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ABSTRACT

The problems of sequential multiobjective problem solving
under uncertainty are analyzed with the aid of an example on water
quality management. The SEMOPS algorithm is constructed accord-
ing to the Gestalt philosophy for subjectively viewing the en-
tirety of a complex decision situavion. The algorithm uses a
nonlincar programming formulation to find goal values (six in the
example: thrce discolved oxvgen levels in a stream, tax rates in
two towns and proflit level of a cannery) subsequent to a decision
maker's specification of aspiration levels. The decision maker
evaluates the current sct of goal values and subjectively chonoses
adjustments in his aspiration levels for each goal. The system
response to thesc levels is recomputed and evaluated. The algorithm
terminates when the decision maker finds a satisfactum. The
algorithm incorporates uncertainty by performing a sensitivity
analysis on the final values of the decision variables. The
sensitivity form of SEMOPS are simply an ad hoc concession to the
substantial difficulties of incorporating Bayesian decision theory
into the approach; These difficulties includec the appropriatcness
of the axioms of utility thecry for the decision problem outlined
in this paper, the acquisition of prior distributions and utility
functions for cach goal, and the issue of a priori versus a
posteriori weighting of each goal. This paper argues for a poste-
riori or subjective weighting because of the substantial measure-
ment problems in eliciting prior probabilities, utility functions

and weights.



1.0 Introduction

A method is proposed to combine uncertainty and multiple
objective issues in decision making. We use the methodology to
emphasize some of the problems in applying decision theory to
natural resource problems.

It has been recognized in recent years that the standard
one-period operations rescarch or optimization models are inade-
quate for two reasons: (a) use of one-dimensional objective
function; and (b) difficulties of inserting uncertainties in
either the objective function (cost coefficiencs) or constraints
(technological parameters as in resource availabilic¢y). Recent
research has sought to resolve this problem in various but sep-
arate ways (Cochrane and Zeleny, 1973; Wilcox, 1972). For
example,

(a) Multidimensional decision problcms have been modeled

by using additivity axioms, dominance relations stemming

from partial ordering of objectives (including standardized
cost-effectiveness methodology (Kazanowski, 1968; Ko and

Duckstein, 1972; Chaemsaithong, et al. 1973)), and inter-

active sequential decision-making algorithms (Monarchi,

et al. 1975) that lead to complete ordering a posteriori.

(b) Stochastic elements have been introduced into mathe-

matical programing (Bogardi, et al. 1973) but are far from

describing the spectrum of uncertainties (in models, goals,
data, forccasts). The issues in the latter have been

reviewed by Kisicl and Duckstein (1972).
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(c) Bayesian decision theory (BDT) has been used to imbed

uncertainty into an objective function but there is

difficulty in applying it to multiobjective situations

(Davis, et al. 1972).
Specifically, we are considering the problems of introducing
Bayesian decision thcory into SEMOPS (a sequential multiple
objective problem solving algorithm) whose potential usefulness
has been demonstrated for a deterministic case s+udy on invest-
ments in water quality control (Monarchi, et al. 1973). In
the next section we outline the philosophy of decision making
underlying SEMOPS. The remainder of the paper is organized as
follows: review of the mechanics of SEMOPS and its amalgamation
with Bayesian decision theory, incorporation of uncertainty into
SEMOPS, an example using the Bow River Valley to demonstrate
water quality control under uncertainty, and finally discussion
of the problems in thesc methodologies, in particular as they
pertain to natural resource problems.

1.1 Philosophy of decision making in SEMOPS

The research described herein has its origins in the Gestalt
point of view (Kbhler, 1947) which postulates that the perceptions
of the individual are the result of the '"context" or environment
in which the stimuli arc percecived. We can illustrate this with
two examples:

1. A nelody is morc than just an enumcration of the notes

to be played; it is our interpretation of the relationship

of the notes to cach other. In particular, our interpreta-

tion is time dependent based upon our prescent ''mood."



(3)

2. A quotation taken out of context may no longer have the

same meaning because words are related to the entire set

of words surrounding them. Here the environmert is the

meaning or sense conveyed by the entire set of words.

The Gestalt view of perception may provide a realistic
description of the way in which the DM defines and perceives
both a decision problem and possible alternative solutions to
that problem. 1In addition, the Gestalt orientation implies that
the DM's judgment or evaluation of the worth of a soiution is
situation dependent; and, in fact, it is dependent upon the set
of known alternatives because that information becomes part of
the environment in which the decision must be made.

The preference structure (value system) of the individual
determines the worth of the various alternatives to him. This
preference structurc is assumed to be completely implicit and
perhaps known only imperfectly even to the decision maker (DM)
himself. Past preferences are expressed in the individual's
choice pattern over time. From this we can infer his ordering
of the alternatives at the time the choices were made. An
ordering is termed '"complete" if there are no incomparable
alternatives; otherwise it is a partial ordering. We assume
in our development that there will be no incomparable alterna-
tives for the multiple objective problem (MOP) among the sct of
feasible alternatives generated by SEMOPS. OQur rationale for
this assumption is that within the structure of a given decision
problem, the altcrnatives represent variations of degree rather

than of substance. To clarify this, we would say that
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(profits of 6%, particulate atmospheric pollutant level of

400 mg/2)

(profits of 10%, particulate atmospheric pollutant level of

1000 mg/2)
represent two alternatives which differ in degree, whereas

(profits of 6%, particulate atmospheric pollutant level of

400 mg/2)

versus
(stay home from work, go fishing)

represent two alternatives which differ in substance and both are
not likely to be from the same decision problem. A variation
in degrec is a marginal comparison and a variation in substance
is a structural comparison. We fcel that alternatives which
differ only in degrece will be comparable and that those which
differ in substance may or may not be comparable.

