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A theory of water movement in the combined mole-tile drain system based on the transient state

" condition was developed. Two general equations were derived to deseribe the height of the water table at
any location in the system at any clapsed time afier the drainage process begins. One of the equations is

applicable for the stage in which the water table is above the mole drains, and the other equation is for the

stage in which the water table falls below the mole drains. The two general equations were simplified for

the point located at midpoint between the tile drains and mole drains in the system. In the derivation,

assumptions regarding the flow condition of groundwater and shape of the water table profile at certain

bounduries were made. Field experiments were then conducted. and the test dati were used in verilying

the cquation for the first stage. A reasonably good agreement between the theoretical analysis and field

data was obtained for this type of research.

The drainage problems of heavy soils are more complicated
than those of coarse-textured soils because the low infiltration
rate necessitates an eflicient surface drainage and the low
hydraulic conductivity of the soils makes a close spacing of tile
drains necessary. In clay soils the water movement is almost
entirely confined to the cracks and fissures. The water move-
ment is relatively fast through cracks and fissures but reduced
to almost negligible flow when cracks and fissures are closed.
Thus for tile drains in these soils to be eflective for drainage
they must be pliced close together. The high initial cost of the
drainage system resulting from the close spacing. plus the fact
that such soils are often not suitable for growing high-income
crops, makes the economic feasibility difficult to obiain.

Mole drains. constructed by pulling o bullet-shaped probe
through the soil to form urlined channels, have been used to
overcome the problem of the high initial cost of tile drains. But
mole drains also are disadvantageous for being short-lived and
requiring reconstruction every few years. Although the con-
struction of mole drains is relatively simple, inexpensive, and
requires little time, the repeated installation of their outlets
could be time consuming and costly.

The problems of outlet construction may be climinated by
the use of the so-called ‘combined mole-tile drain system.’ In
this system a set of tile drains is laid at a suitable depth, nor-
mally about 91.4 cm, and a set of mole drains is drawn ubout
30.5 cm . bove the tile drains in the direction perpendicular to
the tile lincs. The gravel envelope of the tile drain. being ex-
tended to approximately 30.5 cm from the ground surface,
enables the mole drains that intersect the envelope to discharge
the drainage water directly into the tile drains. With this type
of construction the cost of the drainage system is reduced
because the tile drain spacing could be made wider, and the
male drain outlet construction is eliminated.

The combined mole-tile drain system has been used in many
countries in Europe [Food and Agriculture Organization, 1971 J
and Jupan. To the author's knowledge, no information re-
garding its field performance is available. Tomita [1971] re-
ported a theoretical analysis of the combined system in
stratified soils based on the three-dimensional steady state
cquation (i.c., the Laplace equation). The authors presented
the results in three-dimensional diagrams showing the equi-
potential lines and surface potential in the entire system for
different arrangements of the hydraulic conductivity of the
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layers. The results were also presented in graphs from which
the discharge in the collector tile drain may be computed if
the tile drain spacing, the hydraulic conductivity of soil, and
the mole drain spacing are given, In their study, mole drains
having 7-cm diameter were drawn at the depth of 45 ¢m below
ground surface, and the tile drains werc laid at 75-cm depth.

Since no theoretical analysis of the water movement in the
combined system based on the transient conditions could be
found anywhere, and it appears that this system could be most
practical for drainage of heavy soils, a theoretical analysis that
may be used in the evaluation or design of the system is
necessary.

The objectives of this paper are to present the following: a
mathematical model for the combined mole-tile drainage
systemy under a transient state condition, solutions for the
above model for particular initial and boundary conditions,
and the correlation of the solutions obtained with the data
from a field experiment.

DESCRIPTION OF THE STUDY MODEL

A study model was chosen from an area bounded by « pair
of mole drains and a pair of tile drains in a ficld in which a
combined system was laid out indefinitely in all directions in
order to eliminate the eflect of the boundary conditions at the
edge of the field (Figure 1). Since the theoretical analysis can-
not be carried out unless certain conditions of water table and
water movement in the study model are known and because no
such information is available, a logical description of the water
movement that will be used in the analysis is presenied as
follows.

