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ABSTRACT 

Due to man's continuing efforts to extract greater harvests of marine organisms from 
the world o:r~n, it is becoming increasingly important to be able to predict the conse­
quences of exploitation on complex assemblages of organisms. These assemblages, or 
ecosystems, consist of predator and prey organisms in various interacting combinations. 
Preliminary evidence available from studies of marine invertebrate communities in coastal 
areas has indicated that removal of grazing herbivores or predators at various levels 
results in lower species diversity and greater instability of the ecosystem. In order to 
permit a quantitative evaluation of the effects of various rates and types ,f exploitation 
on interspecif relationships, model ecosystems were constructed utilizing a subset of 
graph theory as applied to network Analysis. A basic ecological trophic unit was for­
mulated, and these units were combined to form more complex model ecosystems. In par­
ticular, a hypothetical four specks system of interacting predator ant prey organisms 
was analyzed to demonstrate the consequences of varying certain model coefficients, espe­
cially rat.es of exploitation. It was shown that nonselective exploitation tended to main­
tain stability of the system better than highly selective exploitation. A hypothetical 
example of an empirical approach for examining changes in community structure was 
also demonstrated. 

Much of the present theory of fisheries science of marine fisheries will be in tropical or sub­
as well as many practical fisheries management tropical waters, such as l)arts of the Indian 
techniques are based on the concept of a single Ocean as well as the southeast and southwest 
species or unit stock (Beverton and Holt, 1957; Atlantic. These areas are characterized by a 
Ricker, 1958). This approach continues to be relatively greater diversity of species than the 
useful in describing and predicting the behavior traditional fishing grounds of north-temperate 
of fisheries consisting primarily of a single spe- regions. It cau reasonably be expected that 
cies. Recently, W-alters (1969) developed a de- some species will be exploited intensively from 
terministic computer simulation model for deter- them. It therefore seems desirable to attempt 
mining optimum harvest strategies based on a to better understand trophic relations of ecosys­
unit stock. However, modern fishing seems to tems consisting of several interacting species in 
be progressing toward exploitation on many spe- order to de-.o) management techniques for 
cies of the larger animals in aquatic ecosystems. tsese systems. This increased understanding 
To some extent this is due to the tendency to- includes the effects of various kinds of exploi­
ward reduction to meal of many species of fishes. tation strategies as well as enviionmental per-
Some obvious areas for the future development turbations on these eosystems. It is suggested 

that stresses applied to ecosystems may produce 
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1969). One of the generalizations which if certain simplifying assumptions, such as lin­
appeared to emerge from the symposium was earity and steady-state conditions, could be 
that ecosystems characterized by high species tolerated. Recognizing that any set of mathe­
diversity tended to be relatively stable. Elton matical equations represents at best a crude ap­
(1958) has shown tiiat if a predator has several proximation of the actual behavior of complex 
alternate prey species to utilize, it will persist ecosystems and that empirical values of coeffi­
even if one of the prey becomes very scarce. cients for complex models are largely unavail-
Thus, it seems as if there is some correlation be- able, we have procueded under the assumption 
tween diversity and stability, that the simplest models should first be explored 

In the case of marine invertebrates, there is and carefully evaluated before proceeding to 
some observational evidence (Paine, 1963) to more elaborate formulations. In addition, it is 
indicate that marine predators at high levels in believed that the simplicity of the methods de­
the food chain feed on more species of prey than scribed herein may enhance their utility, espe­
do those on lower levels. Observations, such as cially when considering the initial effeci3 of ex­
the above mentioned, have led some ecologists to ploitation or environmental modification on in­
suggest that high leve1 predators might contrib- teracting ecosystems. 
ute more to community stability than the lower The objectives of this work were to: (a) in­
level predators. troduce a subset of graph theory as used in net-

Removal of predators from rocky shore invor- work analysis; (b) describe a graph theoretic 
tebrate communities (Paine, 1966) resulted in formulation of a basic ecological trophic unit, and 
a reduction of the species diversity of the an- to demonstrate some effects of predation and ex­
imal community. In addition, removal of graz- ploitation on model ecosystems consisting of 
ing herbivores from rocky shores has resulted these units; and (c) demonstrate some other 
in the rapid growth of some of the formerly eaten uses of graph theory with a view toward stim­
plant species and a change in community com- ulating further interest in its applications. 
position toward lower species diversity (Jones, 
1948; Southward, 1964; Paine and Vadas, BACKGROUND 
1969). The observations and experiments of A CKGROUN 
Paine (1966) also indicated that diversity among AND DEVELOPMENT 
competing species of marine invertebrates could By definition, a graph is a set of vertices 
be decreased by removal of predators in some in- (nodes) connected by a set of edges (branches). 
stances. A theoretical dynamic analysis (Par- If the graph has polarity or direction, the edges 
rish and Saila, 1970) of a trophic subweb using have arrows, and the graph is said to be directed. 
Lotka-Volterra type interactions offered some In this report we are concerned only with direct­
support to Paine's conclusions. ed graphs. Two very simple directed graphs are 

