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ABSTRACT
 

BATAVIA, BALA NANDLAL. Specification Errors and Empirical Estimation
 

of Generalized Crop-Fertilizer Production Functions. (Under the
 

direction of RICHARD KIDD PERRIN and PAUL REYNOLDS JOHNSON).
 

This study is concerned with generating optimal fertilizer recom­

mendations to individual potato-growing farmers in Peru using estimated
 

generalized crop-fertilizer production functions. The experimental
 

data come from 73 locations of potato fertilizer experiments con­

ducted in the Sierra region of Peru during the period 1967-1971. A
 

generalized crop-fertilizer function describes the response relation
 

between measured soil characteristics, applied nutrients, weajher and
 

crop yield. Models at two levels of aggregation were considered, the
 

group models based on pooling data from locatiuns into five groups on
 

the basis of Buol's Soil Management Classification System and the
 

aggregate models based on pooling data from all the locations. The
 

group models were assumed to be the true structure representing the
 

response relation.
 

Three specifications of the aggregate model, the fixed coefficient
 

(FC) model, the generalized least squares (GLS) model, and the random
 

coefficients (RC) model, were considered. The assumptions and the
 

estimation procedures of the different specifications of the aggre­

gate model were described. The relationship between the different
 

specifications of the aggregate model and the group models were con­

sidered in detail.
 

The validity of Buol's criteria for grouping the experimental soils
 

into five groups was established by F tests, which resulted in a
 



rejection of the hypothesis that the coefficients between any two groups
 

are equal.
 

Many of the estimated models did not satisfy the second order con­

ditions for a maximum and/or generated fertilizer optima that were
 

beyond the experimental range. Hence, the steepest ascent method with
 

constraints was used to generate the fertilizer optima.
 

Fertilizer recommendations for a number of sil classes were gener­

ated using each of the estimated models. Assuming the group models to
 

be true and the aggregate model to be wrong, the expected losses in
 

using the different specifications of the aggregate model were found
 

to be U. S. $45.28/acre for the fixed coefficients model, U. S.
 

$56.26/acre for the generalized least squares model, and U. S.
 

$78.85/acre for the random coefficients model. Using the "cost of the
 

wrong decision" criterion, the fixed coefficients model was chosen as
 

the "best" model for generating fertilizer recommendations for those
 

soils not known to belong to any of the five groups.
 

Fertilizer recommendations and profits for the diiferent soil
 

classes were estimated using the following procedures: (1) For soils
 

not known to belong to a given group, the La Molina soils data and the
 

fixed coefficients model were used and (2) For soils known to belong
 

to a given group, the experimental noils data and the group models
 

were used. The results show that it is important to take into account
 

simultaneously all the factors in the response relation. The value of
 

soil testing for the different group models and the fixed coefficients
 

model ranged from U. S. $4.22/acre to U. S. $70.91/acre, The value of
 

Buol's classification for each of the groups ranged from U. S. $27.17
 



to $94-43/acre and was more than two times the value of soil testing.
 

Assuming the fixed coefficients model to be true, the cost of using the
 

recommendations given by Ryan and the La Molina Laboratory was sub­

stantial and ranged from 27.9 to 37.5 per cent of the expected
 

profits for the fixed coefficients model.
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CHAPTER 1
 
INTRODUCTION
 

In economic analysis of fertilizer responses, a decision is often
 

made to pool all the available data and estimate a single response
 

relation. The purpose of obtaining a single relation for the pooled
 

data is to achieve generality for the derivation of optimum fertilizer
 

recommendations from the relation. The relevant questions raised by
 

such a procedure are:
 

(1)Assuming the micro-relations for subsets of the complete data
 

to be true, what are the different specifications of the aggregate model
 

that can be considered? What is the relationship between the different
 

specifications of the aggregate model and the micro-relations? By
 

different specifications we mean the different assumptions regarding
 

the stochastic structure of the model.
 

(2)Assuming the estimated micro-relations to be true, what are the
 

losses, as measured by the fall in the earnings of farmers, incurred by
 

using the different specifications of the aggregate model for deriving
 

optimum fertilizer recommendations?
 

The main aim of this work is to generate optimal fertilizer recom­

mendations to individual potato growing farmers in Peru. The experi­

mental data come from 73 locations of potato-fertilizer experiments
 

conducted in the Sierra region of Peru during the period 1967-1971. Two
 

aggregation levels are considered, the combining of locations into
 

groups based on Buol's (1972) soil management (.lassification system,
 

and the completely pooled data. The models based on group data are con­

sidered as group models and are assumed to be the true structure. The
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basic assumptions underlying the structural relationship ate that each
 

group model has a different coefficient vector and a different error
 

variance. The models based on completely pooled data are termed as
 

To the data from each cf the aggregation levels, a
aggregate models. 


'generalized' crop-fertilizer is fit. A 'generalized' crop-fertilizer
 

function refers to one which can be utilized under a wide range of soil
 

conditions to generate fertilizer optima based on soil analysis of a
 

site or location. In the words of the National Academy of Science
 

(1961, p. 49):
 

One of the most challenging problems in
 
statistical methodology relating to agronomic­
economic research in response surface studies
 
is that of devuloping theory and methods of
 

combining results from a series of experiments
 
to form a generalized production function. To
 

be of practical usefulness, this function must
 

be such that it may be employed over a com­
paratively large population of conditions by
 

having at hand values for independent variables,
 

such as soil test results, to insert to account
 
for local variations in conditions.
 

Chapter 2 briefly reviews the literature of the problems con­

cerning the derivation of a generalized crop-fertilizer production
 

function from pooled data.
 

Chapter 3 deals with the models to be estimated at the two
 

different levels of aggregation. Three different specifications of
 

the aggregate models are considered in this work: the fixed coefficients
 

model, the generalized least squares model, and the random coefficients
 

regression model, recently proposed by Swamy (1970). The relation­

ship between the various specifications of the aggregate model and the
 

group models is considered. The properties of the estimators of the
 

coefficients of each of the specifications of the aggregate model Under
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various assumptions will also be described in detail. Statistical tests
 

for testing some of these assumptions will be presented. Two ways of
 

generating optimal fertilizer recommendations are considered:
 

(1)For soils known to belong to any particular group, that
 

estimated group model is used for generating fertilizer recommendations.
 

(2)For soils not known to belong to any given group, one of the
 

specifications of the aggregate model is chosen for generating fertil­

izer recommendations, to individual farmers.
 

The choice of the specification is based on the 'cost of the wrong
 

decision' criterion as proposed by Havlicek and Seagraves (1962). This
 

method assumes the estimated group models to be true and estimates the
 

average reduction in net revenues obtained by using the fertilizer
 

recommendations from each of the three specifications of the aggregate
 

model.
 

Chapter 4 presents the empirical results obtained from the various
 

models. Buol's criteria for classifying soils into homogeneous groups
 

is evaluated. The optimum fertilizer recommendations and the maximum
 

profits for different soil conditions using each of the different
 

models are estimated. The 'cost of the wrong decision' criterion is
 

used to make a choice of the 'best' specification of the aggregate model
 

for generating fertilizer recommendations to farmers. The value of soil
 

test information is evaluated. The recommendations derived from this
 

study are compared with those generated by Ryan (1972) and the La Molina
 

Soils Laboratory in Peru.
 

'Thelf~nal chapter is devoted to summary and conclusions.
 .
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CHAPTER 2 
REVIEW OF LITERATURE ONCROP'-RESPONSE STUDIES
 

The major problems that have been encountered in deriving ferti­

lizer recommendations from fertilizer test results can be divided into
 

the following categories.
 

1. The choice of appropriate functional forms to represent the
 

response relationship.
 

2. Assumptions concerning the structure of a chosen functional
 

form and the estimation problems when the data are combined over space
 

and time.
 

3. Economic theories of the behavior of farmers with respect to
 

profits and risks.
 

4. The underlying nature of the experimental design when using
 

regression analysis to estimate a response function.
 

The sizable literature in the categories 1, 3 and 4 have been re­

viewed in.detail by Heady and Dillon (1961), Dillon (1968), and Ryan
 

(1972). Here it is proposed to review briefly the second category and
 

discuss some of.the limitations of the previous studies in this area.
 

Up to the mid-1950's, most of the response studies concerned them­

selves with generating fertilizer optima by estimating location-specific
 

functions. However, as soil testing procedures became advanced, the
 

'limitations of the above method were soon realized and more attention
 

,wasgiven to the development of a generalized response function.
 

The early methods developed were designedto estimate crop response,
 

to total nutrients available--a combination of soil and applied nutri­

ents. Such research studies have been reported by Anderson (1956),
 

Hurst and Mason (1957), Hildreth (1957), Pesek (1956), and Jensen and
 

Pesek (1959).
 



In general the procedures estimate the following functional form
 

of the response surface:
 

yu f(X1, X2, .. , Xn) (2.1) 

where X, Xa + Xi Xsi
 

Xi is the total ith nutrient available
 

Xa is the applied ith nutrient
 

Xs is the initial level of ith nutrient in soil
 

Xi is the proportionality factor to be determined for the
 

ith nutrient.
 

Hildreth (1957) recognized that the errors increased when nutrients
 

in the soil are initially ignored. He also pointed out a problem en­

countered when soil nutrients are included in a yield equation, namely
 

that available soil nutrients are measured in units that differ from
 

those of applied fertilizer. He proposed two methods of estimating the
 

unknown factor Xi which is used to convert an initial soil measurement
 

into the equivalent value of added nutrient. These methods consisted
 

of the (ise of a maximum likelihood function and successive iteration of
 

ratios of regression coefficients. The estimated Xi values are then
 

used to generate ordinary least squares estimates of other parameters.
 

Anderson (1956) theoretically quantified the biases introduced in
 

yield predictions by failure to recognize and evaluate differences in
 

initial fertility levels between the experimental plot and the field of
 

the farmer. Hurst and Mason (1957) considered the biases outlined by
 

Anderson and presented evidence for a single variable quadratic equation
 

which corroborated the significance of these biases.
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Pesek (1956) advanced a procedure which algebraically separated
 

total available nutrients into the added component plus the soil com­

ponant. He considered the following generalized quadratic function
 

+ Nf)2 + c3(my + Pf) + c4(my + Pf)2
y - c1 (ka + Nf) c2 (kc 

+ c5(k + Nf) (my + P f) (2.2) 

where y - yield increase 

Nf, Pf - applied nitrogen and phosphorus, respectively
 

a, y - soil test values of nitrogen and phosphorus, 

respectively
 

k and m are proportionality constants.
 

Jenson and Pesek (1959) fitted a restrictive quadratic model (with
 

applied nutrients only as variables) to yield data from three lots of
 

soil possessing different initial fertility levels within a given soil
 

type; two soil types were considered. The restrictive equations were
 

then generalized and extended to include soil nutrients similar to
 

equation (2.2). The coefficients of the three generalized equations
 

were then compared statistically; they were able to accept the hypoth­

esis that the coefficients were equal for one soil type and rejected it
 

for the second soil type. Thus, they concluded that the yield equation
 

may be satisfactorily generalized with respect to initial fertility
 

levels for one soil type but not for the other that they considered.
 

They made no further attempts to generalize the yield equations by com­

bining different soil types. Although they assume that the generalized
 

model for each soil type is different, they do not present the estimates
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of the error variances from each of the models. However, they said
 

that problems remain in obtaining an adequate estimate of the contri­

bution of 	soil fertility as a production factor in the generalized
 

equation.
 

One difficulty of using all the above methods is that estimated
 

conversion factors are different for each nutrient and for each soil.
 

The estimation procedures for the conversion factors are also cumber­

some. 
As pointed out by Ryan (1972), such methods involve using the
 

response data numerous times resulting inbiased estimates of the coef­

ficients. A more fruitful approach might be to .cnsider 
applied and
 

soil nutrients as completely separate factors ol pioduclicn, allowing
 

for an interaction between them. This foxmulation allows the shape of
 

the response function to applied nutrients to change depending upon
 

the levels of the different soil nutrients.
 

Fitts et al. fitted a quadratic equation which included soil and
 

weather variables and applied nutrients. They used step wise regzes­

sion to obtain the equation of the form
 

y-b + b OM + N N DD + b 	 + b + No 1 2 3 A 22 A 23 A
 

+ b24 D 	• PH (2.3)
 

where 	 OM - organic matter 

D - drought index 

1See J. W. Fitts, D. D. Mason, D. Cooper, W. W. McPherson and
 
J. Havlicek, Jr., Determining yield response surfaces and economically

optimum rates for corn under various soil and climates conditions in

North Carolina, unpublished paper, North Carolina State University,
 
Raleigh, N. C., 1959.
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NA -applied nitrogen
 

pH- soil acidity - alkalinity. 

They compared this generalized function to an individual location
 

function in a "cost of wrong decision" analysis. 
They found that the
 

cost of using the generalized equation when the location functions were
 

true was low.
 

For similar North Carolina data, Havlicek and Seagraves (1962)
 

combined the results of 37 corn fertilization experiments on Norfolk
 

sandy loam soils into one production function. The function was of the
 

form
 

y - b0 + b1 Pa + b2 - + b3 N + b4 N + b5 r . (2.4) 

Assuming that the location models were correct, they found that the
 

cost of aggregation in using the general model was low at $102 per acre.
 

In both these studies, the treatments in each experiment were the same.
 

Under thesui conditions, Theil (1954) has shown that there is
no "aggre­

gation bias" of the estimators of coefficients in the general equations.
 

If the treatments were different between experiments, Lhen the general
 

model would have estimators that contain these "aggregation biases" and
 

the cost may be much higher. This is discussed more fully in the next
 

chapter.
 

Brown and Oveson (1958) also compared quadratic equations by com­

bining data from similar response years to estimate a single oquation.
 

They compared the general response equations to individual equations in,
 

a "cost of wrong decision analysis" and found the cost was low at $1.58
 



per acre. However, they did not incorporate any soil variables into
 

the general equation.
 

One of the early suggestions of Heady and Pesek (1957) was to
 

group soils on the basis of fertility and fit ditierent functions to
 

each of the groups. They did not pursue the idea empiricaiy and do
 

not present any criteria for separating difierent grounps Rust and
 

Odell (1957) fit a quadratic mcdel to seven soil types c determine
 

the relative productivity of major Illinois soiis They were attemp­

ting to classify soils empirically as opposed to the sil mapping
 

techniques which rely primarily on visual and physidl characteristics.
 

However, they were interested in standardizing yield; fur management
 

levels which influence the amount of fertilizer appli.ati3ns rather than
 

generating fertilizer recommendations. Laird dnd Cady (1969) tound that
 

an "agronomic" model postulated by soil scientists and agronomists had
 

better predictive power compared to a model when all possible variables
 

were selected. This is because in the latter case mulIi-;ilinearity
 

may seriously affect the "" values of the estimated coefilcients. Ryan
 

(1972) built up a generalized quadratic model based on variables
 

selected agronomically. Studies by Johnsson (1963) and Walker and Long
 

(1966) have noted that when pooled data are used, the R2 falls even
 

when soil and other variables were included in the response equation.
 

However, Zellner (1962b) has -'own that when we consider cross section
 

data, in general, the estimate of R2 has a downward specification bias.
 

While by no means complete, the above review points out some of
 

the problems faced in postulating and estimating a general response
 

function with combined data.
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CHAPTER 3
 
SPECIFICATION ERRORS AND THE ESTIMATION
 

OF DIFFERENT MODELS
 

So far we have considered a review of crop-respcnse function studies
 

and some of the problems in pooling cross section data. In this study
 

we will not be concerned with the choice of the functional form and
 

other related problems. Instead we will assume that a generalized
 

quadratic function incorporating both the scil and the applied nutrients
 

is the appropriate functional form for the response relationship.
2
 

Using this functional form, the optimal fertilizer ccmbinations for any
 

given soil values of a particular form can be derived.
 

Two levels of aggregation of soils are considered in this work.
 

At the first level of aggregation, the data from all the locations are
 

pooled into groups on the basis of Buol's (1972) soil management classif­

ication system.3 Briefly, he has proposed a classification by those
 

soil characteristics which can be expected to affect fertility manage­

ment practices. Management practices as seen by him are not only
 

fertilizer practices but also include the interpretation or calibration
 

of soil test results which serve as a basis for fertilizer recommenda­

tions. The goal is to define a reasonable number of soil groups, within
 

which the same or similar soil test correlations and fertijizer appli­

cation practices can be made. For any given set of locations, n groups
 

can be formed by combining the locations on the basis oi the above
 

2For similar set of data, Ryan (1972) tried different functional
 

forms and chose the quadratic form as the best for describing the
 
response relation between crop-yield and soil and applied nutrients.
 

