IRRIGATION OF
 COMMUNITY GARDENS IN PANAMA

by
Jerald E. Christiansen

Agricultural and Irrigation Engineering Utah State University Logan, Utah

Prepared in Cooperation with
Health and Population Division USAID/Panama
and
Ministerio de Salud Panama

November, 1973

ACKNOWLEDG EMENTS

The writer wishes to acknowledge the kindness and assistance of many people in Panama who made his stay there a pleasant experience. He is especially indebted to Sr. Nicanor Castillo for his pleasant companionship and the many courtesies he extended to Mrs. Christiansen and the writer during their trips throughout Panama.

He is also grateful for the very willing assistance of Sra. Mayra de Young who very cheerfully struggled with the poor writing while typing this report. His thanke also go to many others at AID for their pleasant cooperation and assistance including Dr. Ernest Feigenbaum, Dr. Ervin Bullard, Dr. Sam Portch, Sr. Hector Gadpaille and Sra. Olga Shirley.

The work presented herein was financed in part by the Agency for International Development through its contract with Utah State University. The views presented herein are those of the author and do not necessarily represent those of the Agency for International Development or Utah State University.
J. E. Christiansen

Professor Emeritus Utah State University
-ii-

TABLE OF CONTENTS

Use of Community Water System for Irrigating Gardens 15
Summary - Water Supply 15
Method of Irrigation for Community Gardens 16
Furrow Irrigation 17
Sprinkler Irrigation 18
Design of a Sprinkler Systen for a Community Garden 19
Characteristics of Sprinklers 20
Table 3. Characteristics of Two Types of Small Rotati:ng Sprinklers. 21
Friction Losses in Pipelines 22
Table 4. Friction Loss in Standard Pipein Feet per 100 Feet per 100 Feet(m./l00 m.) "C" equals 100 .23
Table 5. Friction Loss in Feet per100 Feet (m/100 m.) for SmoothBore Hose24
Table 6. Friction Loss Through Pipe Fittings in Terms of Equivalent Lengths of Standard Pipe, Meters 25
Table 7. Friction Loss in Feet per 100 Feet(m/l00 m.) in Aluminum Pipe, O.D. SizesInches26
Table 8. Friction Loss in PVC Plastic Pipe, in Feet per 100 Feet (m/100 m) 27
Suggested Layout of Low Pressure Sprinkler System 28
Figure 1. Suggested Layout of Irrigation System for Two Hectare Garden Scale $1 \mathrm{~cm} .=10 \mathrm{~m}$. 29
Cost Estimates 31
APPENDIX 33
ITINERARY 34
Appendix Table 9. Mean Precipitation in mm, Republic of Panama 38
-iv-
Appendix Table 10. Irrigation Projects in Panama of More Than 100 Hectares Irrigated From Surface Water41
Appendix Table ll. Full Circle Sprinklers 43

RECOMMENDA TIONS

1. Since successful irrigation of the community gardens will depend on many factors including a suitable water supply and properly planned system, it is recommended that only a few pilot projects be undertaken at this time. Every effort should be made to make these projects successful and if so they could then be used as demonstration projects to encourage the irrigation of vegetables throughout the country either as community or private enterprises.
2. If and when a decision is made to promote irrigation of the community gardens throughout Panama, the services of an experienced irrigation engineer should be obtained for at least a two year period. This engineer should be able to speak Spanish and should be furnished adequate transportation, preferably a 4-wheel drive vehicle. He should also have available a complete set of surveying instruments including level, transit, tapes, level rods, etc., and in the office, a drafting table and necessary drawing instruments. He should also have a full time Panamanian engineer counterpart. This team should be able to make the necessary field studies, prepare the maps and make the necessary designs and select the pumping equipment for each project undertaken. They would investigate the water supply situation, help select locations for gardens that could be served from perennial streams, or from wells or storage ponds. When the plans are approved, they would supervise the installation of the irrigation systems.
3. Since the success of vegetable growing will depend also to a large extent on the selection of varieties, control of diseases and insects, and a knowledge of soils, extension specialists in these fields should be available to give the necessary help to the communities when projects are undertaken.

INTRODUCTION

Purpose

The primary purpose of this assignment in Panama was to assist USAID and the Ministerio de Salud in improving the irrigation of community gardens. In an effort to improve the nutrition of the people living in small communities throughout the country, there are plans to organize more than 200 small community gardens to produce fresh vegetables for local consumption. The climate of Panama is such that in most places there is a dry period of about four months when irrigation of the vegetables would be beneficial.

The plan was to have the writer visit a number of areas throughout the country to seefirst hand the problems involved in the irrigation of these gardens and to make recommendations and prepare plans for the irrigation systems. He has attempted to obtain information with respect to the climate and other factors that have a bearing on the problems of irrigation such as topography, soils and availability and cost of irrigation equipment.

IRRIGATION IN PANAMA

General

Because of the relatively high rainfall in the Republic of Panara, ir rigation has been practiced to only a limited extent. Therefore, the need for and the benefits to be derived from irrigation are not well known.

Resource Data

A three-year resource study entitled "Final Report on the Catastro Rural de Tierras y Aguas de Panama, July, 1970" by CATAPAN* provides a considerable amount of data on the climate, soil and water resources of Panama. The final report was presented in three volumes. Volume I comprised the text, Volume II included various appendices, figures and plates and Volume III contained the larger size foldout figures and plates. This study included a survey of irrigation projects. (See Appendix Table 9).
\% CATAPAN, a Joint Venture of International Resources and Geotechnics, Inc. and International Engineering Company, Inc. - The Jacobs Company supported in part by the USAID.

There are also available data on climate, especially precipitation, published by Estadistica Panameña and on stream flow on all of the major rivers in Panama, published by Instituto de Recursos Hidraúlicos y Electrificacion (IRHE).

Need for Irrigation

The need for irrigation in Panama appears to be associated with specific crops such as fresh vegetables, where year around production is desired, and for perennial crops, such as bananas, where both production and quality are important. Some sugar cane and rice are also irrigated. The need is greatest where the dry season is the longest and where the precipitation during this period is lowest.

For fresh vegetables to be grown in the community gardens, it would appear that irrigation would be beneficial during the dry period at almost any place in Panama, even in the mountains near the Costa Rican border where the annual precipitation is from 4 to 5 meters per year.

CLIMA TE OF PANAMA

Precipitation

The climate of Panama can be briefly characterized as consisting of two periods, a rainy period from May thru December and a dry period from January thru April. Precipitation records for $1970 *$ listed 88 precipitation stations. The records are being collected mostly by two agencies; the Instituto de Recurses Hidraulicos y Electrificacion (IRHE) and the Panama Canal Company which operates 14 stations in and near the Canal Zone.

Long records of more than 70 years (one for 100 years) are available for 3 stations. Two stations have records for 30 years or more and the remainder are mostly for 12 years or less with many for less than 5 years.

CATAPAN has plotted the mean annual isolines and the isolines for the four driest months on maps with a scale of $1: 500,000$. These mape show that the driest part of Panama is along the coast in the Golfo de Parita where the mean

[^0]precipitation for the four driest months was less than 20 mm . along the coast and less than 100 mm . for a distance inland of about 50 km . in the vicinity of Santiago.

The mean annual precipitation for the country is probably above 3000 mm . ranging from less than 1000 mm . near the Golfo de Parita to more than 5000 mm . in the highest mountains in the Western part of Panama. In the province of Chiriqui, the coastal area has a mean annual rainfall of 2000 mm . or more but less than 200 mm . for January - April. In the central provinces of Cocle, Herrera, Los Santos and the Eastern part of Veraguas, the mean annual precipitation is under 2000 mm . in most places. (See Appendix Table 10).

Temperature
Temperature data are available at 16 stations. Mean temperatures generally vary from about 25 to 29 degrees C but are as low as $16.5^{\circ} \mathrm{C}$ at one of the high elevation stations. The usual daily range from minimum to maximum temperature varies from less than 3 to more than $8^{\circ} \mathrm{C}$ in different parts of Panama.

Hurnidity

Relative humidity data are reported for 11 stations. The range is generally from a minimum of about 75% for the drier areas for March and April to more than 95% for some stations during the rainy season. There is a note to the effect that relative humidity readings are taken at $7 \mathrm{a} . \mathrm{m}$. jy IRHE and at 8 a.m. by the Panama Canal Company. The values given apparently represent the relative humidity of those hours and not the mean daily values. At Tocumen Airport maximum, minimum and mean values are given. For 1970 these were $95.1,66.2$ and 80.7 percent.

Evaporation

Mean daily values of evaporation in millimeters are given for 8 stations (1970). No mention is made of the method by which the evaporation was measured (Piche, Fuess or Class A pan) but are believed to be Piche evaporation values. Mean annual daily values range from 3.2 to 4.3 with both minimum
and maximum values being for the two stations in the same province, Panama. For the province of Los Santos, one of the drier areas, the mean monthly values for two stations ranged from a minimum of 2.8 mm . for July to a maximum of 6.4 mm . for April, with an annual mean of 4.2 mm . per day.

Wind Velocities

Another factor that has a significant effect on evaporation and evapotranspiration, but for which there is little available data in Panama, is the mean wind velocity. This was indirectly taken into account by its effect on evaporation in the procedure used by CATAPAN in estimating potential evapotranspiration.

