Reprintes from the Proceedings of 25th Annual Conference of the Southeasiern Association of Game and Fish Commissioncrs, 1971 OBSERVATIONS ON SPAWNING AND GROWTH OF FOUR SPECIES OF BASSES (Micropterus) IN PONDS

By R. ONEAL SMITHERMAN
Associate Professor
Department of Fisheries and Allied Aquacultures

and

JOIIN S. RAMSEY
Leader, Alabama Cooperative Fishery Unit Agricultural Experimest Station of Auburn University, Auburn, Alabama

Abstract

Brood stock of basses were obtained from the following locations during March to April, 1969; Micropterus coosae (Alabama race), Alabama River system; A. coosac (Apalachicola rate), Apalachicola River system; M. notius, Suwannee River system; M. punctulatus henshalli, Tallapoosa River system; M. p. punctulatus, Apalachicola River system; M. dolomieui, Mammoth Spring National Fish Hatchery, Arkansas.

Adult bass of each stock except Suwaynee bass spawned during April 5 to May 19, 1969, in 0.04- to 0.1-acre earthen ponds when stocked at 50 to 100 per acre. Suwannee bass possibly had already spawned in their native habitat. However, Suwannee bass spawned in April during both 1970 and 1971. Surface water temperatures and dates when eggs were first observed were as follows: M. p. henshalli-69 F (April 5, 1969); M. coosae (Alabama race)-73 F (April 14, 1969) ; M. dolomieui-73 F M. coosae (Alabama race) - 73 F (April 14, 1969) ; M. dolomieui-73 F (April 16, 1969) ; M. p. punctulatus-74 F (May 3, 1969) ; M. coosae (Apalachicola race)-79 F (May 5, 1969) ; M. notius-68 F (April 9, 1970), and 68 F (April 17, 1971). Egg sizes varied considerably aniong species, M. p. henshalli having eggs 1.9 mm in diameter, while the smangest of adult basses, M. coosae (Alabama race) had the largest' eggs at 3.5 mm in diameter.

Fry from each bass form except M. notius were stocked during May 9 to June 11 into 0.1 -acre ponds which contained abundant fathead minnow, Pimephales promelas. Bass were 17 to 41 mm in total length and were stocked at rates of 800 to 3,000 per acre. Rates of growth varied with species and stocking rate, and survival at draining was lowest in MI. dolomicui (63.7 per cent) and highest (89.9 per cent) in M. coosae
(Apalachicola race). (Apalachicola race).
Another experiment was a comparison of growth of M. p. henshalli, M. coosac (Alabama race), Mr. coosae (Apalachicola race), and M. dolomieui, in a single fertilized pond. In the pond, survival of the Alabama redeye bass was 100 per cent, while that of the Apalachicola redeye bass was only 67 per cent. The Alabama race had the least growth rate
of the four basses.
M. notius fry stocked at 25 mm (272/A) on May 21, 1970, into a pond containing abundant fathead minnow forage grew to 94 mm by July 13 , 1970. All fish were lost at this time from oxygen depletion.

INTRODUCTION

This study was conducted at Auburn University during 1969 to 1971 to determine adaptability of several stream basses to life in small impoundments. Populations investigated were Micropterus coosae (redeye bass, Alabama race), Alabama River system; M. coosae (redeye bass, Apalachicola race), Apalachicola River systera; M. notius (Suwannee bass), Suwannee River system; M. punctulatus henshalli (Alabama spotted bass), Alabama River system; M. p. punctulatus (Apalachicola spotted bass), Apalachicola River system; and M. dolomieui (smallmouth bass), Mammoth Spring National Fish Hatchery, Arkansas. Observations were made on the reproductive success and relative growth of these

