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ABSTRACT: The meximum seasonal runoff volume Q for an ungaged stream site is
derived using (1) en event-besed rainfall model for thunderstorms, and (2) a
linear rainfall-runoff model. Major emphasis is placed on effect of uncertainty
in parameters of rainfell inputs on the return period of meximum runof? volumes
in a season. The event-based rainfell model, derived previously by the co-
authors &nd others, hes the following features: {1) the distribution of the
number of events per season !l is Poisson with mean m; (2) the distribution of
point rainfall emcunt K per event is exponential with mean 1/u; (3) N and R are
independent. More expliciily, we obtain a correct distribution function #or the
return pericd Te(x) under the uncertainty in m and u, end demonstrate the neces-
sity of fcllowing this arrroach for a decision-theoretic analysis of a water
resource design problen. The approach enables us to design structures, relying
only on reinfell data, on watersheds with ungaged streams by taking into asccount
uncertainty of design site paremeters. Also, we can tailor the design to a
specific problen rather then use a pre-specified design flood, such &s the
magical 100-yesr flood.

. ANALYSE DE DéCISIQN DE L'INCERTITUDE DANS LES CALCULS
DE PERIODZ DE RECURRELCE D'ECOULEZENT A PARTIR DZ DONNEES FLUVIOMETRIQUES

RESUME: Le volure d'é€coulement maximum est calculd & un site non instrumenté,
en utilisant: (1) un modele de pluie d'orase construvit par &véncment; (2) un
modtle pluie-d&bit linéaire. Ta manibre dent 1'incertitude sur l:s parscbtres du
mod®le de pluie affecte la péricde de récurrence Tn(x) du velime d'écoulenent,
maximum Q est enalysée d'une manidre quuntitative. Lo moditie de nluie d'orarce
& les caractéristiques suivantes: (1) le ncembre d'événements par caisen N suit
une distritbution de Pcisson & moyenre my (2) la quantitld de piuie ponctuelle R
par événement suit une distributicn exrorenticlle <2 moyenne 1/uy (?) 5 oot R
sont des veriables aléatoirec indévendantec. llous abicnens la fonetlcn de
distribution de Tp(x) tenunt compte de l'inzertitude o ;moet u ef moasrons
L'utilité de cette méthode pour une application corrccie de la théorie de la
décision & un prebidue de pler “ication de reszources en enn.  Noud poauvons
ainsi de concevoir des ouvrares sur des bassing ddvercnnts snns doanfes
d'écculement, 2 1'zide de donndes pluvioméiriques, Lout en venant compte de
L'incertitude sw les perarctres.  Far ailleurs, tcus rruvong spdelulicer la
conceplion & chague cas d'espler au Ileu J'utilicar unn erue soan'ard, telle la
magique crue de péricde de retour cenienaire,
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1.0 Introduction R .
Floods or stream discharges are properly described by their durations and

volumes sbove & certsin flow level and their instantaneous peak flows. Of

these three properties, this paper is concerned with tle uncertainty in the
return period of maximum flow volumes which is & design parameter for flood pro-~
tection and other structures. In particular, we consider the uncertainty due to
inadequate data on small watersheds (up to 500 kn?).

Tt is well known that there is a good chance that a flow event Q with a
large return period T_ may be exceeded at least once in an N-year design period.
Typically, however, calculated risk diegrams (Gilman, 1964) do not consider the
uncertainty in the return periods of rainfall and flow events. To a design
engineer, the uncertainty of inadequate rainfall or flow data can result in either
overinvestment (overdesign) or underinvestment (economic losses) in the design of
flood retarding or retention structures or of water storage facilities (farm
ponds or water supply reservoirs for small towns or industries). The Bayesian
framework presented in this paper allows for wn explicit consideration of hydro-
logic uncertainty as noted above and for a metaodology to evaluate potential
losses associated with that uncertainty.

Approaches taken to arrive at estimates of the return period of hydrologic
flow properties include:

() Empirical fitting of probability density functions to historicel data;

in particular, the Scil Conscrvation Service (1965) fitted Pearson
Type III distributions to flow volumes for various time periods in
Arizona. This approach disrepards any available information in pre-
cipitation records or uny knowledg: about the rainfell-runoff process.