At the beginning, all the drain outlets were closed, and the
water table was a horizontal surface at a certain depth above
the mole drains. As soon as the drain outlets were opened, the
waler table dropped quickly along the boundaries (i.c., the
drains) and assumed the curved form shown in Figure I,
Curves bac and dae represent the water surface profiles at the
sections midway between the mole drains and the tile drains,
respectively. Point a, located at the intersection of the two
curves, is the highest point on the walter table jn the system,
since it is least affected by the drains.

The curves bac and dae divide the water table into four
symmectrical regions 1-4. Because the flow is symmetrical in all
regions, only one region, say region 1, will be used to describe
the water movement. The direction of flow at any point on the
curve ba, for example, at point | in Figure 2, is along the curve
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“Fig. 1. Symmectric regions of the water tabls,

toward the tile drains because at any point on the curve bac the
hydraulic gradient is zero in the direction parallel to the tile
drain. Similurly, the flow at any point on the curve ae is along
ae towird the mole drains, At any point on the surface within
the region and not on the curves ba and ae or the bound-
aries the direction of flow will be affected by the hydraulic
gradient components directed parallel to the tile drains and
the mole drains (e.g., point 3 in Figure 2).

Along the boundary formed by the tile drain the water level
is constant at the drain center line if one assumes that the drain
is always half full of water, The condition along the mole druin
is more complicated. It was found during a field experiment
that during water table recession the discharge from the mole
drain was initially very small and quickly diminished with
time, whereas the general water table was still higher than the
mole drain clevation. This charueteristic seems to indicate that
the water enters und flows in the imole channel, but most of it

i{le drain
™~

-~ Fig. 2" Flow of groundwater, stage I.
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seeps out from the channel before reaching the tife drain, The
water surface may leave the mole channel at some point g a
distance x, from the tile drain, as shown in Figure 2. It should
be noted here that the distance x, is not constant but increases
with time during water table recession.

After the drainage has progressed for a ccotain period, a
situation will be reached in whick the water velocity compo-
nent toward the mole drains is very small in comparison with
the component toward the tile drain, and the flow toward tile
drain predominates. In this situation the mole drain almost
ceases to function, and the water surface along the mole drain

“begins to drop below the mole channel. The water table will

graduaily fatten out until the water velocity is completely in
the direction toward the tile drain, a movement causing the
flow 10 be two dimensional, the condition upon which the or-

“dinary tile drain theories are based (Figure 3).

STAGES OF WATER MOVEMENT IN THE SYSTEM

The study model. shown in three dimensions in Figure 4,
consists of tile drains spaced at S, overlain orthogonally by
mole drains spaced at S,,. The vertical distance between the
mole drains and tile drains is d.. The impermeable layer lies at
a distance dy below the tile drains. The three Cartesian axes u,
X, and y are also shown in the figure, ‘

The stages of water movement in the combined system,
which will be assumed in thz theoretical analyses later, are
described as follows,

Stage |—water table above the mole drains. During this
stage, both the mole drains and the tile drains function
together in a combined fashion resulting in a two-dimensional
flow pattern of which one component flows toward a mole
drain and the other toward a tile drain.

Attime r = 0 with all drain outlets closed, the water table is
flat at a distance d, above the mole drains. Then it will be
assumed that immediately after all drain outlets are openced
simultancously, the wuater table reorients itself into a curved
surfuce as shown in Figure I. Furthermore, the water table
profile along any boundary will be assumed to be independent
of time. Along the tile drains the water level is constant at the
center line of the drain or v = 0. Along the mole drains the
water table profile takes on a constant shape, which will be dis-
cussed later.

Stage I ends when the watdr table at every point in the study
model is at or below the elevation of the mole drains (i.e., max
u = d,, sce Figure 4).

Mola drafa

& betwvesn
tile dratno -

Tile drain
\\

Fig. 3. Flow of groundwater, stage 2.‘
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Impermcable layer

Fig. 4. Water table profile in a combined mole-tile drain system.

Stage 2—~water table between the mole drains and the tile
drains.  During this stage, which starts with the condition of
water table at the end of stage 1, only the tile drains are in ac-
tion. At any point on the water table the hydraulic gradient is
steepest in the direction toward the tile drains, a situatjon
resulting in a two-dimensional flow pattern as occurs in an or-
dinary tile drain system (Sce Figure 3).

