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Abstract
 

In previous.papers by the co-authors, itwas found that the return 
period of rn.ximum point rainfall could Le derived from the follow:ing

event-based process valid for the summer precipitation season:
 

(a)the number of events per seasdn is Poisson distributed,

(b). the amount of point rainfall per event may' be exponantially 

distributed,

(c) 	 the above two random variables are independent.

The 	purpose Of this paper is (1)to obtain a correct distribution
 
function of the return period when uncertainty arises in the parameters
of the Poisson and exc-nential distributions and (2) to obtain th, ro
bability density function of tne event corresponding to a given return 
period and that of the return period corresponding to a given event 

emin fro. the same uncertainty. The methodoloqy cm-lo,,s conjug.te
distribution;s for the Poisson and e:xponential distributions to Pem.it
direct co.:,'tation of .st 'cr , ributions of rainfall amounts q'ven
poi,tra,wt '.ata. .!:rr , 'ien .rssho,,s that -,m. n t.te" 
return Perir;-.: tfor sii 	 of da4: tih,t.. 	 . yea
ex:amnple uthe ", t anl,, is.) of the i:ethod arc r:.ii" 
to encornnias effects of unertainies in rainfall data "sa;ples on runoff 
estimates and associated conemic factors. 

1.0 	 Introduction 
Return noriods of c%,:trc-x,.2 ;anfalls and flc.is are typica!ly dc!',,ed

from mp r - . vse..; co ", .,til e data. Us? of . 
positions frn 10eoh.2IG.i.1el or 1c&-r, : I) . . ,: .. . .. .... 

'ry, 
. " -; ; r d! e it i , .n i n t r , ,' - ,i~~~~~~~1~~'... nt 	 . "; 1a .crr... Jt L rr ,: v. , l, 

..-. ,a ,.a. , ,.. ,- a ral . r , .the 	range of t-c. . . a,,, .r , too De a..g ener , _,.,': - of,..o t 't2 

tatljrln "il PrF, ' .. . fl.of i. "hi r,in ., .al, th2rec "r 	 ...... 
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accepted prescription for coping with those uncertainties resulting from
 
small data samples at a single.sampling site. The above procedures and
 
specific design return periods become enshrined in handbooks, codes,
 
published charts (U.S. Weather Bureau, 1961), and administrative regula
tions. Itmay be that users of the techniques may make allowances for
 
thp uncertainties but, if done, itmay be quite subjective and inconsis
tent from designer to designer.
 

It iswell known that maximal events with small return period TR
 
are more accurately estimated than those with much larger TR (Metler,
 

et al., 1972). Theconfidence band flares out at larger T's so as to have
 

It isuncommon for confidence limits to be constructed beno meaning. 
cause of this reason and, more importantly, because sampling properties
 
for non-Gaussian distributions of interest to hydrologists are not gene
rally available.
 

An awareness of the above situation has prompted the pursuit of at
 
least three pathways:
 

(a) Use of the theory of stochastic processes and event-based
 
data analysis (Fogel & Duckstein, 1969; Duckstein, et al.,
 
1972).
 

(b) 	 Use of small 'sample theory on r gional regression methods to 
augment the information content of short records (for the 
case 	of fl, ods, see tetler, et al., 1972 and !Ttler, 1972). 

(c) Use of decision theory; for example by consideration of
 
Type I and II errors (Duckstein and Kisiel, 1971), by use 

of Bayesian decision theory (Davis, et al., 1972), and by 
use of methods to "design" a factor of safety as that given 
in the Induced Safety Algorithm (Bogardi & Szidaroszky, 1972). 
In these approaches, economic loss functions are used incon
junction with.the encoded -uncertainty, that is, the postei-ior 
distribution of the parameters in question. Inthis way,
 
the 	approaches customize the evaluation of uncertainty for* 
each design situation.
 

Earth scientists (geologists, geomorpliologists, paleo-climatolcgists, and
 

palynologists) express concern that the blind reliance of surface water 
ydrologists on gaging records is tantamount to assuming zero knowledge 

or data at Lh, ini tiator, of a nto, vota ra.k-,rin1 st-tion. ifcourse, 
this is not true as is v,.:ll emh,.1i7C by Dilintky (1970) but .rs yet there 
is no operatior-,l t 'd for inprti '_;,h prior inforriation into 
existing continuous records. Assicir,"ont of T, to past extre-v2 events 
identified by i rir ata life (old rive'r links, uprooted trees, tree 
rings and riod ,.,,r.-.s)-is frawrht vith ruch irconsistent gu,-sworl:. Da yes 
rule 	has the potuntial for rcii vinj soie of this iulonsiste!,cy (Bernier,1907;. 