With the exception of some piuneering con- illustuated in Figure 1. 
ceptual work by Larkin (1963, 1966) in describ- The ecological graphs utilized herein are based 
ing models for interspecific competition and ex- largely on graph theoretical techniques of net­
ploitation applied to natural fisheries, very little work analysis, for which the theory has been 
seems to have been done in an effort to predict clearly and concisely presented by Mason and 
the effects of man's activities on aquatic com- Zimmermann (1960). To analyze a network, 
munities consisting of several interacti.,g spe- each edge connecting two vertices is given a co­
cies. One of the reasons for this appears to lie efficient, a "transfer function" or "branch trans­
in the degree of complexity required to establish mission." The "transmission" from one vertex 
and express all the basic interrelationships in A to a distant one C can then be expressed as a 
such a system (Mann, 1969). Recently, Men- combination of these individual coefficients. The 
shutkin (1969) suggested graph theory as a use- important principle is that the value of any ver­
ful tool for minimizing some of the difficulties tex is the sum of the directed inputs, regardless 
of constructing models of interacting systems of the outputs. In the very simple case of Fig­
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FIGURE 1.-An illustration of two simple directed graphs. 

A "self-loop" is shown in part (b) of the figure. 

ure 1(a), the value of B is equal to the input 
from A plus the input from C: 

B = aA + WC. (1) 

Similarly, the value of C is equal to the only 
input: 

C = bB. (2) 

Substituting B from Equation (1) into Equation 
(2) and solving for C gives: 

C --b- (3) 

Thus the ratio of the value of C to the value of 
A is: 

C = ab 
"- a ,(4)
-X- *T-h-

which is the transmission from A to-C. This 
type of term is used later as a biomass ratio or 
"trophic efficiency." 

can easily be seen that the graph in Figure 1 
simply represents a set of linear algebraic equa­
tions. Such sets of equations can, of course, be 
solved classically. However, solution by inspec­
tion of some graphs or parts of graphs is pos­
sible. For example, in the graph of Figure 1 (a), 
observe that:
 

C=(a xb) xA+ (cxb)xC. (5) 

The graph can be simplified to that shown in 
Figure 1(b). A "self-loop" has been created 
that has the effect of making the value of C to be 

1 times what it
1 - loop transmission coefficient 
would have been without the loop. The situ­
ation becomes only slightly more complex when
 
the transmission from A to D is considered.
 
The value of D can be obtained from the value
 
of C in Equation (3) as: 

D = eC = e abA (6) 

Or, making use of the known effect of a self­
loop, it is possible to simply see by inspection of
 
Figure 1(b) that:
 

1 abA 
D = (abe)A •---- e - (7) 

These simple principles and techniques are
 
considered adequate for formulating some use­

ful trophic graphs. 

GRAPH OF A TROPHIC UNIT 
Graph theory has been applied to the analysis 

of a variety of problems in engineering, oper­
ations research, and the social sciences (Berge, 
1958; Busacker and Saaty, 1965; Kaufmann, 
1967; Harary, 1969). Its use in biological sci­
ences has been much more limited. However, 
Benzer (1959) and Maruyama and Yasuda 
(1970) have applied these concepts to genetics, 
and Landau (1955) and Trucco (1957) have 
used graph theory in describing animal behavior­
al problems. Menshutkin (1969) appears to 
have been the first to apply graph theory to the 
study of communities of aquatic organisms. He 

used graph theory to derive expressions to illus­
trate the relationship of the biomass of harvested 
organisms (fish) to primary production under 
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specific conditions. He graphed the relationship 
between a prey and a predator as shown in Fig-
ure 2(a). For simplicity, all the vertices (cap-
.tal letters) can be standardized in energy units 

(or energy per unit time). The lower case co-
ef'icients are dimensionless constants or have a 
dimension of reciprocal time with values between 
zero and 1.0. Vertices and coefficients are listed 

in Table 1. Subscript 1 refers to the prey and 
subscript 2 refers o the predator. When mn-
other trophic level is added later, use of these
subscripts can be easily extrapolated. For ex-
ample, D12 in Figure 2 (a) is the amount of Prey 1 
accessible to Predator 2; D24 in a later graph is 
the amount of Prey 2 accessible to Predator 4. 

