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INTRODUCTION

practical methods have boon devel dped for obtaining the
backwater that may be expecteg due to placing a bridge across
a stream for a given design flood. The most commonly used
method is that outlined in the Bureau of Public Roads (BPR)
bulletin, "Hydraulics of Bridge Waterways" (2,3). This bul-
letin was compiled from research efforts by Liu, Bradley and
Plafe (6) at Colorado State University (CSU}.

A practical method for computing peak discharge throudgh
a contraction, where the maximum backwater can be measured,
is embodied in the U.S. Geological Survey (UJSGS) Circular 284
(5), "Computation of Peak Discharge at Contractions," based on
the research work of Kindsvater, Carter and Tracy at the Georgia
Institute of Technology. Similar technigues have been more
recently reported by Matthai (7), "Measurement oOf Peak Dis~-
charge at Width Contractions by indirvect Mcthods.”

Both these methods were based on model studies and
have often shown large errors in application to prototype
structures. Also, detailed investigation has not been

undertaken to arrive at a satisfactory solution to the

lagssoc Prof, Dept Agr Engrg, College of Engineering,
colorado State University, Fort Collins, Colorado.

2Grad Ros Assist, Dept Agr Engrg. College of Lngineering,
Colorado State University, Vort Coilinzs, Coloiado.

3pes Aszoc, Dept Agr Engrg, College of Engineering,
Coloradn State University, Tort Collins, Colorado.

“ne2s Engr, Dept Agr and Irrig Engrg, College of vnginecering,

Utah State University. Lo jany T h.



problemr whera abnovmal stnoe-discharue conditions exist.
In fact, Dradley (2) went so far as to say, "This is &
case where it is more important to understand the problem
than to attempt precise computations.”

A different anoproach to analyzing the hydraulics of
flov chrough bridge constriction was undertaken by Skogerboe,
Austin ond Chang (8) by applying their previoﬁsly developed
method of submerged (subcritical) flow analysis. Their
study was primarily concerned with the abnormal stage-dis-
charge condition.

A nead therefore exists to compare the aforementioned
methods of analysis and to determine the inter-relation-
ships among the various methods, thereby disclosing any
advantages or disadvantages of one technique in comparison
with the other technigues. The purpose of this paper is
to evaluate these currently existing methods of predicting
the effects of a bridge constriction on strecam flow, as

compared to the method of subcritical flow analysis.
FLOW CONDITIONS

An open channel will flow at normal depth if the
discharge is constant, and the channel, within a suffi-
ciently long reach, has a uniform cross section, a
uniform surface roughness, and a uniform grade. If a
constriction is installed in such a channel, the flow

pattern will become that as shown in Fig. 1.
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These stringent conditions would tend te suggest that
uniform flow at a bridyge sitc may be the excaption rather
than the rule. UNon-uniform flow at a hridge site is due
to downstream control, cxamples of which might include
flood conditions at the con:lucnce of two streawms. down-
stream reservoilr or :0illwas regulation, influcence of
tides, or changes in vegetative or moss conditions in
flat gradient channels. A unique stage-discharge condition
may no longer exist as it does feor uniform flow. A defin-
ition sketch of this abnormal stage-discharge condition
is shown in Fig. 2.

Regardless of the original flow condition, the flow
through a constriction such as & highway bridge crossing
is usually of subcritical regime, producing gradually
varied channel flow far upstream and downstream, with
rapidly varying flow occurring at the constriction. The
effect of the constriction on the water surface profile,
both upstream and downstream, is conveniently measured
with respect to the normal water surface profile, which
is the water surface in the absence of the constriction
under the original flow conditions. Upstream from the
constriction, an M1 backwater profile occurs, where the
velocities, and consequently the rate of loss of flow
energy, are less than for normal flow conditions. The
backwater may extend for a considerable distance upstrean,
to a point where the conrtricted and the normal surface
profiles practically coincuide as shown at Section O in

Fig. 1.