3The details of the classification system are given in Appendix A.
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criteria. We then define the true structural relationship by assuming
 

that a generalized quadratic model similar to the one used by Ryan
 

(1972) holds for each of the groups. The basic assumptions underlying
 

the structural relationship are that each group has a difterent coef­

ficient vector and a different error variance,
 

Two cases for generating the optimal iertilizer recommendations
 

can be distinguished. Ifwe have knowledge regarding a soil's group
 

membership, then that group model can be used to generate the fertil­

izer recommendations for the given soil. Howevet, if we do not know
 

the soil's group membership, then an aggregate model which in some way
 

represents the group structure must be used. For this we c~nsider the
 

second level of aggregation. In this case, we employ a single gener­

alized quadratic function for all the groups. This model is estimated
 

by using the data obtained by pooling all the locations. Three spec­

ifications of the aggregate model, the fixed coefficients (FC) model,
 

the generalized least squares (GLS) model, and the random coefficients
 

(RC) model are considered in this work. Which of these three specifi­

cations is to be chosen to generate the optimal fertilizer recommenda­

tions for any given soil? The criterion that is to be used here is the
 

"cost of the wrong decision!' analysis as proposed by Havlicek and
 

Seagraves (1962). Assuming the group models to be true, the "cost of
 

the wrong decisiod' analysis calculates the loss in profits in using
 

the different specifications of the aggregate model. The specification
 

with the least monetary loss is chosen as the 'best' aggregate model
 

for generating fertilizer recommendations to farmers. Using the same
 

"cost of the wrong decision" principle, the value of Buol's soil classif­

ication system and the value of soil testing will also be evaluated.
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In considering the three specifications, a relevant question that
 

can be raised is how well do they represent the true structural models?
 

What criteria do we use to find the relationship between the different
 

specifications of the aggregate model and the group models? We will
 

here consider the criteria of the aggregate model as estimating an aver­

age of the group models. In aggregation literature, an average of the
 

group models is the best single relation that represents the true group
 
4
 

models for prediction purposes. The conditions under which each of
 

the specifications represent an average of the group models will be con­

sidered in detail. The properties of the estimators of the coefficients
 

of each of the specifications of the aggregate mcdel under various
 

assumptions will also be described. Statistical tests for testing some
 

of these assumptions will be presented. It may be noted that even
 

though a specification may represent the average of the group models,
 

it may not necessarily folluw that it will give the least loss using
 

the "cost of the wrong decision" criterion.
 

Functional Form of the Models and the
 

Generation of Optimal Fertilizer Recommendaticns
 

The functional form for all the models is a generalized quadratic
 

crop-response function used by Ryan (1972). The relationship repre­

sents the response of potatoes to soil nutrients, soil pH, applied
 

nutrients and weather and isbased on agronomic considerations. The
 

functional form is given by the relationship:5
 

4See Theil (1954).
 

5For details of the reasons for including the relevant variables,
 
see Ryan (1972).
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+ +y ab0 + b1 NS + b2 PS b3 KS b4 pH + b5 NA + b6 PA 

T +b bP2+ 
b7 KA 8 9 10 S S 12 S + 13 H2 

2 2 2 2 2 

+ A+ 	b R +b 2+ b K2 +b P 

+ b14 NA + b15 PA + b16 KA + b17 b88 

+ b19 NS pH + b20 Ns NA + b21 NS R + b22 NS T
 

+ + ++ b23 PS PA b24 KS KA b25 PH PA b26 NA PA 

+ b27 NA KA + b28 NA R + b29 T + b30 PA KA +NA 	 b31 RT 

+ b32 NAPS + e 	 (3.1) 

where Ns = soil organic matter percentage
 

PS a soil phosphorus in p.p.m, of P
 

KS a soil potassium in p.p.m. of K
 

pH - soil pH
 

NA -	applied nitrogen fertilizer in kg/hectare
 

PA = applied phosphorous fertilizer in kg/hectare
 

KA -	 applied potassium fertilizer in kg/hectate 

y - yield of potatoes in metric tons/hectare
 

b - a constant term

0 

R a 	total rainfall in the six months October-March, in
 

millimeters
 

T - means of daily temperatures in January and February
 

in degrees centigrade
 

e = 	the error term.
 

Using the above model, the optimal fertilizer recommendations can
 

be obtained by setting their marginal products equal to the respective.
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price ratios and obtaining a simultaneous solution. Taking the first
 

partial derivates of eq. (3.1) with respect to the applied nutrients and
 

setting each equation equal to their respective price ratios, we obtain
 

the system of equations
 

D- b + 2b N + b N + b P + b R + b T
aNA 5 14 A 20 S 26 A 23 29 

+ b32 Ps -" /Py 

ay " b + 2b PA +b P + pH + bOPA b6 15  A 23 S b25 b26 NA
 

+ b30 KA" P2/Py
 

ByA b7 + 2b16 KA + b2 4 KS + b2 7 NA + b30 PA
8A
 

. P3/Py 
 (3.2)
 

where P1 - price of nitrogen fertilizer in soles/kg 

P2 w price of phosphorous fertilizer in soles/kg 

P3 w price of potassium fertilizer in soles/kg 

P - price of potatoes in soles/m. ton.y
 

Simplifying and rearranging terms in eq. (3.2), we have the solution
 

for the optimal fertilizer levels (denoted by stars for NA. PA' and
 

KA):
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N* 2b b b
 
NA b14 26 2
 

(3.3)p* b2 6  2b b C 

A b27 b30 16 3 

+ PS)where C, = P1/Py - (b5 b20 Ns + b28 R + b2 9 T + b3 2 

C2 m P2/Py - (b6 + b23 P8 + b25 pH) 

= P3/Py - (b7 + b24 Ks ) .C3 


In matrix form, the eq. (3.3) can be written as
 

(3.4)
X* -A71 C 


3xl 3x3 3xl
 

when X* is the solution vector, A is a symmetric matrix involving coef­

ficients of the second order terms of the applied nutrients, and C is
 

a vector containing all the soil and weather variables.
 

However, before the procedure outlined in eq, (3.3) can be used,
 

the A matrix of eq. (3.4) has to satisfy the second order conditions
 

for a maximum for the model under consideration. The classical theory
 

maximum:

of unconstrained optima requires the following to hold for a 


(a)Given a function f( ),6 for which the first partial 
deriva­

f i w 1, 2, 3, .. exist at all points, a necessarytives a

aodtoxo aimmo (i sta
 

iM
 

6Here xi, (i -i1, 2, 3) refers to applied nitrogen, phosphorous,
 

and potassium fertilizers, respectively.
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af af af (3.5)
ax ax x3 ( 

b) A sufficient condition for a point satisfying these conditions
 

to be a maximum is that all second partial derivatives af2
 

Bxa
axk 
(U9k 1
1, 2, 3) exist at this point, and that the principal minors of
 

the matrix of second partial derivatives must alternal-e in signs. For
 

example, for the A matrix of eq. (3.4), this condition implies that
 

2b14 < 0,
 

2b14 
 b26
 
> 0
 

b26  2b15 

2b14 
 b26 
 b27
 

and b26  2b15 b30 0 . (3,6) 

b27 
 b30 
 2b16
 

The above conditions are necessary and sufficient conditions for a
 

mAximum to exist. Even if these conditions are satisfied, the formula
 

(3.3) may not be satisfactory in obtaining a recommendation in those
 

cases where the estimated response curve reached a maximum at fertilizer
 

levels far in excess of the experimental rates. This is likely to occur
 

when the experimental rates applied are not large enough to expose the
 

region of zero or negative marginal product. While it is acceptable
 

practice to predict beyond the range of experimental data, due to large
 

..
standard error of estimates of the optimum in these cases, such recom­

mendations.would impose very large,risks on farmers. We therefore
 



arbitrarily confine all recommendations within the approximate levels
 

ofmaximum treatments of applied nitrogen, phosphorus and potassium,
 

respectively, Ryan (1972) was fortunate to have the second order con­

ditions for a maximum satisfied for his model with a similar set of data.
 

Thus, he could use the simple formula (3.3) to calculate the fertilizer
 

recommendations. However, he obtained optimal recommendations for many
 

soil classes which were beyond the experimental range.
 

If the models under con6ideration here do not satisfy the second
 

oraer conditions for a maximum and/or have optima which are beyond the
 

experimental range, then alternative iterative methods which take into
 

account both these conditions must be applied. These methods come
 

within the realm of techniques of optimization of nonlinear functions
 

with constraints. In this study, for such cases, the steepest ascent
 

method with constiaints as described by Box, et al. (1969) is used to
 

generate the optimal fertilizer recommendations.7 A brief description
 

of the steepest ascent method will now be given here.
 

The iterative techniques require an initial point x to be speci­

fied, and proceed by generating a sequence of points K, i - 1,2, 3, ... , 

which represent improved approximation to the solution, that is, 

(3.7)
f(x >f(x
-i+l - -i 

Iterative techniques can be conveniently studied by referring to
 

the following equation:
 

7There are a number of other methods also available-for constrained
 

optimization of nonlinear functions. F'or a good review of these.
 
methods, see Box, et al. (1969).
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'xi. +,h d'X (3.8) 

where d is a 3-dimensional vector, and h is a distance moved along 
it.
 

The steepest ascent approach involves the use of the gradient
 
method. 
Gradient methods are those that select the direction d in
 

eq. (3.8) using the partial derivatives of the objective function f
 

with respect to the independent decision variables 2i, as well as 
the
 

values of the function itself, together with the information gained
 

from previ-us iterations.
 

The gradient direction at any point is the direction whose com­

ponents are proportional to the first partial derivatives of the ob­

jective function at the point in question. The role played by the grad­

ient direction in maximization is now explained.
 

I Consider a small perturbation with components (6xl, 6x2, 6x3) from
 

the current point A. The objective function f(xi) will, to a first
 

order approximation, be changed by an amount
 

3
 
df 
- E -f
 

J-1 axj j 
 (3.9) 

where the derivatives 2L are evaluated at i. Of all possible
xj
 
perturbations fromEi of magnitude
 

A I 3E 62 _ 2] 1/2 

to obtain the perturbations,giving the greatest change in the.functicn,
 

we need to consider the Lagrangian form
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O(x, X) - df + 6x - A2 * (3.10) 

Substituting (3.9) into eq. (3.10),
 

=(x,E) a 6x + X(E 62_ (3.11)J-i ax- 1i
 

Upon differentiation with respect to Xj, we obtain
 

ax- + 2X 6x 0 
 (3.12)
 

so that the required perturbations must satisfy
 

xI 6x2 _____
 

x3 
 (3.13)

af af af 
ax1 ax 2 ax3 

i.e., of all possible perturbations of magnitude A, the greatest change 

in the function occurs when the 6x are chosen to be proportional to the 

corresponding 'f . Also it can be seen that, for the search to
aXJ 

approach a maximum, the constant of proportionality must be positive.
 

This direction is known as the direction oi teepest ascent. The grad­

ient direction is orthogonal to the contours of the constant function
 

value (Box, et al. 1969).
 

The normalized gradient vector at the current point is fund by
 

using the formula
 

(f 'af af 

d 1 2 3 Ufl (3.14) 
=i 31 (af )2] 1/2 
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The steepest ascent method determines di and using a specified
 

step lengthh obtains a 
new point by the formula (3.8). The procedure
 

is repeated using a constant step length until a step which does not
 

increase the function value is taken. 
In this case, the step length
 

is reduced and the procedure continued from the best point.
 

Whenever a solution iswithin a 
specified constraint, the above
 

method works well. 
If a constraint is encountered in the search
 

procedure, then a method due to Roberts and Lyvers (1961) which "rides"
 

the constraint is used. 
Thus whenever a 
step along the search direction
 

results in a constraint violation, the previous point is taken and the
 

step length reduced. When this search direction with reduced step
 

length results in a constraint violation of the xj variable, xj 
is
 

advanced up to the constraint. The x variable has the maximum values
 

in the subsequent search and zero step lengths. 
The remaining two
 

variables have the same initial step lengths as before and the search
 

is continued.
 

Structural Model
 

Assume that the data can be divided into n groups on the basis of
 

Buol's soil classification criteria. 
To each set of group data, a
 

group model of the form given in eq. (3.1) can be fitted. Let the n
 

group models be represented in matrix form as:
 

- X a + U (3.15)
 
Tixl TixA Axl Tixl
 

V i- 1,2, 3, ... , n 



21
 

where * 	 a Tixl vector of observations on the dependent 

variable of the ith group 

X - a T ixA non-stochastic matrix of observations with 

rank A on the A independent variables of the ith 

group. The Xi matrix contains a column of ones 

which is used to generate an estimate of the 

intercept terms 

- a Axl vector of coefficients for the ith unit 

which is fixed and same for all observations within 

the ith group 

U- a T xl vector of random disturbances. 
-=i i 

The complete system of eq. (3.15) for the group models is assumed 

to be the true structural response relationship and can be written as: 

"Y x 0 0- ai " 
.=2 2 -=2x=2 

3 • x-3 33 

- .. . + . (3.16) 

Y 0 	 x a u 
. .. 	 a-n ... 


x.L J 

or also as: 

y- X 0 + U (3.17) 
Txl TxnA nAxl Txl 



22 

n 
where T a E T 

i-l 

We assume that
 

B for i + J (3.18a) 

E(Ui) 0 (3.18b) 

(- a2 1i V i-j 

E(Ri U) i1 (3.18) 

and the U' are serially uncorrelated.
 

When we consider the different specifications of the aggregate
 

model as representing this structure, we will also consider the fol­

lowing assumptions:
 

0 _0 for i j (3.18d)
 

Caso2 ij 
E(U =U)I (3.18e)- 0 v~ 

i AR + Ii V 1- 1, 2, ... , n (3.18f) 

where 6 is a Axl vector of random elements with "r (0, A). This will 

be discussed in greater detail later in this chapter. 

The least squares estimators of the*group models, bi, are BLUE
 

(best linear unbiased estimators) of 0- and given by:
 

- 1b-a (x x) xjY 1 i - 1, 2, ... , n (3.19) 
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The variance-covariance mattix of the estimators b is given by:
 

"(XX) 2 (3.20)
 

"Cost of the Wrong Decision" Analysis
 

We shall now distinguish two different cases of obtaining the
 

profit-maximizing fertilizer recommendations for individual farmers.
 

In the first case, it we have a soil sample and know to which group it
 

belongs, then we can use thE estimated coefficients of that group model
 

to obtain the optimum fertilizer combinations as described in the pre­

vious section. The second case, which ismore important, considers a
 

soil sample for which we have no knowledge regarding its group member­

ship. In this case, we have to use an aggregate model based on all the
 

groups' data to generate the optimum fertilizer combinations. We will
 

postulate three possible specifications of the aggregate model, the
 

fixed coefficients (FC) model, the generalized least squares (GLS)
 

model, and the random coefficients (RC) model. Which of these three
 

specificaticns is to be chosen for generating the fertilizer recommen­

dations? What criteria should we use to make a choice? The criteria
 

that we consider here is the "cost of the wrong decision" analysis as
 

proposed by Havlicek and Seagraves (1962).
 

There have been attempts by a number of writers to calculate the 

"cost of wrong decision" after deriving response functions. Havlicek 

and Seagraves (1962) assumed that 37 estimated location-year functions 

for corn in North Carolina were "true." They calculated the optimum 

levels of fertilizer for each location using a generalized function which 

included soil variables. These optimum levels were then used in'each~bof. 
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the estimated location-year functions and the net r:evenue calculated.
 

They compared this net revenue with that generated from using the optimum
 

levels of fertilizer derived from the location-year functions. If the
 

location-year functions are true, they found that the average cost of
 

using the generalized function was quite low at 1.02 dollars per acre.
 

Brown and Oveson (1958) in a similar kind of analysis found the cost of
 

using the general functions to be low at 1.58 dollars per acre. However,
 

they did not incorporate any soil variables into the general function.
 

The same underlying principle as used by Havlicek and Seagraves
 

(1962) can be applied here to choose the 'best' specification for
 

deriving fertilizer recommendations. This can be done as follows.
 

First, the profit-maximizing fertilizer levels and the corresponding
 

net revenues are obtained using the estimated coefficients of the group
 

models. Next, the optimum fertilizer levels using the estimated coef­

ficients from each of the specifications of the aggregate model are
 

obtained, and these values are used in each of the group models to
 

calculate the corresponding net revenue. This net revenue is compared
 

with that obtained from using the appropriate group model and the dif­

ference gives the loss from using each of the specifications of the
 

aggregate model, when the group models are true. The specification with
 

the least monetary loss is then chosen as the 'best' specification for
 

generating fertilizer recommendations to farmers, for those &,is not
 

known to belong to any of the five groups. The exact formula and com­

putation procedures are described in greater detail in the next chapter.
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Aggregate Model Specifications and Estimation
 

The fixed coefficients model is the most common form of specifi­

cation that is considered in crop-response literature. A modifi­

cation of the fixed coefficiencs model is to consider a model with
 

heteroscedastic group error variances, the generalized least squares
 

model. 
Both the FC and the GLS models assume that the coefficients
 

between all the groups are the same. A third possibility is to con­

sider a random ;oefficients model recently introduced in the litera­

ture by Swamy (1970) which does not make this assumption. For the
 

RC model, we can make the assumption that the coefficient vector of
 

each of the group models has a common distribution with the same mean
 

and the same variance-covariance matrix but that the individual group
 

coefficient vectors can be different. 
 In this work, we will estimate
 

the above three models, the FC, GLS, and RC models, using all the
 

experimental data. A relevant question that can be raised in postu­

lating these three specifications is how well do they represent the
 

true structural models given by eq. (3.16)? What criteria should be
 

used to find the relationship between the different specifications of
 

the aggregate model and group structural models? We will here consider
 

the criteria of the aggregate model as representing the average of the
 

group models. An average of the group models is the best single re­

lation that represents the true group models for prediction purposes
 

(Theil, 1954). 
 The properties of the estimators of the coefficients of
 

each of the specifications of the aggregate model as estimating the
 

average of the coefficients of the group models will be discussed in
 

detail. It may be noted that even though a specification of the
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aggregate model may represent the average of the group models, it does
 

not necessarily follow that this specification will give the least
 

monetary loss when we apply the "cost of wrong decision" criteria.
 