The symbols used in Figure 2 are further de-
fined in the following manner. 

M, (2 

m1 1-k 2 

P, +1 B ! R. k2 

d1 b2 

D2 +1 12 

(a) 

q2(-1)(1) 1-m2-f 2 

B1 


d 2 (1 )b 1 2 h12(-1 ) b 12  

(b) 

TABLE 1.-Description of the vertices and coefficients 
utilized in model development. 

P - (net) Production 
q- los bi "respiration"q - "respiration" coefficient 	 0 mq 

B - biomass 
M loss by natural mortolity M -

F lossby exploitation (fishing) 
- exploitation coefficient F -1B 

U - lossin undigested or unassimilated food 
R - actual food ration U= ( -)Rk 
kR food assimilated (gross production)
k digestion or assimilation coefficient 
P -kR -Da accessible food 
ds accessibility coefficient Di duBi 

R. 	 - maximum ration (mast a predator 
would ever consume)

hs - maximum ration coefficient s - AUss 
RI - .s.u + bAss1s 

212 i, - Hi 
Ab, feeding coefficient 

Q2 1-m2-f2 M2 

-1 22 

P 1 B2 f2 2 

a12h2 

-	 H2 

,R 	 2 k1R2B B 

d12b 12  h12 (a 12-b12 ) 

(c) 

FIGURE 2.-Trophic graphs of Species 2 preying on Species 1. Part (a) illustrates Menshutkin's (1969)
original formulation, and parts (b) and () r.present the successive application of network analysis 
to obtain the basic trophic unit. 
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P in the graph is what is usually called net pro- dence of feeding rate. Formulations for species 
duction (an energy rate). Net production P, interactions such as the classic equations of 
is equal to gross production, i.e., assimilated Lotka and Volterra express rates of change of 
food, kR, minus respiration, Q. Summing inputs the number or biomass of a species as products 
at the graph vertex P2, the value of P 2 is: of coefficients and numbers or biomass of the 

interacting species. This approach has involved
P2 = 1- Q2. (8) the assumption that feeding rate is independent 

Respiration, Q, is expressed as the product of the abundance of prey and it is an oversim­
of biomass and a "respiration coefficient," q: plification which results in an inherently un­

stable system. The experimental work of Ivlev
Q = qB, (1961) provided a density-dependent feeding re­

where B is the biomass (standing energy crop) lation: 
of a species. R = H (1 - e- P), (12) 

M is natural mortality, considered propor­
tional to biomass; where: H = the "maximum ration" of the 

M, = mB,, M 2 = m2B2. (9) predator, the most it would ever 
eat (or the maximum rate at 

Constancy of these coefficients is assumed, which it would feed) no matier 
F is fishing mortality which is used if an ex- how mt,ch food were available; 

ploited population is considered. Death due to R the "actual ration" of the pred­
any other specific cause can be separately con- a.or, the amount actually eaten 
sidered in a similar manner. (or th. rate at which it feeds) 

U is energy in the undigested (unassimilated) under an actual condition of 
portion of food eaten, and k is the "digestion food availability; 
coefficient." The predator assimilates a frac- p - the density or biomass of the 
tion k of the ration R eaten, and the remaining prey population; 
energy, U = (1 - k)R, is lost. and ' = a coefficient. 

Upon first inspection of the graph, it may bef th t maUponfirs inpectongrah, be A linear approximation of this r-elationship, fol­
disconcerting to see vertices representing quan- line allxitin of thi bela inh 
tities such as biomass (energy) in the graph lowing Menshutkin (1969), can be used in the 
with vertices representing quantities such as graph model. A parameter 8,2 is defined as: 
production (energy per unit time). The con- 812 - H12 , (13)D12 
fusion is resolved by realizing that the graph where: D12 = the amount of the prey biomass 
is not a pure flow network. It merely shows accessible to the predator D12 = 
some assumed relationships, and at each vertex d1 B,. A constant of propor­
the same rules apply, For example, at vertex B, tionality to prey biomass is as­
in Figure 2 (a): sumed. 