The DM's preference system is dynamic and changes as a
result of environmental inputs, i.e., the perceived impingcment
of the real world upon the individual. At the same time,
changes in the preference system alter the perceptual biases of
the individual. These biases are responsible for the inter-
prctation of the information from the environment so that the
system fceds back upon itself. Although the structure is impli-
cit and cannot be expressed functionally, the tcrm "preference
function" will be uscd to denote the psychological transforma-
tion of information from the environment into an assessment of
the valuc of the alternatives to which that information relates.

We note that this transformation also applies to the selective



(5)
reception of the information itself. We assume that the pre-
ference function, like a mathematical function, is '"single-
valued' so that at any point in time the value of an alterna-
tive is uniquely determined. Equivalently, we can say that the
individual cannot simultancously have two evaluations of an
alternative.

A goal or an objective is defined as a state of affairs
which is desirable and stipulate that the attainment or non-
attainment of the goal must be mcasurable. For example, minimiz-
ing the particulate pollutant level in a stream is not a valid
goal in our framework; but achieving a pollutant level less
that 100 mg/% is mecasurable and valid. It will also be stipu-
lated that the number of goals which can be handled concurrently
by an individual is less than 10. This figure is based on rese-
arch reported by Johnsen (1968) and a paper by Geoffrion, et al.
(1971) and probably is overstated for most situctions of stress.
The amount of information rclevant to each goal is influenced
by the total number of goals. Johnsen (1968) suggests a limit
of 50 on the product of the number of bits or units of informa-
tion per goal and the number of goals. In our MOP it is assumed
that each goal must contain only one explicit bit of information.
There is only one real number explicitly associated with attain-
ment of each goal in the problem, and this defines a scalar MOP.
The DM may, of course, be subjcctively adding other bits of
information from the environment as a whole but our algorithm is

currently capable of dealing with only scalar MOPs.
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The variables that can be controlled in order to attain goals
are termed decision vériables. A set of values for these
variables is termed a policy vector, or simply a policy. These
values comprise the domain of a set of functions which we term
criterion functions (CFs). The CFs have as their range numeric
values which can be used to determine goal attainment or non-
attainment. The CFs are the familiar objective functions from
classical optimization theory and there is one criterion function
corresponding to each goal (this a result of a scalar MOP). The
CFs play the role of predicting equations and allow us to fore-
cast output for some given input.

For example, if production of at least 1000 widgets/day was
a goal and if production were related to two decision variables,
man-hours and raw materials, then a potential CF might be

# units = (man-hours) x (raw material)
x (dimensionality constant).
Observe that we could simply count the number of units produced
to determine if the goal had been met, but then we would have
no predicting cquation for alternate policy vectors. We note
also that the choice of an appropriate CF is dependent upon the
actual decision variables present in the problem.

The range of the CF is divided into "acceptable" and '"unac-
ceptable'" regions by a concept termed "aspiration level,” AL. The
AL for a goal is simply the amount or degree of goal attainment
that the individual actively seeks to attain. An AL is a fluid
entity; it varies in a complex manner according to the past

pattern of successes and failures that the individual has
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experienced in striving to attain the'goal at each then current
AL. It is also dependent upon the pattern of successes and
failures with respect to the other objectives in the MOP. So
we envision a highly interwoven psychological system in which
aspirations are immersed in the individual's preference structure
and in which the entire system changes as a result of experience.
Uncertainty in statc of naturc and rcsponse of the system to a
given input is imbedded in this process.

We distinguish a goal level (GL) from an AL by defining a
GL as a rcquirement imposed externally on the decision maker DM
which he may or may not aspire to attain. For example, Federal
regulations may require a dissolved oxygen (DO) level in rivers
of at least 5 mg/% for water-based sports, but the administrators
responsible for waste regulation may have a differcnt aspiration.

Finally, we would like to distinguish between "optimal' and
"satisfactory" choices. In the usual optimization secnse,
"optimal" means '"best." However, there is no evidence that
therc is a psychological optimum for MOPs because of the dynamic
nature of the preference structure. The only MOP we can conceive
of having an optimum is one in which none of the goals compete
for resources so that in effect the attainment of each goal is
completely independent of the attainment of other goals. Addi-
tionally, a global optimum would imply knowledge of all possible
alternatives and would recquirc some assumptions concerning the
convexity of the preference space and the preference function.

It is our contention that the DM "satisfices' in a particular

decision situation rather than optimizes. "Satisfices'" is used
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in the sense of Simon (1957) to denote the selection of any
acceptabie alternative, namely, a satisfactum. Consequently
there may be many solutions to a MOP because there may be many
satisfactory alternatives. In fact, these alternatives may
represent incompatible but equally tenable preference structures
for the individual (Shepard, 1964). We also note that the satis-
factory alternatives need not be adjacent in the sense that the
set of values of the decision variables which produce satisfac-
tory results is continuous (although the decision variables
themselves may be). We can infer then that the final determina-
tion of a satisfactory choice is dependent upon the particular
set of alternatives considered -- there may be no unique satis-
factum nor is there necessarily a unique search path to any
satisfactum.

Cur choice of an interactive technique implicitly postu-
lates a serial procecs for multiple objective decision making.
Koopmans (1964} states that '"...almost all choices in real life
are sequential, 'piecemcal,' choice between alternative ways of
narrowing down the presently existing opportunity rather than
tonce-and-for-all' choices between specific programs visualized
in full detail." Simon's (1957) concept of "bounded rationale"
expleins that the constraints of memory and evaluative capacity
limit our ability to consider numerous aspects of a situation.
Shepard  (1964) feels '"...that the relative weights to be assigned
to the component attributes (of multi-attributed alternatives)
are not always determinate and may, in fact, depend on the

adoption of onc of several incompatible but equally tcnable
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systems of subjective goals." He cites other research which
indicates that people tend to view multiattributed alternatives
as cither "good" or "bad" rather than explicitly analyzing ecach
part of the alternative. They are unable to combine numecrous
subjective weights at one time although their impression may be
that they have done so.

