	A. PNIMARY Agriculture	
	e. secondary Irrigation	

2. TITLE AND SUBTITLE

Flow through vortex tube sediment ejectors
3. AUTHOR(S)

Mahmood, Khalid

$\begin{aligned} & \text { 4. DOCUMENT DATE } \\ & 1975 \end{aligned}$	3. number of pages 30 p .	6. ARC NUMEER anc

7. REFERENCE ORGANIZATION NAME AND ADDRESS

Engineering Research Center, Colorado State University, Fort Collins, Colorado 80521
6. SUPPLEMENTARY NOTES (Sponeoting Organlaallon, Publlohert, Avallabllity)
(In ASCE Irrigation and Drainage Div. Specialty Conf., Logan, Utah. Proc.p.421-450)
Pn
9. Abstract

An analytical model of the flow and sediment conduction through a vortex tube has been developed herein. This model combines the spatially varied flow equations with the sediment transport model in sand bed channels. The empirical coefficients introduced in the model have been investigated with the help of Robinson's $8-\mathrm{ft}$. flume data (10). It is found that the coefficients of velocity C_{V}, of area C_{a} and of lateral momentum inflow C_{IL} can be considered as constants for the rubes investigated by Robinson. However, the vortex flow coefficient, C_{I} is found to be a function of the tube geomtry and the Froude numver of flow on the tube. Knowing the CI - IF relation for a specific tube geometry, it is possible to use this model to investigate various characteristics of the vortex tube flow. Three numerical examples have been used to show the verification of laboratory study data, and the effect of variation of parameters on the sediment conduction through the tube.

FLOW THROUGH VORTEX TUBE SEDIMENT EJECTORS

Abstract

An analytical model of the flow and sediment conduction through a vortex tube has been developed herein. This model combines the spatially varied flow equations with the sediment transport model in sand bed channels. The empirical coefficients introduced in the model have been investigated with the help of Robinson's 8-ft. flume data (10). It is found that the coefficients of velocity C_{V}, of area C_{i} and of lateral momentum inflow C_{11}, can be consilered as constants for the tubes investigated by Robinson. However, the vortex flow coefficient, C_{I} is found to be a function of the tube geomery and the Proude number of flow on the tuhe. Knowing the $C_{1}-1 F$ relation for a specific tube peometry, it is possible to use this model to investigate various characteristics of the vortex tuhe flow. Three numerical examples have been used to show the verification of laboratory study data, and the effect of varjation of parameters on the sediment conduction through the tube.

Reprinted from the Proceedings of the ASCE Irrigation and Drainage Division Specialty Conference held at Logan, Utah August 13.15, 1975.

FLOW THROUGH VORTEX TUBE SEDIMENT EJECTORS

Khalid Mahmood ${ }^{1}$, M.ASCE
In the design of irrigation diversion and distribution systems supplied from alluvial rivers, a major consideration is the sediment discharge equilibrium of the system. Generally it is more economical to control the sediment inflow at the diversion structures and to eject excess sediment near the headworks than to, treat a sediment problem that has been diffused through the distribution system. Therefore, under the usual conditions encountered in diversions from sand bed rivers, sediment discharge equilibrium can bu optimally achieved by limiting the sediment discharge past the heid reaches to the sediment handling capacity of the system.

A varicty of sediment control measures have been evolved in the past. Of the on-line, continuous-operation sediment control measures, the vortex tube ranks as the more successful structure. A vortex tube sediment ejector consists of a tube built in the crest of a bed contracrion. The tube has a longitudinal slit on top and is laid across the flow normally or at an angle of 30° to 90°. The tube discharges into an escape channel and the discharge end of the tube can be under free or submerged flow condition. The schematic layout of a vortex tube sediment ejector is shown in Figure 1.

The hydraulic and sediment conduction characteristics of vortex tubes have been investigated in a number of studies ($1,3,5,9,10,11$). Most of these studies have been laboratory scale model studies. These studies served a useful purpose at the time in explaining the behavior and action of vortex tubes and in developing their design criteria. However, the water and sediment conduction through the vortex tube involves two distinct phenomena: (1) the spatially varied flow in the tube and (2) the sediment transport as bed load and as suspended load in the approach flow. It is nearly impossible to simultaneousiy scale relevant aspects of these two phenomena in small scale physical model studies. The laboratory studies are therefore of a limited value when their results are to be extrapolated to different size scales or to different sediment transport regimes. To overcome this difficulty, an analytical model is developed herein for the hydraulic and sediment conduction aspects of vortex tubss. The verification of this model and the evaluation of empirical coefficients have been made from Robinson's data on nine different vortex tubes studied by him in an 8 ft flume at Colorado State University (10). The use of this model is also illustrated for the study of various design and sediment conduction characteristics of vertex tube flow

[^0]

COMPETIITION FOR RESOURCES

Figure 1. Schematic Layout of a Vortex Tube.

HiURAULICS OF A VORTEX TUBE

Hydraulically, there are two characteristics of the vortex tubo flow: (1) the flow is spatially varied along the length of the tube and (2) a vortex is superimposed on the longitudinal flow due to the flow entering the tube. To analyze the flow through the tube, the force-momentum relations are applied as follows:

Equations of Flow

Consider a cross-section of the vortex tube normal to its length (Figure 2). At this sectica, one dimensional continuity and momentum equations can be written along coordinate s measured along the centerline of the tube as:

$$
\begin{equation*}
\frac{d Q}{d s}=q_{1}=C_{a} a C_{v} \sqrt{2 g \Delta h_{e}}=C_{a} a V_{I} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d F}{d s}=\frac{d}{d s}\left(\rho \frac{Q^{2}}{A}\right)-c_{I L} \rho q_{I} V_{I} \cos \phi \tag{2}
\end{equation*}
$$

where Q = longitudinal discharge in the tube, q. inflow discharge intensity por unit length of the tube, (C a) - dffective area of the slit per unit length of the tube, normal to the velocity of inflow $\left(V_{1}\right), F=$ sum of all the forces acting on this cross-section along - direction; ρ e iass density of the fluld, $A=$ cross sectional area of the tube normal to its length and $C_{I L}$. coefficient of lateral momentum influw in the tube due to q_{1}. In lquations (1) and (2), quantities, q_{I}, a, V_{1}, F, Q and A are functions of coordinates. However the coefficients C, C_{v} and $C_{I L}$ are considered independent of s and entirely dependent on the tube geometry. Their evaluation will be discussed later.

Vortex Flow

Based on the lescriptlons of the flow in the laboratory and prototype vortex tube structures $(5,9,10,11)$, it is known that at the cross-section under consfderation, a forced vortex, is generated due to the inflow. It is assumed that the vortex has an angular velocity, w (a function of s) and that the tangential velocity V_{c} at the periphery of the tube is related to the inflow velocity component normal to the tube axis. V_{1} sin ϕ (ligure 2) as

$$
\begin{equation*}
v_{c}=\frac{w d}{2}=c_{1} v_{1} \sin +\frac{c_{1} q_{1}}{C_{a} a} \sin \tag{3}
\end{equation*}
$$

where d - depth of tube invert below its upstream lip (1 igure 3) and the vortex flow coefficient C_{1} depends on geometry and layout parameters of the tube as well as on the velocity and velocity distribution of the approach flow. It is assumed that $C_{j}, 0$ even when the downitream lip of the tube is at or below the level of the upstream lip (0 - 0 in figure 3).
Pressure fastribution in the flow
To resolve the pressure d'strlbution in the cross-section, it is assumed that the flow can be decomposed in nearly parallel fiow along the length of the tube and the forced vortex as described above.