The Fixed Coefficients (FC) Model
 

In postulating the FC model, the following assumptions are made:
 

(1)The coefficient vectorF for the FC model is fixed and
 

same for all the observations.
 

(2)The coefficient vector of all the n groups are equal, i.e., 

- 2 3 . -- - -- - This is given by eq. (3.18d). 

(3)The error variances assumed for each of the groups are equal,
 

i2a 2 3
a22 2 
 2. This is given by eq. (3.18e).
 

When the above assumptions are made, the structural system given
 

by eq. (3.16) reduces to the form:
 

y X. ~ (3.21)
Y X V3 - 3 F+ -3 

y X V 
- n 

or Y Z 0 + V (3.22) 
Tx-l TA AU Tx 

It is assumed that
 

E(V) - 0 (3.23a) 

E(V) - a2 I (3.23b) 
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and the V's are serially uncorrelated. The least squares estimator of
 

the coefficient vector in the above model is given by:
 

b - (Z'Z)-1 Z' Y (3.24) 

= .injXx;lx4' [nn j ] 

n 
= WFi b (3.25)

inl
 

whr (X X i
where WFi =i (X Xi) (3.26)
 

The estimator b is thus a weighted average of the group models' least
 

squares estimators bi, where the weights are given by WFi. Ii the
 

assumptions described above are true, then the least squares estimators
 

arc BLUE of AF. The variance of the estimator - is given by
 

EF = (Z'Z) - 1 a2 (3.27) 

The Generalized Least Squares (GLS) Model
 

To take into account the heteroscedasticity of error variances
 

between the group models, we now turn to an analysis of the Zellner­

Aitken's generalized least squares model.
 

The assumptions of the generalized least squares (GLS) model can
 

be written as:
 

(1) The coefficient vector for the GLS model is fixed and same
 

for all the observations.
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i 

(2) The coefficient vector for all the group models are equal,
 

i e.,' in--82 3'.. - Galso given by eq. (3.18d).
 

(3) The error variances between the n group models axe not equal,
 

232na2 + a2 + 02 This is also given by eq, (3.18c). 

The GLS model is then of the form: 

1 X1 -I! 

t
y " x B+ V (3.28) 

Y X VI 
&--j - n --n 

or Y - Z B + V' (3.29)
Tx-l TxA A2 fTxl
 

We assume that
 

E(Vl) 0 
 (3.30a)
 

E(Vi2 ) -2 1 V i - 1, 2, ... , n . (3.30b) 

This means that the disturbances between the groups are heteroscedastic
 

and each group has a different error variance. It is also assumed that
 

the disturbances are not serially correlated.
 

Under these assumptions the BLUE estimator of the coefficient
 

vector is given by the Aitken's generalized least squares vector
 

(Goldberger, 1964, p. 233);
 

S(z'n- 1 Z)-1 z' n-1 Y (3.31) 
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2 

11 0 0 

o0 22 12 

where . . 

20 

n n 

Eq. (3.31) can also be written as
 

n 
= £WGi b1 (3.32) 

i-1 

where WGi xXi]([x33]2 

Gi-iW Xi2
 

The estimators b are weighted averages of the microunits' least squares
 

estimators bi, with the weights equal to WGi. The variance of bG is
 

given by
 

1-I Z)-EG (Z' . (3.34) 

The above estimator can be used only if we have knowledge of 0, i.e.,
 
the true values of 02 for all i. Inpractice we do not have such know­

i
 

ledge. However, Zellner (1962a) has suggested a method where we can
 

employ estimates of the disturbance terms' variances based on the
 

residuals derived from a least squares application of each of the group
 

models. When these estimates are substituted in eq. (3.31), he shows
 

that the resulting estimator possesses good large sample properties,
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i.e., it is consistent and asymptotically efficient. Thus the Zellner­

Aitken's GLS estimator is given by:
 

b (Z'a Z) V n (3.35)
 

-2
sill1 0 • . . 0 

0 2 1

2 2 

where . . (3.36) 

0 . . . s In 
n n
 

The Random Coefficients Regression (RC) Model
 

So far, for both the FC and the GLS models, we have assumed that
 

the coefficient vectors for each of the groups are the same. We can
 

now propose a third specification which takes into account the non­

equality of the coefficients between the different groups. This leads
 

to a consideration of the random coefficients regression model. The
 

properties of the estimators of such a model have been fully dealt with
 

by Swamy (1970). We will borrow heavily from his work in specifying
 

a suitable model for application to estimating a generalized aggregate
 

crop-response function.
 

The basic assumptions of the random coefficients model in compari­

son with the FC model and GLS model are:
 

(1) The coefficient vector for any given group is fixed and same
 

for all sample observations within that group.
 

* (2) The coefficient vector over all the groups is assumed to be 

distributed with the same mean and the same variance-covariance matrix, 

i .., 0N (AR§ A). This is also given by eq. (3.18f). 
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(3) The error variances between all the groups are not equal,
 

i. ., aai2 + 5 3 + 2. This is also given by eq. (3.18c).2"' 2 


The most important difference between the RC and the FC model is
 

due to changes in the second assumption. Klein's (1953) brief but
 

illuminating discussion on estimation from cross section data explains
 

more clearly the rationale for the underlying nature of this assumption
 

of the RC model. He uses the following simple example for illustra­

tive purposes.
 

(3.37)
Yit 0 o0+ 1 Xit+uit 


where t o 1, 2, ... , T the number of data observations for a 

given year for the individual i
 

i - 1, 2, ... , n the number of individual units 

Yit = dependent variable for individual i
 

xit W independent variable for individual i 

and uit - error term for individual i. 

If we compare any two individuals i, j (i + J), it is likely that
 

the same relationship (3.37) may not hold. The most plausible reason
 

why different'relationships between x and y underlie different indi­

vidual's behavior is that some important explanatory variables are
 

missing or are not measurable. For example, if y ishousehold saving,
 

and x is household income, itmay be that a young household adjusts its
 

saVing to its income along the relation,
 

YitW 0oi +1i xit+ uit
 

and an old household along another relation,
 



32 

Yit , oj + 0Ij 'it + u it 

Thus we find that 0oi o and . In this case age is one of
oj ii + 01J 

the missing variables which accounts for the difference in their
 

behavior. It is possible that if age is included in the relationship,
 

we may get identical parameters for each individual. When we are com­

pelled to work with fewer variables than required, it may be desirable
 

to specify that each individual has his own coefficient vector. Once
 

different coefficient vectors for each individual are allowed for, it
 

is more reasonable to assume that the remaining differences between
 

their response patterns are attributable to just the ui term. Thus, it
 

might be useful to specify a random coefficients model in such cases.
 

The analogy of the above example to the case considered here is straight­

forward.
 

It may be noted that the second assumption of the random coef­

ficients model covers the fixed coefficient model as a special case.
 

For the latter, the assumption becomes that the coefficient vector of
 

each group is distributed with the same mean and zero variances. The
 

assumptions for the RC model allows for heterogeneity among the dif­

ferent groups, at the same time enabling one to estimate efficiently a
 

single relation for the cross-section data. The difference in the
 

assumptions underlying the group models and the RC models may also be
 

noted. In the group models we assume that none of the n groups are
 

related to each other, i.e., we assume that each group model is separate
 

and represents a response relationship for the data within that group
 

only. For the RC model, we assume that each of the n group models can
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be considered as a sample from a population which has the same under­

lying response relation.
 

An example of the possible use of RC model in crop-response
 

functions is given by Hildreth and Houck (1968). 
 If a particular
 

coefficient represents the response of a 
plant to nitrogen fertilizer,
 

it iswell known that this response is strongly influenced by temper­

ature, rainfall, soil characteristics and many other factors. If
 

these factors are held constant, the coefficient can be expected to be
 

constant to a tolerable approximation. If these factors vary and are
 

observed, it is of course desirable to incorporate their influences
 

into the model. If they vary and are unobserved, regarding the coef­

ficient as a mean of a random response may be better than assuming it
 

to be constant. However, unlike the present case, Hildreth and Houck
 

(1968) considered a single regression equation in which the coefficient
 

vector is random from observation to observation.8 Rao (1965b) also
 

discussed the estimation of a random coefficients model with cross
 

section data; however, he confined his attention to the experimental
 

situation in which the "design matrix" Xt is kept constant for all mic­

rounits, i.e., each individual unit has the same matrix of observations
 

on independent variables.
 

8They have considered a number of estimators for the coefficient
 
vector and their properties; however, furthnr investigation of the

sampling properties of these estimators are needed before they can
 
be used for empirical applications.
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The basic RC model can now be written as 

y x 0 . .. 0 -l-1 1 HwM 
I-2 0 X2 _H2A2 
X3 - " X3 A-3 + W3 . (3.38) 

Y 0 . . . . . x 0 9 
nnn 

Let "-ER +Ai i- 1, 2, 3, ... , n (3.39a)
 

where 6 is a Axl vector of random elements with
 

A, , (0,A) . (3.39b)
 

Assume that
 

E(Wi) m 0 (3.39c) 

aT2I1 if irni 
E(Wi W') - (3.39d)

(ij if i + 00 

This implies that the disturbances have different variances for different
 

microunits
 

E(T) 
 (3.39e)
 

-, A if i-j 
- (i A) if + (3.39f) 

and .Riare independent
 

and . are independent for i + i. 
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These assumptions imply that the _ are random and uncorrelated
 

across microunits, but follow the same distribution with mean-S and
 

variance-covariance matrix A. This distribution is assumed to be
 

stable over the observations.
 

Substituting eq. (3.39a) in (3.38) and simplifying, we get
 

Y X X 0 .. 00 6 
-l 1 1 -l-

Y0=-2 Xx2 0.0 2 -2 

-3 3 AR X3 A3 

Y X 0 .. ... X 6 n - n &W 

w-l
 
w-2
 

+ W3 (3.40)
 

w 

;W
 

or, more simply,
 

Y-z 8+ X 6 +w . (3.41) 
Txl TxA Ax TxnA nAx-i Tx-l 

Let 9 = X 6 + W. Then the variance-covariance matrix of e is given by
 
Txl
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- 2 

x A x + 11 0 0..0 

V(e) - 0 X2 	AX 2+12 

0 	 .X , +°2 1 

n n n n,n
 

(3.42)
 

The matrix V(8) is of dimension (TxT) and is a function of the X 's
 

and an unknown 1/2 A(A + 1) + n elements of A and a2 i
.
 

The coefficients AR can be estimated by applying Aitkin's general­

ized least squares to eq. (3.41). Thus a BLUE of OR is given by:
 

'-1 -1 -l
 
bkR (8) - (Z' V(e) Z)1 z' 	 V(8) Y . (3.43) 

Since V(8) is of dimension (TxT), it has to be simplifed before it can
 

be used practically. 
 Swamy (1970) has shown that the above expression
 

reduces to
9
 

+ a.2 (Xi X)- 2 	 Z b (3.44 

. J ­i 	 i-l WRi -=i (3.44)
 

where the weights are given by the terms in the squared brackets.
 

9He uses the following result obtained by Rao (1965a, p. 29): 
 If
 
A and D are nonsingular matrices of orders m and n and B a 
mxn matrix,
 
then'
 

(A + BDB')-I . A7_ A- BEB' A7I + A7I BE (E+ D)- I EB' A-1 

-1
where E - (B'A71 B)
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Thus, it can be seen that bR (B) is a weighted average of the mic­

roestimators bi with weigh'is inversely proportional to their covariance
 

matrices. It is interesting to compare the weighting scheme used to
 

combine the bi's for the RC model in eq. (3.44), the GLS model in eq.
 

(3.33) and the FC model in eq. (3.25). The weighting scheme in eq.
 

(3.25) takes into account only the moment matrix of the regressors,
 

while that in equation (3.33) takes into account the variances of the
 

disturbances also. The weighting scheme in eq. (3.44) takes into
 

account the variances and covariances of the coefficients and the moment
 

matrix of the regressors besides the variances of disturbances.
 

The variance-covariance matrix of the estimator is given by
 

-
C(e) - [Z' V(e) Z]-l (3.45) 

So far itwas assumed that we can use eq. (3.44) to obtain
 
2
 

estimates of the RC model coefficients. In general, A and oi are
 

unknown and so we cannot use these equations in practice. This is
 

one of the major drawbacks of the RC model. However, we can employ
 

estimates of A and a 2 in constructing the Aitken estimator of the RC

i
 

model.
 

An unbiased estimate of a2 is given by (Goldberger, 1964, p. 166)
 
i
 

Y I -X! (XI Xi) Xi] (
 

i Ti - A
 

To estimate A we treat the ordinary least squares estimators b
-=i
 

(i- 1, 2, ..., n) as a random sample of size n. Let the sample covari­

ance matrix of the bi begiven by
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(3.47)Sb~m b_.E I - n A E 1b 1(i
n-1 n-


Substituting eq. (3.15) in (3.19), we obtain
 

bi - 80 + (XI Xi)-i X1 U _ + Pi.R (3.48) 

where P- " (X x)- xi R 

Using eq. (3.48), we get for eq. (3.47), 

n n
 

b i-iZ (k + P, ) (X + Ui Pj) - i-iZ ( + , Ui) 

n 
+lU P.) . (3.49) 

Using assumption (3.39b) and taking expectations in (3.49),
 

E(Sb) n + ) + E(E P U 

_ E(RI1[ n _ + E 
i-i 

(3.50)
J -

Making use of the assumption (3.18c), the eq. (3.50) can be simplified
 

to
 

E(Sb) - (n-i) A + n-l Xi)-I a (3.51) 

The estimator of A is given by 
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A 
 b n-1I n l 1X 2l
 
Sn-1 n Ii-1I
E (X' Xi) s 1] (3.52) 

2 2
 
These estimators s and A can be substituted for and A, respectively,
 

in eq. (3.44) to obtain the estimator R (8). Swamy (1970) has shown
 

that bR (0)is a consistent, asymptotically efficient estimator with
 

asymptotic variance-covariance matrix
 

A/n as T-- and n is fixed.
 

However, some fundamental problems associated with the estimator
 

A need to be pointed out. Since A is a variance-covariance matrix and
 

assumed to be nonsingular, all its diagonal elements should be positive
 

and its i-jth off diagonal element, when squared, should be equal to or
 

less than the product of its ith and jth diagonal elements. These
 

restrictions are neglected in the above procedure, and thus it is pos­

sible in empirical applications for A to yield negative estimates for
 

the variances of some coefficients.10 Thompson (1962) has suggested
 

two possible explanations of a negative estimate for the variance: (1)
 

the basic model ismisspecified, i.e., some of the various assumptions
 

listed earlier for the RC model may not hold and (2)statistical noise
 

may have obscured the underlying phybical situation. The most common
 

approach to the solution of this problem is to set the negative esti­

mates equal to zero. However, the estimates thus obtained are biased
 

(Scheffe, 1959). Thus if negative estimates for the variance are
 

10This difficulty is familiar in discussions of random-effect
 
models in the analysis of variance. See Scheffe (1959).
 

http:coefficients.10
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obtained, we prefer to conclude that the basic model is misspecified and
 

inconsistent with the data.
 

Summarizing, we have discussed in detail the underlying nature of
 

the assumptions for each of the specifications of the aggregate model,
 

the FC model, the GLS model, and the RC model. The estimation problems
 

and the properties of the estimators of the above models were discussed
 

in considerable detail. In the next chapter, it is proposed to try out
 

the various models for the estimation of a response relationship for the
 

Peruvian potato-fertilizer data.
 

In the next section, we will outline the statistical criteria for
 

testing the validity of some of the assumptions made for each of the
 

specifications of the aggregate model. If the assumptions are not true,
 

what can be said about the properties of the estimators of each of the
 

specifications of the aggregate model? What is the relationship between
 

each of the specifications and the true group models under different
 

assumptions? These questions will be taken up in the next section.
 

Statistical Tests and the Relationship between
 
the Different Specifications of the
 
Aggregate Model and the Group Models
 

For the FC model, we make the assumption that the error variances
 

for all the n group models are the same. This can be tested by using
 
11
 

Bartlett's test for the homogeneity of variances. An outline pro­

cedure of the test is as follows:
 

11The detailed derivation of the test is given in Anderson and
 
Bancroft (1952, pp. 141-144).
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Let there be n independent group sample variances s2 with mi
 

degrees of freedom each (i - 1, 2, 3, ..., n). The null hypothesis is
 

given by:
 

2 2
0: 	 Ol2 =22 . n 

2 2 
.e., each si is an estimate of the same population variance, a . The
 

null hypothesis can be tested by the criterion Q/e, which can be shown
 
2
 

to be distributed approximately as X with (n-i) degrees of freedom. 

In this expression
 

-2 n 2
Qmloga - E mi log s (3.53) 
i=l 

and - i + iE m 	 (3.54)
 

n-2 	 n ii 
where m = E and a =mi 	 E


i=l 	 iml
 

If the error variances of all the group models are not the same,
 

then it can be shown that the least squares estimators of the fixed
 

coefficient model are inefficient, although still unbiased (Goldberger,
 

1964, p. 238). Also the classical estimator of a2 from using the
 

fixed coefficient model is no longer unbiased (Goldberger, 1964,
 

pp. 238-243).
 