It appears that a serial algorithm would not conflict with
the '"normal'" decision making process. In fact, such a serial
technique which involves the DM actively will help him generate
a complete ranking of his goals through the information that is
created in the form of feasible alternatives.

In summary, the key to multiobjcecctive decision making seems
to be both the amount of information and its timing. Too much
causes confusion; too little results in indecision. We need
information about our morc important goals first. As the
solution (to the deccision problem) becomes more definitec, we can
assimilate additional information about the less important
aspects of our alternatives.

We next summarize the algorithm, keeping in mind that we
are, for the time being, dcaling with deterministic decision
making.

2.0 The SEMOPS Algorithm

SEMOPS, an interactive programming technique, dynamically
invites the decision maker (DM) to evaluate the consequences of
his earlier judgments on each objective. The procedurc cndcavors
to draw on the strengths of the computer (to perform massive

repetitive compuvations) and the strengths of the human mind
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(to evaluate, weigh and suggest new alternatives).

In the decision problem we have T goals and N continuous
decision variables, X = (xl,...,xN). Allocation of cach variable
(oxygen resources, water storage, OT lake level) is subject to
L cquality constraints, h; M inequality constraints, g; and N
bounds on the decision variables, namely, a lower bound bL and

an upper bound bU. This constraint set is written as vector

cets:
ho= HE) =0
g = G(x) >0 (1)
0 <b,sxsbye~

With cach goal we identify a criterion function for predicting
goal attainment with respect to the constraint set. In the set
of T criterion functions (ecach of which is the classical objective
function)

z = 7(x) (2)

the range of the tEll

element of the vector z is denoted P(zt).
For the optimization routine associated with each criterion
function and the interaction of the T goals, SEMOPS specifies
that (a) X is continuous and (b) h, g, and z are all at least
first order differentiable. Thus, both (1) and (2) may be non-
linear.

To get interaction of goals wc define goal levels (GL) as
conditions imposed on the DM by external forces (natural or
human, prec-existing air quality and building standards, property
rights and other legal controls) and define aspiration levels

(AL) as attainment levels personally sought by the DM. Frequently,
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the GLs and ALs are in conflict. Writing these two sets as

GL = (GL .,GLT) and AL = (ALl,...,ALT), from the conventional

12
widsom we recognize at least the following five types of con-
straints:
a) '"at most" z < AL: AL may be maximum number of hikers
desired by recreational interests or maximum river salinity
concentration acceptable to irrigators (Colorado River water
to Mexican farmecrs), or maximum nutrient concentration in
lake influents (to contrel eutyophication),
b) "at lcast'" z > AL: AL may be the river level desired by
navigational interests,
c) '"equals" z = AL: AL may be the firm power contracted
to industry,
d) "within an interval" AL; < z < AL,: bounds on lake
levels and water temperature for recrcation and/or fisherics,

e) ‘'outside an interval" z < AL, and z > AL,: less common;

1 2
AL, and AL, may be the frequency limits within which a

1 2

structure such as a suspended bridge, may enter into

resonance.
For each of the T goals, a "dimensionless indicatcr attainment,"
d = DA(x) and d > 0, is defined by an appropriate transformation
of any of the above constraint types. In each case, the inequal-
ity d < 1 implies that the goal is satisfied. The transformation
tactic permits a '"pooling'" of the information on cach goal as

noted next. The "pooling" is achieved by a surrogate objective

function, s = % dt’ defined on a subset T' of the set of T goals.
teT! ,
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The function s is optimized at each iteration or cycle only to
generate whatever information arises from the DM's prespecified
GLs and ALs. The algorithm sequentially alternates bectween the
DM's inputs and res,.unscs to the information generated at each
cycle. Such information may be in terms of +he effects of
achieving or not achieving one goal on the aspirations of other
goals. If such cffects are intuitive or self-evident to the DM,
then clearly the computer algorithm is not needed. But for most
problems, the conscquenccs of a DM's choice in a multivariate
environment are non-intuitive and so the computer can be an
invaluable aid.

The surrogate character of each cycle in SEMOPS reccognizes
our inability to define objectively the true preference function
(of onc goal versus others) of the DM. The value of dt in s at
each cycle reflccts whether or not the t-‘-c-E goal has been satis-
fied; notec that the T' set is not the same in number and com-
position from cycle to cycle because of the DM's prerogatives
in constraining certain goals at the next iteration and in
inserting new informatiom. Comparability of dt values at each
cycle is not possible because of the nonlinecar transformations.
The s is minimized only to help the DM rcach a satisfactum or to
help him decide that more information or rescarch is necessary.
0f course, the function s would be a "standard" objective
function if the DM knew perfeétly his preference or weighting
function. The construction of DA and s has been completely
arbitrary and is suLject only to the directional property of d

as discussed above. This property is used by the DM to decide on
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the set (T-T'), that is, those goals to be added to the con-
straint set because of their non-inclusion in s. The presence of
a goal in s signifies that the DM is aware that he may fail to
achieve the desired AL. But when a goal is entered as a con-
straint the DM .ns4is%s that the AL be achieved. The distinction
between desining and Linsdisiting is central to SEMOPS.

Overall, SEMOPS is a three-step algorithm involving setup,
iteration, and termination. Setup includes data acquisition,
determination of state transition functions (on stream and lake
flows, volumes, chemistry, biology), and transformation of the
original problem into the DA format. Iteration is thec truly
interactive segment wherein one cycles between an optimization
phase and an evaluation phase until a satisfactum is reached
(if possible). The last is the termination step.