(b) Use of phcnomenological relations such ey a linear transformation of

rainfall volume to flow volume as a basis for obtaining probubility
density functions (pdf) of flow, The pdf of rainfall volume muy be
denscribed empirically (with its conscquent uncertainty) or from a
process vicwpoint wherein individual rainfall events are nodeled as
. & stochustic process anlong the time axis (Duckstein et onl. 1972),
(c) Use of detadled dynmaicul flow cquations to relate pei of rainfall
propertics Lo pdf of flov properties (Eageleson, 19%0).
In this paper we use the sceond approach.  Heredn we bulld on previous work
(Davis et 0l 1970) where we evalunted the uncertainty in the return pericd of
point ruintall amounts from sucser thunderstorms. We define an event-based
procens In this cane s nosequence of thunderstorza fn time.  The return period
T (k) of maxinun point rafnfal” § (with k the radntnll awount or value of the
random vorianble U) 1o derdved by conuldering the follovwing elements of the
evont-bnued procenn
(a) The number l of events per season is Poleson distributed with nean m
(of number of evenls per season)i

-m J
rB(Jlm) g -‘-’~J~,~'f‘-— (1)
(b) Rainfall eventn yv Byaeeey are independent {dentically distributed

random variablep,
(6) The amuunt It of point rainfall per event ie exponentially distributed
vith parscoter u (equal to reciprocal of mean smeunt rainfall per event)i

tn(klu) e~k (2)

(6) ¥ and |t are {ndependent,
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Then, the return period of k units of rain in a season, given the event-based
parameters m and u, is ~

TB(klm.u) = [i-exp (-me-m{)j"l (3)

Because m and u are uncertain due to small sample size, TR is uncertain,

To encode the uncertainty, the posterior distribution of m and u represents
the likelihood of the values of m and u which produced the data. This posterior
is given by the conjugate distributions for the exponential and Poisson distri-
butions (de Groot, 1970, Chapt. 9). The distribution that is conjugate to both
of these 1s the gamma:

a_a-~l -bx

gy(xlesn) = Hr— (1)
For the Poisson distributution,
x=m , the parameter of the Poisson and estimated as f,
b=n » the number of seasons.
a = fMn , the total number of rainfall events in n seasons.
For the exponential dictribution,
X & , the parameter of the exponentinl and estimated as u.
a = fin , the totul number of .infell events in n secasons.
b = fn/0, the totul wiount of rainfall for the mn cvents,
The resuliing Fx(x)s in cach case ure posterior distrilbutions and represent

the likelihood that various values of m and u ure the velues deseribing the rain-
fall process that we ure obrerving, after petting the dutn,  These posterior
distribution: nre usced in a computer slmulnticon to develop the posterfor dictri-
bution of T“(k). The mean of this distributien ia the exyected return period

[&n(kX] for u k-inch rofnfall,  Cemputer results given by Davie, et nl, (1972)

lndicntc thnt the return perfod of point rafnfull {o subject to considerable
uncertednty even with 20 yeury of data,  The Cenipn and ojepnticonnl {eplieations
are obviouz for flord control, dey Carsting with freipgaticn, and vnter supply,
Noxt, we extend the procodure to upcertainty in return jeriods of seancnsl flow
volunes on Exall waterilieds,

2.0 }Jtrt. Aden te feanieal Flew \' duten
TC m d6 the totul hueler of punolf prolucing rajnfall events in & susmmer
acason, then tle exacl exjected return jericd Tq(y) vf the maxinum eeasonal

runoff volute Q I8, under our previous hypotheses,

Tg (ylm.u) = Llncxp {em + g rg(ylu))lrl ()

vhere ¥ (y|u) 15 the distritution funetivi of runoff per event @ wvhich we will
write F () for sisplicity, Cur spproach i6 vo obtain F (y) from the distritutien
funct ion r (.) Cf ralnfell B per evenl, using the liﬁeﬁr ‘rainfall-runoff relatien=
ship

< 1 (6)

g = ¢li-a) 0 ]
vhere A src the tnitial sbetraetions depending on the vatershed and € 1s a co=
effielent dopending oh the rainfell eharacteristics for a given watershed, in
particular, & tine feevor such ae Lhe aaxinun )5=ninute intensity (Duekateln

et al. 1972).
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If we 1et
"P=R-A forR>A.
| =0 for R < A ' - :
’then’Equation (6) vecomes Q = CP or y = ex; the distribution function of P is

FP(x) = 1 -exp (-u(x+A)) for x > 0 T 4" ~? ~u?:'(7)xi
and that of § (Feller, 1967, Chapt. 2) is ‘ -
Fq Y = IQF () fole) de (8)
0

because C is a rendom variable as noted in previous work by the coauthors
(Duckstein et al. 1972). Since, physically, we cannot obtain more runoff than
rainfall, then 0 < C <1, end a beta distribution for C seems to be most appro-
priate:
N I'{ntb) a-l
fg(cla'b) = FTESFTST c (