In "Meteorologia Año 1970," wind data are given for 3 stations in the Canal Zone and at Tocumen Airport. The mean monthly values, in km . per hour, are given in Table 1 for 1970:

TABLE 1. Wind Velocities as Reported for Panama

Month	Altos de Balboa	Madden Dam	Cristobal	Tocumen Airport*
January	10.3	9.8	17.9	28.2
February	13.5	11.7	24.0	33.8
March	10.6	8.7	17.7	26.1
April	10.9	8.5	18.2	26.2
May	9.3	6.9	13.8	25.7
June	7.7	4.7	10.4	21.1
July	7.1	4.2	9.2	20.9
August	6.9	3.7	6.4	20.9
September	4.5	4.0	6.9	20.6
October	5.6	4.2	8.8	24.0
November	10.8	. 60	14.0	24.8
December	7.6	6.0	12.9	20.0
Annual	8.7	6.5	13.4	24.4

This tabulation shows that the wind velocities are highest during the four driest months of the year at all four stations. This is typical of other stations with similar climates in Central and South America.

Potential Evapotranspiration

Potential evapotranspiration was computed by CATAPAN for the Madden Dam area, for which the most complete climatic data were available. CATAPAN used and compared eight formulas. The mean annual values computed by the Hargreaves' ($1,336 \mathrm{~mm}$.) and Blaney-Criddle ($1,417 \mathrm{~mm}$.) formulas were judged to be the closest to the "yearly evapotranspiration." The mean of these values ($1,376 \mathrm{~mm}$.) was assumed to be the annual potential evapotranspiration at Madden Dam. This compares with a lake evaporation figure of i, 365 mm . derived from the pan evaporation data by the method of Kohler, Nordenson and Fox, which is assumed by some authorities to be approximately potencial evapotranspiration.

Estimates of potential evapotranspiration for other areas of Panama were then made by correlating the available data from 5 evaporation stations with temperature and elevation. These estimated values were then plotted as isolines on a topographic map with a scale of $1: 250,000$. The evapotranspiration map was then reduced to a scale of $1: 500,000$. The mean monthly percentages of the annual values were computed for elevations of $100,500,1000$ and 1500 meters. These values were given in a table on the map, Plate 9-5. The monthly percentages for 100 m . elevation range from a minimum of 5.6% for November to a maximum of 13.2% for March. The maximum annual values of potential evapotranspiration exceed $1,380 \mathrm{~mm}$. for an area near the coast of the Golfo de Parita. Using this value of 1,380 and the monthly percentages given, the estimated potential evapotranspiration (Etp) together with the mean monthly precipitation at Divisa is given in Table 2.

Table 2. Estimated Evapotranspiration (Etp) for Central Provinces and Precipitation at Divisa

Month	Etp mm	Precip. mm	DP mm	Month	Etp mm	Precip. mm	DP mm
Dec.	95	77.5	43		March	182	3.9
Jan	151	9.5	0	April	154	35.3	0
Feb	165	3.4	0	May	110	217.7	147

The dependable precipitation, DP, is that for which there is a probability of occurance 75 percent of the time, or 3 out of 4 years. The DP has been estimated from the emperical equation: $D P=-15+0.75 \mathrm{PM}$. This dependable precipitation is obviously so little for January through April that it could be neglected in estimating irrigation water requirements.

DESIGN OF AN IRRIGA TION SYSTEM

Irrigation Requirement

The mean monthly ir rigation requirement depends upon the potential evapotranspiration, the reliable effective precipitation, the crop cover factor, the soil moisture retention of the soil and rooting depth of the crops grown. Since data are not available for all of these factors, and also because the maximum requirement will occur in March when carryover soil moisture from the rains will not be a factor, only the potential evapotranspiration and crop cover factor need be considered to obtain an estimate of the maximum monthly requirement. This estimated maximum requirement determines the required capacity of an irrigation system to meet the full irrigation requirement of the crops. For this report mixed vegetables will be considered and it is assumed that in order to provide fresh produce throughout the year, these vegetables will be in all stages of growth with actual consumptive use varying from possibly 20 percent of Etp for periods of soil preparation to more than 100 percent for some crops during their stage of maximum demand. It would seem that a fair mean value might be from 60 to 70 percent and since this is about the same as the irrigation efficiency, it is believed that the estimated monthly Etp values might well be considered as the field irrigation requirement. The maximum value for March, 182 mm . or about 6 mm . per day, will be considered as a design value.

For convenience in converting irrigation requirement to flow rates some equivalent values are given below:
$1 \mathrm{~mm} /$ day on 1 hectare (ha) $=0.116$ liters per sec. ($1 / \mathrm{s}$)
1 liter per second per ha ($1 / \mathrm{s} / \mathrm{ha}$) $=8.65 \mathrm{~mm}$. depth of water per day
1 liter per sec. $(1 / s)=15.9$ gallons per minute (gpm US)

Requirer Japacity of Irrigation System

These relationships will enable one to quickly estimate the required capacity of an irrigation system. For example, for a community garden with a maximum daily demand of 6 mm ., the required system capacity would be:

$$
\begin{aligned}
\mathrm{q}=6 \times 0.116 & =0.7 \text { (approx.) liters per second per hectare } \\
& =11.1 \text { gallons per minute per hectare }
\end{aligned}
$$

This assumes continuous flow 24 hours per day, 7 days per week. For convenience, it might be decided that the system should be operated only 12 or possibly 8 hours per day. This would double or triple the required capacity. If it is assumed that the system would be used only 6 days, or possibly only 5 days per week, the requirements would be increased accordingly. Thus, if it was decided that the system would be operated only 8 hours per day for 6 days per week, this would then require a capacity of $0.7 \times 7 / 6 \times$ $24 / 8=2.45$ liters per second per hectare of net area or 39 gallons per minute per hectare. The most economical system would obviously be one that would be operated 24 hours per day during periods of maximum demand.

Frequency of Irrigation

The required frequency of irrigation will depend upon the water retention properties of the soil and the rooting depth of the crop grown. The latter depends not only on the crop but on the stratification of the soil. For example, a crop with a normal rooting depth of 1 meter when grown on a soil with a dense hardpan at 50 centimeters may not be able to utilize the water below that depth. Vegetable crops are ordinarily considered shallow rooted compared with many field and perennial crops. For the purpose of estimating required frequency of irrigation, a depth of 50 cm . will be assumed. A lesser depth might be considered during the early stages of growth.

The water retention properties (field capacity or upper level of moisture retention when drained and the wilting percentage or lower available level) depend primarily on the soil texture. The difference between field capacity and wilting percentage may vary from less than 5 to more than 15 percent by
ary weight of soil or 7 to 20 percent by volume. For a soil with medium texture, such as a sandy loam, a value of 13 percent by volume would be reasonable. Such a soil, 50 cm . deep, would retain about 6.5 cm . of water that could be used by the crop. For best results not more thas. about 60 percent of this amount should be used between irrigations. One should irrigate when about 40 percent of the available moisture is still in reserve.

Thus, if the actual maximum consumptive use was 6 mm . per day and the usable moisture in the root zone was only 60 percent of 65 mm ., or 39 mm ., this could be exhausted in 6.5 days. An extra day could be added to this because the soil moisture would still be above field capacity for about 1 day, sometimes longer, after an irrigation. Thus one could say that when a crop is at the stage when it is using water at the maximum rate, under the soil condition assumed, it should be irrigated about once each week. Considering an irrigation efficiency of 70 percent, which should be obtainable with a sprinkle system, one should apply $7 \times 6.0 / .70=60 \mathrm{~mm}$. of water at each irrigation every seven days. A lesser amount could be applied more frequently but larger amounts less frequently would not be desirable.

During earlier stages of grov:th, and for the months of less than maximum Etp, a lesser application or less frequent applications would be satisfactory.

A vegetable grower at Boquete stated that because of the drying winds and low water holding capacity of the soil, it was necessary to sprinkle his vegetables every three days during the dry period. He also stated that for potatoes planted in November, only three irrigations in January were required. He harvested them in February.

Water Supply

The water supply to be used for the irrigation of community gardens is a most important factor to be considered. During the dry season, water is not readily available in many places. These are four possible sources of supply that might be considered: streams, wells, ponds or the community water system.

In some places the flow may be insufficient for all of the garden and a decision may have to be made as to what area and location within the garden should be irrigated. A small stream may require that a small dam be constructed so that the flow can be accumulated over a period of several hours for use during a 'ew hours of the day. Since there are no flow records available for these small streams, an inspection of the site, possibly including an actual measurement of the flow, and discussions with local people who are familiar with the stream, will be necessary to insure that there will be water when needed.

There is also a possibility that, although a small stream is present, this water is required downstream for livestock and would not be available for the community garden. This should be ascertained before an ir rigation system is installed.

In some locations, water may be available in larger streams at some distance from the garden from which it could be diverted by gravity, or more probably by pumping and conducted to the garden in a small canal. This is done at Dos Rios in Chiriqui Province.

Wells. There is always a possibility that a water supply may be obtained from a well for the garden. The geology of Panama is such, however, that only very small capacity wells, less than 10 gallons per minute, ($0.6 \mathrm{l} / \mathrm{s}$) can be developed in most places.*

Where satisfactory wells can be obtained, they can provide a desirable water supply for sprinkler systems since the water is always clean and needs no screening to prevent clogging of sprinkler nozzles. The principal problem to overcome would be the relatively high cost of a satisfactory well and pump. Ordinarily where pumps and wells are used for irrigation, the cost of the well and pump would not exceed $\$ 300$ to $\$ 500$ per hectare of the area irrigated. For small community gardens, the cost of developing the well and providing the pump and motor (or gasoline or diesel engine) would probably greatly exceed this amount. The cost of power (or fuel) for pumping from a well would usually be

[^1]higher than for pumping from a stream because of the likelihood of the higher pumping head.