Near the constriction, the central body of water begins
to be accelerated at Section I, while deceleration occurs
along the outecr boundaries. A separation zone (zone Ia)

ormed in the corners upstream from fthe constriction.

'_l.
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As *the flcw is accelevated at the constriction, the water
surface profiles drop rapidly between sections II and I1I1,
with the jet stream contracting to a width somewhat less
than the width of the opening. The spaces between the jet
and the constriction boundaries (zone IIIa) are occupied

by eddying water. Immediately downstream from the constric-
tion, the jet stream begins to expand until the original
flow condition has been reestablished across the entire
channel width at section IV, where the normal and con-
stricted water surface profiles again coincide. Shear

along the separation boundary in the reach between sections
IIT and IV results indeceleration of the live stream, with
average velocities and energy losses greater than for the
original flow condition due to the additional turbulent
mixing resulting from the expansion process. Between
sections 0 and IV, the total energy loss is the same ¢3

that for the unconstricted flnw.



GENERAL SUBCRITICAL FLOW BEQUATION

A theoretical subcritical flow discharge equation
nay be developed for the vertical board constriction
shown in Fig. 1. The momentum equation may be writsan
between sections 1 and 2 for th.r control volume in
Fig. 3 to arrive at a general submerged flow equation
for an open channel constfiction. In the direction of

flow, the momentum equation may be written as
- - I - = 0 -
Fl F2 Ic Ff Qp(pZV2 BlVl) e i (1)

in which Fy and F, are the resultant forces due to the
pressure distribution on the cross-section of flow at
sections 1 and 2; FC is the component of force in the
direction of flow acting on the control volume of fluid
due to the constriction; Fe is the friction or drag force
acting on the surface of the control volume; Q is the
theoretical discharge; p is the density cf the fluid;

Bl and 82 are momentum coefficients for the two flow
seétions; and Vl and V2 arc the average velocitics at

sections 1 and 2. Assuming uniform velocity distribu-

tion and neglecting the friction force

Fl - F2 - Fc = Qp(V2—Vl) s ev e (2)

(8]



(In prototype application, the assumption of uniform veloc-
ity distribution will not necessarily hold true. Also, in
many cases, th2 friction force may not he neglected. How-
ever, a technique for incorporating these factors in the
analysis will subsequently be shown in a later paper.)

ssuming hydrostatic pressure distribution

Fi = YBY:/2 .vve. (3)

B!
i

p Yby§/2 ceens (4)

in which y is the specific weight of the fluid; B is the
width of the open channel; b is the width of the constric-
tion; and Yq and y, are the depthe of flow at the two
sections. The force acting on the control volume due to
the constriction occurs at the upstream face of the con-
striction. Assuming the average depth of flow at the

upstream face of the constriction is Yor

F_ = Y(B=b)yo/2 .uen (5)

The momentum equation in the direction of flow can now be

written as

2 2 2
YBY] Yby’, Y(B~b)y2 QY(VZ—Vl)

2 2 2 = g oo 0 00 (6)

where ¢g is the acceleration due to gravity.



Assuming steady flow, the continuity equation can

now be empioyed,.
Q = By,V; = by,V, ..... (7)

Substituting the continuity eqguation into Eg. 6 and solving

for the discharge
2
Jg/2 B(yl~y2)l/

Q: ) (8)
(1-by,/By,)B '

by, (y+v,)

The opening ratio, b/B, may be represented by M and the
submergence, y2/yl, by S. The denominator of the discharge
equatiéﬂ can be made dimensionless by multiplying the

numerator and denominator by Y"Yoe
Ja/2 _ 3/2
_ 9/2 B(y,-y,)

Q= _________— _“ ... (9)
, (1~Ms)(yl-y2)2B

by, (Y,7¥5)

Therefore

Ja/2 b(yl-y2>3/2
Q = e (10)
/ M(1-MS) (1-5) 2
\ S(1+5)




For any particular channel corstriction, b and M become

3/2

constants and the discharge is a function of (yl—yz) and

S. If the submergence is held constant, the discharge
becomes a function of (yl—y2)3/2, alone. This suggests that
a logarithmic plot of Q against Y1~Yo would yield a family
of straight linss with each line represernting a ¢ohstant

value of subnergence. The lines of constant submergence
0

would each have a slope of 3/2.