The uncertainty on a,b will not be considered in the present study. To sum up,
Equations (7), (8) and (9) may be combined to obtain

Foy) = FQ(YIU) = leexp EF(E%%%%% ¢ 1y ]u)] (10)

vhere 1
I(y|u)

)bml

l-c) 7, 0<c <1 (9)

)b-l

exp (-E'u)cu-l (1-¢)¥"1 ac (12)

h—-“

Equationa (10) nnd (11) are now substituted into Equation (5) to obtain an ex-
pileit expression of 1 (y|wm,u), Yecuuee we have the sufficient etatistice,

£ and 0, our ruuulrd;v of & mnd u can be expreased ag a pdf (Tiao and Box, 1973).
Hence, this cncoded uncertainty results in a pdf on T (ylm a).
3.0 VH'.‘NHM

o ob'n:u thc paf of the return period on hang, Tq(y]m.u.n) is n problem of

transformaticn of randas vartalles, vhere n closed furs fe beyond reach,
Thus, & elnuletion approaeh fs used as follovws: (a) eonsider a fixed
yearly tanir s flov voluse u “ Y ahd (1) eample values m,u are dravn from the

gonjugate a7z, (mlr,u) el g (ulu n), respeetively, as noted in our diseusaion

of Eyuatiun (&), ( ) there pamp.r values are eulstityted {nto ¥ (y fr,u) to
obtaln whe value of the peturn periuvd Tg . and {d) the jyocese Is gEpeated 1o

obtuln a7 of Tg fur & flaed ¥ (for ﬁ;agyic y, “ 8= 0.7 tneh 1o $elile 1),
171, whieh ts
the protebllity of edccciance of y «  The deslgn jatratcler of ihtcnc:l 10y be

A ginllsar ptocedure {e thet used to eqlcuiale tha ]-df i § ("‘

elther TQ (for siedng & enall d=h) ay (Tq ) -3 (estinelirg letg-range ypeplaces

MeRt coats of elrudligyFes, }

Firaily, Lo be cuneldered th 8 later study fs the pdf of masinun eeasonal
flovw §@ Yhat copreeponde 16 8 Tined FeVwn peried, Buch o pif way be of jnteresy
for flowd plaln lheurance pufpases ahd eafl be calenlated by the sane siwuiation
preeedure ag abuve,



4.0 Results

The results of the computer simul:ition are summarized in Tables 1 and 2 and
Figures 1 and 2. In these we consider the variance of C, representative of con-
ditions on the watershed, and the variance in our knowledge about rainfall
parameters m and u.

Table 1 shows that u, the average rain per event, is much more important
than m, the aversge number of storms per season, as Judged by the variance of

g’

{var iy ), for different values of Var C. Ve also note the following
(a) As Var C increases, EfTé] and Var TQ

C the estimated return periocd of @ = 0.7 is much higher. By varying C
the variable effects of rainfall intensity and watershed behavior on
the return period are anticipated;

decrease, Thus by not randomizing

(b) Var T increases dramatically when Var C = 0 for Juint uncertainty in

Q
m and u;
(c) The mean reciprocal return period (= exceedance probability = p) and
Var T -1 increese rapidly as Var C increases. This result iu shown

Q
because P is commoniy used as the design parameler in hydrologic risk
analysis.

These patterns hold for all values of runoff volure uscd In the sencitivity analysis
(Q = 0.5, 0.7 and 0.9 inches of runoff) as shown in Tabie 2.
As expected, the Var T decrcases with doubling of available duta (10

to 20 yeuars used in the simulution) as cumaarized in Table 2. The E[Td] is only
slightly chunped, A more general ranifestetion of the sinsuluted procv;u 1o evident

in Figure o where the posterior pdf {of return pericis for 0.7-inch runotr's) baned
n ¢0 years of data kas wnomuch charper rodal value than the posterior pdt based

on 10 yeurtn of dutn, note that rmean Tq 1 Just to the pipht of the sode, While

pot shovu, the postericr A9 beeone more peaked nn Vayr © 1rnx<umﬁn. "
The effect of i.uxcevim runci! volure g to fnerenne 1*[ , Yar 'l‘g and

eoofficirul of variation V(¥ ) ne ehown In Yeble O, e luLLc. renult about

OV(T ) aleo feplies that a VLr T, inerenses wore rapidly than :2‘ It 4

I )

intrlﬂuixa tu note the drara.le effect that the introduction of Yar L has on the
parameters,

