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A Simulation Language to Facilitate
 

the Development and Use of Simulation Models
 
in Policy, Program and Project Analysis--Preliminary Outlines
 

Working Paper 73-11/
 

T. J. Manetsch
 

Introduction
 

Simulation models are finding increasing applications as aids to decision
 

makers in exploring the likely consequences of alternative actions and in
 

formulating "good" policies, programs anJ projects based on a creative
 

interaction process involving decision makers, analysts and the results of
 

successive simulation "runs". ("Simulation" is used here in a broad sense
 

to meana problem-solving approach which applies a broad range of quantita­

tive methods in a coordinated resolution of planning and management questions
 

(8).) 
 Experience has shown that simulation "languages" (collections of
 

special purpose computer programs) can greatly facilitate the construction
 

of these decision making models and enhance the effectiveness with which
 

decision makers can interact with them.
 

To date a number of simulation langauges have been developed and some
 

of them are finding extensive use as aids to decision making (1, 2, 3, 4,
 

7g 10, 11). In the writer's opinion none of these fully exploits the
 

potential that exists for furthering the overall effectiveness of planning
 

and management in LDC's. Most are, in fact, inappropriate in this context
 

l/This paper was developed as part of Contract AID/csd-2975 Agricultural
 
sector Analysis and Simulation Projects.
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due to the rather unique constraints imposed by operation in many countries
 

on many sizes and makes of computers. Most existing simulation languages
 

are simply not compatible with the range of computers available in LDC's.
 

One purpose of this paper is to sketch necessary requirements for and
 

some features that might be useful in a simulation language designed particularly
 

to suit the needs of decision makers in LDC's concerned with policy, program
 

and project formulation. This is based largely on the experience of the MSU
 

team to date in building and using models in Nigerian, Brazil and Korea.
 

The discussion is a first attempt at "defining the problem" and it is hoped
 

that the paper will stimulate further discussion leading to a more complete
 

answer to the question "what should a computing system do in order to meet
 

the needs of decision makers at the policy, program and project levels in
 

LDC's?" A second purpose of the paper is to present some initial thoughts
 

on how a simulation language might be constructed to accomplish the kinds
 

of objectives that have been set forth.
 

Some Requirements for a Simulation Language
 

(Computing System) for Aiding Decision Making in LDC's
 

A fundamental requirement is compatibility--to be widely useful the
 

system must be operable on a wide range of sizes and makes of computers that
 

are encountered in countries around the world, developed and developing.
 

This strongly suggests that the system should be compatible with FORTRAN-­

the closest thing to a universal computer language. Further, the system
 

should be scalable so that it can address meaningful problems on both
 

large and medium to small computers. A related requirement is that the
 

system should be capable of incorporating the wide range of software components
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likely to be stored in the kinds of software libraries under current discus­

sion. This requirement is automatically satisfied if the entire system,
 

language and software library elements# are based on a general purpose
 

programming language such as FORTRAN.
 

Other important requirements relate to the need to provide close and
 

effective interaction with decision makers. Key data inputs specifying
 

policies to be explored and model outputs describing consequences of decisions
 

taken must be in problem related formats which are meaningful to decision
 

makers and easily learned. The system should provide for on-line interaction
 

between decision makers and models. Decision makers should be able to set
 

policies, etc. and review results and revise decisions, if desired, during
 

the course of a simulation run. Decision makers might also profit from
 

knowledge of the specific factors the model has included in producing the
 

outputs being evaluated. In some cases models should produce statistics
 

which display the ranges of outputs that are possible given certain policy
 

actions and the uncertainties inherent in the system and data. (This involves
 

operating models in the so-called Monte Carlo mode). In other cases itmay
 

be useful to operate models in an optimization mode inwhich a criterion
 

selected by the decision makers is maximized or minimized.
 

There are a number of other features a formal computing system can
 

provide which can greatly facilitate the development of decision-making models
 

and improve their accuracy and reliability. These are listed below along
 

with short descriptive comments.
 

1. Pre-programed input and output formats. These can provide decision
 

makers with an effective means of communicating with models without special
 

programming for each application in each country. These might include
 

special table formats, summary tables, graphs, histograms, etc.
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2. Ability to conduct sensitivity analysis on any model coefficient.
 

