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ABSTRACT
 

The problems of sequential muliiobjective 	 problem solving 

an example on waterunder uncertainty are analyzed with the aid of 

quality management. The SEMOPS algorithm is constructed accord­

ing to the Gestalt philosophy for subjectively viewing the en­

tirety of a complex decision situa'ion. The algorithm uses a 

nonlinear programlning formulation to find goal values (six in the 

example: thrc dis lved oxygen levels in a stream, tax rates in 

two towns an6 prl'i ! level of a cannery) subsequent to a decision 

The decision maker
maker's specification of aspiration levels. 


set of goal values and subjectively choosesevaluates the current 

The systemadjustments in his aspiration levels for each goal. 

response to these levels is recomputed and evaluated. The algorithm 

maker finds a satisfactum. Theterminates when the decision 

algorithm incorporates uncertainty by performing a sensitivity 

on the final values of the decision variables. Theanalysis 

an ad hoc concession to thesensitivity form of SEMOPS are simply 

substantial difficulties of incorporating 	Bayesian decision theory
 

These difficulties include the appropriatenessinto the approach. 

of the axioms of utility theory for the decision problem outlined 

in this paper, the acquisition of prior distributions and utility 

and the issue of a priori versus afunctions for each goal, 

of each goal. This paper argues for a poste­posteriori. weighting 

or subjective weighting because of the substantial measure­riori 

ment problems in eliciting prior probabilities, utility functions 

and weights. 



1.0 	 Introduction
 

A method is proposed to combine uncertainty and multiple
 

objective issues in decision making. We use the methodology to
 

emphasize some of the problems in applying decision theory to
 

natural resource problems.
 

It has been recognized in recent years that the standard
 

one-period operations research or optimization models are inade­

quate for two reasons: (a) use of one-dimensional objective
 

function; and (b) difficulties of inserting uncertainties in
 

either the objective function (cost coefficiehcs) or constraints
 

(technological parameters as in resource availability). Recent 

research has sought to resolve this problem in various but sep­

arate ways (Cochrane and Zeleny, 1973; Wilcox, 1972). For 

example,
 

(a) Multidimensional decision problems have been modeled 

by using additivity axioms, dominance relations stemming 

from partial ordering of objectives (including standardized 

cost-effectiveness methodology (Kazanowski, 1968; Ko and
 

Duckstein, 1972; Chaemsaithong, et al. 1973)), and inter­

active sequential decision-making algorithms (Monarchi,
 

et al. 1973) that lead to complete ordering a posteriori.
 

(b) Stochastic elements have been introduced into mathe­

matical programing (Bogardi, et a]. 1973) but are far from 

describing the spectrum of uncertainties (in models, goals, 

data, forecasts). The issues in the latter have been 

reviewed by Kisiel and Duckstein (1972). 
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(c) Bayesian decision theory (BDT) has been used to imbed
 

uncertainty into an objective function but there is
 

difficulty in applying it to multiobjective situations
 

(Davis, et al. 1972).
 

Specifically, we are considering the problems of introducing
 

Bayesian decision theory into SEMOPS (a sequential multiple
 

objective problem solving algorithm) whose potential usefulness
 

has been demonstrated for a deterministic case s,:udy on invest­

ments in water quality control (Monarchi, et al. 1973). In 

the next section we outline the philosophy of decision making 

underlying SEMOPS. The remainder of the paper is organized as 

follows: review of the mechanics of SEMOPS and its amalgamation 

with Bayesian decision theory, incorporation of uncertainty into 

SEMOPS, an example using the Bow River Valley to demonstrate
 

water quality control under uncertainty, and finally discussion 

of the problems in these methodologies, in particular as they 

pertain to natural resource problems. 

1.1 Philosophy of decision making in SEMOPS 

The research described herein has its origins in the Gestalt 

point of view (KUhler, 1947) which postulates that the perceptions 

of the individual are the result of the "context" or environment 

in which the stimuli arc perceived. We can illustrate this with 

two examples: 

1. A melody is more than just an enumeration of the notes 

to be played; it is our interpretation of the relationship 

of the notes to each other. In particular, our interpreta­

tion is time dependent based upon our present "mood." 
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2. A quotation taken out of context may no longer have the
 

same meaning because words are related to the entire set
 

of words surrounding them. Here the environment is 
the
 

meaning or sense conveyed by the entire set of words.
 

The Gestalt view of perception may provide a realistic
 

description of the way in which the DM defines 
and perceives 

both a decision problem and possible alternative solutions to 

that problem. In addition, the Gestalt orientation implies that 

the DM's judgment or evaluation of the worth of a solution is 

situation dependent; and, in fact, it is dependent upon the set 

of known alternatives because that information becomes part of 

the environment in which the dccision must be made. 

The preference structure (value system) of the individual 

determines the worth of the various alternatives to him. This 

preference structure is assumed to be completely implicit and 

perhaps known only imperfectly even to the decision maker (DI) 

himself. Past preferences are expresscd in the individual's 

choice pattern over time. From this we can infer his ordering 

of the alternatives at the time the choices were made. An 

ordering is termed "complete" if there are no incomparable 

alternatives; otherwise it is a partial ordering. We assume 

in our development that there will be no incomparablc alterna­

tives for the multiple objective problem (MOP) among the set of 

feasible alternatives generated by SEMOPS. Our rationale for 

this assumption is that within the structure of a given decision 

problem, the alternatives represent variations of degree rather 

than of substance. To clarify this, we would say that 
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(profits of 6%, particulate atmospheric pollutant level of
 

400 mg/k)
 

(profits of 10%, particulate atmospheric pollutant level of
 

1000 mg)
 

represent two alternatives which differ in degree, whereas
 

(profits of 6%, particulate atmospheric pollutant level of
 

400 mg/k)
 

versus
 

(stay home from work, go fishing)
 

represent two alternatives which differ in substance and both are
 

not likely to be from the same decision problem. A variation
 

in dcgree is a marginal comparison and a variation in substance
 

is a structural comparison. We feel that alternatives which 

differ only in degree will be comparable and that those which 

differ in substance may or may not be comparable. 