Although the shape of the water table at any vertical section
parallel to the mole drains at the outset of this stage is assumed
to be identical to the constant water table profile along the
mole drains in stage | (Figure 3), the shape during stage 2 will
be time dependent.

MATHEMATICAL MODEL

Assumptions, In setting up the mathematical model for the
water movement in the combined mole-tile drain system under
a transient state condition the following assumptions were
used. (1) Soil is homogeneous and isotropic: (2) specific yicld
and hydraulic conductivity of the soil are constant; (3) Dupuit-
Forchheimer assumptions are valid; (4) Darcy's law is
upplicable; (5) flow is under a transient state condition; (6)
flow is completely gravitational; (7) land slope is small such
that it has no effect on water movement: (8) height of the water
table above the tile drains is very small in comparison with the
vertical distance between the pipe drains and the impermeable
layer: (9) tile drains are parallel, and mole drains are parallel
and orthogonal to the tile drains: (10) spacing of mole drains is
small in comparison with that of the tile drains such that
[(1/8x%) + (1/8*)] = 1/8.% (11) first term of the infinite
Fourier series is sufficient for convergence; and (12) horizonfal
water table is an initial condition, Mathematical modeis were
set up for stage | and stage 2.

Stage I—water table above the mole drains. The basic two-
dimensional continuity equation governing the flow of water
through the soil may be expressed as follows [van Schilfgaarde
et al., 1956):

Fu O ou

ax* oy Yo
in which u is the height of the water table above the tile drains
atany time s and a = f/kd,. where fis the average specific yield
of the soil (by volume). 4 is the average hydraulic conductivity
of the soil. and d; is the vertical distance between the tile drains
and the impermeable layer. 1t is assumed that dj is much larger -
than u. ’

The boundary conditions and the initial conditions are as -
follows:

Boundary conditions

t(x, 0, 1) = f(x)
u(x, Sy t) = f(x)
Initial conditions
u(x, y, 0) = d, + d,

where f{x) represents the constant shape of the water table
profile along the mole drain boundary.

Equation (1) is identical in form to the two-dimensional heat
flow equation [Carslaw and Jaeger, 1959), and therefore its
solution for the nonhomogencous boundary conditions may
be applied in solving (1) as follows.

The solution u(x. y, 1) of (1) may be eapressed as the sum of
two solutions t(x, 3) and w(x, y, 1)

wWx, yo 1) = vlx, 3) + wlx, p, 1) )

(n

u@ y,1 =0
”(sl' i ’) = 0

horizontal water table
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o whcre v(v. y)is lhc slcady slale soluuon ol' lhe anlucc equu- and nolmg that 4, = B,..

~tion” m rcclangulnr rcglons.

f?wnth boundary conditions . S

3 v(x, 0) = f(x) v(0,y) = 0
Sa) = [(®) oS, ) =0
undw (,f,/‘y.‘ 1) is the transient state solution of

i)w aw
3+ a‘

‘ v(x.

@
wnh ‘boundary conditions
" a »w(x.0,1)=0
S 1) =10

w(0, », ‘t) =0
w(x, . WS, v, 1) =0
»'zymd an initial condition |
" (@ + di) = vix, y)

‘where v(x. y) is the solution obtained from (3).

w(x, y, 0) =

--Furthermore, according to Powers [1972), v(x, y) is lhc sum

ol' two solutions
v(x, y) = vylx, y) + Do, }’)
where vy(x, y) is the solution of

av. +ai’| =

/Qilh' boundary conditions
| vix, 0) = f(x)
§,) =0
‘and vy(x, ) is the solution of
o a’v, Gk v,
. % T 9yt
-with boundary conditions .
BER 0 =0 50,5 =0
SO =1 v(S,)N=0

- Solving (6) for v,(x, y) results in the follownng infinite

Dl(o' y) = 0

(x, (S, .V) = 0

=0 )]

v2(xb

Fourier serics [Kreider et al., 1966]:
o(x, y) = Z A, sin E'E sinh ax (S )Vk
nel .
where ,
= 2 a . nwx o
= 'S, sinh (17S./5.,) £ foysin“grdx - G).
Similarly, by solving (7) for vs(x, »),
(%, ) = 3. B, sin T inh 22 . (lO) :
’ nei S, S, S
where
2 g . NTX
Br = i (s oy Jy (G)sin g dx (D)

