$$
\text { PB-224 } 298
$$

IRRIGATION AND NON-IRRIGATION ALTERNATIVES FOR REDUCING SUGAR CANE TRANSPORTATION COSTS IN SANTA CRUZ, BOLIVIA
E. Body Wennergren, et al

Utah State University

Prepared for:
Agency for International Development

June 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151

PB 224298

IRRIGATION AND NON-IRRIGATION ALTERNATIVES FOR REDUCING SUGAR CANE TRANSPORTATION COSTS IN SANTA CRUZ, BOLIVIA

DEPARTMENT OF ECONOMICS

UTAH STATE UNIVERSITY

Raproduesed by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Departmant of Commuien
Springliald, VA. 22151

17b. Identifiers/Open-Ended Terms

633

18. Availability Statement	19. Security Class (This Report) UNCLASSIEIED	21. Noy of Pages
	$\begin{gathered} \text { 20. Security Class (This } \\ \text { Page } \\ \text { UNCL_nSSIFIED } \end{gathered}$	$\begin{aligned} & 22 \text { Price } \\ & \$ 6.00-14+5 \end{aligned}$

irrigation and non-irrigation altepnatives FOR REDUCING SUGAR CANE TRANSPORTATION COSTS IN SANTA CRUZ, BOLIVIA

$b y$
E. Boyd Wennergren
Allen D. LeBaron
Lee Bailey
Morris D. Whitaker

UTAH STATE UNIVERSITY
 DEPARTMENT OF ECONOMICS

UTA HATER RESEARCH LABORATORY PRWG 69-11
USAID CONTRACT AID/CSD 2167 COUNCIL OF UNITED STATES UNIVERSITIES FOR SOIL AND WATER DEVELOPMENT IN ARID AND SUB-HUMID AREAS, INC.

ACKNOWLEDGMENTS

Assistance was received from several people and agencies in the conduct of this study. Mr. Carlos Castro of the Guabirá Mills, Carlos Davit of the Bolivian Ministry of Agriculture, Mr. Enrique Gomez E_{i} the Utah State University Contract Team, and personnel of CNECA in Santa Cruz were especially helpful in collecting the in-country data.

Mr. Lee Bailey, a graduate student at Utah State University, was responsible for all field data collection and programming analysis.

Primary financial support for the research and a graduate scholarship were provided through an Institutional Development Grant (211-D) from the Agency for International Development to Utah State University (Contract AID/csd 2459). The organization and supervision of the research was coordinated with USAID Research Contract AID/csd 2167 in order to take advantage of data and methodology developed through related activities on that research contract. The scholarship and research programs were coordinated by Dr. H. B. Petersen. A11 conclusions and opinions are those of the authors, and do not reflect official or unofficial opinions of USAID, the Government of Bolivia, or Utah State University.

table of CONTENTS

Page
ACKNOWLEDGMENTS 1
LİST OF tables $1 i 1$
LIST OF FIGURES iv
SUMMARY 1
INTRODUCTION AND OBJECTIVES 5
procedures and sources of data 8
Variations in the Analysis 12
Unit Cost of Transport 13
Annual Transportation Costs for A1l Cane 13
Results of the study 17
Least-Cost Distribution for Present Cane Production i7
Alternatives for Reducing Transportation Costs 26
Irrigation and Shiftin Production Areas Nearer
Existing Mills 31
recommendations yor further researcti 42
SOURCES CITED 44
APPENDIXES 45
Appendix A: Precipitation 46
Appendix B: Physical Factors Related to the Production of Sugar Cane in Santa Cruz 52
Appendix C: USAID Study Team Budgets for Sugar Cane Production 57
Appendix D: Sugar Cane Budgets Prapared by Carlos Ca3tro 62
Table Page