The DM's preference system is dynamic and changes as a 

result of environmental inputs, i.e., the perceived impingement 

of the real world upon the individual. At the same time, 

changes in the preference system alter the perceptual biases of
 

the individual. These biases are responsible for the inter­

pretation of the information from the environment so that the 

system feeds back upon itself. Although the structure is impli­

cit and cannot be expressed functionally, the term "preference 

function" will be used to denote the psychological transforma­

tion of information from the environment into an assessment of 

the value of the alternatives to which that information relates. 

We note that this transformation also applies to the selective 
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reception of the information itself. We assume that the pre­

ference function, like a mathematical function, is "single­

valued" so that at any point in time the value of an alterna­

tive is uniquely determined. Equivalently, we can say that the
 

individual cannot simultaneously have two evaluations of an
 

alternative.
 

A goal or an objective is defined as a state of affairs
 

which is desirable and stipulate that the attainment or non­

attainment of the goal must be measurable. For example, minimiz­

ing the particulate pollutant level in a stream is not a valid
 

goal in our framework; but achieving a pollutant level less
 

that 100 mg/k is measurable and valid. It will also be stipu­

lated that the number of goals which can be handled concurrently
 

by an individual is less than 10. This figure is based on rose­

arch reported by Johnson (1968) and a paper by Geoffrion, et al.
 

(1971) and probably is overstated for most siturtions of stress.
 

The amount of information relevant to each goal is influenced
 

by the total number of goals. Johnsen (1968) suggests a limit
 

of 50 on the product of the number of bits or units of informa­

tion per goal and the number of goals. In our MOP it is assumed
 

that each goal must contain only one explicit bit of information.
 

There is only one real number explicitly associated with attain­

ment of each goal in the problem, and this defines a scalar MOP.
 

The DM may, of course, be subjectively adding other bits of
 

information from the environment as a whole but our algorithm is
 

currently capable of dealing with only scalar MOPs.
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The variables that can be controlled in order to attain goals
 

are termed decision variables. A set of values for these
 

variables is termed a policy vector, or simply a policy. These
 

values comprise the domain of a set of functions which we term 

criterion functions (CFs). The CFs have as their range numeric
 

values which can be used to determine goal attainment or non­

attainment. The CFs are the familiar objective functions from
 

classical optimization theory and there is one criterion function 

corresponding to each goal (this a result of a scalar MOP). The 

CFs play the role of predicting equations and allow us to fore­

cast output for some given input. 

For example, if production of at least 1000 widgets/day was 

a goal and if production were related to two decision variables, 

man-hours and raw materials, then a potential CF might be 

#1units = (man-hours) x (raw material) 

x (dimensionality constant). 

Observe that we could simply count the number of units produced 

to determine if the goal had been met, but then we would have 

no predicting equation for alternate policy vectors. We note 

also that the choice of an appropriate CF is dependent upon the 

actual decision variables present in the problem.
 

The range of the CF is divided into "acceptable" and "unac­

ceptable" regions by a concept termed "aspiration level," AL. The 

AL for a goal is simply the amount or degree of goal attainment 

that the individual actively seeks to attain. An AL is a fluid 

entity; it varies in a complex manner according to the past 

pattern of successes and failures that the individual has 



(7)
 

experienced in striving to attain the goal at each then current 

AL. It is also dependent upon the pattern of successes and 

failures with respect to the other objectives in the MOP. So 

we envision a highly interwoven psychological system in which 

aspirations are immersed in the individual's preference structure 

and in which the entire system changes as a result of experience. 

Uncertainty in state of nature and response of the system to a 

given input is imbedded in this process. 

We distinguish a goal level (GL) from an AL by defining a 

GL as a requirement imposed externally on the decision maker DM 

which he may or may not aspire to attain. For example, Federal 

regulations may require a dissolved oxygen (DO) level in rivers 

of at least 5 mg/Z for water-based sports, but the administrators 

responsible for waste regulation may have a different aspiration. 

Finally, we would like to distinguish between "optimal" and 

"satisfactory" choices. In thc usual optimization sense, 

"optimal" means "best." However, there is no evidence that 

there is a psychological optimum for MOPs because of the dynamic 

nature of the preference structure. The only MOP we can conceive 

of having an optimum is one in which none of the goals compete 

for resources so that in effect the attainment of each goal is 

completely independent of the attainment of other goals. Addi­

tionally, a global optimum would imply knowledge of all possible 

alternatives and would require some assumptions concerning the 

convexity of the preference space and the preference function. 

It is our contention that the DM "satisfices" in a particular 

decision situation rather than optimizes. "Satisfices" is used 
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in the bense of Simon (1957) to denote the selection of any
 

acceptabie alternative, namely, a satisfactum. Consequently
 

there may be many solutions to a MOP because there may be :many
 

satisfactory alternatives. In fact, these alternatives may
 

represent incompatible but equally tenable preference structures
 

for the individual (Shepard, 1964). We also note that the satis­

factory alternatives need not be adjacent in the sense that the
 

set of values of the decision variables which produce satisfac­

tory results is continuous (although the decision variables
 

infer then that the final determina­themselves may be). We can 

tion of a satisfactory choice is dependent upon the particular 

set of alternatives considered -- there may be no unique satis­

factum nor is there necessarily a unique search path to any 

satisfactum.
 

Our choice of an interactive techniqae implicitly postu­

lates a seriil procefs for multiple objective decision making. 

Koopmans (19641 states that "...almost all choices in real life 

are sequential, 'piecemeal, choiccs between alternative ways of
 

narrowing down the presently existing opportunity rather than
 

'once-and-for-all' choices between specific programs visualized
 

in full detail." Simon's (1957) concept of "bounded rationale"
 

explains that the constraints of memory and evaluative capacity 

lim:t our ability to consider numerous aspects of a situation.
 

