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ABSTRACT OF DISSERTATION
 

OPTIMAL PARAMETER IDENTIFICATION OF NONLINEAR,
 
TIME-VARIANT HYDROLOGIC SYSTEM MODELS
 

Investigation of river basin characteri.stics is important to river
 

basin planners, engineers, atmospheric scientists, mathematicians,
 

statisticians, and agriculturists.
 

This study focuses on the important need in river basin 

investigations for development of mathematical models that describe 

hydrologic system response to rainfall. In particular time variant, 

nonlinear simulated models for runoff and a predictive model for 

evapotranspiration are presented. One of the major objectives of this 

study i- in tit d velopment of a hydrologic model for water delivery 

particularly Llitl for ai developing irition, thou 1hp,.lgra l in 

application. Imphal,(. a re placed on l in , whalt i'; avalilable in the 

hest porS,.i , way. Ille prop)otd model i; evall iI;ted willh respect to 

total coflhlliltat itollti e rvepi red and est (it' i n. ,taan di og atid utiliza­

tion. ()l iit vi p iat di' " are tVv, Il ateWd wilh re.peIt- to ,peed of 

ronvorgetil)- Ipt Irmil lot s ofu comptitet rtonoff all'i paramnoinors; and 

X ~ntoral t t srtl idsk r||icirnlt'),.
 

Two IwrI Aiv,Vrl()prtad lrit and ,oPcod order nonli uwar 

ditrrornt* r.pi-t tit-o I;oit Ils robult% obtained, tir nirst ordvr 

I
fI llft 4r dii -t etti al reltsat uli jJ.vt st1-e Ie'tter twsltly , od"I 

for rivor t'~ioIl tput:r ~l ~ ~ Its it It it i Ilt$I 1011o IsZ1d (0 

Ifdthapitat 14'h
11#141 *0*0 1ojucz 
Motl)~i t =stlai 4~-fiitloFVlisof tiorl 

Mwwi 04d01|, 4#v|ll for cO"Oroietts# povots tith th# prfoleu 



nonlinear models, consistently predict low evapotranspiration values and
 

comparatively poorer computed runoff values. An optimizatioi. procedure
 

is carried out with the objective function being the sum of the
 

squared difference between the observed and computed runoff. The
 

constraints on the objective function are based on the parameters or
 

coefficients of the differential equations; and these are further
 

based on the physical realities of the hydrologic system--the river
 

basin.
 

Two solution approaches used were based on the above objectives.
 

Quasilinearization and gradient (steepest descent) techniques were
 

utilized. Quasilinearization proved to be an ineffective algorithm
 

as far as the proposed models are concerned, and diverged in solving
 

all the various models. The gradient technique proved to be a good
 

algorithm and could be modified to handle tine dependency of )ara­

meter values. All the parameters, except one, varied very little and 

their corresponding average s;easonal values were successfully used. 

The time dependent pa rameter a , referred to in this study as the 

sensitivity parameter, is resposible for the predition of the 

ovapotranspi rat ion loss';. 

Those model. werv applied to an actual rivr aitln In iadoveloping 

country in order to vrrilfy t hem and ga n insight into them through 

exportmeltt , I metfitik, Ot the h-Ii of t hric, oi.cuslit on drawn can 

be useful to plannter of water ro-,ource% dovolopumtvi, griculturista, 

hydrologistu antd evowi thvurtg4iclan%. 
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bai. Inadequate data or unavailability or basic data may offer a 

serious limitastion to the numerical simulation, 

ACato Study_- Mr Todic R:t ilaa)I ivr-v -ai 
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be raisedI~i~ti iit Liti data Thistrgsr wltifg 'I jfi,'irtt arvc' ollected. 

io SomtIMc~ aft ribo1y impurtaJil pouit III regard It Is~ 

necessary to~ tt tltAt 0otioi1I andt tho politics~ of the argument 

are Liusall the wit important considerations for c~arrying out a 

project'
 

it isof course alsmo true that certain projects may too postponed 

untul a44tsarv jet. may bo gathetred for Oconomic, political, Physical 

OWd *&Cil rristuft Ali,~ ?owevor, duct nlot isaont theret~ houlti be a 

perio4 of "toii)Itit ari5- r-ciai 6-) thr ctigibwer Sir tliv 

l v tlhl 

(r hydrologisat 

in par .til..ar It J* ifl*faitf tho 11ytolgjItf toI CtI4mr U 

his bobt catithtV3c~ ttt li.31011tfti!)S'rj4'1:. t'rt~rr thruriet. efld 

jaI'oU4 bIJr).t for tho fl)Juouiit. ()jtl, zolbeofiroC-tiirvia1!: 

(UOUAllY $Ca '*o 1 11104ihl kky 1 tt)n vall.11cIV rat Atra ,~ thorics anti 

POdsl Oi .1ii £oetpot seic, O t.a ts?4V lr! foiv %warve of1r v h 

S~m otthoftdy~ I~$ Itii oh~of 1tvo~ SAiatlr dczk fitillg thr 

hydrolug.t byztOi, *.3y* Ivatc ptotilrej fiia tho pIffijet wo ffWealt to 

polvoe 1111 t~w &Vio~v o(a~t'!o tho tcV014r 111 ah~uhor prefers 

to C411 1ht fa jj~rISiit dIroV leif 70ti'tjildc in Lorffttb 'jf It 

*Conowicoily dovol"Po4 votmirloo or ilvelo"ped cauitripi tho development 



GHANA 

20' 

SUPPER VOLTA 

COAST 

t4 
*Tamale 

milesD 

IScale 

~GULF 

90 

Akosombo!, 

OF' GUINEA 

Fig. 1.1. Nip of Mhmas Showlnl Important Towns, Volts RILr and
Todiso River sasin. 



S
 

foregone may do little to alter the economy; whereas, similar kinds of
 

problems in a developing country could constitute a national disaster.
 

Project design and planning in a developing country is hindered
 

by inadequate data concerning certain important variables, usually 

due to economic factors. Since it may be necessary, nonetheless, to
 

carry on plans for a given project, it therefore becomes important 

to develop a model that will give reasonably good estimates or approxi­

iMtians to the unknown variables. A major concern in this research is 

to develop it hydrologic model which considers certain important 

characteristic-; of a river basin (Case Study in Ghana, see Fig. 1.1) 

aimed at finding good estimates or approximate values of a certain 

unknown variable,,. 'hw data available tor this research is ten years 

for rainfall and runoff records. 'lTh proposed model is, therefore, 

concerned with extracting enough information from this limited data 

for the purpose; of -imulating runoff and predicting evapot ranspiration. 

DoWiest (1965) defined the hydrologic system as the entire area 

that contributes to and sustain, all of the flow in its main channel 

and tributarie.i. If the, h),drologic syrtem is considered as a "closed 

systum." lie it itlarge drainage has in. or a smail watershed within the 

basin, without hit, regard fir interflows from neighboring basin; with 

respect to physical and geologic features of b)oth basins then this 

definition is not general Ienough. 

A hydrologic ,ty~tem, therefore, may be defined as a basin or 

sub-basin within geographic, geologic and by hydrologic framework 

which connituti r conltrilbutlon to anti sustalning of all of the "flow 

in its main channe l andtil iutartte" and possible interflows with 

neighboring bailn% which could be defined by a continuity relationship. 
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Some logical and simplifying assumptions may be made by disregarding the
 

effect of interbasin flows where study of the physical system may here
 

be a useful guide.
 

Todzie, Avu Keta areas in Ghana have been somewhat neglected areas
 

in the rivee basin development programmes, evon though some reconnaissance
 

and feasibility investigations have been made.
 

Todzie is a very attractive spot for research for the following
 

reasons:
 

1. The general area has been plagued with floods for many years
 

and therefore the characteristics of the basin need be investigated.
 

2. Todzie is typical of the river basins in the developing
 

countries for the following reasons:
 

a 	Not as much data needed for research invostigations or
 

project analysis may be available.
 

b. Certain important variables like evapotranspiration have
 

not been measured. This may be due to:
 

i. 	Lack of funds or economic constraints.
 

ii. Not a priority in the National Development Plans.
 

iii. Lack of manpower and expertise.
 

iv. Political, social, institutional and legal
 

constraints.
 

It is important to bear these constraints and problems in mind
 

when developing a conceptual model for a river basin in developing
 

country. The model should be:
 

1. 	Rigorous and realistic.
 

2. 	Simple to handle conceptually and mathematically.
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3. 	Fast and inexpensive with respect to computations by the
 

computer.
 

Statement of Objectives
 

The specific objectives of the research are to derive:
 

1. A model that uses whatever is available. In many
 

planning departments, planning may take place using available data or
 

information however short or inadequate they may be or the type of form
 

they appear. It is important to bear this idea or "handicap" in mind
 

when developing a conceptual and a mathematical model, especially for
 

a developing country.
 

2. A model which can be used or modifice to forecast future
 

runoff values using past records of rainfall and runoff data. This is
 

important for planning reservoir operations.
 

3. A model which can illustrate the relative importance of using
 

either seasonal or monthly data in determining the runoff.
 

4. A model which can give some estimate of evapotranspiration 

for a given basin without actually going through .he process of 

measuring it. This is important for areas that some quick or rough 

estimates of evapotranspiration may be needed without investing much 

capital, which in some countries, especially the developing nations 

(for which this research is mostly geared) may be a limited resource. 

S. A well simulated model which only requires rainfall and
 

runoff data and need not necessarily require other measurements, e.g.,
 

subsurface flows or evapotranspiration.
 

6. A model that can easily be handled.
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7. A model that considers the sensitivity of the basin. Not all
 

of the rainfall that falls in a river basin gives rise to runoff. Rain­

fall giving rise to runoff depends on where storms hit in the basin and 

they are seasonally dependent; some may be lost from the basin through 

ovapotranspiration processe"; and some may not find their way into the 

main channel in the basin during the infiltration processes. Therefore, 

it should be pointed out that the rainfall giving rise to runoff depends 

on slope, veget,:t ional cover, soil and surface characteristics and 

where the -tonn normally or mostly hits in rigiven basin during a par­

ticular month. A parameter should therefore be investigated which 

should give meaning to the ability of the basin to transform a given 

rainfall to runoff in the river channel. This parameter is referred 

to here as the sensitivity parameter ti , which depends on the foregoing 

factors, but gives the direct fraction of the amount of input which 

goes into channel output. The paramoter a is directly related to
 

ovapotranspiration losses.
 

8. A model wLose parameters may be uniquely determined within 

the limits and capabilities of existing mathematical tools; and 

parameters which are directly significant and applicable. Previous 

investigator- have developed hydrologic models which have parameters 

that may be functions of several viriables which cannot yet be 

determined and therefore obscture the importance and direct usefulness 

and application of the model In practical engipeering and hydrologic 

investigations. It is the objective of this research to Illustrate 

the foregoing important Iiea by us inug the same as sumpt ions and concepts 

in developing mathematlcally two separate mathematical models; and dis­

cussing the shortcomings of one with respect to the other. 
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Use will therefore be made of the better model based on the
 

following considerations:
 

1. A model whose parameters may be uniquely determined within
 

the limits and capabilities of existing mathematical tools.
 

2. A model which will be simple to handle since the model is
 

being developed for a developing country where rhthematical expertise
 

may not be as sophisticated as the more economically developed
 

countries.
 

3. A model which will be economic (computer-time-wise). This
 

is important ina developing country where computer usage and funding
 

are a matter of economics.
 

4. A realistic model without trading off rigorousness of the
 

approach. This is important since length of data is not long enough
 

in a developing cotantry, Therefore it is important to stress need for 

a rigorous approach inorder to use what we have. InChapter IV,
 

Cases I and IImodels are developed with the foregoing objectives.
 

Summary of Chapters 

The main purpose of Chapter I is to: 

1. Present a discussion of data availability, length and type
 

with respect to planning.
 

2. Present a discussion of numerical simulation--its merits and 

defects, and the relevance or' it in this research work. It presents a 

brief discussion on nonlinear time invariant nmdel%. 

3. Present the importance and main objectives of this research. 

Chapter 11 gives a survey of some of the various investigators 

who have presented, developed, or used hydrologic models. 
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Chapter III Isdevoted to the development of the conceptual model.
 

A general description of the conceptual model is given, and the proposed
 

model is analyzed with respect to unique determination of optimal
 

parameters, computed runoff, and ovapotranspiration. Various important
 

assumptions associated with the model are discussed.
 

The mathematical simulation of the physical system and development
 

of the hydrologic system equations is the subject of Chapter IV.
 

Chapter V outlines various methods of solution, and their
 

advantages and disadvantages. This discussion includes flow charts of
 

various optimization processes.
 

A case study iscarried out on the Todzie River Basin, located in
 

Type of data and analytical
Ghana, and summarized in Chapter VI. 


approach are presented. The hydrologic system model is tested by an
 

optimization process where the model's computed runoff is compared to
 

the actual observed runoff. Evapotranspiration estimates are given
 

for the proposed models. Graphs and tables are given wherever
 

necessary. Description of procedure, analysis and results of the study
 

are presented.
 

Chapter VII gives the summary, conclusions and recommendations.
 



.. _;Chapter.j'I 

LITERATURE REVIEW 

Watershed models have long been used to investigate behavior and
 

internal structure of the hydrologic system and its response to rain­

fall. It is particularly important, however, to judge if based on
 

unrealistic assumptions used in deriving the mathematical model which
 

is supposed to describe the behavior of the physical system.
 

In 1934, Zoch presented a model which assumes that a watershed can
 

be approximated by a linear channel which is in series with a linear
 

reservoir.
 

attimeat~dt O, tiQ=RQ=O, K'dt+ Q R (2.1) 

in which K is defined as the characteristic parameter-of'thelwater­

shed (Fig,- 2.l1). 

Rainfall1 Parameter Runoff 
Input K 0 Out'ut 

System
 

Fig. 2.1 Zoch's -model.
 

There are several significant points concerning Zoch s 

work: 
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1. He considers the hydrologic system as having a lumped
 

precipitation input, and a system that converts the input into an
 

output (runoff) by use of a mathematical model with parameter K
 

2. He conceptually relates a channel to a reservoir.
 

3. He uses an unrealistic assumption of a linear reservoir.
 

4. His assumptions of a linear channel is not reflected in Eq.
 

2.1. A linear channel may be defined as a fictitious channel in which
 

the time t required to translate a discharge Q of any magnitude
 

through a given channel reach of length Z is constant. Thus, when
 

an inflow hydrograph is routed through the channel, its shape will not
 

be changed. Therefore, a linear channel involves pure translation
 

and translation is not seen in Eq. 2.1.
 

Zoch's work was an important beginning of a series of hydrologic
 

models, of which the present research is one.
 

In 1966, one of the most successful efforts at simulation of the
 

entire runoff process for watersheds was conceived at Stanford
 

University by Linsley (1966), referred to as the "Stanford Watershed
 

Model." This model considers the overall picture of the hydrologic
 

system, from the surface to the subsurface and ground water flow and
 

related climatic and hydrological effects; that is, the hydrologic
 

cycle. For large watersheds, it may also be important to break this
 

system down into various spatial subsystems, with numerical simulation
 

carried out, in order to understand in depth some of the basic physical
 

processes that are taking place.
 

place.
 

The hydrologic cycle represents the redistribution and circulation
 

of the water by the atmosphere, earth, and sea. By continuity relations,
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based on the Law of Conservation of Mass, a hydrologic cycle could be
 

developed for any given basin. For a given basin, a balance equation
 

could be written:
 

P u Q + PMF + E + AS (2.2) 

where P is the precipitation,
 

Q is the runoff, and
 

PMF represents porous media flow out of or into the basin.
 

This equation describes the overall runoff cycle of a basin. One
 

can be misled by the apparent simplicity of this equation. The cycle
 

is actually very complex since all the variables are time and space
 

dependent variables. Thus, any given system can be viewed as a
 

number subsystems which are joined together by application of the
 

continuity principle.
 

Amorocho (1961) used a statistical approach by using the gamma
 

distribution to fit runoff hydrographs:
 

tN 1
I t/k (2.3) 
Q(t) = K(N-l) ! K 

He developed empirical relations which separately relate rainfall
 

intensities to each of the parameters N and K in a nonlinear manner.
 

Amorocho's model was a nonlinear algebraic model, which becomes
 

linear when the parameters N and K are assumed as constants.
 

Singh (1964) proposed a model which consists of a linear channel
 

and two linear reservoirs of different storage constants in series.
 

Notice the similarities and modifications between this and Zoch's (1934)
 

work. Singh's entire model may be considered as a distributed lumped­

system, where the linear channel is used in producing a time-area
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rolationship for the watershed with variable areal distribution of
 

instantaneous effective rainfall. The nonlinearity of the rainfall­

runoff proces. i. introduced by parameters as functions of the effective
 

rainfall input. 

Sugawara and Martivania (1956) suggested it concept of cascade through 

two unequal clements , where routing of both surface and subsurface flows 

are assumed linear. Singh (1964) subsequently used this concept of two 

unequal linear ,lements, and so did ,Jamieson and Anitrman (1969). 

Kulandaiswamy (1964) used a svystem analysi.s approach for his 

rainfall runoff relationship, lie proposed a general mathematical model 

for the storage of nonlinear reservoirs as follows:
 

N n l dmiI 
S = an~qI) + b(Q,I) - (2s4) 

n dtm
dt mWO
nuO 


where S is storage, t is the time, N and M are integers, and
 

an (Q,I) and bm (Q,I) are parameter functions of the outflow Q and
 

inflow I
 

By combining the foregoing equation with the continuity relation,
 

the resulting general differential equation can be shown to be that of
 

many mechanical and electrical drainage systems, indicating an analogy
 

between the watershed hydrologic system and the mechanical and the
 

electrical d/namic systems. Kulandaiswamy's resulting differential
 

equation (after dropping insignificant terms) proposed for his
 

simulation analysis isof form:
 

gd4t d2I
d + a + a -b d2 + (2.5)a2 d q 

2dt3 dt t +Q Idt I
 



is
 

where a2 , aI a a° , and b are coefficients. Equation 2.4 is
0 

linear and though nonlinearities were considered by noting changes in 

the parameters for various storm events, lle parameters # a,a2 


a0 were found to decrease exponentially with increases in the peak 

discharge of direct runoff. The changes, in )1 and ) were found 

to be insignificant. Since the model is. ba,ically a linear model, the 

parameter: are readily determind. Kulandaiswamy's model was found to 

produce better fit to observed data than many other lumped-system 

models.
 

Prasad (1967) used a simplification of Kulandaiswamy's model with
 

loss of superior fitness. The model was lumped, time-invariant, and
 

nonlinear, lie derived his model from the concept that a nonlinear 

reservoir with nonlinear out let cont rol is analogous to hydrologic 

system storage and discharge. Notice the improvement on Zoch (1934) 

and Singh's (1964) works; and the similarity between Kulandaiswamy's 

Eq. 2.5 and his second-order differential equation, which is of the
 

form:
 

2
d4 QN-1

2 t K1N t + Q " R (2.6) 

where K1 , K2 , and N are unknown parameters to be determined in 

the system identification problem. Prasad used the following general
 

nonlinear storage equation:
 

S - KIQN + K2 . (2.7) 

At peak discharge he assumed dQ/dt a 0 , which simplifies the storage
 

equation for peak discharge to:
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a K1 N (2.0) 

where Sp isthe storage at peak dischargo which can bo
 

determined from the observed hydrograph. 

Unlike prevous linear models which harve been pointed out as linoar. 

Prasad's non linear equatio n ha,, lu anralytica l solution. Ife used a 

trial and error p roc edurc in a inumri cal it egra tion ilgorithin on a 

digital compot'r, r;10.d' mod ll " p)roc' ,durt. of1' imp 11 tOhe analysis, 

but it giv( ; ,ipoor fit to oh erved hydrographs '. rtictilarly at the 

recession portioii the iimplificatiols and app roximations can be avoided 

if the system is fully synthesized and an elaborate computer analysis 

performed.
 

In general, there are two types of the modelinp procedure: The 

mathematical ndeling of the actual physical system (the river basin); 

and the physical modeling of the pInhsical system. Since this study is 

concerned with :a matheimatical model , a brief mention and references 

will be given oil a physical 11odel. 

aI i are thePhysi al mIl,, n physical hydrology ca rri ed out for 

specific sttdy of an i olatcd )enitomenoni, and, in general, deterministic 

models of the rtinoff cycle may he e ither physicial or comput er models. 

The feasiblility of" ph y-ical mudel I has bee'n st udi ed, amon g others, by 

Chow and llar1nauht (I!)():;}, Ania rocho anid Hlart (190I) , (Grace and 

Eagleson (190)0, and (Chery (19)1, u .i n, laboratory cat chments. 

A general revi ew of nat hematical models of catchment behavior was 

given by Dawdy and O'[)onnell (1965). 'hey divided the mathematical 

models into two categories: 
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1. The comprehensive simulation of catchment behavior which 

treats the catchment components in lumped form. 

2. The complete Specification of each component. 

A model of the first category was used, and the major parts of
 

the model were: The surface stora e, channel storage, and soil
 

moisture storage. or -,uhsurface storage. Precipitation, evaporation,
 

infiltration were considered, where app licable.
 

A model of )awdy and ()'l)onnelI' type, which is perhaps the most 

widely known, for use with a digital computer is the "Stanford Watershed 

Model" of Crawford and Linsley (1966). This model is programmed to 

produce hourly streamflow data using daily evapotranspiration and hourly
 

precipitation data.
 

Chow (1967) pointed out that the discovery of nonlinearity in
 

hydrologic system behavior was prompted largely from theoretical 

interest. Thit, interest grev, during the several years of use of 

traditional linear method-,, such as the in it hydrog raiph. Chow (1967) 

states that , "in practice, the .oncept of nonlinvarity and its 

methods of analysi - are still very limited . . practicing hydrologists 

often have little interest in nonlinear methods of analysis.'' lie 

therefore posed the quest ions: "Are we wasting time in developing 

nonlinear method, which may prove to be of little practical significance? 