1. Sugar Cane Production in Northern Santa Cruz 5
2. Unit Transportation Costs to the Guabira Mill 14
3. Unit Transportation Costs to the La Belgica Mill 15
4. Unit Transportation Costs to the San Aurelio Mill 15
5. Existing Production Areas in Santa Cruz and Their Distances from the Mills (in kilomecers), 1972 18
6. Existing Production and Number of Producers from Each Production Area, 1972 20
7. Distribution of Grower Origins and Processing Mills for Minimum Cost System for Transporiing Sugar Cane in Santa Cruz, 1972 22
8. Alternatives for Reducing Sugar Cane Transportation Costs in Santa Cruz 33
9. Annual Costs of Irrigating 2137 Hectares in Santa Cruz 38
10. Fertilizers Available in Santa Cruz and Fertilizer Costs 38
11. A Comparison of the Cost of Developing 2137 Hectares in the Southern Region of Santa Cruz, with the Savings from Lowered Transportation Costs 40
Appendix
Tables
A1. Monthly Rainfall at Saavedra, 1943-1970 (millimeters) 49
C1. Sugar Cane - Per Hectare Costs, Revenues and Profits-- Without Irrigation and Without Fertilizer 57
C2. Sugar Cane - Per Hectare Costs, Revenues and Profits-- With Irrigation and Without Fertilizer 58
C3. Sugar Cane - Per Hectare Costs, Revenues and Profits-- With Irrigation and Fertilizer 60
D1. Evaluation of One ilectare of Forested Land, Within a 1.5 Kilometer Radius of Guabira 62
D2. Evaluation of One Hectare of Forested Land, Within a 15 Kilometer Radius of the Guabira Mill 68
Figure Page
12. Matrix of Conceptual Distribution of Observed Activity 9
13. Least-Cost Transportation Model for Existing System 24
14. Least-Cost Transportation Model with San Aurelio Deleted and Buena Vista Added 28
15. Least-Cost Transportation Model with San Aurelio Deleted and a 180 Day Milling Season for Guabira and La Belgica 30
16. Least-Cost Transportation Model with San Aurelio Closed and a 25 Percent Increase in the Capacities of Guabira and La Belgica 32
17. Land Systems Map of the Santa Cruz Region 34
18. Least-Cost Transportation Model with Production of Northern Regions Shifted to the South 36
Appendix
Figures
Al. Recorded Rainfall at Saavedra, 1943-1970 47
A2. Recorded Rainfall at Saavedra, Wet and Dry Seasons, 1963-64, 1969-70 48

Weather and economic trends in the Santa Cruz region of Bolivia for the last five years culminated in a 45 percent reduction in sugar cane production in 1971. Drought conditions and high world narket prices for cotton have induced northward shifts of sugar cane production areas, with cotton replacing sugar cane in many of the traditional growing areas.

Due to the increased distance over which "northern" growers must transport their cane, overall traasportation costs have risen drastically in the last few years. Estimates suggest that transportation costs now represent as much as 50 percent of the total production costs for sugar cane. After over 20 years of steady expansion, the cane industry may be losing its viability.

The purpose of this study was to inyestigate possible cost-reducing options for cane transportation in Santa Cruz. Physical factors and costs involved in the production of sugar cane, transportation costs, locations and distances of growers from mills, and volume of cane transported constitute the main data needed for a least-cost transportation model. All relevant data were collected in the Santa Cruz region in June and July of 1972.

Five alternatives for lowering costs were analyzed. The initial alternative considered was through more efficient transportation patterns. The second was shifting the site of the most uneconomical mill (San Aurelio) nearer the current areas of production. The third involved closing the most unconomical mill and accepting a reduction in total processing capacity of the country. The fourth alternative considered closes the most
uneconomical mill and increases the capacity of the remaining two mills by either (a) extending the processing season or (b) extending the processing season in conjunction with increased plant capacity. The fifth alternative was to relocate or re-establish production in the drier southern areas in conjunction with supplemental irrigation and fertilizer.

The least-cost transportation model for the 1971-72 season shipment pattern and tunnage showed that $\$ \mathrm{~b} 1.08$ million pescs could be saved annually if cane were transported more efficiently to the existing factories. This constitutes a cost savings of about 3.5 percent.

Moving the most uneconomical mill (San Aurelio) to the northern region would cost about $\$ 668.75$ million. The yearly savings in transportation costs for the entire system would only be \$b4.19 million.

If the San Aurelio mill is closed and the milling season of La Belgica and Guabirá increased to 180 days from the present average of 157 days, the two mills could process $1,134,000$ metric tons of cane yearly and $\$ 64.29$ million could be saved in annual transportation costs. This is a reduction of about 15 percent in current costs. National milling capacity, however, is reduced 18 percent below current production of cane.

If San Aurelio is closed and the daily capacity of La Belgica and Guabira is increased by 25 percent, with a 176 day milling season, then all of the cane being currently produced could be processed while \$b5.51 million per year could be saved in transportation costs. The costs of increasing the capacity of La Belgica by 25 percent would be $\$ \mathrm{~b} 16.35$ million and the cost of increasing the capacity of Guabirá by 25 percent would be $\$ 68.86$ million. The annual amortized value of the expansion costs would be less than the annual transport cost savings.

In general, the potential benefits from increasing transport efficiency or changing mill locations do not appear to be great. Reversing the northern shift of cane production by introducing irrigation and heavier reliance on fertilizers in the southern or traditional cane zone appears to be viable if river irrigation can be used. A yearly savings in transportation costs of \$b5. 28 million would be realized by shifting the production of 256,469 metric tons of sugar cane (2,137 hectares) from the northern region back to the southern-region. Land in the south, near the city of Santa Cruz and existing cane mills, would have to produce 120 metric tons per hectare of sugar cane (the current yield in the more humid "northern" lands) if current national production levels are to be maintained. This assumes that no sugar cane would be produced further north than 30 kilometers from the northern-most mill (Guabizá).

