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'Abstract

« In previcus.papers by the co-authors, it was found that the return
-period of maximum point rainfall could t2 derived from the following
-event-based process valid for the summer precipitaticn season:

éa the number o. events per seascn is Poisson distributed,

bj. the amount of point rainfall per event may be exponentially

distributed,

(c) the above two random variabies are independent.
The purpose ¢f this paper is (] ) to obtain a correct distribution
function of the return pericd when uncertawntj arises in the paremeters
of the Poisson and excainential distributions and (2) to obtain the nro-
bability density function of tne event corresponding to a given return
period and that of the return seriod corrasponding to a given event.
etemﬂ1ng from the seme Uncerta.ntv Tha methodaology enr 10”5 conjugate
distributions for the Poisson and eiponential distributions to perniti
-direct cemputation ¢ rcst:::cr distributions of rainfall amounts G'“

Point‘rawnf:rt data., uvemnuter cavulatiop shows that arrans an os4iratern
return nericqg tead ro ynacrension even with 20 years of dat: (fcr th:
example uzed in our analvsis), the" inns of thp lethou arc cessihie

/.

to encompass effects of uncertainties in rainfall data samples on runcff
estimates and associated ~conomic factors.
1.0 Introduction

Return ceriods of cxtrema wainfalle and fleows arevtypica’l» dor dved
from eamiricat Trocucnny oo r,JJL, or available data. Uso o nlolting

positions i probuiiiicy maror (vor exsrple, Guctel or Too=n2r na1) ql\ﬁ
freaugnics curvas,  Thenn aro dn b deed eithar ta dnterratien foe
intcrmciiai: felL RariLd Ty G g enbranslale 1or ratirg ool U
the ranae of tho data. Thew2 arnaygrs 1o Lo a gercral cuaronass of t
Pimitations of inis aprenach-bur, in gsneral, thore avicts no naner:, Hw
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~atcepted prescription for coping with those uncertainties resulting from
small data samples at a single.sampling site. The above procedures and
specific design return periods become enshrined in handbooks, codes,
published charts (U.S. lleather Bureau, 1961), and administrative regula-
tions. It may be that users of the techniques may make allowances for
the uncertainties but, if done, it may be quite subjective anc inconsis=
tent from designer to designer.

It is well known that maximal events with small return period TR
are more accurately estimated than those with much larger TR (Metler,

et al., 1972). The confidence band flares out at larger Tés so as to have
no meaning. It is uncommon for confidence limits to be constructed be-

cause of this reason and, more importantly, because sampling properties
. for non-Gaussian distributions of interest to hydrologists are not gene-

rally available.

_ An awareness of the above situation has prompted the pursuit of at
least three pathways:

(a) Use of the theory of stochastic processes and event-based

?ata)ana]ysis_(Foge] % Duckstein, 1969; Duckstein, et al.,
972). .

(b) Use of small sample theory on regional regression methods to
augment the information content of short records (for the
case of fli ods, see lletler, et al., 1972 and 'etler, 19723,

{c) Use of decision theory; for example by consideration of
Type I and II errors (Duckstein and Kisiel, 1971), by use
of Bayesian decision thzory {Davis, et al., 1972), and by
use of methods to "design" a factor of safety as that given

in the Induced Safety Aigorithm (Bogardi & Szidaroszky, 1972).
In these approaches, economic loss functions are used in con-
junction with the encoded uncertainty, that is, the posterior
distribution of the parameters in question. In this way,

the approaches customize the evaluation of uncertainty for
each desian situation.

Earth scientists (qeclogists, geomorpiiologists, paleo-climatolegists, and
alynologists) express concern that the blind reliance of surface water
ydrologists on gaging records is tantamount to assuming zero knoviledge

or data at the initiation of a new aata gatrhering station. Uf cource,

this is not true as is well emnhasized by Dalincky (1970) but as yet there

s no operatioral mziked for integratirg cuch orior information into

existing continuous rocords. Assioont of T, to past extrem2 events
fdentified by indirect data 1ike (old river binks, uprooted trees, tree

rings and mud Vavves) is frausht vith ruch inconsistent gucsswork. Layes

;gég‘has the potential for roagving sone of this inconsistency (Berenier,
)

Tvo imnortant facts arc 1nvolcd to funtifv further developrant of '
the corbined une of tin firet tho of tha thead pathuays, first, in-
creased hu=an ‘ntervertion in the vyl 1. curnf? procoss nabkes historical
records looc vonrecentalive of fulure conditions wider vhich desien struc-
tures nmust function, uniess & case can be mude for insensitivity of



~.extreme’ large events (their magnitudes and return-periods) to human -
~activity. Second, the designer; planner and other decision makers are

- increasingly compelled to make decisions irrespective of how much data -
are at hand or how deficient our methods (models) may be.. The first

fact motivates the more inionsive study of the theory of event-based sto-
- chastic processes; the se-.xad fact motivates the study of decision theory.