OTHER WIDTH CONSTRICTION EQUATIONS

The most significant and recent work resulting in
equations describing flow through constrictions in open
channels has been embodied in the publications by Kinds-
vater, Carter, and Tracy (5) in 1953; Liu, Bradley, and
Plate (6) in 1957; Bradley (2,3) in 1960 and 1970; and Biery and
Delleur (1) in 1962. The discharge equations presented in
each of these publications can be exbressed in the form of
a submerged (suopcritical) flow equation. The development of
such equations will be demonstrated for three of the pub-
lications (5,6,2).

Kindsvater, Carter and Tracy. By combinihg an energy

equation and the continuity equation, Kindsvater and Carter

(4) obtained the discharge formula

2
Q = Cyby, J@g{(yl—yz) - Ep + alVl/2g} ceeee (11)



in which Q is the discharge in cis; CY is Kindsvater's dis-
N

charge coefficient; Yq is the flow depth at seztion I; Y,

is the flow depth at section II; V., is the average velocity

1
at saction I; E¢ is the energy loss in feet due to fricticn
between sections I and II; and
z( v2) :
[0 = __g———' " e e e (12)
1 2
Qvy )

is a coefficient applied to the velocity head at section I
to account for nonuniform velocity distribution, where q is

the discharge in a subsection, and v is the average velocity

in tnat subsection. By substituting Vl = By and solving
. 1
for O,
Cyby /291 (y,=y,) = Eg}
Q= X2 L2 £ o, (13)
2 2.2
/1 - a,Cy M°S
where M = b/B and S = y2/yl.
Assuming oy = 1.0 and Ep = 0.0,
Cv2g byz(yl-yz)l/2
Q: a e s 00 (14)

_ A2 2.2
J l CK D’I D
By multiplying both numerator and denominator by Y,-Ys and

dividing both by y,,

ey 29 by ~y.) /2
0 = K 172 e (15)

2
\j//(l_cKMS)(1+CKMS)(Y1‘Y2)
‘ 2

Yy
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Therefore,

V2
o = Cx/29 blyp = ¥y) e (16)

[ - CLHS) (L = 5)<

J 52/(1+CFMS)

which is of similar form to Eg. 10, thereby indicating that
for a given constriction geometry where b and M are constant,

3/2 alone for a

the discharge becomes a function of-(yl - y2)
given value of submergence.

By substituting values of Yy at fixed values of submer-
gence (thereby fixing y2), values of discharge have been
generated from Eg. 1l using typical values of CK and oy and
a range of bed slopes. These values have been plotted on
logarithmic paper in Fig. 4 with discharge as the ordinate
and ¥y T~ Y, as the abscissa. As indicated by Eg. 16, -values
for a constant submergence describe a straight line on a
logarithmic plot having a slope of 3/2. The corresponding
submergence distribution is shown on Fig. 5, enabling the
submerged flow equation to be obtained graphically.