Data from which to determine the capacity of wells for any area are somewhat limited. The ground water resource map referred to previously does not indicate the depth or thickness or aquifer materials, nor the relationship between the discharge from a well and the drawdown, i.e. the lowering of the water level in the well during pumping. Many small wells have been drilled for domestic purposes but adequate tests on these wells have not been made, or if made, they have not been reported. Possibly tests could be made on some of these small wells so that estimates of the most economical pumping head could be arrived at.

In areas where there are no wells that might be tested and especially in areas indicated on the map as low producing areas, the chances of developing a well suitable for the irrigation of gardens of 2 ha or more are not good. The drilling of wells in such areas involves considerable risk since well drilling is relatively expensive.

There are many small wells in Panama that have been drilled to supply domestic water to small groups of houses. Most of these wells are equipped with hand pumps. In some communities more modern water systems have been provided by the Ministerio de Salud in recent years. These hand pumped wells are no longer needed and conceivably could be used for irrigating small gardens if they were found to have sufficient capacity and were located reasonably close to the gardens. They could readily be equipped with a portable gasoline engine and jack for use with the hand pump so that the well could be tested and if found suitable they could be equipped with a suitable pump and motor. The cost of testing and equipping these wells with pumps and motors would be small compared with the cost of drilling new weils.

Ponds. In some places it might be possible to construct storage ponds on small streams of sufficient capacity to provide the water supply needed during the dry period. This would depend primarily on the topography which would need to be such that a pond with sufficient capacity could be provided with a low
dam that could be constructed at a reasonable cost. Such a dam would have to be limited in height to of not more than 4 or 5 meters and the pond should have a capacity of not less than about $20.000 \mathrm{~m}^{3}$ per hectare of irrigated area. This capacity should be sufficient to allow for evaporation and seepage during the dry period.

A spillway around the dam would have to be constructer to prevent overflow and failure of the dam. The capacity of such a spillway would depend mostly upon the drainage area above the dam. This would limit the location to places where the drainage area was sufficient to provide the water needed but small enough so that the cost of the spillway would not be excessive.

Ponds of this kind would have other beneficial uses such as for the propagaticn of fish and as a water supply for livestock during the dry period. There are many places in the United States where ponds of this kind are used for a combination of these purposes.

Before the construction of a pond is undertaken, the services of an experienced civil or agricultural engineer should be obtained to make the necessary investigations and to design and supervise the construction of the dam in order to insure its safety. An evaluation of the likely effect of the pond on the health of people and domectic animals by a public health official would be desirable.

The investigations must determine from surveys. the drainage area above the dam site and the relationships between the height of the dam, the capacil:y of the pond and the volume of fill in the dam. A pipe outlet through the dam, or preferably through the natural abutment at one end of the dam with a control gite on the upper end must also be provided. The dam must have sufficient freeboard or height above the maximum water level in the pond to insure its safety. This freeboard above the maximum water level over the spillway for the estimated maximum flow should be approximately l meter. The top wirith should be about 1 vertical to 2.0 or 2.5 horizontal. The top soil must be removed from the area of the fill and a cutoff trench excavated along the center line of the dam. This trench should be then backfilled with least permeable soil available and thoroughly compacted.

The dam should be constructed by placing the fill in thin layers of not more than 15 cm . and thoroughly compacting each layer. Special care should be exercised in backfilling around the outlet pipe to prevent any possibility of water following along the outside of the pipe which might result in a failure. The upstream of the dam should be protected against erosion by wave action by first covering it with some of the surface soil and then planting a suitable grass that makes a good sod. The downstream slope should also be protected to prevent erosion by precipitation.

The soil for the fill could be taken from within the pond area but should not be taken closer than about 50 meters of the dam. The surface soil containing organic matter, roots, etc. should first be removed from the borrow area. This surface soil could later be used to cover the slopes in order to establish a grass cover. These brief and incomplete details are included to indicate some of the factors that must be considered by the designer and builder.

The minimum drainage area required to produce the desired volume of water cannot be accurately estimated from presently available records. The Boletin Hidrologico, Ano Hidrologico, 1969-70, gives runoff data for 37 measuring stations in Panama. Most of these stations are on larger rivers with drainage areas in excess of $100 \mathrm{~km}^{2}$. The data for 8 stations with drainage areas of less than $50 \mathrm{~km}^{2}$ were analyzed to determine the total runoff during the period May-December. Unfortunately, most of these stations were in the upper reaches of the rivers at elevations above 600 meters and they probably do not represent the flow that might be available from much smaller drainage areas of less than $1 \mathrm{~km}^{\text {i }}$ at low elevations. Excluding one station for which the reported drainage area was probably in error, the total runoff in depth over the area for the eight months ranged from 1.1 to 4.95 meters. From this preliminary analysis it would appear that a runoff of 1.0 meter or more in depth over the drainage area might be expected in most places. Ascuming that the storage capacity should be $20,000 \mathrm{~m}^{3}$ per hectare of irrigated area, it would appear that a drainage area of three times the area to be irrigated might suffice. To be sure of having a dependable supply, however, it would be safer to have the
dam located where the drainage area above it was at least 5 times the area to be irrigated. The principal disadvantage in locating the dam on a larger watershed would be the added cost of the larger spillway required to pass the flood flows.

The maximum flow that might be expected, which would determine the capacity of the spillway, would be ev. ore difficult to estimate with any degree of accuracy because this maximum flow is much higher for very small watersheds than for the larger ones for which data are available. This could best be estimated from data on maximum precipitation rates for fairly short periods of time, say 15 minutes, 30 minutes and 1 hour. The only published data on maximum values are for 24 hours *. In $1970,200 \mathrm{~mm}$. or more precipitation in a 24 -hour period was recorded 15 times. Amounts of 300 mm . or more were recorded 4 times in Chiriqui Province with a maximum of 497 at Hornito. All four of these highest occurances were in April. There were no occurances of 200 mm . or more during the months of July through October, when apparently the storms are more general and of less intensity.

Since many of the precipitation stations are equipped with an intensity measuring instrument (pluviografo) data can undoubtedly be obtained on short duration intensities from which maximum flood flows could be estimated for small drainage areas from a rational formula which can be written

$$
\mathrm{q}=2.78 \mathrm{CAI}
$$

where $q=$ the maximum flood flow rate in $1 / s$
$C=$ a coefficient of runoff, which for extreme conditions would approach 1.0
$A=$ drainage area in hectares
$I=$ maximum expected rainfall intensity in $m m / h r$ for the estimated time of concentration

Assuming a drainage area, A, of 10 hectares and a maximum intensity rate, I, of $100 \mathrm{~mm} / \mathrm{hr}$ for a $30-$ minute time of concentration and $C=1.0$, the maximum flood flow that might occur would be

[^2]\[

$$
\begin{aligned}
\mathbf{q}=2.78 \times 10 \times 10 & =2780 \mathrm{l} / \mathrm{s} \\
& =2.78 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$
\]

For large drainage areas above the dam, the cost of providing a safe spillway might be a major part of the cost of the dam.

Another possibility that might be considered is the construction of an off-stream pond that could be filled during the rainy period from a nearby stream. Providing a location with suitable topography could be found for such a storage pond, it would have the advantage of not requiring an expensive spillway. Many small ponds of this kind have been constructed in Venezuela to provide water for livestock. In general, these ponds were smaller than would be required for irrigation.

Use of Community Water System for Ir rigating Gardens
There also appears to be a possibility that in some localities the community water system might be used to a limited extent for sprinkling the gardens without interfering with the primary purpose for which the system was installed, that of providing a safe dependable water supply for domestic needs. Where the system has a sufficient capacity to provide water for the garden, this would be a very desirable way to irrigate a part of the garden during the dry period. A small pipe (probably 1 inch PVC pipe) leading from the well to the garden and some hydrants with hose and sprinklers are the only requirements. One of the community gardens in Herrera Province that was visited was being irrigated to a limited extent in just this manner.

It would seem that. where the community water system could provide irrigation water, there would need to be adequate control over the amount of water that was used for the garden. This might be accomplished by limiting the area to be irrigated, the size of pipe supplying the garden, or possibly the time during the day (or night) when garden sprinkling would be permitted. Another solution might be to provide a water meter and limit the quantity used, or make a charge for water used.

Summary - Water Supply. In summary, it would appear that the problem of supplying the community gardens with an economical and dependable water
supply may be difficult in many places. Each garden must be considered separately and the best solution selected, preferably before the location of the garden is fixed. It is also entirely possible that the re are many places where ir rigation for the community gardens is just not feasible.

Method of Irrigation for Community Gardens

The method of irrigation for the community gardens should be given careful consideration. This will depend largely on the topography, i. e. the slopes and general smoothness of the terrain and on the soil characteristics, principally the infiltration rate and water retaining properties of the soil. Surface methods of irrigation are not very satisfactory where slopes exceed 2 or 3 percent or where the surface is very uneven and would require considerable grading or leveling. Neither is it satisfactory where small amounts of water must be applied at frequent intervals, where infiltration rates are excessive, or where it is difficult to cover the area without considerable waste of water by deep percolation below the rooting depth of the crop grown.

A first step to be taken in the selection of method of irrigation and the planning of the system would be to make a satisfactory topographic map of the community garden. Such a map should be drawn to a scale of 1:500 or $1: 1000$, with a contour interval of 10 or 20 cm . for the flatter areas and 50 cm . or 1.0 m . on sloping areas. The map should show all pertinent features such as fences, location of water supply and roadways or permanent pathways within or near the garden should be shown as they might serve as a location for a storage tank.

With such a map the actual area to be irrigated could be determined. The size and shape of the area would be a major factor in determining the required capacity of the system and the layout for the distribution system regardless of whether surface irrigation or a sprinkler system was to be used. For vegetables grown in rows, the choice of irrigation method would obviously be between furrow irrigation and sprinkling.