B, = (+I)P, + (-I)R 2 H12 = as defined above. Since H 2 is 
+ (1- m,)B,, (10) obtained as a fraction of pred­

or, ator biomass (H 2 = h,2B2 ), the 
assumption is introduced that 

P, - B, + B, - mB,= R,2. (11) all predator individuals feed at 

Net production - Natural mortality = Re- the same rate. 
mainder eaten by predators. The "actual ration" of the predator is then de-

Thus interpreted, the graph represents the re- fined as: 
lationships correctly. 

An important feature of this formulation is R, 2 =a,2 H,, + b128,2 , (14) 
the attempt to approximate the density depen- where a12 and b12 are fractional coefficients. 
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This linear expression is used to approximate 
the following modification of Ivlev's exponential 
relation: 

-5
R--H(1 - e ), (15) 

where D and H are defined as before, 

The implementation of Equation (14) in the 
graph of Figure 2 (a) is seen by summing inpuLs 
at vertex 812: 

812 = (+ 1)D 12 + (-1)H 12 = D12 - H 12 , 
(16) 

and at vertex R 1 2: 

R12 = a-2H12 + b12 812 . (17) 

Although lacking in mathematical rigor, this 
linear approximation can be made to give rea-
sonably accurate results over a limited range 
of prey density, and it is considered to be an 
improvement over the simple density-indepen-
dent assumption. Figure 3 provides a sample 
comparison of an Ivlev exponential relationship 
according to Equation (15) with the linear ap-
proximation of Equation (14). The coefficients 
a and b should, of course, be chosen in any real 
case to approximate either a desired analytic 
function of known utility or a set of data on 
feeding observations. 

The "network analysis" techniques described 
previously were applied to the graph of Figure
2(a) to produce the simplified graphs shown as 
Figure 2 (b) and Figure 2 (c). The derivations 

,0 
Ithat 

04 

o2 

o, 00 0: 0o ,, *, , ,. , 
.............. 

FIGuRE 3.-Linear and exponential approximations of 
feeding behavior, 
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used do not require P1 or mi. Furthermore, M1 ,
usad not ie "iput erex 
M2 and U2 cannot give "inputs" at any vertex 
since they are all directed outward. Therefore, 
the above parameters were eliminated with no 
effect on the solutions. Vertices P2 and Q2 wereabsorbed using graph theory network techniques 
to produce Figure 2 (b). The same figure shows 
the similar absorption of vertices D 12, 812, and 
H 12. Parallel inputs to a vertex can be combined. 
In this case, the two self-loops at vertex B 2 were 
combined, and the two edges from B2 to R 12 were 
combined. The resulting simplified graph, Fig­
ure 2(c), is the most basic graph that expresses
the assumed relationships.

The above formulation describes a two-species 

predation model where Species 2 preys on Spe­
cies 1. At this trophic level, and fo- the form­
ulations to be used, the term "predation" is 
applied in its broadest sense. Since the formula­
tion does not make use of production, mortality 
or any other vital property of Species 1, Species 
1is really just a resource. It could be vegetation, 
or with some reinterpretation of coefficients, 
even living space. Clearly, the above graph is 
a building block from which a variety of more 
complex food webs can be constructed. Only
limited applications of this concept are made in 
the following material, and its validity awaits 
the test of further applications. 

SOME MODELS AND THEIR
 
INTERPRETATION
 

Since relatively little observational informa­
tion is available concerning the important prob­
lem of community interactions, it was believed 

a model study such as this might assist 
in a further understanding when additional ob­
servational data are taken. 

Competitive and predatory interactions, with 
and without exploitation, were examined using
trophic graphs made from the building block 
developed previously. Figure 4 shows Species 2 
and Species 3 competing in their utilization of 
resource Bi. A relation was derived for the ra­tio of the hiomass of each of the competitorsto that of the resource: B2/B Inand B3/B. 
either case this was done by writing the very 
simple linear equations for each of two vertices 
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1-m 2 -q 2-f 2 

B2 
k2V' 

h12 (a 12 -b 12 ) 

12 b12 

R13  h13(a13-b13) 

1-m3-q 3 -f3 
FIauRu 4.-Trophic graph of Species 2 and Species 3 

preying on Species 1. 

and solving them simultaneously in the classical 
manner. For competitor Species 2, R12 was writ-­
ten as the sum of its inputs in the graph, and B 2was written as the sum of its own inputs. In 
this case there are two equations in the three 
variables B 2, B1, and R 12. R 12 was eliminated 

to give B 2/B 1 in terms of coefficients. B3/B.
was derived in a similar manner, and division 
gave the ratio of the biomass of the two com­
peting species B2/B:, as follows: 

B 2 k2d 2 b1 2V 
7 kd,:ibaV' (18) 

where: V, rn3 + q3 + f-3 - k,h13 (a : - b 
M2 + q, A f., ­ k2h12 (a12 - b1 2 ) 

Inspection of Equation (18) reveals that if the 
two species compete exactly equally, or are ex­
ploited equally, the ratio is unity. This is en­
tirely the expected result. By giving one species 
or the othcr a competitive edge in one or an­
other of the coefficients, it is apparent that the 
B 2/B:i ratio can be changed. 

