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INTRODUCTION
 

It has been estimated that the energy consumed in the 
productio: of all fertilizer products in the United States 
(roughly 45,000,000 tons of products) amounts to some-
what less than 3% of the total energy consumed in this 
country (3, 4). This could be considered to be an almost 
negligibl'e amount until tile actual quantities in the United 
States alone are considered, i.e., an estimated 1.9 quadril-
lion Btu (1.9 x 101 s) for fertilizer production out of a 
gross consumption of about 75 quadrillion Btu (75 x 
101 5)/year (12). World production of fertilizers outside the 
United States increases this energy consumption by another 

8 to 10 quadrillion Btu/year. Clearly, the magnitude of 
energy consumption by the fertilizer industry warrants a 
detailed energy evaluation of the processes involved and of 
both near-term and far-tern (10-year) possibilities of 
reducing these requirements by substitution of fuel or 
feedstocks, processes or other product., to increase energy 
efficiencies. 

This evaluation of the energy requirements of the 
fertilizer industry was made under the sponsorship of the 
Inteinational Bank for Reconstruction and )evelopment 
(Industrial Projects Department). 

REPRESENTATIVE FERTILIZER PROCESSES
 

The fertilizer processes described below have been 
chosen as representing tile most widely adopted processes 
for the production of available nitrogen, phosphorus. and 
potash, the three primary plant nutrients. A brief descrip-
tion of each process is included to identify the major 
energy-consuming unit operations within each process. 

The "base case" is tile condition of capital investments 
and operating costs estimated to exist in tile United States 
in January 1974. One ground-rule of the sponsoring agency 
was to omit calculations of returns on capital investment; 
therefore, only estimated production costs are given, 

Experience factors that are normally used by TVA in 
translating known U.S. costs to those of the average 
developing country (DC) invariably result in significantly 
higher investment costs and, therefore, in higher capitaliza-
tion charges against a given process in the DCs. Operating 
costs cannot be generalized, but normally, fuel and elec-
trical energy charges are higher. Labor costs are often 
nearly the same as those in the United States because. 
although hourly wages are much lower, the number of 
operating personnel is invariably higher--often by 
government decree. 

Plant investment factors normally used by TVA to 
adjust U.S. costs to the average IX" conditions are as 
follows: 

Battery limits (BL)investment. DC( = U.S. x 1.25 
Auxiliary facilities, IC = Ill. (D) x 0.25 
Support facilities, IX' 1L (I)C) x 0.25 

The sum of file items above usually represents a viable DC 
capital investment for all operational plant. Hokwever, it 
appears to be tile practice of many IX' governments to 

make a showplace of an industrial development by building 
a complete township with all appurtenances. Tlhis can lead 
to "plant investments" of double the above factors. It is 
felt that this should be avoided in evaluating tile economics 
of the plant complex itself. 

In the cost estimates given in this report, tile fact that a 
given cost is expressed to the nearest cent should not be 
regarded as being significant. As isusual inestimates of this 
type. the accuracy is of tile order of ±10'; however, valid 
comparisons of one process with another can still be drawn 
because errors introduced in the estimating procedure tend 
to be in the same direction. 

AMMONIA 

General Process Description 

At least 901/1f of the world supply of" fertilizer nitrogen is 
derived from the fixation of atmospheric nitrogen with 
process hydrogen as anhydrous ammonia (NII.3) in the 
amunia synliesis process. Ammonia has a nitrogen 
content of X2.5' . The four major steps (greatly simplified 
here) iii anlnonia synthesis are: ' I ('atalylic, high
temperature reaction of water (steam) with a light hydro
carbo n. such as netliane. followed by addition of air to 
supply nitrogen; or. a noncatalytic reaction witi carbon 
(coal or oil) at high temperature and moderate pressure. 
with stcam and less than theoretical qilailities of oxygel 0)1 

oxygen-enriched air to yield a "syn thelis" gas mixtitre of 
hydrogen, nitrogen, and cathon monoxide (2) the cata
lytic, high-ltneperature reaction of time carbon monoxide 
with additional sleam to yield more hydrogen plus caibon 
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dioxide; (3) removal of the carbon dioxide and other 
impurities from the synthesis gas; and (4) catalytic, 

high.temperature, high-pressure reaction of the hydrogen 
and nitrogen to yield ammonia. 

The east three steps are common to all commercial 
ammonia processes except when pure hydrogen is available 
(say, by electrolysis of' water) in which case only the actual 
ammonia synthesis step is required. It is the first step, the 

production of process hydrogen, that has the widest 
latitude of process variations and requires by far the 

total energy to the process.greatest portion of the input 
used throughoutTile commercially significant variations 


the world are (in order of world capacities) as follows: 


1.Catalytic reforming (reaction) 	 of natural gas with 
steam over a supported nickel catalyst at about 7500 

to 800°C. 
2. 	 Catalytic reforming of straight-run naphthas 

(1300.1 50°C final boiling point) with steam over a 
promoted nickel catalyst at about 800 0 C. 

3. 	Partial oxidation (toxygen-deficient burning)of crude 
or heavy fuel oil with oxygen, or oxygen-enriched air 
in the presence of steall at about 14000C; in 
addition to the ods, nearly any liquid or gaseous 
hydrocarbon may h used; nitrogen is supplied from 
a liquid air plant. 

4. 	 Partial oxidation of coal a mtodification of process 
(3) above, which should more properly be called coal 
gasification, even is applied to a innonia production; 
in modern procses, steam and oxygen (liquid air 
plant) ire used to gasify tie coal at 10000 to 

" 1700 C, yielding raw gases high in carbon mooxide 
(yields additionail livdrogcn alter shift conversion). 
hydrogen, aid in some cases ncthane. Nitrogen is 

also supplied troiri the liquid air plant.Otlersourled tgas ae a 
Other sou'rces of h'rdrogern fir aiunionia lhe are a 

number of MiscellanCus sources of hydrogen. some that 

can be utili/ed with tch les expensive ican-up proce-

dures than those involved in the tniiijo piocesses mentitled 

abov:e. 'liese sour ces tic: (I) ci ke-ovii gas. (2) petroleum 

refinery gas, atud (3) rCsidual gas fill0 tire pIoduction of 

acetylene, ethylene, or chuloine. I lie coke-oven gas does 

Lequire exlensive cleantp. Ihiese gases ate in each case 

regarded is hypotiducts aril the only cost issigired to the 

aniniotia plant would be that oh gas pitiiicatim. Ihowever, 
it is otnly in i,,olaled cases that the gas lpirultllit is of 

sufticiently lge. \o'lluie to render the wale (f atlirttot.ia 

prou clitio ecotiotlicuI. Only : o the U.S. anin inia 
produtclitn is horn these sources pticipally coke and-iven 

refinery gases. 

Importance oh Fuel/Feedstock to Ammonia Production 

Although this repitt is plitmiatily tolceired with tile 
effects of tire shottage oh petrolcin and its derivatives, 

natural gas, in similar short supply or nonexistent in nearly 
all industrial nations, will be treated in the same manner 

because of its inseparable connection with the petroleum 
industry, both in production and pricing structure. 

The production of ammonia from some of the various 
feedstocks discussed previously requires the following 

equivalent energy inputs as combined fuel.and feedstock (I, 
13). 

Energy consumption 
Process Fuel/feedstock Btu 10smtNHn 

Reforming Natural gas 34.5 

Reforming Naphtha 37 
38Partial oxidation Fuel oil 

Partial oxidation Coal 45 (minimum) 
Range, energy consumption/mot N = 42 to 55 Btu x 106 

Thus, ammonia synthesis is a highly energy-intensive 
process, not only in terms of the heat energy (fuel) 
required, but also because of the inherent economic 
requirement that the same fuel be used as the chemical 
process feed. 