So far for both the FC and the GLS models, we have assumed that
 

the coefficient vectors of the group models are equal. However, this
 

assumption may not be true and in that case both the FC and GLS models
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have estimators that contain aggregation biases in estimating an average
 

vector of coefficients (Theil, 1954).12 
While Theil's work is confined
 

to aggregation biases in the macromodel estimators, similar results have
 

been extended to analyzing such errors in specification in combining
 

cross section data (Zellner, 1962b, Theil, 1957, Griliches, 1957). These
 

results can be shown for the FC model as follows:
 

Substituting the value of Y in eq. (3.17) into (3.24) we have
 

" (Z'Z)-1 Z'[X a 
+ U] (3.55)
 

Eq. (3.55) can be rewritten as,
 

b 0A + (P - H) 8 + (Z'Z)-1 Z'U (3.56) 

where P (Z'Z) l Z'X , H8 A and i 

b-
 +
 

=F -mA + -A (3.57)
 

where 6A - (P - H) 8 + (Z'Z)- Z'U
 

If we take expectations on both sides,
 

E(bF) - EA + E( --A) " (3.58)
 

The term given by E(6A) can be considered as the bias term when using
 

b as an estimator of the average of the group coefficients. It can
-=F
 
readily be seen that the expected value of each element of the FC model
 

12Allen (1956) gives a useful summary of Theil's work. 
Boot and
 
de Wit (1960) have empirically quantified such biases in an analysis

of investment demand of ten U. S. corporations.
 

http:1954).12
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least squares estimator will depend on both the corresponding as well
 

as non-corresponding parameters of the group models. Similar results
 

can easily be shown to hold for the GLS model estimators, although it
 

isnot done here. The standard well-known procedure for testing the
 

assumption of equality of coefficient vectors between the groups has
 

been the F test.13 Wallace (1972) claims that the F test is an overly
 

strong criterion. The FC model estimators, although biased, have
 

smaller variances than the group estimators under the restriction of
 

equality of coefficients between groups. In such cases he shows that
 

a more appropriate test can be based on comparison of the mean square
 

errors 
(MSE) of the FC model estimators and the estimators of the group
 

models. 14  For the FC model, we can thus use the F test to test the
 

hypothesis that the coefficient vectors of the group models are equal,
 

or use the MSE criteria to judge if the restricted estiniator is better
 

than the unrestricted one. For the GLS model, we can test the hypoth­

esis of equality of coefficients between groups assuming they have dif­

ferent error variances using a test procedure proposed by Rao (1965a,
 

p. 323). Briefly, the test procedure involves a consideration of the
 

following statistic:
 

n (bi - x ( -XO'Xi (
HB E i 1 3.59) 
s2i-l si
 

13A clear exposition of the test is given by Goldberger (1964,
 

pp. 256-265).
 
14The details of the relevant test procedure are given in Toro
 

and Wallace (1968).
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where bi and b. are defined in equations (3.19) and (3.32), respectively, 

52 ~ net~eo 2 Thand s sa siaeo i h statistic H0is asymptotically dis­

tributed as X2 with A(n-l) d.f. as T--+ w and n is fixed. Zellner
 

(1962a) shows that the asymptotic distribution of H8 /A(n-1) can be
 

n 
approximated by F with A(n-l), E (Ti - A) d.f.
 

i-i
 

If the above tests are used and result in a rejection of the
 

hypothesis that the coefficients are equal or that the restricted esti­

mators are not better than the unrestricted ones, then we can accept the
 

hypothesis that the estimators of the FC model and the GLS model are
 

biased estimators of the average coefficient vector of the group models,
 

as shown in eq. (3.58). Since the profit-maximizing fertilizer levels
 

are functions of the estimated coefficients, we can also accept the
 

hypothesis that the fertilizer recommendations derived from the FC and
 

the GLS models are biased estimators of the fertilizer recommendations
 

from the average of the group models.
15
 

We can now note one result of the RC model. Zellner (1969)
 

applied a RC model to the aggregation problem and showed that for such
 

models there would be no aggregation bias in the least squares esti­

mators of the coefficients in the aggregate model. In the context of the
 

problem considered here, this can be shown as follows:
 

Substituting eq. (3.41) into (3.43), we have
 

15This result follows.from the theorem (see Goldberger, 1964,
 

p. 128) which states, "If 6 is a consistent estimator of 8, and if
 
- g(O) is a continuous function of e, then ' - g(6) is a consistent 

estimator of T." 

http:models.15
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bR() (Z'V() Z)- 1 Z'V(e)- 1 [Z -R + X 6+ W] (3.60) 

- + -1 I~e_-1- .
+R ([(Z'V(e)- I ­

-+ (Z-V(O) ZR + (3.61) 

where 7 refers to the terms within the square brackets. Taking ex­

pectations on both sides of (3.61)
 

E~bR (6))- ER 

since E[(Z'V(_) - I Z)- 1 Z'V() - 1 X 6] =, 0 (3.62) 

and E[(Z'V(e)-i Z)- 1 Z'V(8) - W] - 0 

Analogous to the arguments made earlier,16 we can show that the 

profit-maximizing fertilizer levels derived from the RC model are con­

sistent estimators of the fertilizer recommendations from the average 

of the group models. 

16See footnote 15.
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CHAPTER 4
 
EMPIRICAL ESTIMATION AND RESULTS
 

The Data
 

For this study, the data were chosen from the potato field experi­

ments carried out by Professor R. E. McCollum of the North Carolina
 

State University Mission to Peru. The data consisted of the results
 

of potato field experiments conducted in 73 locations over the period
 

1967-1971 in the Sierra region of Peru.17 
 There were 12 locations
 

used for the year 1967-68, 18 for the year 1968-69, 19 for year 1969-70,
 

and 24 for the year 1970-71. The field trials were made up of central
 

composite and factorial response surface designs.18 
 For all the experi­

ments included in the data, each had soil analysis made.19 Four repli­

cations of each treatment were conducted for all the experiments. The
 

total number of observations for the experimental data was 4569.20
 

Each observation, had eight variables--potato yield, soil nitrogen, soil
 

phosphorus, soil potassium, soil pH, applied nitrogen fertilizer,
 

applied phosphorous fertilizer and applied potassium fertilizer.
 

17Part of the data between 1967-1970 was the same as that used by

Ryan (1972).
 

18These types of designs have been found to be most appropriate

for estimating a quadratic response in applied nutrients.
 

19Some experiments which had magnesium deficiency in the soil
 
and/or had no soil analysis were omitted from the experimental data.
 

20Due to space limitations, the data are not presented here. 
A
 
computer listing is held by the author.
 

http:designs.18
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Climatic data were not available for each of the 73 locations.
 

Data from 10 weather stations located at Cajamarca, Huamachuco, Otuzco,
 

Huancayo, Cuzco, Puno, Asangaro, Junin, Huaraz and Huancavelica were
 

used for all the experiments in their vicinity.
 

Although the data were obtained over the four-year period 1967­

1971, none of the locations were repeated from one year to another.
 

Hence, the set of 73 locations can be considered as a set of cross section
 

data.
 

Results of the Group Models
 

For the group models, an application of the Buol's soil management
 

classification scheme to data from 73 locations resulted in the forma­

tion of five groups. The details of the characteristics of each of
 

the five groups and the number of locations and observations in each
 

group are presented in Table 1.21 The means and standard deviations of
 

each of the variables for all the groups are given in Appendix B, Table
 

1. To each of these five groups of data, the model in eq. (3.1) was
 

fit and the ordinary least squares estimation procedure applied to obtain
 

the estimates of the coefficients. The least squares estimates of the
 

coefficients and their 't'values for each of the five group models are
 

given in Table 2. The R2 of the group models were generally high and
 

ranged from 0.63 to 0.82. As can be seen from Table 2, there were many
 

(about ten on the average for all the groups) estimates that were not
 

211 am indebted to Dr. S.W. Buol, Dr. R. E. McCollum, and Dr. S.
 

Villagarcia of the Soil Science Department at North Carolina State
 
University for their help in classifying the soils according to groups
 
for this data.
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Table 1. Characteristics of the group data
 

Group 
number 

Soil 
codea 

Number of 
locations 

Number of 
observations 

1 L Ca d k X 6 314 

2 L a d k 23 1538 

3 L h d k 27 1578 

4 L Ca d k 11 622 

5 C Ca d k 6 517 

Total 73 4569 

aThe details of the soil codes are explained in Appendix A.
 



Table 2. 	 The estimated coefficients and their 't' values for the group models with all the variables 
included 

MoesB0 BN B B K BpHB I 	 BKBRModelsI 	 P Ks BpH NNA BPA KA R 

G1 3193.01 -660.89 0.6103 0.0652 -133.22 -5.081 -0.0625 0.0462 -5.314 
(7.08) (-5.44) (1.91) (2.82) (-1.78) (-4.49) (-0.43) (2.64) (-7.01) 

G2 -123.33
(-5.08) 

-23.84
(-10.55) 

-0.4398
(-2.44) 

0.01882
(1.73) 

-0.0898
(-0.02) 

-0.0328
(-1.00) 

0.05988
(2.79) 

0.02752
(2.09) 

-0.06325
(-2.45) 

G3 -462.80 -16.01 -0.2706 0.02228 10.25 0.05369 0.2722 0.001116 0.7179 
(-7.19) (-4.47) (-2.10) (3.00) (1.51) (1.04) (10.48) (0.09) (5.27) 

G4 100.16 6.002 0.9357 0.1365 -61.02 -0.005606 -0.09052 -0.009480 -0.1446 
(1.15) (0.63) (4.71) (3.38) (-3.75) (-0.19) (-2.04) (-0.57) (-2.19) 

-317.17 122.90 -0.2893 -0.005301 -30.98 0.3744 -0.1222 -0.001097 0.4559 
(-0.69) (0.91) (-0.18) (-0.34) (-0.77) (0.62) (-2.44) (-0.08) (1.08) 



Table 2 (continued) 

MdlB2BP2 B2B 2 B.2B2I 2 

MoesB s s KA A BA 

G1 0.0 1.649 0.01734 -0.0001135 13.15 0.00003438 -0.00000219 0.00000158 0.0 
(0.0) (4.18) (1.09) (-2.52) (2.15) (0.54) (-0.04) (0.06) (0.0) 

G2 52.49 -0.1350 0.02493 0.00000504 -0.2193 -0.00003015 -0.00005582 -0.00007711 0.0002138
 
(15.43) (-4.92) (5.58) (0.22) (-0.65) (-0.59) (-4.95) (-2.03) (14.05) 

G3 89.70 0.4454 0.005137 -0.0000237 -1.007 -0.00003435 -0.0001280 -0.00004607 -0.0002927
 
(7.45) (4.22) (1.63) (-3.50) (-1.88) (-0.78) (-10.57) (-1.45) (-3.49)
 

G4 32.54 0.3149 -0.01869 -0.0003834 4.116 -0.0001248 -0.00002344 0.00004530 0.00004983
 
(1.51) (1.40) (-4.77) (-3.47) (3.87) (-2.69) (-2.70) (1.11) (1.23) 

G5 26.26 1.491 -0.1998 0.00000965 1.969 -0.00006585 -0.00005870 0.00002121 0.0
 
(0.92) (4.51) (-1.20) (0.41) (0.80) (-0.63) (-6.32) (0.66) (0.0) 

0nO 



Table 2 (continued) 

Models BT2 BN P S ,BNSR BNSTB pS AB K AB H A 

G1 0.0 
(0.0) 

-9.707 
(-3.81) 

-0.002927 
(-0.67) 

1.320 
(5.92) 

0.0 
(0.0) 

-0.001102 
(-2.43) 

-0.00006337 
(-2.83) 

0.004685 
(0.26) 

G2 -2.653
(-17.76) 

0.6900
(5.67) 

0.005131
(3.77) 0.02666

(14.33) 1.300
(10.01) 

-0.003374
(-5.93) 

-0.00009432
(-2.45) 0.0009362

(0.21) 

G3 -3.353 
(-9.56) 

0.9263 
(2.77) 

-0.007598 
(-2.72) 

0.03834 
(8.59) 

-1.349 
(-6.98) 

-0.0009373 
(-2.27) 

-0.00003822 
(-1.04) 

-0.03267 
(-7.60) 

G4 -1.864 
(-1.34) 

1.433 
(2.90) 

0.003264 
(1.32) 

0.0009959 
(0.17) 

-2.920 
(-2.31) 

-0.001421 
(-2.69) 

-0.00000611 
(-0.09) 

0.01404 
(2.58) 

G5 0.0 0.5320 -0.03068 -0.1371 -7.460 0.005110 -0.00003062 0.01837 
(0.0) (0.29) (-5.58) (-1.09) (-0.87) (2.08) (-0.94) (3.44) 



Table 2 (continued)
 

Models IBNI BNK BNB NB KBRAPA A A A AT PA BR A S 

G, 0.0001487 -0.0003773 0.009474 0.0 0.0002033 0.0 0.0009035
(1.51) (-2.03) (4.62) (0.0) (1.11) (0.0) 
 (1.71)
 

G2 -0.00000922 0.00003772 -0.00000741 0.005340 -0.00001536 -0.03711 0.001024
 
(-0.33) (0.58) (-0.30) 
 (2.10) (-0.49) (-14.94) (1.28)
 

G3 -0.00000426 0.0002136 -0.00000600 0.002392 -0.00003696 -0.08442 
 -0.002123
 
(-0.12) (3.80) (-0.08) (0.79) (-1.04) (-5.53) (-4.30)
 

G4 0.00003270 0.00000262 -0.00000443 0.009159 0.00002771 
 0.01283 0.00005577
 
(1.81) (0.06) (-0.17) (1.58) (1.18) (1.54) (0.12)
 

G5 0.00007408 0.00001244 -0.0002495 -0.01218 0.00000686 
 0.0 0.004531
 
(3.20) (0.18) (-0.44) (-0.31) (0.27) (0.0) (0.90) 

Z' 
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significantly different from zero. All variables that were not
 

significant at the 0.25 level were dropped, and the functions described
 

by eq. (3.1) were refitted with the remaining variables. Although such
 

a procedure entails the well known sequential biases of the estimators,
 

it was considered that such a model with reduced variables would repre­

sent the response relation more accurately.23 Other procedures such as
 

the forward selection procedure, the backward selection procedure, step­

wise regression, etc., also involve similar sequential biases and are
 

more time consuming and expensive. 24 No clear result has been estab
 

lished regarding the superiority of any of the listed procedures. Thus
 

the method of dropping all nonsignificant variables at the 0.25 level
 

was chosen for simplicity of computational procedures. Because of the
 

sequential bias of the resultant estimator that is obtained, it has
 

been suggested (Anderson et al., 1970, Wallace, 1972) that the a - 0.05
 

level is an overly strong criterion and that a more reasonable level
 

would be much higher. The level of 0.25 was chosen here so that only
 

a 
reasonable number of variables may be dropped from consideration.
 

The results of fitting the group models to the reduced number of vari­

25 
ables is given in Table 3. It can be seen that there is very little
 

22Many data variables did not have enough variability to obtain
 
significant estimates of coefficients. See Appendix B, Table 1.
 

23For a clear exposition of this problem, see Wallace and Ashar
 

(1972).
 
24See Draper and Smith (1966) for a description of these procedures.
 