In the next section, wec rcview the results of applying the
algorithm to a deterministic formulation of a water quality
control problem. This sets the stage for showing the problems
of introducing uncertainty into the same example.

2.1 An Application of SEMOPS to a Deterministic Water Quality

Control Problem

SEMJPS was illustrated by Monarchi (1972, Chapter 6) using
a modified version of a realistic example developed by Dorfman
and Jacoby (1969). The Bow River Valley, an artificial river
basin, has a pollution problem stemming from three sources:
(1) the Pierce-llall Cannery, upstream from Bowville; (2) municipal
effluent at Bowville; (3) municipal effluent at Plympton, down-

stream from Bowville. Between the cities lics Robin State Park;
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the state boundary line is downstream from Plympton. Water
quality is representea by the dissolved oxygen concentration
DO, and effluent is characterized by its biocheaical oxygen
demand BOD. The Streeter-Phelps (1925) equation describes the
dynamics of DO, given the BOD discharge and the stream char-
acteristics. This ordinary differential equation is simply an
accounting of the oxygen resources in a stream, independent of
spatial variability and nonlincar effects.

The DM secks to incrcasc the collective utility of Bow
Valley, by looking at six goals and defining six goal levels GL
to evaluate the worth of any decision, namely: the DO levels
at Bowville (AL1 = 6 mg/%), Robin State Park (AL2 = 6 mg/e),
Plympton (/\L3 = 6 mg/%), the percent return on investment at the
Pierce-Hall Cannery (AL4 > 6.5%), the additional tax rate at
Bowville (AL5 < 0.15%), and at Plympton (AL6 < 0.15%) that would
be nccessary to reach the desired DO level.

The control or action variable is the proportionate reduc-
tion of BOD x. Constraints are to maintain a certain level of
DO at the state line and to bound x: 0.3 < x < 1. Without
entering into details of the rationale behind each cycle or
iteration, the following results are obtained (Monarchi, 197Z;
Monarchi, et al. 1973):

ITnitial Values: X

~0
First Cycle: QLl = (5.96,4.07,5.77,6.42,.071,.159)

= 0.3, and GL = AL, = (6,6,6,6.5,.15,.15)

If DM fixes Goal 6 at .150, then hc obtains the vector

(6.14,5.35,6.17,5.50,.252,.150).
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Second Cycle: DM fixes Goal 6 at .155; he thus obtains

(6.03,4.60,5.94,6.15,.125,.155).

Third Cvcle: Goal 6 has been entercd as a constraint with

an AL equal to .155. DM, after an interactive phasc, decides to
change Goal 2 from 6 to 5 mg/%. The resulting AL vector is
(6.10,5.00,6.07,5.76,.180,.155).

Fourth Cycle: In addition to the above constraints, Goal 4,

which has already been reduced from 6.5 to 5.76, is further

reduced to an AL of 5. The recsult is
(6.06,5.00,6.07,5.00,.187,.155).

Fifth Cycle: AL the attainment level of goal 5, is raised

5!
to 0.190. The result is (6.0,5.0,6.0,0.190,0.155), which we

assume to be a satisfactum for the DM. DM's policy decision X
is to impose waste rcduction requirements of 88% on the cannery,
87% on Bowville and 82% on Plympton. We show the effects of
uncertainty on these results.

But first we review the potential sources of uncertainty in
the water quality control problem and then the limited rolc of
Bayesian deccision thcory in this class of resourcc problems.

3.0 Uncertainties in the Multiple Objective Problem

The uncertainties in resourcc problems can be both technol-
ogical and strategic (Kisiel and Duckstein, 1972). Strategic
uncertainties include primarily our inability to forccast future
social goals and socio-cconomic states of the world. Technologi-
cal uncertainties include our ignorance about physical, chemical
and biological processes in the environment. These include

uncertainty about appropriate environmental models, about
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parameter estimates (given a true model), and about future
functions of uncontrolled inputs into environmental models (given
a true model and perfect parameter estimates). The relative
importance of these two classes of uncertainties will vary with
the problem.

Within the framework of the Bow River problem, the strategic
uncertainties may exist in regional goals (future growth rates
and concern with other ccologic parameters like air quality).
Furthermore, the problem, as formulated, considers only a single
attribute of water quality, namely, DO, but what of stream
temperature, sediment, and so on? The DM's implied preferences
may change with time or with better forecasts of future social
and technologic conditions.

The SEMOPS algorithm assumes the adequacy of the Streeter-
Phelps model of oxygen dynamics in a stream. Of course, more
realistic models can be incorporated and the effects on the policy
vector evaluated.

Given the correctness of the Streeter-Phelps model, our
carlier use of SEMOPS assumed that streamflow, stream transfer
coefficicents, and stream reaeration and deaeration rates were
constant. It is customary to determine waste treatment plant
capacity x by assuming a low flow that persists for seven days
or more and that has an average return pecriod of ten years.

The low flow value is typically estimated from relatively short
hydrologic records; this fact suggests the possible applicability
of Bayesian decision theory (BDT) when a least cost design of

waste trcatment plants is the goal. In addition to uncertainty
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in the design streamflow, a major difficulty arises with
estimates of stream reaeration coefficients; investments in
plant design are rather sensitive to slight changes in such
estimates (Yu, 1972).

Implementation of the Streeter-Phelps equation also depends
on a forecast of future biochemical oxygen demands (BOD), exerted
by wastes to be treated toth in a waste treatment plant and in
the river. That forecast in turn depends on forecasts of popula-
tion and futurc per capita strengih of the waste.

