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ABSTRACT 


The complex potential function is obtained for two.dimen
sional seepage of water through a hillside using conformal 
transformations. Two cases are considered: In the first a straight 
slope of finite length intersects an infinitely wide horizontal 
plane; in Lhe second, a horizontal plane of finite width is be-
tween two symmetric hillsides. Flow nets and graphical rela. 
tions characterize the flow patterns. 

Additional Index Words: infiltration, conformal transforma-
tion, fow.wheredrinag, sturaed 

tions, drainage, saturated flow, 

T HIS PAPER presents a mathematical solution describing 

the two-dimensional seepage of water from a hillside 
adjoining a flat horizontal plane at its lower end. The com-
plex potential is found as a function of position and can be 
used to determine the hydraulic potential, the stream func-
tion, and the velocity distribution. This information is use-
ful in gaining a better understanding of flow in sloping soil 
masses. Kirkham (1947) discussed field measurements 
showing flow into and from similar hillside surfaces in an 
Iowan drift area. The flow velocity and direction are closely 
related to movement of chemical constituents into and from 
the soil surface, amount of subsurface flow vs. surface flow, 
erosion hazards and seepage spots. 

The geometry ABCDA as given in the z-plane of Fig. I 
is considered. A hillside is inclined at an angle of 7ra radians 
with respect to the adjoining horizontal surface of seepage 
CD. The hill extends to the right a distance L to a barrier 
or symmetry plane AB.We assume there is sufficient water 
supplied at the surface of the soil mass to maintain satura-
tion within the entire flow region. The flow region has a 
uniform hydraulic conductivity, k (units of length per 
time), throughout. 

A similar prollem was solved by Warrick (1970) where 
the seepage surface CD was chosen to be a mirror image of 
CB and the y-axis a line of symmetry. Klute, Scott, and 
Whisler (1965) presented a solution for a saturated sloping 
rectangular slab and Whisler (1969) later used an electric 
analog in the study of associated unsaturated cases. Powers, 
Kirkham and Snowden (1967) and Selim and Kirkham 
(1972) solved similar problems by generating a series of 
orthogonal functions using the Gram-Schmidt process. The 
present method satisfies the specified boundary conditions 
exactly and gives an analytical solution (at least in terms of 
an exact integral). In the Gram-Schmidt procedures the 
boundary conditions are satisfied at discrete nodes rather 
than continuously, although very arbitrary boundary condi
tions are allowable. 
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We define the complex potential function • w(x,y) by 

w(x,y) = ko(x,y) -i0(X1y) 

where S,(x,y) is the hydraulic head function (units of 
length), O(x,y) the stream function (units of volume per 
unit time per unit length), and i the imaginary unit vector. 
Each of the functions 4,,0,and sv satisfies Laplace's equa
tion. Also k4) and 4,are conjugate functions and are every

f thewhere oro oa n he z-puae ollo n g ethod 
orthogonal in the z-plane. Following the method 

described by Davison and Rosenhead (1940) and by Polu

barinova-Kochina (1962), we define a Zhukovsky function 
0 by 

w/kL + iziL [2] 

where z = x + iy.The real and imaginary parts of 0 may 
be found from [1] and are: 

01 = (-y)/L [3a] 

02 = (O/k + x)/L. [3b] 

The region in the 0-plane which corresponds to the flow 

region is the shaded area in Fig. 1. The barrier AB is de
fined by 0 = 0 and x = L in the z-plane and corresponds 
to 02 = 1 in the 0-plane. Along the surface of seepage 
BCD, we have 4)= y which corresponds to the line 01 = 0 
in the 0-plane. Points A and D correspond to infinity in 
both the 0 and z-planes. 

Also shown in Fig. I is a t-plane whichkis useful to relate 
the z and 0-planes. When a correspondence of z to t and of 
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0 to t are established, the relationship of z to 0 and of z to 
w is known by use of [2]. As the regions of interest in both 
the 0 and the t-plane are polygons (each with one vertex at 
infinity), we may use Schwartz-Christoffel transformations 
(as in Churchill, 1960) to develop the mapping functions 
onto the t-plane. For convenience, we place points A and 
D at infinitiy in the t-plane and B and C at -1 and zero, 
respectively. 