Near-Term Potential for Substitution 
of Other Fuels or Feedstocks for Current Ones 

Direct substitution of jiel or feedstocks--Nearly all of 
the existing world capacity for ammonia production is 
based on natural gas. naphtha, and fuel oil, in that order. A 
small but growing capacity based on coal exists. The degree 
of' flexibility in substituting feedstocks is indicated in the 
following tabulation. 

.. l)csegn-edstock 
Natural 

Naphtha Partial oxidation 
reforming 	 reforming Fuel oil a Coal 

.... . Any gaseous CokeCharcoalSubstitute Natoral or liq id 

feedstocksh None gas 	 hydro- Char 
carbon Fuel oila 

iOr crude oil, depenqing upon overall economics.
 
hSubstitution not entailing high capital espenditures tor equipment
 

and Ioes of at least I year of income dtiring conversion.change,+ 

'fe dileirra ot world llr.,inoia pnOllrkets is siltply that 

by far the greatest percetaLge of w ld capacity (oday is 

based ontlIe scarcest heedstiicks ti;itltal g's atnd riaplttha 

utiliuitg the lealt lexihle tlncc- il'lig ,i (otversiot if 
existing gasi- or iailithia-hAsd plants to cven oil-based. 
partial-ixidatiit plaits swohl iciluire al ;iililioiwllt capital 

y to (i a 1 tileitivestteitt 	 esW itralll e'qual lite igiP, i it of 

lelotting plail, t aig ur kk~Miilit 1te Lt , of terrrial oh 
tile Cxitilg t,,cii irr' I of the )lfit, lie' ,1l trlry 

tretids. aid the h o ti(cre flihiuat ;ayta. (onvetsion 
to coal would ileciseaw tile lotal capilal Itivestilett ill lhe 
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plant to about 2.5 times the original. For these reasons, 
there appears to be little chance of any significant 
near-term conversion of existing facilities to more plentiful, 
cheaper feedstocks, petroleum-based or otherwise. 

On a worldwide basis, with political considerations aside, 
the only practical near-term expediency For fulfilling the 
growing demand-and the even greater need, based on 
recommended usage- for nitrogen is to concentrate on a 
coordinated and expeditious effort to complete current 
projects for ammonia production and shipping capacity in 
and from those areas (Mideast, Southeast Asia, North 
Africa, Venezuela, Canada, etc.) where natural gas is 
currently being flared in tremendous quantities and for 
liquified natural gas (LNG) production in and shipping 
from these sale areas. 

This admittedly is a contingency operation, with the 
ammonia export capacity ideally going to those developing 
nations with high population growth rates. but without 
indigenous feedstocks or nitrogen capabilities, and the gas 
export capacity going to industrialized nations with large 
NI- 3 capacities, but with dwindling gas or naphtha 
resources. 

However, the key words are -coordinated and expedi-
tious." This forn of international cooperation is probably a 
utopian ideal. Already Ihere is a specter of near-term 
nitrogen overcapacity in the offing. [VA sources have 
identified NIl3 projects utnder way or firmly committed 
that will, by 1978-7.1) add aboul 3.0 million tons of new 
capacity in Canada, about 2 million tons in the United 
States, and about 14 million tons illthe renainder of the 
world. LNG projects are groving rapidly as vell and may 
have, indirectly, an added impact ott Nil.; capacity. About 
8 major projects arc inoperation, another 8 in advanced 
stages and firnly cotmniitted, and I0 or more in the 
planning stage. This capacity vill. o' course, lhe required in 
the long terln, but there could le n inlteriin of serious 
short-term overspply. 

In tiheUnited States. whele 4'; of existing N113 
capacity is based Ol inatunal gaIS. contingency cotions should 
be taken to give nitroget pI tcers the highest industrial 
priority, both oil imiraslate and inteistate gas. and to 
reverse tiletrend avly fli Coallo gas for Itel-,oilly llsage 
by (a) relaxing antipolliliotli ecqiilcienil illiatily situa-

,
tions, and (h) eqilalitig iaiiil gas cts,', to Ihos of otlc 
fuels to miniifi li e i i fu gli', usAge as a flcIl.- etlliVC 

Indirect \bsn to (wr Withlii / Iiel nf(',lcAtock% 
respect to silbstilutioi( it fiel (li-al) lcigy illNIl. 
synthesis, it is techliAll f,.,Nihlt, -'s ld t1:lli ha1 illlie 
re'llnli g tloces", uiil\ to -,lul'illlc ;uiuOmhil hicll l 
that p ,lliOll OfI the 0111 fedNI' 1111,iii 11it Is tNisittLied1 I1,1 
ill tile high-lellIpCtIcll C - licuuuuue CA.tl 1tic ICt-h tllng 
reaction, ilt- symithu,,us I)IItifLAIM Niueplt, theand 
conipression 0t sIwhc gis to) syllhesis plessille. (fthe tu 

the ;.pproxinaltely 3 5 -1m1illion uiI/ion NI 1. iotIl inplt ii a 

large natural gas reforming plant (gas turbing compressors) 
about 14-million Btu/ton, or 40%, is consumed as fuel. 
Theoretically, the use of a more plentiful. cheaper material 
as fuel would be more economical, and would conserve the 
scarcer hydrocarbon feedstock. 

However. the only practical, alternate fuel that is not 
petroleum related is coal. The problems involved in the 
short-haul availability, in-plant logistics, and reforner 
reworking or replacement. coupled with stack gas handling 
(antipollution). are loruidable even in tileUnited States, 
where some Midwest plants are located in coal-producing 
areas. Nevertheless, although the economics cannot be 
generalized, those existing. NII plants located in coal
producing areas should consider this alternative. The 
necessary ada ptations could be considered as near- to 
midterm capability. 

Much of tie ahove discussion Inay seem to have 
departed from tilepriniary objective of this report to 
define methods of petroleutn-based I'uel feedstockand 
conservation in the ammnionia industry. Ilowever, tile 
current worldwide shortage nilro'.'ellof feltilizers 
(including. certainly. tie Utited StateS) Cnnolt be divorced 
from tilesaIne situoation in tilepcIlCIltl-based etnergy 
supply. so a discussion of the III(Il efficient ulse of tile 
available energy in this area appc',a, i he peritineli. 

The expCtIdietIt apprachcs discussed above do not 
represent the optinmnti ill cConIOmic, or ititeitmltltional 
financing. Tho:,c politicl area, with dl\Villt~ll or nion
existent feedstock,, still will be hced with tie dilcninma of 
high costs and high foieilni exchaiigc diaitns vesuts fihe 
growing and cases kICs atle Irin manIy e. iced lood 
energy IbOr their giowitig poplat tio. Ilowevei. giveti the 
necessary food energy input. the iticrased [prodiictivily of 
those areas ina.y, in mitalnIy illiallices, significamtly offset 
these economic drins. 

Potential for Far-Term (10-Year) 
Ammonia Process Substitution 

Generial conshh-ration (
Given the restriction of proven 
process substitution fo tihe far-temn perioid, particularly on 
tilescale of opellitot tiecesary to affect a ineatinglul 
reductioti of cotisimiptio ooit lL-ulin-reltelecdstocks, 
tioe i, little c1haice Ot hill piTo, ss"tlliltulion for 
:aitntion l sylllieNis Il ile - t 'la pethd %,Ilh \\I IbisI.hIi 
lepol t i,,CoilCI.Iledt 

" l ,CiC lc. pIeCNNCN. co lkI (i \Mlld' would liletiey 
Clilnil ltL ibloil 0i lIdioeI'hl r Itet- tNl),,L fl01, ill;Mid 
at nlllllloiat'tii) ,iHCNI(hluydi \il'A I hC,' ,.C: 

'i o n {I.lI3c tlr~.- t o (c,'hitr i,'ui,,/I I sseCllially 
only uVil Cl iIcIal . Muk'giiid muutiu1gemi (flttllm a 
Itillogen-otull. liquid Ii plit worNrlubbed lC gas) 
are re(itied. lilt reC'day dec.['1hitunitiiuol thIe 
Irolylic cell, ate so CXtleil-lt'y co,,tly tha tihe capital 
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*charges can be offset only by very low-cost electrical 
energy; it was estimated in 1969 (6) that with the 
best' of present cell technology essentially zero 
electrical energy cost would be required to compete 
with natural gas at St.50/I ,000 feet 3 . However, given 
the impetus of drastically increasing costs of gas and 
oil, and given about a fivefold increase in operating 
current density and a fourfold decrease in module 
cost, the electrolytic amnmonia process could compete 
with carbon-based ammonnia. This is highly unlikely 
to occur in the foreseeable future, particularly since 
the cost of electrical energy is also increasing steadily, 
but this approach should not be neglected. This 
process is used today in small installations where no 
carbon feedstock is available and electric energy costs 
are low (hydroelectric). 

