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INTRODUCTION
 

A major'portion of the annual flow of most streams in the western
 

United States occurs during the spring and summer months as a result of
 

melting snow that accumulates each winter on high mountain watersheds.
 

Forecast of runoff from snowmelt can be classified into two general cate­

gories, water supply forecasting and rate-of-runoff forecasting (Gartska
 

1964). 

Water supply forecasting is a complex technique that utilizes snow 

survey and other related information to predict seasonal streamflow, pri­
marily, but also peak flow. These forecasts are made as much as several 

months in advance of the major runoff period while those concerned with
 

floods from rapid snowmelt may involve only a few'days prior notice.
 

The purpose of this paper is to present a methodology that will allow
 

managers of water resources systems to exercise adaptive control proce­

dures in regulating reservoir releases to minimize expected losses. Using
 

an event-based precipitation model, a distribution function of water
 

. available for runoff is obtained. The amount of water available for run­

off is the sum of the water equivalent of snow on the ground at the time
 

the forecast is made, and the predicted amount of precipitation during the
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forecast period. Amelt coefficient, a random variable, is assumed to-be
 

a function of predicted temperature. The distribution function of snowmelt
 

runoffis then taken to be the product of the two random variables involv­

ing the predicted precipitation and temperature. A one-period objective
 

function is then defined to determine a reservoir release rate which would
 

minimize expected losses.
 

PREDICTING SNOWMELT RUNOFF
 

Water supply forecasting
 

Seasonal water-yield forecasts have been developed to provide advance
 

information to various water users on the amount of water that may be 

available for the remainder of the year. These forecasts are normally
 

•correlation analyses of varying complexity that use indices of precipita­

tion and losses to estimate runoff, as direct measurements are almost impos­

sible to obtain. Indices are assumed to provide adequate information for 

making these predictions in that snow accumulation data represent a com­

bination of several storms which tends to reduce the local deviations that
 

may occur during individual storms. In addition, seasonal accumulation
 

tends to follow a relatively consistent pattern for large areas having
 

comparable elevation and exposure (U.S. Soil Conservation Service, 1972).
 

Information on snowpack characteristics, water equivalent, density
 

and'depth, at a particular time and place is obtained from snow surveys.
 

A major responsibility of the U. S. Soil Conservation Service is 
to conduct
 

Federal-State cooperative snow surveys and to make water supply forecasts.
 

To estimate streamflow, a Soil Conservation Service (SCS) forecaster will
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examine at. least 15 years of-data that includes snow water equivalent,
 

Soil moisture, precipitation,,base flow and temperature. These variables,
 

assumed to be independent, are then inserted into a multiple linear re­

gression analysis to obtain a predication equation for streamflow. An
 

example of the general form of the prediction equation is as follows:
 

Y = b° + blX1 + b2X2 + b3 X3 + b4X4 l) 

where Y = runoff
 

X base flow
 

X2= fall precipitation.
 

X3= snow water equivalent
 

X4= spring precipitation
 

bi= regression coefficients
 

Past experience has indicated that snow water equivalent, used as an in­

dex of precipitation, has a very high correlation to runoff. Other preci­

pitation indices such as winter and spring precipitation have a relative
 

significance that is considered moderately high, while fall precipitation,
 

antecedent streamflow and base flow have been found to be variables of
 

lesser significance. Insofar as indices of losses are concerned, tempera­

ture has the greatest influence on the prediction of runoff accounting for
 

as much as 25 percent of the variability. Soil moisture, wind, radiation
 

and humidity have lesser influence.
 

Snowmelt floods 

Forecasting the rate of runoff from snowmelt requires consideration 

of the sources of heat available. for melting a specific'snowpack and the 
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routing of the snowmelt through a particular watershed to a streamflow
 

gaging site. The most,commonly used methods of estimating snowmelt are
 

the degree-day method and one that isbased on a comprehensive analysis of
 

all meteorological parameters that affect the transfer of heat to the snow­

pack. Comparisons of these methods to predict snowmelt rates have indicated
 

that the simpler degree-day method using temperature as the only index of
 

energy input may be used with little loss of accuracy (Anderson, 1968 and
 

Pysklewyc et al., 1968). The degree-day equation that is generally used 

may be written as 

M= K(T-To) (2) 

where 	 M is snowmelt runoff
 

T is air temperature at median elevation of melting snowpack
 

7 is a base temperature at which snowmelt is assumed to start
 

(normally taken as 00C)
 

K is a degree-day or melt factor
 

Values for base temperature and melt factor can be adjusted to conform
 

to either mean daily or maximum daily temperature data. Melt factors are
 

variable during the snowmelt season and can be specified daily or given
 

as a function of accumulated runoff (U.S. Army Corps of Engineers, 1972).
 