Sbepard (1964) feels "...that the relative weights to be assigned 

to the component attributes (of multi-attributed alternatives) 

are not always determinate and may, in fact, depend on the 

adoption of one of several incompatible but equally tenable 
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systems of subjective goals." He cites other research which
 

indicates that people tend to view multiattributed alternatives 

as either "good" or "bad" rather than explicitly analyzing each 

part of the alternative. They are unable to combine numerous 

subjective weights at one time although their impression may be 

that they have done so. 

It appears that a serial algorithm would not conflict with 

the "normal" decision making process. In fact, such a serial 

technique which involves the DM actively will help him gcnerate 

a complete ranking of his goals through the information that is 

created in the form of feasible alternatives. 

In summary, the key to multiobjective decision making seems 

to be both the amdunt of information and its timing. Too much 

causes confusion; too little results in indecision. We need 

information about our more important goals first. As the 

solution (to the decision problem) becomes more definite, we can 

assimilate additional information about the less important 

aspects of our alternatives.
 

We next summarize the algorithm, keeping in mind that we 

are, for the time being, dealing with deterministic decision 

making. 

2.0 The SEMOPS Algorithm 

SEMOPS, an inte ractive programming technique, dynamically 

invites the decision maker (DM) to evaluate the consequences of 

his earlier judgments on each objective. The procedure endeavors 

to draw on the strengths of the computer (to perform massive 

repetitive compuLations) and the strengths of the human mind 
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(to evaluate, weigh and suggest new alternatives).
 

In the decision problem we have T goals and N continuous
 

decision variables, x = (xl ,...,xN). Allocation of each variable 

or lake level) is subject to(oxygen resources water storage, 

L equality constraints, h; M inequality constraints, g; and N 

bounds on the decision variables, namely, a lower bound bL and 

an upper bound bU. This constraint set is written as vector 

sets:
 

h = H(x) = 0
 

g = G(x) > 0 (1)
 

0 < bL < x < bu <C
 

With each goal we identify a criterion function for predicting 

goal attainment with respect to the constraint set. In the set 

of T criterion functions (each of which is the classical objective 

function) 

z = Z(x) (2) 

the range of the t t- !! element of the vector z is denoted r(zt). 

For the optimization routine associated with each criterion 

function and the interaction of the T goals, SEMOPS specifies 

that (a) x is continuous and (b) h, g, and z are all at least 

first order differentiable. Thus, both (1) and (2) may be non­

linear.
 

To get interaction of goals wc define goal levels (GL) as
 

conditions imposed on the DM by external forces (natural or 

human, pre-existing air quality and building standards, property 

rights and other legal controls) and define aspiration levels 

(AL) as attainment levels personally sought by the DM. Frequently, 



the GLs and ALs are in conflict. Writing these two sets as
 

GL = (GL,... , GI.T) and AL = (AL 1 ,... ,ALT) , from the convencional 

widsom we recognize at least the following five types of con­

straints: 

a) "at most" z < AL: AL may be maxirum number of hikers 

desired by recreational interests or maximum river salinity 

concentration acceptable to irrigators (Colorado River water 

to Mexican farmers) , or maximum nutrient concentration in
 

lake influents (to control eutrophication),
 

b) "at least" z > AL: AL may be the river level desired by
 

navigational interests,
 

c) "equals" z = AL: AL may be the firm pow.er contracted
 

to industry,
 

d) "within an interval" AL1 < z < AL 2: bounds on lake
 

levels and water temperature for recreation and/or fisheries,
 

e) "outside an interval" z < AL1 and z > AL2 : less common;
 

AL1 and AL2 may be the frequency limits within whic> a
 

structure, such as a suspended bridge, may enter into
 

resonance.
 

For each of the T goals, a "dimensionless indicator attainment," 

d = DA(x) and d > 0, is defined by an appropriate transformation 

of any of the above constraint types. In each case, the inequal­

ity d < 1 implies that the goal is satisfied. The transformation 

tactic permits a "pooling" of the information on each goal as 

noted next. The "pooling" is achieved by a surrogate objective 

function, s = E d defined on a subset T' of the set of T goals. 
t T' t' 
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The function s is optimized at each iteration or cycle only to 

generate whatever information arises from the DM's prespecified 

GLs and ALs. The algorithm sequentially alternates between the 

eachDM's inputs and res,,unses to the information generated at 


cycle. Such information may be in terms of the effects of
 

goal on the aspirations of otherachieving or not achieving one 

goals. if such effects are intuitive or self-evident to the DM, 

then clearly the computer algorithm is not needed. But for most 

problems, the consequences of a DM's choice in a multivariate 

beenvironment are non-intuitive and so the computer can an 

invaluable aid.
 

The surrogate character of each cycle in SEMOPS recognizes
 

our inability to define objectively the true preference function 

(of one goal versus others) of the DM. The value of d. in.s at 

or not the t h goal has been satis­each cycle reflects whether 

fied; note that the T' set is not the same in number and com­

to cycle because of the DM's prerogativesposition from cycle 

in constraining certain goals at the next iteration and in 

inserting new information. Comparability of d t values at each 

cycle is not possible because of the nonlnceaL transformations. 

is minimized only to help the DM reach a satisfactum or toThe s 

help him decide that more information or research is necessary. 

Of course, the function s would be a "standard" objective 

function if the DIM knew perfectly his preference or weighting 

function. The construction of DA and s has been completely 

arbitrary and is suibject only to the directional property of d 

on
as discussed above. This property is used by the DM to decide 
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the set (T-T'), that is, those goals to be added to the con­

straint set because of their non-inclusion in s. The presence of 

a goal in s signifies that the DM is aware that he may fail to 

achieve the desited AL. But when a goal is entered as a con­

straint the DM ins6ists that the AL be achieved. The distinction 

between desiring and insisting is central to SEMOPS. 

Overall, SEMOPS is a three-step algorithm involving setup,
 

iteration, and termination. Setup includes data acquisition,
 

determination of state transition functions (on stream and lake
 

flows, volumes, chemistry, biology), and transformation of the
 

original problem into the DA format. Iteration is the truly
 

interactive segmnent wherein one cycles between an optimization 

phase and an evaluation phasc until a satisfactum is reached 

(if possible). The last is the termination step. 