2.0 Objectives of the Paper

In previous papers by the co-authors (Fogel and Duckstein, 1969;
Duckstein, et al., 1972), it was found that the return period Tp(k) of
maximum point rainfall R (with k the value of the random variable g)

could be derived from the following event-based process judged to be valid
~for the summer precipitation season (characterized by sequences of thun-
derstorms): :
(a) the number N of events per season-is Poisson distributed with.
mean m (of number of events per season): fN(nIm) = ¢ Mpy"
: : n!
(b} the amount R of polnt rainfall per event is exponentially
distributed with parameter u (equal to reciprocal of mean
amount of rainfall per event):

fr (Klu) =y e Uk

(c) N and R are independent.

Then,. it may be shown {(Duckstein, et al, 1972; Fogel, et al., 1972) that .
thg return period of x units of rain given the event-based parameters m
and u is . .

Ty (kim, u) = [ 1 - exp(em &™) 37! )

Given this relationship, the purpose of the paper is fourfold (knowing
that the estimates of m and u are uncertain due to small sample size).
(a) to obtain a density function of the return period by intro-
ducing uncortainty of cstimate inte *ho povometore poand .
(b) fi. the above density to obtain the oxpected value of the
ret 1 period considering the uncertainty in the parameter
estimation,
(c) to show hou tniz approach can be generalized to the return
period of flows TQ(x). (see Davis, ot al., 1673)

(d) to demonstrate the necessity of folloving this approsch in
terms o! a Uaycsian uccision-theoretic analysis or & water
resourcesr dusion problo,

3.0 Methodolony

Tha reteen poriod given by e9.(1) is correct for the true valuus
of mand u. Since ve do not Kot the true values of o and‘u. wa hust
estimate them from the data available. m s cstimated by 0y the average
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~number of events per season, and 1/u is estimated by‘]/G;,the mean point
rainfall over the r seasons considered. The sample data could have been
-provided by parent distributions with values of 'm and u*not equal to.the
estirates, (with probability one this is the case). T and @i are merely
those values of m and u that hawe the maximum likelihood.of having pro-
duced the data. Other values of m and u have a larae likelihood of having
produced the sample. The likelihood of the vaiues of m and u which pro-
duced the data is given by the conjusate distributions (De Groot, 1970,
Chap. 9) for the exponential and Poisson distributions. ' A

The distribution conjugate to both the exponential and to the
-"Poisson is the gamma:’ - ' . A

F(x|a, b) = b° x3-1 obX
o ' r{a) .

3?ﬁéanIUES of a and b are different‘for‘the'exponenfi31 amd“£héfPo1§S6ﬁ;  
For the Poisson: ‘ .
. xem the parameter of the Poisson
be=r - the number of seasons o R
| ~a=mr the total number of rainfall events in.r .seasons-
‘For the exponential: . '

the parameter of the exponential

X= Uy .
a=n . the total number of rainfall events in r seasons
b= ﬁ/u the total amount of rainfall for the mr events

These distributions are called posterior distributions; they represent
the likelihood that various values of m and u are the values desctibing
the rainfall process which we are observing, after getting the data.

What we would really like is the postarior distribution of the
return periods associated with various rainfalls produced by this process.
These return pariods may be produced by simulation. Equally likely
values of m and u are generated by use of the posterior distributions.
This enables equally Tikely return periods to he caiculated corresponding
to k inches of rainfzll: Tp(k}.‘ These equally likely retuvn periods may
be used to form an cmpirical distribution fo= TR(k). The ‘mean of this

distribution, casily calculated, is the expected return period; E[TR(k)],
for a k-inch rainiall.

Similar methods can be use' to generate a posterior distribution
- of rainfall anmunts corresponding to a given return period.

4,0 Exarple

Thundorstorm rainfall in, excess of 0.3 inches may be assured to
be runoff producing rainfall {Foael and Duckstein;'1970§. Rainfall in -
exeess of 9.3 inches fo dieleibuled cpproximately as an cxponcntial
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‘distribution. For this example, we assume data are available for 10
‘and 20- sunmer seasons, that the average rainfall for these runoff pro-
dicing storms is 0.69 inches and that the average number of storms per -
season is 14. Simulations to produce the posterior distribution of the
return periods of 2 and 2.5 inch rairfall were done based bath on 10 and
20 years of record. The results are shown in Figurss 1 and 2. The
return periods calculated by equation (1) for the two cases were 6.07
and 20.8 years respectively. Tne mean return periods of the simulated
distributions were 6.64 and 23.2 years, respectively, for 10 years data
and 6.76 and 21.9 years for 20 years-data. The variances: of the simu-
lated pdfs were 6.21, 190.0. 3.00 and 63.8, respectively, for the above
four values. With increasing data sample, the variance of the posterior
distribution continues to drop; for the 2.5-inch storm the variance of
the posterior distribution drops to 25.7 when based on 40 years of data.
This is less than 15% of *he varience based on 10 years o data.

