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Introduction
 

This material is organized into two parts. Part II contains basic
 

underlying concepts which are important in the simulation of agricultural
 

systems through time. Much of this material is mathematical in nature
 

and for this reason may take considerable time for the reader to understand
 

and be able to use in solving practical agricultural sector problems.
 

These concepts have proven very useful, however, in developing simulation
 

models in Korea and Nigeria. It is not reasonable to expect that participants
 

in this workshop will completely understand this material in the time
 

available. Rather, it is my purpose to give workshop participants some
 

appreciation of some practical problems that can be addressed using
 

simulation concepts and some idea of the things researchers must learn
 

to be able to apply simulation methods to practical problems.
 

Part I of this material contains some simple examples of applications
 

of these simulation concepts. Later in the workshop we will be looking
 

at the KASS simulation model in some detail which represents a more
 

realistic (but at this time not complete) example of the use of simulation
 

methods. Those persons interested in further reading in the simulation
 
1/


area can consult a number of references which are available.

-!/Forrester, J. W., Industrial Dynamics, John Wiley and Sons,
 
New York, 1961.
 

Holland, E. P., et al., Experiments on a Simulated Underdeveloped
 
Economy, MIT Press, 1964.
 

Manetsch, T. J., et al,, A Generalized Simulation Approach to
 
Agricultural Sector Analysis with Special Reference to Nigeria, Michigan

State University, East Lansing, 1971.
 

Manetsch, T. J., and G. L. Park, System Analysis and Simulation
 
with Applications to Economic and Social Systems Part II, (Preliminary

Edition), Michigan State University, East Lansing, January 1973.
 



Part I
 

Example]1
 

A Greatly Simplified Market Model
 

to Illustrate the Idea of a 
Dynamic Simulation Model
 

Most simulation models are dynamic in the sense that they-approximate
 

the way that the real world behaves through time. The following simple
 

market model illustrates this point and some other basic simulation
 

concepts.
 

The market model:
 

(1) D(t) = D + DIP(t) Demand Equation
 

D - Demand #/time
 
P - Price Won/# 
t - Time 

(2) S(t) - S0 + S1P(t) 
 Supply Equation
 

( dP(t) " CI(D(t) - S(t)) 
 Market Equation
 

or
 

P(t+DT) - P(t) + ft+DT C-(D(x) - S(x))dx 

DT - some small increment In time--At 

Putting these three equations together we get one equation that describes 

the dynamic behavior o market price over time:
 

(4) P(t+DT) - P(t) + ft+DT CI(D + DiP(x) _ SO siP(x))dx
 

In order tj simulate the behavior of market price over time we must
 

use a numerics.l method for computing the integral in Equation 4. 
This is
 

easily done usiag one of the integration formulas discussed in Part II,
 

pages 9-19 through 9-25. 
 In this example we will use a particularly
 



2
 

simple numerical integration formula called Euler's method. Using this
 

method we make the following approximation for the integral of a function
 

f (x): 

1 t + DT (5) f(x)dx a DT f(t) 

(Euler's method of Equation 5 comes from assuming that the function f( ) 

is constant in the small time interval DT.)
 

If we apply Euler's method to the price equation above we get a
 

simple simulation model which can be used to easily compute the dynamic
 

behavior of the market price. Thiq is Equation (6):
 

(6) P(t+DT) - P(t) + DT(C1 (D0+D1P(t) - S0 - S1 P(t)))
 

To illustrate we will put numbers into this recursive simulation equation
 

and compute price changes over time.
 

Let: 

P(0) - 50 W/# (the initial price at the beginning of the 
simulation when t - 0) 

Do - 100 #/month 

D1 =-1 

S0 - -100 #/month 

S 1 

C1 - 1 (W/#/month)--determinos the speed of market adjustment 

DT - .2 month (the time increment in our simulation model). 

When we put these numbers into Equation 6 we get: 

(7) P(t+DT) - P(t) + .2(2(100-P(t)) 



3 

From this equation it is easy to compute as follows:
 

P(.2) - 50 + .2(2(100-50)) - 70 

P(.4) - 70 + .2(2(100-70)) - 82 

P(.6) - 82 + .2(2(100-82)) = 89.2 

P(-) - 100 (the equilibrium price)
 

We can show this price behavior through time graphically as follows,
 

P(t) 
100. 

- price W/# 
-------- ------------ Equilibrium price 

80, 

60 

40
 

20
 

.'2 !4 !6 !8 V0 V2 :4Time (months)
 

It is very easy to implement a model such as this one on a computer.
 

Following is a sample FORTRAN program to illustrate:
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PROGRAM MARKET
 

C Initialization of model data inputs 

PO - 50. 

DO = 100. 

Dl = -1. 

SO = -100.
 

S1 - 1.
 

Cl - 1.
 

DT - .2
 

T - 0. (T - time in months)
 

RLGTH - 2. (length of simulation run in months)
 

NCY - RLGTH/DT(number of simulation cycles)
 

C 	Execution phase of the model 

DO1 I - 1, NCY 

DEM - DO + Dl*P 

SUP - SO + S1*P 

T - T+DT
 

P - P + DT*Cl*(DEM-SUP)
 

PRINT OUTPUT DATA AS DESIRED (Tv P0 DEM, SUP)
 

1 CONTINUE
 

END 
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It is often very useful in modeling and simulating systems to use what
 

is known as a system block diagram. Such a diagram appears below for
 

the simple market model. Note that this is completely equivalent to
 

the set of equations that describes the model. The symbols used in
 

this diagram are completely defined on page 9-4 of the notes.
 

+ D(t) + St +
 
+ (Demand) (Supply) + 


P(t: P(t)
 

P(t) (Price) 

O - summation 

QJ - multiplication
 

F - integration with
 

respect to time
 

Block Diagram for the Market Model
 

0 
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E&ample 2
 

Simulation of Perennial Crop Production
 

(Similar to way fruit production was
 

simulated in the KASS model.)
 

Due to the fact that the yield of perennial crops is strongly
 

dependent upon the age of trees, etc., it is important to simulate the
 

age distribution of the population of perennials. 
For trees a relation

ship such as the following exists between yield and age:
 

Yield (MT/ha)
 

I II III IV 

0 -- -Age
 

In the KASS model we simulated fruit production by dividing the
 

life of trees into the four phases shown above.
 

Phase I -- period just after planting when there is no yield
Phase II -- period of rising yields 
Phase III -- period of maximum yields 
Phase IV -- period of declining yields 

Each of these phases of growth is simulated by a distributed delay function
 

A distributed delay is used because this type of. function can represent
 

the fact that in the real world all perennials do not age at the same
 

rate--some will mature earlier than average, others later, etc. 
A block
 

diagram for this simulation appears on the next page.
 



ng) J DEL lK
PHASE I 0 

1 

CRI(tl)t 
DEL2 'K 

P(StI 0 

C MC 

PHASEt 

DEL3,K 3 

3W 
3 t-

DEL4,K 4 

I 
PHASE 04W 

Distributed 
Delays 

E 

+ 

Distributed 
Delays 

N1 (t)(Ha) N2 (t)(Ha) N3 (t)(Ha) N4 (t)(Ha) 

Block Diagram for Simulation 

of Perennial Production 
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The variables in this model are defined as follows:
 

PR - new planting rate (Ha/yr)
 

DEL1, DEL2, DEL3, DEL4  average length of time perennials are
 
in phases 1, 2, 3, 4
 

N1, N2, N3, N4 = number of hectares of perennials in each phase 
of growth 

Oi, 02, O3, 04 e rates perennials leave phases 1, 2, 3 and 4 

Kl K2, K3,KK4 = parameters that determine the distribution of
 
perennial aging times about the average values
 
DEL1 , DEL2, DEL3 and DEL4
 

CR1 , CR2' CR3 - cutting rates (Ha/yr)--the rates that perennials 
are removed in phases 1, 2, 3. 

Experience and theory have shown that it is feasible to describe
 

each phase of growth by an ordinary differential equation. For example,
 

the following equation can be used to represent Phase I of this pro

duction process.
 

DEL K1 dK1O (t) DEL1 dO1(t)
" ++f +l I = PS(t)

1K, K K1 dt +=Rt
1 1
dt 


Fortunately there are computer programs available which make it
 

very easy to simulate equations such as these. The simulation of
 

perennial crops is therefore quite straightforward. A computer program
 

for simulating this kind of system is described on pages 10-20 through
 

10-23.
 

Given the age distribution of perennials it is 
a simple matter to
 

compute other important variables which depend upon age distribution.
 

For example total output can be calculated as
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OUTPUT(t) X YLDi(t) NiCt)

i-i
 

where: 

YLDi  the yield in the Ith stage of growth.
 

It is important to note that there are many practical phenomena
 

in the real world that can be simulated in exactly this manner using
 
distributed time delays. 
 Some other examples include human and livestock
 

populations, the creation use and wearout of capital equipment, the
 

lags involved in shipping commodities, etc.
 



PART I
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Example 3
 

Government Subsector of the Korean
 

Grain Management Model
 

The purpose of this example is not to discuss the grain management
 

model in detail. That will be done later by Mr. Forrest Gibson. The
 

purpose of this example is to further illustrate the kinds of mathematica
 

operations and theory that are necessary to simulate complex economic
 

systems. The block diagram illustrates major variables and interactions
 

of the government subsector. We will look at some of these to get an
 

idea of how such a model is constructed and to gain insight into what
 

must be done to simulate such a model on a computer.
 

Clearly, the basic mathematical operations of addition, subtraction,
 

multiplication, division, integration, function generation and time
 

delay are the key elements in construction of dynamic models such as
 

this one. Integration is used whenever flow variables generate stocks
 

in the real world.
 

For example government inventory (stock) of the ith commodity,
 

GINVi, is:
 

GINVi(t+DT) - GINVi (t) + $ +DT (IMPORTS - SALES - LOSSES)dt. 

Distributed time delays are used in a number of places to simulate 

importation delays (DELIMPi), the generation of new warehouse capacity 

(DELWA), and loan repayment periods (DELGR and DELRP). 