We may write the differential forms of the transformations 
as 

dO =M0 (t + 1)-3/2dt [4]o 

M .dz = (t + 1)-%-a ta dt [5] 

where M0' and M1' are constants which give the proper 
scaling and orientation for the polygons. 

Integrating each side of [4] gives 

0(t) = M0 (t + 1)% + N9 [6] 

with Me and N. as constants. At point B we have 0 = I 
and t = -1, thus N. is given as 

N9 = i. [7] 

Point C maps onto the 0-plane at 0 = 18,,where 8 will be 
calculated below. Point C also corresponds to t = 0, there-
fore we find from [6] and [7] that 

Mo = -(1- 8). [8] 
Thus, [6] becomes -(q-

w)= i[l - (I - 8) (t + on. [9] 

The inverse of [9] is found by solving for t: 

t=- 1. [10] 

A comparison of [4] and [5] gives 
dz = Mj[t/(t -+ 1)]a do. [1i]l-

In order to evaluate the constant M., we first examine the 
derivative dO/dz. Use of [1] and [2] gives 

dO vX vy i 
=+ [12]dz kL kL LB,(a,b) 

where v, and v, are the horizontal and vertical velocity 
components. As 0 approaches infinity the velocity terms 
v, and vu approach zero. Thus, [11] and [12] for 0 and 
t approaching infinity give 

M. = -L. [13] 

Use of [13] in [Il] and integrating [11] from z = 0 and 
0 = I8results in 

0 2 a ' . 
z = -iLJ [I- (- ) ] do. [14] 

IS 0 

Let us consider the integral of [14] in two segments, one 
section from 0 = i8 to 0 = i02 and the other. from 0 = 
102 to 0 = 01 + i02. Thus [14] is equivalent to: 

z/L = (z/L)acn + Is + 1 c [15] 
where 

(z/L)BCD 2[ 1 2](. d02 [16 
02 

6 - l 

and 
fo + 1-8 2 d. 

Is + ilc = -i i(2 1 do,+.[ 
00 L + 0 2 -) 

[17]
 
The first integral of [15] corresponds to z/L along the
 

seepage surface BCD whereas the sum is the value of z/L
 
for an interior point.
 

Defining -1 by
 
,=(1 - 02)2/(1 -8)2 [18]
 

[16] becomes 
1 

(z/L)fc 0 = [(1 - 8)/2] ,j( )a 7--a- d [19] 

Along the sloping surface CB, z = x sec ira exp(hra) and
 
I)0 = exp(iwa) (1 - -,) a .
 

Thus, in terms of real numbers only
 

(xlL)CB = [(I - 8)/2] f (I d,1 [20a] 

(ylL)0c = tan 7ra(xlL)cB [20b] 

or 

(x/L)cn = [(1 - 8)/2] [B(I + a, 0.5 - a)
B,, (I + a, 0.5 - a)] [211 

where the incomplete Beta function and ordinary Beta func
tion are given as in Abramowitz and Stegun (1964, esp. p. 
258 and 263): 

-fpa (1 - p)b-I dp [22] 
0 

B(a,b) = B, (a,b) = r(a)r(b)/ r(a + b) [231 

where r(a), r(b), and r(a + b) are Gamma functions. 
The unknown parameter 8 may be evaluated by observ

ing that point B corresponds to x = L, 02=1 and 7=0. 
Thus, from [16] and [18] we find 

l =[(l- 8)/2] B(l +a, 0.5-a). 
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Solving for' 8 and using r(l.5) =w/2 and [23] gives'; 

S- 1 r(l + a) r(0.5 - a)' [24] 

Along the horizontal seepage surface CD, we can slhow 
from [22]1C 

(x/L)CD= -[2/(1-8)] f (1 - LOa U - 3 
1
2dU [25] 

fl 

where U is a dummy integration variable and 1 is given by 
[18]. In the limit as q approaches infinity (x approaches 
point D), the integral in [25] is undefined as it should be; 
for finite values of n7,the corresponding x/L is finite. 