The repults dn Table D four n = 10 years are ghoun {n Flpure o, a plot on
Oumbie]l extreve value jJejer, A previously holed, ae Vay C fnereanes the gEallep

»
EET". Fros the talulated peeults we Kote thal so-ralled confidence limite for
each line wiuld pel vider ar 7. jherecaces boeauze Yar

+ Q Q
volume, ‘These confid=tce 1ini1ls &re mayyover for § & U years of data 885 18
evident Trom Yalle U,

Of futercel fe Ve podesl einjyler tine {eaxieus of 2% gecoinds for 20 years
of data) pcr cirulelion Fun 6n lhe CLUC=0L00, Given the husber of yncertain
paraseters 3n ihis provlen, 1t does Kot sifear feasible 16 prepare charts aRd
&ropha fof Fouline deslgh use unless more exhiaustive coaputer pludies are per=
forwed,

frereasea vith Funoff

b, Coements 6n horalts
eonitrarl Lo \he elassiea) empirical frequency approach in deriving 'r '
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the event-based approach outlined here results in evaluation 6f uncértainty in

TQ from physically meaningful parameters like m and u. This is a much more

efficient use of the available date on rainfall and runoff,

We have seen how the design would depend on the uncertainty in m and u and
on the interaction between uncerteinty in m and u and Var C. The end result, a
posterior distribution on TQ, is of value to inference on hydrologic stochastic

processes as diccerned from limited data and of value to the next important stcp
of invoking Bayesian decision theory for evaluating design decisions and for
Judging if better designs are p0551b1e by waiting for additional data.

It would be desirable toc express the moments (EETQ] and Var TQ) of the

posterior pdf in terms of m, u, Q and C, but this is intracteble. The next best
approach for thinking about our results in simpler terms is to consider the
mean and variance cf Q = CP:

sl = ®[d) cfr] (12)

Var @ = E2[c] Var P + E2[P] Var C + (Var C) (Var P) (13)

as given by Benjomin and Cornell (1970, p. 169). Whan C is not random, these

equations become F[O] = Cer] and Var Q = €2 Var P. The veriance of @ (and
thus its frequency of exceedonce and its return poxiod) is drnnutical]y affected
by randomization of C. It is comwon in hydrolopie design to choose a "frequency

factor" z (or stundardized variate) in the relation Q = I[QJ + 2 (Var Q)1/2

To contrast prouperly this clunsienl approach to inding o desdpn flow Q with the
mothod outllned in this paper would require a full-fledped decision theoretice

analysis for o sveecific desten problen, The evalustion would hnve to be repeated
for cuch deuslpn uge of the posterdor pdf, Much work recoains to be done in this
dircetion.
h,2 "(?‘1“}_‘1(“!13-}11‘!' of w‘_}a’_&(- I' :i!-.n deednton t_}‘x'ff(‘;r;l

Let the loas Ylnuvltu Yur L!‘ desien 08 0 Voo }?@i(ctiou slructure, aay
a dike, Ve L(L,Y) where B s the Ledpht of the dibe hnd T in a deadpn return

perfod uuch nuu or tn exceedance protabilivy (‘ )=4.7 The result of our

TQ
inveatipntion was to deterine the posterior paf rT(t) as given in Flgure 2,
Thua, vo are nov able to calculote Jlayea ik, which correaponda to tho optimum
demipgn 1L*
L)
M) = 1dn L{h,t) fT(L)dt (1k)
h - -
0

We can eleo eu'vulute the vorth of wsasple information to sharpen the eatimate
of T, (Davis ct al, 141} for esch intended use of the data, Buch studies are

left for the eequel, It {6 very inmportant to emphasiee that the vorth of data
decerned by thie eethodulopy $8 baced on the ecopomle lose funetion sepoeiated
with A particulay desipgn use 6f the data; the resulls are pot 1p teyrs of the
varinice of the peturn cstisste {returp period in this cate ),

5.0 %ﬂist ]u~i« te

Lis drjoriapt to keep $n Bind vhen Judging the resulte of the research
reported hiere that we are dealipg vith resirus flov voluner geneprated By A gequence
of thundoratorgs during a season, Additicpal vork §s neecscary to extend the



approach to other runoff-producing precipitation events (including snow) during
the year. The use of the Gumbel distribution in this paper goes beyond its
classical use for the instantaneous rainfell and flood maxima during the year.