25In all cases the hypothesis that the subsets of coefficients
 

dropped from each of the regressions are equal to zero was accepted at
 
the 0.05 level (see Goldberger, 1964, p. 177 for the relevant test
 
procedure).
 

http:expensive.24
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Table 3. 	The estimated coefficients and their 't' values for the group models with some of the 
variables (non-significant coefficients at a = 0.25) excluded 

Models Bo BNs BP [ BK S BPH BNA BPA BKA BR 

G1 3240.84 -654.92 0.5812 0.06394 -125.06 -5.761 0.0 0.03254 
 -5.451
(7.63) 	 (-5.91) (1.88) (2.89) (-1.71) (-7.47) (0.0) (3.28) (-7.72)
 

-137.23 -18.94
G2 -0.6829 0.01589 0.0 -0.04324 0.05614 0.02571 -0.03939
 
(-7.40) (-9.38) (-4.18) (2.70) (0.0) (-2.42) 
 (9.22) (2.26) (-1.63)
 

G3 -477.11 -16.57 -0.2595 0.02222 8.866 0.06490 0.2679 0.0 0.7483 
(-7.43) (-4.65) (-2.02) (3.22) (1.31) (4.08) (10.39) (0.0) (5.54)
 

135.67 0.0
G4 	 0.9556 0.1416 -60.37 0.0 -0.08923 -0.01048 -0.1165
 
(2.58) (0.0) (5.26) (3.63) (-3.91) (0.0) (-2.04) (-1.13) (-2.47) 

-27.97 11.21 0.0 0.0G5 0.0 0.1762 -0.1342 0.0 0.06177 
(-2.12) (2.65) (0.0) (0.0) (0.0) (5.60) 	 (-4.53) (0.0) (3.35) 



Table 3 (continued) 

ModelsBT B 2 BP2 B2 B 2 B 2 B BK 

G1 0.0 
(0.0) 

1.624 
(4.16) 

0.01705 
(1.09) 

-0.0001124 
(-2.55) 

12.56 
(2.09) 

0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

G2 52.25 
(15.53) 

-0.1643 
(-6.19) 

0.02404 
(5.58) 

0.0 
(0.0) 

0.0 
(0.0) 

-0.00005135 
(-1.07) 

-0.00005916 
(-6.24) 

-0.00009127 
(-2.46) 

G3 93.18 
(7.78) 

0.4588 
(4.36) 

0.004733 
(1.51) 

-0.00002407 
(-3.81) 

-0.9215 
(-1.73) 

-0.00002169 
(-0.50) 

-0.0001251 
(-10.57) 

-0.00003714 
(-1.45) 

G4 21.22 
(2.30) 

0.4516 
(4.73) 

-0.01904 
(-5.03) 

-0.0004010 
(-3.83) 

4.056 
(4.11) 

-0.0001234 
(-3.13) 

-0.00002363 
(-2.82) 

0.00004753 
(1.30) 

G5 0.0 
(0.0) 

1.412 
(5.55) 

-0.2439 
(-3.31) 

0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

-0.00005833 
(-6.97) 

0.00002506 
(1.82) 



Table 3 (continued) 

Models B R 2 BT2 BNpH BNsN I BNsT BPP I BKsK 

- S SA A 

G1 0.0 0.0 -9.548 0.0 1.307 0.0 -0.0008735 -0.00005750 
(0.0) (0.0) (-3.78) (0.0) (6.44) (0.0) (-2.11) (-2.77) 

G2 0.0002000 
(14.51) 

-2.513 
(-17.07) 

0.2933 
(3.64) 

0.005532 
(4.15) 

0.02376 
(13.30) 

1.079 
(8.86) 

-0.002311 
(-4.38) 

-0.0001017 
(-2.70) 

G3 -0.0003012 -3.437 1.008 -0.007562 0.03871 -1.389 -0.0009544 -0.00003105 
(-3.66) (-9.91) (3.02) (-3.31) (8.71) (-7.22) (-2.33) (-1.67) 

G4 0.00003375 -1.132 1.553 0.003060 0.0 -2.1526 -0.001398 0.0 
(1.10) (-1.63) (3.76) (2.22) (0.0) (-4.94) (-2.79) (0.0) 

G5 0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

-0.03134 
(-6.66) 

-0.02610 
(-4.19) 

0.0 
(0.0) 

0.005683 
(3.59) 

-0.00002483 
(-1.76) 



Table 3 (continued) 

Models BpH I 'NJK BNR BN BP1 BR BN 

G1 0.0 
(0.0) 

0.00007390 
(1.61) 

-0.0001510 
(-3.15) 

0.01068 
(7.51) 

0.0 
(0.0) 

0.00005841 
(1.64) 

0.0 
(0.0) 

0.0007986 
(1.69) 

G2 0.0 
(0.0) 

0.0 
(0.0) 

0.00006582 
(1.05) 

0.0 
(0.0) 

0.005970 
(3.12) 

0.0 
(0.0) 

-0.03757 
(-15.08) 

0.001235 
(1.57) 

G3 -0.03221 
(-7.59) 

0.0 
(0.0) 

0.0001915 
(3.64) 

0.0 
(0.0) 

0.0 
(0.0) 

-0.00003460 
(-1.09) 

-0.08816 
(-5.80) 

-0.002101 
(-4.33) 

G4 0.01389 
(2.59) 

0.00003207 
(1.85) 

0.0 
(0.0) 

0.0 
(0.0) 

0.008041 
(5.29) 

0.00002735 
(1.20) 

0.01153 
(1.71) 

0.0 
(0.0) 

G5 0.01972 
(6.40) 

0.00007564 
(3.42) 

0.0 
(0.0) 

-0.00007071 
(-1.47) 

0.0 
(0.0) 

0.0 
(0.0) 

0.0 
(0.0) 

0.004928 
(1.16) 

U1
 
CO
 



Table 3 

Models 

G 

(continued) 

Num~ber ofobservations 

314 

R 

0.81 

Error meansquare 

7.23 

IF valuea 

57.93 

G2 1,538 0.62 30.28 99.82 

G3 1,578 0.69 45.27 120.90 

G4 622 0.82 11.46 106.65 

G5 517 0.75 20.91 76.94 
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reduction in the R,
2 and the error mean squares. The estimates of the
 

coefficients from these models were used to generate fertilizer recom­

mendations for given soil conditions. Since many of the variables
 

dropped were soil-applied nutrient interactions, these soil values
 

will not have any influence on the optimum fertilizer levels. For
 

example, the coefficient for the.interaction term pH.PA is not signifi­

cantly different from zero (a "t" value of 0.26) for the first group 

model. Hence values of pH will have no influence on the optimum level 

of fertilizers. There are at least two possible reasons for the non­

significance of some of the coefficients: (a)there is an insufficient
 

number of data observations to obtain an estimate for all the coef­

ficients and (b)the underlying response relation for the group may be
 

such that these coefficients are zero.
 

To test the suitability of Buol's soil management classification
 

system for this sev of data, the five groups have to be compared with
 

each other for any differences between them. One way to do this is to
 

test the hypothesis that the coefficient vector between any two groups
 

is the same. This can be done by using the F test referred to in the
 

last chapter.26 Table 4 gives the F values for all possible combina­

tions of two groups at a time. In all cases, the hypothesis was
 

rejected leading to the conclusion that the Buol'a criterion does clas­

sify soils into different management groups.
 

S26See footnote 13.
 

http:chapter.26
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Table 4. Test for equality of coefficients for the group models
 

Calculated
 
D.F. Falue
SSE
Model F value
I 


G1 2,101.1 282 -


G2 44,821.7 1,506 ­

69,996.2 1,546 -
G3 


6,823.2 590 -
G4 


10,409.1 485 -
G5 


G1 + G2 56,317.8 1,788 8.59**
 

G1 + G3 86,703.0 1,828 9.48**
 

G1 + G4 11,631.6 772 5.71**
 

G1 + G5 14,830.0 767 3.36**
 

G2 + G3 177,869.8 3,052 36.41**
 

G2 + G4 75,651.6 2,096 19.21**
 

G2 + G5 73,560.7 1,991 14.31**
 

G3 + G4 103,126.6 2,136 15.75**
 

G3 + G5 119,767.3 2,031 10.57**
 

G4 + G5 20,257.0 1,075 4.12**
 

Significant at the 0.01 level.
 

Results of the Aggregate Models
 

Equation (3.1) was fit to each of the three specifications at the
 

aggregate level: the PC model, the GLS model, and the RC model. The
 

coefficients of the PC model were estimated by ordinary least squares.
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For the GLS model, the error variances from each of the group models
 

were used to estimate the coefficients by the use of the formula in
 

eq. (3.31). The A matrix for the RC model was obtained from eq. (3.52)
 

using all the estimated coefficients from the 5 group models. The
 

resultant estimates of the coefficients of the RC model was obtained by
 

using estimates of A and a in eq. (3.44). The results of the estimates
 

of the coefficients and their 't'values for all the aggregate models
 

are given in Table 5. The R2 for these models are much lower compared
 

to the group models and ranged from 0.28 to 0.45. However, this is to
 

be expected with the larger set of data used to fit each aggregated
 

model.
 

In the previous chapter the assumptions of each of these models
 

were outlined. We will now examine the validity of these assumptions of
 

each of the aggregated models for the set of experimental data con­

sidered in this study.
 

The first hypothesis to be tested is the homogeneity of error
 

variances of the group models. This is one of the assumptions made
 

for the estimation of the FC model. Bartlett's test described in the
 

last chapter (p.41) to test this hypothesis resulted in a Q/Z value
 

of 558.91. This iswell above the tabulated X2 value of 13.3 with
 

4 d.f. at the 0.01 level. Thust it can be concluded that the error
 

variances between the groups are not equal. If this is so, itwas
 

noted that the least squares estimates of the FC model are inefficient.
 

Also, an F test on the equality of coefficients between the groups
 

resulted in an F value of 48.67 which again was higher than the tabu­

lated F value of 1.22 with (132, 4404) degrees of freedom at the 0.05
 



Table 5. 
The estimated coefficients and their 't' values for the different specifications of the
 
aggregate model
 

Models I B0B NSB BK BA BRB~pHBA B B K 

FC -31.06 -1.366 -0.9528 0.03278 15.82 -0.03608 0.05286 0.007867 0.09877
 
(-4.15) (-1.28) (-10.76) (7.61) (13.03) (-1.58) (6.47) (0.98) (11.24)
 

GLS 
 2.854 6.111 -0.8357 0.02618 4.618 -0.007125 0.03178 0.001560 0.06064
 
(28.48) (6.67) (-11.48) (7.30) (4.98) (-0.44) (4.69) (0.25) (8.81)
 

RCI 986.25 -274.33 0.2300 0.007971 65.95 -1.955 -0.01127 -0.01922 -2.343
 
(1.46) (-1.72) (0.64) (0.30) (2.24) (-1.35) (-0.13) (-1.61) (-2.08)
 

RC2 422.46 -90.71 0.2903 0.01716 -63.62 -0.6112 0.03953 0.02185 -0.5014
 
(0.63) (-0.68) (2.94) (0.75) (-3.37) (-0.61) (0.62) 
 (2.64) (-0.45)
 



Table 5 (continued) 

MoesB ;oNdS 
BB2NpH 

BPS BKKTS 
2 B 2NBPA B B 2

KA 

FC -1.773 -0.1233 0.02817 -0.00002994 -1.364 -0.00004457 -0.00008328 -0.00009140 

(-1.07) (-5.99) (15.60) (-6.89) (-14.45) (-1.15) (-11.88) (-4.03) 

GLS -8.744 -0.1756 0:02455 -0.00002935 -0.3378 -0.00007798 -0.00005406 0.00001955 

(-9.60) (-9.40) (17.17) (-7.83) (-4.63) (-2.32) (-9.61) (1.11) 

RC 19.56 -0.1095 -0.07461 -0.00001599 -5.387 -0.0001397 -0.00008401 -0.00004040 

(0.97) (-0.34) (-1.54) (-0.15) (-1.60) (-8.45) (-4.07) (-1.46) 

RC2 29.66 0.7381 -0.04694 -0.00006065 4.906 -0.00004563 -0.00003972 -0.00006064 

(2.19) (2.25) (-1.84) (-0.87) (2.27) (-1.98) (-2.21) (-4.00) 



Table 5 (continued) 

Models BR2 BBT2 BNsPH BNsNA BNsR I BNsT BBsPA BKsKA 

FC -0.0001307 -0.1068 -0,05081 0.001716 0.004362 0.1090 -0.001811 -0,00006871 
(-19.78) (-1.25) (-0.93) (1.48) (4.72) (1.90) (-6.1-0) (-3.67) 

GLS -0.0001070 0.3310 0.02093 0.001200 -0.003677 -0-3282 -0.001693 -0.00000446 
(-18.93) (6.30) (0.50) (1.24) (-4.57) (-6.66) (-6.93) (0.31) 

RC 0.00006721 -1.007 2.433 -0.006666 0.4893 -0.2839 0.0009490 -0.00008186 
(0.47) (-1.63) (0.95) (-0.80) (1.53) (-0.30) (0.68) (-7.34) 

RC2 -0.0001158 -1.523 -0.3197 -0.009145 0.1745 -0.2881 -0.001041 -0.00006318 
(-1.41) (-2.40) (-0.16) (-1.47) (0.66) (-3.49) (-0.78) (-4.68) 



Table 5 (continued) 

Models IB 'N.p
PHPA 


FC 0.0006820 0.00003485 

(0.77) (1.77) 


GLS 0.0008844 0.00007273 

(1.24) (4.67) 

RCI 0.007510 0.00002821 

(0.46) (2.07) 

RC2 0.001598 0.00005953 

(0.20) (3.05) 


NBNRA A 

0.0001795 

(4.39) 


0.00003747 

(1.15) 

0.0002932 

(3.09) 

0.00004227 

(0.51) 


B 

A 


0.00002216 

(1.11) 


0,00001940 

(1.34) 

0.003670 

(0.69) 

0.001215 

(0.65) 


B 
NTBK
Aj 

0.008006 

(4.16) 


0.004556 

(2.93) 

0.002993 

(1.58) 

0.005415 

(2.88) 


A 

0.00001381 

(0.62) 


-0.00000490 

(-0.27) 

-0.00001331 

(-0.64) 

-0.00000669 

(-0.40) 


B 
RT
 

-0.0003985
 
(-0.31)
 

0.005738
 
(6.17) 

-0.008053
 
(-0.29) 

-0.01284
 
(-0.71)
 



Table 5 (continued) 

MoesBN 
Models 

P 
S 

Number of 
observations 

R2 EroEea 
square 

FC -0.001257 
(-3.28) 

4,569 0.36 74.32 

GLS -0.007212 
(-2.36) 

4,569 0.44 

RC1 0.004354 
(4.64) 

4,569 0.28 

RC2 -0.0003663 
(-1.20) 

4,569 0.31 
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level, 2 rejecting the hypothesis that the coefficients between the
 

groups are equal. Itwas shown in the last chapter that under these
 

conditions the least squares estimates of the FC model have aggregation
 

biases.
 

Next, the assumption of the GLS model that the coefficients of the
 

groups are equal assuming different group error variances was tested
 

by calculating the H /A(n-1) statistic in eq. (3.59). The Ha/A(n-1)
 

value was found to be 224.86 and this is greater than the tabulated
 

F value with (132, 4404) d.f. at the 0.01 level. Again, the rejection
 

of this hypothesis leads to the conclusion that the estimators of the
 

coefficients of the GLS model have aggregation biases.
 

In estimating the A matrix for the RC model, it was found that
 

five of the diagonal elements (those corresponding to the variables
 

2

NA, NST, KSKA, NAT) were negative. Since the diagonal elements
 

of the A matrix are functions of the variances of the coefficients,
 

~s A
 

they are always expected to be positive. However, sampling variance
 

could lead to some negative estimates. The rows and columns associated
 

with the above five elements of the A matrix ware set equal to zero
 

and the resultant A matrix used to estimate the coefficient vector of
 

the RC model. However, as mentioned in the last chapter, such a pro­

cedure would lead to biased estimates and is inconsistent with the
 

assumptions of the RC model.
 

From the above results, we can conclude that none of the specifi­

cations of the aggregate model are likely to-provide unbiased estimates
 

of the average of the group models' coefficients.
 

27The corresponding F value using the MSE criterion from the
 
tables provided by Wallace and Toro (1969) is 1.25.
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"Cost of the Wrong Decision" Criteria
 

To describe the population of soils, 144 soil classes were estab­

lished, based on the levels of the four soil variables Ns, Ps, K9' and
 

pH. The intervals for the four variables are:
 

Ns (percent o.m.) : < 2.0 ; 2.1 - 4.0 ; > 4.0 

P5 (p.p.m. of P) : < 4.0 ; 4.1- 8.0 ; 8.1- 15.0 ; > 15.0 

Ks (p.p.m. of K) : < 60 ; 61 - 120 ; 1.21- 230 ; > 230
 

pH : < 5.5 ; 5.6 - 6.5 ; > 6.5 .
 

The soils from the experimental data were classified according to this
 

scheme, and the mean value of each of the four variables for all the
 

144 classes was calculated, together with the relative frequency of
 

occurrence. Out of the possible 144 soil classes for each group, 12
 

classes with positive frequencies were obtained for group 1, 32 for
 

group 2, 39 for group 3, 16 for group 4, and 8 for group 5, and the re­

28 
maining classes in each group had zero frequencies. For these soil
 

values, we have the information regarding the group to which they
 

belong. Hence, we can derive fertilizer recommendations and the cor­

responding profits for the soil classes belonging to each of the groups,
 

using the estimates of the coefficients of the group models from
 

Table 3. For rainfall and temperature, the averages for each of the
 

groups are used (see Appendix B, Table 1), The prices used throughout
 

28See Table 6 in the next section for the details of the soil
 
classes.
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this study are 2 soles/kgm for potatoes, 9.118 soles/kgm for the nitro­

gen fertilizer, 5.76 soles/kgm for the phosphorous fertilizer, and
 

5.76 soles/kgm for the potassium fertilizer. 29
 

Using all the group models and the different specifications of
 

the aggregate model, analytical solutions could not be obtained in
 

every situation. In some cases the estimated response curve reached
 

a 
maximum at fertilizer levels far in excess of the experimental appli­

cation rates. This is likely to occur when experimental rates applied
 

are not large enough to expose the region of zero or negative marginal
 

product. While it is acceptable practice to predict beyond the range
 

of experimental data, due to the large standard error of estimates of
 

the optimum in such cases, such recommendations would impose very
 

large risks on farmers. We, therefore, arbitrarily coniine all recom­

mendations within 350, 350, 350 kg/ha for applied nitrogen, phosphorus,
 

and potassium, respectively, as these are the approximate levels of
 

maximum treatments. 
 Use of other values for the constraints would
 

undoubtedly affect the results obtained here, although to what extent
 

and inwhat way is not known. In this study, we will restrict our
 

study to considering the above mentioned maximum recommendations.
 

In some other cases, the stationary point on the profit function
 

was either a saddle point or a minimum. Because of these analytical
 

difficulties, the profit maximizing fertilizer levels were determined
 

using the steepest ascent method with constraints as described earlier
 

in the chapter. 
 In this study the initial point for all the solutions
 

29These are the average prices as of March 1971. 
 The prices for

the fertilizer include the average transport costs (see Ryan, 1972,
 
p. 181). The exchange rate is 42.5 Peruvian soles -
U. S. $1.00.
 

http:fertilizer.29
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was chosen to be 120 kg/hectare for each of the applied nitrogen,
 

phosphorous and potassium fertilizers. The step lengths were
 

20 kg/hectare initially and 5 kg/hectare for the reduced step lengths.
 