The discharge equation may be obtained in terms of
energies by substituting energy minus velocity head for

flow depth and solving for discahrge.

c.J2g by, (E, - E_,,1/2
0= —X 2 1 ' 2) e (17)

V1 o+ ci(mzsz - 1)

in which E; and E, are the specific energies at sections I

and II, respectively. To eliminate the depth te.., or to

-
solve in terms of (El - E2)3/“ is exceedingly difficult. As



this would tend to suggest, the data generated from Eq. 11,
when plotted on logarithmic scales with discharge versus
El - EZ’

of subwergence.

vields a series of curved lines, one for each value
-~

Liu, Bradley, and Plate. From a plot of actual data

for a vertical board model, together with dimensional
analysis of the backwater phenomena, Liu, Bradley, and

Plate (6) developed the empirical backwater equation

v :
(-l-> = 4.48 FZ[-——]—'—--Z—(Z.5—M) F1 oo, (18)
y n 2 3

n M
in which Yn is the normal flow depth for the unconstricted
flow; and F is the Froude number of the normal flow depth.
By substituting

Q
F_ = cerees ‘ (19)

Byn mﬂ

and solving for Q, an equation for discharge may be

obtained

yl - yn

Q: Bfg- e e l ? LR Y (20)
4.48 5 - £ (2.5 - M)
M ‘

Although the dencominator is dimensionless, this equation
is rather dissimilar to Eg. 10. Illowever, for the same

data, Izzard (4) suggested the equation

F 2

Yy _n :
= =1+ 0.45\ N (21)
yn



Substituting for F and solving for Q, a discharge equation

is obtained

Q = 1.49\6’byn(yl—yn)l/2 cee e (22)

This may be alternatively expressed as

3/2
1,495\ (y;-7,)"

Q0 = 175 = 1 cesee (23)

which has a numerator of similar form to Eg. 10 and a dimen-
sionless denominator. By substituting energy minus velocity
head for flow depth in Egq. 22, the discharge equation can

be described in terms of energies, although the term Yy
persists.

1/2
1.49\/g by (E,-E_) :
Q= n_ 1 n (24)

Vi-1.1112 (1-5%)

in which E. is the specific energy at normal depth. Again,
to obtain a concise expression for discharge purely in terms
of energies, or in terms of (El—En)3/2, is exceedingly diffi-
cult, )

By solving Eq. 20 for given values of S and Yy data
has been generated and ploited according to the submerged
flow analysis as shown in Figs. 6 and 8. However, despite
the inability to express discharge in terms of (El—En)3/2,
the data plots perfectly, whether generated in terms of

depths or energies with the following results:
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] a7
1.55(y, - ¥ )J/2 1.59(E, - E )J/2
1 n 1 n 25
For M = 1.245, Q = = ... (25)
' -logS -logE,
3.7(y, =y )3/2 3.8(B, - E )3/2 :
1 n 1 n 5
For M = 0.497, Q = = ... (26)
-logS —logER
5/ .
7.4(y; - yn)j/ 7.4(8 - En)3(2
- - vee (27)
For M = 0.733, Q = = (
-logS —logER

in which ER is the ratio En/El' The value of the submergence
exponent, n,, was found to be 1.0 for both depths and energies,
as shown in Figs. 7 and 9.

Bureau of Public Roads. Working in conjunction with

Colorado State University, the Bureau of Public Roads
derived the expression for backwater

2 2 2 2
. \" A A \Y
*
v = k' 82 +al[(_n_%)-(_n£) ] 2 (28)

2g A4 Al g

where yI is the backwater, yl'— Y, K* is the total backwater
coefficient; An2 is the cross-sectional flow area in the con-
striction at normal stage; Al is the area of flow including
backwataer at section I; A4 is the area of flow at section IV
at which normal water surface is reestablished; and Vn2 =
Q/Anz' This ~xpression is embodied in the manual by Bradley
(2,3). Uniform flow is again assumed before placement of the
constriction. Substituting yI =Yy, " Y, and expressing vel-
ocities in terms of discharges (continutiy equation) for a

rectangular channel, Eg. 28 may be solved for discharge:
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1/2
2 by lv,o— o
Ve Prn iy jn) oo {29)
R SC N 3
1
This may also be expressed as
, _ 3/2
V2g blyy - vp) ceee. (30D

0 = — _
J 1-s B alz-i“(l-sz)]
.

Again, the denominavor is dimensionless.