In the next section, we review the results of applying the 

algorithm to a deterministic formulation of a watcr quality 

control problem. This sets the stage for showing the problems 

of introducing uncertainty into the same example. 

2.1 An Application of SEMOPS to a Deterministic Water Quality 

Control Problem
 

SEMOPS was illustrated by Monarchi (1972, Chapter 6) using 

a modified version of a realistic example developed by Dorfman 

and Jacoby (1969). The Bow River Valley, an artificial river 

basin, has a pollution problem stemming from three sources: 

(1) the Pierce-Hall Cannery, upstream from Bowville; (2) municipal 

effluent at Bowville; (3) municipal effluent at Plympton, down­

stream from Bowville. Between the cities lies Robin State Park; 
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the state boundary line is downstream from Plympton. Water
 

quality is represented by the dissolved oxygen concentration
 

DO, and effluent is characterized by its bioche.aical oxygen
 

demand BOD. The Streeter-Phelps (1925) equation describes the
 

dynamics of DO, given the BOD discharge and the stream char­

acteristics. This ordinary differential equation is simply an
 

accounting of the oxygen resources in a stream, independent of
 

spatial variability and nonlinear effects. 

The DM seeks to increase the collective utility of Bow 

Valley, by looking at six goals and defining six goal levels GL 

to evaluate the worth of any decision, namely: the DO levels 

at Bowville (AL1 = 6 mg/Z), Robin State Park (AL2 = 6 ]ng/9), 

Plympton (AL = 6 mg/Z), the percent return on investment at the 

Pierce-1Hall (Cannery (AL4 > 6.5%), the additional tax rate at 

Boville (AL5 < 0.152), and at Plympton (AL6 < 0.15%) that would 

be nccessary to reach the desired DO level. 

The control or action variable is the proportionate reduc­

tion of 1OD x. Constraints are to maintain a certain level of 

DO at the state line and to bound x: 0.3 < x < 1. Without 

entering into details of the rationale behind each cycle or 

iteration, the following results are obtained (Monarchi, 1972; 

Monarchi, et al. 1973): 

Initial Values: x 0 = 0.3, and GL = AL = (6,6,6,6.5,.15,.15) 

First Cycle: AL = (5.96,4.07,5.77,6.42,.071,.159)
 

If DM fixes Goal 6 at .150, then he obtains the vector 

(6.14,5.35,6.17,5.50,.252,.150).
 

http:6,6,6,6.5,.15,.15


Second Cycle: DM fixes Goal 6 at .155; he thus obtains
 

(6.03,4.60,5.94,6.15,.125,.155).
 

Third Cycle: Goal 6 has been entered as a constraint with
 

an AL equal to .155. DM, after an interactive phase, decides to
 

change Goal 2 from 6 to S mg/k. The resulting AL vector is
 

(6.10,5.00,6.07,5.76, .180, .155).
 

Fourth Cycle: In addition to the above constraints, Goal 4,
 

which has already been reduced from 6.5 to 5.76, is further 

reduced to an AL of 5. The result is 

(6.06,5.00,6.07,5.00,.187,.155). 

Fifth Cycle: AL,, the attainment level of goal 5, is raised 

to 0.190. The result is (6.0,5.0,6.0,0.190,0.155), which we 

assume to be a satisfactum for the DM. DM's policy decision x 

is to impose waste reduction requirements of 88% on the cannery, 

87% on Bo-wrille and 82% on Plympton. We show the effects of 

uncertainty on these results. 

But first we review the potential sources of uncertainty in 

the water quality control problem and then the limited role of 

Bayesian decision theory in this class of resource problems. 

3.0 Uncertainties in the Multiple Objective Problem 

The uncertainties in resource problems can be both technol­

ogical and strategic (isiel and Duckstcin, 1972). Strategic 

uncertainties include primarily our inability to forecast future 

social goals and socio-economic states of the world. Technologi­

cal uncertainties include our ignorance about physical, chemical 

and biological processes in the environment. These include 

uncertainty about appropriate environmental models, about 

http:6.10,5.00,6.07,5.76
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parameter estimates (given a true model), and about future
 

functions of uncontrolled inputs into environmental models (given
 

a true model and perfect parameter estimates). The relative
 

importance of these two classes of uncertainties will vary with
 

the problem.
 

Within the framework of the Bow River problem, the strategic
 

uncertainties may exist in regional goals (future growth rates
 

and concern with other ecologic parameters like air quality).
 

Furthermore, the problem, as formulated, considers only a single
 

attribute of water quality, namely, DO, but what of stream 

on? The DM's implied preferences
temperature, sediment, and so 


may change with time or with better forecasts of future social 

and technologic conditions. 

The SEMOPS algorithm assumes the adequacy of the Streeter-

Phelps model of oxygen dynamics in a stream. Of course, more 

realistic models can be incorporated and the effects on the policy 

vector evaluated. 

Given the correctness of the Streeter-Phelps model, our 

earlier use of SEMOPS assumed that streamflow, stream transfer 

coefficients, and stream reaeration and deaeration rates were 

constant. It is customary to determine waste treatment plant
 

capacity x by assuming a low flow that persists for seven days 

or more and that has an average return period of ten years. 

The low flow value is typically estimated from relatively short 

hydrologic records; this fact suggests the possible applicability 

of Bayesian decision theory (BDT) when a least cost design of 

waste treatment plants is the goal. In addition to uncertainty 
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in the design streamflow, a major difficulty arises with 

estimates of stream reaeration coefficients; investments in
 

plant design are rather sensitive to slight changes in such
 

estimates (Yu, 1972).
 

Implementation of the Streeter-Phelps equation also depends
 

on a forecast of future biochemical oxygen demands (BOD), exerted
 

by wastes to be treated both in a waste treatment plant and in
 

the river. That forecast in turn depends on forecasts of popula­

tion and future per capita strength of the waste.
 