Four types of irrigation projects could be developed in the southern region. The total annual costs of developing feasible irrigation projects and fertilizing 2,137 hectares is as follows for the various systems: (1) sprinkler irrigation from a well, \$b6.89 million; (2) sprinkler irrigation from a river, $\$ \mathrm{~b} 5.02$ million. (3) flood irrigation from a well, $\$ \mathrm{~b} 6.82$ million; and (4) flood irrigation from a river, $\$ \mathrm{bl} .97$ million.

Allowing for fertilizer and flood irrigation from a river, the cost would be about one half the potential annual transport savings (1). Cost for the other forms of irrigation equal or exceed transportation savings. Whether or not cane production in this area would really be competitive with cotton would depend mostly on cotton prices.

The annual savings in transportation exceed the annual costs of only thres of the alternatives analyzed. The one that would cost the least and

Abstract

be the easiest to implement, would establish "zones of influence" for the present production system by means of the least-cost transportation model. The second likely alternative is to close San Aurelio and increase the capacity of the other two mills. Production could then be concentrated in the northern region where soils are more fertile and rainfall more plentiful. The third viable aiternative is to relocate cane production from the northern region to the southern region and utilize irrigation.

The development of irrigation in the southern region solely for sugar cane production is unlikely, however, in the absence of a general soil improvement program and reduced competition from other crops. In terms of the total agricultural situati, in Santa Cruz, other crops such as soya beans and cotton would certainly also benefit from irrigation. Such benefits may be sufficient to make irrigation "pay." In that case, sugar cane would undoubtedly enter into crop rotations. Since only 2,137 hectares of sugar cane need to be grown in the southern region in order to maintain current production levels, it is highly probable that this would be achieved under a general water development program in the southern region.

INTRODUCTION AND OBJECTIVES

The Department of Santa Cruz is a large state in southeastern Bolivia. It has a semi-tropical climate with a wide range of soil types and native plants. Significant agricultural development started near the city of Santa Cruz about 1954. Sugar cane was one of the first crops to be cultivated on a commercial basis. Planting and production steadily increased until 1970 (Table 1).

Table 1. Sugar Cane Production in Northern Santa Cruz

Years	Cultivated Areas (Hectares)	Production (Metric tons x $1000)$	Price (\$b/
1967	29,750	993	66
1968	32,950	1,106	66
1969	36,900	1,303	66
1970	N.A.	1,187	66
1971	15,545	759	66

N.A. $=$ Not Available

Source: (8)

In 1949, on ly 249 metric tons of sugar were produced. In $1970,109,543$ metric tons were produced. Then, in 1971 , production fell to 67,737 metric tons. This represented a 45 percent reduction from the preceeding year and was the first time since 1963 that Bolivia had to import large quantities of sugar to meet domestic demand. Cane production also declined from $1,186,502$ metric tons in 1970 to 758,856 metric tons in 1971.

Many reasons have been given for the drastically decreased production in 1971. These include: inferior plant varieties, prolonged exploitation of the soil withcat adequate fertilizer applications, plant diseases, poor
conseryation practices, decreased profitability of cane relative to cotton, and a prolonged drought throughout Santa Cruz (but especially near the south of the city Santa Cruz). Government policies have also played a role. Until 1971, producer prices at the mills were f ixed at $\$ b 66 / M T$. These prices were high enough to induce production (and refined sugar) surpluses which could not be worked off profitably in international markets. The Bolivian Government introduced production controls in the form of quotas assigned to a "selected" group of farmers at the cane mills. However, some quota holders do not produce cane at all, but act. as intermediaries, purchasing from newly colonized areas having no quotas and reselling at a profit to the mills.

The production of sugar cane has largely shifted north, away from the city of Santa Cris to where soils are more fertile and the drought has been less severe. The three sugar cane mills in the area, however, are in the sotuth: near Santa Gruz; 30 kilometers north of Santa Cruz near Warnes; and 55 kilometers north of Santa Cruz near Montero. As production has shifted, the distances that producers must transport cane for processing has increased. These cost increases have more than offset the yield benefits from the shift to the north; meanwhile yields in the south are too low and the mass of the traditional growers of cane, berween Santa Cruz and Montero, have turned to cotton instead. ${ }^{1}$

The overall objective of this study was to investigate various ways to reduce the annual transpertation bill for sugar cane in Santa Cruz, Bolivia. The alternatives included irrigation and non-irrigation possibilities:
(1) minimize the cost of transportation for the existing production area by

[^0]designating plants to which each producer should deliver; (2) relocate the existing mills to the northern ragion where production is now taking place; (3) close the most uneconomical mill and increase the capacity of the remaining two mills by either extending the length of the processing season alone or extending the season in conjunction with expanded capacity; (4) return sugar cane production to the traditional regions of Santa Cruz by employing on-farm irrigation, improved inputs, and management.