TAprer 1. Source and steckiag data for Micropterus braod stock, 1969 to 1970

Bans populations	Source	$\begin{aligned} & \text { Stocked Total } \\ & \text { Year Number leagtte (mm) } \end{aligned}$			Weight (g)	Pond (A)	
Redese							
Apalachicoia	Halawakee and Wacoocheo Crs., Lie Ca, Alabama	1969	8	225-418	131-973	R-31	(0.1)
Alabama *	Bird and Loblockea Cra., Lee Ca, Alabama	1969	4	130-247	18-201	M-7	(.04)
Smallmouth*	Mammouth Spring National Fish Katchary, Fulton Co., Arkansas	1969	6	348-367	681-840	E-33	(0.10)
Spotted							
Apalechicola	Haławakee Cr., Lee Con Alabama	1969	6	296-418	167-1,043		(0.10)
Abbame *	Uphapee Cr., Macon Co.s Alabama	1969	6	304-460	343-1,272	B-30	(0.10)
Suwambe	Iehetucknoe R., Columbia Can Floxida	1969	9	207-338	118-577		(0.10)
Suwannee*	Iehetacknee $\mathrm{R}_{\text {, }}$ Colambia $\mathbf{C a}$, Ftorida	1970	9	228-338	154-530	R-31	(0.10)

a Broot stock had been held in poods the previons 19 montha; othere were directly Trose tram.
basses in lentic waters for data to guide future experiments in development of new or improved game fishes.

MATERIALS AND METHODS

Brood ponds
Earthen ponds 0.04- to 0.1-acre were filled in January 1969. During March, approximately 1 bushel of stream gr,vel or limestone chips was placed near the shoreline at, several points in each pond to serve as spawning substrate. To promote zooplankton growth, each pond was enriched during March and April with Auburn No. 2 fish feed and hay at rates of 100 and 600 pounds per acre, respectively.

Brood bass

Adult bass were introduced into brood ponds from March to April. Source of brood bass, number and size stocked, and dates stocked are summarized in Table 1.

Rearing ponds

Seven 0.1 -acre earthen ponds were filled in January and each stocked with 200 adult fathead minnows on March 24 to provide forage for bass fry. Auburn No. 2 feed was added at 5 pounds per acre per day from April to October. During August, 15 pounds of 1 - to 3 -inch fathead minnows were added to each pond.

S-25, a 1.0-acre earthen pond was fertilized during July with 40 pounds of 20-20-5 fertilizer, and hay was added to produce zoaplankton in preparation for stocking bass fingerlings from several populations. A small number of fathead minnows was discovered upon draining on December 17.

In March 1970 pond M-7 (0.04 -acre) was stocked with 160 adult fathead minnows to produce forage for Suwannee bass fry.

Bass fry

Fry from five populations of basses were stocked from brood ponds into the rearing ponds at $800,1,000$, or 3,000 per acre when they were 17 to 41 mm in total length and weighed 0.1 to 0.7 g . Table 2 details other data related to the stocking in 1969. Suwannee bass fry were stocked at 272 per acre into pond M-7 on May 21, 1970, at 25 mm total length.

Table 2. Stocking of Micropterus fry in rearing ponds, 1969.

Bass populations	Total length (mm)	Average weight (g)	Stocking rate/A	Rearing pond	Date
Redeye					
Apalachicola	21-24	0.2	3,000	R-17	6/10
	21-24	0.2	800	R-18	6/11
Alabama	22-25	0.1	3,000	R-15	5/9
Smallmouth	17-20	0.1	3,000	M-1	5/20
	35-41	0.7	1,000	R-32	6/3
Spotted					
Apalachicola	21-28	0.2	800	R-29	$6 / 3$ $5 / 9$
Alabama ..	25-38	0.3	3,000	R-28	5/9

Bass fingorlings

Seine samples of fingerlings were made at bi-weekly to monthly intervals for determination of growth, for study of pigmentation patterns (Ramsey and Smitherman, 1972), and for restocking into other ponds.