These tests permit the user to examine the consequences of changes in the
 

values assigned to model coefficients, including those which specify policy
 

inputs (investment levels, tax rates, price policies, etc.). For a change
 

in a specified coefficient the model computes the likely changes in system
 

These tests can serve at least two purposes:
behavior that will result. 


they can indicate the priority policies which are likely to have the
 

greatest impact on system performance and they can indicate where errors in
 

available data (as they affect values assigned to model coefficients) are
 

most serious in terms of affects on criteria used in decision making. The
 

latter information can lead enlightened data gathering strategies aimed at
 

improving information in areas which are likely to have high payoff in terms
 

of improving the quality of decision-making models.
 

3. Time series tracking. As part of the model testing and validation
 

process it is often helpful to test the model against the past behavior of
 

the real system. This is done by comparing model results with historical
 

results and computing some measure of performance or "fit" such as weighted
 

sum-of-squared errors. It is sometimes appropriate to use such tests as
 

means of determining values for unknown model coefficients, i.e., values for
 

certain coefficients are adjusted so that a good or best fit with historical
 

data is attained. Using modern programming techniques it is often possible
 

to automate the process of optimally adjusting a complex model so it fits
 

historical data taken from the real world. Automated time series tracking
 

is-another feature that should be seriously considered as a part of a
 

simulation language in the present context.
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4. The computer language should readily incorporate a host of different
 

components, dynamic simulation, linear programming, critical path analysis
 

(for study of project implementation), project appraisal, etc.
 

5. The system should provide for ease in the use of overlays to
 

extend the model size that can be accommodated on a given computer.
 

6. The system should readily permit a large model to be operated in
 

segments, i.e., separate operation of regional models within a larger sector
 

model.
 

7. Special error diagnostics (not available in the base language, i.e.,
 

FORTRAN, etc.). The system should provide special error diagnostics which
 

aid model testing and validation. Included might be tests for:
 

a. model variables of incorrect sign
 

b. model variables of inappropriate magnitude
 

c. flow conservation constraints violated
 

d. circuit constraints violated
 

e. incorrect computing sequence
 

f. numerical errors (integration, etc.) out of bounds
 

g. others?
 

The language should provide printouts which indicate the sections of the
 

model in which specific errors have been located.
 

8. Collection of data from models for use in constructing response
 

surfaces.
 

9. Estimation of "good" response surfaces to approximate models using
 

recursive least squares, etc.
 

10. Automatic documentation of model changes
 

a. values assigned to coefficients
 

b. changes in model equations
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11. Others?
 

The above constitutes the beginning of a "shopping list" of desirable
 

features to be considered for inclusion in a decision-oriented language.
 

Some of these features are much easier to implement than others. A
 

number (sensitivity analysis, Monte Carlo analysis, time series tracking,
 

output formats, etc) have been included, at least in rudimentary form, as
 

peripheral features in simulation models developed at MSU (8). A great deal
 

of additional work remains, however, to-generalize and extend the approach
 

to include as many priority features as are feasible within budget and computer
 

constraints. At this point interaction is needed among decision rakers,
 

analysts and computer specialists to determine appropriate detailed specifi­

cations for such a computing system. Suggestions and comments along these
 

lines are solicited.
 

The next section of the paper moves to a more technical level to begin
 

to address questions relating to how such computing systems might be implemented.
 

It Is expected that this discussion will be of more interest to analysts
 

and computer specialists than to persons interested principally in decision
 

making applications. The latter group of readers may wish to, at most,
 

skim the remainder of the paper (not forgetting that the enterprize needs
 

their inputs regarding the features they feel should be incorporated in the
 

computing systeml)
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On the Implementation of a Computing
 

System to Facilitate the Construction and
 

Use of Decision-Making Models
 

We will proceed by examining in moderate detail how some of the features
 

described above might be incorporated into an organized structure (language
 

or system) which permits them to be readily applied to a wide range of
 

specific decision-making problems. Specifically we will consider as a
 

starter a system which includes:
 

1. 	ordinary (non-interactive) policy, program or project analysis
 

2. 	decision analysis with interaction which permits decision makers
 

to insert decisions "on line"
 

3. 	optimal decision analysis wherein the system seeks a set of
 

decisions which will optimize some specified criterion
 

4. 	sensitivity ea !ysis conducted on any specified model coefficient
 
or set of coefficients
 

5. 	Monte Carlo analysis to compute 6tatistics for likely model outcomes
 

6. 	ordinary tracking of models against historical data generated by
 
the "real world"
 

7. 	automatic model tracking to adjust unknown model coefficients so
 
the model gives a "best fit" to historical data.
 