On the technological side there exists some possibility of
formally analyzing the uncertainty in design flow, reaeration rate,
and BOD load. The estimated DO in the stream is a function of
efficiency of waste plant opecration, flow rate, reaeration ratc,
futurc population growth, and the Streeter-Phelps model. Prior
experience with each type of waste treatment plant can be used to
encode the uncertainty in plant efficiency. Illistorical records
of streamflow can be uscd as a basis for fitting a probability
distribution function (pdf) like the lognormal or Gumbel's smallest
value model to cncode this uncertainty; uncertainty in the para-
meter of these distributions could be encoded in a prior pdf and
BDT applied. Uncertainty in reaeration rates can only at present
be encoded with the aid of field measurements and regression
equations; BDT would be applied once the likelihood on the resid-
uals was established (Metler et al. 1973). As for futurc population
growth and appropriate model, their uncertainties are not as
readily encoded, except perhaps in a subjective way as degrees of

belief (say, through expert opinion).
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With the above outline of uncertainties, the question natur-
ally arises as to how best to incorporate these into SEMOPS.
The alternatives include (a) to include singly each uncertainty
in SEMOPS and then compare the policy vectors X and (b) to intro-
duce the uncertainty in x directly by an additive error term with
an assumed probability density function (pdf). The former
approach assumes that decomposition of uncertainties is justified
and that existing methodology can cope with each type of tech-
nological uncertainty; this is not so, however. The latter
approach, while not computationally simple, skirts the explicit-
ness of (a) by simply encoding all uncertainty as an uncertainty
¢ in the required degree of waste treatment X. Such uncertainty
is propagated into the values of each of the goal values GL.
In the next section we illustrate the use of SEMOPS with #e
added to X.

4.0 Sensitivity Analysis in Bow River Valley Problem

In the previous section we suggested that there is no
completely general way for incorporating Bayesian decision theory
into our SEMOPS algorithm. The general nonlinearity of the goal
functions also compounds the difficulties in such an effort. It
should be emphasized that it is more natural to proceed with un-
certainty analysis on specific components of GL and then to choose
X on the basis of risk criteria arising in such analysis. As
noted previously an ad hoc alternative is to add a random error
term to the decision variables X

ii = xg ¥ Ei’ i=1,2,3 in the Bow River
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where the superwiggle indicates random variate. Then the j-‘E—}l
goal function becomes
Ej = f(il,iz,is), j =1,...,6 in the Bow River Valley

If a pdf ¢1(ei), not necessarily symmetric between tei, were
assigned to €5 then, in principle, computer simulation would give
a pdf ¢2(zj) and a decision analysis might be pursued in terms of
loss functions and risk propensity (aversion or proncness). In
fact, the decision maker could use ¢2(zj) at each cycle of SEMOPS
to adjust his aspiration levels even though the computer program
will still solve the problem deterministically. However, we note
that computer solutions and analytical expressions for ¢2(zj), or
even the variance Var Zj, are hardly feasible except possibly
through linearization of the nonlinear goal functions. Pertinent
here is the fact that the expected value of the solution of a
nonlinear function is not equal to the solution of a nonlinear
function composed of expected values.

Given the above situation we settled on an unsophisticated
way of letting the DM introduce his own '"priors'" with respect to
the upper and lower bounds of the uncertainties in the x values.
No pdf is imposed on values within those bounds. The resulting
flow chart is given in Figure 1. After the results of each cycle
of SEMOPS are printed out, the program asks the DM if he wants to
explore the sensitivity of the results. At this time the DM can
input a vector, call it Dx, and the program will compute the maximum
and minimum values of cach goal for all combinations of plus Dx
and minus Dx around the '"mominal" x values resulting from the

solution of the deterministic problem. Thc ideca is to have the
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DM put in several Dx corresponding to different "confidence"
levels on the X in order to observe the variation in the six goal
values zj.

The results of such computer studies for two Dx are shown in
Table 1. Also shown therein are the results of the "certainty"
case reviewed in Section 2.1 of this paper. The 1% and 3% figures
are used {or illustrative purposes; actual field conditions may
not permit such sensitive design and subsequent operation of waste
treatment plants.

In the sensitivity version of SEMOPS, DM has the option to
vary the uncertainty bounds DX according to his sense of what is
uncertain in the inputs to the algorithm. For a 3% incrcase in
X, the required cfficiency of waste treatment plant, we find
slightly higher values of DO at ecach of the three river stations,
a higher return on investment at the cannecry, and higher tax rates
at both Bowville and Plympton, all of this in relation to nominal
values. Whereas, the reverse conscquences are obtained for a 3%
decrease in X. How is DM to respond to these results?

DM may give two interpretations to each €5 - In the first, a
deterministic design context, DM simply wants information on the
effects of perturbations in X on the goal levels Zj' Supposedly,
no uncertainty enters his mind during evaluation of that informa-
tion. In the second interpretation, the one intended in this
paper, DM is aware of the many scarces of uncertainty in the
design problem as noted in Sectiom 3.0. In contrast to the first
interprctation, if DM is not sure why he chose a particular DX, he