The inequality constraints were
 

0 < NA - 350 kg/ha 

0 < PA - 350 kg/ha 

0 <KA 350 kg/ha.
 

The expected loss in using each of the specifications of the
 

aggregate model, assuming the group models to be true, can be calcu­

lated by using the formula:
30
 

5 
E(LA) £ £ [(H j - RAJ) pij] (4.1) 

i-1 j-1
 

where E(LA) - expected loss in soles/hectare in using each of 

the specifications of the aggregate model 

81 - number of soil classes in group i 

PiJ - probability of soil analysis ior the Jih soil 

class in the ith group 

Hij - profits obtained from using the fertilizer recom­

mendations for the Jth soil class and the ith 

group model from Table 6 

30In calculating the profits, only the variable costs associated
 
with the level of fertilizers applied are condidered. If other costs
 
of production are taken into account, then the profits would be lower.
 
The prices of potatoes and the fertilizers are also assumed to be con­
stant, in spite of the increased production implied by this analysis.
 



Table 6. 
Optimal fertilizer recommendations, yields, and profits derived from using the group models

for the different soil classes
 

Soil S 
 Means of soil variables " .)Optimalamts of ap- Optimal
Models Profits Prob. of
analysis Sol 
an S vaiale (p plied fert.
number a NS (kg./ha.) yieldI soilKS N ly sK (kg/ha) soles/ha. ana i
 
A _I A A Y
 

Group 1 1 2122 2.6 3.0 
 104.0 6.5 350

2 

350 0 16.2 25,567 .002626
2123 2.6 4.0 104.0 
 6.6 350 350 0 
 18.5 30,115 .005252
3 2133 3.4 
 4.0 197.5 7.0 350 
 350 0 25.4 44,007 .005909
4 2232 
 2.7 5.0 147.3 6.4 
 350 350 
 0 18.2 29,580 .007878
5 2233 
 3.4 6.5 206.3 
 6.9 350 350 0 
 25.8 44,771 .012475
6 2242 3.6 
 9.0 241.0 6.5 
 350 350 0 24.2 41,516 .002626
7 2243 3.6 7.8 
 257.5 6.9 350 350 
 0 26.3 45,767 .012257
8 2343 
 3.9 12.0 391.0 6.8 
 350 350 0 27.9 48,969 .003064
9 3123 8.4 
 4.0 84.7 7.7 350

10 3223 

350 0 28.6 50,341 .007878
8.8 5.0 98.0 
 7.7 350 350 0 
 32.6 58,411 .002626
11 3343 4.5 
 14.0 410.0 6.7 350
12 3443 350 0 29.6 52,476 .003064
5.4 40.0 873.0 7.0 350 
 0 0
13 Average 4.2 7.8 
36.3 69,440 .003064
226.5 6.9 350 350 
 0 25.9 45,021 .068724
 

Group 2 14 1121 1.8 
 3.3 90.0 4.1 
 154 350 141 14.5 23,090 .021011
15 1131 1.9 3.5 
 133.5 4.3 153 
 350 119 14.6 23,484 .004815
16 1211 1.4 9.0 
 13.8 4.0 200 255 
 190 8.0 
 10,410 .005252
17 1221 
 1.7 7.3 96.0 4.3 
 160 288 129 10.0 14,902 .022981
18 1231 1m9 
 6.7 136.7 4.2 145

19 1311 

301 101 11.1 17,216 .013789
1.5 11.3 13.4 4.0 243 210 205 
 7.1 8,729 .015756
20 1321 1.4 10.0 65.0 4.0 192 236 158 7.1 
 9,136 .005909
21 1433 1.9 17.0 
 202.0 7.1 270 99 
 110 9.0 
 13,829 .003064
22 1443 
 2.0 17.0 247.0 6.9 256 99 80 9.4 
 14,957 .003064
23 2131 2.1 
 4.0 150.0 4.3 159

24 2211 

350 112 14.6 23,430 .002408
3.7 6.5 52.5 3.8 302 304 205 
 15.8 24,572 .010504
25 2221 3.3 
 7.4 87.2 4.4 277

26 287 176 14.7 22,820 .010068
2231 2.8 7.4 174.7 
 4.8 198 286 99 
 13.2 21,108 .035894
 



.e6 (continued) 

Soil-ls analysis Soil 

codeanalysisHnumber code 

! m lOptimal amts. of a Optimal ProfitsMeans of soil variables (ppm) amt. o ap-(Poiihrbyield 
plied fert, (k. /ha.) (gh)sl/a.~S s T NA -Aj KA ( 

Prob. of 

soil 
analysis 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 
39 
40 
41 
42 
43 
44 
45 
46 

2321 
2331 
2333 
2431 
2432 
2433 
2441 
3121 
3131 
3141 
3211 
3221 
3222 
3231 
3241 
3331 
3332 
3341 
3441 

Average 

2.3 
3.1 
2.1 
3.0 
3.9 
2.1 
2.7 
9.2 
9.5 
4.2 
4.1 
9.3 
9.5 
6.9 
5.0 
4.2 
4.3 
5.0 
4.1 
4.7 

12.0 
12.5 
15.0 
24.4 
19.0 
16.0 
18.0 
2.7 
2.9 
4.0 
9.0 
5.0 
6.0 
7.5 
7.5 

13.2 
11.0 
10.0 
20.0 
7.5 

85.0 
165.7 
195.0 
213.5 
210.0 
208.0 
254.0 
91.7 

172.7 
240.0 
50.0 
80.3 

100.0 
165.0 
319.5 
178.4 
190.0 
404.0 
240.0 
135.5 

5.1 
5.0 
7.5 
4.9 
5.7 
7.2 
4.7 
4.5 
5.0 
5.3 
3.9 
4.2 
5.7 
5.1 
4.9 
4.9 
5.6 
5.0 
5.5 
4.7 

276 
303 
257 
350 
350 
266 
319 
350 
350 
236 
350 
350 
350 
350 
284 
350 
350 
287 
350 
350 

197 
186 
138 
0 

106 
119 
80 

350 
350 
350 
280 
350 
310 
290 
285 
202 
244 
236 
80 

306 

177 
142 
109 
133 
141 
105 
99 

213 
160 
85 

220 
215 
199 
163 
49 

148 
142 
3 

173 
173 

9.7 
11.9 
9.8 

16.0 
16.2 
9.7 

10.9 
31.2 
32.4 
21.1 
15.8 
28.6 
31.8 
24.5 
19.8 
15.2 
17.0 
19.5 
17.1 
20.2 

13,852 
18,347 
15,292 
28,083 
27,285 
15,188 
17,457 
54,304 
57,092 
35,916 
24,207 
49,217 
56,133 
41,979 
33,725 
24,342 
27,420 
34,021 
29,422 
33,221 

002845 
.011819 
.003064 
.005691 
.002626 
.003064 
.009192 
.047713 
.034581 
.002626 
.005252 
.007223 
.002626 
.022324 
.006128 
.007004 
.002626 
003064 
.002626 
.336616 

'p3 47 
48 
49 
50 
51 
52 
!53 

1122 
1212 
1222 
1312 
1321 
1343 
1421 

1.8 
1.4 
1.4 
2.0 
1.7 
1.8 
2.0 

3.5 
7.0 
8.6 

12.7 
11.5 
14.7 
24.0 

87.8 
60.0 
68.3 
46.7 
96.8 

449.5 
104.0 

5.7 
5.9 
5.8 
5.7 
5.3 
7.0 
5.0 

350 
350 
350 
350 
350 
350 
350 

268 
232 
239 
242 
297 
61 

274 

350 
350 
350 
350 
350 
350 
350 

55.5 
49.2 
48.3 
44.5 
49.4 
34.2 
37.8 

102,973 
90,860 
88,914 
81,339 
90,543 
62,614 
67,506 

.012257 

.002626 

.010664 

.016415 

.018385 
008974 
.001094 . 



Table 6 (continued)
 

SoilOptimal 
 amnts. of ap- Optimal Profits
Models analysis' Sol Means of sol variables pm) Plied fert. (k ./ha) Prob. of
yieldso

number (kg./ha) soles/ha. alysis 

54 1422 
 1.6 21.2 107.4 5.9 
 350 177 350 34.7 62,447 .016633
55 1423 1.2 18.5 
 91.0 6.7 350 92 350 32.5 58,880 .010504
56 1432 
 1.5 18.5 164.0 6.0 
 350 174 350 37.1 67,167 .005252
57 1443 
 1.9 19.6 423.0 7.0

58 2121 2.8 3.3 99.2 

350 42 350 30.3 54,943 .008974

5.1 350 350 350 
 61.3 113,713 .019479
59 2123 3.4 2.5 110.0, 6z9 -
350 118 350 59.0 95,209 .005252
60 2132 3.7 4.0 172.0- 6.3 350 181 350 
 53.1 99,099 .003060
61 2133 
 3.5 3.9 150.8 -6.9 
 350 ii 350 49.8 93,149 .002845
62 2231 3.6 7.0 
 130.0 4.8 350 350 
 350 59.4 110,061 .005909
63 2232 
 3.1 6.0 162.0 6.0 350 350
214 51.6 95,776 .006128
64 2233 4.0 5.0 
 150.0 6.8 350 121 
 350' 50.5 
 94,478 .002626
65 2242 
 3.6 7.0 404.0 5.7 
 350 248 350 52.4 96,961 .002626
66 2312 2.2 14.2 
 51.1 5.8 350 199 
 350 41.7 76,139 .013351
67. 2342 3.6 13.5 557.0 6,0 
 350 196 350 41.- 76,283 .005252
68 2412 2.4 16.0 
 60.0 5.6 350 222 
 350 41.6- 75,609 .002626
25.7 102.0 4.8 350 350


69 2421 2.3 296 37.4 66,492 .003940
70 2422 2.3 
 30.3 102.7 5.8 350 
 156 350 27.0 47,154 .012694
71 
 2432 2.7 29.3 199.3 5.9 i25 163 131 
 20.4 37,208 .008536
72 2442 3.0 30,6 ;40-6 64I 
 0 167 0. 23.4 45,158 .005472
73 2443 2.4 22.0 860.0 6.7 350 65

74 

350 21.4 36,947 .005691
3121 4.2 4.0 72.0 
 5,b 350 350 350 
 62.1 115,305 .003502
75 3122 7.1 
 3.1 105,0 62,- 354 
 202 350 66.9 126,492 .007878
76 3131 4.2 2.5 - "
175 0 5 350
3 330 
 350 62-6 116,568 .005252
77 3141 
 4,8 2.8 310-0 5.2 
 350 320 350 63.7 118,820 .013131
73 3222 8.0 5.0 120.0 6.4 350 171 350 
 70.2 133,475 .002626
79 3231 5.4 7.3 167 8 5.3 
 -350 300 59.3
350 110,267 .036332
80 - . 3232 5.1 7.6 164.3 6.1 350 
 191 350 53.9 100,693 .026483
81 -3233 
 4.9 6.0 150.0 6.9 350 350
I06 '2.3 98,355 002626
-10 
 -5 ­ •835
.022 
 r 



Table 6 (continued)
 

Soil Optimal amts. of ap- Optimal 
 Profits Prob. of
Models analysis Soila Means of soil variables (ppm) plied fert. (ka1 ha°f yield soil

number jcode 
 NS PS KS PH- N K (kg/ha) soles/ha. analysis

I I1_ A . -A I A Y82 3241 4.9 5.4 301.7 5.4 350 
 287 350 59.2 110,254 1015102
83 3242 5.4 7.3 347.8 5.8 350 235 350 56.2 
 104,841 -005909

84 3331 4.5 10.0 200.0 
 5.0 350 322 350 55.6 102,584 -002626
85 3341 4.5 10.0 290.0 5.4 350 
 275 350 53.0 97,966 .002626
86 Average 3.3 11.3 179.7 5.8 350 220 350 47.8 
 88,083 .345371
 

Group 4 87 1113 2.0 
 4.0 45.0 7.6 263 350 
 350 9.4 10,791 .002626

88 1123 1.2 4.0 111.0 7.4 261' 350 350 12.8 
 17,588 .002626

89 1133 1.3 3.0 155.0 
 8.0 257 350 350 18.9 29,821 .021668
90 1223 1.7 7.0 89.5 7.4 263 328 350 
 11.8 15,811 .005252
91 1233 1.3 5.6 137.6 
 7.2 258 321 350 13.1 18,496 .010068
92 2113 2.2 4.0 60.0 7.7 266 350 
 350 12.1 16,138 .002626

93 2133 3.3 3.4 171.9 8.3 284 350 350 
 27.9 47,614 .020792
94 2213 2.1 6.0 60.0 7-6 
 273 350 350 11.6 15,016 c002626

95 2223 3.7 9.0 100.0 7.4 285 298 
 350 15.5 23,360 -002408
96 2233 3.4 6.2 189,8 7.9 288 350 350 23,6 
 38,890 -030860

97 2243 4.0 9,0 261.0 
 7.6 293 350 .50 18.3 28,231 .003064

98 2323 3c7 13.0 96.7 /.0 261 
 00 350 12,8 20,121 007223

99 2423 3,8 18.5 103-8 /,4 257 66 350 16.4 
 2i,188 004377


100 3233 9-2. 44 227.5 
 1.5 350 350 350 42.9 76,928 s005252
101 3333 4 5 13:0 146-5 7.1 273 122 
 350 16-8 27,910 .004815

102 3433 6.8 33.2 197.9 7,2 271 0 141 
 24.5 45,658 .009849

103 Average 3.3 8.1 157,3 
 7.7 284 350 350 19.4 30,655 :136135
 

-'a 



Table 6 (continued)
 

SolSoil Men soi s 
 'Optimal Opia rfiofa-
Model analysis Soi an ofsi variable amofiof ap-b
p ied fPertS (k/ha) yield ofi~number code N

nube s 
 K P NA P _ (kg./ha) soles/ha. anlsois 

- - - ! T ! [! ? A A KA y aayiGroup 5 104 1143 1.9 2.0 
 267.0 8.1 350 350
105 2133 0 48.3 89,746 .023638
3.2 2.4 183.9 8.5 
 350 350 350 40.2 71,655 .012694
106 2143 2.9 
 2.9 377.3 8.4

107 3123 5°6 

350 350 0 41.9 77,072 .025607
3.8 96.0 8.1 350 350
108 3133 5.9 
350 29.1 49,314 .017728
4.0 144.1 8.1 


109 3223 
0 350 350 32.3 59,039 .007223
6.1 5.0 85.0 8.0 0


110 3232 
350 350 34.2 62,831 .003940
5.1 5.7 202.3 6.3 350 350 350
i1 3242 5.3 19.7 30,622 .017072
7.0 242.0 6.2 350


112 Average 350 140 17.6 27,691 .005252
3.9 3.6 230.7 7.9 350 350 142 
 39.1 70,651 .113154
 

aEach of the digits in the numbers for the soil code refers to a soil class associated with the
NS, Ps, KS, and pH variables, respectively. For example, 2341 refers to the 2.1-4.0 interval 
of Ns, 8.1-15.0 interval of PS' > 230 interval of KS and < 5.5 interval of pH. 

€a 
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HAj - profits obtained from using the fertilizer recom­

mendations from each of the specifications of the
 

aggregate model for the Jth soil class and the
 

ith group model.
 

An application of the above formula resulted in an expected loss
 

of 4754 soles/hectare for the FC model, 5908 soles/hectare for the GLS
 

model, and 8281 soles/hectare for the RC model. The FC model gave the
 

least expected loss of all the three specifications and hence was
 

chosen as the 'best' specification for generating optimum fertilizer
 

recommendations to farmers for those soils not known to belong to any
 

particular group.
 

Sensitivity of Optimum Fertilizer Recommendations
 

to Changes in the Soil Variables
 

In the previous section, we used the cost of the wrong decision
 

analysis and tht distribution of experimental soils to obtain a choice
 

of a specification of the aggregate model. Here we will consider in
 

detail how the fertilizer recommendations change when the level of Ns,
 

P8, Ks, and pH change. This would enable us to obtain some idea of the
 

necessity of soil testing before making fertilizer recommendations.
 

Two sets of soil data are used and fertilizer recommendations for
 

all soils within each data set are generated. For one set of data, we
 

have the knowledge of the groups to which all the soil values belong and
 

for the other we have no such knowledge. For the soils used in gather­

ing the experimental data, we have the information regarding the group
 

to which they belong. Hence we can derive fertilizer recommendations
 

using the estimates of the coefficients for the appropriate group models
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from Table 3. For rainfall and temperature, the averages for each of
 

the groups was used. The steepest ascent method with constraints as
 

described earlier is used to generate optimum fertilizer levels. The
 

detailed results of the optimum levels of NA' PA' and KA and the cor­

responding yields for the experimental soils using each of the esti­

mated group models are given in Table 6. Apart from the soils in the
 

first group, the fertilizer recommendations are sensitive to the various
 

combinations of soil test values. As expected, the optimum yields also
 

vary substantially between the different groups and the different soils.
 

The optimum yields are %bout 1 1/2 to 2 1/2 times the average yields
 

for the experimental data for all the groups.
 

The second set of soils consists of a sample of 1541 Sierra soils
 

which were submitted to La Molina for soil testing for potatoes. This
 

set of soils was classified into the 144 soil classes described
 

earlier. For these soils we have no information regarding the group to
 

which they belong; hence, the FC model is used to generate fertilizer
 

recommendations.
 