By substituting vy(x, ») from (8) and vy(x, y) from (10) in (5)

N
@

"f"v‘/hcre A, is expressed in (9).
e vlx, y) = 2 Z Ay sin ~c=
S t

' w(x. ») = Z Amn sin 2%

© A

x@;‘“‘

‘ w(x. n= (—4—)(3) sin = sin 22

Z A, sin amx :

~|:smh — (S,, - y) + smhmry
s, Gn TN IR, -

" By using the trigonometrical idcntity ERE .
m+b) o 2= B)
2

sinh a -4 sinh b = 2sinh

-equation (12) may be written as

nwx

nm]
Ne S, nr
25, cosh (S (13),._.

By solvmg (4) for wix, y, 1) accordmg to the \vork ol' Kre!der;‘b.

smh

etal [I966].

m1ry

mwl S . S.

o 2/ 2 2\l e

;'whcrc

mny
ax uy

Sm Bl .
glx, y) sin nex sin
- [ [ 2,

glx, y) = [d, + d3] = v(x, y) (16)

Equation (13) contains the infinite Fourier series, and (14)
involves the integration of an infinite serics. Including more
than one term of the infinite serics generally involves extensive
mathematical calculations that are not suitable for practical
application. An analysis conducted to determine the cffect of
truncating of the infinite series of (13) indicates that an
overestimation of about 30% of the value of t(x, y) may exist,
For the sake of simplicity of mathematical calculations,
however, all other terms in the series except the first will be
neglected, and (13) may be reduced to

olx, y) = ( )(yla)(A)sm 2 cosh 5 = (S0 — 29) (1'7)‘_

- where |
8¢ Ll

'l' (smh £/ 2)/smh [ (19)

;}5 = xSn/S, (2()):”j

ll' only thc ﬁrst tcrm of the infinite series is uscd (19 reduces:;

s to

wy
SnS) S. Sm

‘ 2
- T 1
Texp ["Z (s_f

where

+§QJ‘_&6
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B= f ol - glx, y)sin X sin = dx dy
JN FREETIN 4 S, S.

By‘sﬁbsiiiuliné .v(x, y) from (17) and w(x, y, ¢) from (21) iﬁ (2),
u(x, y, t) during stage | may be expressed as

ux, y,4) = (si‘)(sb)kA)sin g—f cosh fs'—. (Sm — 2y)

+ (S:S,)(B) sin % sin %’E exp I:—Ia- (3:]:5 + .El,ﬁ)']
(23)

where ¥, 4, B, Sn. Si, a, and ¢ are as defined previously.

Stage 2—water 1able berween the mole drains and the tile
drains. During this stage, mole drains no longer take part in
the drainage, and the water movement can be described by the
equation of continuity for ordinary tile drains;

d’u du
— =a— 2
ax* ot 24
with boundary conditions
w0, =0

w(S, ) =0
and an initial condition '
u(x, 0) = f(x)

where ¢ is the time measured from the beginning of stage 2,
* and f(x) represents the water table profile at ¢ = 0 (see Figure
5).

Equation (24) may be solved by a method similar to that
used by R. E. Glover [Dumm, 1954, 1964). From the work of
Kreider et al. (1966},

2 2
u(x, 1) = E A, sm - exp ( 'S"r t) 25
nwl
where
. S o .
4, = -;— 1) inﬁ”—’fdx 26)
[

If using only the first term of lhe lnﬁmlc Founer serles is
. sufficient, (25) becomcs

ux, = ¢ sin -—-é 27
S
where
8
C = 2 I(x) sm L dx (28)
¢ = r'/aS. (29)
Shape of water 1able profile along the mole drain f{x). The

function f(x) represcnts the shape of water table profile along
the mole drains during stage 1 and at the beginning of stage 2.
Since no information of any kind is available, £ (x) will have to
be assumed.

