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INTRODUCTION
 

for obtaining the
Practical methods have b.>n cdevel )ped 

backwater that may be expected due to placing 
a bridge across
 

The most commonly used
 a stream for a given design flood. 


(BPR)

method is that outlined in the Bureau of Public Roads 


This bul­
bulletin, "Hydraulics of Bridge Waterways" 

(2,3). 


letin was compiled from research efforts by 
Liu, Bradley and
 

(6) at Colorado State University (CSUI).
Plate 


method for (YomI.utirg peak d ischarge through
A practical 

can be measured,
 
a contraction, where the maximum backwater 


is embodied in the U.S. Geological Survey 
(USGS) Circular 284
 

"Computation of Peak Discharge at Contractions," 
based on
 

(5), 


the research work of Kindsvater, Carter and 
Tracy at the Georgia
 

Institute of Technology. Similar techniques have been more 

recently reported by Matthai (7), "Measurement of Peak Dis­

charge at Width Contractions by id3ircct Methoh;.. 

Both these methods were based on model studies 
and
 

have often shown large errors in application 
to prototype
 

Also, detailed investigation has not been
 structures. 


undertaken to arrive at a satisfactory 
solution to the
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probl ... .. ab or. 2t,. -disc~iarce exist.conditions 

In fact, Drad1 el (2) weiiL so far as to say, "This is a 

case ,ihere it is more important to understand the problem 

than to attempt prcci.se computations." 

analyzing the hydraulics of
 A different a-proach to 


flowl :hrough bridge constriction was undertaken by Skogerboe, 

(8) by applying their previously developed
Austin and Chang 


Their
 
method of submerged (subcritical) flow analysis. 


abnormal stage-dis­study was primarily concerned with the 


charge condition.
 

A need therefore exists to compare the aforementioned
 

methods of analysis and to determine the inter-relation­

ships among the various methods, thereby disclosing 
any
 

technique in comparison
advantages or disadvantagas of one 


with the other techniques. The purpose of this paper is
 

to evaluate these currently existing methods 
of predicting
 

as
 
the effects of a bridge constriction on stream 

flow, 

compared to the method of subcritical flow analysis. 

FLOW CONDITIONS 

An open channel will flow at normal depth if the
 

discharge is constant, and the channel, within 
a suffi­

section, a
ciently long reach, has a uniform cross 


uniform surface roughness, and a uniform grade. If a
 

constriction is installed in such a channel, the flow
 

shown in Fig. 1.
pattern will become that as 


http:prcci.se
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These stringent conditions would tend tc, suggest that 

uniform flow at a bridgje site amuybe the exception raLher 

than the rule. ,on-uniform fIo.. at a ;jridge sit,;J ft duS, 

to downstream control, examples of which might include 

flood conditions at the conIluc:nce of two stra.m:,.. down­

stream reservoir or reill;j- influcerequI.Lio_ of 

tides, or changes in vegetative or muss conditions in
 

flat gradient channels. A unique stage-discharge condition
 

may no longer exist as it does for uniform flow. A defin­

ition sketch of this abnormal stage-discharge condition
 

is shown in Fig. 2.
 

Regardless of the original flow condition, the flow
 

through a constriction such as a highway bridge crossing
 

is usually of subcritical regime, producing gradually
 

varied channel flow far upstream and downstream, with
 

rapidly varying flow occurring at the constriction. The
 

effect of the constriction on the water surface profile,
 

both upstream and downstream, is conveniently measured
 

with respect to the normal water surface profile, which
 

is the water surface in the absence of the constriction
 

under the original flow conditions. Upstream from the
 

constriction, an Mi backwater profile occurs, where the
 

velocities, and consequently the rate of loss of flow
 

energy, are loss than for normal flow conditions. The
 

backwater may extend for a considerable distance upstream,
 

to a point where the con.-tricted and the normal surface
 

profiles practically coincide as shown at Section 0 in
 

Fig. 1.
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Near the const-riction, the central body of water begins 

to be accelerated at Section I, while deceleration occurs 

along the ouler boundaries. A separation zone (zone ia) 

is formed in the corners uostream from the constriction. 