WINTER PRECIPITATION: MODEL
 

Current procedures in water supply forecasting generally requires an 

estimate of future precipitation. Rather than use expected or mean values 

of anticipated precipitation, the proposed methodology requires the use of 



a cumulative distribution function (cdf) of ,total procipitation expected
 

during the forecast period. To accomplish this requires first, defining
 

an event and second, obtaining the distribution (pdf) for the random num­

ber of events per unit time and the pdf for the random variable of the
 

magnitude or depth of precipitation per event.
 

Defining an event
 

In previous papers, the authors have used more than one definition to
 

describe the occurrence of a convective storm event (Fogel, et al., 1971;
 

Duckstein et al., 1972). The events were essentially classified as to
 

whether or not they produced runoff. While winter precipitation charac­

teristics differ from summer events, it, too, can be defined several ways.
 

The definition may be based on whether snow or rain fell, on threshold
 

values for daily precipitation, and on when an event is deemed to be con­

cluded. A major consideration in selecting a definition is that the re­

quired data be readily available. 

For this analysis, a wet day was defined as one which has precipita­

tion equal to or greater than 0.01 inch. Then, since a winter storm may 

last several days, the wet days were lumped together into storm groups. 

A storm group was defined as a sequence of consecutive wet days separated 

from other storm groups by one or more dry days. This definition is a 

slight modification of the one used by Kao et al. (i971). 

Number of events per unit time
 

In the previous studies on thunderstorm rainfall, events were as­

sumed to occur in an independent manner such that a Poisson variate can
 

be used to represent the distribution of N, the number of events per
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given time period. The occurrence of independent events follows a Poisson
 

process if the interarrival times are exponentially distributed. Note
 

that interarrival times are ,calculated from the beginning of one storm
 

group to the beginning of another group (see Fig. 1).
 

In southwestern United States, winter storms occur relatively infre­

quently rso that storm group durations are much shorter than the duration 

of dry spells. Therefore, as the pdf of interarrival times can be approxi­

mated by an exponential distribution, a Poisson distribution may be used 

to represent the pdf of number of storm group occurrences per season (Kao 

et al., 1971). 

For areas where winter storms are more numerous, the interarrival
 

time may no longer follow an exponential distribution. Thus, it is neces­

sary to derive a more general equation to describe the pdf of number of 

occurrences per given time period. Gupta (1972) derived the required pdf 

which is of the form 

S (2)n (I - _)1 (nf+ I e-m m 

f j1 0Pp J=2n+l T 
(3) 

J
 _ ( )fn+l (i - I. (n - 1)c e-m m
1o J=2n+1+2 IT
 

where 

m = mean number of events per time period 

Sp,=Jl-= probability that an event has occurred. 

San Francisco data, assumed to be representative of winter storms in the 

western United States was used to testiithe above relationship. Fig. 2 

i1lusttates a good fit of the derived distribution to the historical record. 
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Amount'of precipitation per event 

Letting the amount of precipitation be expressed as- an integral num­

ber of half-inch increments, the pdf of P, total precipitation per storm 

group, given that a storm group has occurred, may be expressed by a geo­

metric distribution. A comparison of the fit of the postulated distribu­

tion to 69 years of San Francisco data is shown in Fig. 3. While the 

geometric distribution is acceptable, subsequent investigations have re­

vealed that a J-shaped gamma distribution provides a better fit, primarily
 

at the tail. This aspect is important when extreme events are considered.
 

Total seasonal precipitation
 

To determine the distribution of W, total precipitation per time
 

period or season, it is assumed that the amounts of precipitation per stor
 

group are mutually independent, identically distributed random variables
 

and the number of storm groups per season is itself random. Then, it follo 

that, 

-N 
W"= (4) 

With distributions assumed for P and N, it ispossible to obtain the
 

pdf of W by first deriving the generating function.ofW and then obtaining
 

successive differentiations of this function. The procedure is detailed in
 

Feller, chapter 12 (1957).
 