The appropriate values of K* were selected from the curves
given in the BPR design manual (2,3), and Eg. 30 solved for
given values of S and Y The difference between the two
editions of the BPR design manual is the curves relating K*
and M. The results are plot*ed on Fig. 10, which was used in -
conjunction with Fig., 11 to obtzin the submerged flow equation.
The two sets of curves in Figs. 10 and 1l represent two
different values of K*. The values of energy for each flow
depth were also obtainad, for one of the values of K*, which
allowed Eq. 30 to be plotted in terms of energies as shown in
Fig. 12. The energy ratio distribution is plotted on Fig. 13.

An cxpression for discharge in terms of energies may be

obtained from Eq. 28 if energy minus velocity head is substi-

tuted for the backwater depth.

, = \1/2
0 = 29 by, (B - E) ceee. (3D)
»/K* + MZ(OL - 1) (1-82)

1
Again, a solution purely in terms of en2rgies has not been

achieved.


http:plot4.ed
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lecognizing from LEg. 12 that a, = 1 for a rectangular

1

laboratory flume, the discharge equetion bhecomes

a2
o0 = V2yby (L, - BT (32)

S

llence, it may be scen that for a ygiven constriction gcometry

located in a rectangular flume, using a constant value of

Y that a plot of Q against El

will yield a striaght line, with the slope being 0.5. This

- E on logarithmic paper

has been demonstrated in Fig. 12 where data was generated

frem Ea. 28 modified to the form of Eg. 29. Hence, by

plotting Qp - 1 against Y, (Fig. 14), the value of the coeffi-
L -
cient /Z% b was confirmed, s¢ that DEq. 32 may be exprcssed
K
in the form
' * . 1/2
Q = Clyn(El Ln) ...... (33)
in which
. :
c, =/%Fb ... (34)
X
CONCLUSIONS

Flow conditions at a proposed bridge site on an open
channcl may be either uniform of non-uniform, depending on
channcl conditions. The effect of the constriction on the
water surface profile, both uvstrecam and downstream, is

convenicntly measured with respect to the normal water
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surface profile, which is the wahexr surface in the abseace
of the constriction under the original flow conditions.
Irrespective of the oricinal flow conditions existing at
ing a combination of the momentum

the bridge site, by u

8]

~

and continuity equations a gencral submerged flow equation
may be obtaincd for the open channel constriction..

The equation used by Kindsvater, Carter and Tracy (5)
was derived for non-uniform flow from a combination of an
energy equation and the continuity equation. However, by
making twc simplifying assumptions and manipulating the
romaining variables, this equation may be expressed in
the form of a submerged flow equation.

Liu, Bradley, and Plate (6) used empiricism and dimen-
sional analysis to obtain a backwater equation for the case
where uniform flow exists in the channel prior to placement
of a constriction. The simplified equation suggested by
Izzard for the same data may be readily manipulated into
the form of a submerged flow equation.

The Burecau of Public Roads (2,3) obtained a backwater
equation for the case of uniform flow in the unconstricted
channel by considering eneryies at the section of maximum
backwater and the section where uniform flow is reestab-
lished downstream of the constriction. Again, this expres-
sion may be expressced as a subnerged flow equation.

In all of the above cases, the original =2quations
presented may be plotted on the coordinates used for sub-

merged flow analysis, with hcad loss as the abscissa, dis-
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discharye as the ordinate, and a series of parallel straight
lines of slope 3/2 representin: the diffecent values of
submergence.