If not, can we show that %uch method aind thit concept% of ionlinearity 

are really important '.'"(Ihow, however, did not mnt ion the causes of 

nonlinearity of the %y.tem and the pos-,ible phyicail -|inificance of 

the factors that cause this nonlinearitv. A%will i, -.uhequently 

shown, nonlinearitles are clearly indicated in this study a existing, 

where the major factors responsible for nonlinearity are (i'rasad, 1967): 
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1. the charactoristics of the input or rainfall,
 

2. the physical characteristics of the basin, and
 

3. the hydraulic -haracteristics of' tile aiin channel. 

It should be pointed out that nonlincarities of tlhe rainfall input are 

mainly due to tilt- pat ial di tribut ion of r~ainff lI. Rainfall occurs at 

different times ill tihe basin. 1hu1, ,owilinearity of rainfall is due to 

space t.nd time dih't rilhutioi ot tilt raiiitall ill th, 'iver basin. These 

factors are part of the conceptual node I of th,,ptt.r Ill. 

It mu-it 1,v pointed out thiat nonli:|at'r m.ode., have not enjoyed the 

same enthusiasm accorded to linear mode ls (e.g.0 unit hydrographs) 

because of the tyht, of nonhi taar ditfft,'tental equat ionsi which usually 

result. Iherefo re , d1in to lac k of illeqtUt kllowlt-diiv Ls to So! tltion 

techniques, hydrolog no do t hem. tihet arm.il1y no t usie ! inct watershed 

is a nonlinear' -t) , collsidrahble resetarch effort -hould he directed 

In this area of hidrulogy -o it' to more fully mithdrstand t1e physical 

behavior of' the waterhrhu- lhi% ili turn will influence . hopefully for 

the better, d(eCl ioll-Fakilng J)l'OCeCSes Ainplanning water resources 

projects for a river hain. 

Since the mathem.atical solutions of the conceptual nonlinear 

hydrologic iiode l alqppar to he a major problem among researchers and 

practitioner%, .. n attemlt will be nade hert to apIlly two different 

.
 t'Iu
so ut Io t Vt h11q11Mt% n t1lvi Il l t he u t'1CtiiI!aI mo *10I lIt Iig 

to tht-1r mrItil of effricdentdl acus ioll of alld ill-,() ,iv nillt fass how 

or moore tinv f It one t t hii) qu i 1i thall teit, ie r. 

The author'N porson.l contmett regarding the foregoing questions 

raised by (:how are as followc; 
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1. The nature of the equations, lack of insight into solution 

techniques, and difficulty of conceptualization of the physical system 

behavior, are sources of discouragcment to the investigator. Therefore, 

nonlinnar hydrologic system modeling has been a neglected area. The 

Stanford Model is, however, nonlinear. 

2. The fact that the nonlinear models have been of little 

practical significance does not mean that they do not have potential 

usefulness. "lle important point is ti hydrologic systems are generally 

nonlinear. Soph ist i cat ed solution prock'dures needed for nonlinear 

models require that the hydrolog, i-t become more mathematically oriented. 

It will be mort- stimuilating to mathematicians and hydrologists if there 

is a closer contact between the engineer and the mathematician. 

3. Hydrologic modtelin g a% a whole -;hould he regarded as an area 

which offers it continuous challengre, and should not be discouraged. 

Depending on the type of problem, a good synthesis of the physical 

system may be as important as it unique or generalized mathematical model 

for the same or some other system. Possible sources of nonuniqueness
 

include:
 

a. 	Nature of the data procedure adopted in data gathering,
 

period of record and errors associated with type of data.
 

b. 	Lack of insight Into the physical system behavior and 

Suesswork in dtrivitg the mathematical model to describe the 

physical system. 

c. 	Unavailability of appropriate mathematical solution 

tochniques to solve the mathomatical model, therefore 

requlring uso of approximate solution procedure or techniques. 
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The ultimate goal in tile hydrologic model is to arrive at unique
 

solutions to problems, even these are obviously difficult, researchers
 

can at least make strides in that direction. This requires creativity,
 

more field studies, better measuring equipment, etc., and new and
 

better mathematical solution tools.
 

The current research in this dissertation devoted to developing
 

a conceptual model where two of the possible techniques, that could be
 

applied in the solution of the developed mathematical model, are used.
 

Criterion for evaluating the performance of one solution approach with
 

respect to the other will be based on (repeated for emphasis):
 

1. Efficiency with respect to solution time on the computer.
 

2. Accuracy of the solution.
 

2. Simplicity.
 

Labadie and Dracup (1969) presented a method f)r the identification 

of a nonlinear, lumped, time invariant conceptual model of watershed 

response. Their approach displayed in particular: 

1. Simplicity of the computer programming hrough the use of
 

standard subroutines, and
 

2. Rapid convergence characteristics of the algorithm, though
 

convergence did not always result, they essentially used Prasad':
 

model Eq. 2.6, but applied a more sophisticated algorithm (quasi­

linearization) to solve the problem.
 

The re are two hasic approaches to lumped modeling. The first 

distinct type of a lumped model is the transfer function approach, 

where the most famou:s model in this class is the unit hydrograph of 

direct runoff, resulting from one inch of effective rainfall generated 

uniformly over the basin at a uniform rate during a specified period 
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of time. The effective rainfall is that rainfall that contributes
 

entirely to direct runoff. The direct runoff is the total runoff minus
 

the base flow. A particular type of the unit hydrograph concept assumes
 

that the storage-discharge relation of the watershed is linear. The
 

basic assumptions of this type of unit hydrograph are fallacious in
 

the real system, but it is still popular because of the simplicity in
 

its applications especially in the prediction of future iunoffs.
 

A major disadvantage of the unit hydrograph approach is its
 

dependence on the duration of the storm, which is being used. This
 

disadvantage led to the development of tho Instantaneous Unit
 

Hydrograph (IUH). The IUH is based on effective rainfall of infinitesi­

mally small duration. It is defined as the limit of the unit hydrograph
 

when the duration of effective rainfall becomes infinitesimally small.
 

This concept may be interpreted in the light of system analysis by
 

regarding a river basin as a system or "black box."
 

Chow (1964) used a linear convclution integral to synthesize direct
 

runoff hydrograph from the IUH and effective rainfall. The main dis­

advantage of IUH is in its lirearity. The linear convolution integral
 

relates the input and output of the system in the form:
 

t>T 
Q(t) = f - P(T) K(t- )dT (2.9) 

0
 

where Q(t) is the direct runoff (ordinate) at any time t
 

K(t) is the Kernel function which is here defined as the
 

instantaneous unit hydrograph or ordinate at time (t-r)
 

(i.e. 	the transfer function or the impulsive response), and
 

oP(r) 	 is the effective rainfall ef duration, T , where T is 

a dummy variable. 
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Blank, et. al. (1971) expressed the rainfall-runoff relation by a
 

convolution integral, where the Kirnel function was evaluated by the
 

Fourier and Laplace gamma Transforms, based on their assertion that
 

"a lumped, time invariant, linear system is completely and uniquely
 

"In view of the convolution
characterized by its impulsive response." 


integral, the response of a linear system to any input function can be
 

Consequently, the determi­evaluated once the Keriel function is known. 


nation of the Kernel function is of utmost importance, especially for
 

systems whose internal structure is unknown." The impulsive response
 

P(T) and
K(t) can be calculated from Eq. 2.9 from a set of input 


output Q(t) , data regardless of system linearity. Eq. 2.9 can give
 

a check on the validity of the basic assumption of linearity used in
 

many river basin hydrologic models.
 

Models on the IUH have been derived or presented by two different
 

categories of investigators:
 

Zoch (1934),
1. 	Those that considered only linear models: 


Clark (1945), O'Kelly (1955), Sugawara et al. (1956), Nash
 

(1957), Dooge (1959).
 

Those whose models were linear but considered nonlinearities:
2. 


Singh (1962), Diskin (1964), Kulandaiswamy (1964).
 

The second distinct type of the lumped model is usually referred
 

to as the analytical conceptual models. This includes some of the
 

foregoing investigators, where they made simplified assumptions
 

concerning the internal structure of the hydrologic system and its
 

dynamic response to rainfall. Examples of investigators who have
 

utilized such an approach are: Zoch (1934), Amorocho (1961),
 

It is this
Kulandaiswamy (1964), and Prasad (1967). 
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latter approach to lumped modeling which is emphasized in this
 

dissertation.
 

There has been substantial progress in hydrologic model-building,
 

and 	a convergence of diverse viewpoints. Besides the investigations
 

cited above, Eagleson (1969) gave an outline for modeling urban
 

watersheds. Dawdy (1969) uses parameter estimation in outlining
 

watershed modeling. Freeze and Harlan (,969) presented a physically­

based digital computer model of a watersh,d in terr,. of partial
 

differential equations for subsystems. The International Seminar on
 

Hydrology (edited by Chow, 1969) reviewed the deterministic and
 

stochastic approaches to modeling, system identification and parameter
 

estimation. Vemuri and Vemuri (1970) augmented this with a review of
 

recent applications of control theory.
 

In all of these, the investigator recognizes the need and 'struggle'
 

for 	solutions to:
 

1. 	Problems in conceptually formulating and representing
 

hydrologic systems as they exist in their physical, climatic,
 

chemical and biological states.
 

2i 	 The corresponding problems of identifying the relevant
 

parameters and variables (currently measurable and unmeasur­

able) and solving for them.
 

Chiu and Bittler (1969) considered a model and developed a technique
 

for the long-and-short term trends of a hydrologic system. Their
 

rainfall-runoff relation was a first order, linear differential equation
 

with time varying coefficients that depend on two parameters. They
 

utilized relation used S = Kyn , which was considered by Prasad (1967)
 

where K and n are two empirical coefficients to be determined.
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The authors stated that . . . "If the exponent n is made equal'to
 

unity, the storage can be expressed as S = Ky inwhich K is a
 

function of time for a time-varying system, or K = K(t) ." The result­

ing first order, linear, ordinary differential equation was:
 

dY ( + dK(t)Y=X (2.10) 

K(t) at dt / 

where X and Y are the input and output of the system, respectively.
 

The authors recommended that . . "Itwould be desirable for hydrolo­

gists to investigate the variability of a hydrologic system with months,
 

seasons, years, and time during a storm." The current research uses
 

monthly data to study monthly, seasonal, and annual behavior of the
 

hydrologic system.
 

Venkateswararao and Dracup (1970) presented a paper on the
 

nonlinear runoff response to distributed rainifall excitations. This
 

was a conceptual rainfall-runoff model based on the equations
 

governing the phenomena under consideration. They regarded the runoff
 

dynamics of a watershed as the response of three interacting sub­

systems: the infiltration subsystem, the overland flow subsystem and
 

the groundwater subsystem. Precipitation was considered as an
 

excitation, evapotranspiration as a disturbance, and runoff as the
 

response. Itwas assumed that the watershed, at any time, could be
 

mathematically described by a black box approach, where evapotranspira­

tion could be treated as an external disturbance, thereby reducing the
 

model to one of single input and single output.
 

Amorocho and Brandstetter (1971) presented a paper on a method of
 

determining relationships between the Input and output of lumped systems
 

without the constraint of linearity. Nonlinearity of the watershed
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response was considered in,a more objective and consistent way than by
 

procedures of rainfall excess computation and base flow separation used
 

in the unit hydrograph ,pproach. The operation of some hydrologic
 

systems were represented by a functional series expansion involving
 

higher order nonlinear generalizations of the convolution integral,
 

which underlies the unit"hydrograph concept. The assumptions and
 

approximations involved in the representation of hydrologic systems
 

by deterministic "lumped" models may be discussed here, briefly.
 

These models are based on the premise that it is possible to predict
 

runoff (output) of a natural basin as a function of time from a
 

,precipitation influence (input), also expressed as a function of time
 

only, under certain specific conditions:
 

1. That the basin has operated as a time invariant system 

during the ,periodfor which input and output data are used for the 

postulation,and calibration of the model, and that this"same invariance 

can be assumed to extend to the period of prediction. 

2., That relative to the time variability of precipitation, the
 

variability of other natural inputs (e.g., evapotranspiration) is small
 

or follows a known function of time.
 

3. That as far as the basin response is concerned, all natural
 

sequences of precipitation (which in reality form fields changing in
 

space and time) are equivalent to input sequences that are functions of
 

time only. These sequences are called precipitation indices.
 

Clearly, the above conditions are met only in an approximate sense.
 

Hence, the predictions of a deterministic model of the type of our
 

concern always contain errors dependent on this sense of approximation.
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Fahlbusch an Muir (1972) preseted apaper whchinvolved'
 

development of a monthly rainfall-runoffmodelwhich, they'pointed out,
 

could be used for the determination of synthetic long-term runoff
 

sequences from synthetic or observed rainfall sequences on river basins
 

for which only limited runoff data are available. They used'a transfer
 

function of an exponential decay type in a linear model that links
 

rainfall as input and runoff as the output.
 

Klemes 	(1973) treated a watershed as a semi-infinite storage
 

An infinite reservoir was defined as a reservoir with
reservoir. 


infinite storage capacity; and whatever the magnitude of its release
 

and input rates, it can never run dry nor be completely filled. :He
 

diverged from this unrealistic concept by presenting'a new concept of
 

semi-infinite reservoir:
 

"It is a reservoir that has only one of the two boundaries
 

in infinity, either:
 
(1) the bottom, in which case all fluctuations are
 

confined within a small region near its top, or
 

(2) the 	top, in which case the fluctuations are
 

confined to a region adjoining the bottom.
 

While the first type describes a situation which is not typ­

ical for real reservoirs the second type describes real
 

reservoirs almost ideally."
 

He presented a relation (y = F(S), the so-called flood routing 

problem) for a semi-infinite reservoir where the routing function is
 

oIf the 	form:
 

y = aS 	 (2.11) 

where a,' are positive constants, 

yis 'the'rate of outflow,' and 

S is the'reser v oir storage capacity, 
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Through the equat3ion'of,'rconservation of mass the mechanism Of'a storage 

reservoir whether finite or' infinite, was given by 

Xdt - ydt = dS 	 (2.12) 

"where X is reservoir inflow. 

For Case* 0B = 1, i.e., for the linear reservoir: 

dS + as X 	 (2.13) 
dt
 

or
 

dy + ay aX

,dt	 (2.14)
 

where storage
 

( t ' )S(t=t) = e x dt + S0e (2.15) 
0 

and reservoir 	output
 

PT-at 	 (.6 

( t y(t=r) = a T 	 ea - T) x dt + y0e (2.16) 
0 

where, Soy ° 	 are storage and outflow at time
 

xor 8 1' 	 i.e., for nonlinear reservoir Klemes suggests that
 

solution for equation 2.12 can easily be obtained by
 

numerical methods or graphical techniques known in
 

engineering practice as flood routing methods.
 

Review on Usage of Proposed Technique I - Quasilinearization
 

- Quasilinearization is primarily applicable to lumped parameter
 

systems described by ordinary differential equations.
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In some cases distributed systems described by partial differential
 

equations can be considered if these equations can be replaced by sets
 

of ordinary differential equations. Bellman et al. (1966) have shown
 

how quasilinearization can be applied to systems with time lag,
 

described by differential-difference equations, which are also reduced
 

to sets of ordinary differential .equations. The technique basically
 

involves solving a series of linear initial value problems such that
 

the sequence of sol2utions converges to the solution of the original
 

nonlinear problem. The technique requires the objective function to
 

be convex within the range of feasible solutions. Bellman et al.
 

(1966) have shown how quasilinearization can be applied to systems
 

with time lag, described by differential-difference equations,
 

which are also reduced to sets of ordinary differential equations.
 

As has been previously stated, Labadie and Dracup (1969) used
 

quasilinearization as a technique for identifying a nonlinear, lumped,
 

time-invariant model of watershed response. Yeh and Tauxe (1971)
 

used the quasilinearization procedure to convert data taken at
 

observation wells directly into aquifer parameters. The parameters
 

identified are the storage coefficient and tramsmissivity in a confined
 

aquifer system.
 

Review on Usage of Proposed Technique II - The Gradient Technique 

The gradient technique has been known for over a century
 

(Cauchy, 1847) and appears in many textbooks and papers. Therefore,
 

not much stress will be laid on it here. However, part of Chapter V
 

is devoted to the development and application of the theoryof the
 

gradient technique.
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Chapter III
 

THE CONCEPTUAL HYDROLOGIC MODEL
 

General Description of the Conceptual Model
 

The conceptual model and the mathematical model, which is derived
 

later, are basically for inputs of monthly values of rainfall and run­

off. The model, however, is not limited by the consideration of
 

monthly values. The monthly model is derived simply because the data
 

available for the case study are monthly. However, the model will be
 

derived in its general form and shown as to its applicability to
 

monthly data. In general "Precipitation" may be used in place of
 

"rainfall."
 

Precipitation may follow three diverse paths to a stream. A
 

portion travels as overland flow (surface runoff) across the ground
 

surface to the nearest channel, whereas some may infiltrate into the
 

soil and flow laterally in the surface soil to a stream channel as
 

interflow. A relatively impermeable stratum in the subsoil favors
 

the occurrence of interflow. A third portion of the water may
 

percolate downward through the soil until it reaches the groundwater.
 

If the groundwater is near the surface or if the soil is highly
 

permeable, then vertical percolation of rainwater results in ground­

water accretion. Overland flow ishighly encouraged by low soil
 

permeability. This is important for the present study since flooding
 

can result from such a situation. A thick soil mantle, even though
 

permeable, may retain enough water as soil moisture so as to impede
 

deep percolation. Evapotranspiration losses are significant in this
 

case.
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It is somewhat artificial to distinguish between the three types of
 

runoff. Water moving as surface runoff may infiltrate and become inter­

flow or groundwater while infiltrated water may come to the surface and
 

finally reach a channel as surface flow. Groundwater may be the main
 

contributor of water for much of the low water flow of streams.
 

The model for this research is not concerned with the fine picture
 

of how water is distributed from one stage to the other, in what amounts,
 

where and when. The model is concerned with the collective monthly
 

water budgeting, using monthly rainfall and runoff.
 

A river channel may be conceptually regarded as an enlargement of
 

a reservoir. If the reservoir has no gates, discharge takes place over
 

a weir or through an orifice in such a way that outflow is a function
 

of reservoir level. Considering a deep reservoir where water velocity
 

is low, the water surface will be nearly horizontal and the volume of
 

water in the reservoir is directly related to the reservoir elevation.
 

Hence, storage and outflow can be directly related. If the reservoir
 

surface has a significant slope, the storage becomes a function of
 

inflow as well as outflow. The present conceptual model considers the
 

case of almost horizontal water surface.
 

The basin should be visualized as a "Black Box" (Fig. 3.1) as a
 

first step. This considers rainfall as an input and runoff as an
 

output. The river basin is viewed as a system which has the ability
 

to convert a rainfall input into a runoff. This characteristic
 

feature of the river basin may be described by functional relations
 

with certain unknown parameters, as well as various measured and
 

unmeasured variables. The parameters of the functional relationships
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Input 

Hydrologic System 
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and Response 
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Pig, 3.1 : Schematic of the Conceptual Model
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may give some indication of certain characteristic behavior taking
 

place in the basin during the transformation process.
 

A hydrologic model should be conceived, conceptually, so that it is
 

not a closed syst em unless eperimetlt on the. field invest igations 

indicate there is no interaction between(especially soil and geologic) 


the given basin and the neighboring basin. Any water that cannot be
 

accounted for may be listed as:
 

1. Water losses from conceptual surface and subsurface reservoirs
 

which would otherwise have 	 been measured. 

2. Other los ;es that for reasons of development (in developing 

countries, e.g., political. Conllmic, sociall, alnd legaJl 

this time.
constraints) cannot be i ivvt,iga ted or mea ured at 

The major loss here is the evalpotranspi at Iil. 

The water that tannot he accounted for ut he rVega rded -, orror 

rtmofl' thtu :aSO.in the meanuremcrtt in the 	 wariable-, v',pecjallly ill 

little forther a variable that t'a mot hiStretching thic onc et a 	 1t 

or phy !i1clly at t.he t.witivnt mu t b considereddoterntined mattemat tll y 

as an error 11 tht mode . 

, can on ide red as cio.e) -,ystem 'y utsIowever, a ha-l be 	 a 

the l.aw of conlervatlton of 	nra% or the cotititltitv re!tllon, '"10 

i ralifalI ormajor i1flow Intto hvllologIc -yqtem I the 	 tho 

precipitat ion, through womr tt ova IhalactI $s tle of the0 river basin, 

the r.fiifill itit i dividted Into two ain pathf the open channel 

and tho %oil a% t~aaeloa' 

Tho iolttv of w.atrr in a natural channel ayytwwnt J% called 

isa fanstion of 

stor e, it lnflouit 4r, 4-n0liprod to 1tv equal to outflow (ronoff, and 

the Stortig, % fur a 	rozorvuIr whoro tho outflow 
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ovapotranspiration especially) then the storage does not change with
 

time. The river channel can be conceptually regarded as a reservoir, 

since it has the capacity to store large quantities of water. It is 

referred to as the conceptual surface reservoir. 