As 'he flcw is accolel-ated at the constriction, the water 

surface profiloDs drop rapidly between sections II and III, 

with the jet stream contracting to a width somewhat less
 

than the width of the opening. The spaces between the jet
 

and the constriction boundaries (zone IIIa) are occupied
 

by eddying water. Inrediately downstream from the constric­

tion, the jet stream begins to expand until the original
 

flow condition has been reestablished across the entire
 

channel width at section IV, where the normal and con­

stricted water surface profiles again coincide. Shear
 

along the separation boundary in the reach between sections
 

III and IV results in dceleration of the live stream, with
 

average velocities and energy losse-s greater than for the
 

original flow condition due to the additional turbulent
 

mixing resulting from the expansion process. Between
 

sections 0 and IV, the total energy loss is the same &:,.
 

that for the unconstricted flrow.
 



5 

GENEiRAL SjBCR TICAL FLOW EQUATION 

A theoretical subcritical flow discharge equation 

may be developed for the vurtical board constriction 

shown in Fig. 1. The momentum equation may be written 

between sections 1 antd 2 for th: control volume in 

Fig. 3 to arrive at a general submerged flow equation 

for an open channel constriction. In the direction of 

flow, the momentum equation may be written as
 

F1 - F2 - Fc - Ff = QP(5 2 V2 -5 1 V1 ) (1) 

in which F1 and F2 are the resultant forces due to the
 

pressure distribution on the cross-section of flow at
 

sections 1 and 2; F is the component of force in the
c 

direction of flow acting on the control volume of fluid 

due to the constriction; Ff is the friction or drag force 

acting on the surface of the control volume; Q is the 

theoretical discharge; p is the density of the fluid; 

11 and Q2 are momentum coefficients for the two flow 

sections; and V1 and V2 are the average velocities at 

sections 1 and 2. Assuming uniform velocity distribu­

tion and neglecting the friction force 

F1 - F2 - Fc = QP(V 2-V1 ) (2) 
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(In prototype appli2ation, the assumption of uniform veloc­

ity distribution wil not neciesaarily hold true. Also, in 

many cases, t> friction force may not be neglected. How­

ever, a techniqzue for incorporating these factors in the 

analysis will subsequently be shown in a later paper.) 

Assuming hydrostatic prssire distribution 

F = yBy2/2 ..... (3) 

= yby 2/2 (4).....F2 

in which y is the specific weight of the fluid; B is the 

width of the open channel; b is the width of the constric­

tion; and yl and Y2 are the depths of flow at the two 

sections. The force acting on the control volume due to 

the constriction occurs at the upstream face of the con­

striction. Assuming the average depth of flow at the
 

upstream face of the constriction is y2
 

Fc = y (B-b)y 2 /2 

The momentum equation in the direction of flow can now be
 

written as 

2 2 2 

yBy2 yby 2 y(B-b)y 2 QY(V 2 -VI)
1 2--2V (6) 

2 2 2 g 

where g is the acceleration due to gravity.
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Assuming steady flow;, the continuity equation can 

now be employed.
 

Q = BylV 1 = ')Y2V2 ...... (7) 

Substitutincj the continuity equation into Eq. 6 and solving 

for the discharge 

g B(ylY2)1/2 

__ __..... (8)Q \f/7___ B(yl-y__ 2) (8) 

(l-bY2/By 1 ) B
 

2 )

(y+yby2 

The opening ratio, b/B, may be represented by M and the
 

submergence, y2/yl, by S. The denominator of the discharge
 

equation can be made dimensionless by multiplying the
 

numerator and denominator by yl-y 2.
 

IIB (yl-y2) (9) 

(l-MS) (yl-y2) 2B
 

by 2 (Yl+Y 2 )
 

Therefore
 

\J-72b (yl-y2 ) 3/2 
Q = - - . . .(10)
 

M(1-MS) (l-S) 2
 

S(l+S)
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For any particular channel constriction, b and M become
 
constants and the discharge is a function of (yl-Y2)3/2 and
 

S. If the submergence is held constant, the discharge
 

becomes a function of (yl-Y2)3/2, alone. This suggests that 

a logarithmic plot of Q against yl-y 2 would yield a family 

of straight li:i2,s with each line rcpresenting a constant 

value of submergence. The lines of constant submergence

C 

would each have a slope of 3/2.
 

OTHER WIDTH CONSTRICTION EQUATIONS
 

The raost significant and recent work resulting in
 

equations describing flow through constrictions in open
 

channels has been embodied in the publications by Kinds­

vater, Carter, and Tracy (5) in 1953; Liu, Bradley, and
 

Plate (6) in 1957; Bradley (2,3) in 1960 and 1970; and Biery and 

Delleur (1) in 1962. The discharge equations presented in 

each of these publications can be expressed in the form of 

a submerged (subcritical) flow equation. The development of 

such equations will be demonstrated for three of the pub­

lications (5, 6,2). 