now has a much more difficult task of evaluation. Should he
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Table 1: Results of sensitivity analysis on last cycle of
SEMOPS with uncertainty in required waste treat-
ment plant efficiency. Nominal xj, i = 1,2,3,
values are rcspectively 0.8771, 0.8688 and 0.8182.
Goal values in the principal problenm
Case GL1 GL2 GL3 GL4 GL5 GL6
e; = 0
for X.=x.+e. 6.0 5.0 6.0 6.0 1.90 1.55
i 7171
e.= +0.01
l —
Maximum
Value: 6.084 5.108 6.099 6.114 2.057 1.659
Minimum
Value: 6.039 4,922 6.043 5.871 1.760 1.450
e. = +0.03
l —
Maximum
Value: 6.129 5.313 6.060 6.037 2.437 1.911
Minimum
Value: 5.993 4,749 5.990 5.558 1.521 1.275
Dimensional Dissol- F; Dcocllar
Units ved return {change
oxygen, on in tax
milli- ’ —7 invest- |rate 7
grams/ ment er
liter 51000
asscscd
valua-
tion
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attribute €5 to one source of uncertainty at a time, such as to
operational efficiency of waste treatment plants or to stream
reaeration coefficients, or should he attribute €5 to all sources
of uncertainty simultaneously? In the former case, DM is presumed
to have prior knowledge about the most important source of uncer-
tainty; this is a large assumption. In the latter case, DM must
decide whether or not his decisions require a subjective weight-
ing of the various sources of uncertainty. If only the total
uncertainty is important to him, he has simplified the problem
and is then faced with questions about costs of over- and under-
investment, about probabilities to be associated with values of
X in the interval ¢Dx, +Dx ), and about risk propensity (aversion
OoT proneness).

In the first interpretation of €4 for the plus 3% case, how
should DM trade-off the higher stream quality and percent return
to the cannery against the higher tax rates in the two communities?

and vice versa for the minus 3% case? In the design context the

answer (or decision) depends on the utilities associated with
each goal value (assuming perfect prediction of cach value). If
DM decides to go along with the plus 3% case, the community assigns
greater utility to the additional stream quality and profits to
the cannery than it does to the additional expenditure of real
tax dollars. Decision theory under uncertainty should be appli-
cable in thesc situations as an aid to the DM.
In the sccond interpretation the decision depends on DM's

degrece of belief in the possible occurrence of different values of
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the uncertainty and on his.utility or loss function for the entire
range of uncertainties in the interval (-Dx,+Dx). The nominal
values of X; are not true values for if they were true then the €
would lack meaning. Thus, a probability distribution
¢1(xi) = ¢1(ei) over the interval (-Dx, +Dx) would cncode uncer-
tainty in the true valucs X5 However, because ¢1(xi) could only
be obtained subjectively and because its usc to find ¢2(zj) is
fraught with difficulty as noted carlier, we are not able to con-
sider explicitly the use of Rayes and minimax decision criteria for
each of the six goal levels Zj'

But let us pretend that we could. Then we might be inclined
to use the expected value viewpoint implied in the use of a mini-
mum Bayes risk for the DO levels associated with GLl’ GL2 and GLS’
but inclined to usc the minimax rule for GL4 (% profit to the
canncry) and for GL5 and GL6 (change in tax rates at Bowville and
Plympton). This subjective choice is suggested only to emphasizc
that different decision rules can be chosen for c.ch Zj' To get
at an evaluation of the set of Zj would require a multidimensional
utility function. It is not at all clear at this point whether DM
could specify such a function in a consistent way or whether DM
may even agree with the idca. DM may simply prefer to rank the
minimum Bayes risks for 215 295 and Zg and the minimax losses for
Zgs Zg and Zgs in the end with the aid of these and other criteria
he makes a rather subjective choice of X.

The hypothesized reality of our problem formulation simply
requires DM to choose in some way between the maximum and minimum

values of GLj in each sensitivity analysis. Somec appreciation of
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subjective probabilities and utilities foxr each GLj might allow
DM to be move incisive in his evaluation. While the positive
utilities for the maximum DO values may be high, their pro-
babilities may be quite small; then the chance of over-investment
would be large. On the other hand, to choose the set of minimum
values as a basis for decision, DM must tradeoff the negative
utility of lower DO values (if true) and lower profit to the
cannery against the savings in costs of overdesign, and the
reduced taxes in Bowville and Plympton; probabilitics of each GLj
will strongly influcnce the judgment. Thus, in the sensitivity
approach to SEMOPS, DM must subjectively combine the utility
and probability for each GLj and in turn decide subjectively over
the set of six GLi on the final set X of decision variables. It
is not clecar that an informed DM could really do this; for
example, he may subtly allow his subjective probabilitices to be
influenced by his utilities for each GLj. At this juncture, we
are confronted with the rcality of irrationality of both decisien
making and utility theory. The axioms of utility theory are not
necessarily compatible with the actual decision making.

In the next section we discuss the overall problem of using
SEMOPS under uncertainty, including some precliminary thoughts on
a complete decision system versus a practical decision system,
the place of SLEMOPS and BDT in the broader cost-cffectiveness frame-
work, the problem of a priori specification of preference functions
or weights and their use in a normative or predictive sense, and
the compatibility of SEMOPS under uncertainty with the axioms

of utility thcory.
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5.0 Discussion

In a complete decision system, it would be ideally desirable
to have an interactive program wherein the uncertainty associated
with each goal could be attacked completely by Bayesian decision
theory. Implementation would be a computer programming problem
involving computation of expected opportunity loss, expected
expected opportunity losses, expected value of sample information,
etc. llowever, this does not imply that such a system would be
best because the axioms of BDT may not hold across the set of
goals. Practically speaking, the complete decision system would
require prior distributions, likelihood functions on the data,
and loss functions. These requirements imposc severe measurcment
problems to acquire such information. We conclude then that a
complete decision system is not achievable with the current state
of decision thcory and mecasurement techniques.

In a practical decision system, it may be possible to have a
multi-objective Bayesian decision theoretic framework that is,
however, not interactive and that is imbedded in a larger cost-
effectiveness framework. The goals would be satisficd separately.
Our expericnce with applying BDT to water resource design still
suggests computational and conceptual difficulty in implementing
it for the single objective casc (Davis, et al. 1972; Duckstcin
et al. 1973) although the problems are gradually yielding. The
value of BDT in small sample cases can be sharpencd by contrasting
it with non-Bayesian approaches (say, the factor of safety vicw-
point) as has been done by Duckstein et al. (1973) in their

evaluation of flood levece design. The results of BDT analysis for
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each goal in . non-.nteractive mode may be either in terms of the
Bayes risk or minimax criterion for each goal. Such criteria
are only a part of the vector of criteria used to evaluate alter-
native systems.