Again, consider the subsurface flows. These may flow laterally 

Into the channel and provide it-, contribution to the total runoff. The 

subsurface component maty be Coirceptually represented by a reservoir-­

the conceptual ".uhsuract reservoi I' 

This conceepttiali.-ed hytr'ologic ',ys-tem now con,,ist% of rainfall 

input, evapot ranspi rat ion out put, a conceptual surface ruservoir, 

a conceptual subsurface reservoir, and the runoff. Figure 3.2 gives 

Stop Ii of' te concepttial mouel development In cons idering these 

basic interactils on ly rainfall ( Inut) and runoff (output) data will 

be used, since they are the onli dat a availtable. In Conlidering the 

entire picture, it iN riceiary to cotnsidor the effect of sutsurface 

intorchangr% of moit-ture through the porut,3 media. h'lie net effect 

may be :vru or inogliulie asd it ,i ud not to affect thi. model buti=s 

it Is atIe'ist Important to melt ion these p,%.4bl0 01h11get. If the 

conceptul %uttiurftace fetimrvli it natursited with moitture, then 

moisture Can tie expocted to e lot t rum the toteptlial reservoir to 

the neOghtioring t1'r ti, (ft the other hsand , It tie 4 otc Opt (I'l ) tusurfoco 

reservoir dJrit than the sioigotrtbrig hss iti, thet w)isture may flow 

into the ttbutUrfatak re-ervolt, ot vito Verta. Anty thattigoge In our 

reservoir joai tito afotteiti thkr vltjuea or tho change of 

Mtrotae with time in tho uburfa trotovo*ir, Thoroforg Considorl 

46 4 

*t
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where AQ is interbasin flow, and a = a(t) is proportional to the 

evapotranspiration losses for a given period. 

It is therefore not necessary to consider the subsurface inter­

changes in our model--it just complicates the mathematics without 

adding any more important information. Similarly, evapotranspiration 

losses for a given period take care of all the losses from or through 

the surface of the basin. 

In Chapter I, in the statement of the objectives, concerning the 

uniqueness of a model, it is pointed out that some of the basic objec­

tives of the research is to develop a general model that is particularly 

relevant to a developing count'y, within the limits of uniqueness, 

simplicity, economic constraints, rigorousness and realism in modeling.
 

Figure 3.3 gives Step III of the conceptual hydrologic model. This i!
 

aimed at satisfying the foregoing objectives and is the model that will
 

be finally used, after proving in Chapter IV the importance of Step
 

III (Case II in Chapter IV) over Step II (Case I). This step seems
 

Justified when one considers the large amount of interconnection
 

between the surface and subsurface reservoirs, and the fact that there
 

is no data available that measures this interconnectinn.
 

The conceptual reservoir storage at the end of the river basin 

represents the conceptual subsurface and conceptual surface reservoirs 

in Step 11. Therefore , the Step IIl conceptual reservoir may be viewed 

as being directly affected by the rainfall xnput, after adjusting for 

evapotran sp Irat ion Iosses. The total outflow or runoff from the 

conceptual reservoir in Step Ill Is the same as the output from the 

basin in Step II. 
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Steps IIIand Iii are essentially the same, but the mathematics and 

available solution techniques will illustrate the importance of 
one with 

respect to the other. 

Assumptions to the Conceptual Model
 

Before deriving the mathematical equations that describe the
 

conceptual model, certain assumptions must be made concerning 
the model.
 

an ideal case, that is, when the perfect assumptions to the
In 


system behaviors are made, the response of both the real 
system and
 

In this case
the mathematical model to the same input is identical. 


the mathematical model simulating the system may be considered 
as
 

In general, however, these two responses are not identical,
perfect. 


and an error may be found to exist. The main purpose in system
 

modeling is to construct a mathematical model so that the 
error that
 

exists between the conceived and actual physical models may 
be
 

The smaller the error the better the assumptions made
minimized. 


describe the system.
 

Errors Due to Mathematical Modeling of the Physical System
 

The types of predictive inaccuracies or errors associated 
with
 

these models may be due to the following:
 

1. The basic assumptions or conditions that are considered 
may
 

Hence, the predictions by
be met in an approximate sense. 


the mathematical model always contains error explicit 
in the
 

degree of approximation.
 

2. 	Errors in the evaluation of the input and output 
variables
 

Errors of
(e.g., the precipitation indices and the runoff). 
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this type are commonly involved in the physical measurements
 

and in the choice of indices.
 

3. Errors due to any covert conceptual fallacies that may have
 

been incorporated into the model structure.
 

One of the most fundamental preconceptions encountered 
in classical
 

hydrology is the assumption of linearity involved in the 
unit hydro­

graph concept.
 

The following assumptions are made in order to derive the
 

some of the characteristic behavior
mathematical model which describes 


of the real system.
 

Nonlinearity of the Hydrologic System
 

The hydrologic system is considered as a nonlinear system. 
The
 

nonlinearity of the system is based on three major factors 
which are
 

responsible for nonlinearities, (Prasad, 1967):
 

1. The characteristics (with respect to spatial and time varia­

tions) of the input to the system: rainfall. This has been
 

as also being dependent upon the
explained in Chapter II 


types of storms when they occur, and their spatial effects 
in
 

the basin.
 

2. The physical characteristics of the basin which are
 

responsible for converting the input into runoff.
 

3. The hydraulic characteristics of the main channel.
 

All these factors are related and will be described by corresponding
 

parameters.
 

The hydrologic system storage and discharge are assumed to be
 

analogous to a nonlinear surface reservoir, a nonlinear/linear subsurface
 

reservoir with nonlinear outlet control (Prasad, 1967).
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The two basic approaches to nonlinear modeling of hydrologic
 

systems,, are:,. 

1. 	 Lumped parameter models, and 

2. 	Distributed parameter models.
 

Ahydrologic system model may be assumed as a LUMPED SYSTEM if
 

lumped values of distributed rainfall are used for the entire basin,
 

,insteadof using a spatially distributed rainfall. This assumption
 

simplifies the problem considerably.
 

The 	major assumptions for lumped hydrologic parameter models are
 

given by Amorocho (1967): 

1. That the basin has operated as a time invariant system
 
during the period for which input and output data are
 
used for the postulation and calibration of the model, and
 
that this same invariance can be assumed to extend to the
 
period of prediction.
 

This assumption is necessary since quantitative measurement of
 

time-variance of the input and its effects on the river basin response
 

is not, at present, possible. Climatic changes, land use, erosion, and
 

sedimentation are some of the major causes of time-variance or nonsta­

tionarity of the system parameters. Therefore, seasonal or monthly
 

variations of the parameters are necessary and need to be determined
 

for each basin. This idea is incorporated in this research.
 

2. 	The rainfall input to the system (or the input) is uniformly
 
distributed.
 

This assumption depends largely on-whetherrainfallis causedby
 

frontal or convective or other activity, thoughit'also depends 'on the
 

topography of the river basin, the soil characteristics, the vegetal
 

cover, of the basin. It also'depends on the size of thebriverbasin.
 

Usually, rainfall is evenly distributed throughout the river'basin,
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In areas that
and varies in spatial distribution from storm tostorm. 


frontal storms predominate, even larger (than case study area) river
 

In areas
basins may be considered in the realm of a lumped system. 


where the storm activity is mostly convective, it may be important
 

to divide the basin into small sub-basins where each sub-basin has 
a
 

runoff gaging station at the outlet. The case study area is a small
 

basin (840 sq. miles) flat, and is affected by convective storms and
 

The Intertropical
the Intertropical Convergence Zone (I.T.C.Z.). 


Convergence Zone is (McIntosh, 1963):
 

"A relatively narrow, low latitude zone in which air-masses
 
..... Over the
originating in the two hemispheres converge 


Atlantic and Pacific Oceans the I.T.C.Z. is the boundary
 

between the north-easterly and south-easterly trade winds.
 

Over the continnnts it is replaced by the boundary between
 

other wind systems with components directed towards the
 

equator, for example, in Africa between the HARMATTAN and
 

the southwest Monsoon. I.T.C.Z. moves north of equator dur­

ing northern hemispheres summer. The horizontal convergence
 

associated with the I.T.C.Z. implies generally upward motion
 

in the lower tropospheres and cloudy, showery weather."
 

3. All of the complex processes and interactions that are
 

responsible for the response of a hydrologic system are
 

considered as lumped or aggregated.
 

This implies that the lumped parameter system approach permits the
 

approximation of overall system performance without requiring any
 

detailed definition of the system components. This assumption may be
 

justified when considering the lack of adequate knowledge with respect
 

to the inner workings and behavior of the hydrologic cycle. Amorocho
 

(1967) points out that the act of measuring the micro-properties of the
 

system can artificially,alter its state; and that this interference
 

tends to introduce,considerable uncertainty intc the experimental
 

results.,
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Clearly', the! foregoing 'assumptions, or conditions have varying 

degrees oflivalidity, depending on the physical system considered. Hence
 

the 	predictions of a deterministic model of the type of our concern will
 

generally always contain errors in proportion to the extent of accuracy
 

of 	these assumptions.
 

The 	DISTRIBUTED PARAMETER MODEL attempts to describe mathematically
 

all 	of the known hydrologic and hydraulic processes involved in the
 

conversion of rainfall to runoff. This model therefore considers
 

areal variation of rainfall. There are different names that various
 

investigators give to distributed parameter type of model. Linsley
 

(1966) called it System Simulation; Amorocho (1964) called it General
 

System Synthesis. The current work or research which does not
 

consider distributed parameter model uses the words system and simula­

tion in describing the lumped conceptual model. The name used is not
 

the important thing to consider but the differences in the meaning
 

between the lumped and distributed models.
 

Since this research does not consider the distributed model,
 

therefore the distributed model will only be briefly explained by the
 

foregoing. However, Amorocho (1964) pointed out some of the basic
 

weaknesses of distributed models in general:
 

1. 	Model structure is inflexible.
 

2. 	Nonuniqueness or nonoptimality of the identified parameters
 

of the model.
 

Labadie (1968) pointed out:
 

"Lumped models can reflect the highly dynamic response of
 
hydrologic systems, and be uniquely verified from rainfall
 
and runoff data. It is recognized, however, that distributed
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models (composed of partial differential equations) must
 
eventually replace lumped models if hydrologic system
 
behavior is to be accurately modeled. New methods must then
 

be found for measuring spatially distributed discharge and
 
storage within a hydrologic system."
 

Seasonal Variation of the Characteristic Parameters
 

Some of the characteristic parameters of the basin should not be
 

regarded as constant as has been assumed by some previous investiga­

tions (Prasad, 1967). In Prasad's model:
 

dt
 

hourly data were used and the coefficients K2 , K1 , N were assumed 

as constants. This assumption may be acceptable if the model is built
 

for one storm and not for different storms at different times in the
 

basin. The parameter K1 for example, varies with shape and size of
 

the basin and the slope of the main channel. This will vary for
 

A certain
different storms at different times in the same basin. 


amount of rainfall from a hypothetical storm passing over one part of
 

the basin will generally give a different hydrograph at the outlet
 

of the basin from the runoff produced by the same storm giving rise
 

to the same rainfall moving over another portion of the basin. This is
 

a consequence of one or more differences in the vegetational cover,
 

soil characteristics, slopes, land use and other factors that come into
 

play in different areas of a watershed, including some very small
 

watersheds. Diverse climatic regimes and seasons bring about various
 

amounts of rainfall which result in different amounts of runoff. The
 

parameters. maybe,characterized.,as follows (Prasad, 1967):
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,N-,, depends *on,channelt characteristics,
 

Ko ends oni'sizeand,'shape;of ltet drainage basin as :we11 ,as
 

N and may also be influenced by storm characteristics,: .
 

K2 " 'depends on,:Storm and .channel-characteristicstas iwell :as
 

shape of the basin.
 

1Storm types do change with seasons and'iso do the'channel characteristics
 

with time. It is therefore assumed thatt.;seasonal and-monthly variations
 

of these parameters exist and need to be found by.applying the mathemati­

cal model developed in this study.
 

Conceptual Reservoir as an Open System
 

A conceptual system is one to which a conceptual realization
 

contributes significantly and becomes very important. This factor
 

contributes immensely in the development of the concepts underlying
 

the mathematical model. The Stanford Watershed Model (Crawford and
 

Linsley, 1964); and the Dawdy and Bergmann (1969) model are very
 

important in this respect.
 

It is unrealistic to consider the conceptual reservoir as closed
 

with respect to its surrounding or immediate environment. It is
 

easily assumed, and wrongly so, that the runoff that is measured at the
 

end or mouth of the river basin is the result of the rainfall that
 

falls in the basin alone.
 

The runoff that is measured may be thought of as the total runoff,
 

which is the sum of rainfall contribution, possible groundwater con­

tributions which may not be dependent on the current rainfall, or
 

lateral subsurface inflows from a neighboring river basin which may
 

find its way into the channel. The latter depends on the type of
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season (whether wet or dry) and on the soil and geologic characteristics
 

(especially, whether the rock formations may permit exchanges of water
 

to and from neighboring river basins).
 

It is important not to disregard these various contributions to
 

the total runoff aE irrelevant or minimal (unless it is physically and
 

geologically justifiable) until they are found for each basin and their
 

monthly, seasonal, and annual contributions and variations are
 

established for the particular basin.
 

Considering a "closed" system in a formulation usually has an
 

advantage of simplifying the mathematics so that certain existing
 

mathematical tools could be used for solutions of the problems.
 

However, it is important to note that a solution approach which is
 

capable of obtaining near-optimal solutions to more realistic models
 

should be regarded as more useful than a solution approach or
 

procedure that can give an optimal solution to simplified unrealistic
 

models. Of course, it is important to establish a trade-off between
 

solution accuracy and model complexity. This could be made, with more
 

efficiency and accuracy, with experience and good judgment on the part
 

of the experimenter or the investigator. Usually added realism more
 

than compensates for obtaining a solution which may not be the
 

absolute global optimum of the model.
 

Since the other inflows besides rainfall may not be known, it
 

can at least be said that a rainfall input gives rise to an effective
 

runoff, which is some fraction of the total runoff that is measured.
 

There should be a distinction between the subsurface contributions
 

to total runoff and that of channel to total runoff. (Chapter IV gives
 

a diagram of the Conceptual Model).
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The conceptual reservoir is assumed as consisting of two inlets,
 

the rainfall input and subsurface contributions to '.he system, and one
 

outlet, for total runoff.
 

Rai nfall Distribution in the System
 

Rainfall is assumed to take two main paths in a river basin.
 

Suppose rainfall is designated as P then a.P (iu1,2,...1' for each
 

month) is that amount of a given rainfall which is converted into
 

channel ru;loff. The other portion (l-ai)P is the contribution of
 

the rainfall which goes into subsurfac, storage system, or the sub­

surface part of the conceptual reservoii. Let ai be simply written
 

as a though it should be clearly understood it is a time dependent
 

parameter.
 

Part of this rainfall is assumed lost to the atmosphere through
 

evapotranspiration. It is assumed that after subtracting the evapo­

transpiration E which should not necessarily be measured in this
 

work, the effective amount of rainfall contribution to the subsurfacu 

storage or lower portion of the conceptual recrvoir becomes yn (-a)P 

Tn (n-l,...12) is assumed constant for a given month or season. 

Runoff Outputs from the System
 

The Runoff 0 which is measured tt the mouth of the reservoir 

represents the total runoff. The total runoff is a stm of the runoff 

contribution from channel starage and the runoff contribution from sub­

surface storage. Runoff is a time dependent variable. 

Q "Q1 

+ Q2 (3.2)
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where Q isthe total runoff,
 

Q, is the channels contribution to Q 

Q2 is the s ubsurface storug contribution to Q 

In measui-ing the total rtuoff at the outlet some errors are 

encountered and Q nAy be represented as 

Q- Q ., 2 (3.3) 

whore o- is the error encountered for the month or season. It is 

further assumed that is some time varying fraction of Q and 

Q my be expressed in the forn: 

Q " I Q, (3.4) 

where 6 it a constant paramtor for a gIven month or season, QI 

is also assumed as boae (onstnt fraction of Q for a given month: 

Q " 6nQ * Q2 6Q (5.5) 

or 

Q2 (I n. (3.6)nKQ 


where on 1%a constant parameter for a given month or seeson 

(n-) .,,, .1) , 

Ojechar o-Morair R41latiuonhiju of the iOyrolpia 5 ft em 

Difforo.tt (ora, (jf dibchirgos lorag. (or Atorate-d chrot) 

foir snth't htha- ver*I004 xah t0004 by dJI(Orv. 11MV@.littMors 

mailto:11MV@.littMors
http:Difforo.tt
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Nash (1960) and Diskin (1964) used cascades of linear reservoirs 

in developing general theories of river basin transformations. 

A mathemitcal model is at times broken down into two forms: 

translation and storage. suppose an equation of the type (2.4) Is 

written as: 

SAa "a a oQ" (3.7) 
2dt ] 
 d0ot r O
 

then 
d_4 " 1 'Q) a (a s"Q" (3.8) 

dt0 
and 

# " 42 Q (stM ) (5.9) 

where 

&- * a J1 (IANSATON) (5.10)
 
dt
 

ock (19)4). Clark (194). O'lully (19SS). Doo#* (19S9) and Singh
 

(1962) h4ve all made use of coabinvd translation and storage elements
 

in their de)ling of4 river battr,
 

1Iioru~i-jIcLtmr~r+ toatiuit Vat have tohrn adojtvd or used by
 

various Invoutigator. isay tr =mumg ri:rd 46 fellors: 

1. Linvar storate-ditsc=hargv 'eletion
 

f** K 0 (3.11)
 

3. ponnuial *tor4Aa-diochargo rolatlon
 

S (3.12)
 

3. De d riat proport4onml rlotioolp 

5 0 K Q an (3.15) 
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4. 	Bponential demand rate proportional relationship
 

(3,14)

S K Qn 	t 

5. Prasad relation (Prasad, 1967)
 

(K.
N) 

1 2 dt 

S K Q t 

whero 	S is storage, 

Q is discharge. and 

K, K1 , K , n are all constants. 

3.14.It Is important at this point to comment un Eqs. 3.13 and 

in which 	case,These are unrealistic since dQ/dt could be Pegative 

he acceptablestorage 	 S becomes negative. These two equations may 

being lo. t from storage i refterred to as negative (whichif water 

is not 	 the aituned ;.reviotis invt+it I Vitt ors who |iilve ustid these)sc by 

hotLild bte giveii.or a new dolcinitioln ba.sed on physicul rclit>' 

hus% brri ud by maty invetktigat or, ven though the
Equation 3,11 

i t Ic. To Irove th v itris I At ic nattire of C'q.
relat ion IN tare 

its %.implisticform3.1 1 (sulelly briatus it ha-, totild nu ny ut,,. iute to 

runoff and f,.apot ran +p r~u 

oven though it t- not rralii-tic amio wuot d.-,cribing the *.yh.tem it is 

supposed to le-,cribe) it will let- applited ili the modvi for predictlng 

ion 0 lqulion%3.12 and 3.15 have proved 

in Many 	 I0vt lga ti oil ; 4I et tti ' W.', t loll itird I hand two ir lJmptions1hg 

will bre made in dtlt iving, the modrI propord lit thi1% -titly In order 

rt- pvct to it uthtr.to llow thiti firit- of ifir with t 

the current conceptualThe di%charge-1torago relationhuip of 

hydrologic %yotem may Ie described as follows: 
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There are two types of storage reservoirs--the top representing
 

channel reservoir and the bottom the conceptual reservoir. The two
 

reservoirs do have one common outlet. 

The rnoff contribution from the surface channel Q is assumed 

as a nonlinear function of surface storage:
 

Q, - K, Sn (3.16)
 

where KI is the storage coefficient which depends on some character­

istics of the conceptual reservoir,
 

n describes some characteristics of the river channel and
 

gives a measure of the nonlinearity, and
 

S is the channel storage. 

In the case of the subsurface contribution to total runoff, the 

conceptual subsurface reservoir is a nonlinear reservoir with the 

discharge and storage related by:
 

m 
Q2 K (3.17)
K2 S2 


where K2 is the storage coefficient which depends on the nonlinear
 

subsurface reservoir with storage S2 and discharge Q2
 

m is the constant exponent of the nonlinear relationship.
 

Continuity Relations for Varlou% Subsyst ems 

As it has already been implied, the volume of water In a natural 

channel at any instant i% callled channel storage S;. Ile continuity 

relation is assumed to hold: inflow-outflow equals the change In the 

storage with time t . As t increases or for long periods of time 
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dS/dt - 0 . This assumption forms the basis of what is later, 

referred to as the theoretical representation 
in estimating 

evapotranspiration.
 

Using the continuity relation with respect 
to surface or channel
 

flow:
 

dS1
 (3.18)
 
dS1 a a 

and similarly for the subsurface flow:
 

dS2 (.

Q


- Q2 +
T- y(l-a)P 

where all the terms in Eqs. (3.18) and (3.19) have been defined earlier.
 

The last term refers to the subsurface interchanges 
of water from and
 

explained earlier, may be neglected.
into the basin. This, as 


used in Chapter IV and their merits
 
The foregoing assumptions are 


are also given. These assumptions are utilized in deriving 
the two
 

nonlinear differential equations, or the mathematical 
models of this
 

study.
 



Chapter IV
 

THE MATHEMATICAL MODEL
 

Case I - Surface and Subsurface Reservoirs
 

After stating (Chapter III) all the relevant assumptions
 

associated with the conceptual model, it is now necessary to describe
 

it more specifically and derive the mathematical model.
 

The rainfall input P into the river basin is distributed into
 

two parts (as shown on Fig. 4.1): uP is the rainfall contribution to
 

surface or channel storage and (1-a)P is the rainfall contribution
 

to evapotranspiration and subsurface flow. It is important to under­

stand clearly that the total evapotranspiration losses in the basin
 

for any month are based on losses from soil surface, subsurface, the
 

It does not
channel, and any bodies (ifwater present in the basin. 


really matter where evapotranspiration is subtracted from (Fig. 4.1)
 

so long as the total evapotranspiration losses are taken care of or
 

accounted for. Therefore, the effective contribution of rainfall to
 

channel storage is total rainfall minus evapotranspiration, and is added
 

on to the left-hand side of Fig. 4.1. However, it should be stressed
 

that no attempt should be made to ignore evapotranspiration losses
 

storage, since this will depend on the topographyfrom the channel 

whether flat or sloping, and the time scale considered,of the basin, 

whether hourly or monthly data are used.
 