This model also contains some ideas from the area of automatic 

control systems (cybernetics). There are three so-called "feedback 

loops" explicit or implicit in the model which regulate or control 

important system variables. One such loop controls government stocks 



to desired level, GINVD, by'adjusting imports, another adjusts government
 
storage capacity to desired level, CAPIND, by regulating new warehouse
 
acquisition. 
The third feedback control loop uses government sales of
 
the various grains to regulate market prices so that they remain near
 
the set of desired prices PDi. 
 These are not simple control problems.
 
Adequate design of these complex management systems requires a number
 
of concepts from the area of dynamic system theory that time does not
 

permit us to discuss here.A/
 

'&Forfurther reading in this area see one of the many texts available
on the subject of feedback control systems.
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Chapter 9 

BASIC MATHEMATICAL OPERATIONS 
FOR SYSTEM SIMULATION 

Simulation of continuous flow models described by difference or 
differential equations is based upon a fundamental set of mathematical
 
operations. 
 These operations can be performed by an analog computerelectronically or numerically using a general purpose computer. Due to 
the flexibility and generality of the latter approach, we will be developing 
a digital approach to simulation. Our emphasis will primarily be on
applications of the approach to non-physical science systems in such areas 
as pruduction, management, economics and demography. 

We will first illustrate the approach by means of an example. We
will then develop techniques for numerically performing the fcllowing basic 
operations: 

" Arithmetic operations (±, X, ") 
* Generation of explicit and non-explicit functions. 
* Integration 

* Generation of time lags 
* Generation of random variates from desired probability

density functions 
* Various logical operations (IF, AND, OR, etc.) 

A. Simulation. -A Production Inventory Example 

Consider the example of Fig. (1) where a simplified, though repre
sentative, model of a production- inventory system is developed in terms
of basic mathematical operations. This model is capable of computing the
impact over time of inventory and production management variables (Id, kl,
k. and 0n) upon company profit (PFT and PFTA), (S),production (Q), sales 
costs (C1 and Cz) and inventory (I). 
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The notation of Fig. (1) is essentially the block diagram notation
 
introduced earlier. This notation is defined by Fig. (2). 
 Note that the
 

variable associated with the output of each block is 
 some function of the
 
variable(s) at the input. 
 Note also that the production-inventory model of
 
Fig. (1) has been described in terms of these basic building blocks. 
 Clearly, 
there is a one-to-one relationship between the block diagram of Fig. (1) and 
a set of equations describing the model and either can be a complete model
 

description.
 

For example, from the block diagram, inventory I, is given by 

t
 
I(t) = 1(0) + Yo(Q(x)'- S(x))dx
 

0 

where Q is the production rate and S the sales rates in production units 
per unit time. The model assumes that sales are lost if stocks are not 

available in inventory. Thus, 

S(t) = D(t) I> 0 

S(t)- I< 0 
as indicated in Fig. (i). By way of further illustration, variable production 
costs, Cl, are computed as 

CI(t) = F 2 (Q(t)) • Q(t) -- $/yr. 

where F 2 , the per unit cost, is a function of the production rate Q. The 
production delay of Fig. .(J) simulates the lag that takes place in changing 
production rate Q. In this case Q and 0d might be interrelated by a dif
ferential equation of the form '
 

dkQ dk'lQ+..aQQ
k d+al 

k dtk k-i dtk-1 a d 

We will not present a complete model Oiescription in equation form here; it 
will suffice to illustrate that this information is really embodied in the 
model block diagram and that the block diagram can be useful in the system 

modeling process. 
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D(Demand #/yr) 

$/# 


C 2 = Inventory 
holding cost 

($/yr.) 

(Sales equals 
demand 0 : Output Variable 
if
is 

inventory.?
available) CV = Control Variable 

S = Sales d = Desired Inventoryunit. 

:
S 1>0 

--- S0\0 0 -- k I CV 

] "" Invenory
 

Production d 
d EQn "normal" productiolI t(#/yr. 

I. +

) 
r Desired production (#/yr.)

Actual production (#/yr.) 

O
 

Cl = Variable production cost ($/yr.) 

- - PFT o __j PFTA - Accumulated profit ($) 
R(Revenue /r.) profit o 

($/yr.) 

C = Fixed Cost ($/yr.) 

A Production- Inventory System Model 
Fig!ure (I) 



Symbol Name Definition 

I (t) 

II (t) 
++± ± . 

0(t) Addition 0(t) = +I (t) ± Iz(t) ... 

± + In(t)±I~(t 

(t)2i(t) 

t) 0r(t) Multiplication 0(t) = II (t)Iz(t). s In(t) 

1t2t) 

I-t) + 0(t) Division O(t) = I(t)/12 (t) 

t()0(t) 

I(t)....." 0(t) Function 0(t) F(1() 
Generation 

t 

0(t) Integration 0(t) =0(o) +SYI(x)dx 

DFL 

a) Discrete delay: 
D - 0(t)0(t) Time O(t) = I(t-DFL) 

Delay b) Distributed or 
continuous delay: 

akdk0(t) 
+ aki 

dtk 

d 0(e) +... 
dtk-l 

+ a0 0(t) 1 (t) 
,Block Diagram Notation 

Figure (Z) 
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From this example it is clear that given a set of building blocks (the 

basic mathematical operations) and a knowledge of system structure, system 

models can be synthesized by interconnecting basic building blocks in one-to-on 

correspondence with the structure of the real world system being simulated. 

In what follows we will develop techniques for implementing the basic opera.tions 

numerically for digital computer simulatiC. We will then develop methods 

for synthesizing system models from the basic building blocks. Due to the 

wide applicability of FORTRAN we will develop our models in that language. 

However, since the emphasis will be on basic techniques, the development will 

be readily adaptable to other general purpose languages. The development 

also deals with some of the subtleties that underlie the use of continuous system 

simulation languages such as CSMP (2) and DYNAMO (5) and provides a 

rational basis for exploiting their capabilities. 

B. Basic Operations- -Arithmetic 

Arithmetic operations (+, -9 xv, 4-) are routinely provided by general 

purpose programming languages such as FORTRAN and by many simulation 

languages and, therefore, pose no significant problems in digital computer 

simulation. FORTRAN, for example, permits the user great flexibility in 

formulating arithmetic expressions such as: 

Y = A*X+B*Z+C*Q/D 1
 

AREA = 3.1416*R**2
 

F = (CI*P/3. - R)/(G+H)
 

In any given programming language specific rules govern the use of such arith

metic statements. In certain languages such as DYNAMO (5) the user must 

work with a finite set of arithmetic statements--complex statements 

The FORTRAN symbols (*), (/), (**) denote multiplication, division and
 
exponentiation, respectively.
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must be synthesized from the set of allowable statements. FORTRAN theon 

other hand allows the user almost unlimited freedom in the writing of
 
arithmetic statements, however; user must
the still observe basic rules re. 
garding tl.e precedence of operations, use of integer and real variables, etc. 
In any event, the basic arithmetic operations are readily implemented on a
 
digital computer and present no significant problems in simulation.
 

C. Basic Operations- -Function Generation 

Two types of functions commonly are required in system simulation-.
 

explicit functions (such as SIN, 
 COS, TAN, EXPONENTIAL) and non- explicit 

functions which may have any arbitrary shape whatsoever. The explicit func
tions usually are available as "canned" packages in the programming language 
selected and normally present no significant problems for the simulator. We
 
will devote 
our attention here to the general problem of function approxiniation 
or "curve fitting" concentrating on techniques which have proven to be practical 

in system simulation. 

This problem is illustrated in Fig. (3).
 
..y g(x)


f(x), g(x) , Y f W~x 

I (approximation error 
* exaggerated) 

a b 

Function Approximation 
Figure (3) 

We seek a function g(x) which is an "adequate" approximation of a function f(x) 
over-some interval of the independent variable, say, (a,b). There are many 
approaches to this problem including use of algebraic polynomial approximation 
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f(x) 

-
'do 

f "DX 0,
 

_4 xX x xI N N+I 

Function Approximation by Linear Interpolation 

Figure (4) 
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linear interpolation, and fitting with orthogonal z.nctions such as sines, cosines 
and Bessel functions. We will first consider the linear interpolation method 
a method which is widely used in both digital and analog simulation. We will 
then discuss an alternative approach - polynomial approximations based on 
Lagrange interpolation polynomials. In addition to its relevance to the problem 
of function approximation the Lagrange method will lay a foundation for the 
derivation of numerical integration formulas  our next major topic for dis

cus sion.
 

We turn now to function approximation by linear interpolation (see
 
Fig. 4). 
 Inthis case the desired function is approximated by a series of straight 

line segments. Advantages of the approach are the ease and speed with which 
it can be implemented on a digital computer. The accuracy of the approxima
tion is, of course, dependent upon the number of approximating line segments. 

We will proceed by developing a FORTRAN sub-program which will 
compute a straight line ,approximation to a function f(x) given the number of 
approximating line segments (N) and values of the function at N+l values of 
the independent variables. We will assume here that values of the independent 
variable are equally spaced with an interval DX as shown in Figure (4). This 
assumption makes it possible to completely specify the independent argument 
values by specifying the smallest value of the independent variable (call it XS), 
the number of approximating line segments (N) and the interval between 
independent values (DX). Other variable definitions necessary in our develop

ment are shown in Fig. (5). 

In the figure, FNL(X) is the desired approximation to the function f(x) 
DVAL (1) --- DVAL(N+l) is an array that represents values of the function 
f(.) at N+l equally spaced values of the independent variable and XD represents 
the difference (X-XS) between the independent argument and its smallest 
tabular value. Note that the independent argument lies in the Ith interval 
(between the Ith and (I+l)st data points). 

98' 



FNL 

DVAL(N+1) 

DVAL(I+IFNL(X) 
DVAL(I) 

DVAL(3) 

DVAL(1) XS=XD 

KS 00-IID
rXS+3DIxXS+(-) 7 

XS+N -DX 

. XS+(I)D 

Variable Definitions for Linear Interpolation 

' Figure 5 



From the figure the desired linep functional approximation is given by 

(1) FNL(x) - DVAL(I) + (XD - ('i-1) • DX)(DVAL(I+I)-DVAL(I))
DX 

Based on this relationship it is possible to write a general purpose algorithm 

for carrying out this kind of function approximation. The FORTRAN sub

program of Figure (6) is designed to provide this capability. 