Furrow Irrigation

Furrow irrigation is used extensively for row crops including all vegetable crops. To obtain a fairly uniform application of water without surface runoff at the end of the furrows or deep percolation losses (that penetrating below the root zone) and hence a satisfactory irrigation efficiency, requires the correct relationship between the flow of water in the furrow, the length of furrow and the infiltration rate. The gradient of the furrow is also important. It should be fairly uniform, but it can be shown that maximum uniformity and highest efficiency can be obtained when the profile is concave, i.e. the furrow is steeper at the upper end and flattens to nearly zero at the lower end. The maximum slope should not be errosive, which limits the gradient to about l percent for most soils, less for non-cohesive sandy soils. For steeper slopes. the furrows should be placed on contour grades of 0.5 to 1.0 percent.

Since the rate of infiltration varies considerably with soils, and always decreases with time, the relationship between the factors involved are not simple. Experience in a given area is the best guide to an efficient design. Some soils have very low infiltration rates and long furrows, sometimes several hundred meters, are used for field crops. For flat grafients, less than 0.1 percent, short furrows can be used and the water can be retained in the furrow a sufficient length of time to obtain the desired infiltration. Each furrow is then a small basin.

Ir rigation efficiencies vary greatly under furrow irrigation. Losses by runoff at the end of the furrow are visible and an effort is usually made to minimize this loss by cuting back the flow in the furrow when the water approaches the lower end of furrow. Losses by deep percolation below the root zone go undetected in most instances, and where there is good natural subsoil drainage this deep percolation loss may be appreciable.

Under some conditions of low infiltration rates, she main problem with furrow irrigation is to obtain the desired penetration. The water reaches the end of the furrow and the irrigation appears to have been completed, but upon
probing with a soil tube or auger it will be found that the soil has been wetted to only a fraction of the desired depth. Since there may have been no loss by runoff or deep percolation, the efficiency will be high but the irrigation would be unsatisfactory, and would require frequent irrigations.

For the community gardens that the writer has seen, it would appear that furrow irrigation, in the ordinary sense of the term, would not be satisfactory in many places for several reasons. It requires considerable skill, based on experience, to satisfactorily irrigate under the topographic conditions generally prevailing.

There is one type of furrow irrigation that might be satisfactory and that would be to distribute the water throughout the garden in a pipe system and to use several garden hoses to distribute the water to the furrows. This would give adequate control of the water if the furrows were nearly level (along the contour) and were quite short so they would serve as small basins. This would require constant attention on the part of the irrigator to prevent overflow of the furrows and to move each hose at frequent intervals. One could do a good job of irrigating in this manner if water was available in the distribution system under moderale pressure.

Sprinkler Irrigation

The alternative to furrow irrigation for the community gardens would be to use small rotating sprinklers that would apply water at such a rate that it would be absorbed by the soil without puddling the soil or causing runoff. The most feasible scheme would be to distribute the water over the total area of the garden in either an underground or surface pipe system to hydrants to which moveable hoses with sprinklers would be attached. The entire pipe system would be stationary. The sprinkler attached to the hose would be moved from place to place around each hydrant and left in each position a sufficient length of time to apply the desired amount of water. For example, the entire system might consist of a main pipeline from the pump running through the center of the area with two or more cross laterals and hydrants spaced at appropriate intervals. Each hydrant would consist of a short riser of $3 / 4$ inch pipe with
a hose bib to which would be attached a length of $3 / 4$ inch garden hose of 15 to 25 meters in length with a small sprinkler on a moveable stand. Ezch hydrant could serve from 4 to 16 sprinkler settings depending on a diameter of coverage of the sprinkler and the spacing of the laterals and hydrants. Design of a Sprinkler System for a Community Garden

Assuming that the conditions are such that a sprinkler system would be selected as the irrigation method to use, the following steps might be followed in designing the system. The arrangement of the piping system would be decided. As mentioned previously, an ideal arrangement would be to have a main pipeline go through the approximate center of the area with as many cross laterals as would be required to distribute water to the small hydrants. The spacing of these laterals and the spacing of the hydrants on the laterals would depend on the diameter of coverage of the sprinklers selected which, in turn, would depend primarily on the water pressure.

In some places, such as at Cerro Cama, there is already present a main pipeline crossing the area from the pump location on the adjacent stream. This pipe extends almost to the top of the hill on the upper side of the garden at an elevation of approximately 20 meters above the stream level. There is also a pump that can be powered with the garden tractor. The characteristics of this pump should be determined, but is would appear that it would have a capacity of at least 100 gallons per minute under a head of 25 meters. To distribute this flow of water on the fairly steep side hill and irrigate with furrows would be very difficult. With a low pressure sprinkler system, the water could be distributed through 2 cross laterals spaced about 30 meters apart with 2 or 3 hydronts on each lateral. A storage tank could be constructed at the top of the hill so as to give maximum flexibility in use. The excess water from the pump would go into the tank. From 4 to 6 sprinklers could be used at one time. When the tank was nearly full the pump could be shut off while the water from the tank was being drawn upon.

A more satisfactory arrangement in most places would be to use a lower capacity pump with higher pressure and operate the pump only when the sprinklers
are in use. No tank would be required. Pressures of 35 pounds per square inch (25 meters head) or more at the sprinklers produces a better break up of the jet and a more uniform distribution of the water over a larger area.

The diameter of coverage of the sprinklers is primarily a matter of the pressure on the system. Under low pressures, less than 15 pounds per square inch, (10 meters head) a sprinkler such as the Rainbird 20L would be most desirable. This sprinkler has a single nozzle with a fixed pin that intersects the jet causing it to break up into small drops that are distributed over the area covered. Such a sprinkler has a limited diameter of coverage of from about 10 to 15 meters, depending on both the nozzle diameter and pressure. For satisfactory uniformity of coverage these sprinklers should be spaced not more than 60 percent of the diameter corered in a square pattern or 70 percent in a triangular pattern. The spacing would then be 6 to 10 meters.

For higher pressures of 35 pounds per square inch or more, a \#20 sprinkler would be most satisfactory. Such a sprinkler would cover a much greater diameter, from about 25 to 30 meters, depending on nozzle size and pressure. Their use would permit a greater spacing of the pipelines and hydrants, or fewer settings around each hydrant. They would also permit lower rates of application and there would be less tendency to puddle the soil. Such sprinklers would be moved at less frequent intervals to apply the same depth of water.

Characteristics of Sprinklers

Some characteristics of small rotating sprinklers are given in Table 3. This selection of Rainbird sprinklers is intended to be illustrative only, as there are many other makes of sprinklers with similar characteristics. Specifications for the Rainbird 20 and 20 L sprinklers are reproduced here as Appendix Table 11. *

Other nozzle sizes are available for both the 20 and 20 L sprinklers including 9/64, $13 / 64$ and 9/32 inch. The pressures given in Table 3 for the *Page, II, Rain Bird Agricultural Catalog 69A, 1969).

TABLE 3. CHARACTERISTICS OF TWO TYPES OF SMALL ROTATING SPRINKLERS
Sprinkler Model
Nozzle size inches
Pressure, PSI
Head, ft.
Head, m
Discharge, gpm
Discharge, $1 / s$
Diam of coverage, ft.
Diam. of coverage, m.
Suggested spacing Square pattern (*) ft.
Net area covered, $\mathrm{ft}_{\mathrm{m} .}{ }^{2}$
Net area covered, m. ${ }^{2}$
Applic. rate in/hr.
Applic. rate $\mathrm{mm} / \mathrm{hr}$.
Suggested spacing
Triangular pattern (+) Ft.
Triangular pattern ${ }_{2}$.
Net area covered, $\mathrm{ft}_{\mathbf{i}}{ }^{2}$
Net area covered, m^{2}
Applic. rate, $\mathrm{in} / \mathrm{hr}$
Applic. rate, $\mathrm{mm} / \mathrm{hr}$.

RAINBIRD 20 (High Pressure)				RAINBIRD 20L (Low Pressure)			
1/8	5/32	11/64	3/16	3/16	13/64	7/32	$/ 4$
35	40	40	45	10	12	15	15
81	92	92	104	23	28	35	35
25	28	28	32	7.0	8.4	10.6	10.6
2.66	4.40	5.32	6.66	3.15	3.97	5.08	6.36
0.168	0.276	0.335	0.418	0.198	0.250	0.318	0.400
77	80	81	82	36	40	44	45
23.5	24.4	24.7	25.3	11.0	12.2	13.2	13.7
46 14.0	48 14.6	49 14	50	21.5	24.0	26.5	27.0
2120	2300	14.9	15.1	6.5	7.3	7.8	8.2
		2400	2500	460	516	580	580
	214	224	233	42.8	48.0	53.0	54.0
0.122	0.185	0.214	0.257	0.660	0.743	0.860	1.050
3.08	4.70	5.42	6.50	16.8	18.9	21.8	26.6
54	56	57	58	25	28	31	32
16.5	17.1	17.4	17.7	7.6	8.5	9.4	9.8
2530	2700	2800	2900	540	670	830	880
235	250	260	270	50.0	62.0	77.0	81.6
0.105	0.160	0.184	0.222	0.570	0.640	0.740	0.905
2.66	4.06	4.66	5.63	14.4	16.2	18.8	23.0

(*) Based on 60% of diameter covered, Satisfactory for low and moderate wind conditions, under $10 \mathrm{~km} / \mathrm{hr}$. For higher wind velocities, decrease spacing to 50% of diameter covered which will increase mean application rate 40%.
(+) Based on 70% of diameter covered forequilateral triangle. For wind velocities above $10 \mathrm{~km} / \mathrm{hr}$ decrease spacing to 60% of diameter of covered which will increase application rate 37%.

