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ABSTRACT

The phenomenon of bed material withdrawal through a farm turnout
was studied in an indoor laboratory flume. Depth of flow in the flume,
discharge in the flume, turnout elevation from the concrete bed of the
flume, and the discharge through the turnout were the variables whose
effect on the variation of sediment discharge through the turnout was
to be determined.

The statistical analysis of the data (Eq. 5-1) indicates that the
sediment discharge through the turnout is almost directly proportional
to the sediment concentration in the flume. Data taken at two differ-
ent turnout elevations confirmed (Fig. 5-3) that most of the sediment
load was transported close to the bed of the channel and the variation
in sediment concentration at higher elevations from the bed of the
channel was not significant,

Based on a series of special runs plus visual observation, it was
found that the amount of sediment discharge through the turnout was
significantly affected by the bed form movement in the flume. A
collapse of sharp peak or unstable bed formation which was irregular
in time and space in the vicinity of the turnout would increase the
sediment discharge through the turnout considerably. The analysis of
data shows that the scour pit formation near the turnout remains
geometrically similar under different conditions of flow in the flume
and the turnout. It was also found that the depth of scour pit

increases with an increase in the discharge ratio.
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Chapter 1

INTRODUCTION

The tremendous increase in world population, both actual and
predicted, has created a great demand for improved methods of food
production and distribution. It is true that many of the more devel-
oped countries now produce food in excess of the need of their presen®
population. Political and economic realities indicate that only a
small amount of this excess production has been channeled for use
by the less developed countries where the food shortage is most acute:
It is therefore necessary that the less developed countries seek ways
of increasing internal food production in order to be assured of suf-
ficient food to meet their needs. This is, of course, a very compli-
cated problem. A multitude of factors must be considered. Not only
the obvious ones of topography, climate, soil conditions but cultural,
political and economic factors within the area play a definite role
in any program for improved food production.

It would be beyond the scope of this or any study to undertake
an analysis of all these factors. Each requires a separate and
detailed analysis for any real understanding to accrue. However, all
of these factors must be considered if thorough comprehension and
solution of the food problem is to be attained.

An important question in any agricultural project is the provision
of an adequate quantity and quality of water. In certain areas and
with certain crops, rainfall provides all the watér which is necessary
for successful agricultural production. In many instances, however,

this is not the case, and an additional supply of water must be brought



to the area. One of the popular ways of doing this, of course, is the
diversion of water from a natural stream through canals to an irrigation
distributary network.

Within the area of irrigation, much information must be gathered
for optimal use of the irrigation system to be attained. Moreover,
the construction of a modern and expensive irrigation system does not
guarantee its successfulness; proper maintenance is an important
factor in the continuing functioning of an irrigation structure. More
importantly, the system must be designed with consideration of local
conditions. A successful irrigation blueprint cannot be applied in

every area without detailed study of all its implications,

Sediment Problem in Irrigation System

An important factor in the design of an irrigation system is
the sediment problem. Numerous instances may be cited showing irriga-
tion projects which have been rendered virtually ineffective because of
inadequately managed problems of sedimentation. In fact, the sediment
problem in irrigation systems motivated the evolution of extensive
sediment exclusion practices, particularly in the Indo-Pakistan
Subcontinent (Mahmood, 1973).

Regardless of the method of sediment exclusion used, it is
practically impossible to completely eliminate the entry of sediment
into the irrigation system. The amount of sediment going into the sys-
tem depends, to an extent, on the design of the head structure. It
usually is small for high head diversion structures and is large for
low head structures. In the case of low head structures on sand-bed

rivers, the sediment content of the irrigation supply is usually large



and generally causcs major operational problems. Generally, irrigation
water diverted from alluvial rivers carries sufficient sediment load
to create serious problems if not properly allocated in the system.

In designing an irrigation system, it is necessary to have means
for disposing of sediment entering the system. Also in the design of
the system, consideration should be given to the type of land, the
quantity and quality of sediment, the mineral constitution of land and
sediment, means of removing sediment and the cost of alternatives.
Sometimes, it may be necessary for certain areas in the system to
accept morc sediment than others (Mahmood, 1973).

On the basis of transport phenomena, sediment load entering an
irrigation system may be divided into fine material load and bed
material load. Fine material load is almost uniformly distributed in
the depth of flow. In general, it is difficult and economically in-
feasible to eliminate the entry of fine materials into an irrigation
system. Within the system, its distribution is little affected by the
distribution structurcs and is easily transported to the farm units.
The concentration of bed material load, on the other hand, increases
toward the bed of a channel. 1ts entry into the irrigation system and
its distribution within the system can be controlled, to an extent, at
the control structures.

The objective of this thesis is to study the phenomena of
sediment withdrawal in farm turnouts and explore the possibilities of
using the turnout as a control device for sediment distribution within
the irrigation system. For the preceding reasons, the fine material
load is not considered as a part of the sediment load that can be

controlled or manipulated in an irrigation system.



Turnouts are called by different names in different parts of
the world. In some parts of India, it is called a 'sluice', in
Pakistan, it is called an 'outlet', and in America it is termed a
'turnout' (Mahbub and Gulhati, 1951). A turnout is defined as a
device through which the field channel is connected to the distributing
channel.

The field channels are managed by a farmer, or a group of farmers,
and the distributing channel is either managed by government or a
public organization. The fact that the turnout connects two parts
of an irrigation system which belong to two different parties, makes
it necessary that the device should be designed such that the overall
operation of the irrigation system is to the best satisfaction of both
sides. The success of an irrigation system, to a large degree, de-
pends on the successful operation of the turnouts. In the design of
an irrigation system, there is probably no other single item which
has a greater effect on the distribution of water than the type and
design of a turnout (Mahbub and Gulhati, 1951},

This study was condurted in a 102 feet long, 8 feet wide, and
3.33 feet deep concrete flume. There were two locations for turnouts
in the walls of the flume structure. The turnout was located 12.83
feet upstream from the tail box. The independent variables of the
study were: depth of flow in the flume, discharge in the flume, dis-
charge in the turnout, and the elevation of the turnout. The range of
variation of unit discharge in the flume was from 1.20 cubic feet per

second to 2.4 cubic feet per second, and the depth of flow in the flume



was varied from 0.89 feet to 1.89 feet. The range of variation of
discharge in the turnout was from 0.23 cubic feet per second to 1.70
cubic feet per second. The data were obtained at two different ele-
vations of the turnout from the bed of the flume, that is at 0.740
feet and 1.073 feet respectively.

Bed material used in this study had an average diameter of 0.19 mm
and a standard deviation (gradation) of 1.30. Sediment concentration
in the flume and turnout were the dependent variables of the study.
The range of variation of sediment concentration in the flume was from
1 to 1050 parts per million and that in the turnout varied from 3 to
3860 parts per million. The fine material load was not measured in
this study.

The result of this study which expresses sediment concentration
in the turnout in terms of concentration and hydraulic variables of
the flume, is presented as a predictive equation. This is obtained
from the statistical analysis of data for 126 runs collected under
steady state flow conditions in the flume and the turnout. The scour
pit formation in the vicinity of the turnout is also analyzed. The
relationship of the size and geometry of the scour pit versus the flow

parameters in the flume and turnout is investigated.



Chapter Il

LITERATURE REVIEW

Sediment problems are associated with almost any irrigation
system. The sediment may come either from the source of irrigation
water supply or from the erosion of the banks and beds of the chan-
nels in the irrigation system. The usual source of sediment is from
the diversion of irrigation water supply from an alluvial river.