The first two executable statements of the program determine which of 

the following three cases prevails: 

X< XS
 

XS< X< N*DX
 

X > XS + N*DX
 

If X lies outside the range of tabulated values (the first and third cases) the 

program assigns the function values corresponding to DVAL(l) (for X < XS) 

and DVAL(N+l) (for X > XS +N * DX). In this sense the program computes a 
function which is limited to lie within a predetermined range. If XS < X < XS + 

N * DX the program computes the interval within which interpolation is to take 

place (statement 8 of Fig. (6)) and then interpolates linearly within that interval 

(statement 9). 

In some situations it may be desirable to have a program which will 
extrapolate linearl) when the independent variable lies outside the interval 

(XS, XS + N* DX). If such is the case it is a simple matter to provide this 

capability by modifying the program of Fig. (6). 

Function generation by linear interpolation is a standard feature of 

simulation languages such as DYNAMO (5) and FORDYN (3). The latter 

reference includes a number of FORTRAN programs for implementing the 

technique. These programs permit the user to choose limiting or extrapolation 

at function end points and fixed or variable increments in the independent 

variable. 

9-10 



FUNCTION FNL (DVAL, 
DIMENSION DVAL(I) 

1 IF (X-XS) 3, 3, 2 

2 IF (X-XS-N*DX) 7, 5, 5 

3 FNL = DVAL(1) 

4 GO to 10 

5 FNL = DVAL(N+I) 

6 GO TO 10 

7 XD = X-XS 

8 I= 1.0 +XD/DX 

XS, DX, N, X)
 

9 FNL = (XD-FLOAT(I-1)*DX)* (DVAL(I+I)-DVAL(I))/DX+DVAL(I) 

10 RETURN 

END
 

A FORTRAN Sub-Program for Function Approximation 

by Linear Interpolation 

Figure 6 



Before leaving the subject of function generation by straight line 

approximations we will present an example of the application of the approach 

embodied in the sub-program of Fig. 6. 

Example (I)i Use the program of Fig. (6) to approximate the 

function 

y = 1-cosx 

on the interval (0, w). Develop the approximation on the basis of four straight 

line segments. 

Solution: Since the computer program assumes equally spaced 

values of the independent variable we construct the following table based on 

an increment (DX) of : 

x X 
0 0 

/4 .z93 

W/2/ 1.00 

3w/4 1.707 

IT 2.00 

The DVAL array of the program is hence: 

DVAL (1) = 0. 

DVAL (2) = .293 

DVAL (3) = 1.0 

DVAL (4) = 1.707 

DVAL (5) = 2.0 

This array is, of course, read into the computer during the initialization 

phase of the program which calls the FNL sub.program along with values 

for N XS, and DX. For the latter three variables the following assignment 

statements are required in the initialization phase of the calling program: 

S9-12"r 



DX =. 7854 (nearly fr/4) 

Given this initialization and a; pre-assigned value for the independent
 
U&SrUSent (X here) the.following statement computes a 
straight line approxima

tion to the desired function any time it appears in a FORTRAN simulation 

program: 

Y = FNL (DVAL, XS, DX, N, X) 

The sub-program of, Fig. (6) must, of course, be compiled along with the 
calling program. Once compiled the function generation routine can be used 
to compute ar many different functions in the simulation model as the user 
desires. This is done by defining a unique set of variables (Y, DVAL, XS, DY, 
N, X) for each function to be computed. For example: 

I = FNL(DVALI, XSl, DXl, N1, XI) 

I3 = FNL(DvALJ, XS3, DXJ, NJ, XJ) 

A final word here. This example is clearly for illustrative purposes 

and not a very realistic one. The most practical (and accurate) way to compute 
a function such as 1 - cos x would be to use the cosine or other explicit function 
where provided by the programming language (FORTRAN, DYNAMO, etc.). 

We will now turn our attention to another approach to the generation 
o! functional relationships between two variables - the Lagrange interpolation 
polynomial. After discussing this technique and rel ated theory we will be in a 
position to discuss analysis of errors inherent in the straight line appruxhation 

method just presented. 

We will assume, as before, a function f(x) to be approximated. We will 
further assume thats, x 1, .. .n are n+l distinct points on which the values 
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of the function f(x) are known. We seek a polynomial 

2n 
+an+x()P(x) = a 1 +a.x+a 3x +... 

with the property 

(3) P(xi) = f(xi) for i-O, 1, 2, ... , n. 

The resulting algebraic polynomial is called the Lagrange interpolation 

polynomial. Since it can be readily shown that this polynomial is unique, ati 

method which arrives at a polynomial with the properties of Fqns. (2) and (3] 

arrives at the Lagrang. interpolation polynomial. We will explore two such 

methods. 

We begin by developing a set of n+l simultaneous equations from 

Eqns. (2) and (3). 
2 n 

f(x) = a+ax +ax +.* +a x 
0 1 3a n+lo 

(4) 
: Z n
 

f(x n ) = aI+a 2 xn+a 3 xn +.,. +an+iX n
 

Rewriting (4) in matrix notation we obtain: 

2 n 
fo x0 X0 x0 a0 

1 1 *0S" 

° 2 nf(x ) x x ,... x an+
 
U U n
 

or
 

(6) f =Va 

The (n+l) x (n+l) matrix V is called the Vandermonde matrix. Since the 

Lagrange interpolation polynomial is unique and always exists, it follows thal 

this matrix always has an inverse. Clearly then, one way to obtain the 

aLagrange interpolation polynomial is to solve for the coefficient vector 

from
 

(7) a =V'sIf. 
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There 	is, however, an easier and faster way. 

Let us begin by writing P(x) in the form 

(8) 	 P(x) Lo (X)f(x ) + L (x) f(x 1) + ... + L n(x)f(x n ) 

where 	L (x), L (x) ... , L (X) are themselves polynomials of degree < n. 

P(x), then, is also a polynomial of degree < n as required by Fqn. (2). If 

the coefficient polynomials Lo(x), L I(x), . L(x) (known as the Lagrange 

coefficient polynomials) have the property 

(9) 	 Li(xj) = 0 . j 1i
 

Li(xi ) I i= 0,1 s..n
 

then th eondition of Eqn. (3) will be satisfied and 

P(xi) 	 - f(x.) for 0, 1, 2, ... n. 

Therefore, if we 	can find polynomial coefficients L (x)... L (x) of degree
0 n 

< n with the property of Eqn. (9) the polynomial of Fqn. (8) will be exactly 

the Lagrange int'erpolation polynomial - derived by another method. 

Fortunately, we can readily construct a set of LI(x)'s with the necessary 

properties. Consider 

(x'x )(x'X)1 (X-i )( l )' " (X'Xn)(10) 	 =ix- )(x). (xx 1 )(x ).. 
' 

xx
L (xi-x)(xi-x)... (xi-xi.- )(x-x )... (x.-xn ) 

Clearly Li(x) is of degree n (note that the factor (x-xi) is missing frum the 

numerator). Note also that the zeros of the numerator ensure that 

Li(Xj) = 0 J i i as required. 

It is also clear that Li(xi) is unity. The net result of this is that we can 

write the Lagrange interpolation polynomial in the form of Fqn. (8)'directly 

by constructing the polynomial coefficients L (x)... L (x) according to Eqn. (10) 
10 n
 

A shorthand notation is common for L (x). We can write Eqn. (10) as
 

n (x-,c)
(11) 	 L (x) = fl
 

ju0 (xjXj)
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Theory is available which permits an evaluation of the error inherer~t 

in approximation by the Lagrange interpolation polynomial. Before discussing 

error analysis we will present an example which applies the above develop

ment to function approximation. 

Example (2). Use the Lagrange interpolation polynomial to approxi

mate the function of Example (1) (that is, V = 1-cos x) on the interval (0, ir). 

Use a polynomial of degree 4 given the following function values: 

X !A( 
0 0 

n/4 .293 

/Z 1.0 

31r/4 1.707 

IT 2.00 

From Eqn. (8) we know that the desired polynomial is of the form: 

P(x) = L (x)(0) + Ll(x)(. 293) + L 2 (x)(l) + L 3 (x)(1.707) + L4 (x)(2. 00) 

where, from Fqn. (Ib) or (11): 

L(x) (x-o)(x-w/ 2)(x- 3w/4)(x-w)
 
LI(x) (,/4-0)(n/4-Ir/ Z)(r/4-3r/4)(w/4-Tr)
 

L 2(M) (x-0)(x-T/4)(x- 3T/4)(x-r) 
2 -(in 2-o)(ir/ Z-i/4)(€/ z-3r/4)(€/ 2-1r) 

L( (x-O)(x-r/4)(x-lr/ 2)(x-nr) 
3 (X) -(3w,/ 4-0)(3,In 4-Trl 4)(3TrI 4-TwI 2)(3ir 4-,i) 

L' (x-O)(x-in/4)(x-r/ 2)(x-31/4) 
4(x) (,r-0)(w-r/ 4)(Tr-Tr/ Z)(Tr- 3/4) 

It is not necessary in this case to compute L (x). 

This method of function approximation requires a considerable amount 

of arithmetic. While this can be minimized by careful programming, the 

approach is normally slower on a digital computer (for a given accuracy) than 

the straight line approximation method described earlier. We will later 

evaluate the approximation error of the two alternative approaches. 
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Turning now to the error of Lagrange approximation, we will present, 

without proof, the results of a theorem from numerical analysis (4). 

We suppose as before that a function f(x) is given on the distinct
 
points xo , 1x ... , Xn. We assume that x is-a point at which f(x) is to be
 

approximated by the interpolation polynomial P(x). Let I be the smallest 

interval containing x, x , xle..., x S It can be shown, then, that there.0 n
 
exists a 9 in I which depends upon x, x , , and f(x) such that
 

(12) f(x) = P(x)+ R(x)
 

where
 
( f(n+l)( ) 

-(13) R(x) = (x-x )(x-xl )... (X-Xn) (n+l) 

The R(x) of Fqn. (13) is the difference or error between the function 
f(x) and the approximating Lagrange interpolation polynomial, P(x). While 

it is usually quite difficult to compute the error corresponding to a given x 
in I, this error equation can be used in many cases to establish an upper 

'bound on the approximation error in the interval I. Examples follow. 

