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ABSTRACT

The complex potential function is obtained for two-dimen-
slonal seepage of water through a hillside using conformal
transformations, Two cases are considered: In the first a straight
slope of finite length intersects an infinitely wide horizontal
plane; in (he second, a horizontal plane of finite width is be.
tween two symmetric hillsides. Flow nets and graphieal rela-
tions characterize the flow patterns.

Additional Index Words: infiltration, conformal transforma-
tions, drainage, saturated flow,

Tms PAPER presents a mathematical solution describing
the two-dimensional scepage of water from a hillside
adjoining a flat horizontal plane at its lower end. The com-
plex potential is found as a function of position and can be
used to determine the hydraulic potential, the stream func-
tion, and the velocity distribution. This information is use-
ful in gaining a better understanding of flow in sloping soil
masses, Kirkham (1947) discussed field measurements
showing flow into and from similar hillside surfaces in an
Iowan drift area. The flow velocity and direction are closely
related to movement of chemical constituents into and from
the soil surface, amount of subsurface flow vs. surface flow,
crosion hazards and seepage spots.

The geometry ABCDA as given in the z-plane of Fig. |
is considered. A hillside is inclined at an angle of r« radians
with respect to the adjoining horizontal surface of seepage
CD. The hill extends to the right a distance L to a barrier
or symmetry plane AB. We assume there is sufficient water
supplied at the surface of the soil mass to maintain satura-
tion within the entire flow region, The flow region has a
uniform hydraulic conductivity, k (units of length per
time), throughout.

A similar problem was solved by Warrick (1970) where
the seepage surface CD was chosen to be a mirror image of
CB and the y-axis a line of symmetry. Klute, Scott, and
Whisler (1965) presented a solution for a saturated sloping
rectangular slab and Whisler (1969) later used an electric
analog in the study of associated unsaturated cases. Powers,
Kirkham and Snowden (1967) and Selim and Kirkham
(1972) solved similar problems by generating a series of
orthogonal functions using the Gram-Schmidt process. The
present method satisfies the specified boundary conditions
exactly and gives an analytical solution (at least in terms of
an exact integral). In the Gram-Schmidt procedures the
boundary conditions are satisfied at discrete nodes rather
than continuously, although very arbitrary boundary condi-
tions are allowable.
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Oct. 24, 1972, Approved Jan. 5, 1973.
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We define the complex potential function: W(x,y) by -

wix,y) = k(x,y) + if(x.y) (1]
where ¢(x,y) is the hydraulic head function (units of
length), y(x,y) the stream function (units of volume per
unit time per unit length), and i the imaginary unit vector.
Each of the functions ¢, y, and w satisfies Laplace's equa-
tion. Also k¢ and ¢ are conjugate functions and are every-
where orthogonal in the z-plane. Following the method
described by Davison and Rosenhead (1940) and by Polu-
barinova-Kochina (1962), we define a Zhukovsky function
6 by

6 =w/kL + iz/L [2]
where z = x + iy. The real and imaginary parts of § may
be found from [1] and are:

8= (¢—y)/L [3a]

0, = ($/k + x)/ L. [3b)
The region in the g-plane which corresponds to the flow
region is the shaded area in Fig. 1. The barrier AB is de-
fined by ¢ = 0 and x = L in the z-plane and corresponds
to 6, = 1 in the 6-plane. Along the surface of seepage
BCD, we have ¢ = y which corresponds to the line 6, = 0
in the #-plane. Points A and D correspond to infinity in
both the 6 and z-planes.

Also shown in Fig. 1 is a r-plane which is useful to relate
the z and ¢-planes, When a correspondence of z to ¢ and of

a

G B

BARRIER =~
L
/\/ﬂ

2-PLANE (zex+iy)

o :
6-PLANE (8128 +182)

8 £id-n Gp= Lt en)

te.