2. 	 Thennochentical dissociation of'water ---This process 
is still in the laboratory stage and the lack of 
engineering data precludes an economic evaluation, 
However, estimated overall heat energy conversion 

efficiencies of up to 00,;are significantly greater 
than current NI13 synthesis processes (30'7,-40%), 
including electrolysis. The prcess involves the high-
temperature (about 700°C) stepwise reaction of 
calcium bromide, water, and mercury bromide to 
yield hydrogen and oxygen. This process appears very 
promising, bt is beyond the scope of this report in 

terms of probable developmcnt. 
3. 	 Coal gasification The tremendous impact of a 

technologically and economically sound large-scale 
coal gasification process up~in the economy and 
energy independence of the United States cannot be 
overemphasized. Sidestreams from such a process 
could certainly be adapted to ammonia production 
and could eliminate the predicted dependency of this 

nation oin imported petrolcuni feedstocks and nitro-
gen. Statistics hear this out the United States 
Geological Survey estimates United States "reserves" 
at about 500 billion tons (I trillion barrel oil 
equivalent: at least equal to proven world oil supply), 
with perhips 500-I00 billion tons of additional 
coal "cWso rCs'" not quantified and minable under 

present conditions. 
However, at this point in time, unfortunately, tile 

confused overview of filetechnollogy itself and of the 
process economnics, and, as importantly, the apparent lack 
of advanced (niechiamied and automated) mining tech-
nology to delivei tile raw inalerial at tremendous annual 

volmleS anid at IOW costs lecilders the chances of'fruition of 
this "process'" by ihe mitileiglities very unlikely. A meaning-
ful evaluation of alUnolia productiot capability and costs 

in relation to this type of operation is. therefore, impossible 

at liis point. It appears that an effort and expenditure akin 
to that of tie Apollo space program would be required 

and justified-to bring ,on a really significant capacity of 

this type by 1985; most concede that even first-generation 
plants will not come on-stream in significant numbers 
before 1990-1995.' 

4. 	Partial oxidation of coal--Thus, in the preceding 
sections, the very promising but as yet unproven 
process substitutions have been eliminated, until only 
one is left for the foreseeable decade ahead. This 
process-partial oxidation of coal-is not new by any 
means, as has been indicated in the section ol 
General Process Description. It simply has not been 
developed to its full potential. It has, however, a 
better chance of implementation within the I0-year 
framework of this report than any other full feed
stock substitution process. It involves the gasification 
process, preferably at the mine head. but in much 
smaller multiple units, specifically tailored to the 
ammonia synthesis plant itself. The economics are 
not as favorable as the potential economics of the 
conceptual 250 million ft 3 /day gasilication units 

(sufficient for about seven 1,000 tons/day 

ammonia plants) due to the smaller scale of opera
tion, but the technology is thought to be advancing 
more rapidly. Indeed, three large (900 mot/day) low

grade coal units are nearing completion in India and 
will serve as pilot plants for those areas having proven 
reserves of coal, including the United States. 

The coal-based operation has significant disadvantages as 
compared with gas or naphtlha reforming. Higher original 
capital costs for the gasifiCrs, gas purification units, and 
liquid air plant: great variability in col quality: high fuel 
(heat) losses, high steam requirements: higher labor costs; 
and limited capacity of individual gasifiers are some of the 

problems involved. IHowever, in the past the greatest 
deterrent to erection of significant capacity has been the 

poor operating experience high down-time--with these 
units. 

Nevertheless, there are many areas, particularly 
developing areas, that have no other feedstock/fuels except 
coal, and the incentives are great to pursue this route- the 
greatest is the tremendoous retluctio of foreign exchange 
capital required to mect growing agricultural nitrogen 

demands when compared with the alternatives of importing 
annonia (or N products) or importing the feedstocks. The 
drive toward uninit/izing or eliminating national 
dependence upon others for this basic need is also a strong 
incentive. 

l:'fi'ct of enerr shortage oit plant inveslltents of 

currentt ammtonia processes TVA sources have indicated 
-

Firm plans (or ihe construction ot"at least two 250) million 

('I1) coal-gasification units in New Nexico, U.S.A., by 1977-80 are 
being pursoed; these, however, are not based on new-generation 
gasification units, but on a multiplicity of simall but proven 
"partial-oxidation" units as described in Section D. 
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the early 1974 contract price for a gas-reforming NH3 
plant, U.S. Gulf Coast, has increased 40%over that of early 
1973. A 1,000-ton/day unit was $20 million in 1913, but is 
now about $28 million, battery-limits basis. The shortages 
of all materials of construction and of transportation have 
been blamed on the current energy shortage. lowever, it is 
felt that a significant portion of this increase is due to tile 
"sellers' market" in the fertilizer industry, including process
equipment. 

Effect of process substitutionon plant design--If it is 
granted that partial oxidation of coal is the only practical 
far-term process "substitution" for conventional NI-I3 
processes, drastic changes in the design of the "front end" 
(synthesis gas production) of existing gas-reforming plants 
would be required. The two-stage gas reformer would be 
replaced with oLur to five gasifiers, the gas scrubbers would 
be doubled in number and size, and a liquid air plant would 
be added to supply oxygen and nitrogen. 

Effect of far-term process substitution onl plant 
investment--The inherent weakness of the coal partial-
oxidation (gasification) has been its high capital cost. The 
small, multiple gasifiers; large CO, and sulfur removal 
systems; liquid air plant; and solids handling equipment 
increase the battery limits plant inv-,stment of this type
plant to about twice that of a natural gas-reforming plant of 
the same capacity. The development of large, single train 
gasifiers would help this situation, bul only to a modest 
extent. 

Effect of far-terin process substitution on ammonia 

production costs -Obviously, tie high capitalization 
charges against the coal-based process and its low energy
efficiency increase the production cost of the ammonia, as 
compared with that from a gas-reforming plant. At 
moderate equivalent energy costs (say, S0.50/million Btu) 
the coal-based production cost will exceed that of natural 
gas by about 70%. The only way in which coal can be 
competitive is by being available at a much lower unit 
energy cost. 

Possibilities of Product Substitution 

There is no possibility of near- or far-term (10 year)
substitution of another forl of fixed nitrogen for 
anhydrous ammonia on any commercial scale. 

Tile fact that annonia prices have increased at least 
twofold in a year's iime (to March 1974) has not in any 
way decreased tile demand. World markets bring even 
higher prices than those in the United States. Fertilizer
investments are regarded by farmers as yielding thle greatest 

return of any input to their operation. In early 1973,
atmnonia f.o.b. plant prices in the United States were 
$42/mt which represented low, if any, profit in the buyers' 
market. Current prices (early 1974) are SIOO-SI 10/nit with 
spot prices in excess of $130. Still, there is a firm pressure 

for greater quantities. These price increases are in part due 
to intrinsic production cost increases, but a large part is due 
to the sellers' market situation. Fertilizer production is again 
a profitable business after a number of profitless years. 