Example (3). Determine an upper bound on the error of the linear 

interpolation approximation of Example (1). What is the effect on the 
approximation error of doubling the number of approximating line segments ? 

Since the straight line interpolation method involves the equivalent 

of Lagrange interpolation (n=l) in any given interval we can use Eqn. (13) to 
compute an upper bound on the approximation error. Clearly, the absolute 

value maximum error will occur in that interval in which 

If()(x) d 0 -xcos I cosxl 
* dx
 

is maximum. From the nature of the cosine function we know, therefore, that 
the maximum error will occur in the intervals 0 < x < Yr/4 or 31r/4 < x < ir. 

From Equation (13) the error in the first interval is given by 
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R(x) : 0 <x, < w/4 

and in the second by 

R (x) x-31/4)(x'7)(cos) 31r/4 <x. <v 
2. 


In either case an absolute value upper bound on the error is 

IR(x)I = -2/128 $ .077 

It is left for the reader to show that doubling the number of approxi

mating line segineuts would reduce the maximum error by a factor of four. 

Example (4). Determine an upper bound on the Lagrange interpolation 

polynomial approximation of the function f(x) 1 - cos(x) (of Example (2)), 

at the point x:= IT/8. 

From Eqn. (13) this error is given by 

d5
R~) = fx)(x-/4) w-2)(x_31r/4)(x_-r) (l-cosX) I 

S 5dx X= 

an tpper bound on the error at the desired point is therefore 

IR(/8)1 -[(/8)(-lr/8)(-3/8)(-5rr/8)(-7i/8)1 (1)120 
5
 

105 V
 
85
120 

These examples indicate that for the particular function being approxi

mated the Lagrange approach results in a considerably smaller error than 

the straight line approximation method for a given number of data points. Due 

to the nature of the error functions for the two approaches we would expect 

this to be generally true. This does not necessarily mean, however, that the 

Lagrange approach is gener illy to be preferred. Computing time requirements 

may dictate otherwise. In many simulation problems, particularly in the socio

economic areas, the poor accuracy of basic data may reduce considerably 
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the need for highly accurate numerical approximation methods. In such cases 

the efficient straight line approximation method of function generation finds 

widespread application. 

In the following section we will discuss numerical integration methods-

another fundamental mathematical operation in system simulation. Much of 

this development will be based upon Lagrange interpolation and related error 

analysis. 

D. Basic Operations-- Integration 

From earlier discussion it is clear that integration plays a key role 

in the solution of differential equations. Our purpose here will be to discuss 

those techniques which have proven most useful in the simulation of socio-econor 

economic systems describable by differential equations. The subject of 

numerical integration and its application to the solution of differential equa

tions is a vast one and far beyond the-scope of our discussion here. It will 

be possible for us, however, to accomplish our more limited objective in 

what follows. 

Our discuss.on of numerical integration of a function, say f(x), will 

begin with a Lagrange interpolation polynomial representation of that function. 

From the earlier developments of Eqns. 8, 11, 12 and 13 we can write 
n 

(14) 	 f(x) = Li(x)f(xi ) + (x-x 0)(x-x)... (x-xn) f(n+l) 
i=0 '(n+ 1) 

where Li(x)i = 0, 1,... n are the Lagrange interpolation coefficients of Eqns. 

(10) and (11). 

We desire an expression which will approximate the integral of f(x) 

over some interval, say (a,b). On integrating both sides of (14) we get 

15) bf(x)dx = S . Li(x)f(xi)dx 
a a i =0 

(X+Xo)(x-Xl).x xx f(n+l)() 

(n+l):a)19 
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where t lies in the smallest interval I containing x, x o , xl , .n.xn From (15) 

it is clear that an approximation to the desired integral is 

bx n f (X i ) b(16) f xa; iE a Li(x)dx 

a i0O 'a 

(Note that the term f(xi) can be moved outside the integral because it is simply 

a constant). 

Equation (16) provides us with a means of deriving a host of different 

integration formulas for different intervals (a, b), and points (x , x1, ..x n). 

In what follows we will restrict outselves to formulas based on equally spaced 

values (x0 , x ... xn) of the independent variable. The second term on the 

right of (15) is an expression for the error associated with the integration 

formula which in some cases enables us to derive a useful measure of the erroi 

inherent in a given integration formula. 

We will begin by deriving a practical integration formula and related 

error equation from (15) and (16). We will ausume an interval of integration 

(t, t+DT) where DT is some small increment in the independent variable. We 

=will further assume that f(x) is given at xo t-DT and xI= t. This is known 

as a prediction type integration formula since the interval of integration lies 

in part, at least, outside the interval I including (x 0 x . .. xn). Such 

formulas are of particular interest in the solution of differential equations as 

will be seen later. 

From Eqn. (14) we can write 

(17) f() - x-t f(t-DT) + x - f (t)(t-DT)-t t - (t-DT)(t-DT) 

(+ (x - (t-DT))(x-t) 

t-DT < 4 < t + DT 

and on integrating over the desired limits 
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(18) 	 'UTf(x)dx f(t-DT) t+DT + t+DT 
DT (x-t)dx D-'T (x-(t-DT))dx 

_t+DT 

+ 	 D (x-(t-DT))(x-t) ()) dx 
2t . 

Changing variables to simplify (z = x-t) and dropping the error term for the 

moment we get 

t+DT(19) ( xx f 	t- DT DT
(1)f(x)dx ft- z dz + (z+DT).dz DT z DT(

00 

on carrying out the integration we get the desired integration formula: 

t+DT ;;DT
(20) f(x)dx i- [ 3 f(t) - f(t-DT) 

Error analysis - We will later discuss applications of integration
 
formulas such as this one 
but let us turn our attention now to the error term 
associated with (20). From Eqn. (18) the integration error in the interval
 

(t, t+DT) is given by
 

(el) E t+DT ( -	 f(x(x)) dx 

t-DT < 9 < t+DT 

Due to the term f(z)(4(x)) embedded in the integrand, this integral is difficult 
to evaluate in general. (The exact functional form of 9(x) is normally not 

--known.) In certain cases, ithowever, is possible to 	establish an upper 
bound for (21). A theorem from numerical analysis will help us accomplish
 
this for the error of Eqn. (21) 
 and that of a number of other important
 
integration formulas.
 

It can be shown that given f(x) continuous on the interval (a, b) and g(x) 
intograble and without sign change on (a, b) there exists a point L in (a, b)
 

such that
 
(z) b 	 b

f(x)g(x)dx = f(L) g(x)dx 

a-a 
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The proof of this theorem follows from the intermediate value theorem. In 
this case (from Eqn. 	 (15)) 

f(x) = f(n+l)I (a,) 	 andri+l.! 
g(x) (x-xo)(x-xI)... (x.xn) 

It is clear that g(x) will have no sign changes in (a, b) if any one of the 

following three conditions is satisfied: 

i) a<b<x
 

ii) x < a < b
 

iii) x. < a < b 
 < xi+ 1 i= 0, ,...,n-1 

Assuming that g(x) has the required properties the error term of Eqn. 

(15) 	can be written as
 
f(n+l)(()
 S(23) E (n+l)! b (x-x 0 )(X- 1)...(x-x )dx 

a < L< b 

Since 9(x) is contained in I (the smallest interval containing x, X, XI.. .x n) we 

can write (23) as 

(24) E = f a (X-X )(X-X ) .. (X-X )dxI 

where ILis contained 	in the interval I. From (24) we can compute an upper 
bound on E by finding a I in I that ma:imizes f(n+l) and carrying out the 

indicated integration. 

As an example of the application of this technique we will apply it to the 
error of Eqn. (21). Since this equation satisfies the conditions of the theorem 

we can write (21) as 

(25) = f( ( )t+DT

4E f 	 (x-(t-DT))(x-tdx 

t'DT< IL <.t+VT 



on carrying out the integration the error equation for the integration formula 

of (20) becomes 

(26) 	 E 5 DT 3f(2)(O)
 
=12
 

Note that for small DT this error term can become small. This is encouraging 

as it indicates that, assuming the second derivative term, f(Z)(L), is bounded, 

we can achieve any level of accuracy desired by shrinking DT. 

By the theory developed above we can derive many useful integration 

formulas. Following are some predictor type formulas, useful in the solution 

of differential equations. 

t+TThese formulas are predictors in the sense that they predict a value 

for f(x)dx on the basis of values of f(. ).at times prior to t+DT: 

t+DT 	 DT2 

2
(27) f(x)dx = DT f(t) + - f'(1 ) 

t < iL< t+DT 

t+DT DT 	 T3 f(2)I 
(Z8) f(x)dx 	 -j [ 3f(t) - f(t-DT)] + DT f 04 

t-DT <1 <_ t+DT 

t+DT DT 
(29) f(x)dx -. [ -9 f(t-3DT) + 37f(t-ZDT) 

-	 59f(t-DT) + 5S f(t)] + 251 DT5 f(4)() 

720 

.t-wDT < 1 < t+DT 

Predictor type formulas are usually necessary in numerically solving differential 

equations because f(t+DT) is usually not known and available for the computation 
t+DT 

O9 f2(x)dx. 
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The following formulas, while not 	predictors, also find application 

correctors in the predictor-correctorin the solution of differential equations as 

method to be discussed later. These formulas also can be derived from the 

theory developed above. 

t+DT DT 	 DT 3 f(2) 
(33) f(x)dx 2 (f(t) + f(t+DT)) - =1 fl()0 

t < L < t+DT 

t+DT DT 
(34) f(x)dx 2-4 (9f(t+DT) + 19 f(t) - 5 f(t-DT) + f(t-2DT)) 

19DT 5 f( 4 ) 
72G ( 

t-ZDT < IL< t+DT 

Equation (33) is the familiar "trapezoidal rule." 

We will now present a simple example of the application of numerical 

integration to the simulation of a system described by differential equations. 

More realistic examples will be presented later but this one will demonstrate 

the general approach. 

Develop a FORTRAN program that will simulate theFxample 4. 

behavior over time of the population model described below, This model 

,night approximate the behavior of populations of wild or domesticated anima. s, 

The model as it stands doesntt include management-fish, insects, etc. 

variables which control the populations, i.e., hunting and fishing regulations. 

