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ABSTRACT OF DISSERTATION
OPTIMAL PARAMETER IDENTIFICATION OF NONLINEAR,
TIME-VARIANT HYDROLOGIC SYSTEM MODELS

Investigation of river basin charactcristics is important to river
basin planners, engineers, atmospheric scientists, mathematicians,
statisticians, and agriculturists.

This study focuses on the important need in river basin
investigations for developmeat of mathematical models that describe
hydrologic system response to rainfall. 1In particular time variant,
nonlinear simulated models for runoff and a predictive model for
evapotranspiration are presented. One of the major objectives of this
study i< 1n the dovelopment of a hydrologic model tor water delivery
particularly suited ftor a developing nation, though gencral in
application. Emphuses are placed on using what is available in the
hest possible wav. lhe proposed model is evaluated with respect to
totnl computation time required and case of under-tanding and utiliza-
tion. Solution procedures are evalunted with respect to speed of
Fonvergence to optimal solutioas of computed renoff and paramoters; and
general accuracy and efticiency,

Two models are develuped first and second order nonlinear
difforential c uations  trom the results obtained, the first ordor
nonlinear Jdiffcrential cquation pruves tu be a better monthly model
for river bazin responize zimylatljun his conclustion i based on
computed ruhoff using the mudela, and the predicted sessonal and
ARRUA) evapot Farspirat juh Jusses

The river basin clearly desunatrates nonlinesr characteristics,

Linear sodels, developed for comparative purpeses with the proposed
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nonlinear models, consistently predict low evapotranspiration values and
comparatively poorer computed runoff values. An optimizatioi procedure
is carried out with the objective function being the sum of the

squared difference between the observed and computed runoff. The
constraints on the objective function are based on the parameters or
coefficients of the differential equations; and these are further

based on the physical realities of the hydrologic system--the river
basin.

Two solution approaches used were based on the above objectives.
Quasilinearization and gradient (steepest descent) techniques were
utilized. Quasilinearization proved to be an incffective algorithm
as far as the proposed models are concerned, and diverged in solving
all the various models. The gradient technique proved to be a good
algorithm and could be modified to handle time dependency of para-
meter values. All the parameters, cexcept one, varied very little and
their corresponding average scasonal values were successfully used,
The time dependent parameter o, referred to in this study as the
sonsitivity parameter, is resporsible for the prediction of the
ovapotransplration {osses,

These models were applied to an actual river basin In a doveloping
country in order to verify them and gain insight into them through
exporimental methods,  On the basin of these, conclusions drawn can
be usoful to planners of water resources dovelupment, agriculturists,

hydrologists and even theureticians,

Samuel Tuffuor

Civil Engincering Departmont
Colorado “tate University
Port Coliine, Colorado 803521
June, 197}
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Chapter |
INTRODUCT TON

Numerical simulatien of the hydrological processes occurring in s

OVenAls akd 43 a Ieahs of oblaiAlhg an Improved undepstanding of the
governing hydroluglc prucesses.

Fros an crngicccrifg apjilicatiocns OIAL uf vicw, bukcrival sisulation
aAd modeling atc important ahd uscful ih planhing and Jdeveloping water
resdurces Projects The tipdrologist, ofi the ulhey Kand, 1> Kalnly
interested in inveztigation: (uhcerning the phyziial proceszes that
OCEUT IR varicus faftls of the Nydrolugival systes.  (his :tudy empha-
sifes bath the chgibeer s whd the hydrulogist's ihlerests iH Rumerical
simvlatios almed at the vplimal identification of a hotlihear, time
VaTiaAt hydiulogly systes  The heed Fot This study 13 in sisu)ating
rumaff asd predlcting crvapottanspitation, fof planning and Jeveloning
vilter resoutccs, cxjiccisily for waltey supply akd floed contyo) for 4
develeping countey

AR eatrencly injortant probles Ih hydrology s 1R the Jdevelopment
of realistjc nathcnalical mudels of Agdraloglc systenm bechavior IR
transforsing sainfall input intu yuhuff  The rainfal)-yunuff relation:-
ship have beeh fouhd b1 sume pEeviuvue jEvdestigators to be hatl inear.
ARDARE Theve ihcatigatufs ate SiHgh (JY65), Frasad (1967}, and Labadie
(1968) . Mowever, the (Napactoriafis jatadelot: uf the mathenatjcal
mode) have boer araumed ad tie jhvaflant, wheycar they afe (learly
defining «ortain characterietics of the giver basln which Jepend o

climatic changes and land use. This assumption of “time invarisnt


http:h4ovi05br.Msluy)upWA-4.bc

systom" is usually made either to simplify the mathematics so as to be
solved by extsting mathematical tools, or it may he due to lack of
inadequate sieutaticn of the systes. 1t 15, therefore, jgportant fipst
to develop the conceptual framcwork and 113 equivalent watheaatical
equations befure such assuaptions Jibe “Iise Invariant System' can be
sade with justifycation (e.g., Jue tu lack of mathematical tools ta
solve the Jefivced mathemallical cquations). Partial Jdifferential equa-
tions have to tc used (though ithey may be mure di1fficult to handle with
respect to Uine aRd space varialiohs afid belavior uf the :ysten
paramcter:s ) The present tescarch will bLe directed toward finding the
moAthly and scasoRa) changes and varlatlions aof the system paramcturs,
by using data for such periods with i resorting to more sophisticated
Or noneslstihg mathenatival touls

Mafiy hydrologle ahaly:es have beeli bYased oh sicthumds doveloped
specifically fur the particalar probilems facing the hydrojogist.
Unavailabiility of adequale dala may Yo a Rajuf cofiztyalht if uslhg mOTE
sophisticated uf mufe genefalited appivaches Lack of conceptual ideas
of the jhysical svalew afe alsu problens that can face the hydroloagist
OF ¥Avestigatout ih Jderivifig ulique medels and solutiens even for one
particular tasin at differenl feflods uf time.

Numerical simulation has cunsidofabile prosiae and potential as well
a8 Jlimitatjuns 1te promize and potential may be found, amobg other
things, 1n invesUigatuts bocuming cunceplually tuajpetent ahd sute vapable
InUsiRg the cutteil of Boufe (uffect fulclautial tolatllenthips chosen to
represent vatious jdr2isal SHoceises OCCuUrFifng © tho flver basih, and

the paraseters used (o describe the varjous characteristics of the river



basin. [Inadequate data or unavailability of basic data may offer a

serious limitation to the numerical simulation,

A Caso Study - 1he Todzie River Basin (Chana)

A case study in Chana (F1g.1.1) 1s considered. Only 10 yoars of
rainfall and runoff Jdata are avarlable. These data may appear to be
short. In practive, however, short Jduration Jdata may be all that is
available and must be used. A naive as well as relevant point could
be raised regarding waiting unt*] sufficient data arc collected. This
is sometimcs an catremoly impurtant point. In thils regard it is
ReCessary to state that economics and the politics of the argument
are usually the most importany considerations for carrying out a
project.

It is of course also true that certain projects may be postponed
Unti] adequate Jdata may be gathered for econoamic, political, physical
and social reasons. This, however, Joecs not mean there should be a
period of “fulding aras” especially for the engincer or the hydrologist
in particular 1t i 1mportant for the hydrologist te vome up with
his best esTimates of the hydrologic varjabides, hetter theories, and
improved models for the hydrologic sy:ter, othetwise somecone else
(usually Jess qualificd) may uae ahy avallable estimates, theories apd
models, The less qualified personned, who may not be fully aware of
some of the future Ikplications of the vatiables doacriliing the
hydrolugic system, may (reate [tubless that the prujecl was moant to
s0lve, Thi: may smean devolopwenit un the teverse. The author pref‘rg
to call this the concept of development-furcgune. In vortaln

economically develaped tountries or Jeveloped countries the development
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foregone may do little to alter the economy; wheroas, similar kinds of
problems in a developing country could constitute a national disaster.

Project design and planning in a developing country is hindered
by iradequate data concerning certain important variables, usually
due to economic factors. Since it may be necessary, nonetheless, to
carry on plans for a given project, it therefore becomes important
to dovelop a model that will give reasonably good estimates or approxi-
mations to the unknown variables. A major concern in this research is
to develop a hydrologic model which considers certain important
characteristics of a river basin (Case Study in Ghana, see Fig. 1.1)
aimed at finding pood estimates or approximate values of a certaln
unknown variables. The data available tor this research is ten years
for rainfall and runoff records. The proposed model is, therefore,
concerned with extracting cnough information from this limited data
for the purposes of simulating runoff and predicting evapotranspiration.

DoWiest (1965) defined the hyvdrologic system as the entire area
that contributes to and sustains all of the flow in its main channel
and tributaries. If the hydrologic system s considered as a '"closed
gystom,' be it a large drainage basin, or a small watershed within the
basin, without due regard tor interflows from neighboring basin; with
respect to physical and peologic fentures of both basins then this
definition is not peneral enough.

A hydrologlce system, therefore, may be defined as a basin or
sub-basin within geopraphic, peologlc and by hydrologic framework
which constitutes contribution to and sustaining of all of the "flow
in its main channel and tributaries' and possible intorflows with

neighboring basins which could be dofined by a continuity relationship,



Some logical and simplifying assumptions may be made by disregarding the
effect of interbasin flows where study of the physical system may here
be a useful guide.

Todzie, Avu Keta areas in Ghana have been somewhat neglected areas
in the river basin development programmes, even though some reconnaissance
and feasibility investigations have been made.

Todzie is a very attractive spot for research for the following
reasons:

1. The general area has been plagued with floods for many years
and therefore the characteristics of the basin need be investigated.

2. Todzie is typical of the river basins in the developing
countries for the following reasons:

a Not as much data needed for research investigations or
project analysis may be available.
b. Certain important variables like evapotranspiration have
not been measured. This may be due to:
i. Lack of funds or economic constraints.
ii. Not a priority in the National Development Plans.
iii. Lack of manpower and expertise.
iv. Political, social, institutional and legal
constraints,

It is important to bear these constraints and problems in mind
when developing a conceptual model for a river basin in developing
country. The model should be:

1. Rigorous and realistic.

2. Simple to handle conceptually and mathematically,
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Al

3. Fast and inexpensive with respect to computations by the

computer.

Statement of Objectives

The specific objectives of the research are to derive:

1. A model that uses whatever is available. In many
ﬁlanning departments, planning may take place using available data or
information however short or inadequate they may be or the type of form
they appear. It is important to bear this idea or "handicap'" in mind
when developing a conceptual and a mathematical model, especially for
a developing country.

2. A model which can be used or modified to forecast future
runoff values using past records of rainfall and runoff data. This is
important for planning reservoir operations.
| 3. A model which can illustrate the relative importance of using
either seasonal or monthly data in determining the runoff.

4, A model which can give some estimate of evapotranspiration
for a given basin without actually going through .he process of
measuring it, This is important for areas that some quick or rough
estimates of cvapotranspiration may be needed without investing much
capital, which in some countrics, especially the developing nations
(for which this resecarch is mostly geared) may be a limited resourco.

S. A well simulated model which unly requires rainfall and
runoff data and nced not necessarily require other measurcmonts, e.g.,
subsurface flows or evapotranspiration.

6. A modol that can casily be handled,



.7. A model thet considers the sensitivity of the basin. Not all
of the rainfall that falls in a river basin gives rise to runoff. Rain-
fall giving rise to runoff depends on where storms hit in the basin and
they are scasonally dependent; some may be lost from the basin through
evapotranspiration processes; and some may not find their way into the
main channel in the basin during the infiltration processes. Therefore,
it should be pointed out that the rainfall giving rise to runoff depends
on slope, vegetational cover, soil and surface characteristics and
where the storm normally or mostly hits in n given basin during a par-
ticular month. A parameter should therefore be investigated which
should give meaning to the ability of the basin to transform a given
rainfall to runeff in the river channel. This parameter is referred
to here as the sensitivity parameter o , which depends on the foregoing
factors, but gives the direct fraction of the amount of input which
goes into channel output. The paramcter a is directly related to
evapotranspiration losses.

8. A mode!l whose parameters may be uniquely dotermined within
the limits and capabilities of existing mathematical tools; and
parameters which are directly significant and applicable. Previous
investigators have developed hydrologic models which have parameters
that may be functions of several variables which cannot yet be
determined and therefore obscure the importance and direct usefulness
and application of the model in practical engircering and hydrologic
fnvestigations. It is the objective of this rescarch to illustrate
the foregoing important ldea by using the same assumptions and concepts
in developing mathematically two soparate mathomatical models; and dis-

cussing the shortcomings of ono with respoct to the other.



Use will therefore be made of the better model based on the
following considerations:

1. A model whose parameters may be uniquely determined within
the limits and capabilities of existing mathematical tools.

2. A model which will be simple to handle since the model is
being developed for a developing country where mathematical expertise
may not be as sophisticated as the more economically developed
countries.

3. A model which will be economic (computer-time-wise). This
is important in a developing country where computer usage and funding
are a matter of economics.

4. A realistic model without trading off rigorousness of the
approach. This is important since length of data is not long enough
in a developing country, therefore it is important to stress need for

a rigorous approach in order to use what we have. 1In Chapter IV,

Cases I and Il models are developed with the foregoing objectives.

Summary of Chapters

The main purpose of Chapter I is to:

1, Present a discussion of data availability, length and type
with respect to planning.

2. Present a discussion of numerical simulation--its merits and
defects, and the relevance or it in this research work, It presents a
brief discussion on nonlincar time invariant models.

3. Present the importance and main objectives of this research,

Chaptor 11 gives a survey of some of tho various investigators

who have presented, doveloped, or used hydrologic models.
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Chapter II1 is devoted to the development of the conceptual model.
A general description of the conceptual model is given, and the proposed
model is analyzed with respect to unique determination of optimal
parameters, computed runoff, and svapotranspiration. Various important
assumptions associated with the model are discussed.

The mathematical simulation of the physical system and development
of the hydrologic system equations is the subject of Chapter 1IV.

Chapter V outlines various methods of solution, and their
advantages and disadvantages. This discussion includes flow charts of
various optimization processes.

A case study is carried out on the Todzie River Basin, located in
Ghana, and summarized in Chapter VI. Type of data and analytical
approach are presented. The hydrologic system model is tested by an
optimization process where the model's computed runoff is compared to
the actual observed runoff. Evapotranspiration estimates are given
for the proposced models. Graphs and tables are given wherever
necessary. Description of procedure, analysis and results of the study
are presented.

Chapter VII gives the summary, conclusions and recommendations.
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Chapter II‘ B
LITERATURE REVIEW

; e SRR S PRI R TS s
i 2".“,.?»,: PR ST T W e A.,

Watershed models have long been used to 1nvest1gate behavior and

f'

1nterna1 structure of the hydrolog1c system and 1ts response to rain-

fa11 It is part1cu1ar1y 1mportant however, to Judge 1f based on
'unrea11st1c assumptions used in der1v1ng the mathemat1ca1 model wh1ch
1: supposed to describe the behavior of the physical system. o

In 1934, Zoch presented a model which assumes that a watershed can

be approx1mated by a 11near channel Wthh is in ser1es w1th a 11near

reserv01r .

T

at time t =0, Q=0, ng%»+ Q=R (2.1)

in which K is definedﬁas the: characteristic parameter of  the.water-

shed (Pig. 2:1).

vRainfall® vaoons tultor o parameter | - Runoff"-
Input ——-y K - p—_— Outsut

. System —

:Fig. 2.1 Zoch's*modei.

{,« :.A"..; Y ‘ “ U(\‘.,{* . r;\_”q. .;_,‘a»?.;“ «gjgi‘}.\'zk;j:'w,ﬁ‘;;::z%,{«‘ ,‘ S .. feiyd ‘rj g '( 4
“-There are séveral 'significant points concerning Zoch's '

S e
work: *
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1. He considers the hydrologic system as having a lumped
precipitatién input, and a sfstem that converts the input into an
output (runoff) by use of a mathematical model with parameter K.

2. He conceptually relates a channel to a reservoir.

3, He uses an unrealistic assumption of a linear reservoir.

4. His assumptions of a linear channel is not reflected in Eq.
2.1, A linear channel may be defined as a fictitious channel in which
the time t required to translate a discharge Q of any magnitude
through a given channel reach of length & is constant. Thus, when
an inflow hydrograph is routed through the channel, its shape will not
be changed. Therefore, a linear channel involves pure translation
and translation is not seen in Eq. 2.1.

Zoch's work was an important beginning of a series of hydrologic
models, of which the present research is one.

In 1966, one of the most successful efforts at simulation of the
entire runoff process for watersheds was conceived at Stanford
University by Linsley (1966), referred to as the "Stanford Watershed
Model." This model considers the overall picture of the hydrologic
system, from the surface to the subsurface and ground water flow and
related climatic and hydrological effects; that is, the hydrologic
cycle. For large watersheds, it may also be important to break this
system down into various spatial subsystems, with numerical simulation
carried out, in order to understand in depth some of the basic physical
processes that are taking place,
place.

The hydrologic cycle represents the redistribution and circulation

of the water by the atmosphere, earth, and sea. By continuity relations,
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based on the Law of Conservation of Mass, a hydrologic cycle could be
developed for any given basin. For a given basin, a balance equation

could be written:
P=Q+ PMF + E + AS (2.2)

where P 1s the precipitation,
Q 1is the runoff, and

PMF represents porous media flow out of or into the basin,

This equation describes the overall runoff cycle of a basin. One
can be misled by the apparent simplicity of this equation. The cycle
is actually very complex since all the variables are time and space
dependent variables. Thus, any given system can be viewed as a
number subsystems which are joined together by application of the
continuity principle.

Amorocho (1961) used a statistical approach by using the gamma

distribution to fit runoff hydrographs:

N-1
) = T T o (2.3)

o]

He developed empirical relations which separately relate rainfall
intensities to each of the parameters N and K in a nonlinear manner.
Amorocho's model was a nonlinear algebraic model, which becomes

linear when the parameters N and K are assumed as constants.

Singh (1964) proposed a model which consists of a linear channel
and two linear reservoirs of different storage constants in series.
Notice the similarities and modifications between this and Zoch's (1934)
work. Singh's entire model may be considered as a distributed lumped-

system, where the linear channel is used in producing a time-area
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selationship for the watershed with variable areal distribution of
instantancous effective rainfall. The nonlinearity of the rainfall-
runoff process is introduced by parameters as functions of the effective
rainfall input.

Sugawara and Maruyama (1950) suggested a concept of cascade through
two unequal clements, where routing of both surface uand subsurface flows
are assumed lincar. Singh (1964) subscquently used this concept of two
unequal lincar clements, and so did Jamieson and Amerman (1969).

Kulandaiswamy (1964) used a system analysis approach for his
rainfall runoff relationship. He proposed a general mathematical model

for the storage of nonlinear reservoirs as follows:

N n M m
d d’l

s= J a2 + ] b @I~ (2,4)
nZo n dt" meo ™ de™

where S 1is storage, t is the time, N and M are integers, and
a, (Q,1) and by (Q,I) are parameter functions of the outflow Q and
inflow I .

By combining the foregoing equation with the continuity relation,
the resulting general differential equation can be shown to be that of
many mechanical and electrical drainage systems, indicating an analogy
between the watershed hydrologic system and the mechanical and the
clectrical dynamic systems. Kulandaiswamy's resulting differential
equation (after dropping insignificant terms) proposed for his
simulation analysis is of form:

dlq , , ¢ d d21
a5 4c3 a8 ;:% +a, a% +Qm= -bl ;:!.+ 1 (2.5)
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whore 8.8, , 3, and b° are coefficients. FEquation 2.4 is
linear and though nonlinearivies were considered by noting changes in
the parameters for various storm events, ‘The parameters 4y s nl .
8, were found to decrease exponentially with increases in the peak
discharge of direct runoff. The changes in hl and ho were found
to be insignificant. Since the model is basically a linear model, the
parameter: arc readily determined.  Kulandaiswamy's model wos found to
produce better fit to observed data than many other lumped-system
models.

Prasad (1967) used a simplification of Kulandaiswamy's model with
loss of superior fitness. The model was lumped, time-invariant, and
nonlinear. He derived his model from the concept that a nonlinear
reservoir with nonlinear outlet control is analogous to hydrologic
system storage and discharge. Notice the improvement on Zoch (1934)
and Singh's (1964) works; and the similarity between Kulandaiswamy's
Eq. 2.5 and his second-order differential cquation, which is of the

form:

~N

d N-1 d
KpSF e kN QI e (2.6)

t

(=9

whero Kl , K2 » and N are unknown parameters to be determined in
the system idontification problem. Prasad used the following general

nonlinear storage oquation:

s = KQ"+ K, g-‘tl . (2.7)

At peak discharge he assumed dQ/dt = 0 , which simplifie§ the storage

oequation for peak discharge to:
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' N
sp . K Qp (2.8)

where Sp is the storage at poak discharge Qp which can be
dotormined from the observed hydrograph.