Water intake structures are designed with the consideration of
whether to remove the sediment, or pass it down the canal or the
river. When water with a large sediment load is diverted into the
irrigation system, problems are developed immediately. Sediment depo-
sition will take place, particularly at areas where the flow velocity
is slow. This causes reduction in the canal capacity to properly
handle the necessary amount of water-sediment mixture. Cleaning silted
canals is expensive and it is usually uneconomical to clean miles of
canals, especially in developing nations where the available facilities
are generally inadequate. Economic disposal of sediment requires a
comprehensive knowledge of sediment control devices and the cost of
their operation and maintenance.

In the design of an irrigation system, special consideration is
duc in the design of the turnouts. Farm turnouts are not only respon-
sible to pass an adequate amount of water from the distributing channel
to the field channel which take the water to the crops, but they are
also required to carry their share of sediment. The design of the
turnout and its eclevation from the bed of the distributing channel,

beside other factors (cost, simplicity, etc.), depends on the



amount of water it should pass, and the vertical distribution of the
sediment load in the distributing channel.

The following Review of Literature has been divided into the

categories:
1.  Sediment transport in alluvial channels,
2. Sediment transport related to channel bifurcation,

3. Vertical distribution of suspended material,

4. Farm turnouts, and

5. Previous work on farm turnouts.

The forementioned divisions of the Review of Literature are based
on the facts that for sediment to pass through the turnout, sediment
has to be transported in the parent channel. Sediment transport is
also related to channel bifurcation and farm turnout can be considered
as an extreme case of the bifurcated channels. Since the vertical
distribution of suspended material in the parent channel affects the
relative location of the turnout from the bed of the parent channel,
the amount of sediment passed through the turnout is controlled by this
distribution,

Under farm turnouts, the common types of turnouts and their role
in the irrigation system has been discussed. The findings of other
people in regard to sediment conduction through the farm turnouts

are included in the last part of this chapter.

Sediment Transport in Alluvial Channels

Lacey, a pioncer in the study of alluvial channels, did his work in
India and Pakistan. He states that the branch of hydraulics which is
concerned with the transport of scdiment in alluvial channels is the most

complex and inexact of all. The complexity is mainly due to the number of



independent variables which determine the geometry of the channel at
a given discharge. The more important of these variables are the
density and size of the sediment particles, the settling velocity of
t.e particle, and the sediment concentration.

Lacey (1966) is of the opinion that, with the present knowledge
of sedimentation, only provisional conclusions can be drawn. He empha-
sizes the importance of small scale model study in the design of canal
systems and feels that in some instances the existing canals could be
used as scale models. Lacey notes that, in the design of irrigation
systems, consideration should be given to the headworks on the parent
river, because the nature and quantity of sediment entering the system
largely depends on the headwurks and flow conditions in the main river.
According to him ihe entry of coarse sediment into the system is un-
desirable and it should be excluded, while fine sediment load is
sometimes advantageous. The deposition of fine material load on the
bed and banks of the channel reduces seepage losses and it could also
be used as soil conditioner on the farm. Lacey has stressed the
importance of slope and width of a channel and believes that in field
data, velocity, depth, and slope should be expresued as functions of
the discharge per unit width.

Simons and Miller (Sixth Congress on Irrigation and Drainage,

New Delhi, 1966) bhelieve that the success and failurc of a canal
system depends on many fuctors, mainly on the ability of the canal to
transport the required amount of water and sediment with minimum scour
and deposition, To design such a canal, consideration should be given
to the mechanics of flow of water and sediment in alluvial channels,

fluvial morphology, and the specific design concept.
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They have explained the forms and importance of bed roughness as
developed in alluvial channels. The order of occurrence of these
forms with increasing stream power (stream power equals shear stress
times the flow velocity) are: ripples, ripples superposed on the
backs of dunes, dunes, a transition range of stream power within which
the form roughness changes from dunes to plane or flat bed, plane bed,
standing waves, and antidunes. The bed roughness and its effect on
flow is a very complex phenomenon and varies with variation in depth of

flow, channel slope and velocity.

Sediment Transport Related to Channel Bifurcation

The location of a water intake structure on a river reach is very
important. It has a tremendous effect on the flow of sediment into the
system. Therefore, the location should be based on hydraulic princi-
ples with due consideration to the sediment characteristics. The
dynamic hydraulic and sedinent characteristics are different in a
river that follows a curved path from the one that flows along a
relatively straight course. The flow patterns in a bend are charac-
terized by a secondary circulation within the flow. The faster moving
surface water plunges to the bottom of the outside bend and rises on
the inside bend. This causes a spiral current through the bends which
tends to concentratc sediment along the inside bank. Degradation and
scour occurs on the outside bank of the bend and a pool is usually
formed.

A series of model studies conducted by Habermass and summarlzed

by Mosonyi (Chapter 22, River Mechanics, editor H. W. Shen, Colorado
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A sories of model studies conducted by Habcrmuss and summarized
by Mosonyi (Chapter 22, River Mechanics, editor H. W. Shen, Colorado
State University, 1971), show the effeét of different intake structure
arrangements on the amount of sediment entry to the canal system.
Models used for this study were rigid bed models and in each case
50 percent of the flow was diverted. As a result of these tests, it
was recommended that intake structures be built toward the downstream
end of the curve for the structure to operate satisfactorily.

The forcmentioned statements about bifurcated channels in regard
to sediment transport, can also be applied to a farm turnout. When
the turnout is opened, it allows part of the water flowing in the
distributing channel to pass through it to the field channel. The turn-
out may pass only a small percentage of the total flow in the distribu-
ting channel, but the flow is still considered as a divided flow at

this point when the turnout is operating.

Vertical Distribution of Suspended Materials

The characteristic definition of a suspended solid particle is
that its weight is supported by the surrounding fluid during its entire
motion. The concentration of suspended particles is greatly affected
by the channel bed roughness. Changes in bed forms bring variation
in local depth and are associated with large scale cddies that cause
appreciable fluctuations in the concentration of sediment in suspension,
Instantaneous fluctuations in the concentration of suspended sediment is
related to the scale and intensity of stream turbulence and particle
sixe present in the bed of the channel. While being moved by the fluid,

the solid particle, which is heavier than the fluid, tends to settle in
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the surrounding tluid. If the fluid flow has only horizontal
velocities, it is not possible to explain how any sediment particle
can be permanently suspended. Only 1 f the irregular motion of the
fluid particles, called turbulence, 1s introduced can one show that
sediment particles may be permanently suspended (Linstein, 1950) .

The concentration of suspended sediment varies from a minimum at
the water surface to a maximum at the bed of the channel. The concen-
tration of a given grain size at a distance Y from the bed of channel,
can be calculated by using the suspended load equation discussed in
Chapter [I1.

Sand bed channels usually have the greatest variation in sediment
concentration. Fine material load that is silt and clay, on the
contrary, is usually distributed uniformly in the depth of flow.
Deviation from the mean value of concentration is maximum in streams
where the suspended load consists largely of bed materials, and it is
minimum for streams where silt and clay constitutes a large portion
of sediment load in suspension. Thus the amount of the momentary
fluctuation in concentration of the suspended sediment at any depth
varies with the ratio of the concentration of the sand fraction to the
total concentration (ASCE, 1969, p 1480).

The distribution and concentration of sediment particles in the
depth of flow are also affected by the water temperature.  The vis-
cosity of water varies inversely with the water temperature, that is
the water is more viscous when it is cold than hot, The fall velocity

of sediment particles is affected by changes in water viscosity.



Rubey in 1933 has provided an equation for determining the fall velocity

of sand particles (Mahmood, February 1971).

2 300, 2.4
(5 8(5,-1)D7 + 36v) - 6
D

g = gravitational acceleration

Ss = the specific gravity of sand
v = the kinematic viscosity, and
D = the particle diamecter

In Rubey's cquation, when the specific gravity of sand SS and the
sand particle diameter D are kept constant, the fall velocity W
varies inversely with the water viscosity and directly with the water
temperature.  Lanc (ASCL, 1909, p 1482) in a study of sediment trans-
port in the Lower Colorado River, found that the suspended load
discharge increased approximately 2y times from summer to winter for
equivalent water discharge for sediment particles smaller than 0.3 mm,
Brice (ASCE, 1969, p 1482) in a review of data trom the Middle Loup
River at Dunning, Nebraska, tound that as the water temperature

Jucreases, the suspended sediment concentration increuses.