Economic Factors in the
 
Production of Synthetic Ammonia
 

Estimated ammonia plant investments (U.S. Gulf Coast 
basis) for 600 and 1,000 rt/day capacity-January 1974 
basis-are given below. Plant investment for a 1000 short 
ton/day complex consisting of the battery limits synthesis 
plant; auxiliary utilities facilities; support facilities, such as 
office buildings, shops; and product storage is given in tie 
following tabulation: 

Investment S million 
(I 000nmt/day plant) 

-- -....... Parial-
Gas Naphtha oxidation 

Investment item reformin, reforming OI--Cia 
Battery limits NH3 28.0 32.0 37.0 56.0 
Site preparation 1.0 1.0 1.0 1.5 
Auxiliary facilitiesa 4.2 4.8 5.7 8.4 
Support facilities a 4.2 4.8 5.7 7.6 

Subtotal 37.4 42.6 49.4 73.5 
Product storage b 2.0 2.0 2.0 2.0 
Total complex investment c 39.4 44.6 51.4 75.5gttAtiniatedatl5-1-i of ba-t--ylimitsinves-tnin. -- _.. ______ .
b'Refrigcrated, atmospheric storage, 15.000 tnt capacity. 
CDoes not include land, or special frcilities such as marine facilities. 

Similar investment data are given below for 600 mot/day 
plants. 

. 
Partial 

Gas Naphtha oxidation 
reforming- reforming -Oil Coal 

Battery limits, U.S. 20.0 23.0 26.5 40.0 
Site preparation 1.0 1.0 1.0 1.5 
Auxiliary facilities a 3.0 3.5 4.0 6.0Support facilitiesa 3.0 3.5 4.0 6.0
 

Subtotal 27.0 31.0 35.5 53.5
 
Product storage b 2.0 2.0 2.0 2.0
 
Total complex 

investmentc 29.0 33.0 37.5 55.5 
aEstimated at 15 -,o-flbattery limiits investment. 
bRefrigerated, atmospheric storage, 15,000rot capacity.CDoes not include land, or special facilities such as marine facilities. 

The estimated production costs for anunonia produced
in 600 ut/day plants based on natural gas, naphilha, crude 
or fuel oil, and coal are given in tables I, 3, 5, and 7. 
Similar tables 2, 4, 6, and 8 are given for the 1.000 mot/day 
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Table 1. Ammonia production costs, natural gas feedstock (600 mt/day) 
Plant capacity, 600 mt/day, 198,000 mt/year; Plant investment $29.0 million 

asumof 6.7% (15 yrs) depreciation. 2%taxes and insurance, 8% (V plant cost) interest. 

No. Production costs, $/mt, at 
units/mt Price/unit indicated cost of feedstock 

Units product $ 0.30 0.60 0.90 

Materials 
Feedstock, natural 
gas (900 Btu/standard ft3 ) 

1,000 ft3 23.1 0.30 
0.60 
0.90 

6.95 
13.90 

20.80 

Intermediates, catalysts, chemicals 
Maintenance (2.5% plant investment) 

- - - 0.60 
3.66 

0.60 
3.66 

0.60 
3.66 

Fuel, power, other 
Natural gas, fuel 1,000 ft3 15.4 0.30 

0.60 
4.61 

9.25 
0.90 13.80 

Electric energy 
Cooling water 
Boiler feedwater 

kWh 
1,000 gal 
1,000 gal 

33.0 
55.0 

0.6 

0.02 
0.02 
0.50 

0.66 
1.10 
0.30 

0.66 
1.10 
0.30 

0.66 
1.10 
0.30 

Labor 
Production Man-hrs 0.20 5.00 1.00 1.00 1.00 
Maintenance (2.5% plant investment) 
Supervision 
Administrative 

Man-hrs 
Man.hrs 

0.10 
0.10 

5.00 
5.00 

3.66 
0.50 
0.50 

3.66 
0.50 
0.50 

3.66 
0.50 
0.50 

Sales expense 
General expenses 

Fixed 
Fixed 

-
-

-
-

4.00 
1.00 

4.00 
1.00 

4.00 
1.00 

Capital charges 
12.7% plant investment a 

Subtotal 
18.60 
47.14 

18.60 
58.73 

18.60 
70.18 

8%, ',working capitalb 
Total production cost, $/mt 

0.35 
47.49 

0.48 
59.21 

0.62 
70.80 

bWorking capital = 30 days' value of raw materials plus 90 days' value of subtotal production cost. 

Table 2. Ammonia production costs, natural gas feedstock (1,000 mt/day) 
Plant capacity, 1,000 tm/day, 330,000 mt/year; Plant investment $39.4 million 

No. Production costs, $/mt, at 
units/mt Price/unit indicated cost of feedstock 

Units product $ 0.30 0.60 0.90 
Materials 

Feedstock, natural 1,000 ft 3 23.1 0.30 6.95 
gas (900 Btu/standard ft3 ) 0.60 13.90 

0.90 20.80 
Intermediates, catalysts, chemicals - - - 0.60 0.60 0.60 
Maintenance (2.5% plant investment) 2.98 2.98 2.98 

Fuel, 	power, other 
Natural gas, fuel 1,000 ft3 15.4 0.30 4.61 

0.60 	 9.25 
0.900 13.80 

Electric energy kWh 33,0 0.02 0.66 0.66 0.66 
Coo!ing water 1,000 gal 55.0 0.02 1.10 1.10 1.10 
Boiler feedwater 1,000 gal 0.6 0.50 0.30 0.30 0.30 

Labor 
Production Man.hrs 0.12 5.00 0.60 0.60 0.60 
Maintenance (2.5% plant investment) 2.98 2.98 2.98 
Supervision Man-lirs 0.06 5.00 0.30 0.30 0.30 
Administrative Man-hrs 0.06 5.00 0.30 0.30 0.30 
Sales expense Fixed - 4.00 4.00 4.00 

General expenses Fixed - 1.00 1.00 1.00 
Capital charges 

12.7% plant investmenta 15.15 15.15 15.15 

Subtotal 41.53 53,12 64.57 

8%, i working capitalb 0.50 0.63 0.77 
Total production cost, $/mt 42.03 54.75 65.34 
aSum of 6.7% (15 yrs) depreciation, 2%taxes and Insurance, 8%(1/1plant cost) Interest. 
bWorklng capital = 30 days' value of raw materials plus 90 days' value of subtotal production cost. 



Table 3. Ammonia production costs, naphtha feedstock (600 mt/day) 
Plant capacity, 600 mt/day, 198,000 mt/year; Plant investment $33.0 million 

aSum of 6.7% (15 yrs) depreciation, 2%taxes and insurance, 8%(1Aplant cost) interest. 

No. Production costs, $/mt, at 
units/mt Price/unit indicated cost of feedstock 

Units product $ 60 90 110 
Materials 

Feedstock, naphtha. Mt 0.5 1 60.00 30.60 
(19,000 Btu/lb) 90.00 45.90 

110.00 56.10 
Intermediates, catalysts ...- 0.80 0.80 0.80 
Maintenance (2.5% plant investment) 4.17 4.17 4.17 

Fuel, power, other 
Naphtha fuel Mt 0.37 60.00 22.20 

90.00 33,30 
110.00 40.70 

Electric energy kWh 50.0 0.02 1.00 1.00 1.00 
Cooling water 1,000 gal 72.0 0.02 1.44 1.44 1.44 
Boiler feedwater 1,000 gal 0.5 0.50 0.25 0.25 0.25 

Labor 
Production Man-hrs 0.20 5.00 1.00 1.00 1.00 
Maintenance (2.5% plant investment) 4.17 4.17 4.17 
Supervision Man-hrs 0.10 5.00 0.50 0.50 0.50 
Administrative Man-hrs 0.10 5.00 0.50 0.50 0.50 
Sales expense Fixed - - 4.00 4.00 4.00 

General expenses Fixed - - 1.00 1.00 1.00 
Capital charges 

12.7% plant investmenta 21.20 21.20 21.20 
Subtotal 92.83 119.23 136.83 

8%, working capitalb 0.66 1.00 1.34 
Total production cost, $/mt 93.49 120.23 138.17 

bWorking capital = 30 days' value of raw materials plus 90 days' value of subtotal production cost. 