Kindsvater, Carter and Tracy. By combining an energy
 

equation and the continuity equation, Kindsvater and Carter
 

(4) obtained the discharge formula
 

Q = CKbY 2 /2g{(yl-y 2 ) - Ef + aiV1/2g}..... (11) 
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in which Q is the discharge in cfs; CK is Kindsvater's dis­

charge coefficient; yl is the flow depth at seztion I; Y2 

is the flow depth at section II; V1 is the average velocity 

at section I; Ef is the energy loss in feet due to friction 

between sections I and II; and
 

= (qv2) (12) 
QV1 2 1
 

is a coefficient applied to the velocity head at section I
 

to account for nonuniform velocity distribution, where q is
 

the discharge in a subsection, and v is the average velocity
 

in that subsection. By substituting V and solving
 

Q,
for 


SCKby 2,/ 2 g{(yl-Y 2) - EfiQ - ..... (13) 

M2 S 2 
1 - elC 

1K 
2 

where M = b/B and S = y2/yl. 

Assuming a1 
- 1.0 and Ef 0.0, 

Q 
CK\/-2g 
K 

by (y_2 

2 (y.-y 
/2 

1 .Y . (14) 

1 - C2 M2S2 

K 

By multiplying both numerator and denominator by yl-y 2 and 

dividing both by y7, 

CQ ~ b(y!-y 2 ) 3 / 2 . .. (15) 

(1-CKIS) (I+CI<MS) (Yl-Y 2 ) 2 

2Y2
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Therefore,
 

Q = CK v2 b(yl - Y2 ) (16 

(1 - CK I-IS) (i - s)2
 

s 2/(1I+C KMS)
 

which is of similar form to Eq. 10, thereby indicating that
 

for a given constriction geometry where b and M are -constant, 

the discharge becomes a function of-(Yl - Y2 ) 3/2 alone for a 

given value of submergence. 

By substituting values of yl at fixed values of submer­

gence (thereby fixing y2), values of discharge have been
 

generated from Eq. 11 using typical values of CK and a and
 

a range of bed slopes. These values have been plotted on
 

logarithmiG paper in Fig. 4 with discharge as the ordina-te
 

and yl - Y2 as the abscissa. As indicated by Eq. 16,.values
 

for a constant submergence describe a straight line on a
 

logarithmic plot having a slope of 3/2. The corresponding
 

submergence distribution is shown on Fig. 5, enabling the
 

submerged flow equation to be obtained graphically.
 

The discharge equation may be obtained in terms of
 

energies by substituting energy minus velocity head for
 

flow depth and solving for discahrge.
 

C K2g by 2 (E 1 - E2)/2 (17)
 

11+ CK(M2S2 - 1) 

in which E1 and E2 are the specific energies at sections I
 

and II, respectively. To eliminate the depth te..a, or to
 

solve in terms of (E1 - E2 ) 3 /2 is exceedingly difficult. As 



this would tend to suggest, the data generated from Eq. 11, 

when plotted on logarithmic scales with discharge versus 

E - E2, yields a series of curved lines, one for each value 

of sul.iiergence. 

Liu, Bradley, and Plate. From a plot of actual data 

for a vertical board model, together with dimensional
 

analysis of the backwater phenomena, Liu, Bradley, and
 

Plate (6) developed the empirical backwater equation
 

3

( =4.48 F 2 2 3 (2.5 - M) + 1 ..... (18) 
n 24 

in which yn is the normal flow depth for the unconstricted 

flow; and Fn is the Froude number of the normal flow depth. 

By substituting 

Q 
F _= ...... (19) 

n 

and solving for Q, an equation for discharge may be
 

obtained
 
Yl3 - Yn3 

Q= B 1 2 (20) 
.(..5 - M) 

Although the denominator is dimensionless, this equation
 

is rather dissimilar to Eq. 10. However, for the same
 

data, Izzard (4) suggested the equation 

F 2 

Yn . + 0.45 F 2 (21) 
Yn 



Substituting for Fn and solving for Q, a discharge equation
 

is obtained 

Q = 1.49Vg by n (yl-yn) ..... (22) 

This may be alternatively expressed as
 

1.49b g , 3/2 

Q = 1/S- (23) 

which has a numerator of similar form to Eq. 10 and a dimen­

sionless denominator. By substituting energy minus velocity
 

head for flow depth in Eq. 22, the discharge equation can
 

be described in terms of energies, although the term yn
 

persists.
 