We thus have found the following points in our theoretical and simulation

analysis:

(a) The approach enables us to design structures, relying only on rain-
fall date, on watersheds with ungaged streams by taking into account
uncertainty of the site parareters.

(b) Using tris approach we can teilor the design to a specific problerx
rather than use a pre-specified design flood, such as the magical

: 100-year flood.

(c) Simulation is en appropriate method for evaluating uncertainty in
estimates of physically-meaningful parareters arising in the event-
based approach.

(da) Return pericd varies with record length, reinfall, and watershed events,
etc. Ve have given an event-based avvroach to evaluate this variation.

(e) The sensitivity enalysis demonstrates the drazatic importance of un-
certainty in the averesge crmount or rainfell per event and the irmportance
.of considering variability in the rainfell and watershed parzrzeter
ralled C in this rpaper.

(f) The results, if encoded in the posterior pdf of the return pericd

) TQ’ allow the user to exercise inference or to find sensitivity of the

aﬁalysis to desien decisions in the face of inadequete data. Bayesian
decision theory is tne freamework sucgested for undertaking the decision
annlysis.

The results have izplications for desirn of a varisty of hydraulic ctructures
in both urben and rural watercheds, in temperate and arid climates, and in
reglons of the world conircnted with fnadeaunte nyarolezic data. In the face
of changing watershed ccnditicns, as reviewed by Foeel, ot al, (1972), the
approach cllered in this prper porrmits exercise of Jud~ment on the erfects of
lack of knowlieise aud of nonstaticnary metecrolcsic and hydrolcric parameters
such as o, u and C.  In ou.s Judrment, classical erpirical frequency methneds do
not provide such a clear btusis for evaluaticn., Zxtensien to nonlinear water-
shed podels ure poscible as noted by Duckstein, et al, (1972) and Fogel, et ul,

(1972).
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‘Teble 1:  Sensitivity analysis*on return period moments as
- function of uncertain parameters for rural water-
-shed with only 10 years of data.

ﬁncertain

~ Reciprocal
parameters Var C . Moments of return period TQ return period
Mean @Q (years)| Var TQ CV(TQ)** mean variance
%n &u 0 41.82 538. .555 .0314 | 000299
0005 39.00 Lh2, <539 .0332| .000318
.005 26,33 153. 70 .0453 | ,000328
.05 6.30 2.35 243 .1685 | .001809
only m -6005 35.36 8.30 .081 -- -
.005 23.h 3.89 .08l - -
.05 6.20 .19 .070 - -
only u .0005 37.61 383. 521 | - | -
»005 24,14 110. 435 — -
.05 6.52 1.96 .215 - -

#  Conditions for the analysis:

season and an average of 0.39 inches/event.

A = 0.4 inches, mean C = 0.3 for beta
distribution, Q = 0.7 Inches on the average; rainfell is
distributed on besis of an exponential distribution for
amounts above 0.3 inches with an average of 14.0 storms/

#%  Coefficient of variation of ﬁq.




iTabié 2:

Sénsitivity analysis on return period moments
- esa function of rainfall P, length of record n

-and variance of C; both m and u are uncertain;
watershed is rural; conditions are as noted in

Table 1.
Average n Var C Moments of return period TQ
runoff
volume Q (years of Mean ?Q, Var Tg CV(TQ)
or seagon data) (years)
inchesi
e — |
0.5 10 .001 11.70 58.07 .650
- .005 6.97 _lh.90 553
.05 2.94 27 JATT
0.5 20 .005 6.25 4.38 .335
0.7 10 0 41.82 538 .555
.0005 39.00 ] .539
.005 26.33 153 A70
.05 6.30 "2.35 243
0.7 20 .0005 37.44 2hs5 118
.005 24,36 68 339
.05 6.4 1.09 .163
0.9 20 0 - 271 48,085 .809
.005 103 3,602 .582
.05 1h.29 21.25 .323
0.9 20 .005 95.95 1,721 432

10



‘Figure 1: The effect of the variance of C on the return period of
- runoff volume. ; R St
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FREQUENCY

B 'Figure 2¢ Posterior probability density function of return périods‘* for.

0.7-inch runoff as function of record length.

<——— 20 YEARS DATA

E(Tq) = 24.4 YEARS
VAR (TQ) = 68

RETURN PERIOD, YEARS