These aspects can be readily incorporated into such a model). Use the Euler 

integration formula of Eqn. (27). 
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PROGRAM PEX4 

1 FORMATW, (4k; 1.4 1) 

2 C=.Z5 

CZ =.I 

4 C3-= .15 
5 PM.-:1000o. 

6 PF = 20000.
 

7 .Tf=f0. 

8 DT .02 

9 DRM='C2* PM 

10 DRFff C3 * PF 

11 BRF -CI * PF 

12 BRM BRF 

13 DO21 I= 1, 500 

14 T T+DT 

15 PF : PF + DT * (BRF-DRF) 

16 PM = PM + DT * (BRM-DRM) 

17 BRF= C1 * PF 

.18 BRM: BRF 

19 DRM= CZ* PM 

20 DRF C3 PF 

21 PRINT 1, T, PF, PM 

END 

A FORTRAN ;rog~am for the Population Model of Fxample (4)
 

Figure (;7)..
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We can now apply Euler integration from Eqn. (27) to these equations and 
obtain, in FORTRAN notation: 

PM PM +DT* (BRM -DRM)
 

PF PF +DT*(1BRF-DRF)
 

Note that variables on the right of these equations correspond to time "t" while 
those on the left correspond to time t+DT. A complete FORTRAN program for 
simulating system behavior over a ten year time horizon appears in Fig. (7). 

Statements (2-12) constitute what we will call the "initialization" phase 
of the program. Here, values are assigned to the constants of the model, 
initial values assigned to the state or level variables of the model (the outputs 

of the integrators for PM and PF),and initial values are assigned to the rate 
variables which determine the integrands of the integration equations (DRM, 
DRF, BRF and BRM). Statements (13-21) we will call the "execution phase" 
of the simulation program. In this phase, tine (T) is incremented by intervals 
of DT by means of the DO statement. For each value of time (DT, ZDT, ... 

500 DT) the values of all model variables are computed by statements (15-20). 
Note that the sequence of computation is to first determine the value of all 
integral (state or level variables) for time t+DT then to compute the integrand 
or rate variables for the next solution time t+ZDT. This is in accordance 
with the computation procedure dictated by the integration formula being applied. 

Statement 21 provides for the printing of model output variables for each time 
period. (In many cases it may not be necessary or desirable to produce output 
at such frequent intervals. The introduction of another DO statement to control 
printing can produce output at less frequent time intervals). 

It wiLl be seen that the notions of "initialization phase, " "execution phase' 
and computing sequence introduced in this example are general in nature and 
will apply to most of. the simulation models we will be developing. 

As stated earlier, the so-called Euler integration employed in the above 
example is the simplest and least precise method for carrying out numerical 
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integration. While the technique can be made as precise as desired by shrinking 

increment DT, this may not be the most efficient way to obtain solution accuracy, 

For this reason it is of interest to discuss more sophisticated methods for 

solving differential equations numerically and we will be looking at some of 

these below. We will, however, be returning to the Euler approach later 

because experience has shown that it is entirely adequate for many simulation 

applications where high solution accuracy is not necessary. Indeed 

DYNAMO (5) and FORDYN (3),languages developed for the simulation of 

business and industrial systems, are based on Euler integration. Further, the 

Euler approach, by virtue of its simplicity, reduces the time and effort re

quired in developing operational models. 

Use of More Complex Integration Formulas--We will now consider 

advantages that may be derived, in certain cases, from using more sophisti

cated integration formulas (.such as those of Eqns. (28) and (29)). We will 

also address special problems that arise in the application of these formulas. 

Let us begin by looking more carefully at the error terms of the 

predictor formulas (Eqns. (Z7-29)). For convenience the error terms are 

tabulated below along with the number of terms in the corresponding integration 

formula: 

Error Term 

Formula Number of terms (n+l) (t. < p. < t+DT 

E~qn. (2?) 1 2 

Eqn. (28) 2 ' DT 3f(2)(1) 

Eqn. (29) 4 251 DT'f (4)(4)720 

Recall that n is the order of the Lagrange polynomial used in the 

derivation of the integration formula. 
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The errors tabulated are, of course, the errors in one iteration of the 

integration formula occurring in the interval (t, t+DT). The errors inherent 

in iterative use of the formulas over an extended interval would be different 

and perhaps significantly greater. Clearly, the magnitudes of the error terms 

above depend crucially upon the nature of the function f(. ) being integrated 

and its derivatives. If the magnitude of f(n+l)(x) does not increase with in

creasing n we have rearon to hope that the integration error term will shrink 

as we move to more complex integration formulas (DT is usually "small" which 

ensures that DT n + will decrease with n). 

Fortunately in the simulation of many real world systems we often 

encounter situations in which f(n+l) (x) does, in fact, decrease with increasing 

n. As an example let us reconsider the population model above. 

We can readily see that an exact solution for PF(t) in Example (4) 

is: 

(35) 	 PF(t) PFO (CI-C3)t 

In this case the function f(.) (in the integration error term) is 

(36) 	 dPF(t) = (Cl-63) PFO a(C l -C3)t
dt
 

The error terms corresponding to the three integration formulas (27), (28) and 

(29) are hence respectively 

DT2 	 11-} (CI " C3
}IL 

(37) 	 E = . (C-C3) PFO a7 Z 	 -7z 
5 3 3 I"CO 

(38) 	 E8 a jZ DT (Cl-C3) PFO e 

"C3 
}&Aand 	 2 5 5 (CI 

(39) 	 E2 9  251 DT7(Co-C3) Proe 

where t - p S t+DT. 

In-this particular problem (Cl-C3) is inherently lese than one (on the order 

of . 1). For DT aiiall, then, the integration error decreases very, rapidly an 
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moves to predictors with increasing numbers of terms. It follows,one 

therefore, that for a given integration error more complex integration formulas 

can tolerate larger values for DT, require fewer iterations to simulate over 

aa specified time horizon and may well consume less computer time for 


given simulation run. There are some problems created, however, when one
 

moves from Zuler integration to a more complex prediction such as Eqn. (28)
 

or (29). The following example illustrata.s.
 

Example 5. Repeat Example (4) using the integration formulauf Eqn. (28; 

Choose a new value for DT such that the simulation accuracy will be at least 

that of Euler's method in Example (4). 

We begin by determining a value for DT such that the error in applying 

Eqn. (28) on a given iteration is less than or equal to the error in one iteration 

of Euler's formula. That is, we seek (from Eqns. (37) and (38)): 

bT (Cl-C3) PFO eCl'C3)g < 

e ( ' C )DTZ(CI-C3)2pFODT1Z 2 (Cl 0 

where DT 1 is the value assigned to DT in Example (4). On substituting values: 

F 12(.02)2 1/3= 17 

DT (5)(2)(.25j..) 

,,,We will select DT subject to this condition and, for convenience, subject also 

to the condition that 1/DT be an integer. In this case we will conservatively 

take DTz .10. 

Note here that the number of terms is (n+l) where n is the order of the 

Lagrange interpolation polynomial from which the integration formula 

is derived. 
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In this example, then, we see that 100 iterations of the integration 

formula (28) are required to simulate 10 years of system behavior. In 

Example (4) 10/.02 or 500 iterations of Eqn. (27) are required. Since we 

have ensured that the error on any given iteration of (28) is less than that of 

(27) we reason that the overall error in 10 years of simulation will be less in 

this case since only 100 iterations are required.* 

We now apply our new integration formula to the integration of 

t+DT 
PM(t+DT) PM(t) + (BRM(x) - DRM(x))dx 

t+DT 
PF(t+DT) PF(t) + (BRF(x) - DRF(x))dx 

Application of (28) to these equations gives us 

(40) PM(t+DT) PM(t) + DT [3BRM(t) - DRM(t)) 

- (BRM(t-DT)- DRM(t-DT))] 

DT[3BFt DRt) 
(41) PF(t+DT) PF(t) + -- [3(BRF(t) - DRF(t)) 

- (BRF(t-DT) - DRF(t-DT))] 

This is quite straightforward but there is a complication, In order to start 

integration by these formulas we require values of BRM, DRM, BRF and DRF 

at t =-DT as well as at t = 0. Unfortunately this information is not available 

for t; -DT from the problem specification. Our approach will be to use 

another integration procedure (Euler's method) to compute BRM(DT), DRM(DT). 

BRF(DT) and DRF(DT). We can then switch to (40) and (41) to compute PM(2DT), 

PF(ZDT), ... PM(100DT), PF(100DT). The FORTRAN program of Figure (8) 

illustrate s. 

This assutmption is not necessarily valid if the function f(. ) and its 

derivatives (Eqn. (36)) change sign during a simulation run. The subject 
of long run simulation error is, in general, a complex one. 
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1 

PROGRAM EX 5
 

FORMAT(3EI2.4)
 
2 C1 = .25
 
3 CZ=.1
 

'4 C3 .15 
5 PM = 10000. 
6 PF= 20000. 
7 T=0. 
8 DTI=.02 
9 DTZ=.1 

10 DRM CZ* PM
 
11 DRF C3*PF 
12 BRF= C1*PF 
13 BRM =BRF 
14 DRMO = DRM 
15 DRFO= DRF 
16 BRFO BRF 
17 BRMO = BRM 
18 DO25 I= 1, 5 
19 T= T+DTI 
20 PF PF + DT1 * (BRF-DRF) 
21 PM PM + DT1 * (BRM-DRM) 
22 BRF CI*PF 
23 BRM= BRF 
24 DRM =CZ* PM 
25 DRF C3*PF 
26 PRINT 1, T, PF, PM 
27 DO 391= 1, 99 
28 T - T + DTZ 
29 PF PF + DTZ * (3* (BRF-DRF) -(BRFO-

30 PM PM + DTZ* (3* (BRM-DRM)-(BRFO-
31 BRFO BRF 
32 BRMO = BRM 
33 DRFO =DRF 
.41 DRMO =DRM 
is BRF =CI * PF 
36 BRM = BRF 
37 DRM CZ PM 
38 DRF C3 *PF 

39 PRINT 1, T, PF, PM 
END
 

DRFO))/2.
 