The integrals Is and Ic of [17] may be written as 

o1R sinp do, [26] 
=o 


and 

Ic =- R cosp dO [271 
-0 


Swith the magnitude R as 

8-D 	 )2 2region(1 	) [0 (02 -1)2] + 
D' 

18)21 (-a/ 
(2(1 D 1) (28]D) 


with 

D = [01-	 (02- 1)2]2 + 4 012 (02- l)2 [29] 

and the angle as 

]
p= at n (D + (1,r! 8)2 [012 --(02 -- )_2 0 5Q 

[30] 

The horizontal and vertical flow velocities can be evalu- 
ated using [12]: 1 

v/kL =-Real (do/dz) [31a] 

v /kL =-	 (1/ L) + Imag (dO/dz) [31b] 

where 

dO 1 (I -S+1 	 8)21-"
TZ -'- '-/ [32:-
Y 


Along the sloping surface CB where 0 = i0 and 8 < 0 

<1, [31a], [31b] and [32] give 


' =- (!2 -1]- [33a]
T- r,. 


((--il 	 l2 -a [33b] 

Along the horizontal surface CD, v. -0 and v, is 

' 
=-1 [) (l 2 [33c 
+ 1-0' 3c 

The flow velocity normal to the surface vN may be deter
mined from known v and v. values byx 


vN = -vx sin ira + v. cos ira. [33d] 

Solutions for a Finite Width Between Two Hillsides 
Consider as in Fig. 2, two adjacent hillsides CB and EF 

separated by a finite distance of 2a and with the y-axis 

chosen along the plane of symmetry. The solution of this 

problem is similar to the simpler problem already consid
ered in this paper and less detail will be given to its deriva

tion. For the special case of a = 0, this problem is that 
considered by Warrick (1970). As "a" approaches infinity 

is the same as for Fig. 1 although [15] isthe problem 
not readily obtainable from the solution we seek now. If the 
value of q,is chosen as zero along AB, then 0 will also be 
zero along the negative y-axis and FG. The hydraulic head 
6will be equal to y along the surface BCDEF. The flow 

of the z-plane will correspond to the semi-infinite 
strip in the 0-plane and the upper half of the t-plane as 
before. We will choose for A, B, C, and D the image points 
t = -oo, -1, -c and 0, respectively. Image points for E, 
F,and G will be c, 1, and oo by symmetry. 

..


The differentials of the transformations for 0 and z to the 

t-plane are 

dO = Me (t + I)-% (t- 1)-%dt [34] 

and 
=
dz = M (t+ l)-%-a (t+ c) 

ca( ) A- 1 . [5 
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Fig. 2-The z, 9,and t planes for a finite spacing between two 
hillsides. 
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Integrating [34] and evaluating M. using 0 = 0 at t = 0 
and 0 =I at t = -1, we obtain 

0(t) = -( 1 2 /r) sin-It. [36] 

The inverse of [36] is 

t=i sinh (70/2). [37] 

Use of [34] and [37] in [35] leads to 

2dz = M sinh 2 (rO/2) + c
[ sinh2 (7r0/2) + I [38] 

The scaling constant M, is determined in the same manner 
as for the infinitely wide horizontal plane, in fact, M. is 
given by [13] as M. = - iL. As 0 = 0 corresponds to 
z = 0, we have 

e 2 - o sinh 2 (7 0/2)+c a 


L0 sinh2 (70/2) + T] dO [39]
 

or alternatively 

0 

z/L = -1 f [I - (1 - c 2) sech2 (7r/ 2 )]a dO. [40] 

Along the surface DC, we have 0 = O and sinh2 
(,rO/2) = I sin 0. Thus, for x = a (Point ) we have 
from [39] 

a = 3[sn~ 2 sn 2 iO/) dO 
L f - sin a (102/2) 2a sin C2 * 8 (,r 2 2 a 

0[41a] 

or 

alL = J (C2 -p)a (I - p)U -, dp [41b] 
0 

where p is a dummy integration variable. Either [41a] or 

*max max*mox 
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Fig. 3a-Flow net for the infinitely wide case, where a = 0.02 
(slope of 3.0 degrees). 

[41b] may be used to determine the unknown c by trial 
and error. Values of c for a range of alL and a values will 
be given in Table 2. 

The results for interior points x/L and y/L are 

a eoFRs 
---
L 

4 
L 

cos ' + 
0tI' 

sin 3' dO1 [42a] 

s 
E= sin ra 1F- fI R1 cos ft' dO [42b] 

L 
where 

° 202 (sin 2 (i0 2 /2)-c )a 
= 2/2 ) d0 [42c]dO2 

(2/ir)sin-ic 

-2(l - c2)ro, [42d] 
-C . 