Unlike previous linear models which have been pointed out as linear,
Prasad's nonlincar equation has no analytical solution. He used a
trial and error procedure in @ numerical antegration algorithm on a
digital computer. Prasad's model samplifies the procedure of analysis,
but it gives a4 poor tit to observed hydrographs. Particularly at the
recession portion the simplifications and spproximations can bo avoided
if the system is fully synthesized and an elaborate computer analysis
performed.

In general, there are two types of the modeling procedure:  The
mathematical modeling of the actual physical system (the river basin);
and the physical modeling of the phvsical system. Since this study is
concerncd with a4 mathematical model, a brict mention and references
will be given on a physical model.

Physical models in physical hydrology are carried out for tho
specific study of an isolated phenomenon, and, in general, deterministic
models of the runoff cycle may be either physical or computer models,
The feasibility of phyrical models has been studied, among others, by
Chow and Harbuaugh (1965), Amorocho and Hart (1965), Grace and
Eagleson (19606), and Chery (1905), using laboratory catchments,

A general review of mathematical models of catchment behavior was
given by Dawdy and O'lonnell (1965). They divided tho mathematical

models into two catecgorics:



17

1. The comprohensive simulation of catchment hehavior which

treats the catchment components in lumped form.

2. The complete specification of cach component.,

A model of the first category was used, and the major parts of
the model were: The surface storage, channel storage, and soil
moisture storage, or subsurface storage. Precipitation, evaporation,
infiltration were considered, where applicable,

A model of Dawdy and O'bonnel's type, which is perhaps the most
widely known, for use with a digital computer 1s the "Stanford Watershod
Model" of Crawtford and Linsley (1966). This model is programmed to
produce hourly streamflow data using daily evapotranspiration and hourly
precipitation data.

Chow (1967) pointed out that the discovery of nonlinearity in
hydrologic system behavior was prompted largely from theoretical
interest. This interest prew during the several years of use of
traditional linear methods, such as the unit hydrograph, Chow (1967)
states that, "in practice, the .oncept of nonlincarity and its
mothods of analysis arc still very limited . . . practicing hydrologists
often have little interest in nonlincar methods of analysis.'" Ho
therefore poscd the questions: "Are we wasting time in developing
nonlinear methods which may prove to be of little practical significance?
If not, can we show that such methods and the concepts of nonlinearity
are really important”" Chow, however, did not mention the ciauses of
nonlinearity ot the system and the possible physical significance of
the factors that cause this nonlinearity. As will be subsequently
shown, nonlinearitics are clearly indicated in this study as oxisting,

where the major fuctors rosponsible for nonlincarity are (Prasad, 1967):
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1. the characteristics of the Input or rainfall,

2. the physical characteristics of the basin, and

3. the hydraulic characteristics of the main channel,

It should be pointed vut that nonlincarities of the rainfall input are

mainly due to the spatial distribution of rainfall, Rainfall occurs at
different times 1n the basin.,  Thus, nonlinearity ot rainfall is due to
space end time distribution ot the raintall in the river basin.  These

factors are part of the conceptual model of Chapter 1.

It must be pointed out that nonhincar podels have not enjoyed the
samo enthusiasm accorded to lincar models (e.g., unit hydrographs)
because of the type of nonlinecar differential equations which usually
result. Tlheretore, due to Liack ot adequate knowledge as to solution
techniques, hydrologiats normally do not use them,  Since the watershed
i3 a nonlinear system, considerable rescarch etffort should be directed
in this arca of hydrology »o a% to more fully understand the physical
bohavior of the watershea, Ihis in turn will influenco, hopefully for
the better, decinion-making processes an planning water rosources
projects for a river hasin.

Since the mathemativul solutions of the conceptual nonlinear
hydrologic model appear to be a major problem among researchers and
practitioners, an attempt will be mide here to apply two difforent
solution techniques in solving the conceptual model, tncludlng
discussion of und also tu show their merits in terms of how officiont

or more useful one technique 1s than the other,

The author's porsonal comments vogarding the foregoing questions

raised by Chow are as follows;
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1. The nature of the equations, lack of insight into solution
tochniques, and difficulty of conceptualization of the physical system
behavior, are sources of discouragement to the investigator. Therefore,
nonlinaar hydrologic system modeling has been a neglected area. The
Stanford Model is, however, nonlinecar,

2. The fact that the nonlinear models have been of little
practical significance does not mean that they do not have potential
usefulness. The important point is the hydrologic systems arc generally
nonlinear. Sophisticated solution procedures needed for nonlinear
models require that the hydrolopist become more mathematically oriented.
It will be more stimulating to mathematicians and hydrologists if there
is a closer contact between the engineer and the mathematician,

3. Hydrologic modeling as a whole should be reparded as an area
which offers a continuous challenge, and should not be discouraged,

Depending on the type of problem, a good synthesis of the physical
system may be as important as a unique or generalized mathematical model
for the sume or some othor system. [ossible sources of nonuniquonoss
include:

a. Nature of the data procedure adopted in data gathering,

poriod of rocord and errors nssociated with type of data.

b. Lack of insight into the physical system behavior and

guesswork In deriving the mathematical model to doscribe the
physical syatom,

¢. Unavailability of eppropriato mathomatical solution

techniquen to solve the mathomatical model, thorefore

requiring use of approximate solution procedure or techniques.
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The ultimate goal in the hydrologic model is to arrive at unique
solutions to problems, even these are obviously difficult, researchers
can at least make strides in that direction. This requires creativity,
more field studies, better measuring equipment, etc., and new and
better mathematical solution tools.

The current research in this dissertation devoted to developing
a conceptual model where two of the possible techniques, that could be
applied in the solution of the developed mathematical model, are used.
Criterion for evaluating the performance of one solution approach with
respect to the other will be based on (repeated for emphasis):

1. Efficicncy with respect to solution time on the computer.

2. Accuracy of the solution.

2. Simplicity.

Labadie and Dracup (1969) presented a method for the identification
of a nonlinear, lumped, time invariant conceptual model of watershed
response. Their approach displayed in particular:

1. Simplicity of the computer programming .hrough the use of
standard subroutines, and

2. Rapid convergence characteristics of the algorithm, though
convergence did not always result, they essentially used Prasad's
model Eq. 2.6, but applied a more sophisticated algorithm (quasi-
linearization) to solve the problem,

There are two basic approaches to lumped modeling., The firse
distinct type of a lumped model is the transfer function approach,
where the most famous model in this class is the unit hydrograph of
direct runoff, resulting from onc inch of effective rainfall gonerated

uniformly over the basin at a uniform rate during a specified poriod
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of time. The effective rainfall is that rainfall that contributes
entirely to direct runoff. The direct runoff is the total runoff minus
the base flow. A particular type of the unit hydrograph concept assumes
that the storage-discharge relation of the watershed is linear. The
basic assumptions of this type of unit hydrograph are fallacious in

the real system, but it is still popular because of the simplicity in
its applications especially in the prediction of future 1unoffs.

A major disadvantage of the unit hydrograph approach is its
dependence on the duration of the storm, which is being used. This
disadvantage led to the development of th: Instantaneous Unit
Hydrograph (IUH). The IUH is based on effective rainfall of infinitesi-
mally small duration. It is defined as the limit of the unit hydrograph
when the duration of effective rainfall becomes infinitesimally small.
This concept may be interprected in the light of system analysis by
regarding e river basin as a system or 'black box."

Chow (1964) used a linear convclution integral to synthesize direct
runoff hydrograph from the IUH and effective rainfall. The main dis-
advantage of IUH is in its linearity. The linear convolution integral
relates the input and output of the system in the form:

t>T
Q(t) = [ 7 P(r) K(t-T)dr (2.9)
o
where Q(t) 1is the direct runoff (ordinate) at any time t ,
K(t) 1is the Kernel function which is here defined as the
instantaneous unit hydrograph or ordinate at time (t-t)
(i.e. the transfer function or the impulsive response), and
"iP(1) 1s the offective rainfall cf duration, T , where Tt is

a dummy variable,
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Blank, et, al. (1971) expressed the rainfall-runoff relation by a
convolution integral, where the Ksrnmel function was evaluated by the
Fourier and Laplace gamma Transforms, based on their assertion that
g lumped, time invariant, linear system is completely and uniquely
characterized by its impulsive response.' '"In view of the convolution
integral, the response of a linear system to any input function can be
evaluated once the Kernel function is known. Consequently, the determi-
nation of the Kernel function is of utmost importance, especially for
systems whose internal structure is unknown." The impulsive response
K(t) can be calculated from Eq. 2.9 from a set of input P(t) and
output Q(t) , data regardless of system lincarity. Eq. 2.9 can give
a check on the validity of the basic assumption of linearity used in
many river basin hydrologic models.
Models on the IUH have been derived or presented by two different
categories of investigators:
1. Those that considered only linear models: Zoch (1934),
Clark (1945), O'Kelly (1955), Sugawara et al. (1956), Nash
(1957), Dooge (1959).

2. Those whose models were linear but considered nonlinearities:
Singh (1962), Diskin (1964), Kulandaiswamy (1964).

The second distinct type of the lumped model is usually referred
to as the analytical conceptual models. This includes some of the
foregoing investigators, where they made simplified assumptions
concerning the internal structure of the hydrologic system and its
dynamic response to rainfall. Examples of investigators who have
utilized such an approach are: Zoch (1934), Amorocho (1961),

Kulandaiswamy (1964), and Prasad (1967). It is this
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latter approach to lumped modeling which is emphasized in this
dissertation. |

There has been substantial progress in hydrologic model-building,
and a convergence of diverse viewpoints. Besides the investigations
cited above, Eagleson (1969) gave an outline for modeling urban
watersheds. Dawdy (1969) uses parameter estimation in outlining
watershed modeling. TFreeze and Harlan (.969) presented a physically-
based digital computer model of a watershed in terns of partial
differential equations for subsystems. The International Seminar on
Hydrology (edited by Chow, 1969) rcviewed the deterministic and
stochastic approaches to modeling, system identification and parameter
estimation. Vemuri and Vemuri (1970) augmented this with a review of
recent applications of control theory.

In all of these, the investigator recognizes the need and 'struggle!
for solutions to:

1. Problems in conceptually formulating and representing
hydrologic systems as they exist in their physical, climﬁtic,
chemical and biological states.

2. The corresponding problems of identifying the relevant
parameters and variables (currently measurable and unmeasur-
able) and solving for them.

Chiu and Bittler (1969) considered a model ard developed a technique
for the long-and-short term trends of a hydrologic system. Their
rainfall-runoff relation was a first order, linear differential equation
with time varying coefficients that depend on two parameters. They
utilized relation used S = Kyn , which was considered by Prasad (1967)

where K and n are two empirical coefficients to be determined.
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The authors stated that . . . "If the exponent n is made”eqUalfto
unity, the storage can be expressed as S = Ky in which K is a
function of time for a time-varying system, or K = K(t) ." The result-

ing first order, linear, ordinary differential equation was:

K(t) I + (1 ' %{ﬂ>y = X (2.10)
where X and Y are the input and output of the system, respectively.
The authors rccommended that . . . "It would be desirable for hydrolo-
gists to investigate the variability of a hydrologic system with months,
seasons, years, and time during a storm.'" The current research uses
monthly data to study monthly, seasonal, and annual behavior of the
hydrologic system.

Venkateswararao and Dracup (1970) presented a paper on the
nonlinear runoff response to distributed rainfall excitations. This
was a conceptual rainfall-runoff model based vn the equations
governing the phenomena under consideration. They regarded the runoff
dynamics of u watershed as the response of three interacting sub-
systems: the infiltration subsystem, the overland flow subsystem and
the groundwater subsystem. Precipitation was considered as an
excitation, evapotranspiration as a disturbance, and runoff as the
response. It was assumed that the watershed, at any time, could be
mathematically described by a black box approach, where evapotranspira-
tion could be treated as an external disturbance, thereby reducing the
model to one of single input and single output.

Amorocho and Brandstetter (1971) presented a paper on a method of
determining relationships betwcen the input and output of lumped systems

without the constraint of linearity. Nonlinearity of the watershed
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igsponse was considered in a more objective and cqnsig;qntﬁway than by
procedures of rainfall excess computation andkbase_flpwbseparagiég used
in. the unit hydrograph apprcach. The operation of some hyd;olpgi@ ' ﬁ
. systems were represented by a functional seriesrggpgqsion invq}ying |
ﬁhigﬁer,order,npnlineapQggppralizatipns of the_;pp&plp;ipnvintegrgi,'
which underlies thé_umit,hydrograph concept. The;asgumptiqns and
dpproximations involved in the representationﬂof hydrologic, systems
by deterministic "lumped" models may be discussed here, briefly.
These models are based on the premise that it‘;s“ppgﬁible to predict
~.runoff (outputj‘of a natural basin as a fgncg?gnjqugjmg:f;pg{g_;,_
Eprecipitation influence (input), also\gxprq;;ed‘gs éwfyncpign qf%pime
only, under certain specific conditions:
1. That the basin has operated as a time invariant system
during the period for which input and output.datgnaré:ugedifor the
_postulation and calibration of the model,:ahdvthaf?fﬁi§ §aﬁé invariance
can be assimed fo extend to the period of prgdicfiﬁn,
Cpen 2., Thét]fgiﬁtiﬁe to the time variébiiity 5fjﬁfégipgg§§ion, the
variaﬁiifﬁy‘of other ﬁafural‘inpufgw(q.g,,‘eﬁhpétrhhgﬁi:ééién) is small
opgﬁollows,a;knowngfunction,of time. O 5 ters
..~ 3. That as fgr as the'basin_requnse is concerned! h;1 ngtural
sequences of precipitétion (which in reality form fields changiqg;in
space and time) aré equivalent to input sequences that are functionslof-ff
Eime only. Thesé sequences are called precipitatioﬂ'indiées.
Clearly, the above conditions_agq.me;,onlx}in gp5app;o;i@ateh§ép§p.
Hence, the predictions of q:deterministip,pqqe1WQf‘;heytype'of our

concern always contain errors dependent on this sense of approximation.
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T

‘Fahlbusch and Miir (1972) presentéd’a paper which“involved: '
development of a monthly rainfall-runoff model which, they pointed out,
could be used for the determination of synthetic long-term runoff:
Sequences from synthetic or observed rainfall sequences on river basins
for which only limited runoff data are available. They used:a transfer
function of an exponential decay type in a linear model that links
rainfall as input and runoff as the output. S

Klemes (1973) treated a watershed as a semi-infinite storage
reservoir. An infinite reservoir was defined as a reservoir with
infinite storage capacity; and whatever the magnitude of its release
and input rates, it can never run dry nor be’cdmpletely"filledx "He
diverged from this unrealistic concept by presenting a new concept of
semi-infinite reservoir:

"It is a reservoir that has only one of the two boundaries

in infinity, either:

(1) the bottom, in which case all fluctuations are
confined within a small region near its top, or
(2) the top, in which case the fluctuations are
confined to a region adjoining the bottom.

While the first type describes a situation which is not typ-

ical for real reservoirs the second type describes real

reservoirs almost ideally."
He presented a relation (y = F(S), the so-called flood routing

problem) for a semi-infinite reservoir where the routing function is

of the form:

i

y=as® (2.11)

where a, B ' ‘are positive constants, ”
'y “{'s ‘the "rate ‘of outflow; ‘and "

'S 'is ‘thé'reservoir storage capacity,
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Through ‘the equation of‘conservation of mass the mechanism of‘a storage
" ‘reservoir; ‘whether: finite or infinite, was given by

{‘A;»‘

- ydt = ds (2.12)

xdt

e

“where X 'is reservoir inflow.

For Case '8 =1, i.e., for the linear reservoir:

s .| ..
af.ff .qS = X (2.13)
or
dy =
ac t W aX (2.14)
where storage
T a(t-1) -0T
S(t=1) = f e x dt + Soe @ (2.15)
0
and reservoir output
el T a(t-1) -at
y(t=1) = « f e x dt + Yo (2.16)

o

‘where So;,yo are storage and outflow at time
10or B# 1’ i.e., for nonlinear reservoir Klemes suggests that
solution for equation 2.12 can easily be obtained by
w_nqmerical methods or graphical techniques known in

engineering practice as flood routing methods.

Review' on Usage of Proposed Technique I - Quasilinearization
‘*’*fiTquéSilinearization is primarily applicable to lumped parameter

systems described by ordinary differential equations.
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In some cases distributed systems described by partial differential
equations can be considered if these equations can be replaced by sets
of ordinary differential equations. Bellman et al. (1966) have shown
how quasilinearization can be applied to systems with time lag,
described by differential-difference equations, which are also reduced
to sets of ordinary differential equations. The technique basically
involves solving a series of linear initihl value problems such that
the sequence of solutions converges to the solution of the original
nonlinear problem. The technique requires the objective function to
be convewiithin the range of feasible solutions. Bellman et al.
(1966) have shown how quasilinearization can be applied to systems
with time lag, described by differential-difference equations,

which are also reduced to sets of ordinary differential equations.

As has been previously stated, Labadie and Dracup (1969) used
quasilinearization as a technique for identifying a nonlinear, lumped,
time-invariant model of watershed response. Yeh and Tauxe (1971)
used the quasilinearization procedure to convert data taken at
observation wells directly into aquifer parameters. The parameters
identified are the storage coefficient and tramsmissivity in a confined

aquifer system.

Review on Usage of Proposed Technique II - The Gradient Technique

The gradient technique has been known for over a century
(Cauchy, 1847) and appears in many textbooks and papq?s.‘/Therefore,
not much stress will be laid on it here. However, part of Chapter V
is devoted to the development and application of the theory of the

gradient technique,
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Chapter III

THE CONCEPTUAL HYDROLOGIC MODEL

General Description of the Conceptual Model

The conceptual model and the mathematical model, which is derived
later, are basically for inputs of monthly values of rainfall and run-
off. The model, however, is not limited by the consideration of
monthly values. The monthly model is derived simply because the data
available for the case study are monthly. However, the model will be
derived in its general form and shown as to its applicability to
monthly data. In general "Precipitation'" may be used in place of
"rainfall."

Precipitation may follow three diverse paths to a stream. A
portion travels as overland flow (surface runoff) across the ground
surface to the nearest channél, whereas some may infiltrate into the
sdil and flow laterally in the surface soil to a stream channel as
interflow. A relatively impermeable stratum in the subsoil favors
the occurrence of interflow. A third portion of the water may
percolate downward through the soil until it reaches the groundwater.
If the groundwater is near the surface or if the soil is highly
permeable, fhen vertical percolation of rainwater results in ground-
water accretion. Overland flow is highly encouraged by low soil
permeability. This is imﬁortant for the present study since flooding
can result from such a 51tuat10n A thick soil mantle even though
permeable may reta1n enough water as soil moisture so as to 1mpede

deep percolatlon. Evapotransplration losses are 51gnificant in this

PEEE I VI SN

[

case.
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It is somewhat artificial to distinguish between the three types of
runoff. Water moving as surface runoff may infiltrate and become inter-
flow or groundwater while infiltrated water may come to the surface and
finally reach a channel as surface flow. Groundwater may be the main
contributor of water for much of the low water flow of streams.

The model for this research is not concerned with the fine picture
of how water is distributed from one stage to the other, in what amounts,
where and when. The model is concerned with the collective monthly
water budgeting, using monthly rainfall and runoff.

A river channel may be conceptually regarded as an enlargement of
a reservoir. If the reservoir has no gates, discharge takes place over
a weir or through an orifice in such a way that outflow is a function
of reservoir level. Considering a deep reservoir where water velocity
is low, the water surface will be nearly horizontal and the volume of
water in the reservoir is directly related to the reservoir elevation.
Hence, storage and outflow can be directly related. If the reservoir
surface has a significant slope, the storage becomes a function of
inflow as well as outflow. The present conceptual model considers the
case of almost horizontal water surface.

The basin should be visualized as a '"Black Box'" (Fig. 3.1) as a
first step. This considers rainfall as an input and runoff as an
output. The river basin is viewed as a system which has the ability
to convert a rainfall input into a runoff. This characteristic
feature of the river basin may be described by functional relations
with certain unknown parameters, as well as various measured and

unmeasured variables. The parameters of the functional relationships
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Hydrologic System

"Black Box"

System Behavior
- and Response

Rainfall

Identification of
Characteristic Parameters

Output

Evapotranspiration

Runoff

?Qg. 3.1 ¢ Schematic of the Conceptual Model
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may give some indication of certain characteristic behavior taking
place in the basin during the transformation process.

A hydrologic model should be conceived, conceptually, so that it is
not a closed system unless ciperiment on the field investigations
(especially soil and peologic) indicate there is no interaction botwoen
the given basin and the neighboring basin. Any witer that cannot be
accounted for may be listed as:

1. Water losses from conceptual surface and subsurface reservoirs

which would otherwise have been mcasured.

2. Other losses that for reasons of development (in developing
countries, c.g., political, ecconomic, social, and legal
constraints) cannot be investipated or measured at this time,
The major loss here s the evapotranspiration.

The water that cannot be accounted for must be regarded as error
in the measurcment 1n the variables, cspecially yunofy in this case,
Strotching this concept a little farther a variable that cannot be
dotermined muthematically or physically at the moment must be considored
as an cerror in the model.