Some portion of rainfall input (I-a)P is lost due to 

say) resulting inevapotranspiration F!(t) (where F(t) - l(l-a)P, 

a monthly total input to subsurface storage: y(l-a)P. In certain
 

basins there may occur intorbasin flows of water. This subsurface
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Evapotranspiration
 
Losses, E(t)
 

I 
P Contribution to 
Subsurface Flow P Contribution to 

Channel/Channel Flow 

(l-c,)PcP 

y(1-a)P 

Subsurface Storage[ Surface Channel
 
Storage
S1s 2 

Runoff Contribution Runoff Contri­
from Subsurface Q2 bution from 
Storage to the 
Collective Runoff 

Channel Alone 
to the Collec­

Q(t) tive Runoff 
Q(t) 

Measured Runoff
 
at the Outlet
 

of the River Basin.
 
Output from the
 

Basin Q(t) 

sw IiPig. 4,1 ; The Conceptual Hydrologic Model For Case I 



inflow maybe due to seasonal1 effects of ;subsurfacestrage in.,,; :: 

adjacent basins or the.slope/or geologic' formations.,or-type of the; 

rocks or physical'features. *1n: some basins, this,subsurface'storage 

may be regarded; asa closed system with' respect 'to'subsurface; inter­

flows. 'For generality,- the-subsurface inflow should-be considered, and 

it is assumed as some constant fraction of the total measured runoff 

OQ for a given monthly rainfall. It must be mentioned that 0, as 

in $Q, should be treated as a time dependent parameter. This is2: 

'included here for generality, though it is-not important'to consi'der
 

it "as explained in Chapter III. It'is important to'stress that-one of
 

the objectives of this study is to derive a simple yet realistic-model.
 

It will be shown that a complicated model can be derived for which
 

unique solutions may not be available, whereas using the same infor­

mation and assumptions, a more practical and useful model can be
 

derived.
 

The total measured runoff Q, at the outlet of the river basin,
 

is the sum of the runoff contributions from the channel, -
QI and
 

that from subsurface storage Q2 and errors c encountered in mea­

suring the total runoff. The error e will be assumed as some frac­

tion of the total runoff.
 

The Derivation of the Hydrologic System Equations
 

Assuming runoff in channel Q for the surface conceptual.
 

reservoir, as a nonlinear function of surface storage:-''
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where K1 is the storage coefficient which depends :on the characteris­

tics of the conceptual surface reservoir, and n describes somel---,
 

characteristics of the river channel and gives a measure of the:non­

linearity, and assuming subsurface runoff % for the subsurface, 

conceptual.reservoir, as,a nonlinear. functionof the, storage;,.. 

2 = K22 ' (4.2)

2 2
2 


where, K2 isithe~storage coefficient whichdepends on characteristics
 

of the,conceptual subsurface reservoir, ,the contribution of rainfall
 

to, subsurface storage (1-a)P isidiminished by an amount due to 

,evapotranspiration losses. Therefore, from Fig. 4.1, the balance
 

relation gives
 

dS2
 

Suppose evapotranspiration data do not exist. Then it can be
 

assumed that the portion of rainfall contribution to subsurface storage
 

after subtracting evapotranspiration effects, should be a fraction
 

of (1-a)P.
 

dS2 
(4.4)
 

= y(l-a)P -

Similarly, from Fig. 4.1, and considering the balance relationship
 

for the surface reservoir
 

(4.5)
dS1 

d- P -l 
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From Eqs. (4.1), and (4.2) the total runoff measured at outlet
 

of the river basin"is given.for,the' given period or..month.as, in this
 

case, as
 

Q~£(4.6) Q+ Q 2 ­

where e is error encountered 'in measuring Q. This error e
 

(where sources of error are given in Chapter III) is assumed as some
 

fraction, y, of Q for the given value of Q or for a given period
 

or month.
 

:' Q -Q 1+ Q2 -Q (4.7) 

Combining Eqs. (4.1), (4.2), and (4.7)
 

(1 + 6)Q = K1 Sn + K S2 (4.8)

1 1 2 2(48
 

From Eqs. (4.1) and (4.5)
 

dS1 n
 

d= aP - Q= aP - K1 S1l (4.9)
 

and
 
'dS2 "m 

= y(l-a)P - Q2 = y(l-a) - K2 S2 (4.10) 

d n +Ylapm 

d (p$1+S 2(1-a)P 1 K2 S2 4.11)= -

Substituting Eq. (4.7) into (4.1i),and considering Eqs. (4.1) and
 

(4.2)
 

S = 'd (4.12)[a '+y(l-a)JP - (1+6)Q 
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4
d d - m (4+6)Qd, 1M y(l'-c)] P,--,--(Qf +,. 

;"dt 1 K + T2tK
 

1 (n)dQl 1 (1m)~dQ2


IQF n Qm d 

+ Y(1 -a)]P (4.14)-(1+6)Q 

as a constant fraction of for a given period
Considering Q, Q 


of, Q or month. In fact, Q1 can easily be regarded as time depen­

dent fraction of Q without any difficulty. It is, however, not
 

necessary at this point.
 

Q, = Q (.15) 

(4.16)
' Q2 = (1+ 6 - O)Q 


Combining Eqs. (4.14) and (4.16)
 

1 (1-n)_ 1 1-m
 

1n 1 n .--1 (1+6_0) dQ
(OQ) dQ + 1. (1+60)Q
J m dt
K 1. d 

= + y(1-c)]P - (1+6)Q (4.17) 

1 1-n 1 1-m 

,)n1 *+n ml1 dm 

= [a tty(1-c)] Pi- (lt )Q (4.18) 
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K2, and dQ/dt. There are, therefore, nine unknowns that have to be
 

uniquely determined ;in~the.parameter identification problem. The non­

linearity of Eq. (4.l8) and the number of unknowns are the major fac­

,tors in our inability to uniquely determine the values of the unknown
 

parameters. Even though this is a realistic model it is not useful as
 

a mathematical model for a river basin in a developing country. It is
 

important that when a model is to be used for a developing country the
 

following factors should be carefully considered (repeated for emphasis):
 

1. Simplicity of the model--conceptually and mathematically.
 

2. Rigorous and realistic model.
 

3. Fast and inexpensive with respect to computations by the
 

computer.
 

Itmay be true the above proposed model (Case I) is a realistic model;
 

and conceptually it is relatively simple but it is extremely difficult
 

to find unique solutions.
 

Case I will therefore not be utilized because of this nonunique­

ness detriment (Chapter III) in the determination of the parameters.
 

Case II will therefore be presented to illustrate the importance
 

of using the same or similar concbptualization but deriving a model
 

that satisfies the above three factors necessary for modeling for a
 

river basin in a developing country.
 

Case II - Proposed Lumped Model 

For the reasons given after deriving the equations'for Case I 

,it'is now important to use the same assumptions and concepts to derive 

'amore realistic model., A more realistic model is one which satisfies 
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previously expressed objectives of simplicity,, ealism,and-'amenability 

to rapid computation. 

Figure 4.2 shows the conceptual hydrologic model for Case II. This 

"is a modified form of Step III of the conceptual hydrologic model (Fig. 

"3.3) which is in turn a simplified version of Fig. 3.2 or Fig. 4.1. 

'Rainfall input into the system is P. The rainfall contribution to 

total runoff Qsurface and subsurface runoff that are measured as 


is given as aP. The evapotranspiration losses in the river basin are
 

(1-a)P. The model need not consider evapotranspiration as another
 

output, which will complicate the formulation and mathematics, and
 

a
evapotranspiration is uniquely determined on uniquely determining 


for the input (aP0) and output (Q) system. The a in Case II is
 

obviously different from that of Case I, and will be the one considered
 

from now on.
 

Assuming runoff from the reservoir Q for the conceptual
 

reservoir as a nonlinear function of surface storage
 

(4.19)
Q = C sN 

or
 

S = K QM (4.20) 

where K is the storage coefficient, and
 

M describes some characteristics of the channel and gives a
 

measure on nonlinearity.
 

.Assuming rainfall input is P and after subtracting evapotrans­

piration from P, a quantity aP of~the.rainfall enters the conceptual
 

,reservoir., This implies that evapotranspiration is P - aP (1-c)P.
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Rainfal I
 
Input 

p
Evapotranspiration
 

(1- a) P 

Conceptual Reservoir
 
with Storage S
 

Runoff
 

Q 

Fig. 4.2 : Conceptual Hydrologic Model for Case II
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Change in storage with time is therefore given by the continuity 

relation (Fig. 4.2)
 

dS aP - Q (4.21) 

From Eq. (4.20) 

dS QMel d (4.22) 

Combining Eqs. (4,21) and (4.22)
 

1-d (4.23)aP Q W M4Q P 

or 
OPQ IM 2-M(4.24)
 

,t 1-H W­

t - APQ I BQ-'I (4.25)
 

where A, B, M are the unknown parameters of the differential equation,
 

and can be uniquely determined, where
 

A a (4.26) 

1 (4.27) 

Determination of M and B will give a unique determination of K
 

Eq. 4.27), which in turn will result in unique determination of a
 

(Eq. 4.26).
 

Equation (4.25) represents the first order nonlinear differential
 

equation model.
 

http:2-M(4.24
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To derive the nonlinear second order differential equation
 

consider
 

S= K3 QM + K4 d (4.28) 

d . K H-i dO dQ
 

dS Q I Pd + K4 .
Ut 4dt22 ' (4.29) 

But
 
dS 

- uP0 - Qt.3 P - E Q 


d2Q Mp 0 K3MQM' d
 

dt2 " " - 4 (4.30)
 

d2Q A AQ . A QM-1 d (4.31)
 
dt2 
 I 2 

where the unknowns: A,, A2, A3 and M may be uniquely determined as
 

follows:
 

Finding A* and A! implies a* = and 8* n A*.
 
2
 

Finding M* and Al (A* already found) implies
 

A 1
 

Let M* 

Thus, a, 8, y, * can be uniquely determined. The two derived 

models representing the hydrologic system are: 

1. The first order nonliniar differential equation model:
 

td A.P.Q. - B.Q2 (4.32) 
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2. 1Ibo second order nonlinoar differential equation model: 

" (4.33)d2Q " AiP - A2Q - AQ (t) 
dt2
 

are the two basic models that will be
Equations (4.32) and (4.33) 


utilized in this study.
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Chapter V
 

THE PARAMETER IDENTIFICATION PROBLEM
 

Definition of Parameter Identification
 

Given a discrete time series of runoff, Q(tk), where k , 1,2,3,4,
 

...r, taken on a particular river basin, along with raiifall measure­

ments, P(tk) where k = 1,2,....r, the parameter identification
 

problem can be stated as:
 

Given rainfall (or runoff) observed values, one can write an
 
equation to predict runoff where this predictive equation
 
contains unknown parameters. By minimizing with respect to
 
these parameters, the difference between the actual measured
 
values and predicted values (ideal case is when there is no
 
difference between measured and predicted values) better
 
estimates of the parameters may be found. In practice, due
 
to errors inmeasurements or from the mathematical model
 
solution technique, there is always an rror between measured
 
and computed values. Therefore, the smaller the difference,
 
the closer the computed anu measured values, and the better
 
the computed values of the parameters.
 

Certain computational difficulties that may be associated with
 

this problem may be listed as follows (Labadic, 1968):
 

1. Trial and error methods are usually employed for finding
 
the unknown parameters. This practice greatly limits
 
the practical use of more realistic models containing
 
several parameters, since traial and error is computation­
ally inefficient.
 

2. Numeric solution of ordinary differential equations on
 
a digital computer requires that all of the initial
 
conditions C. (j=1,2,.. .m) be known to a reasonable
 
degree of accuracy. In the identification problem,
 
however, only C1 or C2 may be known. The other initial
 
conditions must then be guessed, which may result in
 
the generation of inaccurate solutions.
 

3. A third difficulty arises if the differential equation
 
happens to be highly nonlinear. The usual methods of
 
numeric integration and differentiation may not yield
 
a solution, so that special algorithms must be designed
 
for solving each particular model.
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Depending on the initial knowledge of the process, the identification
 

problem can be interpreted in the following two ways:
 

Identification: The process is considered as a "black box" about
 

which nothing is known except the inputs and outputs.
 

Parameter Estimation: The structural configuration is known but the
 

model parameters are unknown. For example, the model is known to be
 

accurately represented by certain systems of differential equations,
 

but the coefficients or parameters in these equations are unknown.
 

Since generally the parameters or coefficients cannot be measured
 

directly and the measureable variables are generally the dependent
 

variables of the differential equations, it is not a simple matter to
 

identify the parameters.
 

The Predictor-Corrector Methods
 

Procedures which predit a result by one formula and then correct
 

it by another are one of the most effective devices for solving initial­

value problems, and are referred to as predictor-corrector methods.
 

Two of the most important methods were developed by Euler and
 

Hamming (Carnahan, et.al., 1969). These methods will be briefly dis­

cussed in this chapter. Appendix C is devoted to explaining Euler's
 

procedure uzd this chapter will give a block diagram (Fig. 5.1) of the
 

modified Euler predictor-corrector method as used in solving the
 

differential equations developed in Chapter IV.
 

The block diagram used for developing the computer program is
 

shown in Fig. 5.1.
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Start 

R ad in Initial 
ond-ions and Values of 

Coefficients of the 
Differential Equation 

Ertablish Integration 
Time 

T = Float (k) * DT 

Set up Predictor -
Corrector Counter 

I___ 

Calculate Predictor values 
using the Initial Conditions 
for a Start and Solve for 
First Derivative of tl.e 
Differential Equation 

Calculate Average[ 

I LT Yes Derivative for 
j Predictor Step. 

Calculate Average Derivative 

for Corrector Step 

Block Diagram of Modified Euler Predictor--Corrector Method
P- -it.~i5.
as Used in Solving the Differential Equation.
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2
 

Advance Counterl 

I +~ 

Ir 
Calculate Predictor -

Corrector Values 

SCalculate New Derivatives 

No For Corrector. 
Io GT Return to Calculate AverageJ 

for Corrector 
Derivative 

:t 

Initialize Values and Use 
the As Starting Values for 
the Next Time Step. Repeat 
process till T = Final Time 
Step 

rite Results off Integration l 

ior Each fime Step 

. 5.1 Continuation of Block Diagram of Modified Euler Predictor-

SCorrector Method as Used in SolvingoThe Differential Equation.
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4'The advantages and disadvantages-inusing Euler's method maybe
 

' 
list'ed as follows (Carnahan et.al.,"t 1969; Conte and de Boor, 1972). ,
 

1. 	The modified Euler predictor-corrector method has,been found.
 

to give better results than other predictor-corrector methods.
 

2. 	It has been found that the propagation from one iteration
 

to the next can be reduced by using the modified method.
 

3. 	It is easier and simpler method to follow, compared to other
 

predictor-corrector methods (e.g., Hamming's method). I
 

Euler's method becomes.more accurate as the step size'decreases
 

and the'"error-tends to zero as step size goes to zero or becomes as
 

small as possible. This could be time consuming and therefore expensive,
 

&' the author's experience with the method indicates that Euler's
 

method is not as expensive as Hamming's method.
 

Steepest Descent Technique
 

The two main postulates for analyzing an unconstrained problem
 

are (Hall and Dracup, 1970):
 

1. 	"The objective function can be evaluated by some means
 
(including experiments, if required) for any initial
 
trial policy xl, x2,...xn and for the immediate vicinity
 
of this policy, and
 

2. 	That there are no discontinuities in the objective
 
function in the immediate vicinity of any initial or
 
subsequent trial policy".
 

These imply continuit:, and differentiability, though continuityand'
 

differentiability are not required everywhere in thepolicy space, but'
 

only the path that .is being followed.
 

Suppose F(x) is the objective function,; where x'is the vector
 

of optimal values, and F() possesses a derivative. Then a steepest
 

descent optimization procedure can be appliedito this unconstrained'.
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,problem.:.This.procedure idates iasifar, back toauchy (1847), and
 

continues 1-to.bed one.of ithe most important optimization techniques.,
 

In ,the present,work,, the,.objective,function may. be represented
 

Sas the sum of.'the squared error ;.., ,, 

F) = . (QOBS - QCALC)2 (5.1) 

where x QCALC(a,',y)
 

"QOBS is the observed runoff values,
 

QCALC is the calculated runoff values from the mathematical,.­

equations,.:or model,.which is a functionof....
 

';a,O,ywhich are the characteristic parameters of£ the:hydrologic
 

model to be calculated by the gradient method. The para­

meters of the first-order differential equation are consider­

ed here for illustrative purposes.
 

Let F(x) = F(x1,x2 ,x3 ) where xl, x2 , x3 are the hydrologic
 

system parameters a, 0, y, respectively, or
 

P(x) = F(,,y). (5.2) 

The gradient vector VF is a vector whose components are equal 

to the corresponding partial derivatives. In the thret6dimensional 

case (since we have only three parameters: 1, , Y) 

VF( P aF (.3) 

or
 

VFx) L + k j T (5.4) 

'weeit j, k are unit vectors~ 
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his,;gradient VF (D plays an important role in the seekin of local 

- .maxima orsminima, where for :agiVen function F(x), whose partial 

derivatives exist, VF(I_ is a vector which points in the direction
 

Ofithe greatest rate of increase (maximization) or decrease (minimiza­

tion) of F(x) (see Appendix A). Hence, any step in the steepest
 

direction should be a vector whose components are proportional to the
 

partial derivatives.
 

Suppose S is the step to be taken i a three-dimensional case
 

then
 

S = + 01 + Ayk (5.5) 

Then for S to be in the direction of VF(x) requires in general
 

that
 

A_ A$ A" Ax. 
DF7a= F/. = "' 

1 • (s.6) 

Equation 5.6 determines the direction, but not the magnitude of the
 

step to be taken. The magnitude can be freely chosen. However, small
 

steps greatly increase the total computation, while large steps could
 

lead to overstepping to a less optimal policy than the initial point.
 

Usually, some maximum allowable change in any one decision variable is
 

set on the basis of judgement or experience, and the movement of the
 

variable with the largest derivative is set equal to this limit. The
 

remaining Ax. are then computed on the basis of Eq. 5.6. More
 
1
 

sophisticated methods (such as used in this study) allow for estimates
 

Of the optimum size of the step.
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c t , At iany point x- (40o,-,,d)theve or VFC(xwisnormal to 

the contou that ,passesthrough .the point,,: x, orthe set ofallx 

r,,§uch that., Fx) = F(x) (Appendix A). 

Figure 5.2 gives a block diagram of the steepest descent algorithm.
 

The procedure starts at some initial point, X where, xo = ,(ao000;y 

represents the initial guessed values of the parameters. The general 

iteration step nth iteration (n=l,2,3,... ) begins and VFQ!) is 

calculated for each iteration: VF(Xn). Since this is the steepest 

descent method, we have to move in the direction: -VF(n) . We wish 

to find an optimal step size, An such that An minimizes F(xn-AV.F(n)) 

over all A . In a formal notation the minimization problem may be 

written as: 

A=M- (5.7) 
An Min F(xn - VF( )(.7
 

The next set of values of the parameters are calculated. x+l is
 

the vector of these parameters which form the next point, where
 

=2n+l. x - An-VF(x) . (5.8) 

At each new set of values n1lfor.each iteration the convergence
 

criteria should be checked. If F(n)x - F(xl)< then, convergence 

is attained. If, on the other hand, F(n)- ,F(xn+l) > e, then the 

procedure must be repeated,
 

The merits of gradient methods maybe summarized as follows (Hall
 

and Dracup, 1970):
 

"Despite the limitations, gradient methods are very powerful
 
in that improvement in policy is guided even if the optimum
 
cannot be feasibly calculated. Gradient methods are extremely
 
useful where additional research or experimentation is
 
required. In many such situations, the use of gradient methods
 
may be the only feasible way to proceed if costs of analysis
 
and research are to be kept commensurate with the objectives
 
of the optimization."
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Start
 

Starting Values/Initial Guessed Values
 
of Parameters X = ao ,o); eo 

Iterative Step nth Iteration 
n = 0,1,2,3... Calculate VF(X ) 

Choosing step size A Minimization Problem 
Min Xn - -Vnd)n An
 

Calculate Next Point
 
Xn+ 1 = X - An VP( )
 

-n(Xl -n 1 e 

Yes
 

Fig. 5.2 Block Diagram off the Steepest Descent Algorithm.
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MAIN PROGRAM
 
Reads all Data and Makes all
 
Transformations to Correct Units
 

Subroutine SDOPTIM
 
Uses Initial Guesses of Parameters
 
only Once
 
Generates New Set of Parameters
 
Values by Gradient Technique
 
Based on Objective Function
 

Subroutine KWAMO
 
Supplies New Set of Parameters
 

Subroutine BIMAH
 
Solves Differential Equation by
 
Modified Predictor-Corrector Method.
 
Supplies Calculated Runoff Values
 
Based on Mathematical Model Equations
 
and Supplied Parameter Values
 

Objective Function
 
Computes Error between Observed
 
and Calculated Runoff
 

2
 
F = E(Qcal-Qobs)
 

heck forNo
 

Output Results
 

Fig. 5.3 The Block Diagram of the Main Program using Gradient Technique
 

and Modified Euler Predictor-Corrector Method.
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The'-Steepest Descent and the Modified Euler Predictor-Corrector Methods
 

The Euler Method is combined with a gradient technique whose main
 

purpose is to find better estimates of the coefficients of the differ­

ential equation. The combined block diagram for the-joint operation
 

'ofthe Euler method and the gradient technique is illustrated on
 

Fig.-5.3.
 

SDOPTIM:is:the name for the Steepest Descent Technique which uses
 

the value of the objective function from Euler's method to find optimal
 

estimates of the coefficients of the differential equation or the
 

optimal values of the unknown parameters set x* = (ai,0*, y*),

-n n n n 

The various functions of the subroutines have been outlined 

earlier, and therefore no detailed explanations will be given here.
 