Two imnortant facts are invo; ci to lu tifv further drvoloprnrt of 
the co:',bi .d, uv' ,)F 16 fir-st tt.n r' "Irl th":,.-, y;. first, in
created hu-"in intervm'tion in tho r 'rfall. :':'reff prece%,, ni:vks historical 
record, l,: r, 'i,rct. , '" oi ftura ' conditioens wiv,,r vhich d'sir'n'. trlc
tures mutlt function, unless a case can be n..e for insensitivity of 
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-.
extreme'large events (their magn.itudes and return.periods) to human
activity. Second, the designer, planner and other decision makers are
 
increasingly compelled to make decisions irrespective of how much data
are at 	hand or how deficient our methods (models) may be.. The first
 
fact motivates the more irt,i'nsive study of the theory of event-based sto
chastic processes; the se -:.:d fact motivates the study of.decision theory.
 

2.0 	Objectives of the Paper
 

Inprevious papers by the co-authors (Fogel and Duckstein, 1969;
 
Duckstein, et al., 1972), itwas found that the return period TR(k) of
 
maximum point rainfall J (with k the value of the random variable R)
 

could be derived from the following event-based process judged to be valid
 
for the summer precipitation sea-son .(characterized by sequences of thun
derstorms)
 

(a)t the number of events per season-is Poisson distributed with.
 
mean m 	(of number of events per season): fN(nlm) = e-mmn
 

n!
 

(b) the amount of point rainfall per event isexponentially
 
distributed with parameter u (equal to reciprocal of mean
 
amount of rainfall per event):
 

u euk
fR (klu) = 


(C) jand are independent.
 
Then,. itmay be shown (Duckstein, et al, 1972; Fogel, et al., 1972) that
 
the return period of x units of rain given the event-based parameters m
 
and u is 

I()TR (kim, u)= l - exp(-m e-uk) -l 

Given this relationship, the purpose of the paper isfourfold (knowing
 
that the estiriates of m and u are uncertain due to small sample size).
 

(a) to obtain a dehsity function of the return period by intro
' 
ducin( u :c2rtai iy of estl-2te i t . . ._ .-.. , rd4 

(b) ft, the a.tov' (enslty to obtai r the eAp,.ctVed value of the 
ret i 	period considering the uncertainty in the piranetcr 
estimation.
 

(C) to shoad ho,,i tnis approach car, be qeneraliZed to the return 
period of Ilows IQ(x), (see Davis, et al., 1973) 

(d) to der,:msmtrate Ovhe ne,.: of folle,,:ing this appro'cht;;y in 
t,yca on uLccsion-theoretic nal,,is ot a .'ater 

rcsourC: d' pioh . 

3.0 Methodoln'y' 
Thc rct!,io l,:r oi glvon by eq,,(l) i. correct for th'. irtet .,lu-% 

of m and u. Since e do not kr.n,; Lho true values of ri ar..,i, wa rsuSt 
eStirnatc them from tie ta.availablo. m IscstimatCd by ( tho iv.er.1e 
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.:number of events per season, and 1/u isestimated by I/", the mean pointrainfall over the r seasons considered. The sample data could have been
 
provided by parent distributions with values of m and u not equal. to the 
estimates, (with probability one this isthe. case). V andm are merely 
those values of niand u that haw, the maximum likelihood.of having pro
duced the data. Other values of m and u have a large likelihood of having 
produced the sample. The likelihood of the values of m and u which pro
duced the data isgiven by the conjugate distributions (De Groot, 1970, 
Chap. 9) for the exponential and Poisson distributions. 

The distribution conjugate to both the exponential and to the
 
Poisson isthe gan~na:, 

xa- l e bxF(xla, b) =0ba 

r(a)
 

tie values of a and b are different for the exponential and-the Poisson. 
$or the Poisson:
 

x = m the parameter of the Poisson 
b - r the number of seasons 
-amr the total numb'er of rainfall events inlr~seasons 

For the exponential:
 

x = u the parameter of the exponential 
a = M the total number of rainfall events in r seasons 
b = A/6 the total amount of rainfall for the ^r events 

These distributions are called posterior distributions; they represent
the likelihood that various values of m and .uare the values descl-ibing

the rainfall process which we are observing, after getting the data. 

What we would really like is the posterior distribution of the 
return periods associated with various rainfalls produced by this process.

Thesl return periods ,;3y be produced by simiulation. Equally likely 
values of m and u are genera ted by use of the posterior distributions. 
This enables equally lkely return periods to be caictilated corresponding 
to k inches of rainf:I': TR(1:1 . Thesic. equally likely return periods may 

be used to form an empirical distrih;ition foo TR(k). The mean of this
 

distribution, easily calculated, is the expected return period, E[TR(k)), 

for a k-inch ralnidli.
 

Similar methods can be use' to generate a posterior dist-,ibution 
of rainfall a-unts corresponding to a given return period. 