However, o basin can be considered as a cloacd system by using
the Law of conservation of mass or the continuity relatjons,  The
major inflow intu a hvdrologte system i the ratnfall or the
precipitation. (hrough some natuval characteristicvs of the river basin,
the rainfall input 15 Jdivided 1nto two wain paths: the open channe!l
and the sotld as subsurface f{lows,

The volume of water In o natural channel at any moment i called
the storage, o for a reservoly where the outflow is a function of

storage, if inflows are considered te be equal to outflew (runoff, and
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ovapotranspiration especially) then the storage does not change with
time. The river channel can be conceptually regarded as a reservoir,
since it has the capacity to store large quantities of water., It is
referred to as the conceptual surfuce reservoir.

Again, consider the subsurface flows. These may flow laterally
into the channel and provide its contribution to the total runoff. The
subsurface component may be conceptually represented by a reservoir--
the conceptual subsurface reservoir,

This conceprualized hyvdrologic system now consists of rainfall
fnput, evapotranspiration output, a conceptual surfuce reservoir,

a conceptual subsurface reservoir, and the runoff. Figure 3.2 gives
Step Il of the conceptual mouel development.  In considering these
basic interactions only rainfall (input) and runoft (output) data will
be used, since they are the only Jdata available, In considering the
entire picture, it is necessary to consider the effect of subsurface
interchanges of moisture through the porous media. The net offect

may be zoro or negligible and i3 assumed not to affect this model but
ft 48 at least important to mention thesoe posaible changes. [f the
conceptual subsurface reservolt 1s saturdaled with moisture, then
wolature can be eapected to be Jost from the conceptual reservolr to
the neighbioring besin.  On the other hand, if the conceptual subsurface
reservolr iz drier than the nojghboring basin, then msolsture may flow

into the subisurface reservalr, o1 vice veraa.  Any changes 10 our

e

¢ tho change of

—

reservolr goes jntu affocting thc values of

.

.

storage with time in the subsurface reservoir, Therefore consider:

ds L= oA
WeAr g st g



34

Rainfall Input to
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Bvapotranspiration
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(Qutput)
B
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Contribution Rainfall Contribution
to Subsurface to Surface Flow
Flow and or River Channel.
Evapotranspiration
! Y
Subsurface Conceptual Conceptual
Losses or-ee{ Subsurface Surface Storage
Contribution | Storagc Reservoir Reservoir
to or from
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Basin
v '
Runoff Contribution Runoff Contribution
from Subsurface from Channel Alone
Storage to the to the Total Runoff.
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$
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at the Outlet
of the River Basin.
OQutput from the
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Pig. 3.2 3 Step Il of the Conceptual Hydrologic Model
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where AQ is interbasin flow, and & = a(t) is proportional to the
evapotranspiration losses for a given period.

It is therefore not necessary to consider the subsurface inter-
changes in our model--it just complicates the mathematics without
adding any more important information. Similarly, evapotranspiration
losses for a given period take care of all the losses from or through
the surface of the basin.

In Chapter I, in the statement of the objectives, concerning the
uniqueness of a model, it is pointed out that some of the basic objec-
tives of the research is to develop a general model that is particularly
relevant to a developing count.y, within the limits of uniqueness,
simplicity, cconomic constraints, rigorousncss and realism in modeling.
Figure 3.3 gives Step III of the conceptual hydrologic model. This is
aimed at satisfying the foregoing objectives and is the model that will
be finally used, after proving in Chapter IV the importance of Step
III (Case II in Chapter IV) over Step II (Case I). This step secems
justified when one considers the large amount of interconnection
between the surface and subsurface reservoirs, and the fact that there
its no data available that measures this interconnectinn,

The conceptual reservoir storage at the end of the river hasin
represents the conceptual subsurface and conceptual surface roservoirs
in Step 11. Therefore, the Step 111 conceptual reservoir may be viewed
as boing directly affected by the rainfall :nput, after adjusting for
evapotranspiration losses. The total outflow or runoff from the

conceptual reservoir in Stop I11 is the samo as the output from the

basin in Stop 11!,
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That Part of Rainfall Input
that Lnters the Conceptual
Reservoir. Lvapotranspiration Losses
have Already been Accounted for.

!

The Conceptual

Reservoir Storage
with Inflows from
Channel and Subsurface
Reservoirs; and Outflow
at Its Outlet.

Runoff from the
Conceptual Reservoir.
The Total Outflow.

Pig. 3.3 : Step III of the Concoptual Hydrologic Model
THE PROPOSED MODEL
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Steps 11 ‘and 111 are essentially the same, but the mathematics and |
available solution techniques will illustrate the importance of one with

respect to the other.

Assumptions to the Conceptual Model

Before deriving the mathematical equations that describe the
conceptual model, certain assumptions must be made concerning the model.

In an ideal case, that is, when the perfect assumptions to the
system behaviors are made,.the response of both the real system and
the mathematical model to the same input is identical. In this case
the mathematical model simulating the system may be considered as
perfect. In general, however, these two responses are not jdentical,
and an error may be found to exist. The main purpose in system
modeling is to construct a mathematical model so that the error that
exists between the conceived and actual physical models may be
minimized. The smaller the error the better the assumptions made

describe the system.

Errors Due to Mathematical Modeling of the Physical System

The types of predictive inaccuracies or errors associated with

these models may be due to the following:

1. The basic assumptions or conditions that are considered may
be met in an approximate sense. Hence, the predictions by
the mathematical model always contains error explicit in the
degree of approximation.

2. Errors in the evaluation of the input and output variables

(e.g., the precipitation indices and the runoff). Errors of
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this type are commonly involved in the physigal_measprements 
and in the choice of indices.
3. Errors due to any covert conceptual fallacies that may have
been incorporated into the model structure.
One of the most fundamental preconceptions encountered in classical
hydrology is the assumption of linearity involved in the unit hydro-
graph concept.
The following assumptions are made in order to derive the
mathematical model which describes some of the characteristic behavior

of the real system.

Nonlinearity of the Hydrologic System

The hydrologic system is considered as a nonlinear system. The
nonlinearity of the system is based on three major factors which are
responsible for nonlinearities, (Prasad, 1967):

1. The characteristics (with respect to spatial and time varia-
tions) of the input to the system: rainfall. This has been
explained in Chapter II as also being dependent upon the
types of storms when they occur, and their spatial effects in
the basin.

2. The physical characteristics of the basin which are
responsible for converting the input into runoff.

3. The hydraulic characteristics of the main channel.

All these factors are related and will be described by corresponding
parameters.

The hydrologic system storage and discharge are assumed to be
analogous to a nonlinear surface reservoir, a nonlinear/linear subsurface

reservoir with nonlinear outlet control (Prasad, 1967).
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The two ba51c approaches to non11near mode11ng of hydrologlc ;

\4

SEsT

systoms,are: .
Lumped parameter models, and
2. Dlstrlbuted parameter models.v

e

A hydrologic system model nay be assumed as a LUMPED SYSTEM 1f

’lumped values of d1str1buted ra1nfa11 are. used fbr the ent1re ba51n,k

e ! W pet o
. Ay " I ,~f_.,,,. &

instead of using avspat;ally distributed ra1nfa11, ‘Thls assympt;on

s e oy
LaNEL

simplifies the problem considerably. =

The major assumptions for lumped hydrologic parameter models are
.given by Amorocho (1967):

1. ‘That the basin has operated as a time invariant system

' during the period for which input and output data are
used for the postulation and calibration of the model, and
that this same invariance can be assumed to extend to the

- period of prediction.

This assumption is necessary since quantitative measurement of
time-var1ance of the 1nput and its effects on the river basin response
is not, at present poss1b1e. C11mat1c changes, land use, eros1on, ‘and
sedimeritation are some of the maJor causes of t1me-varlance or nonsta-
tionarity of the system parameters. Therefore, seasonal or monthly
variations of the parameters are necessary and need to be determlned

for each basin. This idea is 1ncorporated in thls research

2. The rainfall 1nput to ‘the system (or the 1nput) 1s umlfbrmly
“distributed. ' et Be ot i

'This assumption depends largely:on‘Whether“rainfallﬁis?caused?by;
; frontal orhconvective{ertbther*actiVity, theughAitfalsofdepends%On?the
tepegraphy of the river basin, the soil characteristics, the vagetal
cover, of the basin. It also depends on the size of theﬁriVer_basin;

Usually, rainfall is evenly distributed throughout thegriuer‘basin%‘
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and varies in spatial distribution from storm to storm. In areas that
frontal storms predominate, even larger (than case studylaréa)”iiVér
basins may be considered in the realm of a lumped system.  In areas
where the storm activity is mostly convective, it may be important
to divide the basin into small sub-basins where each’ sub-basin has a
runoff gaging station at the outlet. The taSe\stddy‘area’iS’d small
bééin (840 sq. miles) flat, and is affected by convective storms and
the Intertropical Convergence Zone (I.T.C.Z.). The Intertropical
ConVergence Zone is (McIntosh, 1963):

A relatively narrow, low latitude zone in which air-masses

originating in the two hemispheres converge..... Over the

Atlantic and Pacific Oceans the I.T.C.Z. is the boundary

between the north-easterly and south-easterly trade winds.

Over the continents it is replaced by the boundary between

other wind systems with components directed towards the

equator, for example, in Africa between the HARMATTAN and

the southwest Monsoon. I.T.C.Z. moves north of equator dur-

ing northern hemispheres summer. The horizontal convergence

associated with the I.T.C.Z. implies generally upward motion

in the lower tropospheres and cloudy, showery weather."

3. All of the complex processes and interactions that are
responsible for the response of a hydrologic system are
considered as lumped or aggregated.

This implies that the lumped parameter system approach permits the
approximation of overall system performance without requiring any
detailed definition of the system components. This assumption may be
justified when considering the lack of adequate knowledge with respect
‘to the inner workings and behavior of the hydrologic cycle. Amorocho
-(1967) points out that the act of measuring the micro-properties of the
system can artificially-alter itsks;app;:and_thgt thisﬁintprferegce

tends.toyintroduce;conside:ableHque;tqith?intc'thg,expprimen;a},

results..
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Clearly*“the foreg01ng assumptions or cond1t10ns have ‘varying

degrees of“validity, depending on the physical system cons1dered Hence

f Qi o

the predictions of a determ1n1st1c model of the type of our concern will

generally always contain errors in proportion to the extent. of accuracy

of these assumptions.

The DISTRIBUTED PARAMETER MODEL attempts to descr1be mathematically
a11 of the known hydrologic and hydraulic processes involved in the
conversion of rainfall to runoff. This model therefore considers
areal variation of rainfall. There are different names that various
inyestigators give to distributed parameter type of model. 'Linsley
(1966) celled it System Simulation; Amorocho (1964) called it General
System Synthesis. The current work or research which doesbnot
consider distributed parameter model uses the words system.and simula-
tion in describing the lumped conceptual model. The name used is not
the important thing to consider but the differences in the meaning
between the lumped and distributed models.

& Since this research does not consider the distributed model
therefore the distributed model will only be briefly explained by the
fereg01ng. However, Amorocho (1964) pointed out some of the basic
weaknesses of distributed models in general

it Model structure is inflexible.

2, Nonuniqueness or nonoptimality of the identified parameters

of the model

npabadie (1968) pointed out:

"Lumped models can reflect the highly dynamic response of
hydrologic systems, and be uniquely verified from rainfall
and runoff data. It is recognized, however, that distributed
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models (composed of partial differential equations) must -
eventually replace lumped models if hydrologic system
behavior is to be accurately modeled. New methods must then..
be found for measuring spatially distributed discharge and
storage within a hydrologic system."

Seasonal Variation of the Characteristic Parameters

e
Some of the characteristic parameters of the basin should not be

regarded as constant as has been assumed by some preu{ous%inVestiga-
tions (Prasad, 1967). In Prasad's model:

xzﬁg + K NQN -1 —9- =0 . 3.1)

dt :

hourly data were used and the coefficients kz ,‘k; R N were assumed
as constants. This assumption may be acceptable 1f the model is built
for one storm and not for different storms at different times in the
basin. The parameter K, for example, varies with shape and size of
the basin and the slope of the main channel. This will vary for
different storms at different times in the same basin. A certain;
amount of rainfall from a hypothetical storm passing over one part of
the basin will generally give a different hydrograph at the outlet
of the basin from the runoff produced by the same storm giVing rise
to the same rainfall moving over another portion of the basin. This is
a consequence of one or more differences in the vegetationalycouer,
soil characteristics, slopes, land use and other factors that'come into
play in different areas of a watersbed 1nc1ud1ng some very small

watersheds. Diverse climatic regimes and seasons bring about various

amounts of rainfall which result in different amounts of runoff The

parameters may. be: characterized as follows (Prasad 1967)';h"’
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7iN~:depends ‘on, channel-characteristics;:

""depends Onﬁsize“and%shape%of?theﬁdrainageﬁbasinlaSEwellgasf

N and may also be influenced by storm:characteristics;:
¥K2**depends,on*Storm?andfchannelzcharacteristicseasiwell3as

“¢ :shape of the:'basin.

'Storm types do change with seasons and:so do thechannel:characteristics
with time. -It is therefore assumed:that.:seasonal and - monthly variations
of these parameters exist and need to be found by applying the mathemati-
cal model developed in this -study.

P

Conceptual Reservo1r as an Open System

A conceptual system is one to wh1ch a conceptual realization
contrlbutes s1gn1f1cantly and becomes very important. This factor
contributes immensely in the development of the concepts underlying
the mathematlcal model. The Stanford Watershed Model (Crawford and
1L1nsley, 1964), and the Dawdy and Bergmann (1969) model are very

1mportant in th1s respect,

G

It is unrea11st1c to consider the conceptual reservoir as closed
w1th respect to 1ts surrounding or immediate environment. It is

eas11y assumed and wrongly so, that the runoff that is measured at the
\ i . i
end or mouth of the river basin is the result of the rainfall that

falls 1n the basin alone.
irge &“g .

‘ The runoff that is measured may be thought of as the total runoff,
s i

Wthh 1s the sum of ralnfall contr1but1on, poss1b1e groundwater con-

HEE e i -
Ly g o [T,

tr1butions wh1ch may not be dependent on the current rainfall or

'lateral subsurface 1nflows from a ne1ghbor1ng river basin which may

f1nd its way 1nto the'channel The latter depends on the type of
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season (whether wet or dry) and on the soil and geologic characteristics
(especially, whether the rock formations may permit exchanges of water
to and from neighboring river basins).

It is important not to disregard these various contributions to
the total runoff ac irrelevant or minimal (unless it is physically and
geologically justifiable) until they are found for each basin and their
monthly, seasonal, and annual contributions and variations are
established for the particular basin.

Considering a "closed" system in a formulation usually has an
advantage of simplifying the mathematics so that certain existing
mathematical tools could be used for solutions of the problems.
However, it is important to note that a solution approach which is
capable of obtaining near-optimal solutions to more rcalistic models
should be regarded as more useful than a solution approach or
procedure that can give an optimal solution to simplified unrealistic
models. Of course, it is important to establish a trade-off between
solution accuracy and model complexity. This could be made, with more
efficiency and accuracy, with experience and good judgment on the part
of the experimenter or the investigator. Usually added realism more
than compensates for obtaining a solution which may not be the
absolute global optimum of the model.

Since the other inflows besides rainfall may not be known, it
can at least be said that a rainfall input gives rise to an effective
runoff, which is some fraction of the total runoff that is measured.

There should be a distinction between the subsurface contributions
to total runoff and that of channel to total runoff. (Chapter IV gives

a diagram of the Conceptual Model).
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The conceptual reservoir is assumed as consisting of two inlats,
the rainfall input and subsurface contributions to .he system, and one

outlet, for total runoff.

Rainfall Distribution in the System

Rainfall is assumed to take two main paths in a river basin.
Suppose rainfall is designated as P then aiP (i=1,2,...12 for each
month) is that amount of a given rainfall which is converted into
channel runoff. The other portion (l-ui)P is the contribution of
the rainfall which goes into subsurfacc storage system, or the sub-
surface part of the conceptual reservoir. Let ay be simply written
as a though it should be clcarly understood it is a time dependent
parameter.

Part of this rainfall is assumed lost to the atmosphere through
evapotranspiration. It is assumed that after subtracting the evapo-
transpiration E which should not nccessarily be measured in this
work, the effective amount of rainfall contribution to the subsurface
storage or lower portion of the conceptual recervoir becomes Yn(l-u)P .

Yn (n=1,...12) 1is assumed constant for a given month or scason.

Runoff Outputs from the System

The Runoff 0 which is measured at the mouth of the reservoir
represents the total runoff. The total runoff {s a sum of the runoff
contribution from channel storage and tho runoff contribution from sub-

surface storage. Runoff is a time dependont variable,

Q= Ql + Qz (’.3)
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where Q 1is the total runoff,
Ql {s the chaunels contribution to Q
Q, is the subsurface storage contribution to Q.
In measuving the total runoff at the outlet somo orrors are

oncountered and Q may be represented as
Q= Q! o Q: -t (3.3)

whore ¢ is the error encountered for the month or season. It is
further assumed that « (s somo time varying fraction of Q and

Q may be oxpresscd in the form:
Q- Ql *Q, - & (,.‘)

where 4 is u constant parameter for a given month or season, Ql

is also assumed as some constant fraction of Q for a given month:
Q=8Q°Q,-& 3.5)
or
Q=(8-8,)Q 3.6)
where 8, 1s a constant parameter for a given month or season

(n’l,:.;-z‘:)-

Discharge-Storage Helationships of the Hydrologic Systes

Different forms of discharge-storage (or storsge-discharge)
relationthips have heen proposecd ahd dsed by Jifferent investigators

for synthesizing their various vonceplual modele,
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Nash (1960) and Diskin (1964) usod cascades of linear reservoirs
in doveloping general theories of river basin transformations.
A mathematical mode] is at times broken down into two forms:

translation and storage, Ssuppose an equation of the type (2.4) is

written as:

s, 3%% . i%g © 8, 3% © aQ = 1 (3.7)
then 4

" (a, g% *Q) ¢+ ala % *Q =1 (3.8)
and

N (STORAGE) (3.9)
where

j_:.g. ¢ a0 s 1 (VRANSLATION) (3.10)

Zoch (1934), Clark (1945), O'Kelly (1955), Dooge (1959) and Singh

(1962) have all made use of combined translation and storage oloments

in their sodoling of a river basin,

Starago-discharge yelatiuns that lhave been adopted or used by
various investigator: may be summariied as follows;

l. Linear storage-discharge relation

§ s Kk0Q (3.11)

2. Exponential storage-discharge relation

§=kQ" (3.12)

3. Demand rate proportional relationship

s=xq R (3.13)
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4. Bxponential domand rate proportional relationship

s kQ" 2 (3.14)

$. Prasad relation (Prasad, 1967)

. dq
S = KIQ . K2 Tt (3.18)

where S 1is storage,

Q is discharge, and
| K, , K, n are all constants.
It is important at this point to comment ok Pqs. 5.13 and 3,14,
These are unrealistic since dQ/dt  could be regative in which case,
storage S becomes negative. These two equations may be acceptable
{f water heing lost trom storage 4o referred to as negative (which
i not the case assaned by previous investigators who have used these)
or a new definition based on physical reality should be given,
Bquation 3.11 has been used by many investigators even though the
rolation i~ unrealistic. To prove the unrealistic nature of Q.
3.11 (solely because 1t has found many uses due to its simplistic form
oven though it i+ not realistic and not describing the system it is
supposed to describe) it will be applied in the model for predicting
runoff and cvapotranspiration, Lquations 3,12 and 3.15 have proved
in many investigations as better atsumptlons and these two ansumptions
will be made tn deriving the models proposed in this study in order
to show the merits of one with respect to the other,

The discharge-storage relationships of the current conceptual

hydrologic aystom may be described as follows:
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There are two types of storage reservoirs--the top representing
channel reservoir and the bottom the conceptual reservoir. The two
rosorvoirs do have onc common outlct,

The runoff contribution from the surface channel Q is assumed

as a nonlinecar function of surface storage:

N
Ql = Kl 5) (3.16)
where Kl is the storage coefficient which depends on some character-

istics of the conceptual reservoir,
n describes some characteristics of the river channel and
gives a measure cf the nonlincarity, and
Sl is the channel storage.
In the case of the subsurface contribution to total runoff, the

conceptual subsurface reservoir is a nonlincar reservoir with the

discharge and storage related by:

m

Q, = K, 5, (3.17)

where Kz is tho storage coofficiont which depends on the nonlinear
subsurface reservoir with storage S2 and discharge Q2 .

m is the constant oxponent of the nonlinear relatijonship.