Table 4. Ammonia production costs, naphtha feedstock_(1,000 mt/day) 
Plant capacity, 1,000 mot/day, 330,000 tntiyear; Plant investment S44.6 million 

No. Production costs, $/nit. at 
units/mot Price/unit indicated cost of feedstock 

Units product S 60 90 110 
Materials 

Feedstock, naphtha Mt 0.51 60.00 30.60 
(19,000 Btu/lb) 90.00 45.90 

110.00 56.10 
Intermediates, catalysts, chemicals - - - 0.80 0.80 0.80 
Maintenance (2.5% plant investment) 3.38 3.38 3.38 

Fuel, power, other 
Naphtha fuel Mt 0.37 60.00 22.20 

90.00 33.30 
110.00 40.70 

Electric energy kWh 50.0 0.02 1.00 1.00 1.00 
Cooling water 1,000 gal 72.0 0.02 1.44 1.44 1.44 
Broiler feedwater 1,000 gal 0.5 0.50 0.25 0.25 0.25 

Labor 
Production Man-hrs 0.13 5.00 0.65 0.65 0.65 
Maintenance (2.5% plant investment) 3.38 3.38 3.38 
Supervision Man-hrs 0.07 5.00 0.35 0.35 0.35 
Administrative Man-hrs 0.06 5.00 0.30 0.30 0.30 
Sales expense Fixed - - 4.00 4.00 4.00 

General expenses Fixed - - 1.00 1.00 1.00 
Capital charges 

12.7% plant investmenta 17.15 17.15 17.15 
Subtotal 86.50 112.90 130.50 

8%, working capitalb 1.05 1.39 1.67 
Total production cost, $/mt 87.55 114.29 132.17 
aSum of 6.7% (15 yrs) depreciation, 2%taxes and insurance, 8%(Vaplant cost) Interest. 
bWorking capital =30 days' value of raw materials plus 90 days' value of subtotal production cost. 



Table 5. Ammonia production costs, crude (fuel) oil feedstock (600 mt/day) 
Plant capacity, 600 mt/day, 198,000 mt/year; Plant investment $37.5 million 

No. Production costs, $/mt, at 

units/nit Price/unit indicated cost of feedstock 
8 10Units product S 6 

Materials 
3.65 6.00 21.90BblsFeedstock, crude 

8.00 29.20 or fuel oil (17,500 
36.5010.00Btu/lb) 

0.40 0.40 0.40
Interinediates/supplies (catalysts) 

4.73 4.73 4.73
Maintenance (2.5% plant investment) 

Fuel, power, other 
2.62 6.00 15.70Crude oil-fuel Bbls 

8.00 20.90 
10.00 26.20 

1.00 1.0050.0 0.02 1.00Electric energy kWh 
1.76 1.76

Cooling water 1,000 gal 88.0 0.02 1.76 
0.20 0.20

Boiler feedwater 1,000 gal 0.04 0.50 0.20 

Labor 
1.35 1.35 1.35Man.hrs 0.27 5.00Production 
4.73 4.73 4.73

Maintenance (2.5% plant investment) 
0.67 0.67 0.67Man-hrs 0.135 5.00Supervision 
0.67 0.67 0.67

Administrative Man-hrs 0.135 5.00 
- 4.00 4.00 4.00

Sales expense Fixed 
- 1.00 1.00 1.00

General expenses Fixed _ 

Capital charges 
25.10 25.10 25.10

12.7% plant investinenta 
83.21 95.71 108.31

Subtotal 
0.59 0.86 1.03

8%, V.,working capitalb 
83.70 96.57 109.34

Total production cost, $/mt 

aSum of 6.7% (15 yrs) depreciation, 2% taxes and insurance, 8%(/z plant cost) interest.
 

30 days' value of feedstock plus 90 days' value of subtotal production cost.bWorking capital = 

Table 6. Ammonia production costs, crude (fuel) oil feedstock (1,000 mt/day). 

1,000 nit/day, 330,000 nit/year; Plant investmentPlant capacity, 
No. Production costs, /nit, at
 

units/nit Price/unit indicated cost of feedstock
 

Units product $ 6 8 10
 

Materials
 
6.00 21.90Feedstock, crude Bbls 3.65 
8.00 29.20 or fuel oil (17,500 

36.5010.00Btu/Ib) 
0.40 0.40 0.40

Intermediates/supplies (catalysts) 
3.88 3.88 3.88

Maintenance (2.5% plant investment) 

Fuel, power, other
 

2.62 6.00 15.70Crude oil-fuel Bbls 
8.00 20.90 

10.00 26.20 

Electric energy kWh 50.0 0.02 1.00 1.00 1.00
 

Cooling water 1,000 gal 88.0 0.02 1.76 1.76 1.76
 
0.4 0.50 0.20 0.20 0.20

Boiler feedwater 1,000 gal 

Labor
 

0.80 0.80Production Man.hrs 0.16 5.00 0.80 
3.88 3.88 3.88Maintenance (2.5% plant investment) 
0.40 0.40 0.40Supervision Man.lirs 0.08 5.00 
0.40 0.40 0.40Administrative Man-hrs 0.08 5.00 
4.00 4.00 4.00Sales expense Fixed - 

- 1.00 1.00 1.00General expenses Fixed -


Capital charges
 
19.75 19.75 19.7512.7% plant investmenta 
75.07 87.57 100.17Subtotal 
0.89 1.06 1.248%, V working capitalb 

75.96 88.63 101.41Total production cost, $/mt 
aSurn of 6.7% ( 15 yrs) depreciation, 2%taxes and Insurance, 8%(IAplant cost) interest.
 

= 30 days' value of feedstock plus 90 days' value of subtotal production cost.
bWorkiug capital 



Table 7. Ammonia production costs, coal feedstock (600 mt/day) 
Plant capacity, 600 mt/day, 198,000 mt/year; Plant investment $55.5 million 

No. Production costs, $/mt, at 
units/mt Price/unit indicated cost of feedstock 

Units product 10 20 30 
Materials 

Feedstock, coal Mt 1.15 10.00 11.50
 
(11,400 LHV 20.00 23.00
 
Btu/lb) 30.00 
 34.50 

Intermediates, chemicals 0.40 0.40 0.40 
Ma!ntenance (2.5% plant investment) 6.95 6.95 6.95 

Fuel, 	power, other
 
Coal, fuel Mt 1.05 10.00 10.50
 

20.00 	 21.00 
30.00 31.50 

Electric energy kWh 150.0 0.02 3.00 3.00 3.00 
Cooling water 1,000 gal 77.0 0.02 1.54 1.54 1.54 
Boiler feedwater 1,000 gal 0.5 0.50 0.25 0.25 0.25 

Labor 
Production Man.hrs 0.53 5.00 2.65 2.65 2.65 
Maintenance (2.5% plant investment) 6.95 6.95 6.95 
Supervision Man.hrs 0.26 5.00 1.30 1.30 1.30 
Administrative Man-hrs 0.26 5.00 1.30 1.30 1.30 
Sales expense Fixed - - 4.00 4.00 4.00 

General expenses Fixed - - 1.50 1.50 1.50 
Capital charges 

12.7% plant investmenta 35.60 35.60 35.60 
Subtotal 87.44 109.44 131.44 

8%, working capitalb 0.57 0.83 1.09 
Total production costs, $/mt 88.01 110.27 132.53aSum of 6.7% (15 yis) depreciation, 2%taxes and insurance, 8%('/2 plant cost) interest. 
bWorking capital =30 days' value of raw materials plus 90 days' value subtotal production cost. 

