This productive period extends over much of the useful life of

the new plants and is represented by the delay DP, in the figure. The

variable DP corresponds to the average useful life before the productive

capital enters a wearout phase characterized by high depreciation and

maintenance. The variable 02 (t) is the rate capital enters the wearout

phase which is represented by a delay DW!in the figure. Other relevant

factors such as depreciation, cost uf maintenance, interest payments,

debt service, etc., could be included in the model in a straight forward

manner but these would obscure the main points of interest here.

Distributed delays will be appropriate in modelling this process

because individual entities (production plants) in the flow will generally

have different gestation, productive and wearout periods distributed about

some mean values - the DG, DP and DW of Figure (9). We turn now to

simulation of this process using the delay subroutine of Figure (8).

Figure (10) is a FORTRAN program for simulating this process over a 20­

.year pimo period. The rate of new capital construction is assumed to be

exponentially expanding for purposes of this illustration.

Statements 1-11 of Figure (10) initialize constants used in the

model. Statements (12-19) initialize the rates for the delays of the

model. These initial rates determine initial values for the quantities

of capital in the three phases of Figure (9) (More will be said about this

10-21

PROGMI CAPITAL

REAL IN

DIIENSION RG(6), RP(3), RW(6)

INITIALIZATION PHASE

1 DG a 3.

2 DP m 10.

3 D !a 5.

4 DTa .25

5 * TaO.

6 KGa6

7 IP 3

8 lk 6

8 l01 6

9 A .03

10 RLNGTl! - 20.

U t " RLNGT!!/DT

12 DO 14 J a 1,6

3 RG(* 100.

14 RW(J) a 100.

15 DO 16 J a 1,3

16 RP(3) * 100.

17 OUTI w 100.

18 OUT2 - 100.

19 OUT3 m 100.

BEGIN SIMULATION PHASE

10- 22

20 DO 38 1- lN

21 T - T + DT

C COJIUE I,'PUT

22 IN - 1)O.*rX,(P(A*T)

C COMPUTE OUT3

23 CALL DELAY 2 (OUT2, OUT3, R, DW, DT, KW)

C COMPUTE OUT2

24 CALL DrLAY 2 (OUT1, OUT2, RP, DP, DT, KP)

C COMPUTE OUT1

25 CALL DELAY 2 (1Wl,OUTi, RG, DO, DT, KG)

C COMPUTE CAPACITY IN GESTATION PERIOD (CG)

26 DaO.

27 DO 28 J n1, KG

28 D a D + RG(J)

29 CG a D*DG/KG

C COMPUTE CAPACITY IN PROTIICTIVE PERIOD (CP)

30 D-0.

--.. 31 DO 32 J a1,tKP

32 a D +RP(J)

33 C? n D*DP/KP

c COMPUTE CAPACITY INWEAROUT PERIOD

34 DaO.

35 DO 36, J 1, IKW

36 - D +RW(J)

1023

37 CW a D*fllI/KW

C PRINT OUTPUT AS DMSIRED

38 COMINrUE

Etm

A FORTRAN Program for Simulating
the Capital Generation Process of Figure (9)

Figure (10)

40.4

I

matter of initial conditions later. The simulation phase of the program

(statements 20-37) centers around three calls to the DELAY2 subroutine

whiih compute OUT3, OUTZ, and OUTI (the 03P 0 2 and 01 of Figure (9)).

Statements (26-37) compute the quantity of capital in the three phases at

any time during the simulation (as discussed in Section C).

This same approach, the use of cascaded distributed delays, is use­

ful in modeling many other processes in the real world. Examples include

the aging and maturation of plants, trees, animals and other living entities,

certain transportation processes, social diffusion, etc. (1, 2, 3, 5).

3. 	 Another Approach to the Simulation of Distributed Delays

In the previous section we looked at a particular method of simulating

distributed 	delays involving two terms of the series of Equations (22) and (23)

" .to approximate the matrices eA "DT and eA(t+DT In this section we will

develop a different approach to the simulation of these delays. It is possible

to proceed in at least two directions. We could employ higher order integra­

tion formulas such as those discussed in Chapter (9) to the set of first order

differential equations of Equation (16), or, we could continue with the approaci

of Equation (20) taking more terms to approximate the matrices eA "DT and
•A(t+DT- X') (to improve solution accuracy). We 	will employ the former

approach since it readily provides information relating to solution error.