1= PLANE (121 +1t2)

Fig. l—’l‘he z, 6, and t planes for an inﬁnitely wide horizontal— -
plane adjacent to a finite slope. -




MORIN & WARRICK: STEADY-STATE SEEPAGE IN A HILLSIDE o 347

0 to ¢ are established, the relationship of z to 4 and of z to
w is known by use of [2]. As the regions of interest in both
the 6 and the r-plane are polygons (each with one vertex at
infinity), we may use Schwartz-Christoffel transformations
(as in Churchill, 1960) to develop the mapping functions
onto the r-plane. For convenience, we place points 4 and
D at infinitiy in the r-plane and B and C at —1 and zero,
respectively.,

We may write the differential forms of the transformations
as

do =M (t 4 1)~3/2de 4
dz=M (t+ 1)-%~a(ady (5]
where M, and M," are constants which give the proper

scaling and orientation for the polygons,
Integrating each side of [4] gives

6(0) = M, (¢ + 1)% + N, (6]

with M, and N, as constants. At point B we have § = {
and ¢t = —|, thus N, is given as

Ny=1. (7]

Point C maps onto the 6-plane at § = i§, whe:e & will be
calculated below. Point C also corresponds to ¢ = 0, there-
fore we find from [6] and [7] that
My = —i(1 —§). (8]
Thus, [6] becomes
8(8) = it — (1 — 8) (¢ + 1)%]. (9]

The inverse of [9] is found by solving for :
0—ig
1= e | s ) l' lo
(=) [10]

A comparison of [4] and [5] gives
dz = M,[t/(t + 1)) db. [11]

In order to evaluate the constant M,, we first examine the
derivative d8/dz, Use of [1] and [2] gives

B de it d [12]
dz~ kL kL L

where v_ and v, are the horizontal and vertical velocity
components. As 6 approaches infinity the velocity terms
v, and v, approach zero. Thus, [11] and [12] for 6 and
t approaching infinity give

M, = —iL. [13)

Use of [13] in [11] and integrating [11] from z.= 0 and

0 = I§ results in

z——:Lf [|+(“8)] @ 04

Let us consider the integral of {14] in two segments, one
section from 0 = i§ to = if, and the other from § =

i0, 10 6 = 0, + i6,. Thus [14] is equivalent to:

2/L = (t/LYgep + Is + il [15)

where

% | —§ 2@ ~ 6
(2/L)gep = f [1—( - -1-) ] 46, (16)
] 2

and
) 1—8 }
by o i
Is + il ,j; { +[0+‘(02_1)]

The first integral of [15] corresponds to z/L along the
seepage surface BCD whereas the sum is the value of z/L
for an interior point.

Defining 5 by

(17]

n = (1 — 6% (1 —8)? (18]

[16] becomes

1
@ Lpep =[1—=8/2] [ G—1rg==Wdy. [19]
n

Along the sloping surface CB, z = x sec ma exp(/ra) and
(p — 1)® = exp(ira) (1 —y)*.
Thus, in terms of real numbers only

(/L)ep = [(1 — 8)/2] f " —p)e gt dy [208]
n

(v/L)cy = tan ma (x/L)gy [20b]
or
(x/L)cp = [(1 —8)/2] [B(1 + a,0.5 — a)
—B,(l + «,0.5—a)] [21]
where the incomplete Beta function and ordinary Beta func-

tion are given as in Abramowitz and Stegun (1964, esp, p.
258 and 263):

Baby= [ 5101 —p-1dp 22)

0

B(a,b) = B, (a,b) = T(a) T'(b)/ T(a + b) [23])
where 1'(a), I'(b), and T(a + b) are Gamma functions,

The unknown parameter § may be evaluated by observ-
ing that point B corresponds to x = L, 0, = | and 5= 0
Thus, from [16] and [18] we find

1 =011 —8/2]B(l + «,0.5 -—‘a).
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: Solvmg for 8 and usmg I‘(l S) =. w*/Z and [23] gives

T

 /8=1-— . [2415.7’

(1 + «) (0.5 —-a)

Along the honzontal seepage surface CD, we. can show' o  " .

: «_‘from [22]

(x/L)c,, =—[2/(1 — 8)] " (1= Up U U 25)

1/n

where U is a dummy integration variable and y is given by
[18]. In the limit as y approaches infinity (x approaches
point D), the integral in [25] is undefined as it should be;
for finite values of 5, the corresponding x/L is finite.