The specific objectives were:
(1) To determine a minimum cost system fur dis'ributing existing sugar cane production among processing facilities as presently located.
(2) To evaluate a relocation of sugar cane production with special emphasis on developing irrigation water for this purpose, or altering the locations and capacities of processing mills.

PROCEDURES AND SOURCES OF DATA

The main sources of information on transportation costs are in the sugar cane grower registry and surveys recently made by the Comisión Nacional de Estudio de la Caña y Del Azúcar (CNECA). These sources were checked during June and July of 1972 by personal interview with CNECA officials. Other estimates of cransportation and cane production and irrigation costs were taken from: (a) budget studies from the Utah State-Bolivia/Study team (1), and (b) budget studies from Carlos Castro of the Guabirá mill (2).

The sugar cane grower registry lists the location of each grower, the quantity of sugar cane sold to each processing mill by individual growers, and the distance of the farms from the processing mills. Data were also collected from each of the three processing mills, Guabirá, La Belgica, and San Aurelio concerning plant production capacities, number of work days, etc. Managers of these plants wexe interviewed to verify the accuracy of the registry data whare necessary.

The Transportation Model

Under present conditions, producers choose the mill to which they deliver their cane. The pattern of cane movement between producers and mill sites establishes transportation costs for the entire system. The cost of the present pattern was determined by the amount of cane tonnage being delivered from each farm and the distance it is transported. The cost per ton of cane transported was also calculated.

Our derived matrix system (Figure 1) includes all factories to which cane is delivered and all grower origins. The sites are represented by the columns

Figure 1. Matrix of Conceptual Distribution of Observed Activity
in the matrix and the origins by the rows. Two matrix systems were developed. One is based on the total volume of product delivered among all sites and origins; the other is based on transportation costs (value) for all combinations of origins and sites.

In the first system, the matrix encompasses the distribution of the total volume of cane transported from all mills to all origins where:

$$
\begin{aligned}
0_{i} & =\text { producer origins }(i=1, \ldots n) \\
X_{j} & =\text { mill sites }(j=1, \ldots m) \\
X_{i j} & =\begin{array}{l}
\text { observed tonnage moved between origin (i) } \\
\text { and site }(j)
\end{array} \\
B_{i} & =\text { total tonnage from an origin (i) } \\
T_{j} & =\text { totai tonnage to a site }(j)
\end{aligned}
$$

The second matrix is the same except the $X_{i j}$'s reflect the cost per unit of cane transportation among the origins and factory sites.

Cane registry information on 3,426 producer origins and three mill sites was consolidated into 54 producer areas. Each producer is an origin representing producers within the area. The reduction in number of origins makes the data more manageable and detracts very little from the accuracy of the analysis. The step creates a 3×54 matrix system.

The estimated cost of transporting the total cane harvested during 1972 under current conditions serves as the basic transportation cost for the study and is the standard to which all other alternatives are compared.

The formal conditions of the linear programming procedure were:
(1) Let subscript i indicate origins or producer areas from $1 \ldots \mathrm{n}$ (in our study $\mathrm{n}=54$).
(2) Let subscript $\mathcal{\text { (indicate }}$ sites or processing mills from 1 ... m (in our study $m=3$).
(3) $X_{i}=$ amount of cane transported from each origin (i).
(4) $X_{j}=$ capacity of each mill (j).
(5) $X_{i j}=$ amount of cane from producer area i to mill j.
(6) $\quad C_{i j}=\underset{\text { site }}{ } \quad$ per .
(7) $C=$ Total cost of transportation for the system.

So given,

$$
x_{i}, X_{j}, C, C_{i j},
$$

find
$X_{i j}$ for all i and j which minimize

$$
C=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i j} c_{i j} ;
$$

subject to these restrictions:

$$
\begin{aligned}
& x_{i}=\sum_{j=1}^{m} x_{i j} \\
& x_{j}=\sum_{i=1}^{n} x_{i j} \\
& \sum_{i=1}^{n} x_{i}=\sum_{j=1}^{m} x_{j} \cdot \\
& x_{i j} \geq 0
\end{aligned}
$$

The linear programming procedure theoretically redistributes tonnage among plants and producer areas, reflecting the arrangement that would result if
only proximity or location were involved in transportation decisions. It identifies the distribution of cane deliveries among plants and origins that would minimize the cost of delivering the total harvest of sugar cane for the 19\%2 season.