Farm Turnouts

Sediment deposition in the irrigation distributary system is
undesirable. Lvery effort is made to stop the entry of sediment from
0 natural stream to the canal system at the headworks. Yet there is
not a single cconomically feasible method available to completely
climinate all the sediment, There is always some scediment flow present

in most irrigation systems.
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For economic reasons as well as the potential damage to the crops,
the flow of sediment in the irrigation network should be treated in
such a way that the overall:efficiency of the system remains at optimal
level. The design of a farm turnout is primari.y responsible for the
fair share distribution of sediment in the system. In the design of a
farm turnout, it is important to consider local irrigation practices,
local conditions, water supply, demand on supply, and operation and
maintenance of the structures and the system.

Kennedy in 1906, in Punjab Irrigation Paper No. 12 (Mahbub and
Gulhati, 1951), has considered the following as essential conditions
for all farm turnouts:

1. A farm turnout should be strong and should not have moving
parts liable to derangement or requiring periodic attention.

2. Interference by the cultivator must be difficult and, if
made, should be readily detectable.

3.  The turnout should draw its fair share of the sediment
carried by the parent channel, but should not be liable to derangement
by sediment or weeds.

4. It should be possible for the farm turnout to work efficiently
with a small working head. The larger the working head the higher the
water level required in the parent or distributing channel and the
higher the cost of the distributing system.

5. The cost of the turnout should not be high.

Mahbub and Gulhati (1951) believe that the optimum capacity of a
farm turnout is the discharge which the farmer can handle efficiently

and should be such that the absorption losses in the water course or
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field channel and in the field are minimum. The longer the time taken
to irrigate a field, the greater is the amount of absorption in the

part of the field already irrigated, while applying the minimum
irrigation required for the remainder. It has been found that a turnout
capable of passing water at the rate of two cubic feet per second is
generally the best when the farmer irrigates flat fields of about Js acre
in area. Malhotra (Mahbub and Gulhati, 1951), has worked out theoret-
ically a relation between the size of the field and the optimum turnout
discharge. According to the results of Malhotra's findings for optimum
conditions, the discharge of a turnout in cubic feet per second should
be about five times the area in acres of the field it irrigates.

Farm turnout may be divided into three classes (Mahbub and
Gulhati, 1951):

1. Non-modular turnouts are the type of turnouts whose discharge
is a function of the difference between the water level in the distri-
buting channel and the field channei. Variations in either one affect
the turnout discharge.

2. Semi-modular turnouts, or semi-modules, are those turnouts
whose discharge is only affected by the water level in the distributing
channel and is independent at the water level in the field channel,
provided the minimum working head required for the operations of the

device is available.

3.  Modular turnouts are tﬁosc turnouts whose discharge is
independent of the water levels in both the distributing channel and
the field channel, within reasonable working limits. There are two
general types of modular turnouts; modular turnouts with moving parts

and modular turnouts without moving parts.
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From the economic point of view, as well as the simplicity and
stubility of the structure, semi-modular turnouts were generally
adapted in the Indo-Pakistan Subcontinent. Among the many versions of
the semi-module, the open flume type semi-modular turnout gained more
popularity (Rakha, 1971).

The open flume turnout is simply a smooth weir (sce Figs. 2.la
and 2.1b) with a sufficiently constricted throat to ensure a velocity
above the critical and long enough to ensure that the controlling
section remains within the parallel throat at all discharges up to the
maximum (Mahbub and Gulhati, 1951). A gradually expanding flume is
provided at the outfall, to obtain the maximum recovery of head. The
entire work is built in brick masonry, but the controlling section is
generally provided with cast iron or steel bed and cheeck plates. There
are various forms of open flume turnouts which differ from each other

only in detail.

Previous Work on Farm Turnouts

The only previous studies donc on sediment discharge through farm
turnout is by Minhaj-ud-din and Sharma (Rakha, 1971) and by Rakha
(1971). These two investigators have concluded that the maximum sedi-
ment concentration in a turnout, when fixed near the bed of channel
is 1.2 times the scdiment concentration in the channcl. Rakha (1971)
studied the sediment conduction phenomenon through a farm turnout at
Colorado State University Enginecring Research Center in Fort Collins.
The results of his study show that the sediment concentration in the
turnout is about 4 to 5 times the sediment concentration in the flume.

Rakha in his master's thesis has also stated that in his study the
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turnout was fixed near the bed of the flume and the sediment
concentration was higher in the lower layers of flow. Therefore, the
scdiment concentration was much higher in the turnout than in the
flume. He has also explained that the sediment concentration in the
turnout depends, among other parameters, on the vertical distribution
of sediment in the channel. If most of the sediment load is moving in
suspension and is uniformly distributed in the vertical, the ratio of
the sediment concentration in the turnout to the sediment concentration

in the channel will be around unity.

Rakha has plotted sediment concentration in the turnout against
the sediment concentration in the flume. The functional relationship
between these two parameters indicates that the sediment concentration
in the turnout is directly proportional to the availability of the
sediment load in the parent channel. In other words, more sediment
will pass through the turnout when there is more available in the
flume or the parent channel.

Rakha has also plotted the sediment concentration in the turnout
against the sediment concentration in the flume for different ratios
of the depth of flow d to the median diameter D of the bed material.
Since the same sand was used for the entire study, the median diameter
D of the bed material, therefore, remained unchanged. The change in
the ratio of the depth of flow to the median diameter of the bed
material, therefore, was only due to the change in the depth of flow.
From these plots, Rakha concluded that for the same sediment concen-
tration in the flume the sediment concentration in the turnout was

greater when the depth of flow was small and vice versa.
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In reference to the scour formation at the vicinity of turnout,
Rakha believes that with the other variables kept constant, the scour
is a direct function of the turnout discharge. An increase in turnout
discharge, causes an increase in the velocity of flow in the channel
upstream of the turnout. This increase in velocity increases the shear
stress acting on the channel bed upstream of the turnout. An increase
in shear stress, will scour the area upstream of the turnout which will
in turn increase the sediment discharge through the turnout. The water
pas-ed through the turnout has a higher sediment concentration than
the water passing by the turnout. Therefore, the water passing by the
turnout, makes up for the deficiency of its sediment level by scouring
the region downstream of the turnout. Hence, the larger the discharge
through the turnout, the lower the sediment concentration in the water
passing by the turnout, and the lower the sediment concentration in the
water passing by the turnout, the greater its tendency to scour the
region downstream of the turnout.

In regard to sediment size, Rakha claims that the median size of
the sediment passing through the turnout was greater than that of the
sediment moving in the channel. He attributes this finding to the
fact that the coarser materials move near the bed and the fine material
goes into suspension in the upper layers of flow. The turnout being
fixed near the bed of the channel, the major part of the sediment
flowing into the turnout consisted of coarser particles moving in the
lower layers of the flow.

The results of Rakha's analysis are based on a small number of

experiments. In his study, the data were obtained only at one elevation
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of the turnout from the bed of the channel. Therefore, it was decided
that more data were needed to supplement Rakha's work and the study
was also extended to a different elevation of the turnout from the bed
of the channel. This additional data were obtained under this study
at the same place, and the same facilities were used.l The sand used

as bed material was also the same in both studies.