Continuity Relations for Varlous Subsystems

As it has already been amplied, the volume of water in a natural
channoel at any instant {s called channel storage S . The continuity

rolation i3 assumed to hold: {inflow-outflow equals the change in the

storage with time t ., As t incroasos or for long periods of time
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ds/dt = 0 . This assumption forms the basis of what is later
referred to as the theoretical representation in estimating
evapotranspiration.
Using the continuity relation with respect to surface or channel
flow:
dS1
T ° aP - Q1 (3.18)
and similarly for the subsurface flow:
d82
T = Y(1-a)P - @, + ¢Q (3.19)
where all the terms in Egs. (3.18) and (3.19) have been defined earlier.
The last term refers to the subsurface interchanges of water from and
into the basin. This, as explained earlier, may be neglected.
The foregoing assumptions are used in Chapter IV and their merits
are also given. These assumptions are utilized in deriving the two
nonlinear differential equations, or the mathematical models of this

study.
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Chapter IV
THE MATHEMATICAL MODEL

Case I - Surface and Subsurface Reservoirs

After stating (Chapter III) all the relevant assumptions
associated with the conceptual model, it is now necessary to describe
it more specifically and derive the mathcmatical model.

The rainfall input P into the river basin is distributed into
two parts (as shown on Fig. 4.1): aP is the rainfall contribution to
surface or channel storage and (l1-a)P is the rainfall contribution
to evapotranspiration and subsurface flow. It is important to under-
stand clearly that the total cvapotranspiration losses in the basin
for any month arc bascd on losses from soil surface, subsurface, the
channel, and any bodies of water prescent in the basin. It does not
really matter wherce evapotranspiration is subtracted from (Fig. 4.1)
so long as the total evapotranspiration losses are taken carc of or
accounted for. Therefore, the effective contribution of rainfall to
channel storage is total rainfall minus cvapotranspiration, and is added
on to the left-hand side of Fig. 4.1. llowever, it should be stressed
that no attempt should be made to ignore evapotranspiration losses
from the channel storage, since this will depend on the topography
of the basin, whether flat or sloping, and the time scale considered,
whether hourly or monthly data arc used.

Some portion of rainfall input (l1-a)P 1is lost duo to
evapotranspiration L(t) (where E(t) = Q(1-a)P, say) resulting in
a monthly total input to subsurface storage: y(l-a)P, In cortain

basins there may occur intorbasin flows of water. This subsurface
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P Contribution to
Subsurface Flow

P Contribution to

Channel/Channel Flow
- = .
(1-a)P
aP -
y(1-a)P
Y Y
Subsurface Storage Surface Channel
Storage
S, 51
Runoff Contribution + V Runoff Contri-
from Subsurface QZ Ql bution from

Storage to the
Collective Runoff

Q(t)

t
t

Measured Runoff
at the Outlet
of the River Basin,
Output from the
Basin Q(t)

Channel Alone

o the Collec-
ive Runoff

Q(t)

4 4orti Fig. 4,1 ¢+ The Conceptual Hydrologic Model For Case I
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*1nflow maytbe duevto seasonal effects ofwsubsurface storageiln Lo
adJacent basins" or the' slope/or geologlc fbrmat1ons or»type of thef"“'
“rocks or physical features. +In’ some ‘basins;. th1s subsurface storage
may be“regarded{as‘a_closed~5ystem with respect?to?subsurfacef1nter-
flows.i*Fbr3générality;“the"Subsurface*inflou'Shbuld»befconsidercd;fahq
iP;ﬂif\.:assumed as some constant fraction Of:the:FQtal measured runofffif
¢Q fcr a giuenkmonthly rainfall. It must be mcntioned that ¢, as |
“in’' "¢Q;" “should be treated as a time dependent parameter.  This is:
"included here’ for generality, though it is not important to cons1der
it as éxplained‘ih‘Chapter'III;ﬂ'It‘is'important to'stress.that:one of
the“objectives of this study is to derive a simple yet realistic:model.
It will be shown that a complicated model can be derived for which:

unique solutions may not be available, whereas using the same infor-

mation and assumptions, a more practical and useful model can be
derived,

. “The total measured runoff Q, at the outlet of the Tiver basin,
iisfthe sum of the runoff contributious;frcmwtﬁa}%ﬁaﬁﬁcl;“:Qljwaauaﬂ
that from subsurface storage Qé’”éﬁd'éfébéé“E‘“éhéoﬁhtefeaiin mea-

suring the total runoff. The error e will be assumed as some frac-

tion of the total runoff.

The Der1vat1on of the Hydrologic System Equatlons

Faray s i eyi
Assuming runoff in channel Q for the surface conceptual

. .
: i, Lor gt
Lo ;rL R UES RN 0

reservoir, as a nonlinear function of surface storage:
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where K1 is the storage coefficient which depends .on theycharacteris4
tics of the conceptual surface reservoir, and .n describes.some ..

characteristics of the river channe1~and‘giyes,a;measure&qf&theingh-

»»»»»

doryrma T THAaAyon Al v dppe o sk E
(4.2)

ot R . . . . R .
e R P oY ey NN L T o 4 : -
A T K . [ UL S SR v (PR R it

Q = Kzs

DI A S
(RN

VNE‘

where;'“K2 is- the:storage coefficient which, depends on characteristics
,of;the;conceptual~subsurface.reservoir,gthe contribution of rainfall
to:subsurface storage (1l-a)P ;is:diminished by an amount due to
‘evapotranspiration losses. .. Therefore, from Fig. 4.1, the balance.
relation gives o i R

ds’é'
—pr= (1-a)Pi= E(t) - Qp - (4.3)

_ Suppose evapotransp1rat1on data do not ex1st. Then it can be

.

assumed that the port1on of ra1nfa11 contr1but10n to subsurface storage

! WY

Sz, after subtract1ng evapotransp1rat1on effects, should be a fract1on
of (1-a)P. ‘

dSZ I N : R et o o

—t = v(@-a)P - Q, (4.4}

~m,(,,xé; o i Sl R PR

S1m11ar1y, from F1g. 4 1 and cons1der1ng the balance re1at1onsh1p

for the surface reservo1r

. vr gt

ds;
—5 = P -Q (4.5)
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From. Eqs. (4 1). and (4.2) the total runoff measured at outlet

cof the river ba51n=1s glven for the;: glven per1od or month as_in this
( li
A g Pyt

case, as

Qs Yt Q- | TN .. (4.0
: R ,.:1" ‘ ,‘ Wy . .; P . ‘ ol I’ z -

i % P " ) : ca
where € is error encountered in measuring Q. This error e ,
(where sources of error are g1ven in Chapter III) is assumed as some

“fractlon, v, of Q for the g1ven value of Q or for a given period

. or menth.
L Q=+ Q, - 8Q | 4.7

Combining Eqs. (4.1), (4.2), and (4.7)

(1+8)Q-= K S1 + K2 S2 (4.8)
4§rop'Eqs. (4.1) and (4.5)
ds,
T11:= oP - Q = aP - K 8111' (4.9)
and .
HSZ " m
It - y(1-a)P - Q2 = y(1-a) - Kz S2 (4.10)
d - -
Fry (Sl+82) = aP - Kl 1 + y(l-a)P KZ S2 (4.11)

Substituting Eq. (4.7) into (4.11) and considering Egs. (4;11 and

) ;
* i

(4.2)

& (58, = [w s vU-0) P - (14010 . (4.12)
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Considering Q, as a constant fraction of Q for a given period
of . Q or month. In fact, Q1 can easily be regarded as time depen-
- dent fraction of Q without any difficulty. It is, however, not

necessary at this point.

Q, = &Q ( .15)
2Qy = (1+6-8)Q (4.16)
Combining Eqs. (4.14) and (4.16)

1-n -1- 1-m
m

6 " 8 R (—1-) 5 [aremq] o ase-n) R

Sl

S
[ ]

L
K

1 dt

[o s va-op - coma (417)

o {

[}

1 1-n % 1-m

i e L vad B S I S L IR ""'_—
g BQY T+ —1-) A (1+6-e)-[(1+6=B)Q] m

K2 m

9
dt
Y O

-
B—"
:!-h-n
L ]

[u ;w(?:u)] P‘{rs (1?5)Q,\ e (4.18)
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;ﬁﬁmﬂmﬂﬁéhunanWnsﬂinqutﬂ(4f18)’hre:%‘d}HVB?*:Y;H‘Gyﬁwn;f.m)ﬁvKTﬁ

K and dQ/dt. There are, therefore, nine unknowns that: have to be

29
qqique;y,detqrmipgqf;thhe‘parameter identification problem. The non-
~ linearity of Eq. (4.18)~and the number of unknowns are the major fac-
‘tors in our inability to uniquely determine the values of the unknown
parameters. Even though this is a realistic model it is not useful as
a mathematical model for a river basin in a developing country. It is
important that when a model is to be usgd for a developing country the
following factors should be carefully considered (repeated for emphasis):
1. Simplicity of the model--conceptually and mathematically.
2, Rigorous and realistic model.
3. Past and inexpensive with respect to computations by the
computer.
It may be true the above proposed model (Case I) is a realistic model;
and conceptually it is relatively simple but it is extremely difficult
to find unique solutions.
Case I will therefore not be utilized because of this nonunique-
ness detriment (Chapter III) in the determination of the parameters.
Case II will therefore be presented to illustrate the importance
of using the same or similar conceptualization but deriving a model

that satisfies the above three factors necessary for modeling for a

river basin in a developing country.

Case II - Proposed Lumped Model

For the reasons given after deriving the equations ‘for Case I
".it"is now important to use 'the same assumptions and concepts to derive

i g more-realistic model.: A more realistic model is: one which-satisfies
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pggviouslxzexpressed objectives of 'simplicity,: realism,nandiamenability
.to:rapid computation. - - - - e

Figure 4.2 shows the conceptual hydrologic model for Case II. This
~‘js'a modified form of Step III of the conceptual hydrologic model (Fig.
© ©3,3) which is in turn a simplified version of Fig. 3.2 or Fig. 4.1.
'Rainfall input into the system is P. The rainfall contribution to
surface and subsurface runoff that are measured as total runoff Q
is given as aP. The evapotranspiration losses in the river basin are
(1-2)P. The model need not consider evapotranspiration as another
output, which will complicate the formulation and mathematics, and
evapotranspiration is uniquely determined on uniquely determining o
for the input (aP) and output (Q) system. The a in Case II is
obviously different from that of Case I, and will be the one considered
from now on,

Assuming runoff from the reservoir Q for the conceptual

reservoir as a nonlinear function of surface storage

Q=¢csV (4.19)

C oY

s=xkQ . (4.20)

where K is the stdrage coefficient, and
M describes some characteristics of the channel and gives a
measure on nonlinearity. .
“Assuming rainfall input is P and after subtracting evapotrans-
piration from P, a quantity oP of -the rainfall enters the conceptual

reservoir.: This implies .that evapotranspiration is P - aP = (1-a)P.
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Rainfali
Input
P
Evapotranspiration
(1-a)P {
- Y
aP

Conceptual Reservoir
with Storage S

Runoff

Fig..4.2 :- Conceptual Hydrologic Model for Case II
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Change in storage with time is thorefore given by the continuity

relation (Fig. 4.2)

£ aap-Q (4.21)

From Eq. (4.20)

ds M-

$ .ot QR (4.22)
Combining Eqs. (4.21) and (4.22)

ap - @ = ud! R (4.23)

or

Q.o - Qfmﬂ (4.24)

o R oangt™M L s (4.25)

where A, B, M are the unknown parameters of the differential equation,

and can be uniquely determined, where

A (4.26)
B o= o (4.27)
m’ .

Determination of M and B will give a unique dotermination of K
\Bq. 4.27), which in turn will result in unique detormination of a
(Eq. 4.26).

Equation (4.25) represents the first order nonlinear differential

equation model.


http:2-M(4.24
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To derive the nonlinear second order differential equation

consider
s e ke k, R (4.28)
$ .okt gk, -3-:-‘21 : (4.29)
But

d2g p ";s"’QM.1 d
a
& ] - - m———— ("30)
K i% X R
R . . M-1 d
e AP - AQ AQ 3% (4.31)

where the unknowns: Al, AZ’ A3 and M may be uniquely determined as

follows:
A
Finding A5 and Ai implies a* = Kf and B* = A5.
Finding M* and AS (AE already found) implies
A*
3 1
KS-Y*HF'F{

Let M* = ¢*,
Thus, a, B, Y, ¢ can be uniquely determined. The two derived

models representing the hydrologic system are:

1. The first order nonlin»ar differential equation model:

1-y 2-y
R .arq '-vg ! (4.32)
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2. The socond ordor nonlinoar difforentiul equation modol:

a2 Youl (4
E% = AP - AQ - AR (a%) (4.33)

Equations (4.32) and (4.33) are the two basic models that will be

utilized in this study.
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Chapter V

THE PARAMETER IDENTIFICATION PROBLEM

Definition of Parameter Identification

Given a discrete time series of runoff, Q(tk), where k = 1,2,3,4,
++ssT, taken on a particular river basin, along with rai.fall measure-
ments, P(tk) where k =1,2,....r, the parameter identification
problem can be stated as:

Given rainfall (or runoff) observed values, one can write an
equation to predict runoff where this predictive equation
contains unknown parameters. By minimizing with respect to
these parameters, the difference between the actual measured
values and predicted values (ideal case is when there is ne
difference betwecn measured and predicted values) better
estimates of the parameters may be found. In practice, due
to errors in measurcments or from the mathematical model
solution technique, there is always an error between measured
and computed values. Therefore, the smaller the difference,
the closer the computed anu measured values, and the better
the computed values of the paramecters.

Certain computational difficulties that may be associated with
this problem may be listed as follows (Labadie, 1968}:

1. Trial and error methods are usually employed for finding
the unknown parameters. This practice greatly limits
the practical use of morc realistic models containing
several paramcters, since traial and error is computation-
ally inefficient.

2. Numeric solution of ordinary differential equations on
a digital computer requires that all of the initial
conditions C, (j=1,2,...m) be known to a reasonable
degree of acc&racy. In the identification problem,
however, only C] or Cp may be known. The other initial
conditions must then be guessed, which may result in
the generation of inaccurate solutions.

3. A third difficulty arises if the differential equation
happens to be highly nonlinear. The usual methods of
numeric intcgration and differentiation may not yield
a solution, so that special algorithms must be designed
for solving each particular model.
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Depending on the initial knowledge of the process, the identification
problem can be interpreted in the following two ways:

Identification: The process is considercd as a '"black box'" about

which nothing is known cxcept the inputs and outputs.

Parameter Estimation: The structural configuration is known but the

model paramcters are unknown. For example, the model is known to be
accurately represented by certain systems of differential equations,
but the cocfficicnts or parameters in these equations are unknown.
Sincc generally the parameters or cocfficients cannot be measured
directly and the measurcable variables are generally the dependent
variables of the differential equations, it is not a simple matter to

identify the parameters.

The Predictor-Corrcctor Methods

Procedurcs which predit a result by one formula and then correct
it by another arc onc of the most effective devices for solving initial-
value problems, and are referred to as predictor-corrector mcthods.

Two of the most important methods were developed by Euler and
Hamming (Carnahan, et.al., 1969). Thesc mothods will be briefly dis-
cussed in this chapter. Appendix C is devoted to explaining Euler's
procedure aund this chapter will give a block diagram (Fig. 5.1) of the
moditied Euler predictor-corrcctor method as used in solving the
differential cquations developed in Chapter IV.

The block diagram used for developing the computer program is

shown in Fig. 5.1.
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Read in Initial
Conditions and Values of
Coefficients of the
Differential Equation

|

Establish Integration
Time
T = Float (k) * DT

|

Set up Predictor -
Corrector Counter

]

Calculate Predictor values
using the Initial Conditions
for a Start and Solve for
First Derivative of tl.e
Differential Equation

Calculate Average
Yes Derivative for
T.LT. 0 Predictor Step.
No

Calculate Average Derivative
for Corrector Step #

O

Pig. 5.1, Block Diagram of Modified Euler Predictor--Corrector Method
TR ag Used in Solving the Differential Equation, _
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Advance Counter
I=1+1

Calculate Predictor -
Corrector Values

Calculate New Derivatives
No For Corrector.

IGT. 0 »1 Return to Calculate Average

Derivative for Corrector

Initialize Values and Use
the As Starting Values for
the Next Time Step. Repeat
process till T = Final Time

Step

Write Results of Integratio?/J

for Each Time Step

Fig. 5.1 Continuation of Block Diagram of Modified Buler Predictor-
' ‘Corrector Method as Used in Solving The Differential Equation,
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’The advantages and dlsadvantages ‘in’ using Euler's method may be
listed as"follows (Carnahan - et al., 1969; Conte and de Boor, 1972)

1. “'The modified Euler pred1ctor-corrector method .has: been found

to g1ve better results than other predictorrcorrectorfmethods. x

2. It has been found that the propagation;from>one iterationl

to the next can be re&ucedbby usiné'the modifiea:method.

3. It is easier and simpler method to follow, compared to other

predictor-corrector methods (e.g., Hamming's method).

Buler's method becomes more accurate as the step .size decreases
anditﬁewertor;teﬂds to zero as-step size goes to zero or becomes as
small as possible. This could be time consuming and therefore expensive,
‘biit the author's experience with the method indicates that Euler's

method is not as expensive as Hamming's method.

'éteepest Descent Technique

The two main postulates for analyzing antunconstrained;problem
are (Hall and Dracup, 1970): S féﬁﬁ; o
1. "The objective function can be evaluated by some means
(including experiments, if required) for any initial
trial policy xj, X2,...X, and for the immediate vicinity
of this policy, and
2. That there are no discontinuities in the objective
function in the immediate vicinity of any in1tia1 or
subsequent trial policy".
These imply continuit; and differentiability, though continuity and
‘differentiab111ty are not required everywhere: in the policy space, but
only the path that.is being followed.

s:the Vector

Suppose F(x) is the objective functlon, wherei xcf‘

of optimal values, and F(x) possesses a derivatlve.;lThen a steepest

descent optimization procedure can be app11edfto thls unconstra‘"t;;
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*pioblem;m&ThiSiprbCedu:endatesaagﬁfan;backﬁtQMquqhxa{gggzg,ﬁgnd
continuesto be:one: of :the most importantnthimi?atipnjﬁgphgquggﬁ:
= nInxtheﬁpresentzwork,\xhéyobiagtiue;£unction_maygh9;rgprqsented

T

= as-the ‘sum ofithe isquared error .i.: - .

L Gupin "T"a;: HRCER e S Wy
. F(®. = ] (QoBS - QCALC)? (5.1)
s ek S 3¢ i=1 oL K B ERR TN I

where x*Z QCALC(,B5Y)
< +*+."QOBS ‘is the observed runoff values,
“QCALC is the calculated runoff values from the mathematical ..
R equations:or model,: which is a function.of... .
“a,B,y:which are: the characteristic parameters of. the hydrologic
model to 5e calculated by the gradient method. .The para-
meters of the first-order differential quatiop are cop§ider-
... ed here forkillustrativé purposes. |
Let PF(x) = F(xl,xz,xs) where X1s Xo5 Xg ayé ;h§ hydfologic
system parameters a«, B, v, ,respegtively, or |
FO = FloBv). (5.2)
The gradient vector VF ,is"a vector whose components are equal
to the corresponding partial derivatives. In the\fﬁf??é&imé;sional

case (since we have only three parameters: o, B, y) =~ .
. R I A S S I
9F 3F oF ] ' (5.3)

VF(g(_) B [ 3a ? -a_é' ’ E'Y_
or . i
oF » oF 2 oF ¢
VF(i) = o 1+ -a-é- + -é_Y-k (5.4)

LN

‘where ::1; §, k. are unit vectors.:,
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‘This''gradient VF(X)'plays an‘important:role.in the 'seeking of local
maxima or ‘minima,- where forfa’giVEh-fuﬁcffon‘fF(g);ﬁ“Whééé‘bﬁftiéI
derivatives exist, VF(Xx) is a vector which points in the:direction
of ‘the greatest rate of increase (maximization) or decrease (minimiza-
tion) of F(x) (sge Appendix A). Hence, any step in the steepest
direction should be a vector whose components are proportional to the
partial derivatives.

Suppose S is the step to be taken .1 a three-dimensional case
then -

S=0tai + 28] + ayk . (5.5)

Then for S to be in the direction of VF(x) requires in general

that
Ao A8 A \ Ax,
oF/3a = 9F/ 0B = ap]aY' T eee = Wﬁ: . . (5.6)

Equation 5.6 determines the direction, but not the magnitude of the
\

step to be taken. The magnitude\gan be freely chosen. However, small
steps greatly increase the total éomputation, while large steps could
lead to overstepping to a less optimal policy than the initial point.
Usually, some maximum allowable change in any one decision variable is
set on the basis of judgement or experience, and the movement of the
variable with the largest derivative is set equal to this limit. ' The
reﬁaéping\ Ax; are then computed on the basis of Eq. 5.6. More
sophisticated methods (such as used in this study) allow for estimates

‘of the optimum size of the step.
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fpner ooAtany.point (x .= .(ag,uBgsivg) ~ithe vector ; FF(x): i,.’:t:;i"s:s;nozrmal 'to
the contour, that :passes through.the point: x.-,- or:the.set, ofrall x

rcsuch that - F(x) = F(x ) .(Appendix A).. .. i vy soeei pnigon

. -Figure 5.2 gives a block diagram of the steepest descent.algorithm.