The 	approach described here is an extension of that used in programming
 

the 	Nigerian simulation model (9).
 

We will discuss the system using a series of flow charts. It will be
 

seen that a key to the development of such a system is the appropriate
 

definition of sets of model variables (and coefficients)--that various
 

specific functions are implemented by using and operating on specific variable
 

sets. It is this feature which makes it possible to develop a general computing
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system capable of performing desired functions on a wide range of specific
 

models. In what follows these various variable sets will be written in
 

brackets as [.].
 

The Executive Program
 

A flow chart for the overall executive program for the system is shown
 

in Figure 1. The executive program begins by reading a set of control
 

parameters [CP] specified by the user. These parameters specify which function
 

is to be carried out on the specific computer run or series of runs (Monte
 

Carlo, sensitivity analysis, policy analysis, etc.). They also s-ecify the
 

characteristics of the run or series of runs--the time horizon the model
 

is to operate over, the number of runs, the time increment used in simulation,
 

the type of output desired (detailed or summary, tables, graphs, histograms,
 

and the time interval between printouts of model output), etc.
 

Next the executive program reads or prepares for the reading (from mass
 

storage) of the input data required to implement the function that has been
 

specified for the given run or runs. This will include all variable sets
 

required as input and equations describing models to be executed. Included
 

will be default values for all model parameters. They may be altered later,
 

as in sensitivity analysis, but all relevant parameters are assigned values.
 

Note that only data sets and models needed for execution of the specified
 

function are read into core memory at this point. This feature adds to the
 

scalability of the system vis-a-vis.various size computers.
 

The executive program then transfers control to the one of seven functions
 

that has been specified by the user for the given series of computer runs.
 

These'functions corre pond to the seven branch points in Figure 1. as follows:
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Figure 1. Major Branches In Simulation Language Executive Program 
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1. 	sensitivity analysis
 

2. 	Monte Carlo analysis
 

3. 	automatic time series tracking
 

4. 	manual time series tracking
 

5. 	policy runs- with a criterion optimized
 

with on line decision maker interaction
6. 	policy runs-


I
7. 	standard policy runs- (no optimization, no Monte Carlo, and no
 

decision maker interaction.
 

We will present and discuss flow charts which describe the execution of
 

each of these functions. In so doing we will define basic variable sets
 

needed by a general purpose simulation language capable of executing the
 

various functions.
 

A flow chart for sensitivity analysis is shown in Figure 2. Operation
 

begins by setting a new value for the parameter(s) to be changed on the
 

current run, a member of the set [SENPAR], and by specifying non-default
 

values for the policy variables [POLl. rhe set of variables [SENPAR] is
 

supplied by the user of the model in the following form for all parameters
 

to be changed in a set of runs: (variable set name; name of variable, new
 

value or percent increase/decrease, ...). The program next sets all initia.
 

These variables determine
conditions for the model--the variable set [IC]. 


the initial state 	of the model at the beginning of a simulation run and
 

include the stock 	(state) variables and other variables that must be reset
 

between successive simulation runs. The model is next executed through one
 

complete simulation run 	((3) and (4)) and parameters are reset to default
 

-!Runs to examine consequences of specific policies, programs and
 
projects.
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Figure 2. Sensitivity Runs--Flow Chart
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values (5). The loop (1)through (6)is executed once for each sensitivity
 

run that has been specified. After all sensitivity runs have been executed,
 

output is provided. Specifically, output is provided for each run for the
 

variable set [SNSO] specified by the user. Output format can also be determined
 

by user specified control parameters (probably elements of [CP]).
 

Monte Carlo Runs
 

A flow chart for execution of Monte Carlo Runs is shown in Figure 3.
 

Policy variables for the series of Monte Carlo runs [POL], are set in (1).
 

Only values which are departures from default values need be specified at
 

this point. These new values, if any, are specified by the user and enter
 

the system in card format. At (2)and (3)data are acquired which specify
 

which variables are to take on random values and their statistical properties.
 