CR' = ([1 (1 - 2) (T2 - a2)]2 + 4(1 - c2)2 r2 a2}a/2 [42e] 
with 

r cosh (7r01/2) COS (7r02/2)-[4f 

=cosh2(7r0I/2)cos2 (r02/2) + sinh2(r0212)s[42f] 

cosh(w0 1 2)csin(r 2 /2) +sinh(ff0/2)in(r/) 

V= -sinh (7rO/2) sin (7r02/2) 
cosh (0 2/2)cos(7r0 2/2)+sinh2(7r0l/2)sin2 (r0 2/2) [42g] 

For the sloping surface CB, [42a] and [42b] simplify to 

(x/L)c11 = alL + Cos 7ra 1 [43 a] 
(y/L)cn = sin ira i'. [43b] 

Numerical Calculations and Results 

In order to calculate S6and *, relationships for interior 
points of the infinitely wide case (Fig. 1), the following 
steps are useful: 

1) Specify a 

#max
 

0.0 2 8  
Lku-a'' - 0,050 
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60 
60 
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Fig. 3b-Flow net for the finitely wide case with a = 0.02 and 
alL = 0.2. The y/L axis Is a symmetry line. 
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Table 1-Values of Q/2kL and xmax/L for infinitely wide case
0100 o i00of 	 Fig. I 

Afwe Degrees Q/2kL X../L 

0.075-00 	 00 .0.05 0 8. 0.30 
0.02 3.6 0.036 0.30 
0.03 5.4 0.054 0.29 
0.04 7.2 0.073 0.28 
0.05 9.0 0.091 0.77 
0.06 10.8 0.11 0.26_j 
0.07 12.6 0.13 0.26 
0.0 14.4 0.15 0.25 
0.09 16.2 0.17 0.24 
0.10 18.0 0.19 0.23 
0.20 36.0 0.39 0.16 

SO(0.02 0.30 54.0 0.61 0.099 
0.025- 0.40 72.0 0.01 o.044 

0.49 68.2 0.98 0.0039 

d.-0.01 

and 80% of the maximum value of OI1L = 0.063 which oo 	 al 
.10 -06 -02 +0.2 .0.6 *1.0 occurs at the upper right-hand corner of the flow medium. 

X/L The minimum value of 4 is zero and occurs all along the 
Fig. 4a-/kL as a function of the surface position x/L for negative x-axis. The streamlines are also labeled 20, 40, 60, 

a = 0.01, 0.02, and 0.05. and 80%. The maximum value of 0/kL = 0.036 occurs at 
0250- x/L = 0.29 and is taken as 100%. This point, x/L = 0.29, 

is labeled in the figure and is the dividing point for seepage 
into the surface (all points upslope) and seepage out of the 

0125- o.05 surface (all points below). All of the streamlines originate 
from the upper portion of the slope. Streamlines 40, 60, and 

00 80 come back out on the flat horizontal surface to the left 
oooo'0.000--'=z .0-	 of the origin as would the 20% streamline if the x-axis 

were extended beyond x/L = -1.0. The right-hand portion 
of Fig. 3a is somewhat similar to that of Klute, Scott and 

'a.0.02 Whisler (1965, Fig. 2) for the upper half of a tilted slab 
twhere a line perpendicular o the surface and passing 

through the middle of the slab Isan equipotential. 
.o250 Figures 4a and 4b are plots of 0/kL and %',/kalong the 

.30 -06 -02 02 +0.6 +10 soil surface and verify some of tho above statements. The 
X./L maximum value of 4,/kL (read from the I = 0.02 curve) 

Fig. 4b-Normal flux (v /L) through the flow media surface is 0.036 and occurs at x/L = 0.29. The noimal flux reverses 
for a = 0.01, 0.02, and0.05. The flux Is taken as positive for sign at xlL = 0.29. The flux is taken as negative for flowflow out of the soil surface. into the column, positive for flow out. The value of 0/kL 

and vv/k are also shown for a = 0.01 (1.8 degrees) ind2) Calculate 8from [24]
3) 	 0.05 (9 degrees). No value of is given = 0 .,.'/k at x/L 

a specific point; 0 can have any positive value, 62 because the velocity is undefined at this point. The magni
can have valucs between -oo and 1. tudes of v.,, and 0 tend to be greater for steeper slopes. This 