A host of subroutines can be developed for simulating distributed

delays by implementing various integration formulas of the type discussed

ik Chapter (9). For illustration we will apply Equation (20) of Chapter (9) to

Equation (16). This integration formula reads as Equation (29) here:

St+DT f(x)Ddx T 3f(t)- f(t-DT)]

10-25

The integration error associated with this formula in the interval

(t, t+DT) was found to be:

30) E -1 DT3f (2) ()

t - DT < u < t+DT

On applying this formula to the differential equations describing the

distributed delny (Equation (16)) we get:

r1 (t)+ DL [3(x(t) - r1(t)) - (x(t-DT) - r1(t-DT))]31) r1(t+DT) ­ 2D1

r2 (t)+ RT(3(r1 (.t) - r2(t))- (rl(t-DT) - r2(t-DT))]r2(t+DT) ­ 2D
2

0

+ 1T (3 (rk(t) . rk.l(t)) - (rl.(t-DT) - rk 4 l(t-DT))]rk(t+DT) - rk(t) 2Dk

The design of a FORTRAN program for implementing (31) is straight

The design of an efficient program for doing so may be another
forward.

matter.

(9) applies here and can
The integration error analysis of Chapter

provide insight into the relative advantages of integration formul=s of

various orders. Also, the predictor-corrector methods discussed in the

imulations of distributed
previous chapter can be applied if highly accurate

10-26

delays are required. This is usually not the case in socio- economic

models as the mathematical formulation being solved numerically is gener­

ally an approximation of real vrld phenomena in the first place and data

errors may overshadow computational errors in the second place.

C. Storage in Delay Processes

From earlier discussion of conservation of flow in distributed delays,

it is clear that there is almays storage associated with a flow variable

in a delay process. In the example of Figure (9) the storage variable was

the amount of productive capacity in various stages of obsolescence. In

a transportation system involving transport lags the storage variable is

the quantity of goods in the transportation pipeline. These storage

variables are usua lly of interest to decision makers and relevant

endogenous system variables. Therefore, it is important to develop

efficient means for computing them. This is the objective of this section.

We will first consider storage in distributed delays. VTe begin by examin­

ing the differential equation describing the ith stage of the distributed

delay process (See igure 6):

8) Di drl(t) ,, ri-l(t) - ri(t)

.... dt

It was seen earlier that ri(t) is the total outflow from the delay stage

and ri.l(t) the total inflow. Clearly the right 3ide of 8) is the rate of

change of storage in the ith delay stage. lPence:

32) D dri(t)

dt dt

10.27

Where i is the storage in the Ith staie. On integrating 32) we get:

33) QL(t) - Qi(o) = Dri(t) - Diri(o)

It can be readily shown that Qi(o) Dtri(o) and hence

34) Qi(t) - Dijr(t)

for all t. The total storage, O(t), in a k stage delay process (See

Figure (6)) is, therefore:

k
35) Q(t) - Diri(t)

jul

This relationship was used in the example of Figure (10) to compute the

productive capacity in various phases of life (See statements 26-37 of

Figure (10)).

An anologous relationship applies to the computation of storage in

discrete delays. For example the storage in the discrete delay of the

DCTDEL subroutine of Figure (1)is:

i!
36) Q(t) - DT VINT(I).

I0i

10.48

BIBLIOGRAPHY

Chapter (10)

1. 	 Abkin, Michael H., Policy Making for Economic Development: A
System Simulation Model of the Agricultural Economy of Fouthern
Nigeria, wipublished Ph.D. Dissertation, Michigan State University,
1972.

2. 	 Abkin, Michael H. and Thomas J. Manetsch, "A Development Planning-
Oriented Model Simulation Model of the Agricultural Economy of South­
ern Nigeria, IEEE Transactions on Systems, Man and Cybernetics,
2:422-486, Septeniber, 1972.

3. 	 Holland, E. P. vith Robert W. Gillespie, Experiments on a Simu­
lated Underdeveloped Economy: Development Plans and Balance-of-
Payments Policies, The MIT Press, Carrbridge, 1963.

4. 	 Llewellyn, Robert W., FORDYN--An Industrial Dynamics Simulator,
Department of Industrial Engineering, North Carolina State University,
Raleigh, 1966.

5. 	 Manetsch, Thomas J., et al., A Generalized Simulation Approach toAgricultural Sector Analysis with Special Reference to Nigeria (East
Lansing: Michig.n State University, Nov. 30, 1971).

6. 	 Pugh, Alexander L., DYNAMO User's Manual, MIT 	Press, Cambridge,
1963.