The user provided parameter set [RPW] provides the following information for
 

each parameter that varies randomly between simulation runs:
 

i. name of variable
 

ii. parameters which specify the probability distribution
 
for the variable (mean and variance; smallest value, most
 
likely value, maximum value; etc.)
 

Similar information is provided for the parameter set [RPW] which includes
 

parameters which vary randomly within simulation runs. In addition a
 

correlation coefficient is specified. After the execution of a series of
 

simulation runs (steps 4-9 in Figure 3.) statistics are computed and
 

printed for the members of user specified parameter set [SMC].
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Automatic Time Series Tracking
 

Operation begins by setting any members of policy variable set [POL]
 

which are different from default values (see Figure 4.). Next the real
 

world time series the model is being compared wit% [TSTR], is read into core
 

memory along with the specific set of initial conditions [ICTT] that
 

apply. In general [ICTT] will be different from [IC] because models will
 

usually be started at different real world times in the tracking and policy
 

analysis modes. In (4)the model is given the user-specified set of parameters
 

[PATT] that are to be automatically adjusted in the tracking and tuning
 

process. [PATT] also includes any constraints that apply to its members.
 

Operations (5)-(9) optimize the fit between the model and historical data,
 

[TSTR], by adjusting the parameter set [PATT] subject to specified constraints
 

on members of [PATTI. The program OPT in block (5)is a collection of
 

optimization routines (simplex, response surface, search, etc.) designed to
 

efficiently locate optima for large scale dynamic simulation models. Finally,
 

output is provided for the user specified set of output variables [TSTOA].
 

Ordinary Time Series Tracking
 

(Without Automatic Parameter Adjustment)
 

Operation in this mode involves essentially the same variable sets
 

as automatic time series tracking discussed above. See Figure 5. Since
 

parameters are being adjusted manually the user may wish to evaluate internal
 

model behavior in detail before making decisions about further model changes.
 

For this reason it may be useful to have the system provide a detailed
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Figure 5. Time Series.Trecking (Without Automatic Parameter Adjustment)-Flaw Chart 
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output of model output (the variable set [DMO] in 8)._/
 

Policy Optimization
 

A flow chart for the operation of models in a policy optimization mode
 

is shown in Figure 6. (The word "policy" here is used in a broad sense and
 

"policy optimization" means finding the specific set of decisions that
 

optimizes the selected decision making criterion or performance variable).
 

The set of model initial conditions [ICC] is specified in (1). Next the
 

model is given the set of policy variables to be automatically adjusted
 

during optimization, [POLA]. (A great deal of preliminary work, sensitivity
 

tests, etc. is necessary before this set can be specified rationally.
 

Careful specification will also help reduce computational costs which tend
 

to be high for this function). In (3)non-default policy variables are set,
 

[POLl, and the user-specified optimization criterion is supplied. The system
 

then enters an optimization loop (4)-(7). The block "OPT" in (4)can, in
 

all probability, be the same collection of optimization routines used in
 

automatic time series tracking discussed earlier. Operation concludes by
 

printing the output variables desired by the user, [POLOPT].
 

Standard Execution of Policy Runs
 

(No Optimization or Decision Maker Interaction)
 

This operation is very straight forward requiring the specification of
 

initial conditions [IC], desired values for policy variables, [POL] and the
 

iThis kind of information might also be useful when operating in the
 

automatic tracking mode. It could serve as a means of checking the
 
reasonableness of an "optimal" parameter set.
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set of output variables to be used in evaluating system performance, [POLO].
 

Figure 7. describes this function.
 

Execution of Policy Runs with
 

Decision Maker Interaction
 

A flow chart for the execution of policy runs with decision maker
 

interaction is shown in Figure 8. In this mode decision makers can interact
 

with models "on line" changing policy inputs at any desired point in simulated
 

time. The decision maker, in essence, sets non-default values for (POL] as
 

he interacts with the model through time. At interaction times the model
 

presents the current status of the variables [DMIO] which are used to evaluate
 

the impact of policies upon the system. This variable set is also specified
 

by the decision maker and should be readily changeable as interaction proceeds.
 

A system control parameter (TNI) determines the simulated time of the next
 

interaction. This parameter is set at each interaction time to schedule
 

the next interaction. Table I summarizes the variable sets required to
 

implement the seven functions just described.
 