Comparing the resulting data matrix to the original matrix indicates which transport pattern is the most economical--the pattern as it operated in 1972 or the redistributed system defined by the least-cost program.

Variations in the Analysis. Modifications were subsequently imposed on the least-cost delivery system for the existing grower-mill matrix. The effects of closing or relocating the most uneconomical mill (located in the southern portion of the region) simultaneously increasing the capacities of the remaining mills were analyzed, ${ }^{2}$ as was the impact of the transportation costs of relocating producer origins. The relocation alternative would transfer production areas to the south and introduce irrigation systems and fertilizer use.

Data for the analysis of relocating cane production came from several sources. These include a study of major soil systems in the Santa Cruz region by Dr. T. T. Cochrane of the British Agricultural Mission (4); CNECA studies dealing with the pos ible use of irrigation water, fertilizers and other impruved methods of cane production (5); studies completed by the experiment station at Saavedra on the use of improved cultivation practices in the production of sugar cane (6); and a report by the USAID Study Team (1) that provides information concerning the feasibility of irrigation developments in the Santa Cruz region. Based on these sources, new sugar cane growing

[^1]arens are hypothesized. The costis of transportation for the matrix system with existing mill locations but new areas of production were calculated and the cost results compared with exisiing transport pattern costs.

Unit Cost of Transport

It is difficult to formulate a representative kilometer cost for transportation in the Sarta Cruz Region. Each producer negotiates his own rate with the truck owners based on individual situations and conditions. However, prices quoted by truck owners tend to be a function of three variables: (1) distance $t ;$ the mill, (2) type of road, and (3) amount of cane.

Tables 2, 3, and 4 summarize the transportation costs of cane for various distance zones to the three processing mills, Guabirá, La Belgica, and San Aurelio. Transport costs per ton increase as distance from the mill increases.

Annual Transportation Costs for All Cane

The cost of delivering cane to each of the three mills had to be deternined as an average due to the limited data dealing with individual producer transportation costs.

The cost data situation is complicated by the fact that many growers deliver their cane to nore than we mill according to their quota assignments. Sugar production quotas are established for certain growers but these may or may not be compatible with the delivery or acceptance quotas assigned
${ }^{3}$ based on the data for the Guabirá mill, there is some evidence that type of road surface influences the transportation costs. But the averages calculated in this study fail to illustrate a conclusive trend.

Table 2. Unit Transportation Costs to the Guabira Mill

Location	Distance to Mill Km.	Type of Road	Cost \$b/Ton
From 5 km .	5	Asphalt	10
Santa Maria	9	Asphalt and Unpaved	12
From 10 Km.	10	Asphalt	12
Naico	10	Unpaved	15
La Florida	10	Asphalt	12
Turobito	10	Asphalt and Unpaved	14
Portachuelo	12	Asphalt	15
Saavedra	12	Asphalt	15
Perserverancia	12	Asphalt and Unpaved	15
La Loma	12	Asphalt	15
Las Charras	13	Asphalt and Unpaved	15
Marino	13	Asphalt and Unpaved	1.5
Las Maras	16	Asphalt	17
Soledad	18	Asphalt	18
Aroma	20	Asphalt and Unpaved	21
Mineros	23	Asphalt	10
San Juan	25	Asphalt and Unpaved	22
Santa Martha	27	Asphalt and Unpaved	22
Caimanes	28	Asphalt and Unpaved	23
La Senda	30	Asphalt and Unpaved	23
Cuatro Ojitos	32	Asphalt	23
Chane	40	Asphalt	23

Source: Carlos Castro, Cane Manager of Guabira, 1971.

Table 3. Unit Transportation Costs to the La Belgica Mill

Location	Distance to Mill Km.	Cost \$b/Ton
From 5 Kms.	5	10
Warnes	8	12
Chane Roda	11	14
Juan Latino	15	15
E1 Tajibo	18	20
Montero	28	20
Puesto Mendez	34	25
Santa Maria	39	25
Seavedra	40	25
Mineros	53	30

Source: Carlos Castro, Cane Manager of Guahirá, 1971

Table 4. Unit Transportation Costs to the San Aurelio Mill

Location	Distance to Mill Km.	Cost \$b/Ton
Warnes	40	18
Puesto Mendez	68	25
Santa Maria	72	25
Saavedra	75	25
Charas	75	25
Portachuelo	78	30
Mineros	85	30
Cuatro Ojitos	93	34

Source: Carlos Castro, Cane Manager of Guabirá, 1971
individual growers by the mills. An individual grower may be forced to accept a partial quota from more than one mill in order to guarantee a market and to maintain a line of credit (which is based on a showing that he has a quota). The government tries to restrict each grower to obtaining a quota at only one mill in the region. Producers can circumvent this regulation by shipping cane to other mills under the names of wives or children. All this makes accurate identification of all individual producer locations and quantities being delivered very difficult.