1
The data for this study are available at the Department of Civil
Engineering, Colorado State University, Fort Collins, Colorado, and
can be made available to others also.
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Chapter 111

THEORETICAL AND DIMENSIONAL ANALYSIS

Sediment transport in alluvial channels may be in the form of bed
load, or as a combination of bed load and suspended load. The mode of
transport depends on the flow conditions in the channel and the nature
(size, shape, specific weight) of the sediment load transported. If
the channel carries fine materials, that is, silt and clay, the load
will be uniformly distributed throughout the depth of flow. For
coarser materials, on the other hand, the sediment concentration in the
channel varies from a maximum at the channel bottom to a minimum at the
water surface. The sediment transport through the turnout is a function
of the total transport in the channel. It also depends on the vertical
distribution of sediment load in the parent channel.

Sediment discharge through a turnout is a function of several
variables pertinent to the turnout and the parent channel flow. A
functional relationship which has been derived from the viewpoint of
dimensional analysis is included in this chapter. Also included is a
discussion regarding the formation of a scour-pit in the neighborhood

of a turnout.

Modes of Transport

In alluvial channels, sediment particles are transported in the

following modes:
1. Bed Load: this consists of particles rolling or sliding over
the bed of the channel so that their weight is partially

supported by contact with other particles on the bed.



2. Saltation Load: this consists of particles that are leaping
into the flow, staying in suspension for short periods of
time and then returning to the bed. The weight of these
particles is partly supported by the bed and partly by the
surrounding fluid. Saltation is not as important in transport
by water as it is for transport by wind.

3. Suspended Load: this consists of particles that are entirely
supported by the surrounding fluid during their motion. Those
particles near the bed are in a continuous exchange with
similar particles on the bed.

The total sediment load in an alluvial channel is equal to the sum
of bed load and suspended load. 1t is also the sum of bed material load
and wash load. Because of its smaller size fraction, wash load is not
related to the local flow or bed material and cannot be predicted from
local conditions. In 1950, Einstein suggested that the division line
between wash load and bed material load can be arbitrarily drawn from
the mechanical analysis of sediment deposit in the bed of the channel.
He considered the upper limit for thec grain diamter in wash load that
particle size of which 10 percent of the bed mixture is finer. This
approach, although arbitrary in nature, has practical application. He
defined bed material load as that part of the sediment load which con-
sists of grain sizes found in significant quantity in the bed of the
channel and wash load as that part of the sediment load which consists
of grain sizes finer than those found in the bed of the channel.

Suspended load in many sand-bed channels is a major part of the

total sediment load. The vertical distribution of sediment
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concentration in suspended load basically depends on the size of

sediment particles in suspension. For fine materials, the distribution
of sediment concentration throughout the depth of flow is nearly

uniform and the variation in sediment withdrawal through the turnout at
different elevations from the bed of the channel is insignificant. If
the channel carries considerable amount of coarse material in suspension,
then the concentration varies greatly over the depth of flow and the
elevation of the turnout from the bed of the channel might become a

factor in the amount of sediment withdrawal from the channel.

Analysis of Suspended Sediment Transport

For particles of a grain size fraction carried in suspension, the
concentration Cy at any elevation y from the bed of channel can be
determined from the suspended load equation (Einstein, 1950) provided
the concentration of the same particles at some reference level a in

the flow in known. In equation form this is:

Cy - d -y a Z N
Ca y d -a

W
Z = Rouse number defined as ur

in which

W = fall velocity of the particles
k = von Karman's universal constant
u* = shear velocity = V gR S

R = hydraulic radius

$ = energy gradient



g
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acceleration due to gravity

depth of flow in the channel

Equation (1) allows calculation of the flow ratc of sediment particles

at elevation

v
y

Yy per unit area and time: CyV y in which

the average point velocity at distance y from the bed

of channel.

Variables Affecting Bed Material Discharge

The bed material discharge in an alluvial channel is a function of

the channel geometry, flow properties, fluid properties and sediment

properties. The variables involved in this phenomenon as pointed out

by Simons and

v

d =

lar]
I

Hence

a
u

Richardson (1966) are:

velocity in the channel

depth of flow in the channel

slope of the energy grade line

mass density of water sediment mixture

apparent kinematic viscosity of the water sediment mixture
gravitational constant

measure of the size distribution of the bed material
fall velocity of sand particles

density of sediment

shape factor of the particles

shape factor of the cross section of the stream
shape factor of the reach of the stream

seepage forces in the bed of the stream

f [vld,\),g’p ’ps’ wl fs’S ’ S ’S H S)O ] (2)
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in which
Cf = the concentration of bed material discharge in the

flume

Concentration of bed material discharge through a turnout is not
only a function of the variables in Eq. (2), its value is also affected
by the additional parameters introduced by the turnout itself. These
parameters are based on the geometry and hydraulics of the turnout.

For an orifice type turnout, these variables are defined as follows:

b = width of turnout

h = height of turnout

dc = elevation of turnout crest from the average sand bed
elevation

Sf = shape factor of turnout

J—Hnar_sm_

N
- ¥ =
b Flow
f—y —
h I sand-bed Turnout ___,
df
y v B
:'. c el ',.'."."' )
Figure 3-1. Relative Location and Dimensions of Turnout

in the Flume
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The hydraulic parameter of the turnout is discharge of water
sediment through the turnout, Qt . Therefore, sediment concentration
through the turnout, expressed in terms of both flume or channel

parameters and turnout parameters is:
Ct = f[vldlo .DS.V,E.W.h.b ’dc’Cf’fs’O’Sp’sc'sr’s’sf] (3)

If velocity V , depth d of the flow in the channel and mass
density p of the fluid in Eq. (4) are to be considered as repeated
variables, then in terms of dimensionless parameters, the value of

C. is expressed as:

t
f
d V h ps S
C, = fICc, = & =, =, Re, Fn, » S, $,5.,5 ,5.,0] (4)
t f dc W d’p v2d2o p’r’e’f
in which
Re = Reynolds number
Fn = Froude number and

the other parameters are as defined previously.

The dimensionless numbers on the right side of Eq.(4) include
nearly all the parameters that may affect the sediment concentration
through the turnout. Not all of thesec necessarily have considerable or
measurable effect in every channel or laboratory flume. Some of these
parameters may either be kept constant or their effect on sediment
discharge could be ignored for all practical purposes.

In this study which was conducted in an indoor laboratory flume of
concrete bed, the following parameters were either kept constant or
their contribution to the variation of sediment concentration was

considered to be negligible.
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;ifgg- : since the study was done in a flume made of concrete,
the effect of the scepage force was absent.
Sc, Sr : as a first approximation, these are omitted from

consideration

Sp . bed material consisted of uniform sand with average
particle diameter equal to 0.19 mm and particle
size distribution equal to 1.30. The same sand was
used during the entire study.

Sf there were no changes made in the geometry of the

turnout during the course of study.
In the case of % and % ,h and D are constants and the effect
of d has been taken care of in other terms. The ratio ps/p is also
constant for this study. The effect of slope S and the fall velocity

W could be represented by the Rouse number Z . After these manipu-

lations, the final expression for Ct has the form:

- .4 :
c, = f[Cg. a Re, Fn, Z] (5)

Rakha in his thesis (Rakha, 1971), in terms of dimensional

analysis concluded that:
d h
Ct = f] Cfm D a'] (6)

The dimensionless parameters which are not present in the
expression derived by Rakha compared to what is obtained in this study
are Re, In, and Z .

The effect of thesc parameters on the variation of sediment

concentration was found to bo measurable but not very significant. ‘The
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most important parameter which is present in both expressions is the

sediment concentration in the flume Cf .

Scour Pit near Turnout

Diversion of water through the turnout disturbs the local equilib-
rium of stream bed and presents possibilities of local erosion. The
local velocity due to diversion is increased and the sediment carrying
capacity of stream beyond the turnout becomes in excess of the bed
load carried by the stream. In order to make up for this difference,
the stream scours its bed immediately downstream from the point of
diversion.