TABLE 3. CHARACTERISTICS OF TWO TYPES OF SMALL ROTATING SPRINKLERS

Sprinkler Model
Nozzle size inches
Pressure, PSI
Head, ft.
Head, m
Discharge, gpm
Discharge, $1 / \mathrm{s}$
Diam of coverage, ft.
Diam. of coverage, m.
Suggested spacing Square pattern (*) ft.
Net area covered, $\mathrm{ft}^{\mathrm{m}} \mathrm{D}_{2}$
Net area covered, m. ${ }^{2}$
Applic. rate $\mathrm{in} / \mathrm{hr}$.
Applic. rate mm/hr.
Suggested spacing
Triangular pattern (+) Ft . Triangular pattern ${ }^{m}$.
Net area covered, $\mathrm{ft}_{\mathrm{i}}{ }^{2}$
Net area covered, m^{2}
Applic. rate, in/hr
Applic. rate, mm/hr.

RAINBIRD 20		20 (High Pressure)		RAINBIRD 20		(Low Pr	ssure)
1/8	5/32	11/64	3/16	3/16	13/64	7/32	/4
35	40	40	45	10	12	15	15
81	92	92	104	23	28	35	35
25	28	28	32	7.0	8.4	10.6	10.6
2.66	4.40	5.32	6.66	3.15	3.97	5.08	6.36
0.168	0.276	0.335	0.418	0.198	0.250	5.0818	6.36 0.400
77	80	81	82	36	40	44.	45
23.5	24.4	24.7	25.3	11.0	12.2	13.2	13.7
46	48	49	50	21.5	24.0	26.5	27.0
14.0	14.6	14.9	15.1	6.5	7.3	7.8	8.2
2120	2300	2400	2500	460	516	580	580
196	214	224	233	42.8	48.0	53.0	54.0
0.122	0.385	0.214	0.257	0.660	0.743	0.860	1.050
3.08	4.70	5.42	6.50	16.8	18.9	21.8	26.6
$\begin{aligned} & 54 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 56 \\ & 17.1 \end{aligned}$	57 17.4	58 17.7	25 7.6	${ }^{28} 8$	31 9.4	${ }^{32} 8$
2530	2700	2800	2900	540	670	830	880
235	250	260	270	50.0	62.0	77.0	
0.105	0.160	0.184	0.222	0.570	0.640	0.740	
2.66	4.06	4.66	5.63	14.4	16.2	18.8	23.0

($\%$) Based on 60% of diameter covered, Satisfactory for low and moderate wind conditions, under $10 \mathrm{~km} / \mathrm{hr}$. For higher wind velocities, decrease spacing to 50% of diameter covered which will increase mean applicaiion rate 40%.
(+) Based on 70% of diameter covered forequilateral triangle. For wind velocities above $10 \mathrm{~km} / \mathrm{hr}$ decrease spacing to 60% of diameter of covered which will increase application rate 37%.

TABLE 4. Friction Loss in Standard Pipe in Feet per 100 Feet per 100 Feet ($\mathrm{m} . / 100 \mathrm{~m}$) " " " equals 100

Coefficients "C" and Friction Factor "K" for Different Kinds of Pipe* - Sizes $1 / 8$ to 3 inches

Condition of Pipe	"C"	"K"
Very smooth and straight	140	.54
Ordinary straight, Brass etc.	130	.52
Smooth, new steel pipe	120	.71
Ordinary steel pipe	100	1.00
Old steel pipe	80	1.52
Very rough corroded pipe	60	2.58

[^3]Table 5. Friction Loss in Feet per 100 Feet ($\mathrm{m} / 100 \mathrm{~m}$.) for Smooth Bore Hose.

Flow gpm	1/s	HOSE SIZE - INCHES					$2 "$
1.5	0.10	2.3	1.0				
2.5	0.16	6.0	2.5				
5	0.31	21.4	8.9	2.2	0.7	0.3	
10	0.63	76.8	31.8	7.8	2.6	1.3 1.0	
15	0.94		68.5	16.8	5.7	2.3	
20	1.26			28.7	9.6		
25	1.57			43.2	14.7	6.9	
30 35	1.89			61.2	20.7	8.5	2.0
35 40	2.20				27.6	11.2	2.7
40	2.52				35.0	14.3	3.5
50	3.14						
60 70	3.77				73.5	21.8 30.2	5.2 7.3
70 80	4.40 5.04					40.4	9.8
90	5.04					52.0	12.6
9	5.66					64.2	15.7

From PACO Pumping Manual, page 10.

Table 6. Friction Loss Through Pipe Fittings in Terms of Equivalent Lengths

Nominal Pipe Size Inches	Actual Inside Diam. mm.	Gate Valve	Standard Elbow	Angle Valve	Tee Through Side Outlet	Globe Valve
1/2	16.2	0.10	0.27	0.37	0.55	0.82
3/4	20.9	0.35	0.39	0.52	0.77	1.82
1	26.6	0.20	0.52	0.70	1.04	1.56
$11 / 4$	35.0	0.28	0.74	0.99	1.46	2.20
$11 / 2$	41.0	0.33	0.89	1.20	1.76	2.66
2	52.3	0.48	1.22	1.64	2.42	3.64
2 1/2	62.5	0.57	1.52	2.05	3.03	4.55
3	77.7	0.75	2.03	2.70	4.00	6.50
4	102.2	1.05	2.81	3.77	5.80	8.40
5	128.0	1.40	3.72	5.00	7.40	11.15

[^4]Table 7. Friction Loss in Feet per 100 Feet ($\mathrm{m} / 100 \mathrm{~m}$.) in Aluminum Pipe, 0.0. Sizes, Inches

Flow		Pipe Size, 0.D. - Inches				
gpm	1/s	2	3	4	5	6
		Wall Thickness - Inches				
		0.5	. 05	. 063	. 063	. 063
5	0.31	0.07				
10	0.63	0.32	0.04			
20	1.26	1.20	0.15	0.04		
30	1.89	2.58	0.32	0.08		
40	2.52	4.49	0.56	0.13	0.04	
	3.14					
60	3.77	9.85	1.21	0.28	0.09	
70	4.40	12.95	1.61	0.38	0.12	0.05
80	5.04	16.70	2.06	0.49	0.16	0.06
	5.66		2.58	0.60	0.20	0.08
109	6.28	25.40	3.18	0.74	0.24	0.10
120 140	7.53 8.80		4.51	1.06	0.34	0.14
140 160	8.80 10.00		6.00 7.76	1.41 1.82	0.46	0.19
180	11.00 11.40		7.76 9.67	1.82 2.27	0.59 0.73	0.24 0.30
200	12.60		11.83	2.78		
220	13.80		14.12	3.31	1.07	0.44
240	15.10		16.72	3.91	1.27	0.52
260 300	16.40 18.80		19.42	4.56	1.47	0.60
300	18.80		25.45	5.98	1.93	0.79

Based on Scobey's Formula with KS for 2" pipe $=6.34$, for $3 "$ pipe, KS $=0.33$ and for larger sizes, KS $=0.32$. From Marlow Engineering Manual, p. 25.

TABLE 8. Friction Loss in PVC Plastic Pipe, in Feet per 100 Feet ($\mathrm{m} . / 100 \mathrm{~m}$)

Flow			Pipe Size in Inches					
gpm	1/s	3/4	1	$11 / 4$	$11 / 2$	2	3	4
5	0.31	5.0	1.5	0.5				
10	0.63	19.0	5.0	1.5	1.0			
15	0.94	30.0	10.0	3.5	1.0			
20	1.26		17.0	5.5	1.5 2.5	1.0		
25	1.57		26.0	8.0	4.0	1.0		
30	1.89							
35	2.20			14.0	5.5 7.0	2.0 2.5		
40	2.52			18.0	8.5	2.5 3.0		
50 75	3.14			18.0 25.0	8.5 13.0	3.0 4.0	1.0	
75	4.71			25.0	$\begin{aligned} & 13.0 \\ & 27.0 \end{aligned}$	4.0 8.0	1.0 1.5	
100	6.28							
125	7.85					15.0	2.0	
150	9.40					22.0	3.5	
200	12.60					30.0	5.0	-
300	18.80						8.0	2.0
							16.0	4.0

[^5]Tables 7 and 8 were reproduced from page 25 of the Engineering Manual published by Marlow Pumps, I. T. T. The friction loss in PVC pipe is less than for iron pipe or smooth bore hose.

In the design of the sprinkler system, the pipe layout must first be made, then the pipe sizes are selected so that the friction losses are reasonable. Where a gravity source of pressure is available, the friction loss limits the amount of water that will flow through the pipeline, but where pumps are used, a smaller pipe may mean an increased pumping head.

Suggested Layout of Low Pressure Sprinkler System

A suggested layout of a low pressure sprinkler system for an area of 2 hectares ($100 \mathrm{~m} \times 200 \mathrm{~m}$) is shown in Figure 1. This layout assumes that a source of water supply is available near the long side of the rectangle. For the design of this system it will be assumed that the system will be operated only during the daytime (12 hours), 6 days per week during periods of maximum demand and that 60 mm . of water is to be applied to the entire area every 7 days. This would require 52 gallons per minute ($3.1 \mathrm{l} / \mathrm{s}$) and a total of 10 sprinklers with a capacity of 5.2 gallons per minute ($0.31 \mathrm{l} / \mathrm{s}$) \#20L sprinkler with $7 / 32^{\prime \prime}$ nozzle operating at a pressure of about 16 pounds per square inch (11 meters head) at the sprinkler. Since all of the area would not require the maximum assumed irrigation requirement at the same time and also because the actual net area irrigated will be less than 2 ha., it will be assumed that 9 sprinklers with a discharge of $5 \mathrm{gpm}(0.32 \mathrm{l} / \mathrm{s})$ would suffice and that a total of 45 gallons per minute ($2.81 / \mathrm{s}$) would be a satisfactory design value.