On the technological side there exists some possibility of
 

formally analyzing the uncertainty in design flow, reaeration rate,
 

and BOD load. The estimated DO in the stream is a function of
 

efficiency of waste plant operation, flow rate, reaeration rate,
 

future population growth, and the Streeter-Phelps model. Prior 

experience with each type of waste treatment plant can be used to 

encode the uncertainty in plant efficiency. Historical records 

of streamflow can be used as a basis for fitting a probability 

distribution function (pdf) like the lognormal or Gumbel's smallest 

value model to encode this uncertainty; uncertainty in the para­

meter of these distributions could be encoded in a prior pdf and 

BDT applied. Uncertainty in reaeration rates can only at present 

be encoded with the aid of field measurements and regression 

equations; BDT would be applied once the likelihood on the resid­

uals was established (Metler et al. 1973). As for future population 

growth and appropriate model, their uncertainties are not as 

readily encoded, except perhaps in a subjective way as degrees of 

belief (say, through expert opinion). 
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With the above outline of uncertainties, the question natur­

ally arises as to how best to incorporate these into SEMOPS.
 

include singly each uncertainty
The alternatives include (a) to 


in SEMOPS and then compare the policy vectors x and (b) to intro­

duce the uncertainty in x directly by an additive error term with
 

an assumed probability density function (pdf). The former
 

assumes that decomposition of uncertainties is justified
approach 


and that existing methodology can cope with each type of tech­

nological uncertainty; this is not so, however. The latter
 

approach, while not computationally simple, skirts the explicit­

ness of (a) by simply encoding all uncertainty as an uncertainty
 

c in the required degree of waste treatment x. Such uncertainty
 

is propagated into the values of each of the goal values GL.
 

In the next section we illustrate the use of SEMOPS with ±c
 

added to x.
 

4.0 Sensitivity Analysis in Bow River Valley Problem
 

In the previous section we suggested that there is no 

completely general way for incorporating Bayesian decision theory 

into our SEMOPS algorithm. The general nonlinearity of the goal 

functions also compounds the difficulties in such an effort. It 

should be emphasized that it is more natural to proceed with un­

certainty analysis on specific components of GL and then to choose 

the basis of risk criteria arising in such analysis. Asx on 


noted previously an ad hoc alternative is to add a random error
 

term to the decision variables x
 

xl + 1 = 1,2,3 in the Bow River 
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where the superwiggle indicates random variate. Then the jt-h 

goal function becomes 

2i = f(l, 2 ,f 3 ), j = 1,...,6 in the Bow River Valley 

If a pdf p1 (ci), not necessarily symmetric between ±ci, were 

assigned to ei' then, in principle, computer simulation would give
 

a pdf P2 (zj) and a decision analysis might be pursued in terms of
 

loss functions and risk propensity (aversion or proneness). In
 

fact, the decision maker could use 2 (zj) at each cycle of SEMOPS 

to adjust his aspiration levels even though the computer program 

will still solve the problem deterministically. However, we note 

that computer solutions and analytical expressions for 2 (zj), or 

even the variance Var j, are hardly feasible except possibly 

through linearization of the nonlinear goal functions. Pertinent 

here is the fact that the expected value of the solution of a 

nonlinear function is not equal to the solution of a nonlinear 

function composed of expected values. 

Given the above situation we settled on an unsophisticated
 

way of letting the DM introduce his own "priors" with respect to 

the upper and lower bounds of the uncertainties in the x values. 

No pdf is imposed on values within those bounds. The resulting 

flow chart is given in Figure 1. After the results of each cycle 

of SEMOPS are printed out, the program asks the DM if he wants to 

explore the sensitivity of the results. At this time the DIM can 

input a vector, call it Dx, and the program will compute the maximum 

and minimum values of each goal for all combinations of plus Dx 

and minus Dx around the "nominal" x values resulting from the 

solution of the deterministic problem. The idea is to have the 
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DM put in several Dx corresponding to different "confidence" 

observe the variation in the six goal
levels on the x.1 in order to 


values z..
J 

shown in
The results of such computer studies for two Dx are 


the results of the "certainty"
Also shown therein are
Table 1. 


The 1% and 3% figures
case reviewed in Section 2.1 of this paper. 


actual field conditions may
are used for illustrative purposes; 


not permit such sensitive design and subsequent operation of waste 

treatment plants. 

option toIn the sensitivity version of SEMOPS, DM has the 

sense of what is
 vary the uncertainty bounds Dx according to his 


uncertain in the inputs to the algorithm. For a 3% increase in 

x, the required efficiency of waste treatment plant, we find 

of DO at each of the three river stations,slightly higher values 

a higher return on investent at the cannery, and higher tax rates 

to nominalat both Bowville and Plympton, all of this in relation 

values. Whreas, the reverse consequences are obtained for a 3% 

these results?
decrease in x. How is DM to respond to 

to each F-i. In the first, aDM may give two interpretations 

design context, DM simply wants information on thedeterministic 

effects of perturbations in x on the goal levels z . Supposedly, 

evaluation of that informa­no uncertainty enters his mind during 


tion. In the second interpretation, the one intended in this
 

many srarces of uncertainty in the
paper, DM is aware of the 

as noted in Secti-m 3.0. In contrast to the firstdesign problem 

if DM is not sure why he chose a particular Dx, heinterpretation, 


now has a much more difficult task of evaluation. Should he
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Table 1: 	 Results of sensitivity analysis on last cycle of
 
SEMOPS with uncertainty in required waste treat­
ment plant efficiency. Nominal xi , i = 1,2,3,
 
values are respectively 0.8771, 0.8688 and 0.8182.
 