The simplest subwel) involving predation on 
two competing species is shown in Figure 5. 
In this subweb Species 4 preys on Species 2 and 
Species 3, and Species 2 and Species 3 prey on 
Species 1. The procedure for deriving the ra­
tios B 2/B and B:I/BI was exactly as described 
above. That is, an equation was written for each 

k , \ 

ERN 

,n- ,-,-I 6 
k3k9 

" . 

R13 R3 

,
 
,
 

B, 

FIGUM, 5.-Trophic graph of a 4-species subweb. In 
this case Species 4 preys on Species 2 and Species 3, 
and Species 2 and Species 3 prey on Species 1. 
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vertex except B1, and the equations were solved 
simultaneously. In this case there are seven 
equations, and the work of classical solution was 
not exzessive. The result was found to be: 

W - k2d 12b12 (XY + Z)B2 
73 1-kd + Z') (19)3b(XY 

where: 

W = k3k 4d1ibad3 463 4I 4 (a24 ­ b 24 )
W' = k2k4d12bl 2d 24 24h (a34 - b34)
 
X = k4h 24 (a24 - b 24 ) (a4 - b34)
- k4h3 

- .n4 - q4-4
Y = kA1h3(a 3 - b13) - d 34b34 - ma - .Y3- 13 
Y= k2h12(a12 - b1 2) - d24b24 - m2 - q2 -- f2 

Z = k 4 dA4 b 4ha4(a 34 - b 34 )fI
Z ­(a 2 4 b2 4 ) 

Questions of interest here were the ellects onbiomass ratios of the competitors as a function 
of various competitive coefficients and exploita-
tion, and the difference in these effects with and 
without predation on the competitors. "Coef-
ficient" values from Menshutkin (1969) were 
introduced for the coefficients for predation by 
Species 4 on Species 2 and Species 3 (the sarae 
coefficients for both-equal predation). Basical-
ly the same coefficients were used for the com-
petition of Species 2 and Species 3 as well. 
Coefficients were held constant except for the 
one whose effect was being considered. Using 
such values, the equations were simplified, and 
in most cases Species 3 was then given the nom-
inal value of the competitive variable of interest 
while the value of that variable for Species 2 was 
made to vary above and below the nominal. This 
range of variation of Species 2 was expressed 
as the ratio coefficient 2/coefficient 3. The same 
process was performed for the earlier formula-
tion without predation (Equation 18). Thus ra-
tios B 2/B 3 were obtained from both cases-with 
and without predation. 

A brief examination was made of the effect 
of various exploitation strategies on the relative 
stability of two model ecosystems, one with pre-
dation and one without predation. These sys-
tems are described by Equations (18) and (19), 
and stability was measured by the change in bio, 
mass. Figure 6 illustrates the results of various 
types of exploitation on the two systems. It is 
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. I 
'3 

FIGURE 6.-Effects of predatior and exploitation on mod­

el ecosystem stability as measured by biomass ratios.Curve A illustrates a 4-species subweb in which there
is no exploitation of the top predator. Curve B illus­
trates a 3-species subweb with no top predator. Curve C 
illustrates a 4-species subweb with exploitation of the 
top predator as well as prey species 2 and 3. All nu­
merical values of coefficients are from Menshutkin 
(1969). The nominal value of 1s was taken as 0.3. 

apparent from an exomination o' this figure that 
the most stable conditions examined involved 
predation as well as exploitation of the predator 
and the prey spcies. However, the system in­
volving no top predator seemed to Le more stable 
under exploitation of both prey species than the 
system involving predation, but with no exploi­
tation of the top predator. 