The integrals Ig and I of [17] may be written as

8
. Iy= J; ! Rsing d8, [26]
and ,
Ic~=-‘fochospd0 . 4'[27]
_-with the magmtudeR as 88
R=5{~l-,+"'(-,,(1‘—.8"{0:-"(92—l)aj )
RS RN & ey - ‘ +
S D
oy 2 yai2
o ( 21—820,(6,—1) | 28]
D
with’

. D= [01 — (0, — )12 + 4012 (0, — 1)? [29]
~ and the angle /3 as

o 201—826,6,— 1)

y0SBSm
[30]

ﬁe hdnzdntal andvvertical flow velbcities can be evalu-
, 'ated usmg [12]

v,/kL-—Real(dO/dz)  [31a)
2 ‘v,/_kL =—(1/L) + Imag (d8/ d2) [31b]

S=FD+GENT o

Along the sloping surface CB where 0 w, and 8 ;

< 1, [31a], [31b] and [32] glve .
Ve | 1—8

—k-)cn = —co0s -m[ (

| —-l + sin -m[ (

) —1]‘“ tsébif

5 (-"-”- _';=‘—1 + [1 + (—-—) ]"’ ~§If3i3fc’]'_z,
The flow- veloclty normal to the surface vy may-be deter-
mined from known v, and v, values by

VN = —V, 5in ra + v, co8 ra. [33d}

Solutions for a Finite Width Between Two Hillsides

Consider as in Fig. 2, two adjacent hillsides CB and EF
separated by a finite distance of 2a and with the y-axis
chosen along the plane of symmetry. The solution of this
problem is similar to the simpler problem already consid-
ered in this paper and less detail will be given to its deriva-
tion. For the special case of @ = 0, this problem is that
considered by Warrick (1970). As “a” approaches infinity
the problem is the same as for Fig. 1 although [15] is
not readily obtainable from the solution we seek now. If the
value of y is chosen as zero along 4B, then ¢ will also be
zero along the negative y-axis and FG. The hydraulic head
¢ will be equal to y along the surface BCDEF. The flow
region of the z-plane will correspond to the semi-infinite
strip in the ¢-plane and the upper half of the t-plane as
before. We will choose for 4, B, C, and D the image points
t = —o0, —1, —c and 0, respectively. Image points for E,
F, and G will be ¢, 1, and co by symmetry.

The differentials of the transformations for  and z to the
t-plane are

do=My(@t+ 1)~"%(—1)"%dt (34]

and

dz=M,) (t+1)"%-o (¢t 4 )
t—cl(t—1)"%—ad, [35]

' Flil 2—The z, 6, and ¢ planea for a fnite spacing between two

ls des.
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Integrating [34] and evaluating M, using 6 = O at t = 0
and 6 ={att=—1, we obtain

0(f) = —(i2/ =) sin—1¢, [36]

The inverse df [36] is

t = isinh (x6/2). [37]
Use of [34] and [37] in [35] leads to

sinh? (x0/2) 4 ¢

de=M, [ @8/2) + 1 I (38]

The scaling constant M, is determined in the same manner
as for the infinitely wide horizontal plane, in fact, M, is
given by [13] as M, = — iL. As § = 0 corresponds to
2 =0, we have

. sinh? (x6/2) + 2

e [+9
2= .’; [sinh’(r0/2)+l] a0 [39]

or alternatively
[}
2/L=—i f [1—(1 — c?) sech? (x6/2)}= dd.  [40]
0

Along the surface DC, we have § = i, and sinh
(x0/2) = 1 sin 6, Thus, for x = a (Point C) we have
from [39]

9 .
—sin~1¢

¢ —sin? a

- fw ( 8in? (76,/2) a8,

a
L . 1 — sin? (w6,/2)
[41a]

or

a/L= f - p)* (1 — p¥)e— dp [416]
0

where p is a dummy integration variable, Either [41a) or

T“ 0063
e’ Q'Q x’L
- -0.4
y/L
PATHLINES
{ = CONSTANT) - ~0.8
i Y <12
-10 -06 ~02 0.2 0.6 1.0
X/L

Fig. 3a—Flow net for the infinitely wide case, where a = 0.02
(slopo of 3.6 degrees).

[41b] may be used to determine the unknown c¢ by trial
and error. Values of ¢ for a range of a/L and « values will
be given in Table 2.