In actual usage the sample average rainfall per storm event and
the sample average number of storms per season will change as more data
are obtained. As a general rule the posterior distribution will have
smaller variance with an increasing data base as illustrated by this
example,

5.0 Application

The economic value of a structure may be related to the return
period of a specific k-inch rainfall. To evaluate an existing structure
the estimation of the return period for k inches of rain, TR(k), by

equation (1) is a first approximation. At first glance it would seem
adequate since the mean of the simulated return periods is a little
greater than that calculated by equation (1). However, it is the recipro-
cal of the return period that is.used in many situations to calculate
expected yearly loss. Simulation indicates that the posterior distri-
bution of the reciprocals of the return periods has a mean slightly higher
than' that estimated by the reciprocal to equation (1); see Table 1.

- TABLE 1. Reciprocai Return Periods by Equatien (1) and
Simulation (llean Value).

C Raintall -
- Data : 2 inches . 2.5 inches
(years) - ~_ Eq. (1) [ SimuTation ~ Eq. (1) | Simulation
10 .1647 .1764 .0480 .0556
‘ (6.07) (5.67) : (20.8) (17.99)
20 ' 1647 . 1654 .0480 .0531.

(6.07) (6.03) (20.8) (18.8).

Humber in_parentheses is- reciprocal of number above.



' ~ For this type of calculation the approximation offered by equat1on
T(1) is not always on the safe side. For the cases where shorter return
_periods have a disproportionate economic impact for the evaluation of
the strusture than do lorger return periods, the estimation afforded

by equation (1) will clearly ba inadequate. A posterior diztribution of
the factor(s) affected by the retuyn period would definitely be needed.

A common calculation with regard to existing structures vhich :
w111 fail if there is a rainfall in excess of k 1nches is the probab111ty,‘
3of failure (PF) in the next N years ~

PRk, = 1 - (- —1") "

As N gets large, small uncertainties in T (k) will grow exponentially,

and may produce larger uncertainties in the probability of failure.

When such probabilities are a design consideration, a posterior distri-
bution of such probabilities should be taken into account bafore the
design 1is specified.

For many structures the design is'given in terms of return period.
For a constant return period, simulation can be used to produce a
posterior distribution of likely rainfalls. Examination might call for
a change in the design flow if the posterior distribution differed
appreciably from a spike (delta function), that is, from a distribution
with very small variance or spread.

Of course, the fullest use of this type of s1mu1at1on would be
in a complete Bayes1an Decision Theoretic analysis (Davis, et al, 1972a).
Such an analysis would lead to an optimal decision based on the econpmics
and the uncertainty of the situation; it wouid also evaluate the ex-
pected economic cost of the uncertainty and calculate the value of addi-
tional data to reduce the uncertainty.

6.0 Discussion

For sma11 watersheds, areal precipitation is closely related to
point rainfall. For larger watersheds, simulation must be used to .obtain
a posterior distribution of areal precipitation given specific point
rainfall data (Davis, et al, 1972b). The return period.corresponding to
a specific runoff then is uncertain due to at least three uncertainties:
the small sasple error, the distribution of rainfall over the watersied
and the rainfaili-runoff relationship. These points will be examined
by Davis, e* al. (1973).

We believe that such uncertainties aré most easily examined by
simulation procedures This type of sinuiation differs from the usual
case in that it is conditioned on the sump1e statistic rather than on a
parameter asstiuiad to be true.
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57i0f7Cohc10sions
o (a) Calculation of return periods by the use of estimated para-

‘meters can be in error. In the example given, the error for the recip-
rocal of the return period was such as to lead to underdesign.

(b) The return period of point rainfall is subject to considera-
‘ble uncertainty even with 20 years of data.

(c) Simulation techniques are most useful for studying uncertain-
ties due to small samples. The simulation technique can produce
posterior distributions not only of the parameters in question but also*
of associated economic factors.
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FIGURE 1

DISTRIBUTION OF POSSIBLE RETURN PERIODS

FOR 2.0 INCH SUMMER RAINFALL BASED ON
IO AND 20 YEARS OF DATA
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FIGURE 2

" DISTRIBUTION OF POSSISLE RETURN PERIODS
~ FOR 2.5 INCH SUMMER RAINFALL BASED ON
- 10 AND 20 YEARS OF DATA
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