The concept of regime could also be applied to the problems of

local scour. The scour develops as time goes on and the local velocity

drops to the point at which the local capacity to carry out material
becomes equal to the supply rate of the incoming material. The amount
of time required for local scour to reach equilibrium depends on the
rate of bed load transported by the stream. Experiments have shown that
the magnitude of scour increases with increase in velocity and decreases
with increase in sediment size, whereas the time required to reach a
limit decreases with either increase in velocity or sediment size
(Tarapore, 1966).

The number of turnout structures in an average size irrigation
network are by hundreds. If preventive measures against the formation
of scour pit are not taken, the average depth of flow in the parent
channel will drop and the system may not function efficiently. Also

scour pit formation may endanger the foundation of turnout structures
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which might end with complete failure or undesirable functioning of
the system.

The experimental section of the flume Qhere the sand-bed profiles
were observed and recorded during the course of this study is shown in
Figure 3-2. The width of the flume (5 ft) was divided into ten sections
along which the sand-bed profiles were observed. The average depth of
the sand-bed for the bed profiles, obtained at 2 feet, 3 feet, and 4
feet from the turnout side of the flume, was considered as the méan
depth of sand for the entire experimental section (10 ft by 5 ft). The
average depth of scour upstream and downstream from the center line of
the turnout was determined from the longitudinal area of each profile
(see Fig. 3-3). In each case the depth of scour was measured in
reference to the mean depth of sand in the experimental section.

For the purpose of symmetry in the analysis of bed profiles, only a 4k
foot length of the surface area upstream from the turnout was considered.

The following notations were adopted for the quantities derived
from this analysis:

Dms = The average depth of sand-bed obtained from the bed
profiles taken at distances of 2 feet, 3 feet, and 4 feet
from the turnout side of the flume. This depth was con-
sidered to be the mean depth of sand in the entire experi-

mental section. (ft)

Aui

The longitudinal sectional area of the sand~bed profile
over a distance of 4)s feet upstream from the center line of

the turnout (i - Tl’ Tz,...T7, and Lz, , and L4). (ftz)

Ly



29

4’7 T / \ BN
Ly L \"-ﬂ"“‘— \ 48 in
. y S \\ LA
y S A ' \ A VA
L 20\ 1 A\ 36 in
o . s YL A\ ¢V
) / , \i VoA \ . \ \
L , ‘. ) \ \ '\ \ . .
. 2 Y (R U ¥ . N N 24 in
> > 7 x4 M \\ A} .
5 ft / Tf'# ' \ \ ‘\ \‘Y\ \'. \ \ \ 21 in
ya Te /4 \ o\ 1\ 18 in
4 4 n M K N N Al M
L s AR NN 15 in
/ L, T4 / ' ‘K \ N \ \1 A kY 12 in
re Y 7 I v Y A BT
y) £ T3 "/ ' dom »\\ '\ =t - .‘ e A 9 ln
- S T2 — e \ — 6 in
' ya 1/ -’, ' _‘_T ‘+ \ \\ \\ ‘x \ ) N 3 in
4Y /7 /7 //v l"/7 /1. /’ \ \ w ‘\ \ ‘ \ H 1
|

Figure 3-3.

Figure 3-2.

Turnout 43 ft I

Top view of the experimental section in the flume.

Hypothetical sand bed form in the experimental section of
Bed form actually observed in lab is included

the flume.
in the Appendix.
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Adi = The longitudinal area of the sand-bed profile over a
distance of 4% feet downstream from the center line of
the turnout (i = T,, Tp,...T,, and Ly, Ly, and L,). (£t%)
D, Aui
u = g S The average depth of scour upstream from the center
line of the turnout along bed profile i (i is as
defined previously). (ft)
= Adi
Ddi =, The average depth of scour downstream from the

center line of the turnout along bed profile i

(i is as defined previously). (ft)

The forementioned quantities were used to calculate some of the

following parameters;

Vu = Volume of scour below the mean bed level occurring upstream
of the turnout center line. (fts)
A= Surface area extended 4'; feet upstream of the turnout and
the full width of the flume (5 ft) (£t2)
= vu . .
Du = K; = The average depth of scour in the upstream section
of the turnout. (ft)
Vd = Volume of scour below the mean bed level occurring down-
stream of the turnout center line. (fts)
A2 = Surface area extended 4!; feet downstream of the turnout
and the full width of the flume. (£t2)
— Yy
Dd = K; = The average depth of the scour in the downstream
section of the turnout. (ft)
Das = %(5; + Dd) = The average depth of scour in the entire

experimental section. (ft)



31

D = The average depth of scour in the upstream section of the

turnout for the bed profile taken along T, (the closest

1
profile to the turnout side of the flume). (ft)

D = The average depth of scour in the downstream section of
Tl

the turnout for the bed profile taken along T, (the

1
closest profile to the turnout side of the flume). (ft)

Tl 5(Du + Dd ) = The average depth of scour along T

Tl Tl :

(ft)
An effort was made to find a relationship between the depth of
scour as determined from the analysis of bed profiles and the flow
parameters in the flume and the turnout. By applying correlation
techniques to the data at hand, this relationship was obtained. The

equation so obtained is presented in Chapter V.
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Chapter IV

EXPERIMENTAL EQUIPMENT AND PROCEDURE

This study was conducted in a 102-foot by 8-foot by 3.3-foot
recirculating concrete flume. The main components of the experimental
setup consisted of; flume, turnout, measuring devices, sediment
samplers, and sonic depth sounder. Each one of these components are
discussed and schematic diagrams are presented in the following.

cation in the pages that follow.

Flume

In this recirculating flume of length = 102 feet, width = 8 feet,
and depth = 3.3 feet, water was put into circulation by an 18~inch
diameter and 50 hp centrifugal pump (see Fig. 4-1). This pump located
at the upstream end of the flume was provided with 16-inch butterfly
valve and had a pumping capacity of 16 cubic foot per second. It
received water through a 16-inch by 16-inch return tunnel constructed
at the bottom of the flume., The pump discharged this water back at the
upstream end of the flume through a T-shaped diffuser. A wave sup-
pressor was proQided after the diffuser for reducing disturbance in
the flume. For the completion of circulation cycle, water made its way
back to the return pipe through a tail box. This 16~inch long, 62-inch
deep, and 8-inch wide addition to the flume, received water from the
flume through a series of wooden bhaffles.

The width of flume as constructed was 8 feet. But due to incapa-
bilities of some components of the setup to provide adequate flow con-
ditions, the width was reduced to 5 feet by building a wooden partition -

along the full length of the flume.
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Schematic diagram

of the flume (after Rakha).
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Turnout

The flume structure had two locations for turnouts, one 6'; feet
from the tail box and the other onc 12,83 feet from the tail box. In
this study only the turnout located at 12,83 feet upstream from the
tail box was used. This turnout had a 4% -inch by 4 -1nch bell-mouth
shaped cntrance and was connected to a flexible hose througn a plexi-
glass packing plate. Water diverted at the turnout made its wiy through
the flexible hose to the second pump (see Fig. 1-2). Ihis S5-inch and
15 hp centrifugal pump which was provided with a4 yated vilve, had a
pumping capacity of 3 c¢fs. It pumped the water 1t recerved trom the
turnout through an clbow pipe back to the tarl hon. The end of the
elbow pipe in the tail box was extended below the surfuce of water to

prevent air intrusion into the recirculating system,

Measuring Devices

Discharge in the flume was measured with u venturi-meter which was
constructed at the downstream end of the return tunnel open to the tall
box. The venturi-meter was calibrated with Cipolletty weir. Vrovision
for temporary installment of such measuring devices was made at the
original construction ot the flume.