To undertake this evaluation we prefer the standardized cost-
effectiveness (CE) procedure proposed by Kazanowski (1968, 1972 and
adapted in our work Chaemszithong, et al. 1973; Ko and Duckstein, 1972):

a) Identify multiple goals to be achieved.

b) Give the requirements or specifications for meeting the
goals.

c) Identify the criteria for evaluating the alternative
systems to be used in trying to achieve goals.

d) Spccify distinctly different alternative systems.

e) Choose a fixed cost or fixed effectiveness approach.

f) Evaluate the merits of each alternative system in terms
of the criteria given in (c). BDT analysis enters this
step where feasible.

g) Prepare an array of systems versus criteria. This inclu-
des ranking of the criteria, clustering of criteria to
which DM is indifferent, and identifying criteria that
DM finds incomparable.

h) Analyze the array by ranking, identifying dominated
alternatives or criteria, or using lexicographic analysis
(MacCrimmon, 1972; Roy, 1972). At this stage, no
decision is made by the analyst; SEMOPS may be invoked

for each of the alternative systems.
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i) Perform sensitivity analysis on the goals, requirements,
criteria, revision of alternative systems and choice
of approach. This step may be undertaken with the aid
of the decision-making group in order to facilitate
implementation by them at a later date.

j) Document the rationale of the entire procedure.

Clearly, SEMOPS and BDT are only a part of the above broad
structure called the CE mcthodology. SEMOPS in steps (g) and (h),
through its interactive mode, helps to order criteria (in CE) or
goal lecvels (in SEMOPS). BDT analysis, if feasible, would gener-
ate values of Bayes risk and expected opportunity loss for each
system and for each goal. These criteria take their place along
with other criteria like minimax, environmental quality, aesthetic,
etc.

Our experience with CI suggests that it is extensively
appreciated, notwithstanding its unstructured and non-formal
orientation. In fact, the latter may be assets in broader and
amorphous problems. We scnse that SEMOPS under uncertainty may
be appreciated by DM provided more justification is generated for
its use. Usexulness of the combination of SEMOPS and BDT will
have to be demonstrated because of data requircments, possible
complexity of implementation, and axiomatic difficulties in a
multiobjective environment.

The multidimensional preference function of DM implicitly

arises in CE at step (h) and, of course, in SEMOPS. We cannot
define a nriori such functions but we can obscrve past behavior.

But does this provide a valid basis for inference about future
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behavior? All weighting schemes based on past behavior and
current interviews or questionnairces may be fine, but they
need to be validated. Can such schemes stand up to the strong
test of forecasting the cvolution of individual, group and social
value structures? This question does not seem answerable at
present in the affirmative. We note from the literature that
Keency (1969) assumes in his normative multidimensional utility
theory that prcfercnce functions arc known beforehand, Dyer (1971)
in his goal programming under uncertainty assumes prior weighting
of goals, Drobny ct al. (1971) choose to collapse the array
(steps (g) and (h)) of the cost-effectiveness procedure into a
single cffectiveness index by assigning weights, and Major (1969)
assigns weights to each of a set of goals for water resource
planning. Assignment of weights may be meaningless unless an
individual or a group has a commitment to assume responsibility
for them. UDIven then, the weights or preferences may change
because humans do change their attitudes and because we presum-
ably lecarn from the consequences of past weights or choices. We
note that SEMOPS allows for cvolution of the value structure of
the group or individual DM.

Central to the problem of decisions under uncertainty and to
the problem of weighting arc the axioms of utility thcory:

a) Complecte ordering of alternatives and criteria is possible.

b) Individuals or groups arc transitive in their choices.

c) Therc exists a continuity and ordering of probabilities

between two choices, that is, a convex combination of

probabilities can be found between two choices.
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d) There exists consistency in the choice of alternatives

in relation to other irrelevant alternatives, that is,

choice between two alternatives is independent of the

surrounding environment. Problems of ccologic manage-

ment cut to the heart of deficiencies in this axiom.
It is clear that we cannot have Bayes risk and interactive Bayes
procedures without the axioms. In fact, we may need further
axioms that might make the problem even more unrecalistic. In
SEMOPS it is conccivable that DM encounters incomparable choices,
thus violating the first axiom (Roy, 1972), and even the remain-
ing three axioms. Concerning the second axiom, Slovic et al. (1973)
discuss the individual who is a money pump because of his intran-
sitive choices. Concerning the fourth axiom, it is quite common
to encounter external factors that suggest additional alternatives;
independence is difficult to justify and is violated purposely in the
Gestalt philosophy cmbodied in our SEMOPS algorithm. It should
be evident that efforts to evaluate, in the sense of the bchavioral
sciences, the above four axioms require measurement techniques
(in general, not adequate to meet our nceds) to obtain the utility
and probabilistic structurcs of individuals and groups.

In Section 4.0 we reviewed the possible incorperation of

BDT into SEMOPS and suggestcd the need to separate utility
functions and pdfs. As Ferrell (1972) notes, pcople do not
necessarily give accurate prior pdfs because they tend not to
believe the evidence before them. Slovic et al. (1973) suggest
somecthing similar in terms of human fallibility in probabilizing

past observations of cxtreme natural hazards like floods and
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droughts. They note that humans do well with hydrologic events

that have magnitudes in the vicinity of the mean value. Conrath
(1973) notes that DMs are more comfortable with point estimates
than with probability distributions. Thus, to implement BDT
and its combination with SEMOPS is also an educational problem,
not just a computational and axiomatic one. There are two pro-
blems. First, how best to teach people to believe in the evidence,
in particular, probabilistic evidence before them? Second, how best
to teach people to distinguish between utility and probability? An
overall question arises: how best to develop human intuition
about probability concepts and more generally the uncertainty
issues existing in natural and socio-economic processes?