Table 8. Observations on spawning of six populations of basses, 1969 to 1970

Bass populations	$\begin{aligned} & \text { Stocking } \\ & \text { date } \end{aligned}$	Initial spawn		Effective spawn *		Mean egg size(mm)	Hatch date	$\begin{gathered} \text { Sac fry } \\ \text { TL }(\mathrm{mm}) \end{gathered}$
			Temp	Date	TEmp			
Apalachicola redeye	4/18-5/2	5/5	79	5/19	77	2.0	5/20	4.4
Alabama redeye	.8/27-4/14	4/14	73	4/14	73	3.5	4/16	6.0
Smallmouth	.4/10	4/16	73	4/25	75	3.5	5/1	-
Apalachicola spotted	.3/27-4/25	5/3	74	5/7	78	2.0	5.9	3.8
Alabama spotted	. $3 / 27$	4/5	69	4/5	69	1.9	4/8	E. 5
Suwannee **	.3/27	4/6	68	4/6	68	2.0	4.9	5.5

- Effective epawn is defined as that resulting in fry.

Thirty fingerlings each from M-1 (smallmouth), R-15 (Alabama redeye), R-17 (Apalachicola redeye), and R-28 (Alabama spotted) were stocked into pond S-25 on July 16 to compare their growth and survival under identical environmental conditions.

RESULTS

Spawning

In 1969, spawning occurred in all brood ponds with the exception of that for Suwannee bass. The Suwannee bass did spawn in 1970 and 1971, however. The gravel or limestone chips added to the ponds typically served as a focus for initial bedding activity, but spawning often occurred on a hard clay substrate independent of gravel or chip piles. Table 3 summarizes observations on spawning for five populations of redeye, spotted, and smallmouth basses in 1969, and for Suwannee bass in 1970.

A palachicola redeye. First spawning occurred on May 5 at 79 F , and effective spawning on May 19 at 77 F . Fry were noted over the bed on May 29, but disappeared from surface and inshore arcas, apparently occupying deeper waters.
Alabama redeye. In contrast to Apalachicola redeye, which were wildcaught and directly transferred to the brood pond, Alabama redeye brood were stocked from a nearby holding pond in which they had lived the previous 12 months. Eggs were noted on April 14 when water temperature was 73 F . Because of high turbidity, bass fry were not sighted until May 3 when they were approximately 20 mm total length. The Alabama redeye fry occupied the shallow water at the pond edges, especially where aquatic vegetation provided cover. The following notes were made in 1968, on the first closely observed spawning of the Alabama redeye in an Auburn pond, and will supplement deta obtained in 1969. Adult Alabama redeye were brought from Bird Creek, Lee County, Alabama, to pond R-31 on March 18, 1968, and spawning occurred on April 9 at 70 F. Eggs hatched on April 15 at 72 F, and swim-up fry (7 to 8 mm) appeared on April 20. Fry were 16 to 25 mm by May 8 , and reached 53 mm by July 23. It appeared schooling behavior was not prolonged in this fish. Some fry 12 to 18 mm broke away 6 days after swim-up, and complete school dispersal occurred 14 days after swim-up when fry were 16 to 25 mm .

Smallmouth bass. The brood stock were obtained from Mammoth Spring National Fish Hatchery, Arkansas, where they were hatchery stock and accustomed to the pond environment. First spawning occurred on April 16 at 73 F , but the eggs were destroyed by nest sweeping activity. Another spawn occurred on April 17 at 73 F , but this was also destroyed. A successful spawn was observed on May 4 at about 78 F . Swim-up fry were seen on May 7. The fry began moving from over the bed on May 9 , scattering to 20 feet, b:it returning to the bed area. Complete school dispersal occurred by May 16. The darkly-pigmented fry remained close inshore, staying 2 to 7 inches from the shoreline or submerged objects.

Apalachicola spotted bass. Brood stock were collected from the stream and brought directly to the brood pond. Spawning was noted on May 3 at 74 F . The eggs disappeared because the male did not guard the bed. New spawn was observed on May 7 at 78 F. Tadpoles began to eat the eggs, so the remainder were transferred and hatched in vitro, as were other eggs laid on May 8 and 9. Hatching occurred in 2 days at about 70 F . On May 16, at swim-up, about 150 fry were returned to the brood pond and placed in a screen enclosure. The fry gradually escaped the enclosure, and reached 21 to 28 mm by June 3.