Consequently, estimates of average costs of transportation for each mill are based on interviews with appropriate managers. The following delivery cost estimates were obtained: (1) Guabirá, \$h20 per metric ton; (2) La Belgica, \$b25 per metric ton; and (3) San Aurelio, \$b30 per metric ton. These estimates are within the limits suggested in Tables 1,2 , and 3 . The estimates are heavily influenced by the more distant areas that deliver to the plants which, in turn, suggests that significant amounts of cane are coning from the cutlying regions of the production area.

Estimated annual production capacity of each plant is: (1) Guabira, 445,200 metric tons of raw cane per season; (2) La Belgica, 539,000 metric tons of raw cane per season; and (3) San Aurelio; 401,200 metric tons of raw cane per season. Total milling capacity is $1,385,400$ metric tons.

Given these estimates, the annual total grower cost of transporting cane co the mills would be $\$ b 8,904,000$ for Guabira, $\$ b 13,475,000$ for La Belgica and $\$ b 12,036,000$ for San Aurelio. The annual transportation bill for the entire present sygtem based on average cost is $\$ \mathbf{b} 34,415,000$ per year. This is the basic cost figure against which all potential cost-reducing policie's are measured.

Least-Cost Distribution for

Present Cane Production

The production areas (54) defined for the Santa Cruz region, their distances from each of the mills, production for each area and the numbers of growers are listed in Tables 5 and 6. By forcing each production area to transport its cane in the least-cost pattern (Table 7), the total transportation cost for the entire system would be $\$ \mathrm{~b} 33,336,330$ per year. This represents a yearly savings of $\$ b l, 078,670$ or 3.2 percent over the present system.

According to the least-cost transportation pattern, certain areas can be defined as production areas or. "zones of influence" from which cane should be delivered if the total transport costs of the system are to be minimized (Figure 2).

According to the least-cost model, Guabirá would receive most of its cane from north of Montero up to and including Cuatro Ojitos. This area is bounded on the west by the Rio Piray and on the east by the Rio Grande. There is also an additional zone of influence in the Buena Vista region which includes part of the production from San Carlos, Buena Retiro, and Santa Rosa.

La Belgicas's main zone of influence is bounded on the north by the main east-west highway, on the west by the Portachuelo area and on the east by the Monte Verde and Los Ciervos region. Yapacani and Aroma would contribute minor amounts of cane.

San Aurelio, which is located south of the main cane-producing region, must take the cane that is left after the needs of Guabira and La Belgica

Table 5. Existing Produccion Areas in Santa Cruz and their Distances from the Mills (in kilometers), 1972.

PRODUCTION AREA		DISTANCES FROM THE MILLS		
Number	Name	Guabirá	La Belgica	San Aurelio
1	California	39	74	94
2	Aroma	24	58	82
3	Cuatro Ojitos	40	78	98
4	Caimanes	44	81	101
5	Portachuelo	22	52	76
6	Yapacani	79	109	131
7	Mineros	30	68	88
8	Chane	49	84	105
9	Candelaria	42	26	46
10	Los Ciervos	52	38	61
11	Illimani	46	84	104
12	Los Amarillos	33	71	93
13	Los Chacos	34	68	91
14	Chuchio	44	35	32
15	San Felix	20	57	79
16	Asusaqui	20	29	52
17	La Belgica	32	4	35
18	La Guardia	88	58	29
19	Palmar Viruez	67	42	14
20	Naico	11	45	67
21	La Loma	9	39	62
22	San Pedro	70	103	126
23	Warnes	31	16	38
24	Saavedra	19	56	78
25	Guabira	4	37	61
26	San Salvador	30	69	90
27	Terebinto	44	21	33
28	Tocomechi	45	26	46
29	La Angostura	105	85	61
30	Villa Arrien	73	53	22
31	Tarumaco	35	16	37
32	Santa Teresa	2.2	59	79
33	Sta. Rosario	45	28	50
34	Santa Rosa	33	69	94
35	Sta. Martha	31	69	90
36	San Miguel	29	66	87
37	San Juan	29	63	85
38	San Carlos	58	94	115
39	San Aurelio	59	38	4
40	San Antonio	37	19	34

Table 5. (Continued)