For the arrangement shown in Figure 1, with 18 hydrants, each sprinkler could serve 2 hydrants and that there would be 3 sprinklers operating on each lateral simultaneously. The flow to the first hydrant on each lateral would be 10 gpm and to the last hydrant, 5 gpm . The friction loss calculations are given below:
For lateral and hose
$75^{\prime} 3 / 4^{\prime \prime}$ hose, $5 \mathrm{gpm}(0.32 \mathrm{l} / \mathrm{s})$
208' 1" PVC pipe, $5 \mathrm{gpm}(0.32 \mathrm{l} / \mathrm{s})$
$60^{\prime} 1^{\prime \prime}$ PVC pipe, $10 \mathrm{gpm}(0.64 \mathrm{l} / \mathrm{s})$

Friction loss	
ft	m.
6.7	2.0
3.1	1.0
$\frac{3.0}{2.8}$	$\frac{1.0}{4.0}$

Figure 1. Suggested Layout of Irrigation System for Two Hectare Garden Scale $1 \mathrm{~cm} .=10 \mathrm{~m}$.

For main line from pump	Friction loss	
	ft.	m.
$106 ' 2{ }^{\prime \prime}$ PVC pipe, $15 \mathrm{gpm}(1 \mathrm{l} / \mathrm{s})$	0.5	0.15
$106{ }^{\prime \prime} 2^{\prime \prime}$ PVC pipe, $30 \mathrm{gpm}(2 \mathrm{l} / \mathrm{s})$	2.1	0.65
150^{\prime} (assumed) $2^{\prime \prime}$ PVC pipe, $45 \mathrm{gpm}(3 \mathrm{l} / \mathrm{s})$	5.3	1.60
$10^{\prime} 2^{\prime \prime}$ discharge hose, $45 \mathrm{gpm}(3 \mathrm{l} / \mathrm{s}$)	0.5	0.15
Friction losses at pump	8.4	2.55
$20^{\prime} 21 / 2^{\prime \prime}$ suction hose	0.5	0.15
$21 / 2^{\prime \prime}$ foot valve	1.5	0.45
$2^{\prime \prime}$ tee, side outlet	0.7	0.23
2 " gate valve	0.1	0.03
Suction lift (assumed)	10.0	3.04
For sprinkler pressure	12.8	3.90
Elevation of highest sprinkler above pump (assumed)	10.0	3.04
Pressure at sprinkler 15 psi	36.0	11.00
	46.0	14.04
Total dynamic head at pump	80.0	24.40

With the low pressure sprinkler covering a circular area of 14 meters diameter, the sprinklers should be spaced about 8 meters apart. This would mean that there will be 16 settings of the sprinkler around each hydrant. For this spacing the sprinkler would have a net application rate of about 21.8 mm . per hour, which is somewhat higher than would be desirable. The actual application rate will be less than this amount over most of the circular area covered, averaging only about 9 mm . per hour. The sprinklers would be moved about every 3 hours and thus 4 settings could be made in a 12 -hour day.

High pressure sprinklers could be spaced about twice as far apart and thus only four settings around each hydrant would be required to cover the same area. The sprinklers would need to be moved only once in 12 hours for the same application of water.

A pump would next be selected that would have a discharge of 45 gpm $(2.8 \mathrm{l} / \mathrm{s})$ at 80 feet $(24.4 \mathrm{~m}$.) total head. Since the discharge of pumps decreases with wear, one should add about 20% to the required discharge and select a pump for about $54 \mathrm{gpm}(3.4 \mathrm{l} / \mathrm{s})$ at 80 feet (24.4 m) head.

The power required for such a pump would be given by the formula $\mathrm{HP}=\mathrm{q} H /(3960 \times \mathrm{E})$

Where HP is the required horse power
q is the pump discharge in gpm
H is the total dynamic head in feet.
For the example above, assuming a pump efficiency of 50 percent $H P=54 \times 80 /(3960 \times .50)=\underline{2.2 H P}$
In metric units, the required horsepower would be $\mathrm{HP}=3.4 \times 24.4 /(76 \times .50)-2.2 \mathrm{HP}$

One would select a 2.5 or 3.0 HP electir motor or 3 or 3.5 HP gasoline engine.

A $11 / 2^{\prime \prime}$ or $2^{\prime \prime}$ centrifugal pump with proper impeller diameter and driven at the correct speed should meet this requirement.

The same pump with a larger diameter impeller or driven at a higher speed, could be used for a high pressure sprinkler system.

Assuming the same sprinkler discharge, $5 \mathrm{gpm}(0.31 \mathrm{l} / \mathrm{s})$, but at a pressure of $45 \mathrm{psi}(32 \mathrm{~m}$. head), the friction losses through the entire system would be the same. The only difference would be the static head of 32 m . instead of 11 m ., an increase of 21 m ., making a total dynamic head of 24.4120 .6 or 45 m . The power requirement would then be

$$
H P=3.4 \times 45 /(76 \times .50)=4 \mathrm{HP}
$$

For continuous duty, one would probably select a 4 HP electric motor or a 5 HP gasoline or diesel engine for this installation.

Cost Estimate

Data are not available from which an accurate cost estimate can be made. The unit prices given here are only approximations. They are intended to give only a rough idea as to what the cost might be for the suggested layout shown in Figure 1. They do not include transportation of pipe and other equipment to the site nor installation costs. If the pump and engine and other equipment must be purchased from U.S. manufacturers, the cost may be higher than if Japanese or possibly European equipment is used.

	U.S. Dollars
Pump and engine (add about $\$ 200$ for diesel engine)	\$800.00
Suction hose and foot valve	55.00
Discharge hose	20.01
Gate valve, 2 inch ($2^{\prime \prime}$)	25.00
Pumping plant complete	\$900.00
Pipe System	
360 feet 2" PVC (200 psi) at . $30 / \mathrm{ft}$ (110 m .)	108.00
2400 feet l" PVC at. $15 / \mathrm{ft}$ (7.30 m .)	360.00
6-1" gate valves at 5.00	30.00
18 hydrants complete at 5.00	90.00
9 Low pressure sprinklers at 7:00	63.00
9-75' lengths of 3/4' hose (plastic) at . $25 / \mathrm{ft}$ (206 m.)	170.00
Miscellaneous pipe fittings allowance	29.00
Total for pipe system	\$850.00
Total Cost	\$1,750.00

-33.

APPENDIX

ITINERAR Y

May 7. 1972 (Sunday) - 2230 hrs . Arrived in Panama.
May 8. (Monday)
Picked up at Hotel by Mr. Nicanor Castillo, Jr. Spent day at USAID
Office and visit to Ministerio de Salud to meet the Minister and Ing.
Jose A. Sucre, Sanitary Engineer.
May 9. (Tuesday)
Made trip to Cerro Cama and El Zahino Projects. Rain prevented visit
to another project.
May 10. (Wednesday)
Spent day at office and made visits to equipment companies in Panama.
Made arrangements for visit to Colon area with Sr . Camarano of the Ministerio de Salud.

May 11, (Thursday)
Made trip to Colon area to visit community water systems being installed at Palmas Bellas and Pina.
May 12. (Friday)
Made trip to the office of Comision Nacional de Aguas to meet Ing. Terence Scharenguivel who came to Panama about 3 years ago and completed an irrigation project for UN Special Fund. This project is located near Chitre in the Peninsula de Azuero.

The afternoon was spent with Mr. Cas!illo contacting firms in Panama that supply various kinds of irrigation equipment.
May 15, (Monday)
Spent day at office
May 16, (Tuesday)
Left for a two-day trip to the provinces of Cocle and Veraguas with Sr . Castillo. Stayed overnight at A.guadulce. Visited Sr. Castillo's farm. Attempted to irrigate papayas but found that the soil had a very high infiltration rate. The flow (about 8 gallons per minute) failed to reach the end of the furrow, about 21 m .

May 17. (Wednesday)
Visited the Escuela Nacional deAgricultura at Divisa. Discussed both irrigation and drainage problems with 3 of the staff. Continued on to Potuga to see 2 community gardens. One is being cared for by the men of the community and the other by 29 women. The men's garden has been irrigated to a very limited extent by pumping from a stream in which a dam has been constructed to form a pool. A small part of the women's garden has also been irrigated from a half-inch PVC pipe connected to the community water system. These gardens differ from the ones previously seen in that the topography is much flatter and there is no convenient hill on which a storage tank could be built. Returned to Panama in the late afternoon.

May 18-19, (Thursday and Friday)
Spent 2 days at the office writing report.
May 22, (Monday)
Made trip to Las Mararitas near Chepo, east of Panama City with Sr. Castillo and Dr. Ervin Bullard. Saw the topographic conditions pertaining to this region and inspected 1 site that had been selected for the community garden. This site was adjacent to the Rio Mamoni. To irrigate this garden from the river would require that the pump be on one side of a public roadway and that the water be conducted across the roadway, probably through a cutout under the roadway.
May 23 (Tuesday)
Began 4-day trip to western part of Panama with Sr. Castillo. Followed the Interamerican Highway to David in the province of Chiriqui then on to Boquete in the mountains. Intended to visit a community garden at Dos Rios but rainstorm prevented it.

Discussed irrigation at Boquete with Sr. Lamastos who grows vegetables on the Mesa above Boquete. He irrigates from a 6-inch pipe line supplied by gravity from a perennial stream. Says water supply is not adequate. Must sprinkle vegetables every 3 days during the dry period. Ir rigates potatoes 3 times only in January and harvests them in February.