COMPETITION FOR REGOURCES

Figure 2. Inflow velocity Components in an Inclined Vortex Tube.

Figure 3. Ceometrical Parameters of Vortex Tube on a Cross Seition
Normal to Tube Length.

The pressure distribution is then obtained by the superposition of :
(1) hydrostatically varying pressure along the depth of the tube and
(2) the pressure field due to the vortex. Considering a point ($r, 0$) in the cross-section, Figure 3 ,

$$
\begin{equation*}
p(r, 0)=p_{c}-\rho g r \sin 0+\frac{2 \rho q_{I}^{2} c_{I}^{2} \sin ^{2} \phi}{C_{a}^{2} a^{2}}\left(\frac{r}{d}\right)^{2} \tag{4}
\end{equation*}
$$

where p pressure on the centerline of the tube ($r=0$) and g : eravitatfonal acceleration. At the top of the tube, in the plane of the slit,

$$
p_{1}=p\left(\frac{d}{2}, \frac{\pi}{2}\right)=p_{c}-\rho g \frac{d}{2}+\rho \frac{q_{I}^{2} c_{1}^{2} \sin ^{2}}{2 c_{a}^{2} a^{2}}
$$

and the average pressure on the cross-section is

$$
\begin{equation*}
\bar{p}=p_{c}+\frac{\rho}{4} \frac{q_{1}^{2} c_{1}^{2} \sin ^{2} \phi}{c_{a}^{2} a^{2}} \tag{6}
\end{equation*}
$$

Inflow Discharge Intensity
The inflow discharge intensity, q_{I} can be related to the prossure difference across the slit as

$$
\begin{equation*}
q_{I}=C_{v} C_{a} a \sqrt{2 g \Delta h e} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& q_{I}=A_{2} \sqrt{\Delta h} \tag{8}\\
& \text { hore } \quad A_{2}=\sqrt{2 g\left(\frac{C_{v}^{2} C_{a}^{2} a^{2}}{1+C_{v}^{2} c_{1}^{2} \sin ^{2}}\right)} \tag{9}\\
& \Delta h=\left(11+\frac{d}{2}-\frac{P_{c}}{\rho g}\right) \tag{10}\\
& \text { whore } \\
& \text { and }
\end{align*}
$$

Porces Acting on the Cross-Section
Considering all the forces acting on the cross-section

$$
\begin{equation*}
\frac{d F}{d s}=\rho g A \operatorname{stn} a-\tau P \cdot \frac{d}{d s}(\bar{P} A) \tag{11}
\end{equation*}
$$

Componont due to: gravity-boundary shear-prossure
where a e inclination of the tube invert with the horizontal considered positive downard in the direction of tube flow, $t=$ boundary shear stress $\frac{\rho f Q^{2}}{8 A^{2}}, f=$ Darcy-Weisbach friction factor, P - wetted perimoter of the tube and $A=$ the cross-sectional area of the tube.

Equation of Flow

Introducing Lquation (11) anc the expressions for other quentities in Equation (2), yields

$$
\begin{equation*}
Q^{\prime} Q^{\prime \prime}+A_{\star} Q^{\prime 2}+B_{\star} Q Q^{\prime}+C_{*} Q^{2}+D_{*}=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q^{\prime}=\frac{d Q}{d s}, Q^{\prime \prime}=\frac{d Q^{\prime}}{d s}, A_{*}=\frac{1}{2 A} \frac{d A}{d S}-\frac{1}{a} \frac{d a}{d s}+\frac{2 a C_{1 L} \operatorname{Cos} \phi}{C_{a} A A_{1}}, B_{*}=-\frac{4 a^{2}}{A^{2} A_{1}}, \\
& C_{*}=\frac{-2 a^{2}}{A^{3} A_{1}}\left(\frac{f P}{8}-\frac{d A}{d s}\right), D_{*}=\left\{\frac{-2 a^{2}}{A A_{1}} g\left(I I+\frac{d}{2}\right) \frac{d A}{d s}+\frac{2 a^{2}}{A_{1}} g \sin a\right\} \\
& \text { and }
\end{aligned}
$$

Equation (12) is a second order non-linear differential equation with variable coefficients. The solution of this equation describes the flow and pressure variation along the length of the tube. The manner In which this equation is usually solved makes it a boundary value problem. It can be numericall, solved if two boundary conditions are specified. However, in some particular cases, this equation can be analytically solved. The case of a horizontal laid prismatic tube is one such case. The rest of this paper is exclusively concerned with the water and sediment flow through horizontal prismatic tubes.
Sosution for Horizontal Prismatic Vortex Tubes
Equation (12) is considerably simplified for the case of a horizontally laid, prisma.ic tube, that has a conscant slit width, For this condition, $D_{*}=0$ and Lquation (12) becomes a homogeneous equation with constant coefficients:

$$
\begin{equation*}
Q^{\prime} Q^{\prime \prime}+A_{\star} Q^{\prime 2}+B_{*} Q Q^{\prime}+C_{\star} Q^{2}=0 \tag{13}
\end{equation*}
$$

The bourdary conditions for Equation (13) are

$$
Q(0)=0 \text { and } Q(L)=Q_{T}
$$

where $Q_{T}=$ discharge at the exit of the vortex tube. Assuming as a
solution

$$
\begin{equation*}
Q(s)=Q_{0} \exp (k s) \tag{14}
\end{equation*}
$$

where $Q_{0}=$ constant greater than 0 , Equation (13) becomes

$$
\begin{equation*}
Q_{0} \exp [2 k s] \cdot\left\{k^{3}+A_{\star} k^{2}+B_{\star} k+C_{*}\right\}=0 \tag{15}
\end{equation*}
$$

Por a nontrivial solution of Equation (15),

$$
\begin{equation*}
k^{3}+A_{*} k^{2}+B_{n} k+C_{*}=0 \tag{16}
\end{equation*}
$$

To be compatible with the physical situation, the largest positive root of Equation (16) substituted in Equation (14) will nrovide a solution of Equation (13) along the length of the tube. This solution can also satisfy the downstream boundary condition $Q(L)=Q_{T}$, so
that from Equation (14), $Q_{0}=U_{T} \exp (-k L)$. However, it can only satisfy the upstream boundary condition asymptotically becausa $Q(0) \rightarrow$ 0 as $L \rightarrow \infty$ and the tube is not infinitely long. Assuming a long tube so that $Q(0)=Q_{T} \exp (-k L)=0$, the solution for the discharge in the vortex tube is:

$$
\begin{equation*}
Q(s)=Q_{T} \exp [k(s-L)] \tag{17}
\end{equation*}
$$

Por this solution, the variation of inydraulic quantities in the tube can be obtained as:

Inflow discharge intensity, $q_{I}=Q_{T} k \exp [k(s-L)]$
Differential pressure head from Equation (1),

$$
\Delta h=\left(H+d / 2-p_{c} / \rho g\right)
$$

and from Equation (18),

$$
\begin{equation*}
\Delta h=\frac{Q_{T}{ }^{2} k^{2}}{A_{2}^{2}} \exp [2 k(s-L)] \tag{19}
\end{equation*}
$$

Conterline pressure in the tube, $\frac{p_{c}}{\rho g}=\left(H+\frac{d}{2}\right)-\frac{Q_{T}^{2} k^{2}}{A_{2}^{2}} \exp [2 k(s-L)]$ (20) and,

$$
\begin{equation*}
\text { Angular velocity, } \omega=\frac{2 Q_{T} k C_{I} \sin \phi}{C_{a} a d} \exp [k(s-L)] \text {. } \tag{21}
\end{equation*}
$$

Equations (17) through (21) indicate that the flow parameters vary exponentially along the length of the tube. The exponential parameter k is deticrmined from Equation (16). It is a function of the tube geometry and the coefficients C_{y}, C_{a}, C and C introduced at various stages of the model. Given the tube geometry and the appropriate values of these coefficients, a unique value of k can be determined.