If only the mean and variance of Ware required, they can be calcu­

lated directly from 

E(W) = (N)E (P) 

var (WV)=var (N) EgCp)J 2 + E(N) var (P) (5) 



DEVELOPMENT OF RUNOFF MODEL
 

A schematic diagram of the stochastic process of cumulative preci­

pitation and runoff and snow on the ground is shown in Fig. 4. Precipi­

tation is an event-based or intermittent process while runoff is continuous.
 

In Fig. 5, a view is taken of the assumed process between two successive
 

events. At the time of the jth precipitation event, So represents the
 

snow water equivalent on the ground, while B,a constant, is the loss incurred
 

during the event such as from interception and evaporation. Thus, the
 

snow on the ground following the jth precipitation event is So + Pi - B. 

Between the two precipitation events, the duration of which is Dj, a ran­

dom variable, the snowpack will have lost an additional amount of water.
 

The total loss is lumped into the term A. which is considered to be a
 

random variable linearly related to the duration between events such that
 

(6)
A. kD.+B 


I 3
 

If the number of events can be described by a Poisson variate N, then D
 

will follow an exponential distribution. The distribution function for
 

A,FA (a), can readily be obtained from
 

FAWa FD Ea - e >B. (7) 

.,The next,,step: is to define a new random variable X such that
 

X= P-'A P>A" 8)
 

and.
 

Fx(x) = Fp(x+ a) fA(a) 



where f (a) is the probabi-lity, distribuItion of -A. The variable X can be 
A
 

interpreted to be the net precipitation per event.,
 

Let Y be the sum of the random number of random variables Xl , X2 )...
 
-N'"
 

y = x(10) 

Since this relationship is now similar to equation 4 for determining the 

total seasonal precipitation, the same procedures for obtaining the pdf 

of Y and the mean and variance of Y can be used. In effect, the random 

Variable Y can be assumed to represent the total net precipitation that 

will occur in a given time. 

When'a water supply forecast is made, the snow water equivalent is
 

ascertained and if an estimate of future precipitation is required, expec­

ted values are used. In the proposed procedure, a pdf of total precipita­

tion in a forecast period is employed. Thus, the total amount of water
 

available for runoff at the time a forecast is made is the sum of the
 

current snow water equivalent, So, plus Y the amount of precipitation that
 

is expected to occur in the forecast period, or until the~end of the sea­

son. This defines a new random variable
 

Z=So +y 

which has a distribution function 

Fz(z)= Fy(z - S0) (12)' 

The final step involves the assumption that not all of Z will show 

up as runoff. A further assumption is made that another random variable,. 

C, which'has ,numerical.values from.0 to 1, can be used to relate the 
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random variable Z to the runoff volume Vi in a manner that
 

V = CZ (13) 

Without any verification at this time, the belief is that C is related to a
 

heat index such as degree-days and can be described by a beta distribution.
 

The varible C, then, can be considered as being a runoff coefficient with
 

a random component. The distribution function of runoff, then, becomes
 

Fv(v) = Fz fc(c)(1--) (14)
 

In summary, then, the proposed model for predicting snowmelt runoff
 

is of the form
 

V = C ESo + 5 (Pj - AJ)3 (15)
 

'inwhich Ci 'P,and A are random variables.
 

APPLICATION TO RESERVOIR CONTROL
 

The Salt River Water Users' Association is involved in the delivery
 

of water to more than one-half of the people in the state of Arizonu as
 

well as to a large irrigation project. Storage reservoirs on the Salt
 

and Verde Rivers are available to meet these demands. During low runoff
 

years, control of the storage facilities presents few problems. On
 

the other hand, in above normal runoff years, such as the current one,
 

managers are faced with regulating the release rate to minimize possible
 

losses.
 

Low release rates cause little or no damage. A higher release rate 



can result in some-inconveniences' as certain key roads become unavailable
 

for traffic and also some flooding can qoccur in low lying areas. Still 

higher release rates can cause serious flooding below the dam. To operate
 

such a reservoir, therefore, involves a trade off of the following three
 

quantities:
 

1. The total water supply benefit B(VR) which is a function of the 

total volume of water available V and the volume of water to be 

released R in the next time period (O,T) 

2. The flood damage downstream from the dam C(R) caused by the 

planned release R 

3. The flood damage at and downstream from the dam D(QR) caused 

by the flood peak Q; D is a decreasing function of R. 