DRMO))/Z.
 

A FORTRAN Program for the Population Model of Example (5)
 

Figure (8)
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Statements (2-17) of this figure initialize constants, state variables 
and variables used on the right side of integration formulas at t = DT. The
variables DRMO, DRFO, BRFO, BR.MO (statements 14-17) store initial valuesfor DRM, DRF, BRF and BRM since these latter variables are updated by
application of Euler's formula and the former are required for starting integration by (28). The DO loop beginning with statement 18 and ending with
 
statement 25 computes PF(. I), 
 PM(. 1), BRF(. 1), BRM(. 1), DRM(. 1) and

DRF(. l)--the remnaining 
 values needed for starting integration by Eqn. (28).
Statements (27-39) carry out integration by this equation, compute relevant 
model variables ver the required 10 year period, and print; output variables 
at ten intervals of T = . 1 years. Note that statements (31-3.4) store values

for BRF, BRM, DRF, 
 DRM which correspond to time t - DT2 on the next 
iteration of the integration formula (statements 20 and 21). 

Example (5) has demonstrated the application of higher order integra
tion formulas to the solution of differential equations. It has been seen that
 
the basic problem has been 
one of getting starting values for formulas %hich
require values for the integrand at (t- DT), (t- ZDT), .. . It has been seen that
Euler's formula, with an appropriately small r)T, can be used to provide
starting values. Ot1aer methods for obtaining tarting values include the

application of Runga-Kutta formulas 
or formulas based on Taylor's series 
expansions. These will not be discussed here, however. The interested
 
reader can pursue this 
topic further (4, 1, 6). 

We have thus far discussed two methods of achieving simulation
 
accuracy 
(if such accuracy is needed in light of basic data accuracy): 

i) Use of a relatively simple integration formula with a"small" solution interval, DT. 
H1) Use of a more complex integration formula which permitsa relatively larger DT for a given level of accuracy. 

Approach (i) leads to relatively simple simulation programs requiring aminimum of programming time. This approach, however, requires more 
computer time than (ii) for a given level of simulation accuracy. In certain 
cases, particularly where a given model is to be used on a long run basis 
once programmed, approach (ii) would be preferred over (i). Another factor,
computer memory requirements, might also be a factor to consider in cer
tain cases. Approach (ii) leads inherently to increased memory requirements
since more values of the integrands must be stored for higher order integra
tion formulas. 
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CHAPTI R (10)
 

SIMULATION OF CIME DELAYS
 

Clearly time delays occur naturaly in virtually all real world processes 

and systems. The arrival of goods and-material occurs some time acer the 

goods or materials are sent due to inhetent transportatlon lags. Some finite 

time is required to analyze information and arrive at decisions. Thus, the 

making of decisions lags behind the var ables upon which the decisions are 

based. There are inherent lags in pro essing materials, i. e. , production 

lags, delays inherent in chemical reactions, etc. Delays are inherent in all 

biological processes--gestation delays {n the reproducted process, maturation 

delays as living entities become ready for reproduction and so forth(l, 2,5). 

Economic systems are subject to beha oral lags as both consumption and 

production respond with delays in response to causal variables and the 

growth of productive capital in an economy is a lagged function of investment 

decisions due to inherent gestation dela s in capital formation(3, 5). 

In these, and many other ways, delays are intrinsic in the v rld we 

live in. Interestingly, the mathematic 1 relationships that describe these 

delays often look the same whether we' e talking about economic, social, 

bioligical or physical processes. In ot er words with a relatively small 

number of delay models we can describ many qualitatively different phe

nomena. We will concentrate here on iiodels ot detlay processes that have 

proven to have wide applicability in t e sense degcribed. This 

10.
 



material should'be of interest, therefore$ to a rather wide audience 

includin8 those interested in comprehensive models that span a number of 

the processes mentioned above. 

Inwhat follows, we will define two types of commonl4 encountered 

delays-so called discrete delays and continuous or distributed delays. 

We will describe these mathematically and develop practical means of 

simulating them on a digital computer. 

A. Discrete Delays 

A discrete delay is defined by the following equation where I(t)
 

represents unlagged variable (the "input" to the delay) and O(t)the
 

lagged variable (the "output" of the delay):
 

1) O(t)- t-) 

The delayed variable is simply the unlagged variable shifted in time by
 

T time units. Clearly this type of delay would describe transportation
 

lags in moving entities from one place to another. Here, rwould correspond
 

to the transport time inherent in the process. As an example, let I(t)
 

represent the number of letters per day sent from station x to station y.
 

Assuming a fixad transportation delay, T, between x and y the rate at
 

which letters arrive at station y, 0(t). would be I(t-r). This type of
 

delay is also commonly encountered in decision processes. Let I(t)
 

represent the current value of some variable used in a decision process.
 

Due to inherent human and information processing lags, decisions are not
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always made on the basis of current information. In this case the
 

variable actually used in the decision process would be I(t-r) where
 

T 	represents the overall delay between current information and that
 

actually used in decision making. The reader can undoubtedly think of
 

many other ways in which this particular phenomenon occurs in the real 

world.
 

Simulation of this type of delay is particularly straightforward
 

with a digital computer. In what follows we will develop a mathematical
 

procedure for simulating such delays. We will then present and describe
 

a 	subroutine which implements this procedure in FORTRAN.
 

Wie begin by assuming that the discrete delay, T, is an integer
 

multiple of DT, the basic time increment used in the simulation. Thus,
 

2) 	r flDT 

where N is an integer. From the definition of the discrete delay (Equation
 

(1)) we can write:
 

3)	0(t)'- 01(t-DT)
 

01(t)a 02(t-DT)
 

OX.1(t) a I(t-DT)
 

where, as before, 0 is the lagged variable and I the unlagged. The variables
 

01, 02 ,..0, are intermediate variables necessary in computation.
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.'Equation (3)can be written matrix form as:
 

4)	O(t) 0la .o O(t-DT) 0 

0t(t) o o 100 0 Oi(t-DT) 0 

02(t) - oo 1 o 02(t-DT) + o I(t) 
* , 0 0 

* 000, ,0 

ONPl(t) 0 0 . o. o .(t-DT)j 

This Equation is seen to be a special case of the discrete state model
 

discussed in earlier chapters. This form is inefficient for computation
 

and would not normally be used in practice.
 

The FORTRAN subroutine of Figure (1), based upon Equation (3), is
 

a more efficient way of simulating discrete delays.
 

SUHROUTINIr DCTDEL (VIN, VOUT, VINT, N1)
 

DIMSION VINT(1)
 

VOUT - VIUT(l)
 

DO I I - 2N 

1 V'INT(I-.) - VINT(I) 

VINT(N) - VIN 

,ETURN 

END
 

A FORTRAN Subroutine for Simulating
 
Discrete Delays
 

Figure (1)
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In Figure (1)VIN corresponds to the input (unlagged) variable aud
 

VOUT to the output (lagged) variable. The array VINT corresponds to the 

intermediate variables 01, 02, *.. ON in Equation (3)and must be dimen

sioned to N in the simulation program calling the discrete delay subroutine. 

This array must also 1:e assigned initial values which correspond to the 

value of the unlagged variaible before the start of a given simulation 

run. 
The integer N is chosen such that N.DT is equal to the discrete
 

delay being simulated as required by Equacion (2).
 

Figure (2)illustrates the operation of this subroutine for a 
parti

cular input X(t) and a lag T - 3DT. 

(t) - unlgged variable 
4 

2 

4 L 6 Time
 
-3DT -2DT -DT 0 
 DT 2DT 3DT 4DT 5DT
 

y(t) - lagged variable 
4.
 

3 

2 	 LAU T JDT 
y(t) X(t-T) 

" ' Time

0 DT 2DT 3DT 4DT 5DT 6DT 

Graphical Representation of a Discrete Lag
 

Figure (2)
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In this ecase the intermediate variables VIrr(1), VINT(2) andVINT(3) 

must be assigned the initial value 3 in the calling program. Since 

on the first call of the DCTDEL subroutine the time variable will have 

the value DT, the VINT array must be initialized as follows:
 

VINT(l) a x(-2DT)
 

VINT(2) - x(-DT)
 

VfNT(3) - x(0)
 

As an illustration, Figure (3)is a FORTRAN program which uses the DCTDEL
 

subroutine to simulate the discrete lag of Figure (2).
 

PROGR! DrTAY
 

DI!-rNSION VIIT(3)
 

N- 3
 

DT - 1.
 

T 0. 

VIMr(1) - 4.
 

VINT(2) a 4.
 

VIT(3) n 3.
 

PO 2 J a 1, 10
 

T T + DT
 

Xl.-3. -T
 

X " ?AX(XIO.]
 

CALL DCTDEL (X,Yo VINT, N)
 

PRINT ----


END
 

A FORTRAN Program Illustrating the Use of the DCTDEL Subroutine
 
Figure (3)
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While the DCTDEL subroutine can exactly simulate the discrete time 

delay (at least at discrete time points) it is sometimes computationally
 

inefficient. In cases where the magnitude of the delay, T, is long with 

respect to the DT being used in the simulation model computation times and
 

memory requirements can be excessive. In these cases an approximate
 

simulation of the discrete delay will often suffice and considerably reduce
 

computation time and memory requirements. The "Boxcar" function of DYNlAMO
 

(6)and the BOXC subroutine of FORDYN(4)--(written in FORTRAN) are
 

essentially approximate discrete delays. Figure (4)illustrates the
 

nature of the approximation inherent in these routines.
 

Hlathematically this approximation is given by:
 
NC-1 

5) y(t), y8a(t+DT)l .. , ya(t+(NC-l)DT) - x(t-(N-i)DT) 

imo 

t=O, XC, 2NC, ... I*NC (I,NC, N, integers) 

Under this approximation the lagged variable changes value every NC 

simulation cycles and is equal to the average of NC prior values of the
 

unlagged variable. An important property of this approximation is that
 

its time summation is .xactly the some as the summation of a variable
 

-ithjich has been lagged rtith a true discrete delay. 