1.49rg by (EI E n) 1 / 2 
n -Q =. . .(24)
 

'i-i.11 M2 (l-S 2 )
 

in which En is the specific energy at normal depth. Again, 

to obtain a concise expression for discharge purely in terms 

of energies, or in terms of (EI-En) 3/2 is exceedingly diffi­

cult. 

By solving Eq. 20 for given values of S and yn' data
 

has been generated and plotted according to the submerged
 

flow analysis as shown in Figs. 6 and 8. However, despite
 

the inability to express discharge in terms of (EI-En)3/2,
 

the data plots perfectly, whether generated in terms of
 

depths or energies with the following results:
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1.55(yl - Yn )3/2 1.59 (E 1 - E n ) 3 /2 

For M = 1.245, Q =-(25) 
-logS -logER 

Yn ) 3 /3.7(y.I - 3.8 (E1 - En ) 3 / 

... (26)For M = 0.497, Q = - = 3 
-logs -logER 

7.4(yl - Yn ) 3/2 7.4 (E1 - E ) 3 / 2 

For M = 0.733, Q = n (27) 
-logs -logER 

in which ER is the ratio En/E . The value of the submergence 

exponent, n2, was found to be 1.0 for both depths and energies, 

as shown in Figs. 7 and 9. 

Bureau of Public Roads. Working in conjunction with 

Colorado State University, the Bureau of Public Roads 

derived the expression for backwater 
V2 

2 r 2 A 2 

= 
 ++ A[2 2-(-n2 Vn2( (28)Yl K* 2gn2 a'1 A- -A--- ] 2g ...... 

4 1 

where Yl is the backwater, Y - ; K is the total backwater 

coefficient; An 2 is the cross-sectional flow area in the con­

striction at normal stage; A1 is the area of flow including 

backwater at section I; A 4 is the area of flow at section IV 

at which normal water surface is reestablished; and Vn2 = 

Q/An2 This nxpression is embodied in the manual by Bradley 

(2,3). Uniform flow is again assumed before placement of the
 

constriction. Substituting I = yl - Yn and expressing vel­

ocities in terms of discharges (continutiy equation) for a
 

rectangular channel, Eq. 28 may be solved for discharge:
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S"' i - Yn )/2(29) 

=K + C4.~ (1-S 2 ) 

This may also be expressed as
 

)b(Yl -Yn ....... (30
 

+ ,l2(1-S 2 ]

*iQ=rVi[ 

Again, the denominator is :irnsionless.
 

The appropriale values of K were selected from the curves 

given in the BPR design manual (2,3), and Eq. 30 solved for 

given values of S and v n . The difference between the two 

editions of the BPR design manual is the curves relating K 

and M. The results are plot4.ed on Fig. 10, which was used in 

conjunction with Fig. 11 to t.-w.n the submerged flow equation. 

The two sets of curves in Figs. 10 and 11 represent two 

different values of K The values of energy for each flow 

depth were also obtained, for one of the values of K , which 

allowed Eq. 30 to be plotted in terms of energies as shown in
 

Fig. 12. The energy ratio distribution is plotted on Fig. 13.
 

An expression for discharge in terms of energies may be
 

obtained from Eq. 28 if energy minus veloc.ity head is substi­

tuted for the backwater depth.
 

Q 2g by n (E - E n )1 / 2 ..... (31)n=1. 

JK + M2 (c l - 1) (1-S2) 

Again, a solution purely in terms of energies has not been 

achieved.
 

http:plot4.ed
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,ucognizing from Eq. 12 that al = 1 for a rectangular 

laboratory flume, the discharg equ.tion becomes 

O /- -b~ n (1-' _ n ) 112 

= n)(32) ..... 

lience, iL may be seen that for a given constriction geometry 

located in a rectanqular flume, using a constant value of 

Yn ,that a plot of Q against E1 - E on logarithmic paper 

will yield a striaght line, with the slope being 0.5. This 

has been demonstrated in Fig. 12 where data was generated 

from Ec. 28 modified to the form of Eq. 29. Hence, by 

plotting QEL 1 against yn (Fig. 14), the value of the coeffi­

cient 2c b was confirmed, so that Eq. 32 may he expressed 

in the form 

Q CYn (E1 E ) ...... (33) 

in which 

C1 b ......... (34)
 

CONCLUSIONS
 

Flow conditions at a proposed bridge site on an open 

channel may be either uniform of non-uniform, depending on 

channel conditions. The effect of the constriction on the 

water surface profile, both upstream and downstream, is 

conveniently measured with respect to the normal water 
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surface profile, wich is the waver surface in tha absence 

of the co.striction under the oricinal flow conditions. 