May 24, (Wednesday)

Spent most of forenoon in Boquete discussing irrigation problems. Saw the flood damage and problems resulting from a flood that occurred in 1969 which drowned 10 persons and destroyed several bridges and buildings. Made suggestions for improving channel to help protect against reoccurance of similar floods.

Stopped at Dos Rios and inspected 2 community gardens. Each had an area slightly less than 2 ha. These gardens were on much flatter slopes, estimated to be about 1 percent slope, and probably could be irrigated by surface methods if the soil was not too permeable. They provide water to one garden from a canal that comes from a nearby perennial stream. The water is pumped into the canal. Water became available only a month or so ago and these has not been time to determine how satisfactory the surface irrigation will be.

May 25. (Thursday)
Spent some time at San Benito Vocational School in Volcan where they were having some drainage problems. This school is operated by 2 North Americans who began their carerrs in Panama as Peace Corps volunters. This school trains young men in vocational skills including agriculture, farm mechanics, woodworking, furniture repair, etc. Advised with respect to the drainage problem. Rainfall here was reported to be about 130 inches per year. The major problem is surface drainage. Subsoil drainage is also needed. Some drains have been excavated, but were not deep enough. More and deeper drains are needed.

Returned to Concepcion, then West to the Costa Rican border. Saw some of the flatter areas in this region where some sugar cane is irrigated. Did not see the large irrigation project of the Chiriqui Land Company where more than 8000 ha. of bananas are irrigated because of road construction and lack of time. Returned to David for a late lunch, then back to Aguadulce for the night.

May 26. (Friday)
Returned to Divisa to discuss irrigation and drainage problems with Professors Rolando Lasso G. and Jose A. Dutary, at the Instituto Nacional Agricola. Was
with a topographic map of one area where they need drainage during the wet season and would like a sprinkler system to use during the dry season. Promised to give them some assistance and recommendations.
After lunch at Anton returned to Panama City after 4 p.m.
May 29, (Monday - Memorial Day)
Office closed but spent most of the time at the apartment working on the INA sprinkler system and writing report.
May 30 - June 2
Spent time at office writing report.
June 3
1.eft Panama at 9:50 a.m.

Appendix Table 9. Mean Precipitation in mm, Ropublic of Panama

Province and Station	Elev. m	$\begin{aligned} & \text { Lat } \\ & \mathrm{a}_{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \text { Long } \\ & \mathrm{o}^{\mathrm{W}} \end{aligned}$	Yeara of Recard	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nav	Dec	Ann	$\begin{aligned} & \text { Prec } \\ & 1970 \end{aligned}$
COCL.E																		
Boca del Toabre	--	802	7736	$10+$	301	147	154	378	478	362	351	391	290	356	401	594		
Chiguiri Arriba	--	841	8013	$10+$	97	69	46	156	335	426	444	425	290 391	449	491	394	4294 3576	6238 4314
El Cope	--	- --	-. --	$1+$	281	85	55	178	314	176	238	370	473	449 512	431 188	306 262	3576	4314 3133
El Cortezo	43	820	8035	$10+$	17	9	6	35	213	351	186	229	473 315	522	188	262 87	2318	3133 2024
El Harino	186	837	8034	$10+$	58	21	17	69	180	286	128	197	214	291	154	87 62	2318 1675	2024 1960
El Valle	582	836	8010	$6+$	35	41	26	101	347	449	406	460	484	519	341	165	3376	3571
La Pintada	--	---	-- --	$1+$	212	153	101	252	300	401	254	532	901	707	544	765	3376	5571
Rio Grande	18	825	8029	$10+$	6	7	11	10	161	193	122	149	221	315	197	63	1485	1831
Santa Clara	--	824	8007	$10+$	11	3	1	21	149	141	112	137	132	167	170	77	1485	1831
Santa Rosa	24	812	8040	$9+$	-	2	3	31	212	211	170	198	238	346	252	72	1.22	968
COLON																		
Agua Clara	457	922	7943	$4+$	93	45	54	131	131	324	327	364	317	498	584	408	3544	4576
Cocle del Norte	2	934	8034	$1+$	340	426	935	895	767	682	769	542	398	574	982	790	3544	4576 8836
Cristobal	12	921	7955	$10+$	84	39	38	103	319	331	395	389	320	399	574	308	3300	4224
El Chnrro	43	858	7959	$6+$	70	32	34	86	272	261	202	276	310	330	329	203	2405	2859
Isla Grande	73	938	7934	$7+$	67	38	71	75	372	274	300	-	-	-	-	-		
Portobelo	5	932	7940	$10+$	130	74	69	164	446	421	469	492	339	400	641	415	4061	4886
Salud	20	912	8008	$5+$	149	73	96	204	509	381	524	487	329	500	714	513	4479	48856
Escandalosa	459	926	8035	$5+$	-	-	71	150	372	331	368	322	278	315	481	326	4	495
CHIRIQUI																		
Alanje	--	818	8232	$10+$	22	46	24	136	232	259	266	339	282	423	273	113	2415	2807
Angostura de Cochea	210	833	8223	$6+$	35	44	71	184	437	582	434	606	665	790	582	154	4583	4521
Bajo Boquete	1100	847	8228	$4+$	72	69	55	164	408	542	295	435	662	594	218	127	3641	4305
Bambito	--	850	8237	$5+$	40	21	23	120	-	394	226	282	368	472	235	76	3641	2016
Caldera	275	834	8225	$5+$	21	55	53	199	466	612	385	437	652	747	384	89	4100	4862
Camaron	--	804	8139	9+	25	32	42	137	350	488	378	456	531	784	524			
Cermeno	300	---	--	$4+$	62	37	44	145	365	443	299	439	385	505	524 320	136 128	4882 3174	3669 3899
Cuesta de Piedra	1000	841	8237		196	51	-	461	706	772	546	994	1023	822	809	128	3174	3899
David	--	825	8226	$3+$	50	65	59	183	203	323	309	402	356	473	312	115	2850	3118
Divala	100	825	8243	$2+$	46	40	42	75	241	124	261	231	309	352	349	96	2169	2418

From Meteorologia, Ano 1970. Eatadistica Panamina, Serie "L".

Appendix Table 9. (Continued)

Appendix Table 9. (Continued)

Province and Station	Elev. m	$\stackrel{\text { Lat }}{\mathbf{o}_{\mathbf{N}}}$	$\begin{aligned} & \text { Long } \\ & { }_{W} \end{aligned}$	$\begin{aligned} & \text { Years } \\ & \text { of } \\ & \text { Record } \end{aligned}$	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann	$\begin{aligned} & \text { Prec } \\ & 1970 \end{aligned}$
PANAMA																		
Altos de Balboa (2)	30	858	7933	$10+$	30	17	16	71	205	204	188	199	199	271	262	128	1789	1799
Candela ria	101	923	7932	$4+$	114	63	44	152	352	332	344	361	310	347	420	335	3173	4027
Canita	200	913	7854	7	68	23	20	114	347	382	287	300	455	414	404	139	3013	4904
Capira	110	845	7952	$1+$	54	25	51	84	335	38	207	443	152	310	226	147	-	2156
Chepo	80	910	7905	$10+$	77	8	12	65	262	265	240	259	290	400	358	156	2394	3574
Chico	122	916	7931	$4+$	46	18	12	76	299	303	338	344	334	388	369	203	2548	3439
Maje	130	910	7849	8+	52	16	15	85	215	233	236	244	236	270	287	132	2022	3097
Piria	--	908	7828	$2+$	-	27	37	96	240	350	210	239	247	261	238	170	-	309
Repressa Madden	76	912	7937	$10+$	27	13	13	78	278	293	309	300	288	352	349	146	2445	2851
Tocumen	61	905	7923	$9+$	15	10	6	57	211	258	171	218	231	310	270	104	1861	2154
Universidad	34	859	7932	$6+$	49	22	17	44	246	223	208	237	227	326	350	148	2096	1864
Zanja Escondida	75	913	7832	$1+$	63	49	20	98	120	97	96	148	246	199	273	273	2096	1864 1800
VERAGUS																		
Calobre	--	819	8048	9+	19	28	33	124	322	342	305	326	383	508	371	110		
Canto del Llano	250	808	8058	$4+$	30	20	25	121	325	416	249	371	390	491	364	135	2871	3397
Casa de Maquinas	--	- --	-. --	$2+$	84	6	89	182	492	549	317	559	600	630	564?	135 282	2936 4328	3327 4550
Cerro Redondo	--			$2+$	32	51	180	212	279	314	379	550	498	557	550	139	4328 3740	4550 3799
El Cobrizo	470	828	8123	8+	10	14	29	104	238	413	319	343	466	600	286	78	2900	4006
El Flor	550	825	8051	$9+$	13	36	37	162	408	570	467	493	623	643	444	153	4050	4825
El Palmar		832	8104	$10+$	92	60	52	249	204	324	201	273	306	336	276	169	2543	4825 $3+81$
Laguna la Yeguada	640	827	8051	$7+$	12	46	14	113	316	555	356	421	571	585	361	120	3570	4185 485
Laguna San Juan	800	828	8051	$10+$	21	15	22	129	293	530	353	406	552	570	419	95	3404	3868
Loma Llana	--	8 36	8055	$10+$	81	64	28	172	250	490	503	598	714	709	594	258	4461	7279
Los Valles	--	827	6113	$4+$	36	19	27	99	240	370	234	385	413	518	283	93		
Rio Vigai	P5	---	----	$2+$	106	35	78	225	425	388	297	562	773	518 578	283 610	93 273	2717 4352	3712 4688
Gan Francisco	85	A 15	8058	B+	16	31	22	112	276	364	287	336	363	474	295	27 98	2674 327	4688 7788
Gan Juan	4	---	----	$7+$	63	1	79	213	386	287	190	487	604	348	428	138	3223	7712 3312
Ganta Fe	463	8 31	8105	7+	54	34	32	119	231	332	214	268	311	371 371	224	138 135	3723 2325	3312 3036
Gitio del Desvio	640	8 27	8052	$7+$	12	48	15	140	357	572	387	441	575	639	366	129	3681	4218