The results for interior points x/L and y/L are

g
{=f+cos mal' 4 _!:' R'sin B' d6, [42a]
[}
% = sinma ' — jo‘ ' R' cos B! do [42b)
where
) % ( sin? (#8,/2) —c? \ a do
= f 1 — sin? (n0,/2) 2 [42c]

(2/#)sin~1c

—2(1 —¢?) ro ]

2d
Ti—g_al W

B = atan—! [ 1
R={1=(1—=c) (=P + 4l —cHr2a?}a/2 [42e]
with

_ cosh (n8,/2) cos (m6,/2)
™ cosh?(x8,/2) cos? (w8,/ 2) + sinh?(x8,/2)sin? (w6,/ 2)

[42f]

_ —sinh (n6,/2) sin (x0,/2)
7 Cosh? (w7 2) cos (wby/ 2) + Sinh2 (x0,/2) sin? (8,7 2)

. [42g]

For the sloping surface CB, [42a] and [42b] simplify to
(x/L)cy = a/L + cos ma I [43a]
/L)y = sinzwa I, [43b]

Numerical Calculations and Results

In order to calculate ¢ and ¢ relationships for interior
points of the infinitely wide case (Fig. 1), the following
steps are useful:

1) Specify a

*man [
w 50028 % 0050
00

T T
00 0.2 04 06 os L]

X/L
Fig. 3b—Flow net for the finitely wide case with « = 0,02 and -
a/L = 0.2, Tho y/L axis is a symmetry line.
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Fig. 4a—y/kL as a function of the surface position x/L for
a = 0.01, 0.02, and 0.05.
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Flg. 4b—Normal flux (v,/L) through the flow media surface
or a = 0.01, 0.02, nnt{0.0S. The flux is taken as positive for
flow out of the soil surface.

2) Calculate § from [24]

3) Assign 6, and 0,. Each 0, and 6, corresponds to
a specific point; 8, can have any positive value, 6,
can have values between —eo and 1.

4) Solve for z/L = (x + iy)/L using [15]. (The actual
computational formulas used for computation are
[20a] and [20b] or [25], [26], and [27)).

5) Solve for ¢/L and y/kL from [3a)] and {3b}:

¢/L=0,+y/L, $/kL=10,—x/L.

The flow net of Fig. 3a was prepared for « = 0.02 (3.6
degree slope) using the steps outlined above. The Gamma
functions of [24] were evaluated using the polynomial ap-
proximation of Abramowitz and Stegun (1964), ¢q. 6.1.36).
The integrals of [20a], [20b), [25], [26), and [27]
were numerically evaluated using a “trapezoidal™ procedure
by McCracken and Dorn (1964, p. 189, exer. 20). The inte-
grands of [20a], [20b], {26], and [27] are undefined at
the upper right corner (Point B). However, the integrals are
well hehaved and were evaluated in the region close to Point
B using the leading terms of series approximations to the
integrals. Three terms gave negligible round-off error.,

The cquipotentials shown in Fig. 3a are for 20, 40, 60,

-Table 1—Values of Q/2kL and xmax/L for infinitely wide case

of Fig. 1
Angle

o Degrees Q/2kL 'mu/"
0,01 1.8 0,018 0,30
0,02 3,6 0,036 0,30
0,03 5.4 0,054 0,29
0,04 7.2 0,073 0,28
0,08 9.0 0,094 o,
0,06 10,8 0,11 0,26
0,07 12,6 0,13 0,26
0,08 14,4 0,15 0,25
0.09 16,2 0,17 0,24
0,10 16,0 0,19 0,23
0,20 36,0 0,39 0,16
0,30 54,0 0,61 0,099
0,40 72,0 0,81 0,044
0,49 88,2 0,98 0,0039

and 80% of the maximum value of ¢/L = 0.063 which
occurs at the upper right-hand corner of the flow medium.
The minimum value of ¢ is zero and occurs all along the
negative x-axis. The streamlines are also labeled 20, 40, 60,
and 80%. The maximum value of ¢/kL = 0.036 occurs at
x/L = 0.29 and is taken as 100%5. This point, x/L = 0.29,
is labeled in the figure and is the dividing point for seepage
into the surface (all points upslope) and seepage out of the
surface (all points below). All of the streamlines originate
from the upper portion of the slope. Streamlines 40, 60, and
80 come back out on the flat horizontal surface to the left
of the origin as would the 20% streamline if the x-axis
were extended beyond x/L = —1.0. The right-hand portion
of Fig. 3a is soniewhat similar to that of Klute, Scott and
Whisler (1965, Fig. 2) for the upper half of a tilted slab
where a line perpendicular to the surface and passing
through the middle of the slab is an equipotential.