We turn our attention now to a discussion of the continuous or
 

distributed delay. We will be concerned with how these delay processes
 

occur in the real world and how to simulate them.
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0Time 

0 o 0"OD- -T 8DT 16DT 24 6T 
eoooe0 


• 6 

ya(t)
 

ITmm 

0 8DT 16DT 24DT 32DT 

10G8
MC -2 (See Equation 5)
 

The Approximae Delay
 

Figure (4)
 



B. Continuous or Distrihuted Dolayn 

The terms "continuous" and "distributed" are used synonomously. In 

what follows we will generally refer to distributed delays. The distri

buted delay will be defined by the following linear differential equation: 

6) dt (tdkly(t) ad . , aly(t)+ + . + - x(t)dt- dtk-1
 

where: 

x(t) a the unlagged variable 

y(t) - the lagged variable 

The order of the delay will be defined as the order of the definin

differential equation; namely, k in Equation (6). Figure (5)will help
 

illustrate the difference between this type of delay and t.he discrete
 

delay.
 

Vote from the figure that the distributed delay adjusts gradually
 

to changes in the input. This type of delay is frequently encountered
 

in aggregative processes where streams or flows made up of many entities
 

are subject to delays which vary from entity to entity. 'any examples
 

are possible. We will mention a few. The rate of adoption of an attitude,
 

innovation, etc. in a population will he a distributively lagged function
 

of the stimulus (input) because of the inherently different response times
 

of individual people. The aggregate growth of capital in an economy
 

is a distributively lagged function of investment decisions because
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x t) 

tt
 

YI 0 

rt
 

Yl 0 typical response of a discrata delay to Input x(t) 

72 typical response of a distributed delay to input x(t) 

Discrete & Distributed Delays Compared
 

Figure (5)
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individual investments have different gestation periods. The rate at
 

which plants reach maturity can be simulated as a distributively lagged
 

function of the planting rate because of intrinsic differences in maturation
 

times amongplhn-s. Uiora many entities are being transported from point
 

to point,a distributed delay applies whenever individual entities are
 

subject to different transport times. There are also many examples of
 

this type of delay to be found in the physical sciences.
 

In Chapter (12)e will more carefully examine the relationship
 

between the specific mathematical description of a distributed delay and
 

the statistical nroperties of the micro process it represents. In certain
 

cases we can derive the distributed delay model directly from a knowledge
 

of the probability density function which applies to the delay of individual
 

entities in an aggregative flow. At this point, however, we will move
 

on to examine means whereby te can simulate these delays as a basic
 

building block of our simulation methodology.
 

1. 	Simulation of Flow Conserving Distributed Delays
 

Without significant loss of generality we can represent the distributed
 

-.elay by the following transfer function:
 

M.I7) M,k1I 
• .X{(s) t=1 DiA+---

where:
 

y(s) a The Laplace transform of the lagged (output) variable
 

i~s) " The Laplace transform of the unlagged (input) variable
 

Di A set of parameters to be discussed later.
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An important attribute of this particular mathematical representation 

is that it conserves flow, that is, no flow is added or lost in the delay process. 

The development here, hence, applies to real world phenomena, in which 

flow is conserved. We can easily see that Equation (7) has this prop

erty. In order to show this we must establish that: 

8) x(t) = y(t)+ t Q(t) 

where Q(t) is the quantity of flow stored in the delay process and x(t) 

and y(t) are respectively the input and output of the process. From 

Equation (7) and the properties of the transfer function we can decompose 

the kth order delay into k cascaded first order delays as shown in Figure 

(6). 

Die+---
 1xC0 Ri(s) D28+1 R2 (6) RklRs)1 k+ 
*y 

x(t) STACE rt) STAGE r2 (t). Yk-1 (t) STAGE r Ct)-y,(t) 

Decomposition of a kth Order Distributed Delay
 

Figure 6 
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Therefore if we can show that conservation of flow applies to any arbi. 

trary delay in this chain, say the ith, we can reason that conservation 

of flow applies to the entire delay process of k similar delays.
th
 

The equation for the i stage of Figure (6) is 

8) dr (t) + r(t) r M.(t)i = 

where ri(t) is the output of the ith stage and ri. I(t) its input. We consider 

the response of an individual delay stage to a unit impulse function 6(t) as 

input. That is, 

dri(t)
 

9) D t + ri(t) = 6(t) ri(0) = 0
 

The solution to this equation is just 

-t
 

10) r(t) eDi
 

To show conservation of flow in this case we must show 

11) 6(t)dt = r1 (t)dt 

This is clearly the case since 

t 

12) 5 W (t)dt = 1 =r a-e I dt 

Since 8) is a linear equation it follows from the.superpositior, property that 

flow is also conservd when the input to the delay stage i, a sequence of 

Impulses: 
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N
 
13) ri 1 l(t). = f(n At)I At' 6(t - nAt)
 

n=l
 

Since any time function can be represented in the form of (13) it follows that 

flow is conserved for the i stage for any input. Since all stages are 

identical it follows that flow is conserved for the entire delay process of 

Figure (6). 

Another statement of the conservation of flow property is that the rate 

of change of storage, Q, in an entity 

14) dQ(t) = IN(t) - OUT(t)
dt 

where IN is the flow in and OUT the flow out of the entity. From the above 

discussion then it is clear that for the ith stage of the delay process 

i dri(t))
dQ(t)
15) dt - dt 

We not: turn to discussion of numerical methods for simulating the
 

distributed delay process of Equation (7)and Figure (6). Clearly we
 

can represent this process by the following set of linear first order
 

differential equations:
 

.1)drt) 1rl(t) + -1..x(t) 
S6 dt Dl'1r(t DI 

dr2(t) 1 
r -rl(t) - r2 (t 

dtdt 2(t)r2 

dr k (t)(kdt DkL,.4(t) J. rk(t) 

These equations can in turn be written inmatrix form S#
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17) 	 r1(t) - 1 o 0 0 rl(t)
 

r2 (t) _1 _1 0 .0 r2(t) 
 0 

rk(t) o o.1 - 1 rk(t) 0 
Dk Dk 

or
 

18) -ir(t) * Ar(t) + fx(t)

dt
 

where r and B are k x 1 column vectors, A to a k x k matrix and
 

x(t) Is 
a scalar function. We thus see that the kth order distributed
 

delay can be represented by a linear state model. Numerical solutions
 

for 17) or 18) are readily obtained by the approach of Chapter (q). le
 

can write:
 

19) r(t+DT) a eA'DT r(t) + jt+DT eA(t+DT.)-t B x(A)dA 

At this point we will assume that DT is small and that x(t) is constant in the 

interval (tet+DT) so 19) simplifies to: 

20) r(t+lT) - eADTr(t) + ft+DT^A(t+DTA)dABx(t)
t 



In order to proceed we must obtain an explicit representation for the
 

matrices eA*DT and eA(t+DT-A). As s00 nin Chapter (6) we can approximate 

-the matrix eA(t to) by the series:
 

21) eA(t'tO) - I + A(t-*to) + A2 (tt°)2 + A3.(tt °)3
 
21 31
 

where I is the unit matrix and A is defined by Equations 17 and 18. The
 

matrix eA*DT is hence given by:
 

A DT A2 DT2 A3 PT3
22) e - I + A.DT + 


-21 31
 

and
 

A(t+DT-X) + A2(t+DT-) 
2 + A3 (t+DT-AY


23) eA(t+DT-A) =I + 

3
21 


In practice we approximate these matrices by series with a finite number
 

of terms. As nn example, let these matrices be approximated initially
 

by two terms of the series in which case eA-DT and •(t4DT-X) are approxi

mated respectively by:
 

24) eA *DT a I + A-DT
 

25) •(t+T, 'A) . I + A(t+DT-A)
 

Equation (20) then becomes:
 

t+DT
 
26) r(t+DT) w (I+A.DT)r(t) + ft (I+A(t+DT-,)jdABX(t)
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which, upon carrying out the integration and re-arranging reduces to:
 

27) 	 r(t+DT) - r(t) + DT[A-r(t) + Bx(t)] + DT2 ABx(t)
2 

On dropping the term containing DT2 (which becomes insignificant for small 

DT) and expanding 27) we get: 

28) r1 (t+DT) = rl (t) + D [x(t) rrtI
 
DlI
 

r2(t+DT) - r2 (t)+ D [rl(t) - r2(t)] 
I 

i 
I 

I 

rk(t+DT) - rk(t) + - rl(t)- rk(t)] 

Equation 28) represents one practical way of simulating the distributed
 

delay. (Ile could also arrive at 
(28) by applyinG Euler integration to
 

Equation (17).) 
 This approach has the advantages of simplicity, minimal
 
computer memory requirements and, in fact, is essentially the numerical
 

approach used by DYNAMO (6)and FORDYN (Y) in the simulation of distri

buted delays.
 

2. 	 Simulation of Distributed Delays by Euler's Method
 

Because of the usefulness of this procedure as a simulation building
 

block, we include FORTRAN subroutines for its implementation (See
 

ligurea (7)and (8).). 
 The first subroutine is a generalized version of
 

DYNAMO's third order delay. 
 It is general in the 
sense that it applies
 

for arbitrary order k and permits the user to specify a different constant
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D for each delay itage. In some cases the user may prefer to assign 

In that case the subroutine ofidentical D values to all delay stages. 


Figure (8)is more appropriate.
 

SUBROUTINE DELAY1 (VINO VOUT, R, Do DT, K)
 

DIMENSION R(l), D(l)
 

IMKIl' K" 1
 

DO 	1 1" 1# Ma 

1 	(I)- R(I) + (DT/D(I))*(R(I+l) - R(I))
 

R(K) - R(K) + (DT/D(K))*(VIN - R(K)) 

VOUT - R(l:
 

RETURN
 

'Eid
 

Variable Definitions: 

VIN n Input variable to delay (unlagged variables) 

VOUT - Output variable of the delay (lagged variable) 

R * 	An array of K rates 

R(l) - rkv R(K) -r 1 of Equation 28 (tho output of the first 

delay staze in Figur.e (6))(ilota that for efficient computationj 

indexing of delay stages has been reversed from that of Figure
 

6 i.e., in this subroutine the last stage is indexed "1", etc.) 

D • An array of K delay parameters in Equation 28 

K " Order of the delay. 