Goal values in the principal problem
 

Case 	 GL2 GL4 GL6
GL1 	 GL3 GL5 


1 = 0 
for x.=x" +c. 6.0 5.0 6.0 6.0 1.90 1.55
 

El= +0.01
 

Maximum
 
Value: 6.084 5.108 6.099 6.114 2.057 1.659
 

Minimum
 
Value: 6.039 4.922 6.043 5.871 1.760 1.450
 

6. = +0.03
 
1
 

Maximum 
Value: 6.129 5.313 6.o6o 6.037 2.437 1.911
 

Minimum 
Value: 5.993 4.749 5.990 5.558 1.521 1.275
 

Dimensional Dissol-	 P Dollar
 
Units ved return change 

oxygen, on in tax 
milli- invest- rate 
grams/ ment or 
liter 1i000 

assesed 
valua­
tion
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attribute E. to one source of uncertainty at a time, such as to
1 

operational efficiency of waste treatment plants or to stream 

to all sources
reaeration coefficients, or should he attribute ci 


In the former case, DM is presumed
of uncertainty simultaneously? 


to have prior knowledge about the most important source of uncer­

tainty; this is a large assumption. In the latter case, DM must
 

decide whether or not his decisions require a subjective weight­

ing of the various sources of uncertainty. If only the total
 

uncertainty is important to him, he has simplified the problem
 

and is then faced with questions about costs of over- and under­

investment, about probabilities to be associated with values of
 

x in the interval (-Dx, +Dx ), and about risk propensity (aversion 

or proneness). 

In the first interpretation of ci, for the plus 3% case, how 

and returnshould DM trade-off the higher stream quality percent 

to the cannery against the higher tax rates in the two communities? 

versa for the minus 3% case? In the design context theand vice 

answer (or decision) depends on the utilities associated with
 

each goal value (assuming perfect prediction of each value). If 

DM decides to go along with the plus 3% case, the community assigns 

greater utility to the additional stream quality and profits to
 

the cannery than it does to the additional expenditure of real
 

tax dollars. Decision theory under uncertainty should be appli­

cable in these situations as an aid to the DM.
 

In the second interpretation the decision depends on DM's
 

degree of belief in the possible occurrence of different values of
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the uncertainty and on his utility or loss function for the entire
 

range of uncertainties in the interval (-Dx,+Dx). The nominal
 

values of xi are not true values for if they were true then the i 

would lack meaning. Thus, a probability distribution 

l(Xi) = l(Ei) over the interval (-Dx, +Dx) would encode uncer­

tainty in the true values x. However, because 4l(xi) could only 

be obtained subjectively and because its use to find P2 (zj) is 

fraught with difficulty as noted earlier, we are not able to con­

sider explicitly the use of Bayes and minimax decision criteria for 

each of the six goal levels z . 

But let us pretend that we could. Then we might be inclined 

to use the expected value viewpoint implied in the use of a mini­

mum Bayes risk for the DO levels associated with GLI, GL2 and GL3 , 

but inclined to use the minimax rule for GL4 (' profit to the 
cannery) and for GL5 and G16 (change in tax rates at BoWille and 

Plympton). This subjective choice is suggested only to emphasize 

that different decision rules can be chosen for c.ch z. . To get 

at an evaluation of the set of zj would require a multidimensional 

utility function. It is not at all clear at this point whether DM 

could specify such a function in a consistent way or whether DI 

may even agree with the idea. DM may simply prefer to rank the 

minimum Bayes risks for zl, z., and z 3 and the minimax losses for 

z 4 , z 5 and z6 ; in the end with the aid of these and other criteria 

he makes a rather subjective choice of x. 

The hypothesized reality of our problem formulation simply 

requires DM to choose in some way between the maximum and minimum 

values of GL. in each sensitivity analysis. Some appreciation of 
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subjective probabilities and utilities fow each GL. might allow 

be more incisive in his evaluation. While the positiveDM to 


utilities for the maximum DO values may be high, their pro­

then the chance of over-investment
babilities may be quite small; 


set of minimum
would be large. On the other hand, to choose the 


values as a basis for decision, DM must tradeoff the negative
 

(if true) and lower profit to the
utility of lower DO values 

costs of overdesign, and thecannery against the savings in 

reduced taxes in Bowville and Plympton; probabilities of each GL.
 

will strongly influence the judgment. Thus, in the sensitivity
 

approach to SEMOPS, DIM must subjectively combine the utility 

in turn decide subjectively overand probability for each GL.• and 

on the final set x of decision variables. Itthe set of six GL. 


is not clear that an informed DM could really do this; for
 

subjective probabilities to be
example, he may subtly allow his 


influenced by his utilities for each GL . At this juncture, we 

are confronted with the reality of irrationality of both decision 

making and utility theory. The axioms of utility theory are not 

necessarily compatible with the actual decision making. 

of usingIn the next section we discuss the overall problem 

SEMOPS under uncertainty, including some preliminary thoughts on 

a complete decision system versus a practical decision system, 

the place of SEMOPS and BDT in the broader cost-effectiveness frame­

work, the problem of a priori specification of preference functions 

or weights and their use in a normative or predictive sense, and 

the compatibility of SEMOPS under uncertainty with the axioms 

of utility theory. 
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5.0 	 Discussion
 

In a complete decision system, it would be ideally desirable
 

to have an interactive program wherein the uncertainty associated
 

with each goal could be attacked completely by Bayesian decision
 

theory. Implementation would be a computer programming problem
 

involving computation of expected opportunity loss, expected
 

expected opportunity losses, expected value of sample information,
 

etc. However, this does not imply that such a system would be 

best because the axioms of BDT may not hold across the set of 

goals. Practically speaking, the complete decision system would 

require prior distributions, likelihood functions on the data, 

and loss functions. These requirements impose severe measurement 

problems to acquire such information. We conclude then that a 

complete decision system is not achievable with the current state 

of decision theory and measurement techniques. 

In a 	 practical decision system, it may be possible to have a 

multi-objective Bayesian decision theoretic framework that is, 

however, not interactive and that is imbedded in a larger cost­

effectiveness framework. The goals would be satisfied separately. 