Water surfuce slope was measured with two wtatic head tubes cons
nected to the manometer board situated st the downst ream end of the
flume.  Both of these ~tatic head tubes were placed apstyean trom the
turnout and they were 38,85 feot apart . himilarly, Jdiftorential) hoad

measurements were made to detemmine Jischarge through the tumout .
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Sediment Samplers

Sediment samples were taken both from the flume and from the
turnout. The sampler for the flume (see Fig. 4-3) was fixed in the return
pipe at the upstrecam end of the flume, that for the turnout (see Fig. 4-4)
was fixed in the return pipe from the turnout to the flume located at the
downstream end of the flume. In both cases, the samples were taken in
3 locations, one at the center of the pipe and the other two each a
quarter away out from both sides of the center line. Sampling time for
the turnout was 9 minutes--that is, 3 minutes at each location--while
that for the flume was a total of 6 minutes. The sampling time was
determined trom the discharge capacity of the samplers. In each case,
the water-sediment mixture was passed through a 200 mesh sieve and the
volume ot the sediment caught in the sieve was measured in a graduate’
cylinder. There was very little fine material that passed #200 seive

and it was neplacted in this study.

Sonic Dcpth Sounder

LR R R il

Bed profiles of the flume were observed with a sonic depth sounder
over a distance of 10 feet, that is, 5% fect upstream and 4%; feet
downstream trom the turnout, The output from the sonic depth sounder
was obtained on o straip chart recorder and consisted of a continuous
reproduction of the sand-bed protite,  The device responded to waves ree
flected from the wand-bed, heavy sediment concentration in the body of
water, and the caposed concrete bed. 1ts response to the latter two
consisted of a o series of spikes whidh in the case of exposed concrete bed
wont boyomd the bimits of vabibration, Most of the bed profiles
obtained were trec of apthes,  The spikes usually occurred at profiles

tahen bear the tarnout,
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The sonic depth sounder was calibrated for an average depth of
flow in the flume. The calibration was checked whenever the bed pro-
files were to be observed. Brief instructions for the operation and
maintenance of this model 1024 Sonic Depth Sounder are included in the
Appendix. More detailed information is contained in the Manual of

Automation Instruments, Incorporated, Boulder, Colorado.

4

Data Taking Procedure

Through a number of special runs made, it was found that it takes
a maximum of 20 hours for steady state to be reached for any changes of
flow conditions in the flume. The maximum amount of time required for
equilibrium to be achieved for any changes in the discharge through the
turnout was found to be about 4 hours. The amount of time actually
given for any changes in flow conditions, both in the flume and the turn-
out, was in all cases more than what was considered to be the maximum
requirements. Whenever conditions for equilibrium flow both in the
flume and the turnout were satisfied, the following steps were made
for each run in an orderly way.

1. All the tubes coming to the manometer board were flushed with
clean water to make sure that the flow of water through them
was not hampered by trapped air or sand.

2. Both sediment sampler tubes were flushed back to make sure
there was free flow of the water sediment mixture through
them.

3. Static elevation gages used for slope measurement were

checked for alignment.
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Manometer board was observed for:

a. Venturi-meter reading for flume discharge

b. Reading on static elcvation gages

c. Piezometer reading for the turnout discharge

Water temperature was recorded.

Sediment samples were collected both at turnout and flume.

Bed profiles were observed over a distance of 10 feet, that is,
5% feet upstream from the turnout and 4% feet downstream from the
turnout. Plots of bed profiles were taken at 3, 6, 9, 12,

15, 18, 21, 24, 36, and 48 inches from the turnout side of

the flume respectively.

Depth of flow over the concrete bed was measured at four
points over the width of the flume 2 feet upstream from the
center line of the turnout.

Necessary changes were made in the flow conditions to make the
setup ready for the next experiment.

V. A. tube analysis of the samples was made.

The following quantities were derived from the data obtained in

steps 1 to 10.

1.

Discharges in the flume and the turnout were read from the
calibration curves.

Water slope was computed.

Bed profiles were analyzed for the following quantities:
a. Depth of sand

b. Height and length of sand bed forms

c. Scour pit geometry
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4. Sediment concentration by weight was computed.

5. Values for Dgg and o for the bed material load in the
flume and in the turnout.

An effort was made to study the effect of cach variable seperately
on the variation of sediment concentration through the turnout. For
example, at any particular depth of flow and discharge in the flume, a
series of discharges through the turnout were passed with the assurance
that the depth of flow and discharge in the flume remained unchanged
for that whole series.

Any variation in the depth of flow and discharge in the flume
would have introduced an additional variable beside the variation of
discharge through the turnout which would have added to the complexity
of the already complex problem. Variation in the elevation of turnout
which also could enter as a second variable was not a problem. It was
well fixed in its place. The variables which needed constant attention
were the depth of flow in the flume and discharge in the flume. These
two variables are so related that changes in one bring changes in the

other.

Probable Sources of Error in Data

The data obtained for this study might have been affected by many
factors. Only those factors which attracted attention during the
course of this study will be discussed.

1. Difficulties involved in maintaining constant depth of flow
in the flume required for cach series of runs, This difficulty was
mainly due to the changes in pressure of the cooling and lubricating
water supply which after passing through the pump was making its way

to the flume. Since there was no sump in the recirculating flume,
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thercfore, the lubricating water was constantly adding to the depth of
flow in the flume. Lfforts were made to adjust the lubricating water
supply such that it will make up only for the losses due to leakage and
evaporation but an exact balance between the two was not always achieved.
The error due to this factor was measurable but not significant.

2. The wooden partition built in the flume to reduce width from
8 feet to 5 feet was not a stable structure. It assumed different
positions under different flow conditions. In other words, it seldom
remained vertical as it should have. There was also a continuous flow
of sand through the partition to the 3-foot section. Several attempts
were made to stabilize the structure, the situation was improved but
the problem was not completecly solved. The error due to this will not
be considered very significant because that section of the flume where
the measurements were made remained fairly stable during the entire
study.

3. Sediment concentration in the turnout was significantly
affected by turbulence in the flume and bed form movement. Both of
these factors, based on visual observation were found to take place
irregularly in time and space. Their effect on the variation of sedi-
ment concentration through the turnout was observed to be very
significant. The duration of 9 minutes sediment sampling in the return
pipes was adequate to average out high frequency sediment concentration
fluctuations. This duration was, however, not enough for the extremely
low frequency fluctuations associated with the movement of the bed form

passing the turnout,
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Chapter v

ANALYSIS OF DATA AND DISCUSSION OF RESULTS

As indicated previously, data at two different elevations of the
turnout were obtained and variation of the amount and size distribution
of bed material withdrawal through the turnout was studied. For each
location of the turnout, the depth of flow and discharge in the flume
were varied up to the limits of the flume dimensions. Depth of flow in
the flume was varied from 0.89 feet to 1.89 feet. The range of variation
for the discharge per unit width of the flume was from 1.04 cfs to 2.44
cfs.

For each depth and discharge in the flume, a series of discharges
were passed through the turnout. The discharge in the turnout was
varied from minimum to maximum in several steps. The number of steps
in each series was determined by the flow conditions in the flume. For
higher depth of flow and lower velocity in the flume, there were less
chances of air entrainment at the turnout. In such cases the discharge
through the turnout was varied from its minimum value of 0.23 cfs to
a maximum of 1.70 cfs in four or five steps. Because of air entrain-
ment, it was not possible to obtain a representative sample at higher
discharges through the turnout for lower depth of flow and higher
velocity in the flume.

Depth of flow and discharge in the flume and turnout elevation and
discharge through the turnout, are unfortunately not the only variables
affecting variation of sediment withdrawal through the turnout. Another
most important variable is the sediment concentration in the flume which

in turn is affected by the slope of channel, bed material size, particle
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size distribution, bed roughness, bed form movement, scour formation,
size of scour pit, etc.