A Jubroutine for Euler Simulation of the
 

Distributed Delay (D values Arbitrary)
 

Figure 7
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SUBROUTINE DELAYZ (V'IN, V0UT, R, DEL, DT, K) 

DIMENSION R(l)
 

Dli a K - 1
 

A a DT*FLOAT(K)/DEL
 

DO 1 I 1, Mi,
 

1 	 R(I) is R(I) + A*(R(I+1) - R(1)
 

R(k) - R(k) + A*(VIN - R(K))
 

VOUT a R(1)
 

RETURN4 

END 

Note: Delay of an individual stage = LUL/K 

A Subroutine for Euler Simulation
 
of the Distributed Delay
 
(Dvalues identical)
 

Figure 8 

Before considering other theoretical matters related .odistributed 

delays s;1d their simulation. We will illustrate an application of the 

distributed delay and the use of the foregoing subroutines in its simulation. 

Consider the process by which productive capital is generated and depreciates
 

in an economy. We can illustrate this process diagramatically as shown in
 

Figure (9). The variable I(t) represents the rate at which the construc

tion of new productive capacity is started in an economy or sector of an
 

economy, I(t) is measured in terms of units of production capacity 

(for example, tons of steel per year) per unit time. If there are many 

firms in the induatry making many decisions to ixpand plants and build new 

plants, I(t) can be viewed as a flow variable. 
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I(t GESTATION 
PERIOD 

01(t) PRODUCTIVE 
'PERIOD 

O() WEAROUT 
PERIOD 

03, -

(DG) (DP) (DW) 

dt ttfT
 

COt) Cp(t) Cw(t) 

1(t) - Rate at which construr:tion of new productive capital is started 

(units of production/time2 ) 

01(t)= Rate at which productive capital enters production (same units 

as 1(t))
 

02 (t)- Rate at which productive capital enters a wearout phase
 

characterized by high depreciation and maintenance (same units
 

as I(t))
 

03(t) - Rate at which productive capital is scrapped (same units as 1(t))
 

CO(t), Cp(t), Cw(t) w Quantity of capital in each of the respective
 

periods.
 

A Model of the Capital Generation - Depreciation Process
 

Figure (9)
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After a gestation delay (DG), which corresponds to the average time
 

required to build, the new productive capacity and bring it into production,
 

the new capital enters a productive phase, the variable 01 (t)in the
 

Figure. This productive period extends over much of the useful life of
 

the new plants and is represented by the delay DP, in the figure. The
 

variable DP corresponds to the average useful life before the productive
 

capital enters a wearout phase characterized by high depreciation and
 

maintenance. The variable 02 (t) is the rate capital enters the wearout
 

phase which is represented by a delay DW!in the figure. Other relevant
 

factors such as depreciation, cost uf maintenance, interest payments,
 

debt service, etc., could be included in the model in a straight forward
 

manner but these would obscure the main points of interest here.
 

Distributed delays will be appropriate in modelling this process
 

because individual entities (production plants) in the flow will generally
 

have different gestation, productive and wearout periods distributed about
 

some mean values - the DG, DP and DW of Figure (9). We turn now to
 

simulation of this process using the delay subroutine of Figure (8).
 

Figure (10) is a FORTRAN program for simulating this process over a 20

.year pimo period. The rate of new capital construction is assumed to be
 

exponentially expanding for purposes of this illustration.
 

Statements 1-11 of Figure (10) initialize constants used in the
 

model. Statements (12-19) initialize the rates for the delays of the
 

model. These initial rates determine initial values for the quantities
 

of capital in the three phases of Figure (9) (More will be said about this
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PROGMI CAPITAL 

REAL IN 

DIIENSION RG(6), RP(3), RW(6) 

INITIALIZATION PHASE 

1 DG a 3. 

2 DP m 10. 

3 D !a 5. 

4 DTa .25 

5 * TaO. 

6 KGa6 

7 IP 3 

8 lk 6 

8 l01 6 

9 A .03 

10 RLNGTl! - 20. 

U t " RLNGT!!/DT 

12 DO 14 J a 1,6 

3 RG( * 100. 

14 RW(J) a 100. 

15 DO 16 J a 1,3 

16 RP(3) * 100. 

17 OUTI w 100. 

18 OUT2 - 100. 

19 OUT3 m 100. 

BEGIN SIMULATION PHASE 
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20 DO 38 1- lN 

21 T - T + DT 

C COJIUE I,'PUT 

22 IN - 1)O.*rX,(P(A*T) 

C COMPUTE OUT3 

23 CALL DELAY 2 (OUT2, OUT3, R, DW, DT, KW) 

C COMPUTE OUT2 

24 CALL DrLAY 2 (OUT1, OUT2, RP, DP, DT, KP) 

C COMPUTE OUT1 

25 CALL DELAY 2 (1Wl,OUTi, RG, DO, DT, KG) 

C COMPUTE CAPACITY IN GESTATION PERIOD (CG) 

26 DaO. 

27 DO 28 J n1, KG 

28 D a D + RG(J) 

29 CG a D*DG/KG 

C COMPUTE CAPACITY IN PROTIICTIVE PERIOD (CP) 

30 D-0. 

--.. 31 DO 32 J a1,tKP 

32 a D +RP(J) 

33 C? n D*DP/KP 

c COMPUTE CAPACITY INWEAROUT PERIOD 

34 DaO. 

35 DO 36, J 1, IKW 

36 - D +RW(J) 
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37 CW a D*fllI/KW 

C PRINT OUTPUT AS DMSIRED 

38 COMINrUE 

Etm 

A FORTRAN Program for Simulating 
the Capital Generation Process of Figure (9) 

Figure (10) 
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matter of initial conditions later. The simulation phase of the program 

(statements 20-37) centers around three calls to the DELAY2 subroutine 

whiih compute OUT3, OUTZ, and OUTI (the 03P 0 2 and 01 of Figure (9)). 

Statements (26-37) compute the quantity of capital in the three phases at 

any time during the simulation (as discussed in Section C). 

This same approach, the use of cascaded distributed delays, is use

ful in modeling many other processes in the real world. Examples include 

the aging and maturation of plants, trees, animals and other living entities, 

certain transportation processes, social diffusion, etc. (1, 2, 3, 5). 

3. 	 Another Approach to the Simulation of Distributed Delays 

In the previous section we looked at a particular method of simulating 

distributed 	delays involving two terms of the series of Equations (22) and (23) 

" .to approximate the matrices eA "DT and eA(t+DT In this section we will 

develop a different approach to the simulation of these delays. It is possible 

to proceed in at least two directions. We could employ higher order integra

tion formulas such as those discussed in Chapter (9) to the set of first order 

differential equations of Equation (16), or, we could continue with the approaci 

of Equation (20) taking more terms to approximate the matrices eA "DT and 
•A(t+DT- X') (to improve solution accuracy). We 	will employ the former 

approach since it readily provides information relating to solution error. 

A host of subroutines can be developed for simulating distributed 

delays by implementing various integration formulas of the type discussed 

ik Chapter (9). For illustration we will apply Equation (20) of Chapter (9) to 

Equation (16). This integration formula reads as Equation (29) here: 

St+DT f(x)Ddx T 3f(t)- f(t-DT)] 
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The integration error associated with this formula in the interval
 

(t, t+DT) was found to be:
 

30) E -1 DT3f ( 2 ) () 

t - DT < u < t+DT 

On applying this formula to the differential equations describing the
 

distributed delny (Equation (16)) we get:
 

r1 (t)+ DL [3(x(t) - r1(t)) - (x(t-DT) - r1(t-DT))]31) r1(t+DT)  2D1 

r2 (t)+ RT(3(r1 (.t) - r2(t))- (rl(t-DT) - r2(t-DT))]r2(t+DT)  2D
2
 

0 

+ 1T ( 3 (rk(t) . rk.l(t)) - (rl.(t-DT) - rk 4 l(t-DT))]rk(t+DT) - rk(t) 2Dk
 

The design of a FORTRAN program for implementing (31) is straight
 

The design of an efficient program for doing so may be another
forward. 


matter.
 

(9) applies here and can
The integration error analysis of Chapter 


provide insight into the relative advantages of integration formul=s of
 

various orders. Also, the predictor-corrector methods discussed in the
 

imulations of distributed
previous chapter can be applied if highly accurate 
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delays are required. This is usually not the case in socio- economic 

models as the mathematical formulation being solved numerically is gener

ally an approximation of real vrld phenomena in the first place and data 

errors may overshadow computational errors in the second place. 

C. Storage in Delay Processes 

From earlier discussion of conservation of flow in distributed delays,
 

it is clear that there is almays storage associated with a flow variable 

in a delay process. In the example of Figure (9) the storage variable was 

the amount of productive capacity in various stages of obsolescence. In
 

a transportation system involving transport lags the storage variable is
 

the quantity of goods in the transportation pipeline. These storage
 

variables are usua lly of interest to decision makers and relevant
 

endogenous system variables. Therefore, it is important to develop
 

efficient means for computing them. This is the objective of this section.
 

We will first consider storage in distributed delays. VTe begin by examin

ing the differential equation describing the ith stage of the distributed
 

delay process (See igure 6):
 

8) Di drl(t) ,, ri-l(t ) - ri(t)
 
.... dt
 

It was seen earlier that ri(t) is the total outflow from the delay stage
 

and ri.l(t) the total inflow. Clearly the right 3ide of 8) is the rate of 

change of storage in the ith delay stage. lPence: 

32) D dri(t) 

dt dt 
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Where i is the storage in the Ith staie. On integrating 32) we get:
 

33) QL(t) - Qi(o) = Dri(t) - Diri(o) 

It can be readily shown that Qi(o) Dtri(o) and hence 

34) Qi(t) - Dijr(t)
 

for all t. The total storage, O(t), in a k stage delay process (See 

Figure (6)) is, therefore: 

k 
35) Q(t) - Diri(t)

jul 

This relationship was used in the example of Figure (10) to compute the
 

productive capacity in various phases of life (See statements 26-37 of
 

Figure (10)).
 

An anologous relationship applies to the computation of storage in
 

discrete delays. For example the storage in the discrete delay of the
 

DCTDEL subroutine of Figure (1)is:
 

i! 
36) Q(t) - DT VINT(I).
 

I0i
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