Our experience with applying BDT to water resource design still 

suggests computational and conceptual difficulty in implementing 

it for the single objective case (Davis, et al. 1972; Duckstein 

et al. 1973) although the problems are gradually yielding. The 

value of BDT in small sample cases can be sharpened by contrasting 

it with non-Bayesian approaches (say, the factor of safety view­

point) as has been done by Duclstein et al. (1973) in their 

evaluation of flood levee design. The results of BDT analysis for 
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each goal in , non-interactive mode may be either in terms of the
 

Bayes risk v: minimax criterion for each goal. Such criteria
 

are 	only a part of the vector of criteria used to evaluate alter­

native systems.
 

To undertake this evaluation we prefer the standardized cost­

effectiveness (CE) procedure proposed by Kazanowski (1968, 1972) and
 

adapted in our work (Chaemsaithong, et al. 1973; Ko and Duckstein, 1972)
 

a) Identify multiple goals to be achieved.
 

b) Give the requirements or specifications for meeting the
 

goals.
 

c) Identify the criteria for evaluating the alternative
 

systems to be used in trying to achieve goals.
 

d) Specify distinctly different alternative systems.
 

e) Choose a fixed cost or fixed effectiveness approach.
 

f) Evaluate the merits of each alternative system in terms
 

of the criteria given in (c). BDT analysis enters this 

step where feasible. 

g) 	 Prepare an array of systems versus criteria. This inclu­

des ranking of the criteria, clustering of criteria to 

which DM is indifferent, and identifying criteria that 

DM finds incomparable. 

h) 	 Analyze the array by ranking, identifying dominated 

alternatives or criteria, or using lexicographic analysis 

(MacCrimmon, 1972; Roy, 1972). At this stage, no 

decision is made by the analyst; SEMOPS may be invoked 

for each of the alternative systems. 
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i) Perform sensitivity analysis on the goals, requirements,
 

criteria, revision of alternative systems and choice
 

of approach. This step may be undertaken with the aid
 

of the decision-making group in order to facilitate
 

implementation by them at a later date.
 

j) Document the rationale of the entire procedure. 

Clearly, SEMOPS and BDT are only a part of the above broad 

structure called the CE methodology. SEMOPS in steps (g) and (h), 

through its interactive mode, helps to order criteria (in CE) or
 

goal levels (in SEMOPS). BDT analysis, if feasible, would gener­

ate values of Bayes risk and expected opportunity loss for each 

system and for each goal. These criteria take their place along 

with other criteria like minimax. environmental quality, aesthetic, 

etc.
 

Our experience with CE suggests that it is extensively 

appreciated, notwithstanding its unstructured and non-formal 

orientation. In fact, the latter may be assets in broader and 

amorphous problems. We sense that SEMOPS under uncertainty may 

be appreciated by DM pro-rided more justification is generated for 

its use. Usefulness of the combination of SEMOPS and BDT will 

have to be demonstrated because of data requirements, possible 

complexity of implementation, and axiomatic difficulties in a 

multiobjective environment.
 

The multidimensional preference function of DM implicitly
 

arises in CE at step (h) and, of course, in SEMOPS. We cannot 

define a priori such functions but we can obs-rve past behavior. 

But does this provide a valid basis for inference about future
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schemes based on past behavior and
behavior? All weighting 


current interviews or questionnaires may be fine,	but they
 

to the strong
need to be validated. Can such schemes stand up 


test of forecasting the c;volution of individual, group and social
 

seem answerable at
value structures? This question does not 


We note from the literature that
 present in the affirmative. 

Keeney (1969) assumes in his normative multidimensional utility 

theory that preference functions are known beforehand, Dyrcr (1971) 

in his goal programming under uncertainty assumes prior weighting 

of goals, Drobny ct al. (1971) choose to collapse the array
 

(steps (g) and (h)) of the cost-effectiveness procedure into a 

single effectiveness index by assigning weights, and 'Major (1969) 

of a set of goals for watcr resourceassigns weights to each 

planning. Assignment of weights may be meaningless unless an 

or a group has a commitment to assume responsibilityindividual 

then, the weights or preferences may changefor them. Even 

attitudes and because we presum­because humans do change their 

ably learn from the consequences of past weights or choices. We 

SEMOPS allows for evolution of the value structure ofnote that 

the group or individual DI. 

of decisions under uncertainty and toCentral to the problem 

the problem of weighting are the axioms of utility theory: 

a) Complete ordering of alternatives and criteria is possible. 

choices.b) Individuals or groups are transitive in their 

c) There exists a continuity and ordering of probabilities 

between two choices, that is, a convex combination of 

choices.probabilities can be found between two 
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d) 	There exists consistency in the choice of alternatives
 

in relation to other irrelevant alternatives, that is,
 

choice between two alternatives is independent of the
 

surrounding environment. Problems of ecologic manage­

ment cut to the heart of deficiencies in this axiom.
 

It is clear that we cannot have Bayes risk and interactive Bayes
 

procedures without the axioms. In fact, we may need further 

axioms that might make the problem even more unrealistic. In 

SEMOPS it is conceivable that DM encounters incomparable choices, 

thus violating the first axiom (Roy, 1972), and even the remain­

ing three axioms. Concerning the second axiom, Slovic et al. (1973) 

discuss the individual whoJ is a money pump because of his intran­

sitive choices. Concerning the fourth axiom, it is quite common 

to encounter external factors that suggest additional alternatives;
 
independence is difficult to justify and is v:iolated purposely in the 

Gestalt philosophy embodied in our SEIMOPS algorithm. It should 

be evident that efforts to evaluate, in the sense of the behavioral 

sciences, the above four axioms require measurement techniques 

(in general, not adequate to meet our needs) to obtain the utility
 

and probabilistic structures of individuals and groups.
 

In Section 4.0 we reviewed the possible incorporation of 

BDT into SEMOPS and suggested the need to separate utility
 

functions and pdfs. As Ferrell (1972) notes, people do not
 

necessarily give accurate prior pdfs because they tend not to 

believe the evidence before them. Slovic et al. (1973) suggest 

something similar in terms of human fallibility in probabilizing 

past observations of extreme natural hazards like floods and
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with hydrologic eventsdroughts. They note that humans do well 

Conraththat have magnitudes in the vicinity of the mean value. 