In this study which is based on 126 laboratory tests (data for the
tests are included in the Appendix), attention was focused on the
variation of sediment withdrawal through the turnout with respect to
the following changes:

1. Effect of flume and turnout characteristics.

2. Bed form movement in the flume.

Analysis of Flume and Turnout Data

The data collected under various flow conditions in the flume and
the turnout was analyzed extensively. Almost all possible combinations
of the parameters in the phenomena were studied. Efforts were made to
find a relationship between sediment concentration through the turnout
and the other related parameters. Various plots of the data were made.
None of those plots showed an obvious relation between the variables.
One example of these attempts is shown in Fig. 5-1. In this figure,
the ratio of sediment concentration through the turnout over the sedi-
ment concentration in the flume is plotted against the ratio of discharge
through the turnout over the discharge in the flume with the ratio of
the total depth minus the turnout crest elevation from the concrete bed
of the flume over the total depth minus the depth of sand as a third
variable. The range of variation for the third variable Yt is from
0.6 to 0.96. This range is divided into nine equal intervals and each
interval is indicated by a letter A, B, C, etc.

At the start of this study, it was assumed that the turnout

elevation from the bed of the flume and the discharge ratio in the turn-
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Range of Yt Symbols Range of Yt Symbols
0.0 to 0.6 Q 0.80 to 0.84 F
0.6 to 0.64 A 0.84 to 0.88 G
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Figure 5-1. Plot of concentration ratio versus discharge ratio with
the depth ratio Yt as a third variable.
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out and the flume are important factors for the sediment withdrawal
through the turnout.

Due to lack of an obvious relationship between the sediment
concentration through the turnout and the other related parameters, it
was found necessary to use regression analysis. Even then, the cor-
relation was poor when the parameters were used in their dimensional
form. Finally, all the parameters were transformed into dimensionless
form and then the correlation techniques were applied.

The statistical analysis of data was done at the Colorado State
University Computer Center where the computer program for such analysis
is available on permanent file. This program computes a sequence of
multiple linear regression equations in a stepwise manner. At ecach
step one variable is added to the regression equation. The variable
added is the one which makes the greatest reduction in the error sum
of squares. Equivalently, it is the variable which has highest partial
correlation with the dependent variable partialed on the variables
which have already been added, or it is the variable which, if it
werc added, would have the highest F-value. In addition, variables
can be forced into the regression equation. Non-forced variables are
automatically removed when their F values become too low.

From the many statistical equations so obtained, the following

equation was considered to be the best of what was available.

¢, = (01336 ¢ "% @% M (1?0 )0 a/cp? M (s

in which



46

Cf = Sediment concentration in the flume
Z = Rouse number
Fn = Froude number

Rn = Reynolds number

(@]
*
1]

%— , in which V = flow velocity in the flume, and

*
shear velocity

Uy

Equation (5-1) in simplified form is:

W 2.14 0.56 0.3
- 50 v (5-2)
C, = (0.1336) (== ( vE ) (u, )
in which
wso = fall velocity (average size bed material)

v kinematic viscosity of the water

The summary table for the free variables given to the computer
and their corresponding regression coefficient R and F (F-Test for
Significance of Regression) values taken from the computer output for

Eq. (5-1) are the following:

Step Variables Control Multiple Increase F value
number entered Status R qu in qu to enter
1 Ce Free .95986 .92133 .92133 1452,23731
2 Fn Free .96176 .92499 .00366 5.99955
3 Rn Free .96259 .92658 .00159 2.63433
4 C. Free .96288 92714 .00056 0.93627
5 Z Free .96423 .92974 .00260 4,44293
6 Qr Free .96428 .92983 .00009 0.15559
7 D, Free .964 30 .92987 00003 0.05660

in which
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. E, - D
Dr Turnout elevation - Depth of sand -t ms and
Total depth - Depth of sand dt - Dms
Q = Discharge through the turnout 85
T Discharge in the flume Qf

The other variables are defined previously.

The coefficient of determination for this cquation is 0.93,
In other words, this equation cxplains the total variation of scdiment
concentration through the turnout within 93 percent of its actual value.
From the range of variation of the parameters on the right side or the
forementioned equation, it is clear that the variation of sediment
concentration through the turnout is basically a function of the sedi-
ment concentration in the flume. The sedimenc concentration through
the turnout computed by the equation plotted versus the sediment con-

centration found in laboratory cxperiments is shown in Fig., 5-2,

Discussion of Results

One possible explanation for the disappcarance of turnout
elevation from the bed of the channel and the discharge ratio in the
final statistical equation could be that th: turnout was not sufti-
ciently raised. The original clevation of the turnout from the bed of
the channel was 0.74 fcet and it was raised 4 inches in one step during
the course of the study.

The plot of bed material distribution throughout the depth
of the flow computed by the Einstcin Bed Load Function is shown in
Fig. 5-3. It is clear from this graph that the variation of bed

material concentration at higher clevations from the bed of the channel
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is insignificant. Assuming that Fig. 5-3 is applicable, then most of

the sediment load in this laboratory flume was transported as bed load,

tifect of Bed torm Muvemeiit

Three sets of special runs were made to determine the timeo
veriation ot sediment concentration through the turnout and its relation
to the bed fu.t tavement in the flune.  In each case, sedinent samples
were taben both frus the tluke and the turnoul at cqual intervals of
time and the bed profile was observed at a distanee of one fout from
the turnout side uf the flume. 1he Jdala fur these thice seta ot apecial

PuRs 15 given in a Wrict fors an table -1

Table S-1. Sumary ot the Jata for the special runs

R ; set ) st set )
Discharge in the fluse («12) B.70 10,20 9.50
Pischarge in the turhout (dfs) 0,67 0,66 1.15
Yotal depth (sand « water) (fU) 1.996 1.9% 1.920
Water temperature (L) 2.5 29,0 .5
Slope uf hanncl 6.98x10"} WIN 5. an10”
Total tine (houtz) 6.0 V.o .8
Madier of samjlcs 12 10 10
sediment conhcentration

in the (luse (ppm)
MHaji s 1? 10 $3
Average i5 §9 48
Hinisus 1 ] 44
Bediment concentration

in the tumout (ppa)
Haxinun 68 sl6 318
Average 54 M7 174

Minimun 32 190 128
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According to these figures, the variation in sediment concentration
with time through the turnout has a greater range than the variation of
sediment concentration in the flume. Great variation in sediment con-
centration through the turnout was also visually observed through the
transparent section (observation window) of the turnout. The variation
of sediment concentration through the turnout was greater whenever there
was a collapse of sharp peaks or unstable bed formation in the vicinity
of the turnout. This was also visually observed. In fact, the water in
the flume was so clear sometimes that one could easily sec through it to
observe the chanyes taking place in the bed of the channel,

The Jongitudinal arcas of the sand thichness over distances of
one depth of flow, two depths of flow (about 1', feet and 3 feet), and
the entire length of 5 teet upstream from the center line of the turn-
out were determined from the analysis of the bed profile which was ob-
served and recorded with cach sample at a distance of 1 foot awdy ftrom
the turnout side of the flume (see Fig. 5-4).  These areas and the
sediment concentration through the turnout are plotted versus time in
the order the wumples were obtained.  The plots tor cach set as shown
in Fag. 5-5a, b, and « indicate that the sand thichness on the bed
of the flume 15 pencrally wmall when wediment concent ration through the
tumout s Jarge, and o~ Jarge when the sediment voncentration through
the turnout us small.  ITrom the analysas ot the specral runs plus visual
obaervations, 1t appears that the sediment concent ration tirough the

turnout is significantly affected by the bed movement in the flume,
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Figure >-3a. The effect of bed form movement in the flume on the variation of
sediment concentration through the turnout.
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Figure 5-5b.