PRODUCTION AREA		distances from the mills		
Number	Name	Guabirá	La Belgica	San Aurelio
41	Okinawa	63	60	76
42	Paurito	43	48	18
43	Naranjito	12	23	54
44	Montero Joyo	76	51	45
45	Monte Verde	51	84	112
46	Monte Cristo	42	30	53
47	Los Munecas	46	82	103
48	El Naranjal	12	32	53
49	Juan Latino	23	15	43
50	Cotoca	69.	48	22
51	Buena Vista	48	85	105
52	Colpa	44	11	38
53	Pico de Monte	24	61	83
54	Buen Retiro	63	98	122

Table 6. Existing Production and Number of Producers from each Production Area, 1972
\(\left.\begin{array}{ccc}\hline \hline Production Area \& \begin{array}{c}Total Production

Number\end{array} \& Netric Tons\end{array}\right]\)| |
| :---: |
| 1 |

Table 6. (Continued)

Production Area Number	Total Production Metric Tons	Number of Producers
41	7,740	17
42	7,545	28
43	1,730	3
44	10,100	2
45	1,540	4
46	7,310	11
47	2,240	5
48	20,560	16
49	21,430	29
50	4,690	16
51	7,250	28
52	4,260	5
53	14,480	9
54	9,240	
		$1,385,400$

Table 7. Distribution of Grower Origins and Processing Mills for Minimum Cost System for Transporting Sugar Cane in Santa Crur, 1972.

		Mill Site	Amount Delivered ($\mathrm{X}_{\text {, }}$; 2	$\operatorname{Cost}(\mathrm{C}, 2)$
$\frac{\text { Producer Area (} 0_{i} \text {) }}{\text { Number }}$		(S_{j})	Metric Tons ${ }^{\text {ij }}$	\$b ${ }^{\text {b }}$
3	Cuatro Ojitos	Guabirá	140,998	3,242,954
4	Caimanes	"	27,081	649,944
7	Mineros	"	111,433	2,340,093
11	Illimani	"	6,418	154,032
12	Los Amarillos	"	21,439	493,097
15	San Felix	"	13,461	216,965
24	Saavedra	"	66,635	1,066,160
26	San Salvador	"	6,713	140,973
34	Santa Rosa	"	790	18,170
35	Santa Martha	"	7,908	181,884
36	San Miguel	"	4,280	89,880
38	San Carlos	"	4,734	118,350
47	Los Munecas	"	2,240	53,760
51	Buena Vista	"	7,250	174,000
53	Pico de Monte	"	14,480	304,080
54	Buen Retiro	"	9,240	240, 240
	OTALS:		445,200	\$69,484,593
2	Aroma	La Belgica	46,349	1,158,725
5	Portachuelo	"	35,595	889,875
6	Yapacani	"	66,238	2,384,568
10	Los Ciervox	"	6,490	149,270
13	Los Chacos	"	47,849	1,504,074
16	Azusaqui	"	78,180	1,641,780
17	La Belgica	"	35,590	431,400
20	Naico	"	59,529	1,428,696
21	La Loma	"	38,570	887,110
22	San Pedro	"	14,620	526,320
25	Guabira	"	63,360	1,457,280
43	Naranjito	"	1,730	36,330
45	Monte Verde	"	1,540	46,200
$4{ }^{\circ}$	Monte Cristo	"	7,310	153,510
49	Juan Tatino	"	21,430	342,880
52	Colpa	1	4,260	68,160
	OTALS		539,000	\$b13,106,178
1	California	San Aurelio	19,722	670,548
8	Chane	"	103,143	3,713,148
9	Candelaria	"	27,212	653,088
14	Chuchio	"	26,802	616,446
18	La Guardia	"	12,970	272,270
19	Palmar Viruez	"	21,000	336,000

Table 7. (Continued)

Figure 2. Least-cost Transportation Model for Existing System

have been met. It would take all the cune production to the south of Santa Cruz, the lands bounded on the west by Terebinto, on the east by Monte Hoyo, and on the north by the Tocomechi area. In order to operate at capacity, San Aurelio must draw cane from several distant regions, including Okinawa, Chane, Station Tereba, part of Naico, and a production area near California (which inciudes San Juan and part of San Carlos).

Obviously, the least-cost model minimizes the cransportation bill for the entire system, not necessarily the cost for each plant. Cane is forced to go to the most economical plant in terms of the whole system. The choice is based on producer distance from the mills, the unit cost of delivery per ton, and amount of cane to be delivered. If "nearby" production is adequate to meet capacity needs of a particular mill, any "left over" may be even further from the next best plant.

Minimizing the transportation bill for the entire delivery system does not insure that each individual producer will realize his least-cost alternative. Growers operating near Warnes, especially to the east, would find delivery to the La Belgica plant less costly than to either of the two other plants (Figure 2). Yet the least-cost solution of $d \in l i v e r y$ for the entire system pushes the production of this area to the San Aurelio plant, with higher costs to these individual producers.