The results of the optimum levels of NA, PA' and KA for the
 

La Molina soils using the FC model are given in Table 7. A total of
 
31
 

125 classes were considered. The recommendations for an average
 

soil with average weather were 350, 310, and 325 kg/ha for NA' PA'
 

and KA, respoctively, an approximate ratio of 10:9:9. Using similar
 

31Out of the 144 soil classes, 8 with a total probability of 0.05
 
had very low fertilizer recommendations. These soils had high
 
PS (> 30) and high K5 (> 350) or low NS (<1.5) which were beyond the
 
range for the experimental data used in estimating the models under
 
consideration. Eleven of the soil classes had zero probabilities;
 
hence, these nineteen soil classes were omitted from subsequent analysis.
 



Table 7. 
Optimal fertilizer recommendations, yields and profits derived from using the fixed
 
coefficients model for the different soil classes
 

Soill0
SolOptimal Optimal Prob. of
amts. of ap-tia Profits Po.o

anal- Soil Means of soil variables (p.pam.) t mli ts p yield soil
 
ysis codea -
 Kp lied i'ert (kg/a) g/a soles/ha. analysis
NS T SS A_/A AoNA AKA 

1 1111 1.0 4.0 55.0 4.5 350 
 350 350 37.2 65,534 .001298
2 1121 1.5 2.0 
 980 4.8 350 350 350 43.0 77,261 -000649

3 1131 18 3.0 142.0 
 5.2 350 350 344 42.7 76,599 .001947
 
4 1211 2.0 8.0 40.0 4.5 350 
 321 350 32.2 55,801 .000649
5 1231 1.3 5.0 170.0 5.0 350 350 334 37.7 
 66,719 .001298

6 1421 1.5 30.0 100.0 
 5.3 350 104 334 17.2 28,152 .000649
7 1431 2.0 32.0 170.0 5.4 350 
 81 306 18.6 31,404 000649
8 2111 3.3 2.6 47.6 4.8 350 350 350 43.9 
 79,047 .004543

9 2121 3.0 2.6 93.6 
 4.7 350 350 350 43.4 77,983 .006489
10 2131 3.3 2.5 170.7 5.1 350 350 
 333 44.9 81,063 012980


11 2141 2.5 2.0 286.3 5.1 350 350 290 
 45.2 81,861 .001947
12 2211 3.1 6.2 53.0 4.8 
 350 343 350 38.3 67,887 .006489
13 2221 3.6 6.3 101.8 5.1 350 350 350 
 40.0 71,131 .002596

14 2231 3.4 5.8 152.3 5.0 350 350 341 39.5 
 70,288 .003894
15 2241 3.6 5.0 350.0 5.2 350 
 350 266 41.1 73,839 .001298

16 2321 3.2 11.0 92.7 4.5 350 300 350 
 30.0 51,746 -001947

17 2331 2.7 9.3 197.3 
 5.0 350 320 314 33.5 58,779 001947
18 2341 3.1 13.0 240.0 4-6 350 
 275 293 27.5 47,323 000649
19 2411 3.3 18.0 50.0 5.4 350 228 350 
 24.5 41,381 000649
20 2431 2.3 21:0 170,0 5,4 
 350 199 315 21,0 35,015 .000649

21 2441 3.2 33,0 234.0 5.1 178 
 23 122 18.1 33,573 -000649
22 3111 5t7 2.0 47.5 5.1 350 350 350 
 49.2 89,682 007788
23 3121 6.5 2.1 95.2 
 5 0 350 350 350 49 8 90,891 .026609
 

3131 6.6 2.3 159-1 4-8
24 50 350 338 49.5 90,248 t026609
25 3141 5.9 2.3 393,3 5.0 350 350 250 
 48.3 88,362 .011033
26 3211 6.8 6.0 41.0 
 4.6 350 342 350 41.5 Y4,261 -003245

27 3221 6-9 6.5 104.1 4.9 350 
 341 350 41.0 73,283 .009086
 



Table 7 (continued) 

Soil
anal- Soil Means of soil variables (p.p.m.) 

Optimal amts. of ap-Ie fer, 
Optimal Profits
yielhd)oi 

Prob. of 

ysis 
no. 

codea NS 
N 

Pe 

HNA 

pl d fert. 

j 
(kg.ha.) 

A A 
kg./ha. soles/ha. 

Y 
analysis 

28 
29 
30 
31 
32 

3231 
3241 
3311 
3321 
3331 

6.3 
6.0 
7.2 
6.1 
8.5 

6.6 
6.2 

11.3 
12.1 
11.3 

172.9 
362.5 
58.3 
88.9 

170.0 

4.8 
4.9 
4.6 
4.5 
4.8 

350 
350 
350 
350 
350 

339 
343 
293 
288 
298 

325 
254 
350 
350 
322 

40.4 
41.1 
34.1 
32.0 
35.3 

72,153 
74,121 
60,037 
55,737 
62,485 

.012980 

.007139 

.001947 

.005192 

.004543 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

3341 
1431 
1112 
1122 
1132 
1142 
1212 
1222 
1232 
i242 
1322 
1332 

5.2 
6.8 
1.9 
1.5 
1.7 
2.0 
1.8 
1.5 
1.7 
1.7 
1.7 
1.2 

10.5 
37.1 
2.4 
3.5 
2.4 
4.0 
6.0 
6.4 
6.4 
8.0 

11.0 
11.0 

352.2 
172.3 
42.0 
82.5 

182.4 
300.0 
50.0 
89.6 

165.9 
444.0 
88.2 

175.5 

4.8 
5.0 
6.1 
6.0 
5.9 
6.1 
6.3 
6.0 
6.3 
6.1 
6.0 
6.5 

350 
350 
350 
350 
350 
350 
350 
350 
350 
350 
350 
350 

292 
11 

350 
350 
350 
350 
350 
350 
350 
327 
304 
306 

253 
304 
350 
350 
329 
285 
350 
350 
335 
222 
350 
320 

32.6 
25.7 
44.9 
40.8 
44.9 
41.2 
37.4 
37.3 
37.5 
32.7 
29.9 
28.5 

57,617 
46,331 
81,055 
72,722 
81,164 
73,967 
66,013 
65,792 
66,229 
57,504 
51,529 
48,821 

.003894 

.013629 

.003245 

.001298 

.005192 

.000649 

.001298 

.003245 

.004543 

.000649 

.007139 

.001298 
45 1342 1.4 12.5 480.0 6.2 350 276 203 24.7 42,265 .001298 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

1412 
1422 
1432 
2112 
2122 
2132 
2142 
2212 
2222 
2232 
2242 

1.7 
1.7 
1.5 
3.2 
3.0 
2.7 
2.9 
2.8 
2.9 
2.9 
3.4 

17.0 
22.3 
35.0 
2.8 
2.5 
2o1 
2.9 
6.0 
6.5 
6.3 
6.4 

43.3 
107.5 
125r0 
45.6 
89-4 

187,4 
255.7 
35.0 
78.5 

152.9 
298,0 

5.9 
5,8 
5.5 
6.0 
6.0 
6.0 
5.8 
6.5 
6-2 
6.1 
6,0 

350 
350 
152 
350 
350 
350 
350 
350 
350 
350 
350 

240 
192 
7 

350 
350 
350 
350 
350 
343 
350 
350 

350 
337 
138 
350 
350 
327 
301 
350 
350 
340 
286 

23.0 
19.6 
16.3 
45.2 
47o1 
46.5 
44c8 
38,6 
37.7 
39.6 
39.9 

38,236 
32,185 
30,337 
81,516 
81,347 
84,409 
81,029 
68,435 
66,745 
70,504 
71,401 

o001947 
.002596 
c000649 
.005192 
c014278 
.009735 
.004543 
.001298 
.002596 
.009735 
.007139 0 



Table 7 (continued) 

Soil 

anal-
yssno. 

Sola 
code 

Means of soHl variables (p P.M.) 
NS PS KS pH

IN IA 

Optimal amts. of ap- Optimal Profits 
plied fert. (kg,/ha.) yield 

N KA.) (kgAganalysis 
PA KA gaoY slsh, 

Prob. of 
soilsl 

57 2312 3.1 10.0 55,0 6,0 350 307 350 33.4 58,431 .001947 
58 2322 3.3 11.7 96.4 6.2 350 297 350 31.0 53,770 .007139 
59 2332 3.1 11.9 181.0 6.2 350 294 317 30.7 53,399 .007788 
60 2342 3.3 10.7 401.3 6.1 350 296 235 31.2 54,864 :005841 
61 2412 2.3 16.0 50.0 6.0 350 250 350 24.9 42,072 .000649 
62 2422 2.8 22.6 95.0 6.1 350 183 342 20.8 34,613 .003245 
63 2432 3.0 28.3 178.3 5.9 350 126 307 20.0 33,764 .005841 
64 2442 2.8 33.3 358.3 5.8 0 0 0 20.7 41,429 .001947 
65 3112 5.5 1.4 48.6 6.1 350 350 350 51.5 94,228 .004543 
66 3122 6.1 2.6 100.8 5.8 350 350 350 48.5 88,219 .012980 
67 3132 5.9 2.5 177.2 5.8 350 350 331 48.4 88,057 .01280 
68 3142 5.6 1.9 329.9 5.9 350 350 273 49.4 90,349 .005841 
69 3212 6.5 6.5 57.5 5.9 350 337 350 41.5 74,422 .001298 
70 3222 5.0 6.0 97.8 5.9 350 350 350 42.2 75,690 .005192 
71 3232 6.7 6.0 175.9 6.0 350 350 331 43.5 78,311 .012980 
72 3242 5.8 6.1 268.4 5.9 350 350 297 42.7 76,842 .004543 
73 3322 6-3 10.4 104.0 5.9 350 3i5 348 37.0 65,539 .003245 
74 3332 6-2 11.8 158.8 6-0 350 29- 325 j4.2 60,223 011033 
75 3342 6.1 11-8 345.0 6.0 350 287 255 33.3 59,070 .001788 
76 3412 6.7 19.0 60.0 6.4 350 223 350 26.7 45,822 000649 
77 3?132 6-7 26°7 1/0 4 5v9 350 138 311 23,8 41,277 .013629 
78 1113 1,6 2.2 46.9 8.1 350 350 350 37.6 66,4/0 01!682 
79 1123 1.7 1.9 82-3 8-2 350 i5O 350 37.4 65,893 015516 
80 i133 1.7 2.7 167.4 810 350 350 335 36.8 64,834 010384 
81 1143 1.3 3.5 302.8 7.9 iS0 350 284 34,3 60,247 -003245 
82 1213 1-8 6.1 52,8 6,9 350 350 350 36.2 63,595 005841 
83 1223 1.8 5,9 104.4 8.0 350 350 350 31 6 54,408 005192 
84 1233 1.7 6-8' 152.3 7.3 350 350 340 33 2 57,739 .010384 



Table 7 (continued)
 

So
anal-1 Soilolvribe I

1 S Means of soil variables Optimal amts.
m.)yeld of ap- Opi1 I rofts Po.oysis code NS S- Profits Prob. ofno. T KS pH ( g / aNAA 

PlPA )KA (kg./ha.)jsoles/ha,I e h a iA IA I Y analysis
 
85 1243 1.7 
 50 348.3 7.3 350 350 267 35.8
86 1313 63,299 .001947
1.5 15.0 50.0 
 7.4 350
87 1323 1.7 

264 350 21.1 34,262 .001298
10.3 101.0 7,5 350 322 
 350
88 1333 27.7 46,862 .006489
1.5 10.5 162.8 7.7 350 311 325
89 1343 41,696 .007788
1.8 13.3 280.0 8.7 350 
25.0 


90 1413 1.8 
291 279 16.1 24,441 .001947
25.0 40.0 
 7.5 350 165
91 1423 1.0 17.0 350 14.4 21,960 .001298
65.0 6.7 
 350 245 350 
 20.8
92 1433 2.0 33,831 .000649
18.0 170.0 7.3 350


93 1443 1.6 
237 317 19.9 32,354 .000649
29.6 403.6 7.9 
 0 24
94 2113 3.1 0 11.3 22,308 .004543
2.4 44.9 8.0 350
95 2123 3.1 
350 350 40.5 72,188 .033099
2.8 91.7 7.7 350 350
96 2133 350 40.5 72,164 .046728
3.1 2.9 167.7 7.7 350 350 335 40.5
97 2143 3.0 2.7 72,352 .024662
315.5 7.7 350 
 350 
 279 39.8
98 2213 3.0 71,261 .008437
5.9 49.8 7.7 350 350 
 350
99 2223 34.8 60,878 a017523
2.8 6.3 91.7 7.8 350 350 350
100 2233 2.9 6.5 34.2 59,650 .029854
162o6 8.0 350 
 350 
 337 31.6
101 2243 3.2 54,541 .021417
6.8 288.6 7.5 350 
 346 282
102 2313 34 2 60,042 009086
2.8 11.4 51:8 7.5 
 350 303 350
103 2323 27.8 4/,211 009086
3.2 111 
 93.9 7,6 350
104 2333 3.2 
312 350 27.6 46,71. -020119
1114 168,8 7:5 
 350 310
105 2343 324 28.5 48,851 -014278
2.9 10.3 297.5 8-2 350 318 276
106 2413 25.2 42,399 007788
2.6 24.8 52z5 
 6.9 350 64
107 2423 3.2 23.9 98.0 7.3 

350 18,1 295262 -002596

350 177 340 
 18.0
108 2433 29,032 .016225
3,1 31.6 176 1 
 7.5 350
109 2443 2.9 

89 305 16.4 26,9;3 .009i35
32,8 459.2 7,9 0 0
110 3113 15,3 30,605 z014278
5,6 2,8 47.7 7.4 350 350 350 
0 

44.3
ill 3123 6.2 2 8 79,846 1015576
94-6 7c4 350
112 3133 5.2 
350 350 44,9 81,069 .023364
2.1 169.7 V4 350 350 
 334 
 4403 79,799 .011523
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Table 7 (continued)
 

anal-anal- SSoili Mee n ovariables (2 D m l ,yi
yss od a ] s iS va i b e )Optimal amts. of ap- dof 
Pm-pied fert" (kg.iha') IOptimal IProfitscodeoae L- yie. IProbo ofP KSK i l" pH 

d (Ap_[ KN (kg,a soles/ha. soilanalysis
 
no. 
 _ _ _ __ A A Y 

113 3143 5-3 3.5 306t9 7.2 350 350 282 
 42-8 77,231 .009086
114 3213 5.3 
 6.2 45.8 7.1 350 350 350 
 40,0 71,113 .003894
115 3223 5.8 6.2 96.0 7.6 350 350 
 350 38-4 68,0i9 018172
116 3233 
 6.0 6.3 159.8 7.8 350 350 
 337 37.6 66,365 -013629
117 3243 6.3 
 6.2 393.7 7.4 350 350 250 
 38.5 68,863 .005841
118 3313 4.2 10.3 53.8 7.3 
 350 312 350 
 31o8 55,211 .002596
119 3323 5.8 10.7 
 90.9 7.4 350 
 309 350 31.6 54,819 .007139
120 3333 5.5 11.4 
 168.5 7.5 350 
 309 323 30,9 53,670 .006489
121 3343 5.2 12.6 393.9 7.6 350 281 236 
 26.5 45,592 .004543
122 3413 9.1 40.0 
 60.0 7.5 350 
 4 346 24.1 43,055 .000649
123 3423 5.3 24.7 94.3 7,2 350 
 167 342 20.3 33,799 .009735
124 3433 5.6 30.0 172.2 7.6 350 112 309 
 18.2 30,357 c012980
125 Average 4.2 10.8 158.0 
 6.7 350 310 
 325 31 0 53,724 ­

aSee footnote a, Table 6, for an explanation of the soil codes,
 

00 
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experimental data for 1960-1964 years, McCollum and Valverde S. (1968)
 

obtained a ratio of iM1l0:6 with lower levels of 272, 289 and 161
 

kg/ha for NA, PA' and KA, respectively. One reason for the difference
 

is that the limits for the McCollum and Valverde S. data were 160
 

kg/ha for all the three applied nutrients; whereas in the data used
 

here, it was approximately 350 kg/ha.
 

Using an FC model, Ryan's (1972) recommendations for the three
 

nutrients for similar data were 251, 250, and 126 kg/hg, respectively.
 

The current (1971) recommendations of the National Center of Soil
 

Analysis at La Molina, Peru, are about 130, 40, and 105 kg/ha for NA,
 

PA and KA, respectively, for an average soil. These are quite below the
 

above mentioned recommendations. Unlike the present study and that of
 

Ryan (1972), the La Molina Laboratory does not have the analyciAal pro­

cedures to address themselves to a simultaneous consideration of all
 

the factors in crop response. A more detailed comparison of the recom­

mendations generated in this study with the recommendations of Ryan and
 

the La Molina Laboratory is presented in the next section.
 

Nitrogen levels recommended using the fixed coefficients model gen­

erally resulted in about the maximum at 350 kgm/ha. Organic matter only
 

slightly influenced the recommendation-of applied nitrogen. However,
 

very high levels of Ps and Ks resulted in very low recommendations of
 

NA. Phosphorus recommendations depend strongly on the level cf soil
 
P . For soils with a P of less than 7 p.p.m., the maximum at 350 

kgm/ha is recommended. For soils with Ps greater than 7 p.p.m., the
 

recommendations fall gradually as P5 rises so that for a 
soil P of about
 

25-30 p.p.m., the recommendation is about 100-120 kgm/ha. Higher pH
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resulted in a slightly higher PA and higher Ks in a slightly lower PA
 

recommendation. Potassium recommendations are inversely related to the
 

level of soil K and to a lesser extent on the level of soil P5 and pH.
 