Figures 4a and 4b are plots of ¢/kL and v/k along the
soil surface and verify some of the above statements, The
maximum value of Y/ kL (read from the « = 0.02 curve)
is 0.036 and occurs at x/L = 0.29. The normal flux reverses
sign at x/L = 0.29. The flux is taken as negative for flow
into the column, positive for flow out. The value of ¢/kL
and vy/k are also shown for a = 0.01 (1.8 degrees) and
0.05 (9 degrees). No value of vy/k is given at x/L = 0
because the velocity is undefined at this point. The magni-
tudes of vy, and ¢ tend to be greater for steeper slopes. This
does not say stecp slopes take in more water for a given
rainfall rate, but merely that more water will be taken in
on a steep slope which is kept saturated than on a lesser
slope. Table 1 gives the raaximum values of y/kL, that is,
the values Q/2kL and x,,,/L and the coordinate where
y reaches its maximum values for a wider range of a.

The flow net shown in Fig. 3b was prepared using a pro-
cedure similar to that for Fig. 3a. This flow net is represen-
tative of those for a finite width between two hillsides. The
value of a/L is 0.2 and « is chosen as 0.02, the same slope
as was used for Fig. 3a. The major difference from Fig. 3a
is that the streamlines are forced to return to the soil surface
before they reach the symmetry plane (along the y-axis).
The maximum value of ¢ occurs at x/L = 0.52. When ¢
is normalized with respect to the slope width (L—a for Fig.
2) we find ¢, /k(L—a) = 0.028 which may be com-
pared dirently to the 0.036 from Fig. 3a. This gives a nu-
merical verification of the fact that more flow will occur
in a slope without restriction to force water to the surface
a finite distance from the base of the slope as in Fig. 3b.
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Table 2—Values of ¢, Q/2kL, and y/kL for various a, /L and slope positions for the finite width case of Fig. 2

- Aﬂ‘l_e (/KL for selected x/L valuea
o Degrees 2/l ] Q/2kL x/L:0,2 x/L=0,4 x/L=0,6 x/L=0, 8 x/L=1,0
0,01 1.8 0,00 0,000 0,012 0,00 0, 0086 0,011 0,011 0, 0085 0,00
0,01 1,8 0,05 0,083 0,012 0,00 0, 0064 0,011 0,011 0, 0084 0,00
0,01 1.8 0,20 0,119 0,011 0,00 0, 0060 0,010 0,010 0,0082 0,00
0,01 1.8 0,40 0,592 ° 0,0085 0,00 0,0023 0, 006} 0,0084 0. 0070 0,00
0,01 1,8 0,60 0,813 0, 0057 0,00 0, 000% 0,0020 0,0045 0,0053 0,00
0,01 1.8 0,80 0,950 0,004 0,00 0,0002 0, 0005 0, 0009 0,0022 0,00
0,02 3,6 0,00 0,000 0,023 0,00 0,017 0,023 0,023 0,017 0,00
0,02 3.6 0,05 0,088 0,023 0,00 0,017 0,022 0,022 0,017 0,00
0,02 3,6 0,20 0,325 0,022 0,00 0,012 0,021 0,021 0,016 0,00
0,02 3.6 0,40 0,606 0,018 0,00 0,0044 0,012 0,018 0,015 0,00
0,02 3.6 0,60 0,813 0,012 0,00 0,0018 0, 0041 0,010 0,012 0,00
0,02 3,6 0,80 0,950 0, 0051 0,00 0, 0005 0,0010 0,0018 G, 0045 0,00
0,08 9.0 0,00 0,000 0,058 0,00 0,045 0,087 0,057 0,042 0,00
0,08 9.0 0,05 0,102 0,058 0,00 0,044 0,08 0,055 0,042 0,00
0,08 9.0 0,20 0,350 0,054 0,00 0,032 0,051 0,052 0,038 0,00
0,08 9.0 0,40 0,625 0,045 0,00 0,010 0,028 0,044 0,035 0,00
0,08 9.0 0,60 0,831 0,031 0,00 0,0040 0,0091 0,022 0,029 0,00
0,03 9.0 0,80 0,956 0,015 0,00 0,0010 0,0022 0,0041 0,014 0,00

Table 2 gives the values of yp,,/kL = Q/2kL as a
function of « and a/L for the finite width between two
hillsides problem. The values of Q/2kL tend to increase for
greater slopes just as they did for the infinitely width case,
This table also gives the image point “c” values as needed
for [40]).

The geometry considered was for hillsides. On a smaller
scale, the discussion is relevant to soil bedding and surface
drainage for man-made surfaces, Curved water tables or
fluctuating curved water tables beneath a sloping surface are
perhaps more realistic boundaries and deserve further atten-
tion.
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