Alabama spotted bass. Brood stock were transferred to the brood pond from a nearby pond where they had been held for the previous 12 months. Spawning occurred on April 5 at 69 F. Hatching was complete 3 days later. The following observations were made in 1968, on the first spawning of spotted bass in ponds at Auburn, and will supplement the data

Table 4. Growth and survival of five populations of basses in 0.1 -acre earthen rearing ponds with fathead minnows as forage, 1969.

Bass population	Rearing pond	Number stocked	Stock date	$\begin{gathered} \text { Size } \\ \text { stocked } \\ \mathrm{TL}(\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { Days } \\ & \text { in } \\ & \text { pond } \end{aligned}$	Number removed	No. at draining	$\begin{aligned} & \text { Aver } \\ & \text { ALize at } \\ & \text { SL }(\mathrm{mm}) \end{aligned}$	rage draining Wgt. (g)	Cumulative survival * (\%)
Apalachicola redeye	R-17	300	6/10	21-24	191	167	76	142	44.5	81.0
	R-18	80	6/11	21-24	190	0	68	169	49.5	89.9
$\mathscr{E}_{0}^{2} \text { Alabama } \begin{array}{r} \text { redeye } \end{array}$	R-15	300	5/9	22-25	224	164	81	134	19.1	81.7
Smallmouth	$\frac{\mathrm{M}-1}{\mathrm{R}-32}$	$\begin{aligned} & 300 \\ & 100 \end{aligned}$	$\begin{aligned} & \overline{0} / 20 \\ & 6 / 3 \end{aligned}$	$17-20$ $17-20$	$\begin{aligned} & 211 \\ & 197 \end{aligned}$	$\begin{array}{r} 150 \\ 0 \end{array}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & 171 \\ & 177 \end{aligned}$	$\begin{aligned} & 55.4 \\ & 57.2 \end{aligned}$	$\begin{aligned} & 69.3 \\ & 58.0 \end{aligned}$
Apalachicola spotted	R-29	80	$6 / 3$	21-28	199	26	44	189	66.7	87.5
Alabama spotted	R-28	300	5/9	25-33	222	186	58	136	19.5	81.3

- The assumption was made that all specimens removed would have survived to the end of the experiment.
obtained in 1969. Brood fish were stocked into pond R-32 directly from Uphapee Creek, Macon County, Alabama, on March 22, and spawning occurred on approximately April 10 at 70 F. Fry (11 to 12 mm) were observed on April 25. Fry were 19 to 26 mm by May 8, and reached 63 mm by July 16. The male was never observed guarding the yrung, and fry were scattering around the pond shortly after swim-up.
Suwannee bass. Brood stock were probably brought from the stream too late for pond spawning in 1969. No reproductive success was obtained even with the injection of gonadotrophic hormone. However, the brood stock held over in a poncl spawned in 1970 . Spawning occurred in pond R-31 on April s at 68 F, and the eggs hatched on April 9 at 68 F . Sac fry were uniforinly 5.5 inm after hatching, and were 6.5 to 7.5 mm by April 15. Young grew to 12 mm by May 4, and to 25 mm by May 21 .
The same brood stock were held until 1971, and spar:ied once again in pond R-31. Eggs were deposited April 15 at 68 spap: and had hatched by April 19. Fry had reached 12 mm by May 5 when water temperature was 76 F Rearing
Bass populations stocked separately. Table 4 and Figure 1 summarize the growth and survival of bass fingerlings stocked into 0.1 -acre earthen rearing ponds with fathead minnows as forage. Stocking rates were dictated by the wish to provide adequate numbers of known fry and fingerlings, and in certain cases by the numbers of fry available for use. Fingerlings were removed for study of development of color patterns (Ramsey and Smitherman, 1972) and for stocking other ponds. Samples were taken at similar times and ra'es so that growth and survival could be generally compared.
Certain suggestions of the relative piscivorous habit of the various basses may be indicated in the following summary of forage availability in the rearing ponds.