For different types of competitive advantage 
of one species over the other, the effect of pre­
dation on biomass ratios may be very different. 
Figure 7 demonstrates the effect of unequal com­
petition in the coefficient d, which relates to the 
availability of the resource to Species 2 and Spe­
cies 3. Without predation, the ratio B 2/B 3 of 
biomasses of the competitrs is always the same 
as their d ratio. With predation, the ratio takes 
the much different form indicated. The values 
used for the d12/d j3 ratio ranged from 2.7 to 0.37. 
This range of values produces a full range of 
B 2/B 3 ratios, from the point where Species 3 
becomes extinct, to the point where Species 2 be­
comes extinct. For the coefficient d, the results 
are not dependent upon the absolute value of d. 
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that some crude index of diversity or community 
structure has been established which permits 
identification of the three communities as mu.. 
tually exclusive groups. Assume that the three 
communities are sampled again during the 

PREDTION 

4orse of a year, and that the frequency of sam­
ples which resemble the previously defined com-

B, munity as well as the frequency of samples which 
83 resemble the other two communities are listed. 

P These frequencies can be displayed in the formPREDATION 

of 	a network as shown in Figure 8. The data 

S 	 d,, 2 

d jS3 t 

FwGuIE 7.-An illustration of the effect of predation (as 
measured by biomass ratios) on competition as mea­
sured by changes in the ratio of the resource acessibility 
coefficient d for the two species. 

The results shown in Figure 7 clearly indicate ..... 
that some of the competitive coefficients have a 
very large influence on the relative stability of 5 3 50 [
interacting systems. They suggest that if the 50 .0o053 .0 .04] 

stress of exploitation or other environmental F = 0 so0 200 M= .05 .5 30 

stresses int'ract with other model coefficients as, a 0,o as] ,oo 05 ,o 8 

for example, in a simple predator-prey interac­
tion, the system may responA very violently, with 
the rapid extinction of one or the other of the .'5o 0.,088n1 

competing species. =025 .4555 .,52J P . [o 200 ,oo] 

In some instances it may be desirable to have .M5 .1530 .,I 
some rough empirical measure of the stability of 
exploited ecosystems consisting of interacting 
species. As Margalef (1969) has indicated, an F5 o2o .o0801 

pM2adequate measure of community stability must 0 200 , = , 8,20925 .10 .754]
include a measure of diversity as well as a mea-

sure of persistence. Furthermore, Margalef at­
tempted to formulate a generalized mathematical 
model for their interdependence. It is suggested FIGURE 8.-Example of a hypothetical network showing 
that an additional application of graph theory the frequencies of samples resembling their initial struc. 

may also be utilized to provide some enpirical ture as well as those of the other two community struc­
tures. In this example F. is the matrix of frequenciesindication of stability and persistence of com- at the end of the first sampling period, Al is the cor­

munities subjected to either environmental or responding probability matrix, M2 is the square of the 
exploitive stresses, assuming certain types of probability matrix and P. is the vector of frequencies 

background information are available, by community type. P,,M 2 is the matrix-vector product 

Consider the following hypothetical examl)le. expressing the expected new frequencies by community 
type at the end of the second sampling period under theThree communities of fishes (A, B, C) are sub- assumption that the probability matrix remains constant 

jected to various levels of exploitation. Assume during the time interval. 
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from the network is presented as a matrix (Fo ment, then the model is a worthwhile tool, and
of Figure 8) of frequencies which was normal- the method utilized has some merit. If the meth­
ized to form a probability matrix (M of Fig- od (graph theory) can be used not only to obtain 
ure 8). This probability matrix M is one in some basic insight into system behavior but can
which the i, j entry gives the proportion of the also be used as an empirical tool, then it seems
samples from community v, which resembled particularly worthwhile. Both these possibilities
community vj during the sampling period. An seem to await the results of future imaginative
important theorem concerning probability mat- development. 
ricecs states that if B and C are probability mat­
rices, so is their product BC. A corollary to this 
theorem states that if M is a probability matrix, LITERATURE CITED 
then so is every power Mn , for any positive in­
teger n. If the assumption is made that the BENZER, S.
 
probability matrix M remains constant over time, 
 1959. On the topology of genetic fine structure.
then if one knows the initial frequency matrix Proc. Natl. Acad. Sci. 45:1607-1620. 
F. and the probability matrix M, it is possible BERGE, C.
 
to find the sample frequency distribution at a 1958. Thdorie des graphes et ses applications.


Dunod, Paris, 275 p.subsequent time t, by finding the nth power of BEVERTON, R.J. H., AND S.J. HOLT.
 
M and then forming the product PM" where 
 19b7. On the dynamics of exploited fish popula-
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