Longitudinal area of sand profile one depth
Set 2 B 1d = of flow upstrean from the center line of
the turnout (inz).

Lengitudinal area of sand profile two depth
© 2d = of flow upstrean from the center line of
the turnout (inz).
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Au = distance of 5, ft upstrgam fron the center
line of the turnout (in<).

a=C, = Sediment concentratior in parts per million
(ppm) .
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The effect of bed form movement in the flume on the variation of sediment concentration
through the turnout. Note: The relative magnitudes of the longitudinal areas are about
the same as for Figure 5-5a.
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Scour Pit Formation

The bed profiles taken with each run were analyzed for the size
and shape of the scour pit which is usually formed at the vicinity of
the turnout. The data so derived indicate that the depth of scour is
proportional to the size of the scour. The two plots which show this
relationship are shown in Fig., 5-6a and 5-6b. Fig. 5-6a indicates this
relation for the data taken at the turnout elevation from the bed of
the channel equal to 0.74 feet and Fig. 5-6b shows this relation for
that part of the data which were taken at the turnout elevation equal
to 1.073 feet above the cdncrete bed of the flume.

An effort was made to fﬁnd a relationship for the depth of scour
in terms of the other related parameters. By using correlation

techniques on the data at hand, the following equation was obtained.

- 1.34 -0.9 0.06 0.03
D = CQ) (V)T /ey TU(E) (5-3)
in which
DTl _
D = _ . N
rs df , DT1 , and df are previously defined
C = a constant
Q = Discharge in the turnout _ SE
T Discharge in the flume Q¢
v = JVYelocity in the turnout XE
T Velocity in the flume Vf
c = Sediment concentration through the turnout _ EE
r Sediment concentration in the flume - C
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Figure 5-6a. Depth and the size relation of the scour-pit.
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The coefficient of determination for this equation is (0.41. In
other words, this equation explains the total variation of scour
within 41 percent of its actual value. According to this equation, the

depth of scour is mainly a function of the discharge ratio Qr .

From Model to Prototype

The variation of bed material concentration throughout the depth
of flow in the flume and an assumed irrigation canal was computed by

the Einstein Bedload Function. The following values were used in the

computation:
Canal Flume

Average depth of flow = 9 ft 1.5 ft
Average bed material size (DSO) 0.25 mm 0.19 mm

" " " " " = 0.35 mm

" " " " " = 0.45 mm

" " " " " = 0.55 mm
Grain size digtribution (o) = 1.30 1.30
Froude number = 0.30 0.30

The results of this computation are plotted and shown in Figures
5-7a, 7b, 7c¢c, and 7d. For reason of comparison, in each case the distri-
but ‘on of bed material concentration in the flume is plotted on the same
graph with the concentration of the different bed material sizes used
in the canal. The plots indicate that the variation of bed material con-
centration in the flume is almost the same as the variation in the canal

with the average bed material size equal to 0.35 mm. This means that
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if the results are to be applied to a 9-foot deep canal, then the model
prototype extrapolation will be valid if average bed material size in
the canal is 0.355 mm. The choice of using a 9-foot decp canal with

the given flow conditions in this computation was purely arbitrary and
it was not the goal of this rescarch to study any specific problem.

The plots further indicate that most of the scdiment load in the flume
is transported at clevations less than 10 percent of the depth ratio.

In other words, the variation of sediment concentration at eclevations
higher than 10 percent of the depth ratio from the bed of the channel is

not significant.
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Chapter VI

SUMMARY AND CONCLUSIONS

The phenomena of bed material withdrawal at farm turnouts was
studied in a sand bed laboratory flume. The average size of the sand
used as bed material was C.19 mm , and the grain size distribution was
1.30, It was the purpose of this study to determine the effect of
depth of flow in the flume, discharge in the flume, turnout elevation,
and the discharge through the turnout on the variation of sediment con-
centration through the turnout. The ranges of variation for these
variables were:

Depth of flow in the flume, df from 0.89 feet to 1.89 feet.

Discharge in the flume, Qf from 5.2 cfs to 12.2cfs.

Turnout elevation dC from .74 feet to 1.073 feet.

Discharge through the turnout Qt from .23 cfs to 1.70 cfs.

The results of the analyses are as follows:

1. The four inches increase in turnout elevation from its
original elevation of 0.74 from the concrete bed of the
flume did not prove to have considerable effect on the
amount of sediment withdrawal through the turnout. The
reason for this is that most of the sediment load was
transported as bed load and the variation in sediment
concentration at higher elevation from the bed of the
channel was insignificant.

2. Sediment concentration through the turnout was found to
be mostly affected by the concentration in the flume

as shown by the statistical equation (Eqs. 5-1, 5-2).
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The bed form movement in the flume has a significant effect
on the variation of sediment withdrawal through the turnout.
A collapse of sharp peaks or unstable bed formation as bed
form moves by the turnout increases sediment discharge through
the turnout tremendously. The support for this statement is
based on visual observation and the results of three sets of
special runs presented in Chapter V.

The scour pit remains geometrically similar under different
conditions of flow in the flume and the turnout. The average
depth of scour was found to be predominantly a function of
the discharge ratio and velocity ratio of the flow in the

turnout and flume respectively.
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Chapter VII

RECOMMENDATIONS FOR FUTURE STUDY ON THIS SUBJECT

The following suggestions may incrcase the amount and range of

design information for a better understanding of the sediment with-

drawal phenomena at the farm turnout.

1.

The phenomena should be studied at a greater range of

turnout clevation from the bed of the channel.

Having two turnouts of different sizes located at a reason-
able distance from each other along the length of the flume
will provide a better basis for the study of this problem.
Having transparent sections both in the flume and the turnout
would help to understand the changes that take place in the
bed of the channel and the variation of co centration both

in the flume and the turnout.

It will be better to stuuy the problem with at least two
different sizes of bed materials.

The time for taking the sediment samples from the turnout and
the flume should be more than what was used in this study. If
possible both samples should be taken at the same time.

It will be a worth while effort to investigate the similarity
and scaling criteria for suspended load in sediment laden

flows.
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APPENDIX B
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Sonic Depth Sounder

"Sonic depth sounder is an instrument which can see through

water by means of sound waves. To operate sonic depth sounder
properly, it is necessary to understand the principles upon

which it works.* The human ear can hear sound waves whose
frequencies range from 20 cycles to 20,000 cycles per second.
Sound waves oscillating at a frequency greater than 20,000 cycles
per secend are inaudible and are known as ultrasound. The ultra-
sonic waves which the sonic depth sounder utilizes have fre-
quencies not of thousands of cycles but millions of cycles per
second. In speaking of these frequency waves, the term
"megacycles' meaning millions of cycles per second is used.

Sound waves are used to obtain information about the depth

of water by studying the echoes that are reflected from the
interface between the water and an obstruction. It is possible
to determine distance by the length of time required to receive
an echo from an obstruction. The instrument always measures the
distance from the transducer to the obstruction.

The sound waves are produced by a piezoelectric crystal.
The crystal is electrically pulsed after which it vibrates at
its own natural frequency. These very short sound waves will
not, for all practical purposes, travel through air. They will,
however, travel through most liquids. The crystal vibrates at
its natural frequency for only a few cycles. The result is a
very short burst of energy which travels through the water to
an obstruction. Most of the sound is immediately reflected
back toward the transducer.

After the crystal has given off its short burst of sound
waves and stopped vibrating it '"listens'" for returning echoes.
When the echoes are received they cause the crystal to vibrate
and produce an electric current which could be displayed as a
pip or cathode ray tube screen or plotted on paper with x -y
plotter."

Instructions for the operation and maintenance of Model 1024
Sonic Depth Sounder could be obtained from: Automation
Instruments, Incorporated in Boulder, Colorado. Reference
to this has also been mentioned in the List of References.