Irrespective of the oririnal flow conditions existing at 

the bridge site, by using a combination of the momentum 

and continuity equations a general submerged flow equation 

may be obtained for the o;pen channel constriction.-


The equation used by Kindsvater, Carter and Tracy (5) 

was derived for non-uniform flow from a combination of an 

energy equation and the continuity equation. However, by 

making twc simplifying assumptions and manipulating the 

remaining variables, this equation may be expressed in 

the form of a submerged flow equation. 

Liu, Bradley, and Plate (6) used empiricism and dimen­

sional analysis to obtain a backwater equation for the case
 

where uniform flow ex:ists in the channel prior to placement 

of a constriction. The simplified equation suggested by
 

Izzard for the same data may be readily manipulated into
 

the form of a submerged flow equation.
 

The Bureau of Public Roads (2,3) obtained a backwater 

equation for the case of uniform flow in the unconstricted 

channel by considering energies at the section of maximum 

backwater and the section where uniform flow is reestab­

lished downstream of the constriction. Again, this expres­

sion may be expressed as a submerged flow equation. 

In all of the above cases, the original equations
 

presented may be plotted on the coordinates used for sub­

merged flow analysis, with head loss as the abscissa, dis­
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discharge as the ordinate, and a series of parallel straight 

lines of slupe 3/2 r(pres, ntin: Lhc diff-rent valucs of 

subme rgence. 

The analytical e:pnressions embodied in the current 

methods of rmasuring peak discharge through, or backwater 

due to, a bridge cnstriction may therefore be reduced to 

the form of a subierged flow e*iuation. As these expressions
 

were obtained for a particular flow condition (uniform or
 

non-uniform), each represents only a particular case of
 

the backwater phenomena. All could be encompassed by the
 

more general submerged flow equation.
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i .-JEUDTXI .T - :IOTA 7ic'/,i 

The following symbols are used in this paper: 

A area of flow including h::>w..er at section I; 

An area of flow helow normal .:ater surface at section II; 

A4 = area of flow at section IV at which normal water 

surface is reestalish.,3; 

B = width of channel; 

b = width of constriction; 

C1 = submerged flow discharge coefficient; 

CK = Kiridsvater's discharge coefficient; 

E1 = specific energy at section I after bridge placed; 

E 2 = specific encrgy at section TI; 

Ef = energy loss due to friction between sections I and II; 

E 
L 

= energy loss Eu-E 
u d 

EI-E ,E1 ­ 'n 
or E1-EA;
r1-1 

En = specific energy at normal depth; 

ER = ratio of Ed/Eu, En/EI, or ElA/EI; 

F1 = resultant force due to pressure distribution on the 
cross-section of flow at section 1; 

F 2 = resultant force due to pressure distribution
cross-section of flow at section 2; 

on the 

F 
c 

= component of force in the direction of flow actingon the control volume of fluid due to the constriction; 

Ff = friction or drag force acting on the surface of the 
control volume; 

F n = Froude number at normal depth, V/(gyn
)1/ 2 

g = Acceleration due to gravity (32.2 ft/sec 2); 
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HL head loss, yu-Yd ; 

K total backwater coefficient; 

14 = bridge opening ratio, b/B; 

nI = exponent in nuerator of submerged flow equation; 

n2 = submer, once exponent in the denominator of the sub­

mergod flow equation; 

Q = discharge;
 

QEL=1 = value of Q where EL=1 and ER=;
 

QEL=1 = value of Q where HL=I and S=l;
 

q -uni'- discharg in a cha.ane. subsection; 

s = submergence, ratio of downstream flow depth to upstream
 

flow depth;
 

= average velocity at section I;
V1 


V2 = average velocity at section II;
 

Vn 2 = average velocity in constriction for flow at normal
 

depth, Q/An 2 ;
 

= velocity in a channel subsection;
 

flow depth at section I;
Yl = 


Y2 = flow depth at section II; 

Y3 = flow depth at section III;
 
* 

yl = total backwater or rise above normal depth at section I; 

Yn = normal flow depth; 

a1 = kinetic energy correction factor which corrects for
 

nonuniformity of velocity distribution at section I;
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62 

= 

= 

momentum 

momentum 

coefficient 

coefficient 

at secItion 

atLsction 

-; 

If; 

y 

p 

= 

= 

specific weight of Lhe 

density of the fluid 

fluid; and 
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