The Quasilinearization Technique
 

Quasilinearization together with least squares optimization
 

represents another technique which is used via systematic search for
 

solutions or identification of the nonlinear hydrologic system response
 

model. The least squares optimization refers to the objective function
 

which seeks to minimize the difference of the observed and the calcu­

lated runoff from data and mathematical model respectively. Quasi­

linearization is capable of solving large class of nonlinear differen­

tial equation, and giving a rapid convergence (if it converges) to the
 

optimal values of the p.rameters of the model (or the coefficients of
 

the differential equation).
 

Quasilinearization involves linearization of the nonlinear
 

algebraic equations and sequence of functions in a series of iterative
 

scheme to arrive at the solution of the originel nonlinear differential
 

equation. It does not need an accurate set of initial conditions or
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'boundary values since they are computed along with the parameters. Good
 

, guessed values of-the initial conditions, however, facilitate conver­

gence. From experience, this technique can be unreliable and can
 

diverge rather than converge to the desired optimum.
 

Instead of being solved directly, the quasilinearization technique
 

for a nonlinear differential equation is solved recursively by a series
 

of lineai differential equations. The linear equation is obtained by
 

using the first and second terms in the Taylor series expansion of the
 

original nonlinear equation. This technique is generalized Newton-


Raphson formula for functional equations (Appendix B). However, since
 

the unknowns which are to be obtained are functions and not fixed values
 

or roots as in the Newton-Raphson method, both the computational and
 

theoretical aspects are more complicated.
 

The quasilinearization technique not only linearizes the nonlinear
 

equation but also provides an iterative scheme (through use of Taylor's
 

series) which in general converges more rapidly than gradient methods
 

to the solution of the original nonlinear equation, as long as initial
 

guesses x0 are adequate. In general, for most practical problems,
 

these initial guesses can be obtained from engineering experience and
 

intuition. It is suggested, from rie experience of this investigator,
 

that other methods which can generate ac.curate approximations of the
 

initial conditions should be used in conjunction with the quasilineari­

zation technique, especially when this technique is not converging well.
 

This is to say other methods can be used to find good initial guesses
 

for starting the quasilinearization technique. The previously discussed
 

gradient method may be one.
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Fig. 5.4 Block Diagram of Quasilinearization Algorithm.
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For a more complete treatment of the quasilinearization algorithm
 

the reader should refer to Labadie and Dracup (1969). Figure 5.4 gives
 

the block diagram of the quasilinearization algorithm used for the
 

optimization on the computer.
 

Advantages of Quasilinearization
 

As pointed out by Labadie and Dracup (1969) the advantages of
 

quasilinearization can be listed as follows:
 

1. "A rapidly converging iterative scheme is developed for
 

the unique or optimal values of the parameters in a
 

systematic fashion.
 

2. A complete set of initial conditions need not be
 

specified. Unknown initial conditions are determined
 

along with the unknown parameters.
 

3. Standard methods of numeric integration can be easily
 

applied to solving highly nonlinear models. Special
 

algorithms are not needed.
 

4. Quasilinearization is generally applicable to a
 

large class of complex models and is highly compatible
 

with current digital computer capabilities."
 

It is also important to point out that the procedure is advanta­

geous because it involves neither curve plotting nor graphical matching;
 

and also because of its general applicability.
 

Another important advantage of this technique is that if the
 

procedure converges, it converges quadratically to the solution of the
 

original equation. Quadratic convergence means that the error in the
 

(n+l)th iteration tends to be proportional to the square of the error
 

in the nth iteration. The advantage of quadratic convergence, of
 

course, lies in the rapidity of convergence. Bellman and Kalaba (1965)
 

depicted quadratic convergence as
 



77
 

59
iA(n+l)-~: j~~-j2~ 
< K 

where A is the vector of the optimal values of the parameters.
 

Disadvantages of Quasilinearization
 

The inherent weaknesses of quasilinearization can be listed as
 

follows (Labadie and Dracup, 1969):
 

1. "Initial approximations must be within or at least close
 
to the convex region surrounding the optimal solution
 
or convergence is not attained.
 

2. 	If convergence does not result for a particular set of
 
initial approximations, it is not possible to determine
 
systematically a better set of initial approximations
 
from these results."
 

A possible remedy for this situation lies in the use of gradient
 

methods for generating initial approximations. These methods could
 

perhaps be effectively used for starting a quasilinearization scheme.
 

It is, however, important not to underestimate the potential and
 

capabilities of the gradient technique. Chapter VI reports on the
 

experience with these two techniques. The superior technique is
 

determined on the basis of how fast the algorithm converges to the
 

optimal solution; whether the algorithm is easier to handle and
 

understand, and whether the algorithm is reliable.
 

Modified Euler and Hamming's Predictor-Corrector Methods as Used with
 

Gradient Technique and Quasilinearization Respectively
 

Euler's method (or Hamming's method) used with the gradient method
 

has the capability of solving a nonlinear equation directly, whereas
 

the Hamming method (or Euler method) used with quasilinearization tech­

nique solves a nonlinear equation indirectly by first linearizing the
 

nonlinear equation into its linear form. Euler's method is a "self­

starting" method. It requires the value of the dependent variable Q
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,,at only one point to start the,procedure. Hamming's predictor­

corrector method, however, is by itself not self-starting; that is,
 

the functional values at a single previous point are not enough to get
 

Therefore, to obtain the starting.values,
the functional values ahead. 


a special Runge-Kutta procedure followed by one iteration step is added
 

to the Hamming's predictor-corrector method.
 

Euler's method (as indirectly pointed out in the first paragraph)
 

can solve directly a second order ordinary differential equation,
 

whereas the purpose of Hamming's modified predictor-corrector method
 

is to obtain an approximate solution of a general system of first order
 

,ordinary differential equations with given initial values.
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Chapter VI
 

COMPUTATIONAL RESULTS
 

Description of the Todzie River Basin in Ghana
 

This study is aimed primarily at a river basin in%,adeveloping
 

country. The problems facing the developing countries with respect to
 

basic research, as discussed previously, include: lack of interest,
 

economic constraints data limitations, lack of manpower and expertise
 

to tackle certain important research programs, and research as a whole
 

may not be a national priority, Other constraints include political,
 

social, traditional, institutional and legal restrictions.
 

The Todzie River Basin (Pig. 6.1), it is believed, can be viewed 

as a typical river basin in a developing country and is therefore sub­

ject to the above problems. and constraints. Most of these problems and 

constraints are confronted with in this research and these may be there­

fore referred to as some of the major objectives of this research.
 

Specifically, these problems and constraints as confronted and tackled
 

may be defined in the current research efforts as:
 

1. 	Inadequate data available for this study are used in the
 

best possible way.
 

2. 	Certain important variables like evapotranspiration have not
 

been measured To overcome these problems a conceptual and a
 

mathematical model, which are rigorous and realistic enough;
 

simple to handle conceptually and mathematically, respectively,
 

have been derived. The main aim is to-be able to predict
 

evapotranspiration values.
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"3 The, solution technique adopted-should be fast and.:inexpensive 

with respect to computations by,the computer. 

TheAvu-KetaRegion comprises an area of 475 square miles, or 

304000 ,acres,,bounded on the west by the VoltaRiver, on the north by
 

Sogakofelto Denu Road, and on the south and east by the Gulf-of Guinea
 

(Fig. 6.1). Todzie Basin is part of the Avu-Keta Region.
 

'The 1960 population in the Avu-Keta area was approximately 135,000,
 

with 51,000 people concentrated in the Keta district (the most densely
 

... Ghana's population is about 8 to 9 million.....,
populated area). 


The water levels of many lagoons of the area fluctuate substantially.
 

r.In,'the wet season, flood waters which enterthe lagoons from several
 

-sources are trapped because no efficient outlet to the sea is available.
 

Because of the poor drainage and the flat topography, a vast area,
 

including agricultural land and homes, is frequently inundated. _
 

In the dry season, high evaporation rates reduce Keta Lagoon to
 

low levels. The minimum level to which the lagoon has receded isnot
 

known.
 

There are three sources of flooding in the Avu-Keta area. They
 

are:
 

1. 	High runoff from the Todzie River to Avu Lagoon, and from
 

there to Keta Lagoon.
 

2. 	High runoff from the Aka, Belikpa, and Denu Lagoon areas
 

directly to Keta Lagoon.
 

3. 	High flows on the Volta River, part of which enter the'southern
 

portion of-the area periodically and contribute to the flood­

ing problem around Keta.
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Because of the flat topography and the poor drainage of the
 

Avu-Keta area, the flood waters recede very slowly.
 

The flooding as a result of high runoff from the Todzie, Aka,
 

Belikpa and Denu Lagoon areas occurs primarily in June-July, with
 

secondary flooding, which is of lesser consequence, in September-


October.
 

The flooding problem in Avu-Keta is a major national concern.
 

Since funds and manpower are rare 'commodities', research effort to
 

analyze the rainfall and runoff characteristics of the basin is very
 

important. Unfortunately, data for most of the rivers are unavailable,
 

except for Todzie. Todzie, however, happens to be one of the important,
 

if not the most important, rivers in the area. Hence, Todzie has been
 

chosen for this study, even though there are many problems and con­

straints, as previously discussed.
 

Hydrology of Todzie Basin
 

The Todzie River drains an area of approximately 840 square miles
 

before it enters Avu Lagoon. Monthly mean precipitation in inches for
 

the Basin was determined by the Thiessen Method.
 

Average annual runoff from the Todzie River is approximately
 

315,000 acre-ft. This is based upon the available period of record
 

from March 1957 to February 1969. The annual runoff during the period
 

of record has varied from as little as 62,000 acre-ft to as high as
 

893,000 acre-ft. Figure 6.2 gives a graphical representation of
 

observed rainfall and observed runoff in inches (1958-1967).
 

Two floods of significance have occurred during the twelve years
 

for which records are available for the Todzie River. These floods
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occurred in 1963 and in 1968. In August, and again in October 1963, the
 

monthly runoff exceeded 150,000 acre-ft, which is nearly one-half of the
 

twelve year average-annual amount. The peak inflow was estimated to be
 

about 6,200 cubic feet per second. Unusual rainfall conditions occurred
 

again in 1968, during which very high runoff from the Todzie River
 

was recorded in July, August, September, and October. The highest
 

runoff occurred in August when the flood volume was 231,000 acre-ft.
 

The combined four-month runoff was greater than twice the average annual
 

amount. The peak magnitude of the 1968 flood could not be determined
 

because of a change in the rating in 1968 at both the main Todzie
 

channel and Agblagbole locations. However, it is estimated that the
 

1968 peak flow exceeded the 1963 peak flow by ten or twelve percent.
 

The change of runoff with time from month to month for the entire
 

record used for this research (1958-1967) is plotted (Fig. 6.3).
 

Figure 6.3 shows the extreme variability of the runoff from month to
 

month and year to year.
 

Data Set--Rainfall and Runoff
 

Monthly rainfall and runoff data for the Todzie River Basin in
 

Ghana (Figs. 1.1 and 6.1) are utilized in th.s study. The monthly
 

rainfall data are given in inches and Thiessen's method was used to
 

compute an average rainfall for the river basin. The rainfall data were
 

a continuous record from 1958 to 1967.
 

The runoff data were given as total monthly runoff from the 

Todzie River in thousands of acre-ft. These values have been converted 

into inches for this research. The runoff data are also continuous 

and cover all the months from 1958 to 1967.
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No other data are available. Therefore, this work is intended to
 

illustrate mainly the importance of what can be done with what is avail­

able, namely, monthly rainfall and runoff data for 10 years only.
 

It has been pointed out earlier that 12 years of data are actually
 

available. The two years of data deleted are those years that data
 

were not continuous or there was a change in locations of the rating or
 

measuring stations. No new errors in data will be entertained in this
 

Data used are typical of any
study by computing data that are missing. 


data collected anywhere, especially in a developing nation. Therefore,
 

the data should be viewed with some skepticism with respect to the more
 

questionable measurements. Of course, it does not mean good data cannot
 

be collected. It is basic to the objectives of this research, however,
 

to use whatever data are available.
 

The current data have two flood peaks (besides the 1968 flood)
 

which are about the highest recorded for quite awhile. These two peaks
 

(which are obviously not part of the general trend or behavior of the
 

storms in the area) can affect the predicted values of runoff, since
 

these are unusual occurrences and do not bear resemblance to the normal
 

behavior of the characteristics of the storms in the area.
 

Results Obtained by Quasilinearization
 

Quarilinearization as an optimization technique has been mentioned
 

in eailier chapters as a good technique if it converges. There are
 

several reasons why it may not converge. These may include:
 

1. 	Poor initial guessed values of the parameters.
 

2. 	Inefficiency of the procedure to tackle certain types of
 

differential equations effectively.
 

3. 	Poor data.
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Several different initial guesses were used for this problem, and
 

these included initial conditions required for the gradient technique.
 

The gradient technique gave good results for the objective function.
 

The fitting error F was consistently smaller than that obtained by
 

quasilinearization, and tended to decrease with better guessed initial
 

conditions. The smallest value of F obtained using quasilinearization
 

was 14.51. Other experiments diverged to very large error values.
 

The optimization with the quasilinearization technique was repeated
 

many times but no better values than that above were obtained. The
 

shortest computer time for 6 iterations was 99 seconds.
 

Therefore, the quasilinearization technique was disqualified from
 

further use as far as this research is concerned, since it consistently
 

gave divergent values of error F and wrong estimates of the parameter
 

values.
 

The Effect of Step Size in the Gradient Technique on Parameter Values
 

Several experiments were initially performed to find out what the
 

gradient technique could do, and how fast and what types of step sizes
 

in the steepest descent direction are good enough for use when the
 

optimal region is being approached.
 

From various experiments, it has been experienced that the gradient
 

technique used here is very slow in converging to the optimal solution.
 

The stress here, however, is to illustrate the effect of step size on
 

the parameter values and to determine which step size per iteration
 

the gradient technique has to take when it starts to move in the steep­

est direction. The values obtained in these experiments are not neces-.
 

sarily the optimal ones and are not necessarily intended to be. The
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working step sizes required for the optimization process are the main
 

concern at this point, since these are necessary guides for arriving
 

at the solution of the minimization problem.
 

The second set of values on each row represent the smallest
 

possible error encountered after taking the steepest descent step and
 

direction. A wrong step taken could easily lead the process into diver­

gence. It appears that the values immediately begin to diverge more
 

rapidly with the number of iterations and are directly proportional to
 

the step size indicative of the size of the step, Table 6.1.
 

The smaller the step size (1/ss) the longer it takes to converge.
 

When the step size is so small that there is rarely any significant
 

changes in F as in (l/ss = 0.5 to i/ss = 0.001) the process may
 

continue for a long period and may probably never converge.
 

The first number shown in the iteration column represents the
 

F was first smallest. The second
iteration number for which the error 


F
number indicates the iteration number for the smallest possible 


after the first iteration. As the step size decreases (l/ss = 0.01
 

or less), we find that on taking the step a better estimate of F can
 

be found, whereas, the reverse situation is experienced when step size
 

increases (i/ss = 0.1 or more). The first iteration, for all the
 

experiments, began with the same initial values 3f the parameters.
 

The second or more iterations result in changes in values of F and
 

the parameters. The larger the value of ss (or smaller 1/ss), the
 

less the tendency for abrupt divergence on taking a step in the steepest
 

descent direction. There is almost no divergence from the minimum 

when ss = 10 and higher. 
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TABLE 6.1
 

CHANGES IN INTEGRATION TIME STEP AND EFFECT ON CONVERGENCE ON THE GRADIENT TECHNIQUE (STEEPEST DESCENT)
 

Step Size Solution Values of Parameters No. of Iterations 
Multiplication Function Computer S V 

Function F Time in Secs. AI=a A2=(Bxl0 2) Y 

0.001ss=lO0 7.900235
7.899377 

21.8C6
43.043 

0.0643003
0.06368861 

0.09750323
0.09731723 

1.102187
1.104695 

7
18 

0.020ss=50 7.900235 22.289 0.0643003 0.0975032 1.102187 7 
7.899039 43.966 0.06369321 0.09728996 1.103431 17 

0.100ss=lO 	 7.900235 22.06 0.0643003 0.09750323 1.102187 7

7.899248 47.448 0.06369024 0.09730755 1.104246 19
 

0.200ss=5 	 7.900235 21.835 0.0643003 0.0975032 1.102187 7
 
7.899661 47.14 0.0636853 0.0973363 1.105584 19
 

0.400ss=2.5 	 7.900235 21.751 0.0643003 0.09750323 1.102187 7

55.57401 23.858 0.06857726 0.07235782 -0.05267640 8
 

1 .0 0 ss=I 7.900235 22.187 0.0643003 0.09750323 1.102187 7 
0.1036727E+12 23.622 0.07499270 0.03463971 -1.1801671 8 

20.00 	0.0S 7.90235 21.920 0.0643003 0.09750323 1.102187 7 
Diverge at #8 8 
before any value 
is calculated 
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The time for the same number of iterations for the same values
 

of F, a, 8, y decreases with increasing Ax (where Ax = 1/ss).
 

Table 6.2 represents the results of the parameter values used in the
 

optimization process. Divergence increases as Ax increases. It is
 

important to realize from Tables 6.1 and 6.2a how little the parameters
 

chante for various iterations. This shows that the parameters are
 

highly sensitive and the least amount of changes in any parameter
 

value can result in large changes in F. The gradient technique pro­

ceeds rather slowly in changing substantially the various parameter
 

values. It should, however, be stressed that the gradient technique
 

is generally reliable and can at least give some working estimates of
 

the parameters. The better the values of the parameters obtained
 

depend on how good is the chosen value of Ax; especially on the com­

petence and experience of the computer programmer.
 

The value of a appears quite high at this point, considering the
 

physical reasoning of the basin and the rainfall and runoff values.
 

It should be remembered throughout this study that the sensitivity
 

parameter a gives an estimate of evapotranspiration. Therefore,
 

more experiments are to be performed using these values (Table 6.2)
 

as the initial conditions.
 

Determination of Upper and Lower Bounds of Parameter Values
 

The problems are originally solved with parameters a, 0, y, and 

*(0 appears only in the second order differential equation) being 

time dependent. Several different starting values were tried in order 

to find the upper and lower limits of the values of the parameters. By 

inspection of the results certain range of values of the parameters
 



91
 

TABLE 6.2
 

INITIAL VALUES OF PARAMETERS TO BE USED
 
FOR OPTIMIZATION PROCESS
 

Step Size Lomputer Min. Value
 
Multipli- SS of y
 
cation Time F
 
Factor (After Step)
 

0.001 100 TT=43 .05 7.899 0.6544 9.3019 1.1047
 

0.020 50 TT=43.97 7.899 0.6546 9.9376 1.1034
 

1.10 10 TT=47 .45 7.899 0.6546 9.8580 1.1042
 

-0.2 5 TT=47.14 7.899 0.6543 9.2928 1.105584
 

0.4 2.5 TT=23.86 	 55.57 0.9478 -262.812 -0.0528
 

1.0 1.0 TT=23.622 0.1036727 2.1649 - 24.4612 -1.1802
 

20.0 	 0.05 ABRUPT DIVERGENCE ON TAKING A STEP IN THE
 
STEEPEST DESCENT DIRECTION.
 

http:TT=23.86
http:TT=47.14
http:TT=43.97
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gave good results or fits of the computed runoff to the actual observed
 

runoff data. This range of values of the parameters was used for
 

bounds, and the optimization procedure repeated for yet better values
 

of the parameters.
 

There are two main sets of experiments which are performed at each
 

relevant stage of the study. It is necessary to mention these in pas­

sing without presenting the results, since they are only intermediate
 

results to the actual products of the experiments. The first type of
 

experiments involves the investigation of the upper and lower bounds
 

of the parameter values. These have already been mentioned, except to
 

add that these upper and lower bounds were incorporated in the computer
 

programs and the range of values of the parameters were the end products
 

(e.g., Table 6.5). The second set of experiments concerned the informal
 

determination of the global minimum.
 

In order to be sure the value of F obtained is the global
 

minimum many initial starting values were tried; these starting points
 

were all different and of various magnitudes, etc. The purpose of this
 

was to find out whether the objective function F (the least square
 

error between QCALC and QOBS) had the same or almost the same value.
 

The results found for over 15 trials indicated the same or approximately
 

the same value of F. Thus the global minimum was informally found and
 

the optimal values obtained were the best estimates of the parameters
 

within the limits of experimental and other errors.
 

After several trials, certain average values of B, y, and
 

could be used without any appreciable loss of accuracy. The parameters
 

B, y, 0 are therefore considered as time-invariant. As a matter of
 

fact, these average values were found not to differ much from the lower
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and upper bounds of these parameters. The time dependency of 8, y, 0
 

was initially investigated as mentioned earlier in order to confirm
 

the time invariance of these parameters. These preliminary investiga­

tions were not necessary to report here since these do not add any new
 

knowledge to the study.
 

In the experiments that follow these ideas are fully incorporated. 

Initially, every experiment was performed with all the parameters 

treated as time dependent. On convergence or near convergence, it was 

found that the parameters; except a, did not differ appreciably from 

each other. All the parameters, except for a were assumed constant 

and equal to their corresponding seasonal averages. The parameter a 

was treated as a time-dependent parameter. At certain points in the 

data which gave bigger error than stipulated for convergence (F < 

0.001) because of a higher or lower value of the average parameters 

the next best estimate of the parameter values were used. In such a 

case (and there were only 3 out of 120 cases), the objective function 

obtained from the sum of the least square differences of the observed 

runoff values and the runoff computed using these parameters gave an 

error F which was not greatly different from the convergence criteria. 

Many experiments were performed for each of the monthly and
 

seasonal models in order to determine how variable the parameters could
 

be, where their upper and lower bounds were, and which were their
 

optimal values.
 