Evaluation of Coefficients

Coefficients $C_{Y}, C_{,}, C$ and C_{L} can be indirectly measured by investigating varlous ${ }^{\text {a components of }}$ the flow through vortex tubes. In general hydraulic quantities avallable from the previous vortex tube studies (refer lig. 1) are the discharge intensity q in the channel, the depth of flow $\|$ over the tube, the tube discharge Q_{T} and the centerline pressure Pc_{e} at the discharge end. In the study reported herein, the writer has used Robinson's data from his 9 experlmental series (10) for evaluation of these coeffictents. Essentially Robinson, investigated different vortex tube shapes and sizes over a sand bed with the median size, $\mathrm{U}_{50}=0.54 \mathrm{~mm}$ and the gradation coefficient, $\sigma=2.0$ in an 8 ft refirculating flume. His experimental procedure is described elsewhere (10). All these tubes were placed at $\phi=45^{\circ}$ and a wide range of was investigated for each vortex tube. The data aro listed in Table l. In analyzing Robinson's data, the writer assumed the following values based on his own experience with similar situations in spatially varied flow:
$C_{A}=0.60$
$C_{V}=0.985$
$C_{\text {IL }}=1.00$
table 1. robinson's vortex tube data in 8 ft flume.

4	$\begin{gathered} \text { Fines } \\ \text { Discherse } \\ \text { Qefs } \end{gathered}$	Flow on the Tibe			$\begin{gathered} \text { Morking head } \\ \text { at disharea end } \\ \Delta \mathrm{h}(\mathrm{~L}) \\ \mathrm{ft} \end{gathered}$	Vorter coefficient$\text { [Eq. } \begin{gathered} (16) \\ C_{1} \end{gathered}$	Eed Meverial Concentratio	
		Froude Mo.	$\begin{gathered} \text { Depeth of flom } \\ \mathrm{Hft}_{\mathrm{ft}} \end{gathered}$				$\begin{gathered} \text { Flur flou } \\ \text { (cpstrate of tube) } \\ c_{r} \end{gathered}$	
asat-05-43	5.14	0.328	0.492	0.780	0.712	3.050	56	97
NRE-05-44	5.94	0.455	0.436	0.756	0.656	2.918	327	1055
Mes-0s-45	6.85 7.27	0.597	0.400 0.357	0.764 0.644	0.620 0.577	2.468	888	3610 5390
NER-05-47	7.60	0.875	0.332	0.684 0.654	0.577	4.947	854	5730
mat-OS -as	7.18	0.892	0.29:	0.680	0.514	2.509 3.621	905	4470
Tube ARA-06, A $0.0 .197 \mathrm{ft}^{2}$, d $0.440 \mathrm{ft}, \mathrm{P}=1.350 \mathrm{ft}, \mathrm{A}=0.287 \mathrm{ft}, \mathrm{c}=0.091 \mathrm{ft}$.								
	5.59	0.325	0.525	0.820	0.745	3.761	67	123
Nea-06-50	6.74	0.440	0.486	0.817	0.706	3.335	24	8
NaR-06-51	6.95	0.607	7.399	0.800	0.619	2.116	924	5790
NR-06-52	7.26	0.669	0. 387	0.867	0.607	1.878	76	3860
N00-07-520	18.94	0.622	0.768	1.070	0.988	1.133	1096	5660
NRE-07-53	18.72	0.630	0.756	1.050	0.976	1.207	1911	18317
NRR-07-54	14.72	0.357	0.940	1.130	1.160	1.283	615	3105
ARE-07-55	21.11	1.178	0.540	1.030	0.760	0.566	2067	14453
NRR-07-56	21.23	1.054	0.583	1.040	0.803	0.669	1250	11552
A8R-07-57	20.79	0.829	0.675	1.040	0.895	1.012	1838	11565
Netat-07-5it	21.68	1.321	0.549	0.770	0.729	2.363	2062	13769
ARE-07-59	18.65	1.311	0.463	0.700	0.683	3.100	2535	25362
ARE-07-60	18.41	1.181	0.492	0.700	0.712	3.401	1337	9615
NRE-07-61	20.86	1.340	0.491	0.770	0.711	2.249	2915	18662
Nat-07-62	12.05 16.47	0.307	0.911	1.110	1.131	1.314	202	278
Ne8-07-64	20.56	0.835	0.967	1.060	0.128	0.982	488	4304
AR2-07-65	18.89	0.675	0.727	1.080	0.947	0.957	2185	${ }_{1} 18038$
N12-07-654	18.85	0.769	0.665	1.050	0.885	0.924	2635	24900
ARE-07-66	18.87	0.705	0.705	1.080	0.925	0.888	2133	15758
N12-07-67	18.92	0.999	0.560	1.080	0.780	0.580	1651	9962

COMPETITION FOR RESOURCES

TABLE 1 (CONTINUED)