Table 8. Ammonia production costs, coal feedstock (1,000 mt/day)
Plant capacity, 1,000 nit/day, 330,000 jnt/year; Plant investment S75.5 million 

No. Production costs, S/nt, at 
units/rot Price/unit indicated cost of feedstock 

Units product S 10 20 30 
Materials 

Feedstock, coal Mt 1.15 10.00 11.50 
(11,400 LHV 20.00 23.00 
Btu/lb) 30.00 34.50 

Intermediates, chemicals 0.40 0.40 0.40 
Maintenance (2.5% plant investment) 5.70 5.70 5.70 

Fuel, power, other 
Coal, fuel Mt 1.05 10.00 10.50 

20.00 	 21.00 
30.00 	 31.50

Electric energy kWh 150.0 0.02 3.00 3.00 3.00 
Cooling water 1,000 gal 77.0 0.02 1.54 1.54 i .54 
Boiler feedwater 1,000 gal 0.5 0.50 0.25 0.25 0.25 

Labor 
Production Man-hrs 0.32 5.00 1.60 1.60 1.60 
Maintenance (2.5% plant investment) 5.70 5.70 5.70 
Supervision Man.hrs 0.16 5.00 0.80 0.80 0.80 
Administrative 	 Man-hrs 0.16 5.00 0.80 0.80 0.80 
Sales expense Fixed - - 4.00 4.00 4.00 

General expenses 	 Fixed - - 1.50 1.50 1.50 
Capital charges 

12.7% plant investmoenta 29.00 29.00 29.00 
Subtotal 76.29 98.29 120.29 

8%, working capitalb 0.84 1.10 1.44 
Total production costs, $/mt 77.13 99.39 121.73aSum of 6.7% (15 yrs) depreciation, 2%taxes and insurance, 8%(VAplant cost) interest.
 
bWorking capital = 30 days' value of raw materials plus 90 days' value subtotal production cost.
 



or pumping) to the reactor. It is this requirement that addsplants. In each, a practical range of feedstock (fuel) costs is 
used. The minor inputs of heat (steam) or electrical energy to tile dost and complexity of the process. 

are held constant at $0.50/thousand pounds and The total recycle of the unreacted raw materials within 

$0.02/kWh, respectively, tile urea plant can be avoided, but only by the erection of 

The results of the calculations in the tables are sum-	 another, dependent, NHY-consuming plant, such as an 

atmmoniunn nitrate unit. Because of this interdependence ofmarized in figure I. To determine breakeven points for the 
across to the desired curves at a these plants, few producers elect this alternative; nearly allvarious feedstocks, read 

given production cost (ordinate) and pick off the breakeven modern installations accept the interdependence of the 

feedstock costs on the corresponding cost scales (abscissa). amnmonia and urea plants (because it cannot be avoided 

For example, at a production cost of S70.00/mt, coal at except at a significant cost of NI-I 3 and CO2 storage), but 

gas at about utilize the total recycle urea plant to avoid a three-plantabout S6.5U/mt breaks even with natural 
$1.04/I,000 feet 3 . chain. It is even feasible to integrate the urea and ammonia 

plants in such a way as to, in effect, purify the ammonia 
synthesis gas by scrubbing out the CO2 with atnmonia and 

UREA recycle solution in a urea "prereactor" and pumping tile 
resulting solution up to urea synthesis pressure. Significant 

Urea is rapidly becoming the greatest single source of energy savings are possible, but such a large, delicately 

solid nitrogen fertilizer in the world; in 1967, urea balanced system is difficult to maintain in stable condition. 

production was about 19% of total nitrogen production, No such units are known to be in operation. 

but in 1973 it was about 30% of the total N. Its high 
analysis (46, N), satisfactory physical properties, and its Importance of Fuel and Feedstock 

lack of fire and explosion hazards (as compared to Energy to the Urea Process 
atninoniun nitrate) are the reasons for this growing 
demand. The energy input to some of the conventional urea 

processes is as follows. 

General Process Descriptions 	 Energy, Btu x 106/mt urea 

All commercial process variations utilize the overall NH3 
reaction of liquid inhydrous ammonia (NH3 ) and gaseous energy Equivalent 

Process equivalent electrical Steam Totalcarbon dioxide (CO2 ) to yield urea [CO(NH 2 ) 2]. 
Total solution recycle 20.7 0.56 2.5 23.8 

2NII 3 (liquid)+ C0 2 (gas) pressure CO(NI-12 )2(solid)+ H2Ot CO2 or NH 3 stripping 20.7 0.45 1.7 22.9 
heat 	 Heat recyclea 20.7 0.56 1.2 22.5

0.3dHot gas recycle b 2 0.7 0.04 c 21.0 

This is an oversimplification of the chemical reaction Average energy consumption, Btu x 0 ,0 4 cHotrg rycb 2 I106 /mt pla1tplant 
= 

steps involved, but is sufficient for this purpose. Both nutrient 49.0
 

reactants are obtained from the adjacent anmonia plant aTwo small units inoperation.
 
(see "Ammatonia"): thus, the urea plint operation is bUnproven but theoretically sound.
 

CNo cooling water pumping or solution pumping.dependent upon that of the annonia plant. 
and requires the input o dEstimated net (import of 2,800 lbs 400 psig superheated steam

The reaction is cndothermic 
2,800 lbs 150 psig steam).prills. the exportthermal energy to produce the solid called 

reaction is favored by high pressure and high temperature; 

commercial processes today operate in tile range of 2,000 Urea process designers have long recognized the need to 

to 4,000 psig and I')O to 205'C, depending upon the strive for maxinum energy efficiency. The above processes 

economics of imdividtial process variation involved. Coln- are in order of decreasing world capacity as well as 

pression of the reactaltts and recycle streams to high decreasing energy consumption. The heat recycle process is 

pressure also rtcquires a high input of thermal and electrical being demonstrated in two small plants--operating results 

energy. 	 are not yet public. The hot gas recycle process is merely a 

Tihe reaction above does not go to completion, i.e., only drawing board design, but appears to be sound. It cannot be 

60't-70'; of ilte atnimonia and carbon dioxide are converted pilot-planted because Ohe centrifugal hot-gas compressor 

to urea in a single pass. As a result, the unreacted NI 3 and cannot operate in less than a 1,500 tons/day urea plant-an 

('0 2 must be separated, at low pressure, from the reactor expensive pilot plant. The "net" steam requirement is valid 

effluent solution (prior to evaporation of the water of only if a use for the medium pressure export steam exists in 

reaction to yield the solid) and recycled (by recompression the complex. 
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Figure 1.Ammonia production costs versus feedstock costs 
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Near.Term Potential for Substitution of Other 
Feedstock or Fuels for Presen Ones 

There isno known large scale commercial process for the 

production of urea from feedstocks other than ammonia 

and carbon dioxide, 


The heat energy input to the urea plant is invariably 

frnor same source as that to the amnmonia plant in order
the 
to simplify in.plant logistics. however, considering the urea 
plant itself, the primary source of energy is not critical 
from the technical viewpoint, since it is delivered to the 
synthesis system as steam from an external steam generator 
that could be fired with any available fuel, 

Potential for For.Term (1O.Year) 
Urea Process Substitution 

General considerations There is no known process 
that inight be available later, even given the impetus of' 
intensive research over tie far tern, to eliminate, or even 
reduce the carbon oxide requirement for tie synthesis of 
urea. 

It is conceivable that carbon monoxide, riher than 
carbon dioxide, could be utili/ed in urea syntlheis, thus 
increasing the potential sources of byproduct carbon 
oxides. Ilowever, the process, which has been pilot.planied, 
involves the reaction of stloichionetric quantitiet of carbon 
monoxide, sullur, arid aninionla tIoyield urea (at lower 
temperature arid pressures than now practical) pills
byproduct hydrogen sulfide. lhe estimated high cost otf 
regenerating the sulfur from the 11 .Sis a s mabling block 
to this process arid it does not eliniale the need for tie 
carbon oxide. 