The procedure starts at some initial point,,xo,-Where;;xo = (ao,Bd,Yo)

. represents the initial guessed values of the parameters. The general
iteration step nth iteration (n=1,2,3,... ) begins and VF(X) is
calculated for each iteration: gf(;n).<Since:this is the steepest

descent method, we have to move in the direction: 'ZF(En) . We wish

- to find an optimal step size, An such that An minimizes F(gﬂ-lgf(gn))

over all A . In a formal notation the minimization problem may be
written as:

An = M*n F(_:_c_n - AYF(En)) 5.7)
The next set of values of the parameters are calculated. X is

the vector of these parameters which form the next point, where

-’5n+1» = 5n - An lpcﬁn) * . (5-8)

At each new set of values X1 for each iteration the convergence
criteria should be checked., If. F(EHJ - F(§n+1)_§_e then convergence
is attained. If, on the other hand, F{En) 7‘F(§n+1) > ¢, then the

procedure must be repeated.

»

The merits of gradient methods may be summarized as follows (Hall
and Dracup, 1970):

"Despite the limitations, gradient methods are very powerful
in that improvement in policy is guided even if the optimum

~ cannot be feasibly calculated. Gradient methods are extremely
useful where additional research or experimentation is
required. In many such situations, the use of gradient methods
may be the only feasible way to proceed if costs of analysis
and research are to be kept commensurate with the objectives
of the optimization."
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Sfarting Values/Initial Guessed Values
‘of Parameters §° = (ao, Bo, Yo); €

h

Iterative Step nth Iteration
ne=90,1,2,3... Calculate gf(zn)

l

Choosing step size An Minimization Problem
A, = Min F(Xn - Ag?(zn))

An
| A
Calculate Next Point

LSV . !F(zn)

for Convergence

By - FlEyep) S8

Fig. 5.2 Block Diagram of the SteépéSf Descent Algorithm.
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MAIN PROGRAM
Reads all Data and Makes all
Transformations to Correct Units

!

Subroutine SDOPTIM

Uses Initial Guesses of Parameters
only Once

Generates New Set of Parameters
Values by Gradient Technique
Based on Objective Function

l

Subroutine KWAMO
Supplies New Set of Parameters

l

Subroutine BIMAH
Solves Differential Equation by A
Modified Predictor-Corrector Method.
Supplies Calculated Runoff Values
Based on Mathematical Model Equations
and Supplied Parameter Values

'

Objective Function
Computes Error between Observed
and Calculated Runoff :

F = Z(Qcal-Qobs)2

Check for
Convergence
F <e

Yes

Output Results

I TAR R (PN

Fig. 5.3 The Block Diagram of the Main Program using Gradient Technique
and Modified Euler Predictor-Corrector Method.
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The"Steepest Descent and the Modified Euler Predictor-Corrector Methods

The Buler Method is combined with a gradient technique whose main
purpose is to find better estimates of the coefficients of the differ-
ential equation.. The combined block diagram for the joint operation
- ‘of “the’ Euler method and the gradient technique is illustrated on
Pig. 5.3, -

SDOPTIM:is:the:name for the Steepest Descent Technique which uses
the ‘value ‘of the objective function from Euler's method to find optimal
estimates of the coefficients of the differential equation or the
optimal values of the unknown parameters set E; = (a;, B;, y;);

The various functions of the subroutines have been outlined'

earlier, and therefore no detailed explanations will be given here.

The Quasilinearization Technique

Qﬁasilinearization together with least squares optimization
represents another technique which is used via systematic search for
soi&tions or identification of the nonlinear hydrologic system response
mbdel. The least'équares optimization refers to the objective function
which éeeks to minimize the difference of the observed and the calcu-
latéd fﬁﬁoff from déta and mathematical model respectively. Quasi-
lipearization is cgpaﬁle of solving large class of nonlinear differen-
»#iéi équatién, énd giving a rapid convergence (if it converges) to the
opfiﬁa1 va1ues of the parameters of the model (or the coefficients of
the‘dif£§r§ﬂ£ia1 eqﬁétion).

Quasilinearization involves linearization of the nonlinear
algebraic equations and sequence of functions in a series of iterative
scheme to arrive at the solution of the original nonlinear differential

equation. It does not need an accurate set of initial conditions or
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‘‘boundary values since they are computed along with thefPﬁﬁﬁTgF??ﬁi Good
- guessed values of the initial conditions, however, facilitate conver-
gence. From experience, this technique can bec unreliable and.can

. diverge rather than converge to the desired optimum.

Instead of being solved directly, the quasilinearization technique
for a nonlinear differential equation is solved recursively by a series
of linear differential equations. The linear equation is obtained by
using the first and second terms in the Taylor series expansion of the
originzl nonlinear equation. This technique is generalized Newton-
Raphson formula for functional equations (Appendix B). However, since
the unknowns which are to be obtained are functions and not fixed values
or roots as in the Newton-Raphson method, both the computational and
theoretical aspects are more complicated.

The quasilinearization technique not only linearizes the nonlinear
equation but also provides an iterative scheme (through use of Taylor's
series) which in general converges more rapidly than gradient methods
to the solution of the original nonlinear equation, as long as initial
guesses X = are adequate. In general, for most practical problems,
these initial guesses can be obtained from engineering experience and
intuition. It is suggested, from rhe experience of this investigator,
that other methods which can generatc accurate approximations of the
initial conditions should be used in conjunction with the quasilineari-
zafion techniqué, especially when this technique is not converging well.
This is to say other methods can be used to find good initial guesses
for starting the quasilinearization technique. The previously discussed

gradient method may be one.
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Fig. 5.4 Block Diagram of Quasilinearizatiqq‘ngg;ithm.
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For a more complete treatment of the quasilinearization algorithm
the reader should refer to Labadie and Dracup (1969). Figure 5.4 gives
the block diagram of the quasilinearization algorithm used for the

optimization on the computer.

Advantages of Quasilinearization

As pointed out by Labadie and Dracup (1969) the advantages of
quasilinearization can be listed as follows:

1. "A rapidly converging iterative scheme is developed for
the unique or optimal values of the parameters in a
systematic fashion.

2. A complete set of initial conditions need not be
specified. Unknown initial conditions are determined
along with the unknown parameters.

3. Standard methods of numeric integration can be easily
applied to solving highly nonlinear models. Special
algorithms are not needed.

4, Quasilinearization is generally applicable to a
large class of complex models and is highly compatible
with current digital computer capabilities.'

It is also important to point out that the procedure is advanta-
geous because it involves neither curve plotting nor graphical matching;
and also because of its general applicability.

Another important advantage of this technique is that if the

procedure converges, it converges quadratically to the solution of the

original equation. Quadratic convergence means that the error in the
(n+1)th iteration tends to be proportional to the square of the error
in the nth iteration. The advantage of quadratic convergence, of
course, lies in the rapidity of convergence. Bellman and Kalaba (1965)

depicted quadratic convergence as
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where A is the vector of the optimal values of the pafameters.
o CeOEEN SRR Oy

Disadvantages of Quasilinearization S e

The inherent weaknesses of quasilinearization can be listed as
follows (Labadie and Dracup, 1969):
1. "Initial approximations must be within or at least close
to the convex region surrounding the optimal solution
or convergence is not attained.
2. If convergence does not result for a particular set of
initial approximations, it is not possible to determine

systematically a better set of initial approximations
from these results."

A possible remedy for this situation lies in the use of gradient
methods for generating initial approximations. These methods could
perhaps be effectively used for starting a quasilinearization scheme.
It is, however, important not to underestimate the potential and
capabilities of the gradient technique. Chapter VI reports on the
experience with these two techniques. The superior technique is
determined on the basis of how fast the algorithm converges to the
optimal solution; whether the algorithm is easier to handle and
understand, and whether the algorithm is reliable.

Modified Euler and Hamming's Predictor-Corrector Methods as Used with
Gradient Technique and Quasilinearization Respectively

Euler's method (or Hamming's method) used with the gradient method
has the capability of solving a nonlinear equation directly, whereas
the Hamming method (or Euler method) used with quasilinearization tech-
nique solves a nonlinear equation indirectly by first linearizing the
nonlinear equation into its linear form. Euler's method is a "self-

starting'" method. It requires the value of the dependent variable Q
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..at,only one point to start the procedure. Hamming's p:e@ictor-
corrector method, however, is by itself not self-starting; that is,

the functional values at a single previous point are not enbugﬁ“tgﬁget
the functional values ahead. Therefore, to obtain th9 §;§¥EingiY§}ues,
a. special Runge-Kutta procedure followed by one iteration step is added
to the Hamming's predictor-corrector method.

Euler's method (as indirectly pointed out in the%firSt»paragraph)
can solve directly a second order ordinary‘differeﬁtiéi.equation,
whgreas the purpose of Hamming's modified predictor-corrector method
is.to:obtain an approximate solution of a general system of first order

- ordinary differential equations with given initial values.
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Chapter VI

COMPUTATIONAL RESULTS

Description of the Todzie River Basin in'Ghéna

This study is aimed primarily at;abfiver basin iqjéﬂﬁeveloping
country. The problems facing the developing countriegﬁ;ith respect to
basic research, as discussed previously, include: lack of interest,
economic constraints data limitations, lack of manpower and expertise
to tackle certain important research programs, and research as a whole
may hbt be a national pfiority. Other constraints include political,
-social, traditional, institutional and legal restrictions.

The Todzie River Basin (Fig. 6.1), it is believed, can be viewed
as a typical river basin in a developing country and is therefore sub-
ject to the above problems. and constraints. Most of these problems and
constraints are confrpnped with ip this research and tﬁ;se may be there-
fore referred to as sdmévof the major objectives of this research.
Specifically, these problems and constraints as cpnfronted'and ;ackled
may be defiﬁed in’;hg;cgrrent research efforts as:

1. Inadedugf; date available for this study are used in tﬁe

best pg§§ib1e‘wéy.

2. Certain important variables like evapotranspiration have not
been measuréd; To-overéome these problems a coqceptual and a
mathematical model, which are rigorous and realiétic enoqgh;
simple to handlé conceptually and mathematicalif, respectively,
have Bé;ﬂgaeriVed;“‘The‘main aim is to~bevaﬁie to predict

evapotranspiration values.
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; “ﬁﬁThe solutlon technlque adopted should be fast and: 1nexpen51ve'

W1th respect to computat1ons by the computer. ..

,The Avu-Keta Region: comprises an area of 475 square miles, or
'304 000 .acres, bounded on the west by the Volta River, on the: north by[;]
Sogakofe  to Denu Road, and on the south and east by the Gu1f~of-Guinea”_
(Fig. 6.1)., Todzie Basin is part of the Avu-Keta Region. | |

‘The 1960 popnlation in the Avu-Keta area was approximately 135,000,:
‘with:51,000 people concentrated in the Keta district (the most,denSeiy
~populatad area). Ghana's population is about 8 to 9.million,.: -,

i1 The water levels of many .lagoons of the area fluctuate substantially.

»iInthe wet scason, flood waters which enter the lagoons from several

~sources are trapped because no efficient outlet:to the sea is available.

Q
‘Because of the poor drainage and the flat topography, a vast area,

including agricultural land and homes, is frequently inundated.

In the dry season, high evaporation rates reduce Keta Lagoon to

coorid

low levels. The m1n1mum level to wh1ch the lagoon has receded 15 ‘not

!Iknown. o
r There are‘threemeonrces of flood1ng‘1n the Avu-Keta area.HA+hey
are: | - I
.”H‘ItAhH1gh‘rdnoff from the Todz1e R1ver to Avu hagoon, and from

Mathere to Keta Lagoon. o | h»‘;i e
5.“rH1gh runoff from the Aka, Be11kpa, and Denu hegoon Zreae: :

fd1rect1y to Keta Lagoon.

',3fin1gh flows on the Volta River, part of whlch enter the southern ﬁ

g .
SR e
: [

”port1on of the area per1od1ca11y and contrlbu.e&to the flood-

s d v “* T e O L N S S S Y
S Ak Lot ',-:'." RN a.y:,‘h [ G(t_{»

,k1ng problem around Keta,



82

Because of the flat topography and the poor drainage of the
Avu-Keta area, the flood waters recede very slowly.

The flooding as a result of high runoff from the Todzie, Aka,
Belikpa and Denu Lagoon areas occurs primarily in June-July, with
secondary flooding, which is of lesser consequence, in September-
October.

The flooding problem in Avu-Keta is a major national concern.
Since funds and manpower are rare 'commodities', research effort to
analyze the rainfall and runoff characteristics of the basin is very
important. Unfortunately, data for most of the rivers are unavailable,
except for Todzie. Todzie, however, happens to be one of the important,
if not the most important, rivers in the area. Hence, Todzie has been
chosen for this study, even though there are many problems and con-

straints, as previously discussed.

Hydrology of Todzie Basin

The Todzie River drains an area of approximately 840 square miles
before it enters Avu Lagoon. Monthly mean precipitation in inches for
the Basin was determined by the Thiessen Method.

Average annual runoff from the Todzie River is approximately
315,000 acre-ft. This is based upon the available period of record
from March 1957 to February 1969. The annual runoff during the period

of record has varied from as little as 62,000 acre-ft to as high as

893,000 acre-ft. Figure 6.2 gives a graphical representation of
observed rainfall and observed runoff in inches (1958-1967).
Two floods of significance have occurred during the twelve years

for which records are available for the Todzie River. These floods
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occurred in 1963 and in 1968. In August, and again in October 1963, the

monthly runoff exceeded 150,000 acre-ft, which is nearly one-half of the

twelve year average-annual amount. The peak inflow was estimated to be
about 6,200 cubic feet per second. Unusual rainfall conditions occurred
again in 1968, during which very high runoff from the Todzie River
was recorded in July, August, September, and October. The highest
runoff occurred in August when the flood volume was 231,000 acre-ft.
The combined four-month runoff was greater than twice the average annual
amount. The peak magnitude of the 1968 flood could not be determined
because of a change in the rating in 1968 at both the main Todzie
channel and Agblagbole locations. However, it is estimated that the
1968 peak flow exceeded the 1963 peak flow by ten or twelve percent.

The change of runoff{ with time from month to month for the entire
record used for this research (1958-1967) is plotted (Fig. 6.3).
Figure 6.3 shows the extreme variability of the runoff from month to

month and year to year,

Data Set--Rainfall and Runoff

Monthly rainfall and runoff data for the Todzie River Basin in
Ghana (Figs. 1.1 and 6.1) are utilized in th.s study. The monthly
rainfall data are given in inches and Thiessen's method was used to
compute an average rainfall for the river basin. The rainfall data were

a continuous record from 1958 to 1967.

The runoff data were given as total monthly runoff from the
Todzie River in thousands of acre-ft. These values have been converted
into inches for this roscarch. The runoff data are also continuous

and cover all the months from 1958 to 1967.
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No other data are available. Therefore, this work is intended to
illustrate mainly the importance of what can be done with what is avail-
able, namely, monthly rainfall and runoff data for 10 years only.

It has been pointed out earlier that 12 years of data are actually
available, The two years of data deleted are those years that data
were not continuous or there was a change in locations of the rating or
measuring stations. No new errors in data will be entertained in this
study by computing data that are missing. Data used are typical of any
data collected anywhere, especially in a developing nation. Therefore,
the data should be viewed with some skepticism with respect to the more
questionable measurements. Of course, it does not mean good data cannot
be collected. It is basic to the objectives of this research, however,
to use whatever data are available.

The current data have two flood peaks (besides the 1968 flood)
which are about the highest recorded for quite awhile. These two peaks
(which are obviously not part of the general trend or behavior of the
storms in the area) can affect the predicted values of runoff, since
these are unusual occurrences and do not bear resemblance to the normal

behavior of the characteristics of the storms in the area.

Results Obtained by Quasilinearization

Quasilinearization as an optimization technique has been mentioned
in eailier chapters as a good technique if it converges. There are
several reasons why it may not converge. These may include:

1, Poor initial guessed values of the paramcters.

2. Incfficiency of the procedure to tackle certain types of
differcntial cquations effectively.

3. Poor data.
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Several different initial guesses were used for this problem, and
these included initial conditions required for the gradient technique.
The gradient technique gave good results for the objective function.
The fitting error F was consistently smaller than that obtained by
quasilinearization, and tended to decrease with better guessed initial
conditions. The smallest value of F obtained using quasilinearization
was 14.51. Other experiments diverged to very large error values.

The optimization with the quasilinearization technique was repeated
many times but no better values than that above were obtained. The
shortest computer time for 6 iterations was 99 seconds,

Therefore, the quasilinearization technique was disqualified from
further use as far as this research is concerned, since it consistently
gave divergent values of error F and wrong estimates of the parameter

values.

The Effect of Step Size in the Gradient Technique on Parameter Values

Several experiments were initially performed to find out what the
gradient technique could do, and how fast and what types of step sizes
in the steepest descent direction are good enough for use when the
optimal region is being approached,

From various experiments, it has been experienced that the gradient
technique used here is very slow in converging to the optimal solution,
The stress here, however, is to illustrate the effect of step size on
the parameter values and to determine which step size per iteration
the gradient technique has to take when it starts to move in the steep-
est direction. The values obtained in these experiments arc not neces-

sarily the optimal ones and are not necessarily intended to be., The
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working step sizes required for the optimization process are the main
concern at this point, since these are necessary guides for arriving
at the solution of the minimization problem.

The second set of values on each row represent the smallest
possible error encountered after taking the steepest descent step and
direction. A wrong step taken could easily lead the process into diver-
gence. It appears that the values immediately begin to diverge more
rapidly with the number of iterations and are directly proportional to
the step size indicative of the size of the step, Table 6.1.

Tho smaller the step size (1/ss) the longer it takes to converge.
When the step size is so small that there is rarely any significant
changes in F as in (1/ss = 0.5 to 1/ss = 0.001) the process may
continue for a long period and may probably never converge.

The first number shown in the iteraticn column represents the
jteration number for which the error F was first smallest. The second
number indicates the iteration number for the smallest possible F
after the first iteration. As the step size decrcases (1/ss = 0.01
or less), we find that on taking the step a better estimate of F can
be found, whereas, the reverse situation is experienced when step size
increases (1/ss = 0.1 or more). The first iteration, for all the
experiments, began with the same initial values >f the parameters.

The second or more iterations result in changes in values of F and

the parameters. The larger the valuc of ss (or smaller 1/ss), the
less the tendency for abrupt divergence on taking a step in the steepest
descent direction. There is almost no divergence from the minimum

when ss = 10 and higher.
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TABLE 6.1
CHANGES IN INTEGRATION TIME STEP AND EFFECT ON CONVERGENCE ON THE GRADIENT TECHNIQUE (STEEPEST DESCENT)

Step Size . .
Multiplication Function Computer Solution Values of fgrameters No. of Iterations
Function F Time in Secs. Al=a A2=(8x10 °) Y
0 001ss=100 7.900235 21.8C6 0.0643003 0.09750323 1.102187 7
' 7.899377 43.0453 0.06368861 0.06731723 1.104695 18
0 020ss=SO 7.900235 22.289 0.0643003 0.0975032 1.102187 7
) 7.869039 43.966 0.06369321 0.09728996 1.103431 17
0 100ss=10 7.900235 22.06 0.0643003 0.09750323 1.102187 7
* 7.859248 47.448 0.06369024 0.09730755 1.104246 19
o 20055:5 7.900235 21.835 0.0643003 0.0975032 1.102187 7
- 7.899661 47.14 0.J636853 0.0973363 1.105584 19
0 400ss=2.5 7.900235 21.751 0.0643003 0.09750323 1.102187 7
* 55.57401 23.858 0.06857726 0.07235782 -0.05267640 8
1 00ss=1 7.900235 22.187 0.0643003 0.09750323 1.102187 7
* 0.1036727E+12 23.622 0.07499270 0.03463971 -1.1801671 8
20.00 0.05 7.90235 21.920 ©.0643003 0.09750323 1.102187 7
) Diverge at #8 8

before any value
is calculated
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The time for thc same number of iterations for the same values
of F, a, B, Yy decreases with increasing Ax (where Ax = 1/ss).
Table 6.2 represents the results of the parameter values used in the
optimization process. Divergence increases as Ax increases. It is
important to realize from Tables 6.1 and 6.2a how little the parameters
chanse for various iterations. This shows that the parameters are
highly sensitive and the least amount of changes in any parameter
value can result in large changes in F. The gradient technique pro-
ceeds rather slowly in changing substantially the various parameter
values. It should, however, be stressed that the gradient technique
is generally reliable and can at least give some working estimates of
the parameters. The better the values of the parameters obtained
depend on how good is the chosen value of Ax; especially on the com-
petence and experience of the computer programmer.

The value of o appears quite high at this point, considering the
physical reasoning of the basin and the rainfall and runoff values.
It should be vemembered throughout this study that the sensitivity
parameter o gives an estimate of evapotranspiration. Therefore,
more experiments are to be performed using these values (Table 6.2)

as the initial conditions.