[0N	$\begin{aligned} & \text { Flume } \\ & \text { Discharge } \\ & \text { Qefs } \end{aligned}$	Flow on the Tube		$\begin{aligned} & \text { Tube } \\ & \text { Discharge } \\ & { }^{\text {Q }}{ }_{\text {Tcfs }} \end{aligned}$	$\begin{aligned} & \text { Working head } \\ & \text { at discharge end } \\ & \Delta h(L) \\ & \text { ft } \end{aligned}$	Vortex coefficient$\text { [Eq. } \left.\underset{C_{1}}{(16)}(19)\right]$	Bed Material Concentration	
		Froude No.	$\begin{gathered} \text { Depth of Flow } \\ \mathrm{H}_{\mathrm{ft}} \end{gathered}$				$\begin{gathered} \text { Flume flow } \\ \text { (upstreas of tube) } \\ \text { C }_{\text {Clppa }_{\text {ppa }}} \end{gathered}$	$\begin{aligned} & \text { Tube } \\ & \mathbf{F}_{\mathbf{T}_{\mathrm{Dp}}} \end{aligned}$
Tube ARR-08, $A=0.182 \mathrm{ft}^{2}, d=0.440 \mathrm{ft}, \mathrm{P}=1.220 \mathrm{ft}, \mathrm{A}=0.325 \mathrm{ft}, \mathrm{e}=+0.009 \mathrm{ft}$.								
ARR-08-68	18.84	0.403	1.023	1.190	1.243	1.607	806	2067
ARR-08-69	18.85	0.414	1.005	1.170	1.225	1.671	588	2593
ARR-08-70	21.39	0.532	0.925	1.150	1.145	1.561	740	3539
A. ${ }^{\text {asiol72 }}$	19.12	0.636 0.713	0.818	1.120	1.038	1.418	1255	21506
ARS-08-73	19.03	0.689	0.720	1.080	0.926 0.940	1.465	1247	7394
ARR-08-74	18.74	0.842	0.623	1.030	0.843	1.396	2151	8455 23922
ARR-08-75	18.85	1.086	0.528	0.940	0.74 ,	1.489	2679	31221
ARR-08-76	19.32	1.129	0.523	0.980	0.743	1.217	1993	24097
ARR-08-77	17.17	0.845	0.587	1.010	0.807	1.282	1772	13862
ARR-08-78	17.00	1.036	0.509	0.930	0.729	1.476	1641	11714
ARR-08-79	17.27	1.085	0.499	0.970	0.719	1.181	1784	20344
ARR-08-80	17.72	1.015	0.530	1.000	0.750	1.127	2840	25303
ARR-08-81	16.51	0.485	0.827	1.110	1.047	1.501	858	4403
ARR-08-82	16.37	0.692	0.649	1.030	0.869	1.387	1256	7150
Tube ARR-09, $A=0.194 \mathrm{ft}^{2}$, $d=0.440 \mathrm{ft}, \mathrm{P}=1.330 \mathrm{ft}, \mathrm{a}=0.232 \mathrm{ft}, \mathrm{e}=+0.080 \mathrm{ft}$.								
ARR-09-84	17.90	0.375	1.037	1.150	1.257	2.465	568	2846
ARR-09-85	19.11	0.464	0.939	1.140	1.159	2.169	742	3279
ARR-09-86	21.12	0.533	0.916	1.160	1.136	1.939	1171	2565
ARR-09-87	21.32	0.687	0.778	1.110	0.998	1.785	1915	15612
ARR-09-88	18.73	0.520	0.859	1.100	1.079	2.164	936	3614
ARR-09-89	18.41	0.606	0.766	1.090	0.986	1.874	1365	12611
ARR-09-90	18.65	0.651	0.738	1.050	0.958	2.054	923	7823
ARR-09-91	19.51	0.845	0.639	1.050	0.859	1.650	1649	17383
ARR-09-92	18.64	0.897	0.595	1.040	0.815	1.540	2257	25727
ARR-09-93	17.81	0.813	0.617	1.030	0.837	1.693	1092	10570

Admittedly, specific investigations made to evaluate these coefficients may lead to somewhat different values. It is assuned that the vortex flow coefficient, C_{I} is the only variable that changes with the channel flow. For epsii run, the value of C_{I} was computed by trial and error, using the cubic Equation (16) and Equation (19) evaluated at the discharge end $(s=L)$ for $P_{c_{e}}=0$. For each tube these values are plotted in Figure $4(a)$ through (i). To explain the scatter in the calculated $C_{I}-F$ relationship, the sensitivity of calculated C_{I} to errors in measurement of Q_{T} and H was investigated. It was found that:
(1) A change of ± 2 percent in Q_{T} caused a change of ± 9 percent in the calculated value of C_{I}.
(2) A change of ± 2 percent in H caused a change of ± 3 percent in the calculated value of C_{I}.
The maximum probable error in the computed value of C_{I} due to about 5 percent measurement error in both Q_{T} and H amounts to about 23 percent. The mean curves drawn for different tube configurations should be viewed in this light. However, these figures do indicate that C_{I} depends on \mathbb{F}. The $C_{I}-F$ relationships are different for different tube shapes and the mean curves for Robinson's tubes shown in Figure 4 are taken as the characteristic values of individual tube shapes. A combined plot of these mean curves is shown in Figure 5.
Approximate Solution for k and C_{I}
The preceding analysis of Robinson's data was made by a trial and error solution of Equations (16) and (19). It is also possible to obtain an approximate solution of these equations. Comparing the magnitudes of A_{*}, B_{\star}, and C_{\star} in Equation (16), one finds that for the usual values of $f(\approx 0.016), C_{*}$ is almest negligible as compared to A_{*} and B_{*}. Neglecting C_{*} in comparison with A_{*} and B_{*}, Equation (16) is reduced to a quadratic form with a non-negative real root.

$$
\begin{equation*}
k=\frac{a}{A} \frac{C_{I L} \cos \phi}{C_{a} A_{1}}\left\{\sqrt{1+\frac{4 A_{1} C_{a}^{2}}{C_{I L}^{2} \cos ^{2} \phi}}-1\right\} \tag{22}
\end{equation*}
$$

As a further approximation

$$
\begin{equation*}
k=\frac{2 a}{A A_{1}{ }^{1 / 2}}=\frac{2 a C_{v} C_{a}}{A \sqrt{2+C_{v}^{2} C_{I}^{2} \sin ^{2} \phi}} \tag{23}
\end{equation*}
$$

and for the values of C_{v}, C_{a} and $C_{I L}$ used herein,

$$
\begin{equation*}
k=\frac{0.836 \mathrm{a}}{\mathrm{~A} \sqrt{1+0.485 \mathrm{C}_{\mathrm{I}}{ }^{2} \sin ^{2} \phi}} \tag{24}
\end{equation*}
$$

The preceding model can be used to analyze the flow through a vortex tube, provided the tube geometry, the Froude number of the flow on the tube, the depth of flow H, the centerline pressure at exit Pce and the $\mathbb{I F}-\mathrm{C}_{\mathrm{I}}$ relation for the tube is known. This analysis can be based on the direct solution of Equations (16) and (19). This mothod is later illustrated herein.

Figure $4(a)-4(c)$. Variation of Vortex Coefficient C_{I} with Froude No. IF in Robinson's Vortex Tubes. In all Tubes; B ar $8 . f \mathrm{ft}$ and $\phi=45^{\circ}$.

Pigure $4(d)-4(f)$, Variation of Vortex Coefficient C_{1} with Froude No. \mathbb{F} in Robinson's Vortex Tubes. In all Tubes, $B=8.0 \mathrm{ft}$ and $\phi=45^{\circ}$.

Tube No	Snope	A.f ${ }^{2}$	$0 . f 1$	0.11	e.th
ARR-O1	L	0.244	0.417	0.625	-0.062
APR-02	U	0.261	0.417	0.561	+0.005
ARR-03	\checkmark	0.280	0.417	0.520	+0.064
ARR-04	U	0.170	0.440	0.375	-0.062
ARR - 05	U	0.184	0.440	0.308	+0.020
ARR-06	U	0.197	0.440	0.287	+0.091
ARR-OT	U	0.170	0.440	0.375	-0.062
ARR-08	U	0.182	0.440	0.325	+0.009
ARR-09	\checkmark	0.194	0.440	0.232	+0.080

Figure 5. Average C_{1} - \boldsymbol{F} Relations for Robinson's Vortex Tubes.