Concluding Remarks
 

This concludes, in rather broad-brush fashion, des'cription of a comput­

ing system designed to implement a number of functions useful in the develop­

ment and application of decision-making models. Much more detailed work is
 

needed to implement the kind of system described. The development of such
 

a system would logically follow a study to determine the w-,t important
 

features to be included fvom the standpoint of practical usefulness.
 

Detailed system development would be a sizable undertaking involving 2-10
 

man-years of effort depending upon the scope of objectives. From this
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Table I
 

Variable Sets Required to Implement Seven Basic Functions
 

of a Simulation Language for Decision Analysis
 

Variable Set 	 Description Use
 

[CP] 	 Control parameters which specify number, Executive Program
 
type and characteristics of computer runs.
 

[DMO] 	 Those output variables which constitute a Various Functions
 
detailed printout of model variables (of
 
primary use to programmers and analysts
 
in evaluating validity of model performance).
 

[DMO1] Those output variables used by decision 
makers to evaluate results of decisions 
taken in an interactive mode. 

[IC] The set of values assigned to model 
variables whose values change during runs 
and which must be initialized at the 
beginning of each simulation run. These 
typically include price levels, capital 
stocks,population levels and other stock 
variables. (This set provides initial 
values for the "state" variables of the 
system.) 

[ICTT] The set of initial values assigned to 
state variables when model is run in a 
time series tracking mode. 

[PATT] The set of parameters that is adjusted 
automatically during time series tracking. 

[POL] The set of model variables which is set 
by decision makers to define specific 
policy, program or project alternatives 
to be explored. 

[POLA] The set of variables (asubset of [POL]) 
which is adjusted automatically during 
runs to optimize a decision-making 
criterion. 

[RPB] The set of model parameters that takeson 
random values between model runs. Each 
element of [RPB] is an array that contains 
the variable name and sub-parameters that 
describe its probability distribution. 

[RPW] The set of model parameters that varys 
randomly within a given simulation run. 
Each element of [RPW] is also an array 
that contains the variable name and 
sub-parameters that define its statistical 
properties--mean, variance and auto­
correlation coefficient. 

Policy Runs With
 
Decision Maker
 
Interaction
 

All Functions Except
 
Time Series Tracking
 

Time Series Tracking
 

Time Series Tracking
 

All Runs to Explore
 
Consequences of Alter­
native decisions
 

Policy Runs in an
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Table I (continued)
 

Variable Set Description Use 

[SENPAR] The set of parameters whose values are to 
be changud during sensitivity runs. Each 
element of [SENPAR] is an array that 
contains the parameter name, its nominal 
value and information defining the change 
to be made in the parameter value during 
a sensitivity run. 

Sensitivity Runs 

[SMC] The set of summary statistics to be 
printed out after a series of sensitivity 
runs. Each element of [SMC] is an array 
containing the variable name, and the 
specific statistics required, i.e., means, 
standard deviations, number of observations 
exceeding a prescribed level, etc. 

Monte Carlo Runs 

[SNSO] The set of variables to be printed out to 
evaluate the results of sensitivity runs. 
Each element of [SNSO] is a variable name. 

Sensitivity Runs 

[TSTO] The set of variables to be printed out to 
evaluate a time series tracking run. 
Each element of [TSTO] is also a variable 

Time Series Tracking Run 

name. 

[TSTR] The set of variables that represent the 
real historical behavior of the system 
under study. Each element of [TSTR] is 
an array that contains a variable name, 
K values that correspond to K past 
values of the variable named, the time 
corresponding to the earliest 
historical data value and the time 

Time Series Tracking 

interval between historical values. 
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vantage point it appears feasible to develop such a system in modular
 

fashion--beginning with certain selected functions and supplementing
 

these as it becomes expedient to do so.
 

Experience has shown that formal computing systems (simulation languages)
 

can pay great dividends in terms of reduced model development costs and
 

increased effectiveness in formulating decisions. We have every reason to
 

expect that these advantages can be rurtner extended in the area of decision
 

making in LDC's by the development of a simulation language designed to
 

meet the unique set of needs that exist in this particular area of applicaticn.
 

Such a language should be viewed as an integral part of a software library
 

of models and model components.
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