The analytical cipressions embodied in the current
methods of m»asuring peak discharge through, or backwater
due to, a bridge constriction mav therefore be reduced to
the form of a submmerged flow eguation, As these expressions
were obtained for a particular flow condition (uniform or
non-uniform), each represents only a particular case of

the backwater phenomena. All could be encompassed by the

more general submerged flow equation.
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ALPENDT II - HOTATION

following symbhols are used in this paper:

]

arca of flow including ht:olwater at section I

arca of flow below normal vater surface at section II;

arca of flow at section IV at which normal water
surface 1s reestablishol?; .

width of channel;
width of constriction;

submerged flow discharge coefficient;

Kindsvater's discharge coefficient;

specific energy at section I after bridge placed;
specific encrqgy at section TI;

energy loss due to friction between sections I and II;

Y ~F P o) - .
energy loss Lu Ed, El B or El ElA'

specific energy at normal depth;
ratio of Ed/Bu, En/El’ or ElA/El;

resultant force due to pressure distribution on the
cross-section of flow at scction 1;

resultant force due to pressure distribution on the
cross—-section of flow at section 2;

component of force in the direction of flow acting
on the control volums of fluid due to the constriction;

friction or drag force acting on the surface of the
control volume;

Froude number at normal depth, V/(gyn)l/z;

Acceleration due to gravity (32.2 ft/secz);



head loss, Yy"Ygq?
total bacimwater coefficient;

bridga opening ratio, b/B;

exponent in numerator of submerged flow equation;

submer-once exnonent in the denominator of the sub-
mergad flow equation;

discharge;

value of Q where EL=1 and ER=l;

value of Q where HL=l and S=1;

. uni: discharg= in a chasnel subsection;

20

submergence, ratio of downstream flow depth to upstream

flow depth;

average velocity at section I;
average velocity at section II;

average velocity in constriction for flow at normal
depth, Q/Anzi

velocity in a channel subsection;

flow depth at section I;
flow depth at section II;

flow depth at section III;

total backwater or rise above normal depth at section

normal flow depth;

kinetic energy correction factor which corrects for
nonuniformity of velocity distribution at section I;



"

momentum cocefficient at section I;
momantum cocfilcient at section II;
speciiic weight of the fluid; and

density of the fluid

21
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FIG. 3. - CONTROL VOLUME FOR A CONSTRICTION IN A RECTANGULAR
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FIG. 4. - SUBMERGED FLOW (DEPTH) ANALYSIS OF EQUATION OF
o KINDSYATEDR, CARTER AND TRACY
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FIG. 5. - SUBMERGENCE DISTRIBUTION FOR EQUATION OF XINDSVATER,
CARTER AND TRACY
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FIG. 6. - SULMERGED FLOYW (DIPTH) ANALYSIS OF EQUATION OF LIU,

ERADLEY ARND PLATE
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YEIG!: 7. - SUBMERGENCE DISTRIBUTION FOR EQUATION OF LIU,
' BRADLEY AND PLATE
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FIG. 8. - SURIERGED FLOW (EIZIRGY)
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FIG, 9. - ENERGY RATIO DISTRIBUTION FOR EQUATTON OF LIU,
BRADLEY AND PLATE
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FIG. 10. - SUBMERGLHNCE FLOW (DEDPTH) ANALYSIS OF EQUATION
OF BUREAU OF PUBLIC ROADS
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FIG. 11. - SUBMERGENCE DISTRIBUTION FOR EQUATION OF
BUREAU OF PUBLIC ROADS



Q, cfs

47

Equation
Q C|(E|"En)

n
(-1log ER)2 |
or Q- Cn*yn( EI—EH)_H—

3.
2

M o Ny o
0.245 147 1.06 4.4
0.497 3.0 .12 ith.2
0.723 3.8 .27 230
02 S — ! L 1 ! ] 11
0.1 1.0
EL= El— En , feet

FIG. 12. - SUBRMERGED FLOW (LNE

BUREAU OF

NERCY) ANALYSIS OF EQUATION OF

PUBLIC ROADS



100
- \\
i FIZ —‘—\—\-L
: \
.
— :
-
ul
@]
10 X
L o
4 | ! L ! | LIS S O
0.02 0.1

—tlog Eg

FIG. 13.- ENERGY RATIO DISTRIBUTION FOR EQUATION OF BUREAU
OF PULLIC ROADS
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