Variation of llydraulic Quantities Along the Tube

As stated earlier, the flow model shows that all the hydraulic quantities relating to the vortex tube decay exponentially from the discharge end of the tube upwards. The implicntion of this exponential variation is that the discharge Q_{T} enters through a relatively small length of the tube close to the discharge end. To lllustrate this point the variation of different hydraulic quantities pertaining to Robinson's run ARR-01-12 has been calculated. For this run, the data ere:

$$
\begin{aligned}
& \left(H+\frac{d}{2}\right)=0.528 \mathrm{ft}, \mathrm{p}_{\mathrm{c}_{\mathrm{e}}}=0, \mathrm{~F}=0.496, \mathrm{Q}_{\mathrm{T}}=0.92 \mathrm{cfs}, \\
& \phi=45^{\circ}, B=8.0 \mathrm{ft}, \mathrm{f}=0.016, \mathrm{C}_{\mathrm{v}}=0.985, \mathrm{C}_{1 \mathrm{l}}=1.00, \\
& C_{a}=0.60 \text { and } C_{1}=2.621 \text {. The corresponding values } \\
& A_{*}=0.395, B_{*}=-1.720, C_{*}=-0.009 \text { and the largest real } \\
& \text { root of Equation }(16) \text { is } k=125 .
\end{aligned}
$$

The following dimensionless quantities are introduced to illustrate the variation of hydraulic parameters along the tibs:

$$
\begin{align*}
& s_{*}=s / L \\
& Q_{*}=Q(s) / Q_{T} \tag{25}\\
& q_{I_{*}}=q_{I}(s) L / Q_{T} \tag{26}\\
& \Delta h_{*}=\Delta h(s) / h(L) \tag{27}\\
& \omega_{*}=\omega(s) / \omega(L) .
\end{align*}
$$

and
Figure 6 shows the variation of $Q_{*}, q_{I_{*}}, \Delta h_{*}$ and ω_{*} along s_{*}. Also shown in these figures are the variation of the same parameters if C_{I} is reduced to halfits valuc, 1.310 . It is seen that:

1. The active length of the tube is about 0.4 times the total length.
2. A lower value of C_{I} increases the total discharge Q_{T} through the tube, but it decreases the effective length of the tube to 0.33 of the tube length.

It is concluded that the role of the vor:ex motion in the vortex tube is to increase the active length of the vortex tube for a given flow condition. This conclusion bears on the sediment conduction through the tube and is discussed later.

SEDIMENT INFLOW IN A VORTEX TUBE

The vortex tubes are generally built into bed contractions. The flow starts to develop new velocity and sediment concentration profiles at the bed contraction which are different from the profiles in the developed flow of the approach channel. In subcritical channel flow the defth constricts over the bed contraction thus providing a favorable pressure gradient. If the transition between the channel bed and the bed contraction is well rounded and gradual, the flow does not separate from the boundary. In such cases, it may be possible to compute the velocity and sediment concentration profiles approaching the vortex tube. However, if the flow does not undergo separation from

(c) Differentlal Pressure Head Across Sllit

Figure 6. Calculated Variation of Dimensionless Flow Parameters Along Tube Length - Run ARR-01-12,
the solid bourfary and the distance between the upstream edge of the contraction and the vortex tube is small--say less than about two flow depths depending on the bed material size and the amount of bed con-traction--it is possible to make some simplifying assumptions. It is assumed herein that if the preceding conditions are satisfied, then the sediment concentration in each stream tube remains unchanged between the equilibriun channel flow and the flow approaching the vortex tube. With this assumption and with the use of the hydraulic solution of the tube flow, it is possible to determine the sediment conduction in a vortex tube. This approach requires an analytical model for the velocity and sediment distribution in the equilibrium channel flow. A number of such models are available but mostly they involve implicit functions requiring numerical and sometimes trial and error solutions. In the following development, an approximate two dimensional model of velocity and sediment distribution in sandbed channels (8) is used. This model uses explicit power relations for all the hydraulic and sedimentation quantities in terms of the depth of flow. Phenomenologically its structure is the same as the Einstein bedload function (4) and the writer's model (6) for flow in sandbed channels. The details of this model have been described elsewhere (8). The advantage of using this model in the context of the present problem is that one can calibrate the model when needed and the results are obtained in closed form.

Model for Flow in Sandbed Channels

Consider an equilibrium flow with a discharge intensity q on a sandbed with the median bed material size, D and a Froude number \mathbb{F}_{g} (Fig. 1). Then the resistance function for the flow (8) in fps units is
and

$$
\begin{align*}
& n=k_{1} D^{a} / \pi_{a}^{b} \tag{29}\\
& n^{\prime}=0.0342 D^{1 / 6} \tag{30}\\
& H_{a}^{\prime}=H_{a}\left(\frac{n^{\prime}}{n}\right)^{3 / 2} \tag{31}
\end{align*}
$$

where $n=$ Manning's roughness coefficient for the flow, $k_{1}=$ an empirical coefficient, a and u empirical exponents, ${ }_{n}{ }^{\dagger}$. grainassociated Manning's n for the flow, $H_{a}=$ depth of equilibrium flow, $\rho \mathrm{gH}_{\mathrm{g}}^{\prime} \mathrm{S}=\mathrm{\rho U} \mathrm{C}^{\prime 2}=\mathrm{grain}-\mathrm{assoc} \mathrm{a}_{\text {ated }}$ boundary shear stress and $\mathrm{S}=$ energy gragient in the flow. In Equation (29), k_{1}, a and b are evaluated in the :ange of flow conditions experienced in the channel. In addition to Equations (29) to (31), the bed material transport and shear parameters, ϕ_{*} and Ψ_{*} are defined as:

$$
\begin{align*}
\phi_{*} & =g_{b}\left[\frac{1}{g(G-1) D^{3}}\right]^{1 / 2} \tag{32}\\
\Psi_{*} & =(G-1) \frac{D}{H_{a}^{\prime J}} \tag{33}\\
\quad \phi_{*} & =a_{1} \Psi_{*}^{b_{1}} \tag{34}
\end{align*}
$$

where g_{b} bed-load in solid volume per second per unit width of the channel, G e specific gravity of the bed material and a_{1}, b_{1} are determined from Figure 9 of reference (4) for a range around $\mathcal{Y}_{\text {. }}$ Alternately, a_{1} and b_{1} can also bo determined from the available field data.

Suspended Load Distribution

The bed-load is assumed to move in bed layer of thickness 2D and the velocity of sediment in the bed layer is 11.6 U . Thus the reference concentration of bed material, c_{a}, at the edge of the bed layer is

$$
\begin{equation*}
c_{a}=\frac{g_{b}}{\left(11.6 U_{t}^{\prime}\right)(2 D)} \tag{35}
\end{equation*}
$$

where c is in units of solid volume per unit volume of space. The vertical ${ }^{\text {a }}$ distribution of bed material concentration is not very sensitive to the underlying assumption of the variation of sediment diffusion coofficient, ε (or the shear distribution) along the depth of fluw. The major uncertainty in the computation of suspended load distribution comes from the selection of the Rouse number, 2 (6). For simplicity, it is assumed herein that the turbulent diffusivity ε_{s} varies linearly in the depth of flow as $\varepsilon_{s}=k U_{*} y$, where $k=$ $v \mathbf{S}_{\text {I }}$ Karman's constant, $U_{*}=$ shear velocity and $y=$ distance from the average sand bed. The resultant bed material concentration profile is

$$
\begin{equation*}
c_{y}=c_{a}\left(\frac{2 D}{y}\right)^{2} \tag{36}
\end{equation*}
$$

where $z=\frac{W}{k U_{*}}$, and $w=$ fall velocity of sediment size D.
The velocity distribution in the vertical is assumed to follow a power law

$$
\begin{equation*}
\frac{U_{y}}{U_{*}}=a_{2}\left(\frac{y}{D}\right)^{b_{2}} \tag{37}
\end{equation*}
$$

where the exponent b_{2} is selected herein as $1 / 6$ and coefficient can be determined by equating the grain associated resistance factors from Equations (30) and (37).