During stage 1, flx)} may be expressed mathematically as
follows:

%) = fi(x) 0<x<x
&) =d» xo S x < (8 — x0) - (30)
‘(sl ~ Xo) :S x< 8 |

16) = 1:5)

22)

‘L 'w ‘ 3?

Sam am wn e e e e > = o= me owem W e e e evm s ot
———————
P —

mole drain

tile drafn e _

Water table profile along the mole drains at time ¢ = 0,
stage 2.

Fig. 5.

where fi(x) and j3(x) describe the curves og and o'g’ in Figure
4, respectively. Six cases of f(x) were investigated: case 1, zero-
degree polynomial: case 2, first-degree polynomial; case 3,
second-degree polynomial; case 4, third-degree polynomial;
case 5, fourth-degree polynomial: and casc 6, sine wave equa-
tion,

Polynomial equations. The general form of the nth degree
polynomial equation may be expressed as

u= Co+ C,x +szz+ v + C,.x"

The constants C,, C,, Cy, - - -,
following boundary conditions:

u(0) =0 u(xo) = dy
u'(xo) = u'(x0) = = U™ (x) =
wS) =0 uS, — x;) =d, _
WS — x0) = u'(S; — X)) = o0 =u"™(S, — x) =0

The derivatives are equated to zero at x = xpand x = §; —
X, to obtain smooth curves at those points. Applying the above
boundary conditions to solve for the constants in (36 and
simplifying the gencral equations for f(x) may be expressed
as follows:

MW =di= (L — ) 0<x<x
Xo ’ .
)=di x<x< 8 —x (32):

hm=m—ﬁu-&+nr

where n is the degree of polynomial.
Sine wate equation. The profile of water table along the

mole drain f{x) using a sine wave equation is shown by the-

curve ogg'o’ in Figure 6. Actually, only the portion og and g'o’
are parts of a sine curve. If the general equation for the sine
curve has a period of S,

u(x) = 8 sin (rx/S) (33)
w oA -
—~c Sine vave curve :
4 N\
//
Xo /
"41 Kf"!‘ll.?
o
tile [
drain °

Fig. 6. Waier table profile along the mole drain as a sine curve.

3y

C, taay be evaluated from the

S, —x%<x< S

- }Q'qu .
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-," nnd byfsubslllulmg the boundary condmon u(vo) = d, in (33).
‘ 5 = dy/sin (7x/S))
_T;,Thb’ f(x)'may then be described as follows:

‘i/(x)= 6sm—« 0€x< x
s j(x) = d, %<x< S —x (34
-b(x)==6sm— Si—x<Sx< S,

S
v~wherc 6. d,, S;, and x, are as previously defined.

EvALUATION OF EQUATIONS (23) AND (27)
By choosing f(x) for any particular case from (32) or (34)

o and substituting in (18), A is obtained. With the known A4, ¢(x,

¥) is determined from (17), and consequently, g(x, y) from (16)
by using the value of ¢(x, y) just obtained. Then by sub-
stituting g(x, ») in (22), B may be determined. The general
solution for u(x, ¥, 1) for stage | may be found from (23) by us-
ing A and B obtained from the procedure described above.
The general solution for u(x, r) during stzze 2 may be ob-
tained from (27) by substituting the same f(x) chosen in stage

1 in (28) und by using ¢ obtained from (29).

Due to the fact that in practice the spacing of the mole
drains is very much smaller than the spacing of the tile drains
(ie., 2m £ S, € 5m and 30m £ 8§ < 150m), in this
mathematical analysis it was assumed that {(1/5,%) + (1/5:%)]
= 1/Snl.

Since the water table condition at midpoint between the
drains is most interesting in drainage engineering, genceral
solutions of (23) and (27) that express the height of water table
v wny location in the system at any time will not be presented
here. Instead. only the solutions for the height of water tuble at
midpoint will be given.

SOLUTIONS EVALUATED AT MIDPOINT

The solutions of (23) and (27) evaluated at midpoint may be
written in general forms as follows.
 General form of solution for stage 1.
1 may be expressed as

The solution for stage

=Kot + Ky (35)

in which u,, = u(S,/Z Sm/2, 1) or height of water lnble at mid-
poml.