In summary, in this paper we have sought to develop the pro-
blems of incorporating uncertainty analysis, in particular
Bayesian decision theory, into an algorithm on multi-objective
problem solving. Our algorithm at present copes with a scalar
MOP, that is, only one water quality parameter (DJ) in the Bow
River cxample. Our analysis requires quantification of the goal
levels and requires that the goal function for each goal be at
least first-order differentiable; this may not always be the case.
It is hoped that our cvaluation of the merits of SEMOPS and BDT
scrves to sharpen the judgment as to the best direction for the
next increments of improvement in multiobjective problem solving

under uncecrtainty.
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6.0 Conclusions

From our analysis of the problems of implementing SEMOPS under
uncertainty, we suggest the following conclusions on the premise
that the algorithm begins to capture important realities of the
actual decision process:

a) Complete integration of one-period SEMOPS and Bayesian
decision theory is impossible because the axioms of
utility theory arc not completely compatible with the
Gestalt viewpoint inherent in SEMOPS.

b) While complete incorporation of uncertainty into SEMOPS
is not presently possible, the addition of a sensitivity
analysis to SEMOPS does provide more guidance to the DM
than that obtained without a sensitivity analysis.

c) SEMOPS requirecs no prior weighting of alternatives or
of goal levels as do other schemes proposcd for multi-
objective problem solving under uncertainty. Allweight-
ing schemes to solve the multi-attribute problem must be
validated as to their predictive abilities.

d) To resolve thc problem of impleimenting and improving
decision theories, morc work is necessary on the elici-
tation of probability distributions from people, and in
educating people to belicve in the cevidence before them
and to distinguish between utilitices and probabilities.

e) There is nced to consider cxtension of SEMOPS under
uncertainty to the multi-period design, planning and

operation problems arising in natural resources.
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f) We may need a system model (in the sense of Wymore (1972))

to study interaction between goals under uncertainty.
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Figure 1

Logic Flow of User Interaction with New SEMOPS Program
All input is from teletype by user decision maker (DM)

Initialize Problem

O, \
‘ I If Title = "STOP'",

ad Title for is C el—> . :
Rez 1t | thi yel program terminates:
\/

Read IEX vector which defines which goals are in the
‘surrogatc objective function. Then read the aspiration

levels for all coals.

Program automatically solves the principal problem and
all auxiliary vroblems by serially deleting cach goal
in the objective function of the principal problem and
entering it in the constraint set as a "goal formula-
tion" (G.I.).

\/

The title which was entered above is printed out as are
the aspiration levels. Then the results of this cycle
--the goal values (zq,...,2,.), the x values (x3,x2,X3),
and the DO constraint at thg state line togecther with a
code indicating the status of problem solution--are
printed out for the principal problem and all auxiliary
problems.

V!

The program asks the DM if he wants a descriptive
explanation of the above results., If answer is "yes,"
a description is printed at the teletype.




Figure 1 (continued)

Program asks the DM if he wants to cxplorec the sensi-
tivity of the results by "wiggling" the x values for

each problem by some amount (supplied by the DM). The
purpose of this part is to provide a 'poor man's version"”
of a stochastic problem. The DM can supply '"rcasonable"
amounts of variation for cach x valuc which might cor-
respond to subjective (Bayesian) estimates of variance.
When the resulting variations arc obscerved by the DM,

he may wish to concentrate on the voals, by centering

them as constraints, in a different order than he might
otherwisce have done from the "deterministic results” !
printed previously. This, presumably, would result from ;
his desirec to reduce the uncertainty on the goals which |
are most important to him. Even though all of the x's |
(x1,x2,x3) may be vaiied by the same amount, the varia- |
tions in the goal valucs will differ in magnitude l
because the goal functions arc nonlinecar, i

st

If answer to question (1 sentence
—> above) is no, program goes on to
next section.

\ !




Figure 1 (continued)

Prog.am reads vector variation for x values. Then applies
that vector (+ and -) to the x values from the results
already printed. Since there are 3 x's in the Bow River

vV

case, there are 8 plus and minus combinations of varia-
tion. With this variation, the program calculatecs the
maximum and minimum values for cach goal for the princi-
LB?I and cach auxiliary problem and nprints the results.

\

Progsram asks DM if he wants to supply another variation
vector and repcat the analysis.

— IlYESH f

(—

Program asks DM if he wishes to sce estimatecs of the
change in goal attainment for all goals, and asks when
the valuc of a specific goal's aspiration level enter-
ed as a constraint is changed by onc unit.

VA Vo

llYESll ) HNOH

(») :




'Figure 1 (continued)

()
0 N

Program asks DM if he wants to estimate goal attainment
values for the next principal problem. The DM will in-
put the number of the goal (1 to 6) and a trial aspir-

ation level for that goal.. , _

~
\

HNOII

"YLS" :
<:wm_~b~_~// S
>,

I3

Program reads goal i,
R
V.

I(on first page)
Program recads aspiration level.;
| AV4

R g e af . e |
Program prints cstimates of ggal \Qlucs.;

\/

!Program asks DM if he wants to make new cstimates using
different aspiration levels for the same goal.

i
ty
/

Jgpre— Gy
e rvms M (or )
N

Program asks DM if he wants to malke more estimates with
a new goal specificd.

L ,.YES..—)_-_..___J Gvg'j
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¢

(onn first page)