4.0 Ex ar'le 

Thundo rnt rainfall in. excrss of 0.3 inches may be assurled to 
be runoff prolucinq rainfali (rociel and Ducl,tein, '1970). Rainfall in 
Wxess of 0.3 inches is di9'L" 0d -1prpo-,:tcly as an cxponcntial 
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distribution. For this example, we assume data are available for 10
 
and 2-0. su!,;er seasons, that the average rainfall for these runoff pro
ducing storms is 0.69 inches and that the average nun-er of storms per 
season is 14. Simulations to produce the posterior distribution of the
 
return periods of 2 and 2.5 inch rairfall ,-ere done bdsed both on 10 and 
20 years of record. The results are shown in Figures 1 and 2. The 
return periods calculated by equation (1)for the two cases were 6.07
 
and 20.8 years respectively. Tne mean return periods of the simulated
 
distributions were 6.64 and 23.2 years, respectively, for 10 years data
 
and 6.76 and 21.9 years for 20 years data. The variances.-of the simu
lated pdfs were 6.21, 190.0. 3.00 and 63.8, respectively, for the above
 
four values. With increasing data sample, the variance of the posterior

distribution continues to drop; for tile 2.5-inch storm the variance of
 
the posterior distribution drops to 25.7 when based on 40 years of data.
 
This is less than 15% of he varience based on10 years of- data.
 

In actual usage the sample average rainfall per storm event and

the sample average number of storms per season will change as more data
 
are obtained. As a general rule the posterior distribution will have
 
smaller variance with an increasing data base as illustrated by this
 
example.
 

5.0 Applicat'ion
 

The economic value of a structure may be related to the return

period of a specific k-inch rainfall. To evaluate an existing structure
 
the estimation of the return period for k inches of rain, TR(k), by
 
equation (1)is a first approximation. At first glance itwould seem
 
adequate since the mean of the simulated return periods is a little
 
greater than that calculated by equation (1). However, it is the recipro
cal of the return period that is.used in many situations to calculate
 
expected yearly loss. Simulation indicates that the posterior distri
bution of the reciprocals of the return periods has a mean slightly higher
than'that estimated by the reciprocal to equation (1); see Table 1. 

TABLE 1. Reciprocal Return Periods by Equation (1)and
 
Simulation (tilean Value). 

Data 2 inches • 2.5 inches 
(years) Eq. (1 Simulati-on1 Eq. Simulation 

10 .1647
(6.07) .1764

(5.67) .0480(20.8) .0556(17.99) 

20 .1647 .1654 .0480 .0531. 
(6.07) (6.03) (20.8) (18.8). 

Number in parentheses is reciprocal of number above. 
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For this type of calculation the approximation offered by equation 
(1) is not always on the safe side. For the cases where-shorter return.
 
periods have a disproportionate economic impact for the evaluation of
 
the structure than-do longer return periods, the estimation affoi'ded
 
by equation (1)will clearly be inadequate. A posterior distribution of
 
the factor(s) affected by the retu -n period would definitely be needed. 

A common calculation with regard to existing structures which 
will fail if there is a rainfall in excess of k inches is the probability 
%of failure (PF) in the next N years: 

PF(k,N) - T, 

As N gets large, small uncertainties in TR(k) will grow exponentially,
 

and may produce larger uncertainties in the probability of failure. 
When such probabilities are a design consideration, a posterior distri
bution of such probabilities should be taken into account before the 
.design is specified.
 

For many structures the design is'given in terms of return period. 
For a constant return period, simulation can be used to produce a
 
posterior distribution of likely rainfalls. Examination might call for
 
a change in the design flckJ if the posterior distribution differed 
appreciably from a spike (delta function), that is, from a distribution 
with very small variance or spread. 

Of course, the fullest use of this type of simulation would be
 
i6 a complete Bayesian Decision Theoretic analysis (Davis, et al, 1972a). 
Such an analysis would lead to an optimal decision based on the econpmics 
and the uncertainty of the situation; it wouid also evaluate the ex
pected economic cost of the uncertainty and calculate the value of addi-' 
tional data to reduce the uncertainty.
 

6.0 Discussion
 

For small watersheds., areal precipitation is closely related to 
point rainfall. For, larger watersheds, simulation must be used to .obtain 
a posterior distribuLiot, of areal precipitation given specific point 
rainfall data (Davis, et al, 1972b). The return period.corresponding to 
a specific runoff then is uncertain due to at least three uncertainties: 
the small sai-ple error, the distribution of rainfall over the watershed 
and the rainfall-runoff relationship. These points will be examined 
by Davis, e. al. (1973).
 

We believe that such uncertainties are most easily examined by 
simulatioi procedures. This type of simulation differs from the usual 
case in that it is conditioned on the sample statistic rather than on a 
parameter assihi.ed to be true. 
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7.0 Conclustons
 

(a) Calculation of return periods by the use of estimated para
meters can be in error. Inthe example given, the error for the recip
rocal of the return period was such as to lead to underdesign.
 

(b) The return period of point rainfall is subject to considera-

Sble uncertainty even with 20 years of data.
 

(c) Simulation techniques are most useful for studying uncertain
ties due to small samples. The simulation technique can produce
 
posterior distributions not only of the parameters in question but also'
 
of associated economic factors.
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FIGURE 2 
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