The discharge q_{y} and bed material load g_{y} from the mean bed up to a distance y from the bed can be calculated as:

$$
\begin{gather*}
q_{y}=\int_{0}^{y} u_{y} d y \tag{38}\\
g_{y}=g_{b}+\int_{2 D}^{y} c_{y} u_{y} d y \tag{39}
\end{gather*}
$$

Por a specified discharge q_{y}, Equation (39) can be expressed as

$$
\begin{equation*}
g{ }_{y}-\ell_{1} H_{a}^{m_{1}}+\ell_{2} H_{a}^{m_{2}}+\left(q_{y}\right)^{m_{0}} \ell_{3} H_{a}^{m_{3}} \tag{40}
\end{equation*}
$$

Where y = the distance from channel bed up to which the discharge per unit width of the channel is $9 y, g y=$ total bed material load up to
$y, m_{0}=\left(1+b_{2}-2\right) /\left(1+b_{2}\right)$ and $\ell_{1}, \ell_{2}, \ell_{3}, m_{1}, m_{2}, m_{3}$ are funct lons of the known bed material, channel flow and transport parameters earlier introduced in Equations (29) to (37). Equation (40) can be used to calculate the bed material inflow in the vortex tube corresponding to the inflow of a discharge intensity, q_{y} per unit length of the tube. Use af Equation (40) will be illustrated with a numerical example later.

WATER AND SEDIMENT CONDUCTION IN A VORTEX TUBE

The hydraulic and bed material inflow solutions for the vortex tube can be combined to yield the water and sediment conduction under specified conditions of channel flow.

Let a vortex tube with specified size, shape and C_{I} - IF characteristics be laid at an angle ϕ in a rectangular channel of width, B (Fig. 1). Let the bed contraction have an elevation Δz above the channel bed. The depth of flow over the vortex tube is given by

$$
\begin{equation*}
H+\frac{q^{2}}{2 g H^{2}}=H_{a}+\frac{q^{2}}{2 g H_{a}^{2}}-\Delta z \tag{41}
\end{equation*}
$$

To solve for the flow through the vortex tube, the analysis was based on coordinate s measured along the length of the tube. In the following development for the water and sediment conduction, it is more convenient to work in terms of x, the distance measured from the blind end of the vortex tube along a direction normal to the channel flow (see Fig. 1). Let $q_{I x}$ be the discharge inflow rate for the vortex tube per unit width of the channel at distance x (Fig. 2). From Equation (18),

$$
\begin{equation*}
q_{I x}=Q_{T} k_{*} \exp \left[k_{*}(x-B)\right] \tag{42}
\end{equation*}
$$

where $k_{*}=k / \sin \phi, \quad x=$ distance measured normally to the channel axis from the blind end of the vortex tube and $Q_{T}=$ total tube discharge at the outlet.

Combining Equations (42) and (40), the tube discharge and the bed material load inflow up to any distance x is
and

$$
\begin{align*}
& Q_{*}(x)=\int_{0}^{x} q_{I x} d x \tag{43}\\
& G_{*}(x)=\int_{0}^{x} g_{y} d x \tag{44}
\end{align*}
$$

There is a question about the lower limit of integration in Equation (44). Because the discharge within the tube varies exponentially It is understond that up to some distance x_{0} from the blind end, the water discharg's Q in the tube will not be enough to move the sediment inflow to the lischarge end of the tube. The lower limit of integration in Equation (44) should therefore be replaced by x_{0}. It is assumed that for $0 \leq x \leq x_{0}$ the tube does not contribute to bed
material removal after the tube has been filled up in this reach by the fallifg bed load. To develop a criterion for x_{0}, it is further assumed that the incoming sediment load will be deposited in the. tube as long as
$\frac{V_{r}}{w} \leq 1$
where $V_{r}=$ effective velocity in the tube $=\sqrt{\left(\frac{Q^{2}}{A}\right)+V_{c}^{2}}$ and $w=$ fall velocity of sediment size D. With this criterion,

$$
\begin{equation*}
x_{0}=\frac{-1}{k_{*}} \ln \left[\frac{Q_{0}}{w A}\left\{1+\left(\frac{k A C_{1} \sin \phi}{C_{a} a}\right)\right\}\right] \tag{46}
\end{equation*}
$$

where $Q_{0}=Q_{T} \exp \left(-k_{*} B\right)$ and other terms have becin defined earller. The discharge $Q_{*}(B)$ at the end of the tube $=Q_{T}$ and the bed material
load ad

$$
G_{*}(B)=\int_{x 0}^{B} g_{y}(x) d x
$$

$$
\begin{equation*}
=\left(\ell_{1} H_{a}^{m_{1}}+\ell_{2} H_{a}^{m_{2}}\right)\left(B-x_{0}\right)+\ell_{3} H_{a}^{m_{3}} \frac{k_{*}^{m_{0}} Q_{T}^{m_{0}}}{k_{*} m_{0}}\left[1-e^{k_{*} m_{0}\left(x_{0}-B\right)}\right] \tag{47}
\end{equation*}
$$

Equation (47) defines the total bed material load removed by the tube in solid volume per second. The bed material concentration in the extracted flow is

$$
\begin{equation*}
C_{r}=\frac{G G_{*}(B)}{Q_{T}} 10^{6} \mathrm{ppn} \tag{48}
\end{equation*}
$$

where $G=$ specific gravity of the sediment. The use of this sediment conduction model is next illustrated for the vortex tube used in Robinson's series-8 (refer Table 1).

NUMERICAL EXAMPLES

The use of the preceding model of sediment and water conduction In vortex tubes is illustrated in the following for Robinson's tube No. 8 (ARR-08, Table 1). The dimensions of this tube are shown in $4(h)$. The $C_{I}-\mathbf{F}$ relationship for this tube is shown in Figure

Three numerical examples are solved in Tables 2, 3 and 4. In the first example, the sediment extraction through the tube is studied for the variation of $\mathbb{F} \mathbb{F}_{\mathrm{a}}$ in the channel flow while keeping the discharge end of the tube flowing free ($p_{c}=0$). In the second and third examples, the effect of varying e_{z} and $p_{c e}$ on the sediment ejection is studied. Similar investigations can be made to study the design aspects of a given vortex tube provided its $C_{I}-\mathbb{F}$ characteristics are known. The following data are given:
table 2. Calculated variation of water and sediment conduction in vortex tube (arr-08) for different values OF FROUDE NUMBER, $\quad F_{a} \quad\left(\Delta_{z}=0.10 \mathrm{ft}\right)$.