(1973) notes that DMs are more comfortable with point estimates
 

than with probability distributions. Thus, to implement BDT
 

also an educational problem,and its combination with SEMOPS is 

two pro­not just a computational and axiomatic one. There are 

people to believe in the evidence,blems. First, how best to teach 

ifparticular, probabilistic evidence before them? Second, how best 

to teach people to distinguish between utility and probability? An 

overall question arises: how best to develop human intuition 

and more generally the uncertaintyabout probability concepts 


issues existing in natural and socio-economic processes?
 

In summary, in this paper we have sought to develop the pro­

blems of incorporating uncertainty analysis, in particular 

Bayesian decision theory, into an algorithm on multi-objective 

problem solving. Our algorithm at present copes with a scalar 

MOP, that is, only one water quality parameter (DD) in the Bow 

River example. Our analysis requires quantification of the goal 

levels and requires that the goal function for each goal be at
 

case.
least first-order differentiable; this may not always be the 

It is hoped that our evaluation of the merits of SEMOPS and BDT 

serves to sharpen the judgment as to the best direction for the 

next increments of improvement in multiobjective problem solving 

under uncertainty. 



6.0 	 Conclusions
 

From our analysis of the problems of implementing SEMOPS under
 

uncertainty, we suggest the following conclusions on the premise
 

that 	the algorithm begins to capture important realities of the 

actual decision process: 

a) Complete integration of one-period SEMOPS and Bayesian 

decision theory is impossible because the axioms of 

utility theory are not completely compatible with the 

Gestalt viewpoint inherent in SEIMOPS. 

b) While complete incorporation of uncertainty into SEMOPS 

is not presently possible, the addition of a sensitivity 

analysis to SEMOPS does provide more guidance to the DIM
 

than 	 that obtained without a sensitivity analysis. 

c) 	 SEMOPS requires no prior weighting of alternatives or 

of goal levels as do other schemes proposed for multi­

objective problem solving under uncertainty. All weight­

ing schemes to solve the multi-attribute problem must be 

validated as to their predictive abilities. 

d) 	 To resolve the problem of imple'lenting and improving 

decision theories, more work is necessary on the elici­

tation of probability distributions from people, and in
 
educating people to believe in the evidence before them 

and to distinguish between utilities and probabilities. 

e) There is need to consider extension of SEMOPS under 

uncertainty to the multi -period design, planning and 

operation problems arising in natural resources. 
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sense of Wymore (1972))

f) We 	may need a system model (in the 


study interaction between goals under uncertainty.
to 
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Figure 1
 

Logic Flow of User Interaction with New SEMOPS Program 
All input is from teletype by user decision maker (DM) 

Initialize Problem
 

Rea TitleIf Title = "STOP", 

Read Title for this cycle -;rogram terminates 

Read IEX vector which defines which goals are in the 
surrogate objective function. Then read the aspiration 
levels for all goals.
 

Program automatically solves the principal problem and 
all auxiliary nroblems by serially deleting each goal 
in the objective function of the principal problem and 
enterng it in the constraint set as a "goal formula­
tion" (G.F.). 

The title which was entered above is printed out as are 
the aspiration levels. Then the results of this cycle 
-- the goal values (z -7 , the x values (x l ,x ,x-) , 
and the DO constraint at -t state line together wite, a 
code indicating the status of problem solution--are 
printed out for the principal problem and all auxiliary 

proh lins. 

The program asks the DM if he wants a descriptive 
explanation of the atove results. If answer is "yes," 
a description is printed at the teletype. 



.Figure 1 (continued) 

Program asks the DM if he wants to explore the sensi­
tivity of the results by "wiggling" the x values for 
each problem by some amount (supplied by the DM). The 
purpose of this part is to provide a "poor man's version" 
of a stochastic problem. The DM can supply "reasonable" 
amounts of variation for each x value which might cor­
respond to subjective (Bayesian) estimates of variance. 
When the resulting variations are observed by the DM, 
he may :ish to concentrate on the qoaJs, by enern ig 
them as constraints, in a different order than he might 
otherwise have done from the "deterministic results" 
printed previously. This, presumably, would result from 
his desire to reduce the uncertainty on the goals which 
are most important to him. Even though all oC the x's 
(Xx2,X3 ) may be varied by the same amount, the varia­
tions in the goal values will differ in magnitude 
because the goal functions arc nonlinear. 

If answer to question (Ist sentence 
above) is no, program goes on to 
next section. 



Figure I (continued)
 

Prog.-am reads vector variation for x values. Then applies
 
that trector (+ and -) to the x values from the results
 
alreaJ> printed. Since there are 3 x's in the Bow River
 
case, there are 8 plus and minus combinations of varia­
tion. With this variation, the program calculates the
 
maximum and minimum values for each goal for the princi­
pal and each auxiliary problem and prints the results.
 

I Pro l.,ram asks DIM if he wants to supply anothcr variation 
vector and repeat the analysis. 

0: N ___ 

Program aslzs DM if he wishes to see estimates of the
 
change in goal attainment for all goals, and asks when
 
the value of a specific goal's aspiration level enter­
ed as a constraint is changed by one unit.
 

"YES" "NO" 



Figure 1 (continued)B 

Program asks DM if he wants to estimate goal attainment] 
values for 
put the nu
a.tionLel] 

the 
mber 

for 

next principal 
of the goal (1 
that__oa.. 

problem. The 
to 6) and a trial 

DIM will 
aspir­

in­

"T] "'NO" . 

Program reads goal #. 

- (on first page) 
Program reads aspiration level.; 

Progriim prints estimates of goal values. 

!Program asks JI if he wants to make new estimates using 
:different aspiratioI_ levels for the same goal. 

Program asks DM if he wants to make more estimates with 
a new goal specified.
 

NO"e'_"_(on first 


(on first page) 