The objective function and parameter a - The objective function,
 

as has been explained, is determined by F, the least squares error
 

function. It is necessary to specify how much error is tolerable for
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any iteration. If this minimum tolerable error value is exceeded then
 

the iterations could be stopped temporarily so that better initial
 

values could be used so as to arrive at a better value of the objective
 

function.
 

Most weight is placed on a because it is physically explainable
 

and can be used with the greater amount of accuracy than the other
 

a (O<a<l.O)
parameters. This does not mean that when is constrained 


In fact, the other
the other parameters could assume any values. 


parameters are constrained when their corresponding seasonal 
average
 

As a further check on what values other parameters
values were used. 


could assume, it should be realized that a = a(O,y, ,Q,P,t) and
 

0, y, P or Q
therefore any unacceptable or bad values of any of 


will reflect in the values obtained for a which may physically not be
 

justifiable. 

If after trying all the possible initial conditions for a, B, *, 

for a given F and we do not have any improvement on F thenand y 


the reasons could be one of the following:
 

1. Questionable data value for that particular integration step.
 

2. Model is insensitive for certain range of values of observed
 

data. 	it is therefore necessary to check other data which
 

the same range of values and check its corresponding
are in 

F in order to determine the differences in P between the 

two similar data values. 

The Monthly Models
 

This was constructed such that the initial conditions determined
 

from many trials were used only once to start the iterations. The
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integrations at all data points used this set of initial conditions for
 

the first iteration. The least squares error summed for the entire
 

record was found from the observed runoffs and computed runoff due to
 

integrating the mathematical equations. The gradient technique uses
 

this error value to find a new set of parameters which become the
 

starting values of the second iteration and the process begins again.
 

This continues till convergence is attained. The first order differ­

ential equations with nonlinear storage-discharge relation of the
 

mathematical model was used for these investigations.
 

The monthly model was developed and optimized using two approaches.
 

The main aim in doing this was to investigate (1) which of the two
 

approaches gave the best possible values of the parameters, where the
 

value of error F the objective function was the criteria for judgement.
 

The smaller the value of F the better the approach; (2) which method
 

was faster with respect to computation time--again the economics of
 

the problem is of major importance and is one of the objectives of this
 

research; (3) which method is more efficient--this gives a graphical
 

representation of the computed runoffs by both approaches as against
 

the observed runoffs. The closer the fit of one approach to the
 

observed runoff curve the more efficient the particular approach.
 

(4) Whether one is as good as the other in which case one can serve
 

as check on the other and thus further indicates how good the chosen
 

approach is.
 

Results of monthly Model 1 - This involves setting up the initial
 

conditions and the gradient technique uses only this set of initial
 

conditions and solves the differential equations at all the points
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'VaIa the' predictor-corrector scheme. This is tho first iteration, 

were at the end of iteration 1 we have '120 (number of data points 

used) values of calculated runoffs corresponding to each of the 120
 

observed runoffs. The least squares error F is found and this is
 

utilized by the gradient technique to find new step and direction.
 

The new starting values of the parameters are found by the gradient
 

method and those become the initial conditions of iteration 2. The
 

process is repeated. Altogether 10 iterations were allowed in order
 

to determine the best value of F.
 

Results of monthly Model 2 - The optimization of the first order
 

nonlinear storage-discharge model was started with initial conditions
 

applied only to the first point, instead of using this one set of
 

initial conditions for all the points. The computer programme was
 

modified to optimize the parameters at the first point (and other
 

subsequent points) and the objective function F found together with
 

its parameter values. Ten iterations were done for this first point
 

in order to find the smallest F whose corresponding parameters
 

become the initial conditions for the second point. The process was
 

repeated for each point (10 iterations per point) till all the 120
 

points were covered. The difference in approach between Model 1 and
 

Model 2 is that Model 1 makes 1 iteration for all 120 points and
 

repeats the process 10 times; whereas, model 2 makes 10 iterations for
 

each point and repeats for all the 120 points.
 

Model 2 is essentially a new technique and should therefore not be
 

misconstrued as violating any set procedure of optimization with respect
 

to the predictor-corrector scheme. Basic understanding of the predictor­
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corrector scheme and computer programming made this new approach pos­

sible. Still this approach should be proved worse or better than model
 

1 based on the 3 criteria set forth in this section: (1) smaller
 

value of F, (2) faster, and (3) more efficient. The proof of these
 

points are illustrated on Table 6.3.
 

TABLE 6.3 

COMPARATIVE RESULTS OF MODEL 1 AND MODEL 2 
OF THE MONTHLY MODELS 

Average Values of Optimals Cumulative 
Errors of Computa-

Model All Points 
F 

tion TimeCP 

1 0.0659 9.2153 1.11333 0.4098 16.189
 

2 0.0660 9.2084 1.11229 1.9618 13.529 sec
 

Results given on Table 6.3 clearly indicate how good either model
 

Both models gave very close average values of the parameters indi­is. 


cating the reliability of these values and these further illustrate an
 

informal proof of global optimality of the parameter values with
 

respect to the values of the objective functions. Model 1 seems to
 

give a slightly better fit to the actual data, though Model 1 takes 

more computer time than Model 2. 

checkIt is therefore recommended that both methods be used as 


for each other and to find out informally whether the average values
 

of th, parameters used are indeed tile global solutions or just the
 

local solutions of the optimization problem. At least, this can
 

informally establish global or local optimality.
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The 	Seasonal Models
 

The following investigations were centered on the seasonal
 

investigations of the hydrologic system characteristics, the behavior
 

of the characteristic parameters of the system, the investigation of
 

the usefulness of some of these parameters and derivation of a simple
 

but an effective model to calculate evapotranspiration. Again, 10 years
 

These are all that existed
monthly rainfall and runoff data were used. 


have be 	 possible way bearingand 	 therefore, to used in the best 

in mind some of the basic objectives and principles underlying this
 

research:
 

1. Modul that uses only the main measurable data (rainfall
 

and 	 runoff data) in a watershed. 

2. 	 Deriving a mathematically and physicaliy sound model, which 

is simple to understand but very effective in solving the 

problem. 

3. 	A model which can further give estimates of values of 

other variables which for reasons of economics, politics or 

both (plus others: accessi1)ility to area, etc.) make it 

impossible to measure these variables even though it (they) 

may be very important. lvapotranspiration is one such very 

important variables that need be known for agricultural or 

water resource!; project s -- for p lann ing, management and 

dove 1opment . This research has develop)vd a model for 

calculating monthly, seasonal and annual evapot ranspi ration. 

(4) A model that is fast to solve with the computer--again the 

economics of the problem--without much or any loss for 

officiency .
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These underlying objectives are important for any country but
 

even more important for countries of developing economy which are
 

referred to here as developing countries--which are so referenced here
 

due to insufficiency of funds or capital, insufficiency of manpower and
 

lack of interest in hydrologic investigations. The models have been
 

derived on a generalized basis--applicable to any country--and tested
 

by using data from Ghana, the author's home country.
 

The importance of linear, nonlinear, dynamic considerations in the
 

seasonal models - A comparative study - Many investigators (Chapter II)
 

have used various assumptions in deriving their mathematical model
 

of the hydrologic system. Some have used linear storage-discharge
 

relations (an unrealistic assumption); others used nonlinear storage­

discalarge relaLion. In conjunction with one of these investigators
 

derived first order differential equations; others derived a second
 

order differential equation.
 

To show the merits of either one or the other approach, this
 

current research which is also partly interested in these problems and
 

some of these assumptions, has attempted to use nonlinear storage­

runoff relation; and first and second order differential equations
 

respectively and vice versa (i.e., two approaches) in deriving its own
 

differential equations describing the hydrologic system. These
 

equations are different from any other, but effectively describe the
 

physical behavior of the river basin.
 

Planners cannot go through the elaborate investigations of the
 

merits of each of the above approaches and may more often than not pick
 

up any method available (depending on what the original investigator
 

said about his model, usually not what he did not say), without
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knowledge of the capabilities of the particular model in solving 
the
 

problems they may be faced with. Therefore, it is important to illus­

trate the potentialities and deficiences of each model presented.
 

The parameters contained in the first and the second order
 

a, which is
differential equations are generally different (except 


maintained common to both). Both equations were derived using similar
 

names for the parameters (a,,y,P) but with different meanings.
 

Prediction of Evapotranspiration and Optimal Parameters
 

The annual total evapotranspiration was calculated by using the
 

existing theory and by the developed models of the first and second
 

order nonlinear differential equation. The reason for using the
 

a check to the developed model which
existing theory is to serve as 


is also aimed at predicting evapotranspiration.
 

Models 1 and 2 are
Experiments were performed on five models. 


the four seasonal models of the first and second order nonlinear
 

Models 3 and 4 are two seasonal
differential equations respectively. 


models of the first and second order nonlinear differential equations
 

The fifth model considers the linear storage-discharge
respectively. 


relationship. All these series of experiments were performed in order
 

to find the best estimates of evapotranspiration, to serve as check
 

a better and more representative
on each other and to determine which is 


The final results are compared with
model for the physical system. 


those obtained from thoory and Ho, a town which lies just outside 
the
 

Ho is the area nearest to the basin, for which the
 case study area. 


One of the objectives of
investigator has evapotranspiration data. 


this study is to use whatever is available in a best possible way.
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This is definitely not a handicap, since this type of problem prevails
 

inmany developing nations.
 

The Concept of Change in Storage with Time and How It Affects
 

Predicted Evapotranspiration Values - Before presenting the results
 

obtained from the first and second order differential equation models
 

it is necessary at this point to perform some few experiments to
 

illustrate the importance of change in storage with time in the basin.
 

The essential points and assumptions in the two models will be pre­

sented first and then the results of the three experiments on change
 

in storage values (Table 6.4).
 

TABLE 6.4
 

10 YEAR AVERAGE OF CHANGE IN STORAGE DUE TO SHIFTING
 
STARTING AND ENDING POINTS OF THE DATA BY ONE (USING
 
4 SEASONAL MOLELS FOR ILLUSTRATION)
 

CHANGE IN
 
STORAGE
 

Nov. 1957 - Oct.1967 3.76"
 

Dec. 1957 - Nov. 1967 4.70"
 

Jan. 1958 - Dec. 1967 4.30"
 

It is always important to check how good or how effective is a
 

simulation or mathematical model. This could be done either by using
 

other data from another area or data from completely different loca­

tion; or where this may not be available a convincing method should be
 

derived. From experience, it is more difficult in most developing
 

nations to have relevant data from other countries (problem may be
 

economic, lack of interest in foreign data and even more important,
 

it may not fall within the priorities of the development programs).
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It is, 	therefore, important to develop another means for checking
 

One method is to use the mass balance equation
the model. 


AS
 
W- = 	P Q -E
 

where 	As = change in storage,
 

P = rainfall,
 

Q = runoff, and
 

E = evapotranspiration.
 

Over long periods AS/At = 0 , and therefore, E = P - Q. Further, if 

all rainfall values are summed for a period and subtracting from this 

the total runoff for the period, then the evapotranspiration total 

for the period can be obtained. If the monthly predicted values 

(from model) of evapotranspiration are good then when all the monthly
 

totals are summed up for any period, tne model evapotranspiration
 

should be the same or not much different from theory. Differences
 

in values between theory and model are due to: (1) errors associated
 

with theory (formula is only approximate), (2) errors in mathematical
 

model or data or both (these have been discussed in earlier chapters).
 

Specific sources of error are discussed later on in this chapter.
 

In order te interpret the results fully it is necessary to go
 

back to the assumptions made in the derivations of the theoretical and
 

model equations (using their simplest forms):
 

From theory:
 

dS

U. = 	P-E-Q 

or 

P Qq (-
UdStP p At 	 AtE =P 	 AS 
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Now is the storage at the end of the period.
S2 S1 is the storage
 

at the beginning of the period. Therefore, L-
AS 

is only zero when
 

S2 = S otherwise E from model may either be higher or !.ower than
 

the theoretical value.
 

From the first order differential equation:
 

dS
d' = aP - Q = -P E - Q 

or
 

- Q + A.-E=P-Q-


But K QY
 

.- E = P - Q + K1 QY 

This implies E has an extra term 
K1QY which will give a higher or
 

lower value of E 
than that from theory (Fig. 6.4a). The results
 

obtained show a bias for higher 
E from model. However, the close­

ness of the model and theoretical values are very significant. From
 

the second order differential equation:
 

dS
HT =P -E -Q 

AS
 
E =P -Q + At 

but
 

As = KlQ + K = KQ+ K+ 
A dt At
 

E -AQ . (Kl e + K A 
E=P '~1At
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Fig. 6.4a. 	First Order Nonlinear Differential Equation.
 
Annual Total Evapotransniration of Model and
 
Theory. Using 10 Annual Totals and the
 
4 Seasonal Model.
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This means E for this case is larger than that for theory if the term 

in brackets is positive or less if K 'Q is negative and larger in mag-
At 

nitude than KIQT . This latter case rarely exists and the results 

obtained confirm this (Fig. 6.5a). 

In summary, when dynamic effects are neglected as in the case of 

theory the calculated values of evapotranspiration will be smaller than 

the actual value. The developed models have predicted extremely good 

annual evapotranspiration values. Further, it is briefly illustrated 

(Table 6.4) the effect of neglecting dynamic effects of the system. 

Three experiments were performed using different starting points 

(of the data) and finding effects on AS/At. Three months, November, 

December, and January were chosen. Since antecedent moisture condi­

tions may exist before the chosen starting point, actually it was not 

necessary to perform the experiments on different seasons as starting 

points (though these might illustrate the points even more clearly). 

Results obtained on Table 6.4 clearly illustrate that change in 

soil moisture storage is not zero, though I..e approximation of 

AS/At + 0 serves as a good check. It is, therefore, important to 

point out that the value of AS/At for a given year depends on when 

the year is defined to begin. 

The four seasonal models - Most of this study is based on the 

four seasonal models. Other seasonal models, e.g., two seasonal, may
/ 

be investigated depending on the needs of the investigator. The four
 

seasonal models were grouped in sets of three months per season.
 

Season 1 (JP=l) was Dec., Jan., Feb.; JP=2 was the next three
 

months; JP=4 refers to Sept., Oct., Nov. season. These were chosen
 

by the author from the author's experience of the basin, but it is
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Fig. 6.Sa. 	Second Order Differential Equation. Annual
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necessary to stress that the models are flexible and general enough that
 

one can take any number of seasons (e.g., two seasons of 6 months each,
 

or 12 seasons of 12 months (monthly case)) irrespective of the starting
 

point. To serve as a check in this study, the annual evapotranspiration
 

estimates derived from the four seasonal model were compared to those
 

by the two seasonal model later on in this chapter.
 

Results of seasonal Model 1 - From Chapter IV (Eq. 4.32)
 

= PQ 2-y
 
dt a-O
 

where S = KQY . The symbols have been defined earlier. The foregoing
 

equations represent the first order nonlinear differential equation
 

model. This is also seasonal Model 1, which is a four seasonal model
 

as explained earlier in this chapter.
 

Table 6.5 gives the results of the optimal values of the parameters.
 

Seasonal average values determined from earlier experiments were used
 

for 8 and y in this experiment. Herein, a was a time dependent
 

parameter and the values given in Table 6.5 are the averages found for
 

each season in the current experiment. It is interesting to note the range
 

of values of a: 0.0078 to 0.0887, in this current experiment. The
 

evapotranspiration estimates for the seasons depended mainly on values
 

of a and the rainfall values and they were generally independent of
 

8 and y . The parameters 0 and y are not very sensitive to
 

changes in a . Figure 6.4 illustrates how closely related the model
 

and theory values are. All the points lie above the line (450 to the
 

axis) which rightly indicates the slightly higher estimates of annual
 

evapotranspiration as given by the model. The difference in magnitude,
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between each point and the nearest point from the line measured verti­

cally down, gives the annual magnitude of change in storage. The
 

theory values serve as good check on the computed evapotranspiration.
 

This experiment is initially done for the four seasonal model.
 

TABLE 6.5
 

AVERAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS
 
FIRST ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL
 

Average

Period/ 
 Evapotrans-

Season a
Seson_ _ * _ " _ * piration 

1 0.0078 8.4751 1.2771 7.39 

2 0.0360 8.3908 1.2781 19.36 

3 0.0344 8.3908 1.2781 12.34 

4 0.0887 7.9856 1.3064 8.39 

Rosults from Fig. 6.4a and especially Table 6.5 gives an
 

insight into which season has thu highest or lowest evapotranspiration
 

and also to answer the question whether more evapotranspiration occurs
 

in rainy seasons (because there is more water available) or in between
 

rainy seasons or even in the unlikely situation of a dry season? To
 

the best knowledge of the author this interesting question has never
 

really been answered, even such concepts as actual and potential evapo­

transpiration occur. At least it will be important to find out what
 

the model reveals.
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It is known that when more water is available, e.g., wet season
 

when 	the soil may be saturated, water is being evaporated at a potential
 

rate. Also when the season is generally dry the evapotranspiration
 

rate 	is generally less than the potential rate. However, if the topog­

raphy of the area is flat as in the case of the Todzie Basin; and there
 

are 	lagoons, also as in the case of the Todzie Basin, then water accumu­

lated from the wet season to the dry season could be lost to evapo­

transpiration at a rate which may be greater than that of the wet season.
 

The 	results from this model indicate total dry seasonal losses
 

(seasons 1 and 2) as higher than that for the wet season (seasons 3 and
 

4). 	 Of course, evapotranspiration itself depends on how intense, how
 

frequent and when these following factors occur. Some of the factors
 

are:
 

1. 	 Solar radiation.
 

2. 	Wind speeds and direction.
 

3. 	Amount of moisture--how wet the soil is and how efficient
 

is the transpiration processes of plants.
 

4. Cloud cover.
 

These factors should all be considered with the above investigations
 

before any solid conclusions can be drawn, even though certain trends
 

can be detected in this research.
 

Results from this model indicate that most of the factors
 

responsible for evapotranspiration losses may be more pronounced in
 

the dry season.
 

The confidence placed on the predicted evapotranspiration for the
 

seasonal model 1 is further confirmed by the seasonal average values
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of evapotranspiration obtained from Ho using Penman's method (Table 6.6).
 

The units are in inches. The total of averages for the first and second
 

six months are given. The averages from Ho were based on averages of
 

two stations and it must be pointed out that the average from the
 

period of record was from 1961-1962 to 1970-1971, whereas, that for
 

Todzie was based on data from 1958-1967. The two sets of values were
 

the only information available to the investigator, after more than
 

1 years frustrating search for pertinent data. In any case, it
 

is important to use whatever is available. However, the closeness of
 

the values is encouraging.
 

TABLE 6.6
 

COMPARISON OF AVERAGE TOTAL SEASONAL VALUES OF
 
EVAPOTRANSPIRATION BETWEEN MODEL 1 FOR TODZIE
 
BASIN AND ESTIMATES FROM HO AREA
 

Season Todzie 
 Ho Area
 

Dec.-May 26.75 27.24
 

June-Nov. 20.73 21.03
 

Results of seasonal Model 2 - Second order differential equation 

with nonlinear storage-discharge relation, from Chapter IV (Eq. 4.33) 

d2Q a K K 

dt2 
 1 1 1
 

where
 

S = K QY + Kd 
Q 1dt
 

This model is considered in order to find out whether this or the
 

first order differential equation model is superior. The initial
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consideration is on evapotranspiration estimates. Superiority of model
 

is determined on the following basis:
 

1. 	 How good the particular model predicts evapotranspiration
 

values.
 

2. 	 Whether it gives better estimates of runoff
 

(least squares error should be less) or simply whether
 

this model gives a better fit of computed runoff to
 

observed runoff.
 

3. 	 How fast is the computation time.
 

The 	seasonal variations of V*, y*, ** are apparent in this model
 

(Table 6.7), whereas in model 1 0* and y* assumed more or less a
 

stable form. However, a* in model 2 showed a somewhat stable value
 

whereas, a* in model 1 differed from season co season. It is, there­

fore, 	not surprising to note Model 2 gives different seasonal predicted
 

evapotranspiration. Compared to Model 1 (Table 6.4), Model 2 predicts
 

less 	evapotranspiration in the first two seasons and more in the next
 

two. However, the annual totals of evapotranspiration are closely
 

related. Comparison of results from Table 6.7 and that of Table 6.6
 

indicates that Model 1 gives a closer fit to Ho area estimates than
 

that 	by Model 2. This result will at this point indicate that Model 2
 

may estimate higher values of runoff in the first two seasons and less
 

for the next two. The reasoning is based on the continuity relationship
 

that should be satisfied by these models.
 

Figure 6.5a gives the plot of Model 2 using annual total evapo­

transpiration from theory and that predicted by Model 2, using 10
 

annual totals. Model 2 gave slightly higher estimates than Model 1.
 



TABLE 6.7 

AWRAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS SECOND 
ORDER NONLINEAR 

PERIOD/ 
SEASON 

1 0.0142 

2 0.0183 

3 0.0193 

4 0.0183 

DIFFERENTIAL EQUATION MODEL 

13* y 

6.0667 

5.2046 

5.5968 

5.5230 

0.7751 

0.6775 

0.7049 

0.6954 

1.0164 

0.9960 

1.0021 

0.9991 
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The next section compares the results from Models 1 and 2 giving
 

the computation times, one of the criteria for judging which is a
 

better model.
 

Comparison of results from seasonal Model 1 and Model 2 - It
 

should be clearly understood that the parameter which controls or pre­

dicts evapotranspiration is a; and evapotranspiration is directly
 

related to or directly proportional to a and rainfall:
 

Ei = (1 - ai)Pi
 

where P. = rainfall for a given time i,
1 

E. = evapotranspiration at time i, and
 

a. = time dependent a value for ith time.
 

Therefore, it is unlikely that there may be drastic changes in pre­

dicted evapotranspiration values using either model. The differences
 

are due to different estimates of a ,which are also due to the
 

indirect dependence of a with other parameters:
 

first order differential equation model: a = a(t,O,y,P,Q) 

second order differential equation model: a = a(t,8,y,4, P,Q). 