	1	2	3	4	5
Quance:					
Froude number, $\mathrm{F}_{\text {a }}$	0.30	0.40	0.50	0.57	0.54
Flow depth. H_{2}, ft	1.292	1.067	0.919	0.802	0.182
Energy gradient, 5×10^{4}	2.208	2.851	3.480	3.912	3.974
Shear Velocity. U., fe/see	0.303	0.313	0.321	0.326	0.326
Grain-astoclated $\mathrm{u}_{\text {a }} \mathrm{ft} / \mathrm{sec}$	0.116	0.138	0.159	0.172	0.174
Bad 100d. \&o Cfy/ft uldch $\times 10^{6}$	1.366	3.609	6.265	8.40	8.746
Reference concentration. 	2.906	6.350	9.614	1.150	1.225
Rouse number, z	1.024	1.768	1.723	1.698	1.694
Total hed Material lood. $\mathrm{c}_{\mathrm{i}}, 1 \mathrm{~b} / \mathrm{sec} / \mathrm{ft} \times 10^{2}$	4.491	1.245	2.276	3.226	3.286
Coscentration, ppa	288	798	1459	205	2113
Vortex Tuse:					
Floer depth, H, ft	1.180	0.963	0.770	0.045	0.623
Frave numor, F	0.364	0.481	0.652	0.850	0.806
Coofficiens C_{1}	1.697	1.587	1.456	1.508	1.200
Parsmeter ${ }_{1}$	9.726	9.223	3.662	8.103	8.001
Exponent $\mathbf{t}_{\text {c }}$	1.342	1.371	1.607	1.445	1.452
Parmeter a_{2}	0.996	1.038	1.083	1.159	1.152
Differemial head at outfall, An(L) ft	1.400	1.163	0.990	0.865	0.46
Tube discharge. Of. efs	2.241	1.150	1.084	1.057	1.083
Distance. x_{0}. fi	5.164	5.297	5.428	5.552	5.574
mater and Sediment Discharte					
Discharye O_{T}, cfs	: 24:	1.150	1.044	1.037	1.029
Bod Material land, G. $16 / \mathrm{sec}$.	0.123	0.330	0.550	0.79	0.744
Concent ration, ppe.	154	486	129	11108	11583
Mote: 1 ft - 0.305 . $1 \mathrm{ft} / \mathrm{sec}=0.305 \mathrm{~m} / \mathrm{sec}$ $1 \mathrm{cfs} / \mathrm{ft}=0.093 \mathrm{e}^{3} / \mathrm{sec} / \mathrm{m}$	$\begin{aligned} & \mathrm{b} / \mathrm{sec} / \mathrm{f} \\ & \mathrm{ff} \mathrm{~s} \cdot \mathrm{o} \\ & \mathrm{~b} / \mathrm{sec} \end{aligned}$				

table 3. Calculated variation of water and sediment conduction in vortex tube (arr-08) for different bed CONTRACTION, $\Delta z \quad\left(F_{a}=0.30\right)$.

table 4. Calculated variation of water and sediment conduction in vortex tube (arr-08) for different values OF WORKING HEAD AT THE DISCHARGE END $\Delta \mathrm{h}(\mathrm{L})$ (BED CONTRACTION, $\Delta z=0.10 \mathrm{ft}, \mathrm{F}_{2}=0.30$).

	1	2	3	4	5	6	7
Channel:							
Same as in Case 1 Table 2							
Vortex Tube:							
Differential head, $\Delta \mathrm{h}(\mathrm{L}) \mathrm{ft}$	0.980	1.120	1.260	1.400	1.540	1.680	2.100
Distance, $\mathrm{x}_{0} \mathrm{ft}$	5.297	5.247	5.203	5.164	5.128	5.096	5.013
All other quantities except Q_{T} remain unchanged							
Water and Sediment Discharge:							
Discharge, Q_{T} cfs	1.038	1.110	1.178	1.241	1.302	1.360	1.520
$\begin{aligned} & \text { Bed material load, } \\ & \mathrm{G}_{*} \mathrm{lb} / \mathrm{sec} \end{aligned}$	0.117	0.119	0.121				
Concentration, ppm	1803	1718	1646	1584	1530	1482	
Note: $1 \mathrm{ft}=0.305 \mathrm{~m}$	$1 \mathrm{lb} / \mathrm{sec} / \mathrm{ft}=1.488 \mathrm{~kg} / \mathrm{sec} / \mathrm{m}$						
$1 \mathrm{ft} / \mathrm{sec}=0.305 \mathrm{~m} / \mathrm{sec}$	$1 \mathrm{cfs}=0.028 \mathrm{~m}^{3} / \mathrm{sec}$						
$1 \mathrm{cfs} / \mathrm{ft}=0.093 \mathrm{~m}^{3} / \mathrm{se}$	$1 \mathrm{lb} / \mathrm{sec}=0.454 \mathrm{~kg} / \mathrm{sec}$						

```
Approaching Channel Flow:
    Q a \(20.0 \mathrm{cfs}(0.566 \mathrm{~m} / \mathrm{sec})\)
    B \(\quad 8.0 \mathrm{ft}(2.438 \mathrm{~m})\)
    \(D=D_{50}=0.54 \mathrm{~mm}=0.00177 \mathrm{ft}\)
    \(w=0.221 \mathrm{ft} / \mathrm{sec}(0.067 \mathrm{~m} / \mathrm{sec})\)
    \(k_{1} \mathrm{Da}=0.0192\)
    b. \(\quad 0.666\)
    \(\boldsymbol{F F}_{\mathbf{a}}=\) varies
Vortex Tube
    \(\Delta z=0.10 \mathrm{ft}(0.030 \mathrm{~m})\)
    \(\phi=45^{\circ}\)
```

Table 2 shows the variation of hydraulic and sediment transport parameters as \mathbb{F} is varied from 0.30 to 0.58 . The bed material concentration in the ${ }^{\text {a }}$ discharge extracted through the vortex tube calculated in this table is plotted in Figure 7 against \mathbb{F}. Robinson's data for series 8 is also plotted on this figure. It is seen that for $\mathbb{F} \leq 1$, the results of analytical model lis close to his data. Note that the total discharge in Robinson's data used in Figure 7, varies from $\mathrm{Q}=16.40$ to $21.39 \mathrm{cfs}\left(1.53\right.$ to $\left.1.99 \mathrm{~m}^{3} / \mathrm{sec}\right)$. The correspondence between the results of the analytical model and the laboratory measurement seen in Figure 7 is very encouraging. Note that the hydraulic model for flow has been verified from the gross measurements of the tube flow (Figure 4(h)) and Einstein's bed-load function (4) has been used for sediment transport quantities.

Another example of the use of this model is illustrated in Table 3. In this example, the channel flow is the same as in case 1 of Table 2 but the bed contraction, Δz is varied and the consequent change in sediment conduction through the tube is studied. This table shows that as Δz is increased from 0.100 to 0.482 ft . (0.031 to 0.147 m), the bed material concentration remains almost unaltered, while the discharge Q_{T} decreases by about 19 percent.

The third example is the study of the effect of differential head $\Delta h(L)$ at the discharge end of the vortex tube on the water and sediment conduction through the tube. In the previous tro examples it was assumed that the tube is discharging freely, so that the centerline pressure at the discharge end $p_{c_{e}}=0$. In the present example, it is assumed that $\Delta h(L)$ can be decreased by submergence of the discharge end or increased by passing the tube discharge through a conduit and discharging it at a lower level. The basic data in this example also pertain to case 1 of Table 2 .