K = M b d) 3 (36)
K = QG
y = sihilz 7
sinh £

and the values of x varied depending on the particular case
considered (i.c., f{x) chosen) and are listed as follows: for case
1, x = d/x:for cuse 2, /r . sin 8/8: for case 3, 8/7 - (1 — cos
B)/3% for case 4, 24/m . 1/p% . [I ~ (sin 3)/B]; for case 3,

- 48/x .
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/8 -
2/1r [(8/sin B) + cos 8] (note that g =
Equauon (35) may be rearrdngcd as

= {r*t/a In [K\/(um — K2 | (3’8).

in which Up is the heighl of water table above the tile drains at

[2(| - cos B)/F%); and for case 6
WXo/Sf)

~midpoint of the system. All other terms are as previously de-

fined.
General form of solution for stage 2. Similarly to stage I the
general form of solution for stage 2 may be expressed as

5.5
2’2

in which ¢ = x*/aS.
By rearranging (39) and substituting u,, for u(S,/Z Sn/2, 1),
= [7%/e In (xde/tm)]'"? (40)

Equations (38) and (40) may be used in the design of the
combined mole-tile drain system.

1) = xd® (39

FIELD EXPERIMENT

A field experiment was carried out on the Utah State
University drainage farm, Logan, Utah, during the summer of
1972,

Four perforated plastic drains, 10 cm in diameter, were laid
in a trench at a depth of 84 cm and a spacing of 36.58 m. The
plastic pipe was surrounded with a graded gravel envelope to
the depth of 30.5 em below the ground surface, The top soil
was then used to fill the trench to the ground surface. Ten mole
drains were drawn orthogonatily to the tile drains at the depth
of 53 cm below the soil surface. The typical arrangement of the
tile and mole drains (see Figure 7) clearly shows that the water
can flow directly from the mole channel through the gravel
envelope into the tile drains and no outlet construction for the
mole drains was required. The mole drains, about 7.6 ¢m in
diameter, were drawn at a spacing of 1.83 m.

Observation wells were constructed at midpoints and other
locations in the experiment plot. Each well was made by drill-
ing a hole about 10 cm in diameter and 1.22 m deep. The side
of the hole was roughened by a metal brush before a 2.5-cm-
diameter perforated PVC pipe about 1.52 m long was placed in
the center of the hole on a 5-cm gravel bedding, and the space
outside the pipe was then filled with graded gravel.

The experiment was conducted by building up the
groundwater table in the plot with a sprinkler system while all
the tile drain outlets were closed. When the general water table
clevation in the area was just below the ground surface and
flat, the sprinkler system was shut off, and the water table was
allowed to adjust itself for about 24 hours. Then the water sur-
face elevations at obscrvation wells were measured, and the
drainage process was started by opening the tile drain outlets
simultancously. Measurements of the water surface clevation
in each obscervation well were repeated at various clapsed times
from the beginning of the drainage process.

Other data necessary for the theoretical analysis such as the
hydraulic conductivity of the soil were also collected. The
hydraulic conductivity was determined by using the single
auger hole method. Several holes were tested 10 obtain the
average value of the hydraulic conductivity, The test was made
in three stages at the depths of 0.91, 1.83, and 2.74 m in cach
hole to locate the impermeable layer, The hydraulic conduc-
tivity was computed by the formula developed by Maasland
and Maskew [1957} for finding the hydraulic conductivity of
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TABLE 1. H'ei‘ghi‘o'l' Water Table Above Tile Drains at Midpoint
Mecasured at Various Elapsed: Times

Height of Water Table u, Elapsed Timey,
' cm d
Test Run 1, September 15-18, 1972
65.2 0.000 -
63.1 0.071
594 0.169
54.6 0.342
54.3 0.597
5.6 0.875
45.1: 0.960
44,8 1.899
40,2 2407
~39.0 2.888
“Test’Run 2, September 21-26, 1972
893 ' 0.00
- 89,9 0.094
- 88,7 0.226
“88.1° 0.388
87.2 0.640
X 1.059
- 83.8 1.194
-79.6 1.381
75.0: 1.963
579 2407
502 .n
47.2 3.314
448 4.067
41.2 “4.391
40.2 5.076
39.3 5.366

the saturated soil below the water table. Table | shows the
data of the height of water table at midpoint meuasured at
various clupsed times. Here are the data on the physical char-
acter of the combined system and the soil: S, = 1.83 m, S,
= 36.58m,d, = 34.1 cm in test run 1 and $8.2 ¢cm in test run 2,