Although it has already been indicated that production 
of hydrogen for arnnionia synthesis by electrolytic of 
thermofichenical decomposition of water is projecteJ well 
beyond tie time framework of tits report, it slould.1 be 
pointed out that when this era approaches, a cartton oxide 
(('()or ('0) will have to be deliberately produced for urea 
synthesis, since the byproduct CO3 normally atocialed 
with NIl production will be lacking, The oxygen resulting 
from the water decomposition could be used in a COl 
generator using any available form of carbon. 

Impact )f hlgh energy costs on t14wrrltr urea plant 
hinesmlnents Like ammtnlonia plant Investmetis, the costs 
of urea synthesis plants have risen sharply since January
197.3; first.quarter 1974 contracts were Increased by about 
4(Y;,' over early 1)7.1 cosis. These drastic cosl Increass, 
however, are thought t)be limited to the very heavy, high 
pressure, alloy steel construction of Nils and urea plant 
equipment and may also reflect the effects of ihepresent 
sellers' market Itprocess equipment, 

kJfec ofprocess substiltlon orn urea phocess equlpmenl 
designr Since there Ihlittle chance Ioapractical substilute 

urea process inthe I.year period of hils report, a detailed
 
discussion of design changes isnot pertinent,
 

On the other hand, tile
speculative processes nienilioned 
previously, i.e,,hot.gas recycle and carbon monoxilde, 
anmmonta-sulfur reaction, would have slgnifhcant elflects ol 
equipment design, The holpgs recycle proce%% would 
substitute a single large steatin tutbirse iecycle tas. 
conpressor for the troublesome hot cathonate milution 
recycle pumps required In pieseril Unit%, and would Cliect, 
theoretically, a higher energy Cficlency. 

The atmnonia-sulfur.catbon monoxide reaction acileves 
a hither degree of single.pass conversion itammonia It 
urea at inuch lower pressures and tenaperatues, tlu 
decreasing the high coktoo thai are suinherent inhighptrm. 
pro'ess equipment. 

lJ/'rt of Joi 'rPs subiitution to urra plait calIa 
Inse-noetents Urfuoltunately, the lopeculalive pluitrotww 
mentioned In the previous sectiehn have not prloglessed It a 

point where equipmntl Collt can be esllinaled Irhably I1W 
saie may fe said of production iootla arid I-wletlliAl p|t~i,,r% 
problems. 

P 
General ru nifrfient |ira is, oftIoui,s on dlc ,,Ihe 


%everal Iorns o igenall lll.till ll tt,'hIiare CIIUAll)li I n .Alt 

effeirve on applied n.111 11j u I itflighan htvnItI1%4 
Ilii igell tonatent (4-' X) and ihiril lt%, pike+. ,ti 

ctno. urea genrially Iia) he drliserej rtnt'e ercapl, III i 
nitrogeni basis ilfir 'fdthan lile oikllillil itijittert 
prolduct. sUh as Ailltulitillns frillialet I" % , a111ollrtilol 
sulfale N)1,lN of alnirintunui . %) If,or 0fhht1id1r, 
shitl,1thaul itUati11n1, arrarolitul sulal eAnd iti,ide 
which are genitally hyprkursli of ,killrii.olaA turJill+it g arid 
sta procese.¢ , ay I le s exI, ¢ aiplied Utilp!r III Ithe 
arid lhould be u"ed In IheseIslialilkno 

Sictly finIa the talrdpor1inl (itofrlef' nisullnnpilitill ihe, 
use of tIe byprioduot rilpeni uld he betlil!tihAtl t 
thall that tof tile1y)uth ik UIeA ilainiili lliull uillair 
diwountil even the sificantly higher tIaispoi rictllsr 
costs of formti, ItwtoulJ be imp sleto!tile lfowevrr, 
supply tie requited aiountli Il N inthes Ioims leI (hln 
2(Yi of the world supply ol N isfront these hIwilsodt 
tiurc re Of the twi plIncip'll naltr!tgen p#44dut% ulr arOW 
aliniorunan nitrate urea is tile isot irtmrlnical ard si s 
not consulme i signifWcantly irealei atiunt illefnrgy us 
production than lmmolun nitrate 
1 lie direct applcatoua of liqld anlaottllia fo Ilhe grfltrit 

crops it a practical and widely used subtiltur fill usirs 
and otlier solid fetllilltrt In tlie thilted Stairs 11 
incremiaental enerily tequirerainilisto1roduoimilofl olid 
isthus eltlniaated, In the United Stats, nearly 44Y4 of the 

lotal fertillier niltoen apphalorn is in ie hum f liquid 
Nilj, Ths petcentale iif ltotower In the rest of te wo.I, 
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Table 15, Estimated production costs of the conventional dihydrate wet process phosphoric acid process (400 m/day)Plaii c'apacity, 400nmt/day P1O 1 , I .,000 1/yei-rP2 OS; Plant invectmcnt $I3.4 nollion 
No. 	 Production Cost .$/nlt P2 0, 
tlliti/fnlPrice/uenil at indicated cost ol phosphate rock
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Table 17. Estimated production costs of the wet-grinding hemihydrate wet process phosphoric acid process (400 mt/day) 
Plant capadty, 400 it/day P2Os, 132,000 it/year P205 (as 54% P2OS acid); Plant investment $14.2 million 

No. Production costs, $/mt P205 
units/mt Price/unit at indicated cost of phosphate rock 

Units . .product $ 15 25 35 
Materials 

Unground rock. 32% P20s Mt 3.38 15.00 51.00 
25.00 84.50 
35.00 118.00 

Sulfuric acid, I0%' Mt 2.75 17.94 49.50 49.50 49.50 
('hemicals 0.50 0.50 0.50 
Maintenance (2,5'% plant investment) 2.68 2.68 2.68 

Fuel, power, other 
(ooling water 1000 gal 28.0 0.02 0.56 0.56 0.56 

lectfic energy kWh 95.0 0.02 1.90 1.90 1.90 
Ilho 
Operating Man-hrs 0.27 5.00 1.35 1.35 1.35 
Mamitl anc 
Superviionl 

(...i,,plant investinlit) 
Man.lirs 0.13 5.00 

2.68 
0.65 

2.68 
0.65 

2.68 
0.65 

Adinlnmilalive Man.hrs 0.13 5.00 0.65 0.65 0.65 
Sale. expense Fixed 5.00 5.00 5.00 

G(enical experne Fixed 1.00 1.00 1.00 
Capital tliAgC% 

12.7, plant imv 
Subitlal 

%lmenta 13.70 
13 1.09 

13.70 
164.59 

13.70 
198.09 

N';. i wolking capitala 1.77 2.25 2.68 
Total production cost, S/mt P3 0 132.86 166.84 200.77 

S/mt acid (64% P 0) 71.90 90.00 108.50 

Table IN. LstimAted production costs of the wet.rindin| hemihydrate wet process phosphoric acid process (600 mt/day) 
I'lin capacity, ((X)nil/day P2O), 204,0(X) nil/year P0, (as 54', P 01 acid); Plant investment S1 7.7 million 

No. Production costs, $/mt P2O 
units/lt Price/unit at indicated_cost oflhosphate rock 

(Lil % pr-duct $ I_ . 25. 35 

i'jk. ,iltlouli 2 ; 1 Ml .1,13 15.00 51.00 
25.00 84.50
 
35.00 118.00 

Sulltllikc acid. I(Wr MI 2.75 17.494 49.50 49.50 49.50 
('limh al 0.50 0.50 0.5041, 
Miilnteni 23';.V pl.4nt initlllinl 2.24 2.24 2.24 

IVuel, pimel, ilhler 
Ooliia %Ale 1.000 gal 28.0 0.02 0.56 0.56 0.56 

95.0 0.02 I.90 1.90 I.()0Iiectfc enirllly kWh 
La~bor 
Oplring Mali-h r 0.1K 5,00 0.90 0.9)0 0.90 
Mtla ewnii( i l'tarlp a neintlcnl) 2.24 .. 24 2.24 
Nuteiiio M4llrhs1 0.0') 5,00 0.45 0.45 0,45 
AldiiitatIti Man-lhri 0.0') 5.00 0.45 0.45 0.45 
,i1i pn'llit I'ixed 5.00 5.00 5.00 

(Gnrial tlclenite iixcd 1.00 1.00 1.00
 

I..7', Plant inveiti i 11.05 11.05 11.05 
Nubotla 126.7i) 160.29 193,79 

i0, toilklo Ci t4ll 1.72 2.20 2.68 
Total pnW e, S/mt P,0. 162A9 196.47tottn 128.61 

S/ml Sid 154%POj) 69.40 87.70 106.00 
i'tee l1,14. I . 