Determination of Upper and Lower Bounds of Parameter Values

The problems are originally solved with parameters a, B, Y, and
¢ (¢ appears only in the second order differential equation) being
time dependent. Several different starting values were tried in order
to find the upper and lower limits of the values of the parameters. By

inspection of the results certain range of values of the parameters
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TABLE 6.2

INITIAL VALUES OF PARAMETERS TO BE USED
FOR OPTIMIZATION PROCESS

ﬁﬁ‘f’éiﬁii‘.’ ss “omputer g e a B v
cation F
Factor (After Step)
0.001 100 T =43.05 7.899 0.6544 9.3019 1.1047
0.020 50 T,=43.97 7.899 0.6546 9.9376 1.1034
1.10 10 TT=47.45 7.899 0.6546 9.8580 1.1042
-0.2 5 TT=47.14 7.899 0.6543 9.2928 1.105584
0.4 2.5 TT=23.86 55.57 0.9478 -262.812 -0.0528
1.0 1.0 T,=23.622 0.1036727 2.1649 - 24.4612 -1,1802
20.0 0.05 ABRUPT DIVERGENCE ON TAKING A STEP IN THE

STEEPEST DESCENT DIRECTION.
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gave good results or fits of the computed runoff to the actual observed
runoff data. This range of values of the parameters was used for
bounds, and the optimization procedure repeated for yet better values
of the parameters.

There are two main sets of experiments which are performed at each
relevant stage of the study. It is necessary to mention these in pas-
sing without presenting the results, since they are only intermediate
results to the actual products of the experiments. The first type of
experiments involves the investigation of the upper and lower bounds
of the parameter values. These have already been mentioned, except to
add that these upper and lower bounds were incorporated in the computer
programs and the range of values of the parameters were the end products
(e.g., Table 6.5). The second set of experiments concerned the informal
determination of the global minimum.

In order to be sure the value of F obtained is the global
minimum many initial starting values were tried; these starting points
were all different and of various magnitudes, etc. The purpose of this
was to find out whether the objective function F (the least square
error between QCALC and QOBS) had the same or almost the same value.

The results found for over 15 trials indicated the same or approximately
the same value of F. Thus the global minimum was informally found and
the optimal values obtained were the best estimates of the parameters
within the limits of experimental and other errors.

After several trials, certain average values of B, y, and ¢
could be used without any appreciable loss of accuracy. The parameters
B, Y, ¢ are therefore considered as time-invariant. As a matter of

fact, these average values were found not to differ much from the lower
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and upper bounds of these parameters. The time dependency of B8, vy, ¢
was initially investigated as mentioned earlier in order to confirm
the time invariance of these parameters. These preliminary investiga-
tions were not necessary to report here since these do not add any new
knowledge to the study.

In the experiments that follow these ideas are fully incorporated.
Initially, every experiment was performed with all the parameters
treated as time dependent. On convergence or near convergence, it was
found that the parameters, except o, did not differ appreciably from
each other. All the parameters, except for a were assumed constant
and equal to their corresponding seasonal averages. The parameter «
was treated as a time-dependent parameter. At certain points in the
data which gave bigger error than stipulated for convergence (F <
0.001) because of a higher or lower value of the average parameters
the next best estimate of the parameter values were used. In such a
case (and there were only 3 out of 120 cases), the objective function
obtained from the sum of the least square differences of the observed
runoff values and the runoff computed using these parameters gave an

error F which was not greatly different from the convergence criteria.

Many experiments were performed for each of the monthly and
seasonal models in order to determine how variable the parameters could
be, where their upper and lower bounds were, and which were their
optimal values. i

4

The objective function and parameter o - The objective functicn,

as has been explained, is determined by F, the least squares error

function. It is necessary to specify how much error is tolerable for
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any iteration. If this minimum tolerable error value is exceeded then
the iterations could be stopped temporarily so that better initial
values could be used so as to arrive at a better value of the objective
function.

Most weight is placed on o because it is physically explainable
and can be used with the greater amount of accurécy than the other
parameters. This does not mean that when « is constrained (0<a<1.0)
the other parameters could assume any values. In fact, the other
parameters are constrained when their corresponding seasonal average
values were used. As a further check on what values other parameters
could assume, it should be realized that a = a(B8,y,¢,Q,P,t) and
therefore any unacceptable or bad values of any of B, Yy, P or Q
will reflect in the values obtained for o which may physically not be
justifiable.

If after trying all the possible initial conditions for a, B, ¢,
and y for a given F and we do not have any improvement on F then
the reasons could be one of the following:

1. Questionable data value for that particular integration step.

2. Model is insensitive for certain range of values of observed

data. 1t is therefore necessary to check other data which
are in the same range of values and check its corresponding
F in order to determine the differences in F between the

two similar data values.

The Monthly Models

This was constructed such that the initial conditions determined

from many trials were used only once to start the iterations. The



95

integrations at all data points used this set of initial conditions for
the first iteration. The least squares error summed for the entire
record was found from the observed runoffs and computed runoff due to
integrating the mathematical equations. The gradient technique uses
this error value to find a new set of parameters which become the
starting values of the second iteration and the process begins again.
This continues till convergence is attained, The first order differ-
ential equations with nonlinear storage-discharge relation of the
mathematical model was used for these investigations.

The monthly model was developed and optimized using two approaches.
The main aim in doing this was to investigate (1) which of the two
approaches gave the best possible values of the parameters, where the
value of error F the objective function was the criteria for judgement.
The smaller the value of F the better the approach; (2} which method
was faster with respect to computation time--again the economics of
the problem is of major importance and is one of the objectives of this
research; (3) which method is more efficient--this gives a graphical
representation of the computed runoffs by both approaches as against
the observed runoffs. The closer the fit of one approach to the
observed runoff curve the more efficient the particular approach.
4) Whether one is as good as the other in which case one can serve
as check on the other and thus further indicates how good the chosen

approach is.

Results of monthly Model 1 - This involves setting up the initial

conditions and the gradient technique uses only this set of initial

conditions and solves the differential equations at all the points
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'Vid the' predictor-corrector scheime. This is the first iteration,
Where at the end of iteration 1 we have 120 (number of data points

’ uSéd) values of calculated runoffs correspording to each of the 120
observed runoffs. The least squares error F is found and this is
utilized by the gradient technique to find new step and direction.
The new starting values of the parameters are found by the gradient
method and those become the initial conditions of iteration 2, The
process is repeated. Altogether 10 iterations were allowed in order
to determine the best value of F,

Results of monthly Model 2 - The optimization of the first order

nonlinear storage-discharge model was started with initial conditions
applied only to the first point, instead of using this one set of
initial conditions for all the points. The computer programme was
modified to optimize the parameters at the first point (and other
subsequent points) and the objective function F found together with
its parameter values. Ten iterations were done for this first point
in order to find the smallest F whose corresponding parameters
become the initial conditions for the second point. The process was
repeated for each point (10 iterations per point) till all the 120
points were covered. The difference in approach between Mndel 1 and
Model 2 is that Model 1 makes 1 iteration for all 120 points and
repeats the process 10 times; whereas, model 2 makes 10 iterations for
each point and repeats for all the 120 points.

Model 2 is essentially a new technique and should therefore not be
misconstrued as violating any set procedure of optimization with respect

to the predictor-corrector scheme. Basic understanding of the predictor-



97

corrector scheme and computer programming made this new approach pos-
sible, Still this approach should be proved worse or better than model
1 based on the 3 criteria set forth in this section: (1) smaller

value of F, (2) faster, and (3) more efficient. The proof of these

points are illustrated on Table 6.3.

TABLE 6.3

COMFARATIVE RESULTS OF MODEL 1 AND MODEL 2
OF THE MONTHLY MODELS

. Cumulative
Average Values of Optimals Errors of Computa-
Model N 8 All Points | tion Time
Y F CP
1 0.0659 9.2153 1.11333 0.4098 16.189
2 0.0660 9.2084 1.11229 1.9618 13.529 sec

Results given on Table 6.3 clearly indicate how good cither model
is. Both models gave very closc average values of the parameters indi-
cating the rcliability of these values and these further illustrate an
informal proof of global optimality of the parameter valucs with
respect to the values of the objective functions. Model 1 scems to
give a slightly better fit to the actual data, though Modcl 1 takes
more computer time than Model 2.

It is therefore recommended that both methods be used as check ,
for each other and to find out informally whether the average values
of th. paramecters used arc indeed the global solutions or just the
At least, this can

local solutions of thc optimization problem,

informally establish global or local optimality.
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The Seasonal Models

The following investigations were centered on the seasonal
investigations of the hydrologic system characteristics, the behavior
of the characteristic parameters of the system, the investigation of
the usefulness of some of these parameters and derivation of a simple
but an effective model to calculate cvapotranspiration. Again, 10 years
monthly rainfall and runoff data were used. These are all that cxisted
and therefore, have to be used in the best possible way bearing
in mind some of the basic objectives and principles underlying this
research:

1. Model that uses only the main measurable data (rainfall
and runoff data) in a watershed.

2. Deriving a mathematically and physicaliy sound model, which
is simple to understand but very effective in solving the
problem,

3. A model which can further give estimates of values of
other variables which for rcasons of economics, politics or
both (plus others: accessibility to area, ctc,) make it
impossible to measure these variables cven though it (they)
may be very important, Lvapotranspiration is one such very
important variables that nced be known for agricultural or
water resources projects--for planning, management and
dovelopment. This research has developed a model for
calculating monthly, scasonal and annual evapotranspiration,

(4) A model that is fast to solve with the computer--again the
economics of tho problem--without much or any loss for

officioency .
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These underlying objectives are important for any country but
even more important for countrios of developing cconomy which are
referred to here as developing countries--which are so referenced here
due to insufficiency of funds or capital, insufficiency of manpower and
lack of interest in hydrologic investigations. The models have been
derived on a generalized basis--applicable to any country--and tested
by using data from Ghana, the author's home country.

The importance of linear, nonlinear, dynamic consideratjons in the

seasonal models - A comparative study - Many investigators (Chapter II)

have used various assumptions in deriving their mathematical model
of the hydrologic system. Some have used linear storage-discharge
relations (an unrealistic assumption); others used nonlinear storage-
aiscnarge relavion. In conjunction with one of these investigators
derived first order differential equations; others derived a second
order differential ecquation.

To show the merits of either one or the other approach, this
current rescarch which is also partly interested in thesc problems and
some of these assumptions, has attempted to use nonlinear storage-
runoff relation; and first and second order differential equations
respectively and vice versa (i.e., two approaches) in deriving its own
differential cquations describing the hydrologic system. These
equations arc different from any other, but effectively describe the
physical behavior of the river basin,

Planners cannot go through the elaborate investigations of the
merits of cach of the above apprcaches and may more often than not pick
up any method available (depending on what the original investigator

said about his model, usually not what he did not say), without
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knowledge of the capabilities of the particular model in solving the
problems they may be faced with. Therefore, it is important to illus-
trate the potentialities and deficiences of each model presented.

The parameters contained in the first and the second order
differential equations are gencrally different (except a, which is
maintained common to both). Both equations werc derived using similar

names for the paramcters (a,B8,Y,9) but with different meanings.

Prediction of Lvapotranspiration and Optimal Paramcters

The annual total evapotranspiration was calculated by using the
existing theory and by the developed models of the first and second
order nonlinear differential equation. The reason for using the
existing theory is to serve as a check to the developed model which
is also aimed at predicting evapotranspiration.

Experiments were performed on five models. Models 1 and 2 are
the four seasonal models of the first and second order nonlinear
differential equations respectively. Models 3 and 4 are two seasonal
models of the first and second order nonlinear differential equations
respectively. The fifth model considers the linear storage-discharge
relationship. All these series ot experiments were performed in order
to find the best estimates of evapotranspiration, to serve as check
on each other and to determine which is a better and more representative
model for the physical system. The final results are compared with
those obtained from thcory and Ho, a town which lies just outside the
case study area. Ho is the area nearest to the basin, for which the
investigator has evapotranspiraticn data. One of the objectives of

this study is to use whatever is available in a best possible way.
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This is definitely not a handicap, since this type of problem prevails
in many developing natioms.

The Concept of Change in Storage with Time and How It Affects

Predicted Evapotranspiration Values - Before presenting the results

obtained from the first and sccond order differential equation models
it is necessary at this point to perform some few experiments to
illustrate the importance of change in storage with time in the basin,
The essential points and assumptions in the two models will be pre-
sented first and then the results of the three experiments on change

in storage values (Table 6.4).

TABLE 6.4

10 YEAR AVERAGE OF CHANGE IN STORAGE DUE TO SHIFTING
STARTING AND ENDING POINTS OF THE DATA BY ONE (USING
4 SEASONAL MOLELS FOR ILLUSTRATION)

CHANGE 1IN

STORAGE
Nov. 1957 - Oct, 1967 3.76"
Dec. 1957 - Nov. 1967 4.70"
Jan. 1958 - Dec. 1967 4,30"

It is always important to check how good or how effective is a
simulation or mathematical model. This could be done either by using
other data from another area or data from completely different loca-
tion; or where this may not be available a convincing method should be I
derived. From experience, it is more difficult in most developing
nations to have relevant data from other countries (problem may be
economic, lack of interest in foreign data and even more important,

it may not fall within the priorities of the development programs).
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It is, therefore, important to develop another means for checking

the model. One method is to use the mass balance equation

AS
Z-E-—P-Q-E
AS .
where it ° change in storage,
P = rainfall,

Q = runoff, and

E = -cvapotranspiration.
Over long periods AS/At = 0 , and therefore, E = P - Q. Further, if
all rainfall values are summed for a period and subtracting from this
the total runoff for the period, then the evapotranspiration total
for the period can be obtained. If thc monthly predicted values
(from model) of evapotranspiration arec good then when all the monthly
totals are summed up for any period, the model evapotranspiration
should be the same or not much different from theory. Differences
in values between theory and model are duc to: (1) errors associated
with theory (formula is only approximate}, (2) errors in mathematical
model or data or both (these have been discussed in earlier chapters).
Specific sources of error are discussed later on in this chapter.

In order tc interpret the results fully it is necessary to go

back to the assumptions made in the derivations of the theoretical and
model equations (using their simplest forms):

From theory:

S . p.n.g

or
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Now S, 1s the storage at the end of the period. S, is the storage

1
at the beginning of the period. Therefore, %%— is only zero when

S, = 5, otherwise E from model may either be higher or lower than

the theoretical value.

From the first order differential equation:

g% =aP -~ Q=P -E -Q

or
_ dsy . AS
SEALE - EERENIE
AS Y

But KE-KIQ

E=P-Q+K1QY

This implies E has an extra term KlQY which will give a higher or
lower value of E than that from theory (Fig. 6.4a). The results
obtained show a bias for higher E from model. However, the close-
ness of the model and theoretical values are very significant. From

the second order differential equation:

d

F& =P-E-Q
AS

E=P-Q+7

but

AS Y dQ _ Y 4Q
22 = KQ +x-£~_ K,Q' + K 53

Q+(K1QY+K%%) :

e
m
1}
o
[}
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This means E for this case is larger than that for theory if the term
in brackets is positive or less if K %%- is negative and larger in mag-
nitude than KIQY. This latter case rarely exists and the results
obtained confirm this (Fig. 6.5a).

In summary, when dynamic effects are neglected as in the case of
theory the calculated values of evapotranspiration will be smaller than
the actual value. The developed models have predicted extremel& good
annual evapotranspiration values. Further, it is briefly illustrated
(Table 6.4) the effect of neglecting dynamic effects of the system.

Three experiments were performed using different starting points
(of the data) and finding effects on AS/At. Three months, November,
December, and January were chosen. Since antecedent moisture condi-
tions may exist before the chosen starting point, actually it was not
necessary to perform the experiments on different seasons as starting
points (though these might illustrate the points even more clearly).
Results obtained on Table 6.4 clearly illustrate that change in
soil moisture storage is not zero, though tu.e approximation of
AS/At + 0 serves as a good check. It is, therefore, important to
point out that the value of AS/At for a given year depends on when
the year is defined to begin.

The four seasonal models - Most of this study is based on the

four seasonal models. Other seasonal models, e.g., two seasonal, may
be investigated depending on the needs of the investigator. The four
seasonal models were grouped in sets of three months per season.
Season 1 (JP=1) was Dec., Jan., Feb.,; JP=2 was the next three
months; JP=4 refers to Sept., Oct., Nov. season. These were chosen

by the author from the author's experience of the basin, but it is
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necessary to stress that the models are flexible and general enough that
one can take any number of seasons (e.g., two seasons of 6 months each,
or 12 seasons of 12 months (monthly case)) irrespective of the starting
point. To serve as a check in this study, the annual evapotranspiration
estimates derived from the four seasonal model were compared to those
by the two seasonal model later on in this chapter.

Results of seasonal Model 1 - From Chapter IV (Eq. 4.32)

4Q

a l-y
dt PO -EHQ

By

where S = KQY. The symbols have been defined earlier. The foregoing
equations represent the first order nonlinear differential equation
model. This is also seasonal Model 1, which is a four seasonal model
as explained earlier in this chapter.

Table 6.5‘gives the results of the optimal values of the parameters.
Seasonal average values determined from earlier experiments were used
for B and y in this experiment. Herein, a was a time dependent

parameter and the values given in Table 6.5 are the averages found for
each season in the current experiment. It is interesting to note the range
of values of a: 0.0078 to 0.0887, in this current experiment., The
evapotranspiration estimates for the seasons depended mainly on values

of a and the rainfall values and they were generally independent of

B and y . The parameters B and y are not very sensitive to

changes in a . Figure 6.4 illustrates how closely related the model

and theory values are. All the points lie above the line (45° to the

axis) which rightly indicates the slightly higher estimates of annual

evapotranspiration as given by the model. The difference in magnitude,
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between each point and the nearest point from the line measured verti-
cally down, gives the annual magnitude of change in storage. The
theory values serve as good check on the computed evapotranspiration.

This experiment is initially done for the four seasonal model.

TABLE 6.5

AVERAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS
FIRST ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL

poriod/ | . | Evapotrans-
piration
1 0.0078 8.4751 1.2771 7.39
2 0.0360 8.3908 1.2781 19,36
3 0.0344 8.3908 1.2781 12.34
4 0.0887 7.9856 1.3064 8.39

Rosults from Fig. 6.4a and especially Table 6.5 gives an
insight into which season has thc highest or lowest evapotranspiration
and also to answer the question whether more evapotranspiration occurs
in rainy seasons (because there is more water available) or in between
rainy seasons or even in the unlikely situation of a dry season? To
the best knowledge of the author this interesting question has never
really been answered, even such concepts as actual and potential evapo-
transpiration occur. At least it will be important to find out what

the model reveals,
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It is known that when more water is available, e.g., wet season
when the soil may be saturated, water is being evaporated at a potential
rate. Also when the season is generally dry the evapotranspir;tion
rate is generally less than the potential rate. However, if the topog-
raphy of the area is flat as in the case of the Todzie Basin; and there
are laéoons, also as in the case of the Todzie Basin, then water accumu-
lated from the wet season to the dry season could be lost to evapo-
transpiration at a rate which may be greater than that of the wet season.
The results from this model indicate total dry seasonal losses
(seasons 1 and 2) as higher than that for the wet season (seasons 3 and
4). Of course, evapotranspiration itself depends on how intense, how
frequent and when these following factors occur. Some of the factors
are:

l. Solar radiation.

2. Wind speeds and direction,

3. Amount of moisture--how wet the soil is and how efficient

is the transpiration processes of plants.

4. Cloud cover.

These factors should all be considered with the above investigations
before any solid conclusions can be drawn, even though certain trends

can be detected in this research.

Results from this model indicate that most of the factors {
responsible for evapotranspiration losses may be more pronounced in

the dry season,

The confidence placed on the predicted evapotranspiration for the

seasonal model 1 is further confirmed by the seasonal average values
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~ of evapotranspiration obtained from Ho using Penman's method (Table 6.6).
The units are in inches. The total of averages for the first and second
six months are given. The averages from Ho were based on averages of
two stations and it must be pointed out that the average from the
period of record was from 1961-1962 to 1970-1971, whereas, that for
Todzie was based on data from 1958-1967. The two sets of values were
the only information available to the investigator, after more than
1% years frustrating search for pertinent data. In any case, it
is important to use whatever is available. However, the closeness of

the values is encouraging.

TABLE 6.6

COMPARISON OF AVERAGE TOTAL SEASONAL VALUES OF
EVAPOTRANSPIRATION BETWEEN MODEL 1 FOR TODZIE
BASIN AND ESTIMATES FROM HO AREA

Season Todzie Ho Area
Dec.-May 26.75 27.24
June-Nov. 20.73 21.03

Results of seasonal Model 2 - Second order differential equation

with nonlinear storage-discharge relation, from Chapter IV (Eq. 4,33)

dQ _ o, _Q _ K 14
dt? K1P S K1YQ a%

where

S=KQY+K1%%.

This model is considered in order to find out whether this or the
a2 I N A ot y ; : v f L

first order differential equation model is superior. The initial
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consideration is on evapotranspiration estimates. Superiority of model
is determined on the following basis:

1. How good the particular model predicts evapotranspiration

values.

2. Whether it gives better estimates of runoff

(least squares error should be less) or simply whether
this model gives a better fit of computed runoff to
observed runoff.