Basic differences in the two models will be found from predicted
 

or computed runoff; speed and accuracy with the computer.
 

Table 6.8 gives a comparison of 10 year means of the theoretical
 

and Models 1 and 2 estimates of evapotranspiration. The first
 

established differences of the two models lie in the seasonal predicted
 

evapotranspiration (Tables 6.6 and 6.7) and Model 1 proved a more favor­

able model based on available data from Ho. Ho is, of course, not in
 

Todzie Basin, but lies in a similar geographic and climatic area.
 

Model 1, again, took a shorter time for convergence even though the
 

time for convergence of Model 2 was close (Table 6.8).
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TABLE 6.8
 

COMPARISON OF 10 YEAR MEANS OF THEORETICAL, FIRST
 

AND SECOND ORDER DIFFERENTIAL EQUATION MODELS
 

(FOUR SEASONAL MODELS) 

First Order Second Order 

Theory Model Model 

Average
 
Evapotranspiration
 
er Year 44.32 in. 47.48 in. 49.05 in.
 

Computation Time 
for Convergence -- 21.488 sec 22.845 sec 

Two seasonal models - Fresh experiments were performed using two
 

This was done in order to find out
seasons of six months per season. 


how accurate or inaccurate the predicted evapotranspiration values
 

become, or whether there is no change in these predicted values. This
 

further illustrates the adaptability of the models developed for other
 

(or any season) that may seem important for the water resources
seasons 


planner.
 

It is also very important to find out what the behavior of the
 

Models 1 and 2 were
parameters are with respect to seasonal changes. 


Models 3
four seasonal models with three months forming one season. 


and 4 are the two seasonal models, where first season is from December
 

to May and the second season is June to November.
 

The discussion on Models 3 and 4 will be very brief since they
 

are introduced here in passing; and are mainly meant for comparison
 

with Models 1 and 2 with respect to evapotranspiration estimates.
 

Results of seasonal Model 3 - This model illustrates the seasonal
 

dependency of the model parameters and the choice of season determines
 

the possible values of the parameters (Table 6.9).
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Comparison of results given in Table 6.9 to those in Table 6.5
 

indicates that values of a from as small as 0.0006 to as large as
 

0.0887, whereas, as expected the parameters 0 , y vary very little.
 

The seasonal variations of means of 8 and y are again shown.
 

TABLE 6.9
 

AVERAGE SEASONAL OPTIMAL VALUES OF THE PARAMETERS
 
FIRST ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL,
 
MODEL 3 (TWO SEASONAL DEC-MAY, JUNE-NOV)
 

Period/
 
Season a* 0* Y*
 

1 0.0006 9.2121 1.1133
 

2 0.0842 8.7227 1.1426
 

These results again clearly indicate that the planner should be
 

careful as to which parameters are chosen, based on season and the
 

purpose for which they are to be applied. It must, again, be stressed
 

that a is distinctly a time dependent parameter and proportional to
 

the evapotranspiration. Figure 6.4b gives a plot of evapotranspiration.
 

The annual values obtained by Model 1 are not exactly the same as those
 

from Model 3. The slight differences in the annual estimates are most
 

likely due to errors in the model, especially in the predictor-corrector
 

scheme. From experience, it appears that the longer the number of
 

months in a season, the corresponding increase in errors. Errors due
 

to model and theory are discussed later on in this chapter.
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Fig. 6.4b. 	First Order Nonlinear Differential Equation.
 
Annual Total Evapotranspiration of Model and
 
Theory. Using 10 Annual Totals and the
 
2 Seasonal Model.
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Results of seasonal Model 4 - This is the second order nonlinear
 

differential equation applied to two seasons of six months per season.
 

The more sensitive parameters (Table 6.10) appear to be a and
 

*. Now that 0 has jumped from 1.0164, the highest from Table 6.7, to
 

2.5985 the higher on Table 6.10. However a decreased from 0.0142, the
 

lowest on Table 6.7 to 0.004 the lower value on Table 6.10. Note also,
 

0 varies slightly from the two tables and y varies very little.
 

The results of Model 4 confirms that from Model 3: The longer
 

the number of months forming a season, the more the errors introduced.
 

Figure 6.Sb gives the estimates of the evapotranspiration as given
 

by Model 4. These results compare very well to those on Fig. 6.5a, which
 

was also calculated using the second order nonlinear differential equation.
 

The slight differences in the estimates of evapotranspiration between
 

Models 2 and 4 are again due to errors mentioned with respect to
 

Models 1 and 3.
 

Results of linear models - For illustrative purposes a linear
 

storage-discharge relation was incorporated in the first and second
 

order differential equation models in order to predict evapotranspira­

tion and runoff.
 

In both cases the models under predicted evapotranspiration and
 

over predicted runoffs. Table 6.11 shows the best possible results
 

obtained for predicted evapotranspiration. This clearly illustrates
 

In both cases the models under predicted evapotranspiration and
 

over predicted runoff, based on the Ho data and observed runoff.
 

Table 6.11 shows the best possible results obtained for predicted
 

evapotranspiration. This clearly illustrates and confirms the test
 



TABLE 6.10 

AVERAGE 2 SEASONAL OPTIMAL VALUES OF THE PARAMETERS 
SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION MODEL 

PERIOD/ 
SEASON 

a* * y * 

1 0.0054 6.5481 0.7521 2.3134 

2 0.0040 6.3567 0.7190 2.5985 
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TABLE 6.11
 

LINEAR STORAGE - DISCHARGE RELATION IN THE FIRST
 
ORDER DIFFERENTIAL EQUATION MODEL USED FOR
 

PREDICTING EVAPOTRANSPIRATION
 

YEAR THEORY VALUE LINEAR MODEL
 

1 47.82 16.81
 

2 45.62 17.06
 

3 48.20 18.63
 

4 36.78 13.22
 

5 43.59 17.97
 

6 49.19 20.51
 

7 41.91 15.44
 

8 46.13 18.33
 

9 43.51 16.51
 

10 40.46 16.62
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that the hydrologic system model is not linear with respect to storage­

discharge relationship; and, therefore, linear models are not recommended
 

for such studies.
 

Comparison and comments of results from all the seasonal models -


The total annual averages of the evapotranspiration estimates given
 

by all the seasonal models (Models I to 4) are presented on Table 6.12.
 

These values were found using the first and the second order nonlinear
 

differential equations applied to different lengths of data per season.
 

The computation time on the computer is again important and are also
 

given.
 

The range of values of all the parameters are given. It should be
 

noted that the parameters are seasonally dependent, especially a.
 

The range of values of these parameters are given here to enable other
 

investigators or planners who may need the results of these studies,
 

to have some convenient starting values of these parameters;
 

or more important some working values of these parameters. It is
 

important not to use, e.g., a from Model 1 for Model 2, because even
 

though the same letters are used the parameters do have different
 

meanings (as pointed out earlier). This is because of the different
 

assumptions made in developing the first and the second order differen­

tial equation models. The first order differential equation has no 

value of * as indicated on Table 6.12. 

The importance of presenting the ranges of values of the parameters,
 

are to show that parameters are definitely not time invariant. They
 

may vary very little with time in which case average values for the
 

particular period may be used. The most important parameter of this
 

study is a , which is a time variant parameter that depends on the
 



AVERAGE VALUES OF 
EVAPOTRANSP IRATION 
PER YEAR USING 10 
YEARS DATA 
(IN INCHES)
 

a 


a 


-


COMPUTATION TIME 


(IN SECONDS)
 

TABLE 6.12
 

COMPARISON OF AVERAGE ANNUAL ESTIMATES OF EVAPO-

TRANSPIRATION FROM ALL THE SEASONAL MODELS
 

FIRST ORDER DIFFERENTIAL EQUATION SECOND ORDER DIFFERENTIAL EQUATION 

4 SEASONAL MODEL 2 SEASONAL MODEL 4 SEASONAL MODEL 2 SEASONAL MODEL 
MODEL 1 MODEL 3 MODEL 2 MODEL 4
 

47.48 47.19 49.05 49.72
 

0.0078-0.0887 0.0006-0.0842 0.0142-0.0193 0.0040-0.0054
 

7.9856-8.4751 8.7227-0.2121 5.2046-6.0667 
 6.3567-6.5481
 

1.2771-1.3064 1.1133-1.1426 0.6775-0.7751 0.7190-0.7521
 

0.9961-1.0164 
 2.3134-2.5985
 

21.488 18.71 22.845 19.914
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stochastic nature of rainfall, the state of the soil of the river basin
 

at the time of rainfall (whether dry, saturated or in between and their
 

time and space variabilities), the vegetational cover of the basin
 

(which changes with time and space) and the climatic elements that are
 

responsible for evapotranspiration (these also change with time and
 

space). Bearing these points firmly in mind, it is necessary for the
 

investigator or planner to have an idea as to the possible range of
 

values of these parameters, and not continue with the misconception
 

that each parameter has one fixed value which can be plugged into a
 

model for another region. To the best knowledge of this author, no
 

studies have presented convincing results leading to regionalization of
 

the parameters of a simulation model though some attempts and thoughts
 

have been given to the problem (Benson and Matalas, 1967; Matalas and
 

Gilroy, 1968; Prasad, 1967).
 

While discussing the results of possible range of values of the
 

parameters, it is important to consider transferability of results of
 

parameters, as discussed by Dawdy, et. al. 1972:
 

"For modeling results to be transferable, the parameters
 
derived from simultation studies at measured sites must be constant
 

or must possess invariant relations with physical variables which
 
can be measured in other basins. Time invariance is required, or
 
else any changes in time must be the result of measurable physical
 
changes within the basin."
 

COMPUTED AND OBSERVED RUNOFF
 

After comparing the results obtained for the parameters and
 

evapotranspiration using the first and second order nonlinear differen­

tial equations; and having shown that the first order differential
 

equation model (Model 1) is more representative of the physical
 

system than Model 2; it is now necessary to compare the computed
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',runoff using the two models with the actual measured data. Figure 6.6
 

gives a graph of the first order nonlinear differential equation
 

estimate of runoff (the calculated runoff) to the observed runoff. If
 

the first order model is perfect than all the points will lie on the
 

straight line making 450 angle to the axes. As it has been pointed
 

out no model is perfect and the differences that exist between the
 

observed and the computed runoff may be due to errors associated with
 

the conceptual model, the observed data, the mathematical model and the
 

solution technique used. However, the spread of points around and along
 

the line (Fig. 6.6 and Fig. 6.7) are good and give an indication of how
 

well the proposed models predict runoff. It is clear from Figs. 6.6
 

and 6.7 that model 1 gives a better fit to observed values than model 2.
 

Some few points which are repetitious are not indicated on the plot, 

even though they were closer to the 450 line than some of the others ­

this is done to preserve tidiness. Later, the given graphs will give 

plots of all the points. The points on Fig. 6.6 and Fig. 6.7 are
 

seasonal totals of runoff per year for the entire period of record.
 

The four seasonal models are used for illustrative purposes.
 

It is now important to present graphs showing the computed and
 

observed runoff forthe entire period. A necessary criteria for
 

judging the better model is to find out which of the two models give
 

a better fit to the observed data. Also, it is necessary to compare
 

the two models regarding how much total volume of water for the
 

entire period they were able to predict - this will be referred to
 

in the section on the verification of the models.
 

, Results of the first order differential equation model - Using
 

the four seasonal models and the first order differential equation,
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seasonal totals of calculated runoff were computed from Seasonal Model
 

1. Figure 6.8 gives a comparative plot of the total runoff per season
 

from observed data and that from the model. 
 Apparently, the Seasonal 

Model 1 tends to predict slightly higher values of runoff than given by 

the data for lower runoff values and almost the same or slightly lower
 

runoff during peak flows. The fit, however, is good.
 

Results of the second order differential equation model - Figure
 

6.9 gives the comparative plot of the total runoffs per season from­

observed data and that from the model. 
 The computed runoff came from
 

using the second order nonlinear differential equation model (Seasonal
 

Model 2).
 

The fit between observed and computed is adequate. However, a
 

complete picture as to whether this model fits the observed data more
 

than the previous model will be found on Fig. 6.10. It appear.s that
 

this model predicts higher tota runoff than the Seasonal Model 1.
 

Comparison and Comments of Results from the First and Second Order
 
Differential Equation Models
 

The computed values of runoff from the two seasonal models (Models
 

1 and 2) are plotted against the observed data with all the three graphs
 

on one figure (Fig. 6.10).
 

Verification of the Models
 

Several verification tests were performed on the models. 
The most
 

significant among these will be reported.
 

For exap.ple, the data were divided into two equal parts and optimal
 

parameters found for the first half of the data. 
These became the
 

initial starting point for the second half of the data and the process
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was repeated. The optimal values found for the second half of the data
 

were the same as the first. The result at the end indicated how
 

unnecessary this test was in the first place. Since the optimal para­

meters found for the entire period were not essentially different from
 

those found for the first half; and since at the end of the first half
 

the predictor scheme had already predicted the values of the starting
 

point of the second, it was inevitable to arrive at the same optimal
 

values at the end. This portion of the work was not reported since
 

it was just a repetition of results. It, however, confirms the capa­

bility of the model for predictive purposes. Penman's estimate (using
 

Ghana Meteorological services records for Ho) gave an average evapo­

transpiration from the two Pan Evaporation data (converted) as 48.27.
 

Ho (Fig. 1.1 and Fig. 6.1) has a meteorological station. Ho is one of
 

the few important meteorological stations nearest to Todzie Basin.
 

Values of evapotranspiration from Ho do not give the most accurate
 

estimate of evapotranspiration for Todzie, but serve as a good check on
 

the predicted evapotranspiration from the models; and they probably give
 

the best estimate, since Ho and Todzie are in similar geographical
 

(vegetation, relief, soil types) and climatic region.
 

Assuming the value of evapotranspiration from Ho to be the true
 

value of ET) then 48.27 (ET from Ho) - 44.32 (ET from theory) = 3.95
 

inches is a rough estimate of the annual average change in stoage of
 

the Todzie Basin. This further implies that the first order model gives
 

a closer estimate of the annual average change in storage in the Todzie
 

Basin (Table 6.13)
 

Another important result concerns the total of the average annual
 

sum of runoff and evapotranspiration. Since experience with the monthly
 



TABLE 6.13
 

SUMMARY OF RESULTS FOR THE FIRST AND SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION MODELS
 
(*Implies more acceptable model for the particular investigation)
 

Investigated Items for the Two Models 


1. 	Total runoff volume for entire 

period (in inches) 


2. 	Average monthly volume of run-

off for entire period 


3. 	Average evapotranspiration per 

year (in inches) 


4. 	Average annual change in storage 


5. 	Total of average annual runoff 

and evapotranspiration 


6. 	% Difference of 5 using theory 

values and Et from Ho and Todzie
 
runoff 


7. 	Total cumulative value of the 

objective function 


8. 	Average value of the objective
 
function per month 


9. 	Computation time for convergence
 
(seconds) 


First Order Model 


62.52* 


0.52* 


47.19* 


2.87* 


53.44* 


5.36% 


2.24% (less) 


3.62* 


0.030* 


18.718* 


Second Order Model 


68.17 


0.57 


49.72 


5.40 


56.54 


11.47 


3.42% (more) 


4.63 


0.039
 

19.914
 

Remarks on Results
 

Observed data from Todzie
 
56.34
 

Observed data 0.53
 
0.47
 

Theory value 44.32
 
Penman's estimate
 
for Ho 
 48.27
 

Theory 0.0
 
Ho 3.95
 
Theory 50.72
 
Et from Ho
 
and Todzie 54.67
 
runoff
 

Theory
 

Ho Et from Ho and Todzie 
runoff 

The objective function: 
120 2 

F = ((QOBS - QCALC) 
i=l 
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models indicates less fitting error in computing runoff, the monthly
 

models were modified to solve both the first and the second order non­

linear differential equations. The runoff results presented on row 1
 

of Table 6.13 are, therefore, from the monthly models. Again, the first
 

order model gives a closer estimate to the theory and to the estimates
 

for Ho (where evapotranspiration values from Ho in conjunction with
 

runoff from Todzie). There is, however, 5.36 percent (row 6 of Table
 

6.13) departure from that of the theory (estimates from Ho give an
 

exceptionally good fit). This difference is a natural result of errors
 

encountered in the experiments. Sources of errors have been treated in
 

earlier chapters and, therefore, the next section will be devoted only
 

to those aspects of the model and theory that may explain the 5.36 per­

cent discrepancy between them. It must be mentioned that the best
 

estimates of runoff were used for Table 6.13.
 

The objective function F gives the sum of the least squares
 

between the observed and calculated runoffs. The smaller the value
 

of F from a given model's estimates the better the model. Although
 

both models give very small values of P (with the average error per
 

month being between 0.03 and 0.039) the first order model clearly has
 

a smaller F for the entire record and therefore a smaller F per
 

month. The first order model is therefore more acceptable than the
 

second order model in this category. This conclusion could easily be
 

derived from the estimates of total runoff volume, average monthly runoff
 

volume and percentage departure (Table 6.13).
 

Sources of Error from Theory and Model
 

It has been mentioned in earlier chapters what the main sources
 

of error are that can cause, e.g., the computed runoff to not exactly
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coincide with the observed runoff. In this section, it is important to
 

stress those specific cases with respect to this study.
 

As already indicated in this chapter, there are errors introduced
 

in the theory when the change in storage with time is put to zero
 

This is a source of error which can influence the total
(AS/At = 0) .
 

average annual sum of runoff and evapotranspiration.
 

Another source of error is to be found in the modified Euler
 

predictor-corrector scheme. This is the error associated with tha value
 

of dQ/dt . It must be pointed out that the error associated with
 

dQ/dt is not due to the Euler method, rather it is due to the fact 

that dQ/dt is not a measured variable. Since dQ/dt has to be 

found by an approximate method - in this case by a finite difference 

scheme - it is subject to some error. Now dQ/dt = AQ/At = Qi+l-Qi /at , 

i = 1, 2, ... 120. This implies i = 119 gives Qi4 l as QI20 and 

= 

Qi as Q119 . At i = 120 Qi+l Q121 , but Q121 is undefined.
 

Therefore, (JQ/dt) 120 was put to the same value as (dQ/dt)119 '
 

Other approximating forms, e.g., representing (dQ/dt)120 as some
 

give
fraction of (dQ/dt)ll9 where the values of Q119 and Q120 


the value of the fraction may be used. From experience in this study,
 

the investigator put (dQ/dt)120 = (dQ/dt)119 because this may give
 

the least amount of error.
 

d2Q/dt2
 
Other errors are encountered if one has 

to deal with 


The second order nonlinear differential equations may probably be more
 

useful for time scales of less than a month. Prasad (1967) has used
 

hourly data and a second order nonlinear differential equation to
 

simulatf a hydrologic system model.
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The choice of the form of the objective function also introduces
 

120 
some error. If F = (QOBS - QCALC)2 , the value of F shows some 

1=1
 

120
 
bias towards the smaller values of runoff; whereas, if F =
 

i=l
 

(log QOBS - log QCALC)2 , the value of F will show some bias for
 

larger values of runoff. Both objective functions cannot be used
 

simultaneously since all the data should be subject to same type of
 

changes. The former type of objective function was used here since
 

there were fewer high values (though significant) in the data.
 

Lastly, the author wishes to stress, in passing, that when the
 

word error is used it represents the combined errors from data and
 

mathematical model formulation. It is difficult and almost impossible
 

to know exactly how much of the total error comes from data and how
 

much from the model.
 

The Gradient Technique as a Solution Tool
 

From the onset, the step size that the technique requires for its
 

optimization should be determined. A step size which worked for one
 

optimization process may not work for another. This is important since
 

use of the wrong step size results in abrupt divergence when this step
 

is taken in the gradient direction. Once the relevant step size is
 

determined, it can be used for any number of optimizations for that
 

particular optimization process. This research found step size multi­

plication factors of SS = 0.02 to 0.001, to be good, and were the
 

required ones for convergence. It is generally recommended that the
 

above range of step sizes be used for this technique (i.e., the sub­

routine SDOPTIM (Chapter 5)).
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In the initial investigations, larger step sizes (SS) may be used.
 

This can give some working values of the parameters. When the
 

F , the objective function,
technique starts giving improved values of 


then various experiments should be performed with different step sizes
 

(Tables 6.1 and 6.2) in order to find which SS value works best for the
 

As the minimum is approached the step sizes (SS)
particular problem. 


should be reduced.
 

It is important to let the physical reasoning be a guide always
 

in using this method. Note that a is a parametee which cannot be
 

If it is unity it means there is no evapotranspi­greater than unity. 


ration losses and all the rainfall transfers into runoff. This is
 

obviously not true. If is allowed to be negative it means the
a 


output is more than rainfall input into the system. This may be true
 

in certain rare situations of interbasin flows, etc.
 

The problem to be solved by this technique is better stated as
 

F (the least square error
minimization of the objective function 


between QCALC and QOBS) subject to the constraints imposed on the
 

possible range of values of the parameters. In short the gradient
 

technique, like all techniques, are tools, and the user should
 

consider the capabilities and shortcomings of the technique in using
 

or applying it to solve a particular problem.
 

The initial trials gave a possible range of values that one should
 

expect of the parameters. So that if divergence is encountered in any
 

iterative process, due to the gradient method taking a "sharp" step in
 

the "wrong" direction, one of two things can be done:
 



137
 

1. Discontinue that particular iteration, start with the original
 

initial guesses and begin the particular iterative process
 

again. This approach could be long and expensive computer­

wise (economic factors of the computations is a special
 

consideration in this research).
 

or
 

2. From physical reasoning and experience, one can restrict the
 

range of values of the parameters and place constraints on the
 

parameters. This approach also works well and is in fact
 

better in general than 1. Both approaches were used, both in
 

the same program.
 