, < :7¥ 7:L ..
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Table 19. Estimated production costs for diammonium phosphate (18-46-0) (800 mt/day)

Plant cspacity, 800 mit/day, 287,000 mt/year; 
 Plant investment $3.96 million 

No. Production costs, S/nit at 
units/mt Price/unit indicated cost, W-P acid

Units product S 70 90 110
Materials 

Ammonia Mt 0.23 55. 0 0 a 12.65 12.65 12.65W-P acid (54% P2 0s ) Mt 0.87 7 0 .0 0 60.8090.00 bb 
78.40 

b 	
740.00 95.80Maintenance (2.5% plant investment) 0.34 0.34 0.34

Fuel, power, other 
Fuel oil (drying) 	 Gal 3.3 0.20 0.66 0.66 0.66Electric energy kWh 22.0 0.02 0.44 0.44 0.44Fuel oil (steam gen.) 	 "Gal 4.4 0.20 0.88 0.88 0.88 

Labor 
Production 	 Man-hrs 0.18 5.00 0.90 0.90 0.90Maintenance (2.5% plant investment) 0.34 0.34 0.34Supervision Man-hrs 0.09 5.00 0.45 0.45 0.45Administrative Man-hrs 0.09 5.00 0.45 0.45 0.45Sales expense 	 Fixed 4.00 4.00 4.00General expense 	 Fixed 1.00 1.00 1.00 

Capital charges
12.7% plant investmentc 1.75 1.75 1.75Subtotal 84.66 102.26 119.66 
8%, , working capitalc 1.19 1.44 1.70Total production cost, $/mt 18-46-0 85.85 103.70 121.36aproduced from natural gas at $0.60 1,000 ft 3.
bAt sulfur cost of $40/mt; 40% acid would be used ifacid isproduced at the same complex-costs would be slightly lower.


CSee tables 1-8. 

Table 20. Estimated production costs for diammonium phosphate (18-46-0) (1,300 mt/day)
Plant capacity, 1,300 nit/day, 430,000 mot/year; Plant investment $5.0 million
 
No. Production costs, S/nit at
 

units/int Price/unit indicated cost, W-P acid

Units product S 
 70 90 110

Materials 
Ammonia Mt 0.23 55. 0 0 a 12.65 12.65 12.65W.P acid (54% P203) Mt 0.87 7 0 .0 0 b 60.80 

90.00b 
 78.40 
11 0.00b95.80Maintenance (2.5% plant investment) 0.29 0.29 0.29

Fuel, power, other 
Fuel oil (drying) Gal 3.3 0.20 0.66 0.66 0.66Electric energy kWh 22.0 0.02 0.44 0.44 0.44Fuel oil (steam gen.) Gal 4.4 0.20 0.88 0.88 0.88 

Labor 
Production Man-hrs 0.12 5.00 0.60 0.60 0.60Maintenance (2.5% plant investment) 0.29 0.29 0.29Supervision Man-hrs 0.06 5.00 0.30 0.30 0.30Administrative Man-hrs 0.06 5.00 0.30 0.30 0.30Sales expense 	 Fixed 4.00 4.00 4.00General expense Fixed 1.00 1.00 1.00 

Capital 	charges
12.7% plant investmentc 1.48 1.48 1.48Subtotal 83.69 101.29 118.69 
8%, working capitalc 1.12 1.36 1.62Total production cost, $/mt 18-46-0 84.81 102.65 120.31aProduced from natural gas at $0.60 1,000 ft 3 .bAt sulfur cost of $40/mt; 40% acid would be used ifacid isproduced at the same complex-costs would be slightly lower.

cSee tables 1-8. 
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Table 21. Estimated production costs for direct process ammonium polyphosphite (12.57.0) (700 mt/dayj_.
Plant capacity, 700 n -t/day, Plant investment $3.1 million31,000 mriyear; 

Materials 
Ammonia 
W.P acid (54'/. 1120)s


Maintenance (2.5",: plant Investment) 
Fuel, power, other 
Fuel oil (steam gen.) 
Fectric cil'y 

Labor 
I'rodutlion 

Maintenance (2.5,plant investment) 

supelNirion 


Adii,,iihaltive 

Sales expense 

(;eeral expense 
C'apital charges, 

12.7'; pLhmt vestnentc 
Suoh IhIl 

S',;.%,'
I-, rking capitalc 
Total production cost, 12-57-0 
allrodUi cd Ir natural gajSii at $0.60 1,000 ft 3.
b'\1 sultur to lol $4H/m11. 

Units 

Mt 
Mt 

Gal 
kWh 

Man-hrs 

Man-hrs 
Man-hrs 
Fixed 
Fixed 

No. 
units/nit 
product 

0.15 
1.07 

4.4 
25.0 

0.20 

0.10 
0.10 

Price/unit 
$ 

55.00a 
70.00b 


90.00 b 
11O.r~b 

0.20 
0.02 

5.00 

5.00 
5.00 

Production costs, $/mt at 
indicated cost, W.P acid 

70 . 90 . i0 

8.25 8.25 8.25 
75.00 

96.50 117.50 

0.35 0.35 0.35 

0.88 0.88 0.88 
0.50 0.50 0.50 

1.00 1.00 1.00 
0.35 0.35 0.35 
0.50 0.50 0.50 
0.50 0.50 0.50 
4.00 4.00 4.00 
1.00 1.00 1.00 

1.79 1.79 1.7) 
94.12 115.62 136.62 

1.40 1.72 2.04 
95.52 117.34 138.66 

Table 22. Estimated production costs for direct process ammonium polyphosphate (12-57-0) (1,050 mt/day)
Plant capacily, 1.050 tm/day, 346,000 nit/year; Plant investment $3.9 million 

No. Production costs, S/mt at 
units/mt Price/unit indicated cost, W.P acid 

Units product S -70 1...90 .........-0--
Materials 
Annonia Mt 0.15 55.00 a 8.25 8.25 8.25
 
W-' acid (54' 12Os ) Mt 1.07 7 0 .0 0 b 75.00
 

9 0 .00b 96.50
 
110 .00b 117.50
Nlaintenance (2.5,, plant investment) 0.30 0.30 0.30 

Inel, power, other 
Fuel oil (Stean gen.) Gal 4.4 0.20 0.88 0.88 0.88 
Ilectric eteigy kWh 25.0 0.02 0.50 0.50 0.50 

Labor 
Prod,.'tiot Man-hrs 0.14 5.00 0.70 0.70 0.70 
Mainlenance (2.51,"f plant investment) 0.30 0.30 0.30
 
Supervision Man-hrs 0.07 5.00 
 0.35 0.35 0.35
Administiative Man-hrs 0.07 5.00 0.35 0.35 0.35 
Sales cxpcns\e Fixed 4.00 4.00 4.00 

General expense Fixed 1.00 1.00 1.00 
Capital charges

12,7',' plant invest entc 1.50 1.50 1.50 
Subtotal 93.13 114.63 135.63 

!.,
8K'e,working capitalc 1.38 1.70 2.02
Total production cost, 12-57.0 94.51 116.33 137.65
al'roduced from natural gas at $0.60 1,000 ft 3.

b At sulfur cost of $40/mt,
 
CSee tables 1.8.
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