TABLE 2. Results of Data Analysis by Using Equation (38)
(Zero-Degree Polynomial Case)

U, CM nd Smym Seom Se/Sm
Test Run 1, September 15-18, 1972
65.2 0
63.1 0.071 202 0.98 0.500
59.4 0.169 2.86 1.45 0.507
54.6 0.342 .61 1.89 0.522
54.3 0.597 4.78 213 0.574
53.6 0.875 5.75 3.50 0.613
45,1 0.960 4.64 249 0.539
44.8 1.899 6.64 4,15 0.625
40.2 2.407 5.89 3.39 0.582
39.0 2.888 5.47 3.03 0.559
Test Run 2, September 21-26, 1972
89.3 0
89.0 0.0%4 2.67 1.54 0.575
88.7 0.226 4.15 2.59 0.628
88.1 0.388 542 3.6} 0.670
87.2 0.640 6.93 493 0.712
86.6 1.059 8.98 6.79 0.757
83.8 1.194 9.15 6.93 0.757
79.5 1.381 9.24 6.96 0.754
75.0 1.963 1041 8.01 0.770
519 2.407 8.84 6.33 0.716
51.2 321 9.14 6.52 0.713
47.2 1.374 8.63 5.96 0.693
44.8 4.067 8.56 6.25 0.698
41.2 4,391 8.19 5.48 0.6069
40.2 5.076 8.54 5.78 0.678
39.3 5.366 830 5.55 0.669

d; = 31.1 cm, d; = 98.5 ¢m, and hydraulic conductivity k =
22,6 cm/d.

When k= 22.6 cm/d, f was found to be 0.045 from a graph
showing the relationship of the specific yield and hydraulic
conductivity such as given by Luthin [1973).

RESULTS AND Discussion

The theory was correlated to the ficld experiment by in-
vestigating the validity of (38), which is applicable for stage 1.
A similar correlation could have been made by using (39),
should the field data for stage 2 have been available.

The S, was computed from (38) by using values of 1, and ¢
selected to cover the entire range of the field data. The fixed
point iteration technique [Stark, 1970) was used Lo solve (38).
The result of the computation for S,, is shown in the third
column of Table 2,

Since (38) was derived with an assumption that the depth of
the impermeable layer was very large in comparison with the
height of water above the drains, but in the experimental field
the depth to the impermeable laver was only slightly greater
than twice the height of water table above the drains, therefore
the following correction method based on a paper by Moody
[1966] was applied. )

Hooghoudt's equation neglecting convergence toward
drains may be expressed as

Sn? = (WIC + Cd (41)

where C = 8kh/q. d is the depth of the impermeable layer
below the drain, & is the hydraulic conductivity of the soil, 4 is
the height of water table above the drains at midpoint, Sp, is
the mole drain spacing, and g is the discharge rate in the drain.

If d is the equivalent depth of the impermeable layer, (41)
may be written as

52 = (MKC + Cd (42)

where S is the corrected spacing of drains.
The relationship between d and d was given by Moody
(1966) as

a { d [8 d ]}" d ~
L. L L T <=<0. :
py I+S, ﬂ_lna a OSS,—03(43_)..
where '
o 4 _li)’

a = 355 1.6 s, + 2(&

and a is the drain radivs. For d/S. > 0.3,

@d)

Fig. 7. Typical acrangement of the nio'e drains and tile drains usea in
the field experiinent.
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A {5 [ln (5-) - us]}- (45)
S. T a . :
8 ‘By dividing (42) by (41) and rearranging,
S S, = 8. [(Bh + d)/(%h + d)]? (46)

Equations (43), (45), and (46) are used to compute the cor-
rected spacing S. for the case in which the depth of the im-
permeable layer is not sufficiently large. For thesc experiments
the corrected spacings S, computed from the above cquations
are shown in the fourth column in Table 2. The correction
ratios S./Sn» are also shown in the sume table.