3, How fast is the computation time.

The seasonal variations of B*, y*, ¢* are apparent in this model
(Table 6.7), whereas in model 1 B8* and y* assumed more or less a
stable form. However, a* in model 2 showed a somewhat stable value
whereas, a* in model 1 differed from season to season. It is, there-
fore, not surprising to note Model 2 gives different scasonal predicted
evapotranspiration, Compared to Model 1 (Table 6.4), Model 2 predicts
less evapotranspiration in the first two seasons and more in the next
two. However, the annual totals of evapotranspiration are closely
related. Comparison of results from Table 6.7 and that of Table 6.6
indicates that Model 1 gives a closer fit to Ho area estimates than
that by Model 2. This result will at this point indicate that Model 2
may estimate higher values of runoff in the first two seasons and less
for the next two. The reasoning is based on the continuity relationship
that should be satisfied by these models.

Figure 6.5a gives the plot of Model 2 using annual total evapo-
transpiration from theory and that predicted by Model 2, using 10

annual totals. Model 2 gave slightly higher estimates than Model 1,



TABLE 6.7

AVERAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS SECOND

ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL

PERIOD/

SEASON a* g Y* o*
1 0.0142 6.0667 0.7751 1.0164
2 0.0183 5.2046 0.6775 0.9960
3 0.0193 5.5968 0.7049 1.0021
4 0.0183 5.5230 0.6954 0.9991

(494
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The next section compares the results from Models 1 and 2 giving
the computation times, one of the criteria for judging which is a

better model.

Comparison of results from seasonal Model 1 and Model 2 - It

should te clearly understood that the parameter which controls or pre-
dicts evapotranspiration is a; and evapotranspiration is directly

related to or directly proportional to o« and rainfall:

Ei = (1 - ai)Pi

where Pi = rainfall for a given time i,
Ei = evapotranspiration at time i, and
«. = time dependent o value for ith time.

Therefore, it is unlikely that there may be drastic changes in pre-
dicted evapotranspiration values using either model. The differences
are due to different estimates of o ,which are also due to the
indirect dependence of o with other parameters:

first order differential equation model: a = a(t,B,y,P,Q

second order differential equation model: o = a(t,B,y,9, P,Q).

Basic differences in the two models will be found from predicted
or computed runoff; speed and accuracy with the computer.

Table 6.8 gives a comparison of 10 year means of the theoretical
and Models 1 and 2 estimates of evapotranspiration. The first
established differences of the two models lie in the seasonal predicted
evapotranspiration (Tables 6.6 and 6.7) and Model 1 proved a more favor-
able model based on available data from Ho. Ho is, of course, not in
Todzie Basin, but lies in a similar geographic and climatic area.

Model 1, again, took a shorter time for convergence even though the

time for convergence of Model 2 was close (Table 6.8).
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TABLE 6.8

COMPARISON OF 10 YEAR MEANS OF THEORETICAL, FIRST
AND SECOND ORDER DIFFERENTIAL EQUATION MODELS
(FOUR SEASONAL MODELS)

First Order Second Order
Theory Model Model
Average
Evapotranspiration
per Year 44,32 in. 47.48 in, 49,05 in.
Computation Time
for Convergence -- 21.488 sec 22,845 sec

Two seasonal models - Fresh experiments were performed using two

seasons of six months per season. This was done in order to find out
how acéﬁ;éte or inaccurate the predicted evapotranspiration values
become, or whether there is no change in these predicted values. This
further illustrates the adaptability of the models developed for other
seasons (or any season) that may seem important for the water resources
planner.

It is also very important to find out what the behavior of the

paraneters are with respect to seasonal changes. Models 1 and 2 were

four seasonal models with three months forming one season. Models 3

and 4 are the two seasonal models, where first season is from December
to May and the second season is June to November.

The discussion on Models 3 and 4 will be very brief since they
are introduced here in passing; and are mainly meant for comparison
with Models 1 and 2 with respect to evapotranspiration estimates.

Results of seasonal Model 3 - This model illustrates the seasonal

dependency of the model parameters and the choice of season determines

the possible values of the parameters (Table 6.9).
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Comparison of results given in Table 6.9 to those in Table 6.5
indicates that values of o from as small as 0.0006 to as large as
0.0887, whereas, as expected the parameters B8 , y vary very little.

The seasonal variations of means of B and y are again shown.

TABLE 6.9

AVERAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS
FIRST ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL,
MODEL 3 (TWO SEASONAL DEC-MAY, JUNE-NOV)

Period/

Season a* g* y*
1 0.0006 9,2121 1,1133
2 0.0842 8.7227 1.1426

These results again clearly indicate that the planner should be
careful as to which parameters are chosen, based on season and the
purpose for which they are to be applied. It must, again, be stressed
that a is distinctly a time dependent parameter and proportional to
the evapotranspiration. Figure 6.4b gives a plot of evapotranspiration.
The annual values obtained by Model 1 are not exactly the same as those
from Model 3. The slight differences in the annual estimates are most
likely due to errors in the model, especially in the predictor-corrector
scheme. From experience, it appears that the longer the number of
months in a season, the corresponding increase in errors. Errors due

to model and theory are discussed later on in this chapter.
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Results of seasonal Model 4 - This is the second order nonlinear

differential equation applied to two seasons of six months per season.
The more sensitive parameters (Table 6.10) appear to be a and
¢. Now that ¢ has jumped from 1.0164, the highest from Table 6.7, to
2.5985 the higher on Table 6.10. However o decreased from 0.0142, the
lowest on Table 6.7 to 0.004 the lower value on Table 6.10. Note also,
B varies slightly from the two tables and y varies very little.
The results of Model 4 confirms that from Model 3: The longer
the number of months forming a season, the more the errors introduced.
Figure 6.5b gives the estimates of the evapotranspiration as given
by Model 4. These results compare very well to those on Fig. 6.5a, which
was also calculated using the second order nonlinear differential equation.
The slight differences in the estimates of evapotranspiration between
Models 2 and 4 are again due to errors mentioned with respect to

Models 1 and 3.

Results of linear models - For illustrative purposes a linear

storage-discharge relation was incorporated in the first and second
order differential equation models in order to predict evapotranspira-
tion and runoff.

In both cases the models under predicted evapotranspiration and
over predicted runoffs. Table 6.11 shows the best possible results

obtained for predicted evapotranspiration. This clearly illustrates

In both cases the models under predicted evapotranspiration and
over predicted runoff, based on the Ho data and observed runoff.
Table 6.11 shows the best possible results obtained for predicted

evapotranspiration. This clearly illustrates and confirms the test




TABLE 6.10

AVERAGE 2 SEASONAL OPTIMAL VALUES OF THE PARAMETERS
SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL

PERIOD/
SEASON a* B* v ¢*
1 0.0054 6.5481 0.7521 2.3134

2 0.0040 6.3567 0.7190 2.5985

811
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TABLE 6.11

LINEAR STORAGE - DISCHARGE RELATION IN THE FIRST
ORDER DIFFERENTIAL EQUATION MODEL USED FOR
PREDICTING EVAPOTRANSPIRATION

YEAR THEORY VALUE LINEAR MODEL
1 47.82 16.81

2 45.62 17.06

3 48.20 18.63

4 36.78 13.22

5 43.59 17.97

6 49.19 20.51

7 41.91 15.44

8 46.13 18.33

9 43,51 16.51

10 40.46 16.62
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that the hydrologic system model is not linear with respect to storage-
discharge relationship; and, therefore, linear models are not recommended

for such studies.

Comparison and comments of results from all the seasonal models -

The total annual averages of the evapotranspiration estimates given
by all the seasonal models (Models 1 to 4) are presented on Table 6.12.
These values were found using the first and the second order nonlinear
differential equations applied to different lengths of data per season.
The computation time on the computer is again important and are also
given,

The range of values of all the parameters are given. It should be
noted that the parameters are seasonally dependent, especially a.
The range of values of these parameters are given here to enable other
investigators or planners who may need the results of these studies,
to have some convenient starting values of these parameters;
or more important some working values of these parameters. It is
important not to use, e.g., B from Model 1 for Model 2, because even
though the same letters are used the parameters do have different
meanings (as pointed out earlier). This is because of the different
assumptions made in developing the first and the second order differen-
tial equation models. The first order differential equation has no

value of ¢ as indicated on Table 6.12.

The importance of presenting the ranges of values of the parameters,
are to show that parameters are definitely not time invariant. They
may vary very little with time in which case average values for the
particular period may be used. The most important parameter of this

study is o , which is a time variant parameter that depends on the



TABLE 6.12

COMPARISON OF AVERAGE ANNUAL ESTIMATES OF EVAPO-
TRANSPIRATION FROM ALL THE SEASONAL MODELS

FIRST ORDER DIFFERENTIAL EQUATION

SECOND ORDER DIFFERENTIAL EQUATION

4 SEASONAL MODEL

2 SEASONAL MODEL

4 SEASONAL MODEL

2 SEASONAL MODEL

MODEL 1 MODEL 3 MODEL 2 MODEL 4

AVERAGE VALUES OF

EVAPOTRANSPIRATION

PER YEAR USING 10 47.48 47.19 49.05 49.72

YEARS DATA

(IN INCHES)
a 0.0078-0.0887 0.0006-0.0842 0.0142-0.0193 0.0040-0.0054
8 7.9856-8.4751 8.7227-0.2121 5.2046-6.0667 6.3567-6.5481
Y 1.2771-1.3064 1.1133-1.1426 0.6775-0.7751 0.7190-0.7521
6 -- -- 0.9961-1.0164 2.3134-2.5985

COMPUTATION TIME 21.488 18.71 22.845 19.914

(IN SECONDS)

(AA
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stochastic nature of rainfall, the state of the soil of the river basin
at the time of rainfall (whether dry, saturated or in between and their
time and space variabilities), the vegetational cover of the basin
(which changes with time and space) and the climatic elements that are
responsible for evapotranspiration (these also change with time and
space). Bearing these points firmly in mind, it is necessary for the
investigator or planner to have an idea as to the possible range of
values of these parameters, and not continue with the misconception
that each parameter has one fixed value which can be plugged into a
model for another region. To the best knowledge of this author, no
studies have presented convincing results leading to regionalization of
the parameters of a simulation model though some attempts and thoughts
have been given to the problem (Benson and Matalas, 1967; Matalas and
Gilroy, 1968; Prasad, 1967).

While discussing the results of possible range of values of the
parameters, it is important to consider transferability of results of

parameters, as discussed by Dawdy, et. al. 1972:

"For modeling results to be transferable, the parameters
derived from simultation studies at measured sites must be constant
or must possess invariant relations with physical variables which
can be measured in other basins. Time invariance is required, or
else any changes in time must be the result of measurable physical
changes within the basin."”

COMPUTED AND OBSERVED RUNOFF

After comparing the results obtained for the parameters and
evapotranspiration using the first and second order nonlinear differen-
tial equations; and having shown that the first order differential
equation model (Model 1) is more representative of the physical

system than Model 2; it is now necessary to compare the computed
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=i zirunoff using the two models with the actual measured data. Figure 6.6
- ‘gives ‘a graph of the first order nonlincar differcntial equation

estimate of runoff (the calculated runoff) to the observed runoff. If
the first order model is perfect than all the points will lie on the
straight line making 45° angle to the axes. As it has been pointed
out no model is perfect and the differences that exist between the
observed and the computed runoff may be due to errors associated with
the conceptual model, the observed data, the mathematical model and the
solution technique used., However, the spread of points around and along
the line (Fig. 6.6 and Fig. 6.7) are good and give an indication of how
well the proposed models predict runoff. It is clear from Figs. 6.6
and 6.7 that model 1 gives a better fit to observed values than model 2.
Some few points which are repetitious are not indicated on the plot,
even though they were closer to the 45° line than some of the others -
this is done to preserve tidiness. Later, the given graphs will give
plots of all the points. The points on Fig. 6.6 and Fig. 6.7 are
seasonal totals of runoff per year for the entire period of record.
The four seasonal models are used for illustrative purposes.

It is now important to present graphs showing the computed and
observed runoff for the entire period. A necessary criteria for
judging the better model is to find out which of the two models give
a better fit to the observed data. Also, it is necessary to compare
the two models regarding how much total volume of water for the
entire period they:yere able to predict - this will be referred to
in the section on the verification of the models.

. . Results of the first order differential equation model - Using

the four seasonal models and the first order differential equation,
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seasonal totals of calculated runoff were computed from Seasonal Model
1. Figure 6.8 gives a comparative plot of the total runoff per season
from observed data and that from the model. Apparently, the Seasonal
Model 1 tends to predict slightly higher values of runoff than given by
the data for lower runoff values and almost the same or slightly lower
runoff during peak flows. The fit, however, is good.

Results of the second order differential equation model - Figure

6.9 gives the comparative plot of the total runoffs per season from _
observed data and that from the model. The computed runoff came from
using the second order nonlinear difterential equation model (Seasonal
Model 2).

The fit between observed and computed is adequate. However, a
complete picture as to whether this model fits the observed data more
than the previous model will be found on Fig, 6.10. It appears that
this model precdicts higher total runoff than the Seasonal Model 1.

Comparison and Comments of Results from the First and Second Order
Differential Equation Models

4 e

1 and 2) are plotted against the observed data with all the three graphs

on one figure (Fig. 6.10). .

Verification of the Models

Several verification tests were performed on the models. The most
significant among these will be reported.

For exarple, the data were divided into two equal parts and optiﬁal
parameters found for the first half of the data. These became the

initial starting point for the second half of the data and the process
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was repeated. The optimal values found for the second half of the data
were the same as the first. The result at the end indicated how
unnecessary this test was in the first place. Since the optimal para-
meters found for the entire period were not essentially different from
those found for the first half; and since at the end of the first half
the predictor scheme had already predicted the vzlues of the starting
point of the second, it was inevitable to arrive at the same optimal
values at the end. This portion of the work was not reported since

it was just a repetition of results. It, however, confirms the capa-
bility of the model for predictive purposes. Penman's estimate (using
Ghana Meteorological services records for Ho) gave an average evapo-
transpiration from the two Pan Evaporation data (converted) as 48.27.
Ho (Fig. 1.1 and Fig. 6.1) has a meteorological station. Ho is one of
the few important meteorological stations nearest to Todzie Basin.
Values of evapotranspiration from Ho do not give the most accurate
estimate of evapotranspiration for Todzie, but serve as a good check on
the predicted evapotranspiration from the models; and they probably give
the best estimate, since Ho and Todzie are in similar geographical
(vegetation, relief, soil types) and climatic region.

Assuming the value of evapotranspiration from Ho to be the true
value of ET) then 48.27 (ET from Ho) - 44.32 (ET from theory) = 3.95
inches is a rough estimate of the annual average change in sto.age of
the Todzie Basin. This further implies that the first order model gives
a closer estimate of the annual average change in storage in the Todzie
Basin (Table 6.13)

Another important result concerns the total of the average annual

sum of runoff and evapotranspiration. Since experience with the monthly



TABLE 6.13

SUMMARY OF RESULTS FOR THE FIRST AND SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION MODELS
(*Implies more acceptable model for the particular investigation)

Investigated Items for the Two Models

First Order Model

Second Order Model

Remarks on Results

1. Total runoff volume for entire Observed data from Todzie
period (in inches) 62.52* 68.17 56.34
2. Average monthly volume of run- Observed data 0.53
off for entire period 0.52* 0.57 0.47
3. Average evapotranspiration per Theory value 44 .32
year (in inches) 47.19* 49.72 Penman's estimate
for Ho 48.27
4. Average annual change in storage 2.87* 5.40 Theory 0.0
Ho 3.95
5. Total of average annual runoff Theory 50.72
and evapotranspiration 53.44* 56.54 E¢ from Ho
and Todzie 54,67
runoff
6. % Difference of 5 using theory 5.36% 11.47 Theory
values and Et from Ho and Todzie
runoff 2.24% (less) 3.42% (more) Ho E; from Ho and Todzie
runoff
7. Total cumulative value of the The objective function:
objective function 3.62* 4.63 120 2
F=] (QOBS - QCALC)
i=1
8. Average value of the objective
function per month 0.030* 0.039
9. Computation time for convergence
(seconds) 18.718* 19.914

2et
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models indicates less fitting error in computing runoff, the monthly
models were modified to solve both the first and the second order non-
linear differential equations. The runoff results presented on row 1
of Table 6.13 are, therefore, from the monthly models. Again, the first
order model gives a closer estimate to the theory and to the estimates
for Ho (where evapotranspiration values from Ho in conjunction with
runoff from Todzie). There is, however, 5.36 percent (row 6 of Table
6.13) departure from that of the theory (estimates from Ho give an
exceptionally good fit). This difference is a natural result of errors
encountered in the experiments. Sources of errors have been treated in
earlier chapters and, therefore, the next section will be devoted only
to those aspects of the model and theory that may explain the 5.36 per-
cent discrepancy between them. It must be mentioned that the best
estimates of runoff were used for Table 6.13.

The objective function F gives the sum of the least squares
between the observed and calculated runoffs. The smaller the value
of F from a given model's estimates the better the model. Although
both models give very small values of F (with the average error per
month being between 0.03 and 0.039) the first order model clearly has
a smaller F for the entire rccord and thereforc a smaller F per
month. The first order modcl is therefore more acceptable than the
second order model in this category. This conclusion could easily be
derived from the cstimates of total runoff volume, average monthly runoff

volume and percentage departure (Table 6.13).

Sources of Error from Theory and Model

It has been mentioned in earlier chapters what the main sources

of error are that can causc, ¢.g., the computed runoff to not exactly
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coincide with the observed runoff. In this section, it is important to
stress those specific cases with respect to this study.

As already indicated in this chapter, there are errors introduced
in the theory when the change in storage with time is put to zero
(aS/at = 0) . This is a source of error which can influence the total
average annual sum of runoff and evapotranspiration.

Another source of error is to be found in the modified Euler
predictor-corrector scheme. This is the error associated with the value
of dQ/dt . It must be pointed out that thc error associated with
dQ/dt is not due to the Fuler method, rather it is due to the fact
that dQ/dt is not a measured variable. Since dQ/dt has to be
found by an approximate method - in this case by a finite difference
scheme - it is subject to some error. Now dQ/dt = AQ/At = Qi+1-Qi/At ,
i=1, 2, ... 120. This implies i = 119 gives Qi+1 as Q120 and
Qi as Q119 . At i = 120 Qi+1 = Q121 , but Q121 is undefined.
Therefore, (.lQ/dt)lz0 was put to the same value as (dQ/dt)119 .

Other approximating forms, e.g., representing (dQ/dt)120 as some
fraction of (dQ/dt)119 where the values of Q119 and Q120 give
the value of the fraction may be used. From experience in this study,
the investigator put (dQ/dt)120 = (dQ/dt)119 because this may give
the least amount of crror.

Other errors arc cncountered if one has to deal with d2Q/dt2 .
The second order nonlinear differential cquations may probably be more
useful for time scales of less than a month. Prasad (1967) has used
hourly data and a second order nonlinear differential equation to

simulate a hydrologic system model.
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The choice of the form of the objective function also introduces

120
some error. If F= [ (QOBS - QCALC)? , the value of F shows some
i=1
120
bias towards the smaller values of runoff; whereas, if F = Z
i=1

(log QOBS - log QCALC)2 , the value of F will show some bias for
larger values of runoff. Both objective functions cannot be used
simultaneously since all the data should be subject to same type of
changes. The former type of objective function was used here since
there were fewer high values (though significant) in the data.

Lastly, the author wishes to stress, in passing, that when the
word error is used it represents the combined errors from data and
mathematical model formulation. It is difficult and almost impossible
to know exactly how much of the total error comes from data and how

much from the model.

The Gradient Technique as a Solution Tool

From the onset, the step size that the technique requires for its
optimization should be determined. A step size which worked for one
optimization process may not work for another. This is important since
use of the wrong step size results in abrupt divergence when this step
is taken in the gradient direction. Once the rclevant step size is
determined, it can be used for any number of optimizations for that
particular optimization process. This research found step size multi-
plication factors of SS = 0.02 to 0.001, to be good, and were the
required ones for convergence. It is gencrally recommended that the
above range of step sizes be used for this technique (i.e., the sub-

routine SDOPTIM (Chapter 5)).
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In the initial investigations, larger step sizes (SS) may be used.
This can give some working values of the parameters. When the
technique starts giving improved values of F , the objective function,
then various experiments should be performed with different step sizes
(Tables 6.1 and 6.2) in order to find which SS value works best for the
particular problem. As the minimum is approached the step sizes (SS)
should be reduced.

It is important to let the physical reasoning be a guide always
in using this method. Note that o is a parametes which cannot be
greater than unity. If it is unity it means there is no evapotranspi-
ration losses and all the rainfall transfers into runoff. This is
obviously not true. If a is allowed to be negative it means the
output is more than rainfall input into the system. This may be true
in certain rare situations of interbasin flows, etc.

The problem to be solved by this technique is better stated as
minimization of the objective function F (the least square error
between QCALC and QOBS) subject to the constraints imposed on the
possible range of values of the parameters. In short the gradient
technique, like all techniques, are tools, and the user should
consider the capabilities and shortcomings of the technique in using
or applying it to solve a particular problem.