4) Solve for zL = (x+ i) L using [151. (The actual does not say stecp slopes take in more water for a given 
4Solvetatfor al formulas using [15o. (Tuactale rainfall rate, but merely that more water will be taken in 
computational formulas used for computation are 
[20al and [20bi or [251, [261, and 127]). on a steep slope which is kept saturated than on a lesser5)Solve for /L and01kL from [3a and [3b]: 	 slope. Table I gives the maximum values of U/kL,that is, 

the values Q/2kL and x.,..L and the coordinate where 

4L = 01 + y/L, tp/kL = 02 -x/L. q reaches its maximum values for a wider range of a. 

The flow net shown in Fig. 3b was prepared using a pro-
The flow net of Fig. 3a was prepared for a = 0.02 (3.6 cedure similar to that for Fig. 3a. This flow net is represen

degree slope) using the steps outlined above. The Gamma tative of those for a finite width between two hillsides. The 
functions of [241 were evaluated using the polynomial ap- value of alL is 0.2 and a is chosen as 0.02, the same slope 
proximation of Abramowitz and Stegun (1964), eq. 6.1.36). as was used for Fig. 3a. The major difference from Fig. 3a 
The integrals of [20al, [20b], [251, [261, and [271 is that the streamlines are forced to return to the soil surface 
were numerically evaluated using a "trapezoidal" procedure before they reach the symmetry plane (along the )'-axis). 
by McCracken and Dorn (1964, p. 189, exer. 20). The inte- The maximum value of q,occurs at x/L = 0.52. When 0 
grands of [20a], [20b], [26], and 1271 are undefined at is normalized with respect to the slope width (L-a for Fig. 
the upper right corner (Point B). However, the integrals are 2) we finid P,,,,x/k(L---a) = 0.028 which may be com
well behaved and were evaluated in the region close to Point pared dire.:tly to the 0.036 from Fig. 3a. This gives a nu-
B using the leading terms of series approximations to the merical verification of the fact that more flow will occur 
integrals. Three terms gave negligible round-off error, in a slope without restriction to force water to the surface 

The equipotentials shown in Fig. 3a are for 20, 40, 60, a finite distance from the base of the slope as in Fig. 3b. 
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Table 2-Values of c, Q/2kL, and /kL for various a, alL and slope positions for the finite width case of Fig. 2 

Angle 

a Degrees 2/1 o O/2kL x/L-0.O 

0.01 1.8 0.00 0.000 0.012 0.00 
0.01 1.8 0.05 0.083 0.012 0.00 
0.01 1.8 0.20 0.319 0.011 0.00 
0.01 1.8 0.40 0.592 0.0085 0.00 
0.01 1.8 0.60 0.813 0.0057 0.00 
0.01 1.8 0.80 0.950 0.0024 0.00 
0.02 3.6 0.00 0.000 0.023 0.00 
0.02 3.6 0.05 0.088 0.023 0.00 
0.02 3.6 0.20 0.325 0.022 0.00 
0.02 3.6 0.40 0.606 0.018 0.00 
0.02 3.6 0.60 0.813 0.012 0.00 
0.02 3.6 0.80 0.950 0.0051 0 00 
0,05 9.0 0.00 0.000 0.058 0.00 
0.05 9.0 0.05 0.102 0.058 0.00 
0.05 9.0 0.20 0.350 0.054 0.00 
0.05 9.0 0.40 0.625 0.045 0.00 
0.05 9.0 0.60 0.831 0.031 0.00 
0.05 9.0 0.80 0.956 0.015 0.00 

Table 2 gives the values of imAx/kL = Q/2kL as a 
function of a and alL for the finite width between two 

4.
hillsides problem. The values of Q/2kL tend to increase for 

greater slopes just as they did for the infinitely width case. 5. 

This table also gives the image point "c" values as needed 

for [40]. 


6.
The geometry considered was for hillsides. On a smaller 

scale, the discussion is relevant to soil bedding and surface 
drainage for man-made surfaces. Curved water tables or 7. 
fluctuating curved water tables beneath a sloping surface are 

perhaps more realistic boundaries and deserve further atten- 8. 

tion. 
9. 
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