With a soil Ks of about 350 p.p.m., the recommended KA is about 250
 

kg/ha. Higher soil Ps results in a slightly lower recommendation for
 

KA 

It may be noted that we have not considered any risk aspects of
 

fertilizer decisions. A consideration of these aspects would undoubt­

edly change the optimum recommendations, depending on the utility
 

functions of the farmers. However, this is beyond the scope of this
 

study.
 

Value of Soil Testing and Buol's
 

Soil Classification System
 

The aim in this section is threefold: to compute the value of
 

soil testing using each of the group models and the FC model, to compute
 

the value of using the Buol's classification system, and to compare the
 

recommendations of this study from the FC model to those of Ryan and
 

La Molina Laboratory. The same underlying procedure of the "cost of
 

wrong decision" analysis as used by Havlicek and Seagraves (1962) is
 

followed here.
 

The value of soil testing for each of the group models is derived
 

as follows. First, a general recommendation for fertilizers is
 

derived for an average soil belonging to the group under consideration,
 

The expected profits derived from using this recommendation regardless
 

32See Ryan (1972) for a good review of literature on studies
 
related to these problems.
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of soil test results are compared with the expected profits from using
 

the group model to generate recommendations based on soil tests. The
 

formula used in calculating the value of soil testing for a group is
 

given by
 

a 

B(Gli i I(1ij - niA) Pij] (4.2) 
jal 

where E(Gi) - value of soil testing for the ith group, 

i - 1, 2, ... , 5 

a = the number of soil classes in group i 

Hij -profits obtained from using the fertilizer recom­

mendations for the jth soil class as predicted by
 

the ith group model from Table 6
 

HiA - profits obtained from using the fertilizer recom­

mendations for an average soil in the ith group
 

as predicted by the ith group model
 

P ij - probability of soil analysis for the jth soil
 

class in the ith group, according to the frequency
 

distributions of soils in the experiments.
 

The results of applying the above formula to the group models are given
 

in Table 8. It can be seen that the value of soil testing is quite low
 

at 443 soles/ha for the group 1 soils, and ranges from 1484 to 3185
 

soles/ha for the other group soils. 33 The value of using the soil test
 

33The soles/hectare can be converted to U. S. S/acre by dividing
 
with a conversion factor of 105.02.
 

http:soils.33
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Table 8. Value of soil testing for the group models and the fixed
 
coefficients model, using experimental data 

Expected profits using Expected profits 
recommendations using avg. recom. Value 

Model derived from the from group models of soil 
group models and and the ?C model testing 

the FC model 

(soles/ha.) (soles/ha.) (soles/ha.) 

Group 1 43,955 43,512 443 

Group 2 30,935 28,331 2,604 

Group 3 89,421 31,937 1,484 

Group 4 34,229 32,382 1,847 

Group 5 63,817 60,632 3,185 

All groups 54,140 52,109 2,031 

PC 63,155 55,708 7,447 
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results for all the groups was found to be 2031 soles/ha, which is
 

abdut'4 percent of the expected profits obtained in using optimum
 

fertilizer recommendations.
 

A similar calculation for the FC model using the experimental soils
 

data results in a value of soil testing of 7447 soles/ha. This result
 

leads to the conclusion that the value of soil testing in generating
 

fertilizer recommendations is about 11.8 percent of the expected profits
 

of 63155 soles/ha for the PC model.
 

Another important question that can be asked iswhat the gains are
 

in knowing that a soil belongs to a particular group. The value of
 

Buol's classification system can be found by assuming each of the group
 

models to be true, and comparing the expected profits derived from the
 

optimum recommendations from the group models to the expected profits
 

from the recommendations generated by the PC model. The formula used
 

in this calculation is given by
 

E(Oi) E (ij - nFj) Pij (4.3)
J=l
 

where E(Oi) Value of knowing that a soil comes from group i
 

i number of soil classes in group i
 

Hij = profits obtained from using the fertilizer
 

recommendations from the ith group model for
 

the Jth soil class and the ith group model
 

j, - profits obtained from using the fertilizer 

recommendations from the fixed coefficient 

model for the Jth soil class and the ith group 

model 
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Pij - probability of soil analysis for the jth soil 

class in the ith group, according to the frequency
 

distribution of experimental soils.
 

The results of this calculation are given in Table 9. The value of
 

knowing that a soil comes from group i varies from 1467 szlest ha for
 

group 5 to 9915 soles/ha for group 1. Combining all che groups, the
 

value of Buol's classification system is about 4754 soles/ha. This is
 

about to times the value of soil testing for all the groups and about
 

9 percent of the expected profits of 54140 soles/ha using the group
 

models. Thus, the value of knowing to which group a given soil belongs
 

can be substantial.
 

Using the above analysis, the recommendations generated in this
 

study are also compared to recommendations generated by Ryan (1972) and
 

La Molina Soil Laboratory. Assuming that the FC model is the true
 

model, the expected value of the recommendations from the FC model over
 

the recommendations for the model used by Ryan (1972) is given by
 

125 
E(FC) =- E (n - 11Rj) Pj (4.4) 

J-1 

where E(FC) - value of FC model compared to the model used by 

Ryan 

11 - profits from recommendations for the jth soil 

class using the FC model 

*Rj - profits from Ryan's recommendations for the Jth
 

soil class using the FC model
 

P - probability of the Jth soil class according to the 

frequency distribution of the La Molina soil samples. 
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Table 9. Value of Buol's soil classification system
 

Model 
Expected profits Expected profits 

using recommendations using recommendations 
derived from derived from 

the group models the FC model 

(soles/ha.) (soles/ha.) 

Group 1 43,955 34,040 

Group 2 30,935 24,638 

Group 3 89,421 85,461 

Group 4 34,229 31,443 

Group 5 63,817 62,350 

All groups 54,140 49,386 

Value of
 
Buol's
 

classification
 
system
 

(soles/ha.)
 

9,915
 

6,297
 

3,960
 

2,786
 

1,467
 

4,754
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The results of this calculation showed that the value of the FC model
 

in comparison with the model used by Ryan is 18,034 soles/ha, or
 

27.9 percent of the expected profits of 64,621 soles/ha for the FC
 

model.
 

A similar calculation used in comparing the recommendations from
 

the FC model over the La Molina recommendations resulted in a value of
 

24,258 soles/ha, or 37.5 percent of the expected profits for the FC
 

model. Thus, the cost of choosing the Ryan model or the La Molina
 

model is considerable if the FC model is correct.
 

Summarizing this section, itwas found that the value of soil
 

testing for the diffecent group models and the FC model ranged from 443
 

to 7447 soles/ha. The value of Buol's classification for each of the
 

groups ranged from 1467 to 9915 soles/ha and was on the average
 

about two times the value of soil testing. Thus, knowing the group to
 

which a soil belongs is of more value than knowing the soil test
 

results. Assuming the FC model to be true, the cost of using the
 

recommendations given by Ryan and the La Molina Laboratory was sub­

stantial and ranged from 27.9 to 37.5 percent of the expected profits
 

for the FC model.
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CHAPTER 5
 
SUMMARY AND CONCLUSIONS
 

This study has been devoted to generating optimal fertilizer recom­

mendations to individual potato farmers by estimating generalized
 

crop-fertilizer production functions using potato response data from
 

the Sierra region of Peru. Models at two levels of aggregation were
 

considered, the group models and the aggregate models. The group models
 

were based on pooling data from the locations into five groups on the
 

basis of Buol's soil management classification system. The aggregate
 

models were based on pooling data from all the experimental observa­

tions. The group models were assumed to represent the true structure.
 

The basic assumptions underlying the structural relationship were that
 

each group has a different coefficient vector and a different error
 

variance. The functional form for all the models was assumed to be a
 

generalized quadratic response relation, similar to the one used by
 

Ryan (1972). Given the knowledge regarding the group to which any soil
 

belongs, the group models are used to generate optimum fertilizer ric­

ommendations for that soil. On the other hand, if we do not know the
 

group to which any given soil belongs, then an aggregate model has to
 

be used to generate fertilizer recommendations for that soil.
 

In this work, three specifications of the aggregated models, the
 

fixed coefficients (FC) model, the generalized least squares model
 

(GLS), and the random coefficients (RC) model were considered. The
 

assumptions and the estimation procedures for the coefficients of each
 

of the specifications of the aggregate model were considered in detail.
 

The relationship between the different specifications of the aggregate
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model and the group models were also described. The criterion used in
 

describing this relationship is that of the aggregate model as esti­

mating the average of the group models. In aggregation literature
 

(Theil, 1954), an average of the group models is the best single rela­

tion that represents the true group models for prediction purposes. A
 

number of statistical tests were conducted to test some of the assump­

tions of the different specifications of the aggregate model.
 

Bartlett's test for homogeneity of error variances between the groups
 

resulted in a rejection of the hypothesis that they are equal. If the
 

error variances are not equal, it
was noted that the least squares
 

estimators of the coefficients of the FC model are inefficient. An F
 

test resulted in 
a rejection of the hypothesis that the coefficients of
 

the different groups are equal. If these coefficients are not equal,
 

it was shown that the estimators of the coefficients of the FC model
 

are biased estimators of the average of the coefficients of the group
 

models. Zellner's F test also led to a rejection of the hypothesis
 

that the coefficients of the different group models are equal assuming
 

different error variances. Thus, we accepted the hypothesis that the
 

estimators of the coefficients of the GLS model are also biased
 

estimators of the average of the coefficients of the group models. The
 

RC model was shown to provide a consistent and efficient estimate of
 

the coefficients of the average function. However, five of the diagonal
 

elements of the estimated matrix of the coefficients of the RC model
 

were negative, and as explained in the third chapter, this result is
 

inconsistent with the assumptions of the RC model. 
 From these results,
 

we can conclude that none of the specifications of the aggregate model
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are likely to provide unbiased estimates of the average of the group
 

models' coefficients.
 

F tests of the equality of the coefficient vectors between all the
 

groups in combination of two groups at a time also resulted in 
a re­

jection of the hypothesis that the coefficients between any two groups
 

are the same. This leads to the conclusion that Buol's criteria does
 

classify soils into groups with significantly different response
 

coefficients.
 

The "cost of the wrong decision" criterion was used as a basis for
 

the choice of a specification of the aggregate model. This criterion
 

involves calculating the reduction in net revenues obtainable from
 

the different specifications of the aggregate model recommendations,
 

assuming the group models are in fact the true response curves.
 

Analytical solutions for the profit maximizing fertilizer levels
 

could not be obtained in every situation. In some cases the point
 

estimate of the optimum fertilizer levels was considerably in excess
 

of the maximum experimental application. In other cases, the station­

ary point was a minimum or a saddlepoint. To overcome these problems,
 

the profit maximizing levels were obtained using a steepest ascent
 

search technique with lower and upper constraints of 0 and 350
 

kgs/hectare, respectively.
 

Fertilizer recommendations for different soil classes using all
 

the models were generated. Assuming the group models to be true, the
 

expected losses from using the different specifications of the aggre­

gated model were calculated. For the FC model, the expected loss was
 

4754 soles/ha (U.S. $45.28/acre), for the GLS model itwas
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5908 soles/ha (U. S. $56 .26/acze), and for the RC model it was 8281
 

soles/ha (U. S, $78.85/acre).
 

The fixed coefficients model was fcund to have the least expected
 

loss of the three specifications and was thus chosen as 
the 'best'
 

model for geneTating fertilizei recoinendations for those soils for
 

which we have no kncwledge of the grcups to which they belong.
 

Fertilizer recommendations and profits for the different soil
 

classes were obtained for two cases, (1) For 
a soil known to belong
 

to any given group, the experimental soils data and the group models
 

were used to generate fertilizer recommendations. (2) For a soil not
 

known to belong to any given group, the La Molina soils data and the
 

FC model were used to generate fertilizer recommendations. The results
 

show that it is important to take into account simultaneously all the
 

factors in the response relation. The value of soil testing for the
 

different group models and the FC model ranged from 443 soles/ha
 

(U. S. $4.22/acre) to 7447 soles/ha (U. S. $70.91/acre). The value of
 

Buol's classification for each of the groups ranged from 1467 to
 

9915 soles/ha (U. S. $13.97 to $94.43/acre) and was more than two
 

times the value of soil testing. Assuming the FC model to be true,
 

the cost of using the recommendations given by Ryan and the La Molina
 

Laboratory was substantial and ranged from 27.9 to 37.5 percent of the
 

expected profits of 64,621 soles/ha (U. S. $615.32/acre) for the FC
 

model.
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Appendix A Table 1. Buol's criteria for the fertility capability soil
 
classification system.a
 

b
 

L - loamy soils: 
C = clayey soils: 
S - sandy soils: 
- organic soil: 

Substrata typec
 

L - loamy soils: 
C - clayey soils: 
S - sandy soils: 

< 35% clay but nut loamy sand or sand
 
> 35% clay
 

loamy sand or sand (USDA)
 
> 30% o.m. to a depth of 50 cm or more
 

texture as in type
 
texture as in type
 
texture as in type


R - rock or other hard root restricting layer
 

Condition modifierd
 

E bases + unbuffered Al < 3
 
e - (exchange): CEC by E cations @ pH 7 < 7 meq/100 mg soil
 

Ecations + Al + H < 10
 
v - (vertic): very sticky, plastic clay; COLE > 0.09; 

> 35% clay and > 50 2:1 expanding clay 
x - (x-amorphous clay): pH > 10 in IN NaF; or positive to field 

NaF test 
a - (Al toxic): > 60% of CEC is Al within 50 cm of surface 
h - (acid): 10-60% of CEC is Al within 50 cm of surface 
i - (iron): free Fe203/clay > 0.20 

Ca - (CaCO3): free CaCO3 within 50 cm 

k - (potassium): < 10% weatherable minerals in 20-2000u fraction 
within 50 cm 

Na = (sodium): > 15% of CEC is Na within 50 cm 

s - (salt): > 4 mmhos/cm2 @ 25' within IM
 
g (gley): mottles < 2 chroma within 60 cm of surface
 
d (dry): ustic or xeric environment; dry > 60 days per year
 
c (cat clay): pH in I:I H20 < 3.5 after drying; Jazosite
 

mottles with hues 2.5 Y or yellower and chromas
 
6 or more within 50 cm; H2S odor in field often
 
sufficient
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Appendix A Table 1 (continued)
 

aSource: Buol (1972).
 

bTexture is average of plow layer or 20 cm depth, whichever is
 

shallower.
 

CSubstrata type modifier is used if a textural change or hard
 
root restricting layer such as rock is encountered within 50 cm.
 

dCondition is present in plow layer or 20 cm, whichever is
 
shallower unless otherwise specified.
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Appendix B. Simple Statistics of the Variables in the
 
Experimental Data
 



Appendix B Table 1. Means and standard deviations of the variables from the experimental data for 

the group and the overall data 

VarablUntsGroup 1 
Variablemean S.D 

Group_2... 
mean S.D. 

GroupR 3 
mean S.D. 

NS 

PS 

KS 

pH 

NA 

PA 

KA 

R 

T 

y 

percent o.m. 

p.p.m. P 

p.p.m. K 

standard units 

kg./ha. 

kg./ha. 

kg./ha. 

m.m. 

C 

metric tonslha. 

No. of observations 

4.21 

7.84 

226.46 

6.91 

127.77 

132.48 

153.12 

540.89 

7.16 

14.14 

1.95 

7.45 

164.94 

4.08 

52.95 

69.21 

71.13 

2.50 

0.72 

6.03 

314 

4.73 

7.54 

135.48 

4.67 

140.27 

149.32 

117.69 

562.03 

6.02 

14.57 

3.51 

4.93 

71.20 

0.71 

51.44 

88.41 

60.48 

191.15 

2.05 

8.88 

1538 

3.30 

11.27 

179.7 

5.77 

144.40 

132.33 

120.94 

538.93 

6.51 

23.6 

1.81 

8.16 

154.32 

5.88 

53.44 

86.87 

62.57 

64.07 

1.13 

12.04 

1578 

C30 



Appendix B Table 1 
 (continued)
 

Variable Units 

NS percent o.m. 


PS p.p.m. P 


KS p.p.m. K 


pH standard units 


NA kg./ha. 

PA kg./ha. 

KA kg./ha. 

R m.m. 

T C 

Y metric tons/ha. 

No. of observations 

Group 4 
 Group 5 
mean 


3.91 


8.48 


170.76 


5.98 


140.04 


148.44 


121.56 


558.42 


6.25 


17.96 


All 
S.D.
 

2.60
 

7.12
 

120.67
 

1.36
 

53.25
 

103.15
 

64.22
 

142.83
 

1.53
 

10.70
 

4569
 

mean 


3.26 


8.11 


157.30 


7.71 


138.84 


144.92 


121.16 


508.46 


6.30 


14.55 


S.D.. 


1.99 


8.42 


50.50 


0.51 


55.09 


120.36 


60.34 


164.40 


0.93 


7.89 


622 


mean 


3.89 


3.55 


230.73 


7.85 


134.89 


208.94 


116.30 


677.93 


5.51 


17.24 


S.D. 


1.53 


1.49 


108.50 


7.99 


54.41 


151.23 


74.33 


89.38 


1.27 


9.14 


517 