APPENDIX 98

TABLE 10. IRRIGATION PROJECTS IN PANAMA OF MORE thaN 100 hectares IRrigated from surface water

No.	Neme	Lat.	Long.	Area irrigoted (hectares)	Source of water	Copacity of moin canal ($\mathrm{m}^{3} / \mathrm{sec}$.)	Crops irrigated	Methods	Poriod of irrigation
Azucarera "La Estrella" - - M									
$\begin{aligned} & \mathrm{la} \\ & \mathrm{lb} \end{aligned}$	(gravity) (bombes)	$\begin{aligned} & 8^{\circ} 17^{\prime} \\ & 8^{\circ} 19^{\prime} \end{aligned}$	$\begin{aligned} & 80^{\circ} 31^{\prime} \\ & 80^{\circ} 29 \end{aligned}$	$\begin{array}{r} 925 \\ 1550 \end{array}$	Rio Chico Rio Chico	1.0	Sugar cane Sugar cane	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { January-April } \\ & \text { January-April } \end{aligned}$
Azyearera Nacional									
20	"Baquillo"	8009'	$80^{\circ} 35^{\prime}$	500	Rio Sta.Maria				
20	"Panela"	80081	$80^{\circ} 40^{\prime}$	120	Rio Sta.Maria	1.03	Sugar cane	8	January-April
2 c	"Sta. Rosa"	8012	$80^{\circ} 40^{\prime}$	100	Rio Sta.Mario	0.4 0.2	Sugar cane	B	Janwary-April
2 d	"Sta. Teresa"	$8^{\circ} 08^{\prime}$	$80^{\circ} 39^{\prime}$	140	Rio Sta. Maria	$\begin{aligned} & 0.2 \\ & 0.57 \end{aligned}$	Sugar cane Sugar cane	$\begin{aligned} & \mathbf{G} \\ & \mathbf{B} \end{aligned}$	$\begin{aligned} & \text { Jamary-April } \\ & \text { January-April } \end{aligned}$
3	Bella Costillo	$8{ }^{\circ} 25^{\prime}$	$80^{\circ} 33^{\prime}$	150	Rio El Cano				
4	Betty (Canal de)	$88^{\circ} 5^{1}$	82035'	400	Rio Chico		Pangola	8	Jonuary-April
5	Bijaguol (Canal de)	$8^{3} 35^{\prime}$	$82^{\circ} 24^{\prime}$	100	Rio Cocheo	0.6	Rice, pasture Tobacco, tomatoes	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Seplember-April January-April
Chiriqui iand Co.									
60	"Almeridro"	$8^{\circ} 24^{\prime}$							
66	"Las Huacas"	8022	$82^{\circ} 47^{\prime}$		Rio Chiriqui Viejo Rio Colorado	2.42			December-April
6^{6}	"Sta. Librada"	$8{ }^{\circ} 24{ }^{\prime}$	$82^{\circ} 46^{\prime}$		Rio Gariche		Bananas Bananas	$\begin{aligned} & \mathbf{B} \\ & \mathbf{G} \end{aligned}$	December-April December-April
7	Churube Abajo	$8^{\circ} 23^{\prime}$							
8	El Rosario	$88^{\circ} 1^{\prime}$	$80^{\circ} 20^{\prime}$	300	Rio Churube Rio Chorrerito	Under const. 0.1	Pasture Pasture	$\begin{aligned} & \text { B } \\ & \text { G } \end{aligned}$	January-April
Escueta Nac. de Agric.									
90	"Corita"	8009'	80042'		Ria Sta. Maria	0.35	or cane, ri	B	Dacemer-April

APPENDIX 9B

TABLE 10. IRRIGATION PROJECTS IN PANAMA OF MORE THAN 100 hectares trigated from surface water (continued)

No.	Name	Lot.	Long.	Area irrigated (hectores)	Source of woter	Capacity of main canal ($\mathrm{m}^{3} / \mathrm{sec}$.)	Crops irrigated	Methods	Period of irrigation
$\%$	"+Nongo"	$8{ }^{\circ} 09^{\prime}$	80042'		Rio Sto. Maria	0.1	Corn, sugar cone, rice,	B	December-April
10	Estacion Exp.MACI (Lavilla)	7057	80 ${ }^{\circ} 4^{\prime \prime}$	50 (1)	Rio Lo Villo	0.12	pasture Corn, beans, tamaloes,	B	Jonuary-April
11	Gualaco (Canal de)	$8^{80} 32^{\prime}$	$82^{\circ} 18^{\prime}$	40 (2)	Rio Chiriqui	0.53	rice Posture		
12	Haciendo Carra Viejo	$88^{\circ 27}{ }^{\prime}$	82032'	160	Rio Chico	0.83	Sugar cane, rica	G	January-April
13	Hicaco (${ }_{\text {inco }}$)	$88^{\circ 23}{ }^{\prime}$	822^{19}	100 (3)	Rio Chiriqui		Sugar cane, rice	G	Seplember-April
14	Nacio (Conal de)	$8^{\circ} 23^{\prime}$	82036'	300	Rio Chico	0.54	Tobacco, rice	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	September-April
15	Ramon Chion (Finco de)	8023	$82^{\circ} 40$	600	Rio Escorrea				
16	Rojos (Crinol de)	8026^{\prime}	$82^{\circ} 35^{\prime}$	750	Rio Chico			G	March-December
17	Sanclicz (Comal de)	$8^{\circ} 23^{\prime}$	$82^{\circ} 37^{\prime}$	120	Qda. Balsa		Tobacco, rice, pasture Rice, tobacco	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	September-April September-April
	Santa Menica								
180	Santa Monica	$8^{\circ} 22^{\prime}$	$80^{\circ} 13^{\prime}$	910	Rio Chico	2.0			
186	Santa Monico	80211	$80^{\circ} 11$	340	Rio Chico	2.5	Pasture		
18 c	Santa Monica	8022^{\prime}	$80^{\circ} 14^{\prime}$	490	Rio Anton	0.46	Pasture	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	December-April
17	Voia. ${ }^{\text {L }}$ Sinnchez (Conal de)	$88^{\circ} 23^{\prime}$	$82^{\circ} 7^{\prime}$	100	Qdas. Bolso y Chacono		Pasture	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	December-April Janwary-April
	(1) This conal is designed to i (2) This canal was originally (3) This conal is not in use at (4) Water is supplied by 6 pum	gate nstruct e prese with	hectores to irrigo time. otal esti	and of which o 00 hectares but d capacity of	y 50 hectares are prese presently irrigates or'y ,000 gallons per minuto	ntly irrigated 40 hectares. (2.4 m3/sec			

AIUM ARM

$\left\|\begin{array}{c} \dot{n} \\ -\dot{a} \end{array}\right\|$	$\begin{gathered} 1 \text { Nonit! } \\ \text { 1/64 } \\ \text { Dia GP M! } \end{gathered}$					Honile 04 69
2	50	1.55	St	19 :		23?
2	${ }^{31}$	13	S4	221		: 41
30	ss	189	37	244	3s	3. 10
3	51	205	39	266	. 60	336
40	59	220	61	286	62	361
45	61	232	${ }^{6}$	304	64	38
so	$6]$	244	H	322	65	:03

\dot{n}	$\left\|\begin{array}{c} \text { Monzin } \\ s / 20^{\prime} \\ 0 . a C P \end{array}\right\|$		$\begin{gathered} \text { Nonte } \\ \text { 11/64", } \\ 0 . \mathrm{C}^{2} \mathrm{CPM} \end{gathered}$		$\left\{\begin{array}{c} N_{0} / 1! \\ 3 / 16^{\prime \prime} \\ D_{12} G \mathrm{P} \end{array}\right.$		Morile 13/64' II. CPM		
20	5)	304	4	$3: 2$	S3	(3)	3)	$3.11 ; 53$	540
25	54	343	51	4.17	48	4 1	${ }^{6} 3$	575	651
30	59	1.78	51	157	$6]$	5:4	55	$6: 9$	7.25
Js	${ }^{6} 1$	4.10	[6]	4.9	65	34	61	6.13 ! 72	7.79
4	63	4.40	65	58	67	621	69	$7.31: 74$	
45	6s	460	167	5.65	68	6.86	1	775	18
50	6	495	${ }^{68}$	595	10	7.03	13	11017	13

maten: \because lacmials arn an

- Shown for standard nozsle at 35 P.S I .

The tiajectory height may be sliphtiy highef with larger not. fles and or hugher pressures.

TABLE 11. Specifications of Rain Bird Full Circle Sprinklers. See page 20, Rain Bird Agricultural Catalog 69A, 1969

[^0]: * Meteorolgia, Affo 1970, Estadistica Panameña, Ano XXX, Serie "L".

[^1]: * From map showing Ground Water Resources of Panama, scale 1:1,000,000 AID Resources Inventory Center, Corps of Engineers, Wash., D. C. Based on Geologic Map of Panama, Administracion de Recursos Minerales.

[^2]: * Meteorologia. Ano 1970.

[^3]: * Multiply values in Table 4 by the " R " factor.

[^4]: * Add amount given here to length of pipe in meters. From PABCO Pumping Manual, page 9.

[^5]: From Marlow Engineering Manual, page 25.