In general the gradient technique may be said to be very reliable
 

and can at least give some working values of the parameters. Other
 

merits of the technique were mentioned earlier in this chapter and will
 

therefore not be repeated.
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Chapter*VII
 

SUMMARY-AND CONCLUSIONS
 

The objectives of this research specified in Chapter I have been
 

more than accomplished. From the results of the investigations,
 

analyses performed, and experiences developed, the following conclusions
 

are made:
 

1. 	The best possible use has been made of what is available.
 

Ten years of monthly rainfall and runoff data from a developing country
 

have been utilized. Unavailability of other data may be based on one
 

or more of the following:
 

a. 	Lack of funds or economic constraints.
 

b. 	Does not fall within the 'priority bracket' in the
 
national development plans.
 

c. 	Lack of manpower and expertise.
 

d. 	Political, social, institutional and legal constraints.
 

2. A time-variant nonlinear hydrologic system identification and
 

predictive simulation models have been developed based on some
 

important assumptions (Chapter III) concerning the dynamic and physical
 

aspects of the hydrologic system. A valid monthly model is presented
 

which will be of general applicability to planners of water resources
 

development, agriculturists, hydrologists and theoreticians.
 

3. Based on the same assumptions, two conceptual models were
 

developed. It was important to illustrate, especially for a developing
 

country, how the unknown parameters of one of the conceptual models
 

can be uniquely found. The more important point here was to base
 

unique determinations on conceptually realistic simplifications rather
 

than resorting to unnecessary mathematical simplifications and
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unrealistic assumptions (physically), in order to be able to use
 

existing mathematical tools. This approach and conclusion emphasizes
 

an important point: the inability of investigators to solve hydrologic
 

modeling problems is not only based on lack of inadequate pursuit of
 

conceptual ideas and formulation, but also, lack of understanding of
 

powerful mathematical tools that are available. This lacking requires
 

simplification of conceptual models in order for unknown conditions
 

and parameters to be determined. It is, of course, believed that
 

conceptual modeling and mathematical solution tools work hand in hand,
 

and at times a trade-off or compromise must be made between physical
 

realism and mathematical simplification. Whenever this is necessary,
 

however, more weight should be placed on the physical realism. Chapters
 

III and IV have illustrated these conclusions.
 

4. One of the major objectives of this study was in the
 

development of a mathematical model which is capable of effectively
 

utilizing only what is available (rainfall and runoff), and to give
 

some estimates of unavailable evapotranspiration data. The economic
 

importance of this objective for a developing country cannot be
 

overemphasized. Two mathematical model equations were developed for
 

this purpose utilizing first and second order nonlinear differential
 

equations. These two equations gave good estimates of evapotranspiration,
 

which were verified by comparing these estimates with theory and
 

Penman's estimate for a nearby station outside the case study area.
 

The first order nonlinear differential equation gave a better
 

estimate than the second order nonlinear differential equation.
 

5. Based on the above, the linear storage-discharge assumption
 

was incorporated in the mathematical models. The resulting first and
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second order linear differential equations gave very low estimates of
 

evapotranspiration and a poor fit of computed to observed runoff. This
 

confirms the concept of nonlinear hydrologic systems and that a linear
 

storage-discharge relation inadequately simulates the physical system.
 

6. A new and effective method of estimating evapotranspiration
 

has been developed. This is an important result of the study, not
 

only because knowledge of evapotranspiration iq important to planners,
 

engineers, water delivery projects, agriculturists, and hydrologists,
 

but also for economic reasons. It appears that large investments
 

in data gathering effort for estimates of evapotranspiration will not
 

be needed. Certain projects that may requira rapid estimates of
 

evapotranspiration when rainfall and runoff data are available can
 

find the technique handy, as well as in situations where an
 

investigator or planner may be faced with some of the constraints
 

listed in item 1 of the conclusions.
 

7. The river basin response characteristics are caused by
 

complex interactions of the physical, chemical, and biological
 

processes occurring in the basin. Some of the more important inter­

actions can be determined from the time and space behavior of the model
 

parameters describing these characteristics. A new concept: The
 

sensitivity factor of the river basin is developed. The sensitivity
 

parameter a , is responsible for transforming rainfall to runoff and
 

is found to be proportional to evapotranspiration. Optimally
 

determined values of a have given rise to calculated evapotranspira­

tion with a reasonably high degree of accuracy. The relationship
 

between a , the rainfall input P , and the evapotranspiration
 

output ET is given by:
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ETt) = (1 -a (t)) Pt) 

where a(t) is a time-dependent optimal value of the sensitivity
 

parameter, and
 

P(t), ET(t) are the rainfall and evapotranspiration at time t
 

8. In developing the conceptual and mathematical models, the
 

following considerations were important:
 

a. 	Efficiency.
 

b. 	Realistic assumptions based mostly on physical realism.
 

c. 	A model which is simple enough to comprehend conceptually
 

and mathematically.
 

d. 	A model which can be solved by existing mathematical tool
 

without resorting to unnecessary simplifications.
 

e. 	A model which is inexpensive based on computation time.
 

Thi. economic constraint is not only based on type of
 

model applied but also the type of solution technique used.
 

f. 	A model capable of computing better runoff, and predicting
 

evapotranspiration, when the only data available are
 

rainfall and runoff.
 

Of all the developed models, the first order nonlinear differential
 

equation simulated the physical system best and satisfied best the
 

above mentioned considerations or objectives. The proposed model is:
 

2Q-M
-M
 

dd-
t=KKM
 

This model can be used to forecast runoff when used in conjunction
 

with the gradient technique, a predictor-corrector method, and the
 

resulting optimally determined values of the parameters. This has
 

been verified in this study.
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9. Another significant result obtained in this study concerns
 

the change of storage with time: dS/dt . It has been found that
 

if ds is assumed to be zero for long periods of record, then the
 
dt
 

resulting evapotranspiration estimates serve as a good check on the
 

model values. These gave very close fits to each other. The dS/dt
 

value for any length of record has been found to be dependent on when
 

the beginning of the period of record is defined. Certainly for
 

monthly data these observations are important.
 

10. The various experiments were repeated several times (at
 

least 15 times) with different initial conditions and almost always
 

resulted in optimal solutions with the same values. The repetitive
 

nature of the values of the optimal parameters for all the numerous
 

experiments strongly indicate that global solutions have been
 

informally found. It has also been established that the parameters
 

8 , y , and 0 are relatively time variant.
 

11. It is extremely important to establish the seasonal 

(depending on how many months constitute the season) values of the 

parameters for planning purposes. These have been clearly illustrated 

as dependent on length of season (with respect to the number of months) 

and are assumed to be constant for each particular season. It is 

necessary to determine the time dependency aspects of the parameters 

and establish which are sensitive to time (e.g., the parameter a) , 

and which of the parameters may be considered as constant or 

approximately equal to their seasonal averages. 

12. The original computer program developed for this research
 

used the given initial conditions and optimized all the way through.
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A new approach has been further developed based on the above as a check
 

to the conventional approach in the optimization process of this nature.
 

This involved using the very first initial guess and optimizing for the
 

first point. The optimals obtained from the first data point become
 

starting values for the second data point and the process is repeated
 

for all the data points. This new procedure gave extremely good fits
 

of the parameter values to the first procedure; it gave a slightly
 

higher but acceptable error; and it was faster than the first procedure.
 

13. As pointed out in Conclusion 8e, the economic constraint was
 

not only based on the type of model used but also the type of solution
 

technique. The solution techniques used in this study were:
 

quasilinearization and a gradient techn'que. From the experiences in
 

this work, it was found that quasilinearization gave divergent results,
 

whereas, the gradient technique converged. It was established that
 

quasilinearization is an unreliable algorithm, whereas the gradient
 

technique will give at least something useful that the planner or
 

investigator can utilize. The gradient technique was faster and
 

simpler to understand than the quasilinearization algorithm. It was,
 

therefore, concluded from this study that the gradient technique is
 

a superior technique, being more reliable, more economical to use,
 

easier to understand and handle (comparatively), and therefore more
 

attractive for use in developing countries as well as in developed
 

countries.
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Chapter VIII
 

RECOMMENDATIONS
 

From the analyses performed, results obtained and the conclusions
 

drawn, the following recommendations are made:
 

1. A recommendation should be made which considers computer­

oriented models, developing countries, politics and economics. These
 

areas are indeed related as far as this study is concerned. It has
 

been stressed that this study considers an efficient and a realistic
 

model which is easy to understand and handle and fast on the computer
 

as basic to the study. The author poses a debatable question, which
 

he attempts to answer as well: In considering the economics in a
 

developing country does a proposed hydrologic model have to be com­

puter oriented?
 

It is true that developing countries may have to minimize costs even
 

more than many other countries. It is not true, however, that develop­

ing countries do not want to develop themselves. It is important to
 

stress that their development is taking place in the age of computers.
 

This factor cannot be overlooked for a faster development. It is true
 

certain investments may pay off inmonetary terms. Other investments
 

may be aimed at social well being. Whatever the investment, a very much 

needed capital may go into the project and therefore the safety of the 

project with respect to time is and should be of major concern. The 

type of project will demand the type of approach. 

Certain s imple project,; may probably need simple models, which 

may not be computer oriented. As projects become more complex and 

capital investments increase, more ,ncertainities are croated, tho 
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more ideas should be generated, the more the solution procedure may
 

become computer oriented (depending on the type of project, of course),
 

the more money that reeds to lie spent in determinining the success of the
 

project. Especially, if the cLuntry has to invest capital in a pro­

ject, which could affect the e,.onomy in the event of the failure of the
 

project due to iack of adequate simulation and correct solution proce­

thorough
dure--then the country may be well advised to go into a more 


The question therefore moves
investigation before investments are made. 


from the realm of engineering to economics and politics. At least, the
 

engineer or hydrologist should come up with reasonable alternatives for
 

At best the engineer, economist, politician and other
decision makers. 


disciplines related to the project should all constitute the decision
 

makers; or in countries where this is not acceptable then at least
 

the engineer should have his ideas expressed in the simplest language
 

so that the decision makers can fully understand what they are to decide on. 

Since, the stress here is on computer and modeling, it is
 

important for the engineer, the hydrologist, the economist, the
 

politician, and others to note that:
 

A solution technique, likewise a computer are tools, not the total 

answer. The investigator (engineer or hydrologist) is the tczhnician. 

Together a job could be performed. flow good a job depends on dedica­

tion, patience, experience, the right investigator, and right tool, 

and some ingenuity. The role of the investigator in decision 

making is to make sure other decision maker, understand what his tool 

can do and what they cannot do, and the uncertainties and risks involved
 

in using them,
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Of course, politics usually has the last word and whether the
 

investigator will be fully useful or not depends on how far he could
 

be allowed to participate in the decision making in those areas that
 

he and his tools are to be important.
 

2. Concentraticn in this study has been centered on developing
 

a simulation model for a river basin; and fitting computed to actual
 

runoff. The model can be extended to predict future runoff volumes.
 

This has been done informally in this study where half of the data
 

used in this work was used to predict the other half. 

3. The computer program for the calculations will be made very 

general with respect to notations, how the user can easily use it
 

without having to go through the full exercise of understanding all
 

that is going on and without having to write his own program. This 

phase will involve making the computer program very simple--aimed at
 

making it comprehensible to any user who may not possess enough 

expertise in computer programming. This will include many comment 

statements, and step sizes (ss) in the gradient technique will be
 

automized so that the user may not have to do any initial investiga­

tions with stcp sizes.
 

4. A new approach for investigating the water balance in a river 

basin using only rainfall and runofl" lara can be investigated. This 

will need other data for checking the products of the model. This 

study has, informally, given the estimate for change in storage in the
 

river basin with time. A mass balance can be found for each computa­

tional point. 

5. A comparative study could be made in applying the models and 

techniques to river basins in other developing nations. Procedures
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and recommendations for water resources planning and development will be
 

the end products.
 

6. It is highly recommended that research effort be directed to
 

find various ranges of values of a for different climatic and geo­

graphic regions. The importance of this study is to present a
 

generalized model for predicting evapotranspiration values based on
 

rainfall input alone, optimally determined a = a(t) and based on
 

geographic and climatic regions of the world.
 

7. The second order nonlinear differential equation model may
 

be applied to daily to find the suitability and applicability of the
 

model to time scales of less than a month. The equation is:
 

d2Q acP~ I__ K Yl dO
 

dt2 1 KI P
 

8. Together with recommendation 6, an attempt should be made
 

for the regionalization of the possible ranges of values of all the
 

parameters. This can be very useful to planners and investigators at
 

different parts of the world.
 

9. Knowing ET(t) - (1 - a(t)) P(t) which can be used in 

whatever way the planner or investigator sees fit, but more important,
 

it can be substituted in the proposed model equations to optimally
 

determine other parameters. In this case dQ/dt can be treated as an 

unknown variable which can be optimally determined. Using dQ/dt as
 

a parameter converts the first order differential equation into an
 

algebraic equation. The computed values of runoff from the algebraic
 

equation and that from the first order differential equation may be 

compared to observed runoff. This approach could serve as a check on
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global optimal values o1. the parameters from either equation; and further
 

determine which equation gives a better value 
of the objective function.
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APPENDIX A
 

GRADIENT VECTOR AND THE DIRECTION OF MAXIMUM DECREASE 
OR INCREASE OF A FUNCTION 

Let v F(X) = F(a, 0, y) 

Where a, 0, y are parameters to be identified in the optimization 

procedure 

X 
-

a 
0. 0 

Y 
0 

= the direction 

By definition the directional derivative (Apostol, 1957) of F(X) at 

X in the direction & is
-0 

F(X + AQ- F(X ) A.1) 
-- 0 o X 

D F(X) = lrn (A 

when the limit exists.
 

Furthermore, it is well known that the directional derivative,
 

i.e. the derivative of F(X) with respect to a direction & , can be
 

expressed in terms of ordinary partial derivatives (Apostol, 1957):
 

DF(X0) = VF(X)0_d CA.2) 

or 

n 3F(Xo). 
D F( 3x = I CA.3)
-i=l o-

Now the question is how do you determine the direction g such that the 

rate of change of V = F(sX at a point X0 is a maximum. Let us 

define our problem as 
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n F(X) 
Max 0. (A.4)i=l i
 

Subject to the constraint
 

n 
g(i) = . C _ 1 (A.5) 

i=1 1 

In order to solve this we shall form the Lagrangian in the form 

n aFCXJ n 2 

F A) = n DX 0 i + X( 1 - n & ) (A.6)ax. iil 

W1here A is the Lagrange multiplier.
 

Differentiating (A.6) and equating to zero for turning values
 

F = _ __. 2 4 i = 0 i = 1,2,.., .m . (A.7) 
xi 

and
 

Ei (A.8) 
=i=l1 

From (A.7)
 

i
= 
 aX. 1 = 1,2, ....n (A.9)
 
1 

Substituting (A.9) into (A.8) we get
 

1 2 ___ 0 (A.10) 
i=l 40A Xi 

Simplifying (A.10) we get
 

2 = 'I1F(L) 12 (A.11) 
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Where solving (A.11) yields two solutions:
 

- -±-I vce) (A.12) 

Since we are interested in substitute (A.12) into (A.9) 

.. £ -
± VF(X 

-
) CA. 13) 

Where
 

(A.14) 
-(X& ) 

gives the rate of maximum increase of V = F(s_ 

A 
- VF(X 

gives the rate of maximum decrease of V = F(X) 

Hence it is shown that (A.13) the gradient vector gives the direction 

= F(X) .of maximum increase/decrease of the function V 
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APPENDIX B
 

TAYLOR'S SERIES EXPANSION AND THE JACOBIAN MATRIX 

This appendix involves the process of converting nonlinear functions
 

or equations to approximate linear forms (so that they can easily be
 

solved) by using Taylor's series expansion and the iterative scheme.
 

A nonlinear function f(x) can be written in terms of a linear,
 

or rather quasilinearization (by virtue of the maximization operation)
 

equation, where the function is expanded around the initial approxima­

tions. This is, in essence, considering the first two terms of the
 

Taylor series.
 

f(x) f(u) + f'(u) (x-u) (B.1)
 

where f(x) is the scalar function, which is linearly expanded around
 

point u. 

f'(u) is the slope of f(x) at u.
 

y 
y= f W) 

y g(x,u) 

aI I
I I I' 
a u c b 
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f(x) can be expressed as a maximization
At x = u f(x) > g(x;u) and 

operation: 

f(x) =max g(x;u)] . 

The Newton-Raphson method utilizes equation B.1 in an iterative scheme
 

for finding the root of an algebraic equation. The steps followed are:
 

1. 	 The nonlinear function f(x) is set equal to zero and the 

approximation sign becomes an equal sign. 

x, 	which represents the
2. 	Resulting equation is solved for 


next approximation after tile initial estimate u.
 

This new value is then used to find a better approximation.
 

3. 	Process is repeated until convergence to the root is attained
 

Equation B.1 can be written as an inequality (this was first
 

shown by Bellman and Kalaba (1965): 

(B.2)
fix) 	, g(x;u) 


where g(x;u) = f(u) + f'(u)(x-u) 	 (B.3)
 

Equation 11.3 represents the equation of a line which is 

tangent to f(x) at x=u. 

Necessary conditions associated with equation B.2 are that f(x) 

of x(a < x < b) or thatis strictly convex within a particular range 


c or
f (x) > 0. From the diag ram maximation occurs when u = 


f(x) - max[g(x;u)] , where its general form is:
 

u)] 	 (B.4)f(x) 	u max[f(u) + J(x ­
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wlre x = x1, [ ') . 

U = U, [U 2 ) ... un]' and , 

J = mxm Jacobian matrix.
 

Equation B.4 can be solved for x -- call it x1. The functions f
 

can now be expanded around xl, and the process is continued and the
 

following recurrence/iterative relation is obtained:
 

f(x (n ))+= f(x (n)) + J(n) (x(n+l) _ x(n) (B.5)
 

where the superscript refers to iteration number, and u = x The 

process begins with an initial approximation x(o) at n = o. Once 

(n )
x has been given, equation B.5 becomes a set of linear equations
 
(n + l )
 in ters
of 


in terms of x ). Therefore, nonlinear problems can be replaced by
 

iterative operations of linear relations. The nonlinear function is
 

implied in the convergence of the iterative scheme.
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APPENDIX C
 

TIlE EULER'S ME'IlOD 

Euler's method belongs to the general class 
of numerical methods
 

which are utilized in solving differential 
equations where standard
 

methods like the trapezoid rule or Simpson's 
rule cannot be used for
 

or
 
This is usually so because the derivative 

dQ/dt

integration. 


(using the notation in this study) may 
be a function of the dependent
 

time t).
the independent variable (e.g.,

(e.g., runoff Q) as well as 


Suppose the differential equition is of 
the form:
 

(C.1)
L- = atpy Q . 

(C.2)
 
Then dQ = f(t,p,Q,ay,6,0) 

The general form of Euler's forward 
integration equation is
 

(C.3)
 
= Qt 1 + QAt + O[(At)2]ti+l 


ti+ 1
where Qti+l is runoff value at time 


Qt i is runoff value at time ti
 

is rate of chang? of runoff with time between 

and t. Q = f(tQ) 

ti+l 1 

At = ti+1 - ti 

higher order terms which are usually neglected,
O[(At)2] = 
Qto is usually the
 where it is assumed that 


that is known exactly
only value of Qti 


(assuming further that the initial condition
 

is free from error).
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Euler's method may therefore be written as:
 

Qti+l = Qti + cAt . (C.4) 

Equation C.4 has the form of Taylor's series expansion of Q about
 

ti, with the expansion truncated after the first two terms. Comparison
 

of the complete form of Taylor's series and equation C.4 indicates
 

terms containing (At) 2 and subsequent higher powers of (At). The
 

error introduced in equation C.4 due to the use of the truncated equa­

tion is known as the truncation error and may be expressed as:
 

E = c(At) 2 . (C.5) 

Equation C.5 implies that At O (or the step size becomes as small as
 

possible) E 40 (the error becomes negligible). This further implies
 

that as AttO every function can be represented by linear approxima­

tions to a greater degree of accuracy.
 

Euler's method is a "self-starting" method. It requires the value
 

of the dependent variable Q at only one point to start the procedure.
 

In many practical cases QCALC will have a positive value. In
 

order to reduce errors by merely guessing any starting value
 

of QCALC at the initial time t, QCALC may be assumed as being equal
 

to the observed runoff value or QOBS at tl, i.e., QCALC(t,)=OBS(tl).
 

Euler's method approximates the function Q(t), over the first­

step interval, by a straight line. An approximate value of the slope
 

of the curve at t = At1 may be found by substituting the calculated
 

value of Q or QCALC into the differential equation. The new calcu­

lated value of Q becomes the starting point for finding QCALC(t2);
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is similarly substituted into the differential equation.
and QCALC t) 


This process is repeated over the desired range of integration, so that
 

Q(t) or QOBS curve is approximated by a series of straight­the true 


QCALC
line segments. The differences or errors that exist between 


at each point may be due to some or usually all of the
and QOBS 


following factors:
 

(1) Inadequate mathematical representation (the differential
 

equations) of the physical system, i.e., the conceptual 
and
 

mathematical models.
 

(2) Errors encountered in collecting the observed data
 

(e.g., instrumentation, poor reading, etc.).
 

(3) Inaccuracies associated with the particular tool used
 

for the computations (e.g., Euler method).
 

The various forms of the Euler method may be summarized as:
 

(1) The Simple Euler Method:
 

api-M Q2-M (C.5)
 

OM OM
 

(C.6)
Qti+l = Qt. + Qi At 


(4ti+l + 4t.)
 

+ (C.7)
.Qt+ 1 = Qi + t 2 2- At 

(2) Modified Euler Predictor-Corrector Method
 

S l ' 1c I(C.8)

OY OY
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Predicted 

(- ti+1 Qt. Q+i(At) (C.9) 

Corrected 

(Qc1 = 
(Qi+l 0 Q 

. [.+ 
2 

(C.lO) 
(.0 