The initial trials gave a possible range of values that one should
expect of the parameters. So that if divergence is encountered in any
jterative process, due to the gradient method taking a "sharp'' step in

the "wrong" direction, one of two things can be done:
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or
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Discontinue that particular iteration, start with the original
initial guesses and begin the particular iterative process
again. This approach could be long and expensive computer-
wise (economic factors of the computations is a special

consideration in this research).

From physical reasoning and experience, one can restrict the
range of values of the parameters and place constraints on the
parameters. This approach also works well and is in fact
better in general than 1. Both approaches were used, both in

the same program.

In general the gradient technique may be said to be very reliable

and can at least give some working values of the parameters. Other

merits of the technique were mentioned earlier in this chapter and will

therefore not be repeated.
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~+ " Chapter:VII
SUMMARY'-AND - CONCLUSIONS

fhe objecfives of this research épécified inVChapter I have been
more than accomplished. %rom the results of the investigationms,
analyses performed, and experiences developed, the folloﬁing cqnclusions
are made: o

1. The best possible use has been made of what is available.
Ten years of monthly rainfall and runoff data from a developing country
have been utilized. Unavailability of other data may be based on one
or more of the following:

a. Lack of funds or economic constraints.

b. Does not fall within the 'priority bracket'! in the
national development plans.

c. Lack of manpower and expertise.
d. Political, social, institutional and legal constraints.

2. A time-variant nonlinear hydrologic system identification and
predictive simulation models have been developed based on some
important assumptions (Chapter III) concerning the dynamic and physical
aspects of the hydrologic system. A valid monthly model is presented
which will be of general applicability to planners of water resources
development., agriculturists, hydrologists and theoreticians.

3. Based on the same assumptions, two conceptual models were
developed. It was important to illustrate, especially for a developing
country, how the unknown parameters of one of the conceptual models
can be uniquely found. The more important point here was to base
unique determinations on conceptually realistic simplifications rather

than resorting to unnecessary mathematical simplifications and
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unrealistic assumptions (physically), in order to be able to use
existing mathematical tools. This approach and conclusion emphasizes
an important point: the inability of investigators to solve hydrologic
modeling problems is not only based on lack of inadequate pursuit of
conceptual ideas and formulation, but also, lack of understanding of
powerful mathematical tools that are available. This lacking requires
simplification of conceptual models in order for unknown conditions

and parameters to be determined. It is, of course, believed that
conceptual modeling and mathematical solution tools work hand in hand,
and at times a trade-off or compromise must be made between physical
realism and mathematical simplification. Whenever this is necessary,
however, more weight should be placed on the physical realism. Chapters
IIT and IV have illustrated these conclusions.

4. One of the major objectives of this study was in the
development of a mathematical model which is capable of effectively
utilizing only what is available (rainfall and runoff), and to give
some estimates of unavailable evapotranspiration data. The economic
importance of this objective for a developing country cannot be
overemphasized. Two mathematical model equations were developed for
this purpose utilizing first and second order nonlinear differential
equations. These two equations gave good estimates of evapotranspiration,
which were verified by comparing these estimates with theory and
Penman's estimate for a nearby station outside the case study area.

The first order nonlinear differential equation gave a better
estimate than the second order nonlinear differential equation.

5. Based on the above, the linear storage-discharge assumption

was incorporated in the mathematical models. The resulting first and
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second order linear differential equations gave very low estimates of
evapotranspiration and a poor fit of computed to observed runoff. This
confirms the concept of nonlinear hydrologic systems and that a linear
storage-discharge relation inadequately simulates the physical system.

6. A new and effective method of estimating evapotranspiration
has been developed. This is an important result of the study, not
only because knowledge of evapotranspiration is important to planners,
engineers, water delivery projects, agricu:lturists, and hydrologists,
but also for economic reasons. It appears that large investments
in data gathering effort for estimates of evapotranspiration will not
be needed. Certain projects that may require rapid estimates of
evapotranspiration when rainfall and runoff data are available can
find the technique handy, as well as in situations where an
investigator or planner may be faced with some of the constraints
listed in item 1 of the conclusions.

7. The river basin response characteristics are caused by
complex interactions of the physical, chemical, and biological
processes occurring in the basin. Some of the more important inter-
actions can be determined from the time and space behavior of the model
parameters describing these characteristics. A new concept: The
sensitivity factor of the river basin is developed. The sensitivity
paramgfer o , is responsible for transforming rainfall to runoff and
is found to be proportional to evapotranspiration. Optimally
determined values of o have given rise to calculated evapotranspira-
tion with a reasonably high degree of accuracy. The relationship
between o , the rainfall input P , and the evapotranspiration

output ET is given by:
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Ep(t) = (1 - a(t)) P(t)

where o(t) is a time-dependent optimal value of the sensitivity
parameter, and
P(t), ET(t) are the rainfall and evapotranspiration at time t .
8. In developing the conceptual and mathematical models, the
following considerations were important:
a. Efficiency.
b. Realistic assumptions based mostly on physical realism.
c. A model which is simple enough to comprehend conceptually
and mathematically.
d. A model which can be solved by existing mathematical tool
without resorting to unnecessary simplifications.
e. A model which is inexpensive based on computation time.
Thi. economic constraint is not only based on type of
model applied but also the type of solution technique used.
f. A model capable of computing better runoff, and predicting
evapotranspiration, when the only data available are
rainfall and runoff.
Of all the developed models, the first order nonlinear differential
equation simulated the physical system best and satisfied best the
above mentioned considerations or objectives. The proposed model is:

2-M
dQ o 5 ,1-M_Q
& “m P Q kM

This model can be used to forecast runoff when used in conjunction
with the gradient technique, a predictor-corrector method, and the
resulting optimally determined values of the parameters. This has

been verified in this study.
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9. Another significant result obtained in this study concerns
the change of storage with time: dS/dt . It has been found that
g% is assumed to be zero for long periods of record, then the
resulting evapotranspiration estimates serve as a good check on the

if

model values. These gave very close fits to each other. The dS/dt
value for any length of record has been found to be dependent on when
the beginning of the period of record is defined. Certainly for
monthly data these observations are important.

10. The various experiments were repeated several times (at
least 15 times) with different initial conditions and almost always
resulted in optimal solutions with the same values. The repetitive
nature of the values of the optimal parameters for all the numerous
experiments strongly indicate that global solutions have been
informally found. It has also been established that the parameters
8 ,Y,and ¢ are relatively time variant,

11, It is extremely important to establish the seasonal
(depénding on how many months constitute the season) values of the
parameters for planning purposes. These have been clearly illustrated
as dependent on length of season (with respect to the number of months)
and are assumed to be constant for each particular season. It is
necessary to determine the time dependency aspects of the parameters
and establish which are sensitive to time (e.g., the parameter a) ,
and which of the parameters may be considered as constant or
approximately equal to their seasonal averages.

12. The original computer program developed for this research

used the given initial conditions and optimized all the way through.
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A new approach has been further developed based on the above as a check
to the conventional approach in the optimization process of this nature.
This involved using the very first initial guess and optimizing for the
first point. The optimals obtained from the first data point become
starting values for the second data point and the process is repeated
for all the data points. This new procedure gave extremely good fits
of the parameter values to the first procedure; it gave a slightly
higher but acceptable error; and it was faster than the first procedure.
13. As pointed out in Conclusion 8e, the economic constraint was
not only based on the type of model used but also the type of solution
technique. The solution techniques used in this study were:
quasilinearization and a gradient techn‘que. From the experiences in
this work, it was found that quasilinearization gave divergent results,
whereas, the gradient technique converged. It was established that
quasilinearization is an unreliable algorithm, whereas the gradient
technique will give at least something useful that the planner or
investigator can utilize. The gradient technique was faster and
simpler to understand than the quasilinearization algorithm. It was,
therefore, concluded from this study that the gradient technique is
a superior technique, being more reliable, more economical to use,
easier to understand and handle (comparatively), and therefore more
attractive for use in developing countries as well as in developed

countries.
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Chapter VIII

RECOMMENDATIONS

From the analyses performed, results obtained and the conclusions
drawn, the following recommendations are made:

1. A recommendation should be made which considers computer-
oriented models, developing countries, politics and economics. These
areas are indeed related as far as this study is concerned, It has
been stresscd that this study considers an efficient and a realistic
model which is easy to understand and handle and fast on the computer
as basic to the study. The author poses a debatable question, which
he attempts to answer as well: In considering the ecconomics in a
developing country does a proposed hydrologic model have to be com-
puter oriented?

It is true that developing countries may have to minimize costs even
more than many other countries. It is not truc, however, that develop-
ing countries do not want to develop themsclves. It is important to
stress that their development is taking place in the age of computers.
This factor cannot be overlooked for a faster development. It is true
certain investments may pay off in monctary tcrms. Other investments
may be aimed at social well being. Whatever the investment, a very much
needed capital may po into the project and therefore the safety of the
project with respect to time is and should be of major concern. The
type of project will demand the type of approach.

Certain simple projects may probably need simple models, which
may not bec computer oriented. As projects become more complex and

capital investments increasc, more uncertainities are created, tho
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more ideas should be generated, the more the solution procedure may
become computer oricnted (depending on the type of project, of course),
the more money that reeds to e spent in determinining the success of the
project. Especially, if the coruntry has to invest capital in a pro-
ject, which could affect the e.onomy in the event of the failure of the
project due to lack of adequate simulation and correct solution proce-
dure--then the country may be well advised to go into a more thorough
investigation before investments are made. The question therefore moves
from the realm of engineering to cconomics and politics. At least, the
engineer or hydrologist should come up with reasonable alternatives for
decision makers. At best the engineer, economist, politician and other
disciplines related to the project should all constitute the decision
makers; or in countries where this is not acceptable then at least

the engineer should have his ideas expressed in the simplest language

so that the decision makers can fully understand what they are to decide on.

Since, the stress herc is on computer and modeling, it is
important for the engineer, the hydrologist, the ecconomist, the
politician, and others to note that:

A solution technique, likewisce a computer are tools, not the total
answer. The iavestigator (engineer or hydrologist) is the technician,
Together a job could be performed. How good a job depends on dedica-
tion, paticnce, cxperience, the right investigator, and right tool,
and some ingenuity. The role of the investigator in decision
making is to make sure other decision makers understand what his tool
can do and what they cannot do, and the uncertainties and risks involved

in using them,
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Of course, politics usually has the last word and whether the
investigator will be fully useful or not depends on how far he could
be allowed to participate in the decision making in those areas that
he and his tools are to be important,

2. Concentraticn in this study has been centered on developing
a simulation model for a river basin; and fitting computed to actual
runoff. The model can be extended to predict future runoff volumes.
This has been done informally in this study where half of the data
used in this work was used to predict the other half.

3. The computer program for the calculations will be made very
general with respect to notations, how the user can easily use it
without having to go through the full exercisc of understanding all
that is going on and without having to write his own program. This
phase will involve making the computer program very simple--aimed at
making it comprehensible to any user who may not possess enough
expertise in computer programming. This will include many comment
statements, and step sizes (ss) in the gradient technique will be
automized so that the user may not have to do any initial investiga-
tions with step sizes.

4. A new approach for investigating the water balance in a river
basin using only rainfall and runoff data can be investigated. This
will need other data for checking the products of the model. This
study has, informally, given the estimate for change in storage in the
river basin with time. A mass balance can be found for each computa-
tional point,

5. A comparative study could be made in applying the modols and

techniques to river basins in other developing nations., Procedures
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and recommendations for water resources planning and development will be
the end products.

6. It is highly recommended that research effort be directed to
find various ranges of values of o for different climatic and geo-
graphic regions. The importance of this study is to present a
generalized model for predicting evapotranspiration values based on
rainfall input alone, optimally determined a = a(t) and based on
geographic and climatic regions of the world.

7. The second order nonlincar differential equation model may
be applied to daily to find the suitability and applicability of the
model to time scales of less than a month. The equation is:

d2Q _ a K _y-1d
fogrg @

dt 1 KK

8. Together with recommendation 6, an attempt should be made
for the regionalization of the possible ranges of values of all the
parameters. This can be very useful to planners and investigators at
different parts of the world,

9. Knowing ET(t) = (1 - a(t)) P(t) which can be used in
whatever way the planner or investigator sees fit, but more important,

"1t can be substituted in the proposed model equations to optimally

determine other parameters. In this case dQ/dt can be trecated as an
unknown variable which can be optimally determined. Using dQ/d+ as
a parameter converts the first order differential cquation into an
algebraic cquation. The computed values of runoff from the algebraic
equation and that from the first order differential cquation may be

compared to observed runoff. This approach could serve as a check on
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global optimal values of the parameters from either equation; and further

determine which equation gives a better value of the objective function.
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APPENDIX A

GRADIENT VECTOR AND THE DIRECTION OF MAXIMUM DECREASE
OR INCREASE OF A FUNCTION

Let vy

F(X) = F(a, B, v)
Where o, B, y are parameters to be identified in the optimization
procedure
X = %o By Yo
& = the direction
By definition the directional derivative (Apostol, 1957) of F(X) at

X in the direction § is
_o —-—

F(X, + AE) - F(X)
A

D F(X) = lim (A.1)

Ao U
when the limit exists.
Furthermore, it is well known that the directional derivative,
i.e. the derivative of F(X) with respect to a direction & , can be

expressed in terms of ordinary partial derivatives (Apostol, 1957):

D F(X)) = FWF(X))E lgl =1 (A.2)
or.
n acho)
PO = Lot el = (8.3
= i= 0

Now the question is how do you determine the direction ¢ such that the

rate of change of V = F(X) at a point Xo is a maximum. Let us

define our problem as
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n BF(XO)
Max . Y (A.4)
i=1 i
Subject to the constraint
T .2
gle) = g =1 (A.5)
i=1 1
In order to solve this we shall form the Lagrangian in the form
n acho) n 2
Foa) = J oy 6 +A(1- ] ) (A.6)
i=1 i i=1 .
Where A is the Lagrange multiplier.
Differentiating (A.6) and equating to zero for turning values
3F(X )
oF  _ —0 - .
a - axi - Zmi - 0 1= 1,2,..«.m . (Ao?)
and
n
3F  _ 2
3 _2 g/ =0 (A.8)
i=1
From (A.7)
OF(X )
.1 —0 .
Ei = 57 axi i=1,2,....n. (A.9)
Substituting (A.9) into (A.8) we get
n oF(X ) \2
1- ] = ( ax‘°) = 0 (A.10)
i=l 4 i

Simplifying (A.10) we get

A2 = .}1.|y_p(50) |2 (A.11)
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Where solving (A.11) yields two solutions:

>

n

1+
N

| wrex) |

Since we are interested in & substitute (A.12) into (A.9)

t VF(X))
... E = A—
| V(X))
Where
TF(X)
E % TVFXY),
)|

gives the rate of maximum increase of V = F(X)

- F(X)
| Yf(lo)l

jur

gives the rate of maximum decrease of V = F(X) .

(A.12)

(A.13)

(A.14)

(A.15)

Hence it is shown that (A.13) the gradient vector gives the direction

of maximum increase/decrease of the function V = F(X) .
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APPENDIX B

TAYLOR'S SERIES EXPANSION AND THE JACOBIAN MATRIX

This appendix involves the process of converting nonlinear functions
or equations to approximate linear forms (so that they can easily be
solved) by using Taylor's series cxpansion and the iterative scheme.

A nonlinear function f£(x} can be written in terms of a linear,
or rather quasilinearization (by virtue of the maximization operation)
equation, where the function is expanded around the initial approxima-

tions. This is, in essence, considering the first two terms of the

Taylor series.

f(x) & f(u) + £'(u) (x-u) (B.1)

where f(x) 1is the scalar function, which is linearly expanded around

point u.

f'(u) 1is the slope of f(x) at u,

P <

y= f(x)

y=g(x,u)
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At x = u f(x) > g(x;u) and f(x) can be expressed as a maximization

operation:
f(x) = max[g(x;uﬂ .

The Newton-Raphson method utilizes equation B.1 in an iterative scheme
for finding the root of an algebraic equation. The steps followed are:
1. The nonlincar function f(x) 1is set equal to zero and the
e V4
approximation sign becohes an equal sign.
2. Resulting cquation is solved for x, which represents the
next approximation after the initial estimate u.
This new valuc is then used to find a better approximation.
3. Process is repcated until convergence to the root is attained
Equation B.l can be written as an inequality (this was first

shown by Bellman and Kalaba (1965):

f(x) > g(x;u) (B.2)
where g(x;u) = f(u) + f'(u)(x-u) (B.3)

Equation B.3 represents the equation of a line which is
tangent to f(x) at x=u,
Necessary conditions associated with equation 3,2 are that f(x)
{s strictly convex within a particular range of x(a < x £ b) or that
£'(x) > 0. From the diagram maximation occurs when u=c¢c or

f(x) = max g(x;u)j, where its general form is:
J

f(x) = mnx[f(u) + J(x - uﬂ (B.4)
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lll
where x = Xy [xz, ce xm] .

u=u, [uz, e um]l, und

J mxm Jacobian matrix.

Equation B.4 can be solved for x -- call it X . The functions f
can now be expanded around X and the process is continued and the

following recurrence/iterative relation is obtained:
f(x(n+1)) - f(x(n)) N J(n) (x(n+1) - x(n)) (B.5)

where the superscript refers to iteration number, and u = x(n). The

process begins with an initial approximation x(o) at n = o. Once

x(n) has been given, equation B.5 becomes a set of linear equations
(n+1) )

in terms of «x . Therefore, nonlinear problems can be replaced by

iterative opcrations of linear rclations. The nonlinear function is

implied in the convergence of the iterative scheme.
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APPENDIX C

TIE LULER'S METHOD

Euler's method belongs to the general class cf numerical methods
which are utilized in solving differential equations where standard
methods like the trapezoid rule or Simpson's rule cannot be used for
integration. This is usually so because the derivative dQ/dt or d
(using the notation in this study) may be a function of the dependent
(e.g., runoff Q) as well as the independent variable (e.g., time t).

Suppose the differential equition is of the form:

%% = aPI - ¢Qi . (C.1)
Then X = £(£,P,Q,0,7,5:0) (€.2)

The general form of Euler's forward integration equation is

Q.  =Q. * Qat + 0[(At)2] (C.3)
i+l i

where Q is runoff value at time t. ,

tie1
Q is runoff value at time t,
ti 1
Q is rate of change of runoff with time between
t. and t. Q = £(t,Q)
it o= iyt Y
0[(At)2J = higher order terms which are usually neglected,

where it is assumed that Qto is usually the
only value of Qti that is known exactly

(assuming further that the initial condition
is free from error).
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Euler's method may therefore be written as:

Q = + At . C.4
tii Qti ¢ (€.

Equation C.4 has the form of Taylor's series expansion of Q about
tss with the expansion truncated after the first two terms. Comparison
of the complete form of Taylor's series and equation C.4 indicates
terms containing (At)? and subsequent higher powers of (At). The
error introduced in equation C.4 due to the use of the truncated equa-

tion is known as the truncation error and may be expressed as:
E = c(at)? . (C.5)

Equation C.5 implies that At+0 (or the step size becomes as small as
possible) E +0 (the error becomes negligible). This further implies
that as At+0 every function can be represented by linear approxima-
tions to a greater degree of accuracy.

Euler's method is a '"self-starting" method. It requires the value
of the dependent variable Q at only one point to start the procedure.

In many practical cases QCALC will have a positive value. In
order to reduce errors by merely guessing any starting value
of QCALC at the initial time t, QCALC may be assumed as being equal
to the observed runoff value or QOBS at tl’ i.e., QCALC(t1)=OBS(t1).

Euler's method approximates the function Q(t), over the first-
step interval, by a straight line. An approximate value of the slope
of the curve at t = ot, may be found by substituting the calculated
value of Q or QCALC into the differential equation. The new calcu-

lated value of Q becomes the starting point for finding QCALC(tz);
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and QCALC (t) is similarly substituted into the differential equation.
This process is repeated over the desired range of integration, so that
the true Q(t) or QOBS curve is approximated by a series of straight-
line segments. The differences or errors that exist between QCALC

and QOBS at each point may be due to some or usually all of the
following factors:

(1) Inadequate mathematical representation (the differential
equations) of the physical system, i.e., the conceptual and
mathematical models.

(2) Errors encountered in collecting the observed data
(e.g., instrumentation, poor reading, etc.).

(3) Inaccuracies associated with the particular tool used
for the computations (e.g., Euler method) .

The various forms of the Euler method may be summarized as:

(1) The Simple Euler Method:

, 1-M 2-M
g = & . 8 (c.s)
BM BM
Q, = Q *+ QA (C.6)
t1+1 ti 1
Q. *+Q)
Q. = q +—l—-at. €.

(2) Modified Euler Predictor-Corrector Method

r

1-y 2-y
QP _Q (C.8)
BY BY

o X3
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Predicted
Q), = + Q, (At) (C.9)
Ve, %t
Corrected
(4 + @, ot
Q, = Q * il (C.10)

i+l i 2