The results in Table 4 show that an increasing $\Delta h(L)$, also increases the discharge, Q_{T} and the total sediment load, $G_{*}(B)$. However, the bed material concentration in the tube discharge decreases. This result can be explained by the fact, that by increasing $\Delta h(L)$ the distance y from which the discharge is withdrawn in

Figure 7. Variation of Bed Material Concentration in Vortex Tube Discharge, Robinson's Tube ARR-08.
the tube, is increased throughout the active length $\left(B-x_{0}\right) / \sin \phi$ of the tube and the average sediment concentration in a layer close to the bed decreases as the thickness of this layer increases. It can be stated here that the maximum bed material concentration can be extracted with a sediment ejector if the bed-layer alone is extracted from the total width of the flow and for a given Q_{T} in a vortex tube, the maximum bed material extraction can be obtained if the inflow discharge intensity q_{I} is constant throughout the tube length. Analysis shows that this ideal inflow distribution cannot be achieved with a prismatic tube.

CONCLUSION
The continuous fluw sediment removal structures depend on the unequal distribution of sediment concentration in a flow. In these structures a portion of the flow is extracted from the region containing the higher concentration. In fully developed two dimensional flows in straight sandbed channels, the largest concentration occurs in the bed layer and decreases rapidly towards the surface resulting in a skewed concentration profile. Also the difference in concentration from the bed to the surface is greater for larger particles (larger 2) than for smaller particles (smaller 2). Therefore, in two dimensional fully developed flows, a larger bed material concentration can be removed for the coarser sizes and for withdrawals close to the bed. It is important that the flow be fully developed so the skewed concentration profile exists. If the skewness of a fully developed concentration profile has been disturbed, say by large scale turbulence, this principle cannot be used. In the case of three dimensional channel flow, as in bends, there is a skewness of sediment concentration along the depth of flow as well as along the width of the channel. This leads to an even greater facility in sediment removal because the concentration is higher on the inner side of the bend than under corresponding conditions in two dimensional flow. Another consideration in the design of sediment removal systems is that the sediment removed should also be conveyed out of the system. Otherwise, the removal structure can become inoperative due to clogging.

The vortex tube sediment ejector is basically designed for two dimensional flows. However as the analysis presented herein shows, a prismatic vortex tube does not draw uniformly through its length. In fact, under most operating conditions, a prismatic circular tube with $\dot{=} \mathrm{d} / 4$, and $\mathrm{Q}_{\mathrm{T}} \doteq 0.5 \mathrm{Q} / \mathrm{B}$ may only have an effective length of the uube equal to about od. For this reason any arrangement that can increase the channel bed material concentration near the discharge end of the vortex tube will increase the sediment concentration in the tube discharge. Parshall's riffle-deflectors (9) served the same purpose in a predominantly bed load stream. Ahmad's (2) design of D.G. Khan Canal ejector increases the effective length of the tube by dividing the tube length in smaller segments and providing an independent discharge tube for each segment.

Of necessity, the sediment ejectors are placed in reaches with unstable bed conditions. Due to the geasonal nature of most excess sediment loads, the bed elevation and the bed forms in the approach channel may vary in time within wide limits. A vortex tube located
in dune bed may get buried and become inoperative. Bed contractions help if the bed form on the contraction is flat bed.

An analytical model of the flow and sediment conduction through a vortex tube has been developed herein. This model combines the spatially varied flow equations with the sediment transport model in sand bed channels. The empirical coefficients introduced in the model have been investigated with the help of Robinson's 8 -ft flume data (10). It is found that the coefficients of velocity C_{v}, of area C_{a} and of lateral momentum inflow $C_{~ c a n ~ b e ~ c o n s i d e r e d ~ a s ~ c o n s t a n t s ~ f o r ~}^{\text {a }}$ the tubes investigated by Robinson. However, the vortex flow coefficient, C_{I} is found to be a function of the tube geometry and the Froude number of flow on the tube. Knowing the $C_{I} \sim \mathbb{F}$ relation for a specific tube geometry, it is possible to use this model to investigate various characteristics of the vortex tube flow. Three numerical examples have been used to show the verification of laboratory study data, and the effect of variation of parameters on the sediment conduction through the tube.

The analysis reported herein is restricted to a limiting Froude number of 1 on the bed constriction, which is the range applicable to most sand bed channels.

ACKNOWLEDGENENTS

The writer wishes to express his thanks to A. R. Robinson for making available his original experimental records and data. The study reported herein is part of a continuing research on the Alluvial River Mechanics Project, supported by National Science Foundation Grant No. ENG72-00274 A01. It was also partly supported by US AID grant No. AID/csd-2460 on Optimum Utilization of Water Resources to Colorado State University. The future plans on this study include field investigations on prototype vortex tubes in sand bed canals in Pakistan under National Science Foundation Special Foreign Currency Grant No. OIP73-002277 A01 to Water and Power Development Authority, Pakistan on the project: "A Study of Alluvial River Mechanics on Link Canals."

APPENDIX I. - REFERENCES

1. Ahmad, M, "Final Recommendations from Experiments on Silt Ejector of D. G. Khan Canal," Hydraul ic Research, IAHR, 1958.
2. Ahmad, M., "Vortex Tube Sand Trap," Discussion, "Vortex Tube Sand Traps," by A. R. Robinson, Transactions, ASCE, Vol, 127, Pt. III, 1962.
3. Brown, D.R.M., "A Study of the Factors Influencing the Efficiency of Vortex Tube Sand Traps," Proceedings, Institute of Civil Engineers (London), June 1964.
4. Einstein, H.A., 'The Bed-Load Function for Seriment Transportation in Open Channel Flow," Technical Bulletin 1026, U.S.D.A., Soil Conservation Service, 1950.
5. Koonsman, G.L., "Efficiency of a Vortex Tube Sand Trap," M.S. Thesis, Colorado State University, Fort Collins, Colorado, 1950.
6. Mahmood, K., "FLow in Sand-Bed Channels," Cususwash Water Management Technical Report No. 11, Colorado State University, Fort Collins, Colorado, 1971.
7. Mahmood, K., "Sediment Routing in Irrigation Canal Systems," Journal of Irrigation and Drainage Division, ASCE, Vol. 100 No. IR1, 1974.
8. Mahmood, K., 'Mathematical Modeling of Morphological Transients in Sandbed Canals," Proceedings, XVIth Congress, IAHR, Sao Paulo, Brazil, 1975.
9. Parshall, R.L., 'Model and Prototype Studies of Sand Traps," Transactions, ASCE, Vol. 117, 1952.
10. Robinson, A.R., "Vortex Tube Sand Trap," Transaction ASCE Vol. 127, Pt. III, 1962.
11. Rohwer, C., Code, W.E., and Brooks, L.R., "Vortex Tube Sand Trap Tests for 1933," Progress Report, U.S. Department of Agriculture, Bureau of Agricultural Engineering, Fort Collins, Colorado, 1934.

[^0]: Associate Professor, Civil Engineering Department, Colorado State University, Fort Coliins, Colorado 80523