Bass population and stocking/A	$\begin{gathered} \text { Date } \\ \text { fry } \\ \text { stocked } \end{gathered}$	Fathe Date first depletion observed	innows Date second depletion observed
Redeye			
Apalachiocola			
3,000	8/10	8/10	10/27
800.	6/11	Not depleted	9/25
Alabama			
Smallmouth			
3,000	5/20		
1,000		Not depleted	8/14
Spotted			
Apalachicola800			
Alaioama ${ }_{8,000}$.			
	5/9	6/5	9/5

Probably the greatest factor, however, in determining when fathead minnow forage became depleted by basses at 3,000/A was the earlier stocking of Alabama redeye and Alabama spotted basses. These two forms were stocked on the same day, 11 days in advance of smallmouth and 81 days in advance of Apalachicola redeye. The Alabama redeye and Alabama spotted basses probably found more small fathead fry available

Figure 1. Growth of five bass forms stocked as fry in 1969. Stocking rate is given as number per acre. Vertical lines represent ranges, horizontal lines represent means. December figures derived from entire populations at draining, figures for other months from seined samples.
at that time, and started to eat minnows earlier. Of course, there was likely slight variation in the standing crops of fathead minnows in the ponds at the times of stocking bass iry. To summarize, depletion of fathead minnows in ponds stocked with 3,000 bass fry/acre occurred as follows: Alabama spotted-28 dass; Alabama redeye- 38 days; smallmouth-42 days; and Apalachicola redeye- 92 days. When it was smallmouth-42 days and mipalachicola red that fathead minnows were not withstanding predation by the fingerling basses, 15 pounds of fathoad minnows were supplementally atocked in each pond in early August.

Suwanee bass fry stocked in pond M-7 at 25 mm total length on May 21, 1970, grew to an average of 52 mm by June 9 and to an average of 82 mm by July 13. The largest fingerling observed on that date was 94 mm in total length. Growth rate appeared somewhat lower than in other bass forms rlthough all specimens observed were robust.
Four basses stocked in comoination. The growih and survival cf bass fingerlings of four populations stocked into pond S-25 on July 16, 1969, is indicated in the following table.

Bass populations	Number stocked	$\begin{gathered} \text { Average weight (}(G) \\ 7 / 16{ }_{9 / 18} \end{gathered}$				Kelative growth rate	Per cent surviva
Redeye (Apal)	. 80	12.1	46.5	69.7	98.7	7.2	$6^{\prime \prime}$
Redeye (Ala)	. 80	7.8	86.8	-	58.4	6.5	100
Smallmouth	. 80	18.8	72.3	105.0	107.5	4.7	70
S ootted (Ala)	. 30	9.4	-	-	92.1	8.8	90

Of four bass forms stocked in S-25, best survival (100 per cent) and least final weight was observed in Alabama redeye. Relatively low survival was observed in Apalachicola redeye and in smallmouth, while that of Alabama spotted bass was very good. Relative growth rate " h ", $h=w_{t}-w_{0}$, where $w_{t}=$ final weight, and $w_{0}=$ initial ${ }^{\text {w eight }}$ (Rounsew.
fell and Everhart, 1960) was highest in Alabama spotted bass and lowest in smallmouth bass. During seine sampling, smallmouth and Apalachicola redeye were caught each time, but Alabama redeye was caught only once, and Alabama spotted was not taken. It is presumed the latter two fish occupied the deeper, open waters or were simply more elusive.

LITERATURE CITED

Ramsey, J. S. and R. O. Smitherman. 1972. Development of color pattern in pond-reared young of five Micropteris species of southeastern U. S. Proc. Southeast Assoc. Game and Fish Commrs. 25: pp. 348856.

Rounsefell, G. A. and W. H. Everhart. 1960. Fishery Science, Its Methods and Applications. John Wiley and Sons, Inc. New York, London. 444 p .