In general, the corrected spacings of the mole drains Sc in
Table 2 are much larger than the spacing of 1.83 m actually
used in the experiment. Test run 1 yiclded the average cor-
rected spacing of 2.62 m, which is closer to the actual spacing
than that of test run 2, which yielded the average corrected
spacing of 5.55 m. The poor agreement of the corrected
spacings and the actual spacing in test run 2 could be at-
tributed to the fact that ponding existed in some areas within
the experimental plot, including the midpoint, at the beginning
of the test.

It is interesting to note that within a certain range of the
hydraulic conductivity k, such as in this study, the crror in the
determination of & does not have a significant effect in the
drain spacing determination because the mole drain spacing is
proportional to (k/S)¥* as indicated in (38), and from the
graph showing the relationship between the specific yield and
hydraulic conductivity such as given by Lushin [1973] the value
of (k/f )" is almost constant for & between 0.1 and 0.6 in./d
(0.25 and 1.52 cin/d).

The probable reasons for not obtaining a better agreement
between the theoretical and actual experimental spacings will
be discussed as follows,

Equation (38) used in the correlation study has been derived
from (23) and virtually consists of two terms: w(x, y, ¢) and
v(x, 3). The term v(x, y) finally becomes A in (38) and contains
an infinite series of which all terms but the first were neglected
in the derivation of the cquation. Further investination in-
dicates that by including only the first term of the scries the
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-value of v(x, ») could be overestimated by about 27% for Sa
and S; within the practical limits.

The term w(x, y, t) consists of an infinite serics of which cach
term contains an integral of v(x, ¥). Here again only the first
term of the serics is maintained in the derivation of (38), The
foss of accuracy in dropping other terms at this stage has not
been investigated.

The overestimation of about 27% in the value of v(x, y) and
the unknown loss of accuracy in deriving the term wi(x, p, ()
may be two of the causes affecting the overall accuracy of (38).

The term f(x), which describes the profile of the water table
along the mole drain during stage 1, has been assumed to be
independent of time. Logically, the shape of water table profile
should be dependent on x and time (. In other words, f(x)
should be replaced by f(x, 1). Consequently, K, and K, will no
longer be constants but probably be functions of time ¢.

To remove any doubt of the possibility of whether the six
different assumed shapes of f(x) could aftect the accuracy of
the derived cquations, an investigation was made to study the
conscquence resulting from the assumption made for f(x).
Since f(x) aflected only the x term in each case, the
characteristic of x for all six cases has been analyzed. It is
found mathematically that all x converge to 4/ when Xo/S;
approaches zero. The graphical representation in Figure 8 also
show.s that when x,/S; is 0.05, all values of x converge to
about 4/x. Since under actual conditions xo/S; is expected to
be smaller than 0.0, it may be concluded that any assumed
shape of the water table profile f(x) should yield approxi-
mately the same results.

CONCLUSIONS

The study on the correlation between the developed theory
and the ficld experiment by comparing the computed spacings
of mole drains with the actual spacing indicates that further
improvement of the cquations to obtain a better accuracy
should be attempted. The imprrvement could be made by in-
cluding more than the first terms of the infinite series in the
derivation and by replacing f(x) with f{x, 1). Only the first term
of the infinite series was used in this analysis for the sake of
simplicity.

_ — Fourthedegree polynomial
-~
r'd
_~=-Third-degree polynomial

-

_ .Second-degree polynomial

1273 (zuo—deguo' polynomial)

(D'
04 {First-degree * N, (' -
polynomial ~~ P \ -
\\\ P
>y
Sine wave eq.~" AY
(] -‘.0.3 . ¥ v \‘
¥|m }\,\ \‘\
“
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Ql
0.0
o8 09 10 [ R] 12 13
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Fig. 8. Convergence of x for all six cases of f(x).



UNHANAND AND KADIR: FLOW THROUGH POROUS MEDIA ) - 119

Il one realizes that field experiments in drainage frequently
cncounter some uncontrollable or nonuniform conditions such
as the variation of soil properties in the plot, the average com-
puted spacing of 2.64 m should be regarded as being in
reasonably good ugreement with the actual spacing of 1.83 m.,

The equation developed should be very useful for the design of

the combined mole-tile drain system considering the fact that
until present, no other design equations have been developed.
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