Up to now, only the runoff volume V and not the peak runoff rate Q 

has been considered. Where the peak rate is considered to be important,
 

a linear volume to peak relationship may be assumed. In a regression
 

analysis relating peak flow to volume of the Columbia River at The Dalles,
 

the correlation coefficient was reported as 0.86 (U.S. Soil Conservation
 

Service, 1972). Thus, it can be shown that the conditional cdf G(qjv)
 

is represented by a t.- distribution. Then, the distribution function
 

for Q is
 

FQ(q) =J' G(qlv) f(v) dv (16)
Q 0 

For the sake of simplicity, it is assumed that the release R takes
 

:.place mostly at the beginning of (0,T) while floods come in the later
 

part of that period. 



From the trade offs mentIoned above, a one-period objective function
 

becomes 

Z(Q,VPR):= -B(V,R) +'C(R) + D(Q,R) 	 -(17) 

The goal is to determine R that minimizes the expected value: of 

Min Z(R)= Z'Ez(Q,V,R)]= -f B(v,R)f(v)dv
Ro R 	 (18)
 

+C(R) + I D(Q,R)f(q)dq
0 

Clearly, a multiperiod model could be formulated in a recursive manner
 

(dynamic programming approach). The utility of such a model however,
 

would be greater for the definition of a fixed seasonal policy (R11 R2," RN)
 

rather than for the adaptive control being considered here.
 

As an example, let
 

B(V,R) = b(V-R) for V > R
 

= 0 otherwise
 

C(R) 	 = 0 for R< ro 

= c(R-ro) for ro < R 

D(Q,R) = (Q-aR)2 for Q > aR 

= 0 otherwise 

Equation 17 then becomes 

Min z(R) = -b I(v - R)f(v)dv +c(R- ro ) + r(q.-- aR) f(q)dq (19) 
~aR
RR 


,Equating the first derivative to zero results in 

z I (R) =+b f f(v)dv -2a If(q raR)f(q)dq =0 (20)
R aR	 

, 



or
 

: 0 .(21)
b[I- F(IR)] 2a rqf(q)dq + 2a2 R[I F(aR)] 
..... . aR
 

This equation may be solved numerically for the optimumreleaseR*.
 

DISCUSSION
 

The considerable variablity of snowfall in space and time has
 

prompted an investigation into the role of stochastic snow models for
 

water supply forecasting and flood prediction. Such an approach is moti­

vated by the need to estimate risks associated with forecasts involving
 

snowmelt runoff.
 

New procedures appear warranted in that estimates of snowmelt runoff
 

do not appear to be significantly improved with the use of all the meteoro­

logical parameters that affect heat transfer over the method using only
 

temperature .as a heat index. Without questioning the inherent assumptions
 

in a regression analysis, the utilization of such procedures often leaves
 

a considerable amount of the variability unexplained. Thus, there appears
 

to be a limit to the capability of current methods for predicting snow­

melt runoff.
 

On the other hand, stochastic models do not have to make any apolo­

gies for poor correlation coefficients. Stochastic models start with
 

the assumption that natural hydrologic systems, are so complex that no
 

exact laws have yet been discovered that can explain completely the
 

natural'phenomena. Procedures that recognize this uncertainty and utilize 

random variables that have some physical significance in their 
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relationships are.generally preferred where there are managerial applica­

tions. iTheoperatin water resources systems usually becomes critical
 

when the occurrence of extreme events such as 
floods and drouths become
 

imminent. 
Current procedures of forecasting snowmelt runoff generally
 

use the mean or expected value approach, and hence, may run into diffi­

culty in predicting the extreme event.
 

The proposed procedure tends to combine the relatively long term fore­

casting of water supplies with the short-term flood predictions. Distri­

butions involving both precipitation and temperature are employed in an
 

effort to characterize the uncertainty. 
Losses, from precipitation to
 

streamflow,are assumed to be both additive and multiplicative. Verifica­

tion of the characters of these relationships is currently in progress.
 

In addition, there are other problems that require further study such as
 

the rain on snow floods.
 

In conclusion, this paper presents 
 a methodology for incorporating
 

meteorologic uncertainty into a snowmelt runoff model that can be used for
 

water supply forecasting arJ flood prediction. 
An example is presented
 

to illustrate the utility of this information in selecting an optimal ac­

tion'that will reduce the risk or consequential effect of possible uncer­

tain outcomes,.
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Fig. 5. Defining basic.elements of stochastic snow model. 