Such results are inherent in any program in which the welfare objective is defined in terms of the total system, i.e., in this case the minimization of the transport bill for the entire area. The same feature is inherent to greater or lesser degree in all of the alternatives presented in this study.

As indicated above, the cost of transportation for the present system is approximately $\$ \mathbf{b} 3,415,000$ per year. This represents an average cost of $\$ \mathrm{~b} 20$ per ton for cane delivered to Guabirá, $\$ \mathrm{~b} 25$ for cane delivered to La Belgica and $\$ b 30$ for cane delivered to San Aurelio. For the least-cost distribution of the present system, the total cost would be $\$ b 33,336,330$, which is an annual savings of $\$ \mathrm{~b} 1,038,670$. This represents an average cost of $\$ \mathrm{~b} 21.30$ per ton for cane delivered to Guabirá; \$b24.32 per ton for canc delivered to La Relgica; and $\$ \mathbf{b} 26.86$ per ton for cane delivered to San Aurelio.

Alternatives for Reducing

Transportation Costs
There are three other major alternatives, which if implemented, might reduce the overall cost of cane transportation. The mill most distant from the regions of current cane production could be moved closer. The most distant mill could be closed and the capacity of the other two mills increased. The areas of production could be moved to the south, closer to the existing mills.

Relocating and/or increasing the capacity of the mills. In terms of transportation costs, San Aurelio has the least advantageous location of the mills. The average cost of transporting the cane to this mill is $\$ \mathrm{~b} 30$ per ton. Under the least-cost model, the cost decreases to $\$ \mathrm{~b} 26.86$ per ton. The management of San Aurelio plans to shift part of their operation to the Buena Vista area. This is 60 kilometers northwest of the present location.

Moving the San Aurelio mill to Buena Vista would affect the entire least-cost distribution system. The 1972 transportation cost of the distribution system with San Aurelio at its present location is $\$ 334,415,000$. The
cost with the plant at Euena Vista is $\$ b 30,225,465$. This represents a savings of $\$ \mathrm{~b} 4,189,535$ per year (Figure 3). If the costs of moving the San Aurelio plant to the Ruena Vista area are assumed to be $\$ 668.75 \mathrm{mi} 11 \mathrm{i}$ on (the average estimate of knowledgeable people in Santa Cruz), this amount can be amortized over the life of the plant and can be compared with the annual savings that would be gained from lower transportation costs.

The quoted interest rate in Santa Cruz is 15 percent. If the plant had a life of 20 years, the annual amortization of the $\$ 668.75 \mathrm{million}$ relocation investment would be $\$ b 10,983,500$. For a plant life of 25 years, the annual figure would be $\$ \mathrm{~b} 10,635,556$, and for a 30 -year life, $\$ \mathrm{~b} 10,470,625$. This shows that for any reasonable life, the annual amortization cost is more than twice the expected annual savings from transportation (\$b4,189,535).

A second alternative is to close San Aurelio and have the cane presently being delivered to San Aurelio go to La Belgica and Guabirá.

The climate and harvesting situation in Santa Cruz could support a milling season of about 180 days. Over the past five-year period, however, the milling season for La Belgica and Guabira has averaged 157 days and the average for San Aurelio has been 118 days. If San Aurelio were closed, La Belgica and Guabira could extend their milling seasons to 180 days. The combined capacity of the two mills would allow $1,134,000$ metric tons of cane to bo milled per 180 -day season. Ilis is 254,539 metric tons less than is currently being milled per season by the three processing plants. This alternati.ve provides large savings in transportation costs with no additional capital investment in plant sites. It should be emphasized that this alternative would handle about 82 percent of the 1972 deliveries, so there would be an effective reduction in milling capacity.

Figure 3. Least-Cost Transportation Model with San Aurelio Deleted and Buena Vista Added

Under the least-cost. distribution system, the annual cost of transporting the cane to Guabira and La Belgica would be $\$ \mathrm{~b} 23,885,633$. If $1,134,000$ metric tons (deliveric.: for 1972 less 18 percent) of cane were delivered under the existing pattern of shipment to three plants, the total bill would be $\$ 28,179,900$. Thus, by closing San Aurelio and delivering only to the other two mills, a yearly savings of $\$ 64,294,267$ could be realized. However, the savings of this alternative are also associated with an 18 percent reduction in cane delivery and processing. The distribution of influence areas is shown in Figure 4.

By increasing the daily capacity of Guabiráa and Ia Belgica by 25 percent each, and lengthening the milling season to 176 days per year, the total amount. of cane now being produced in Santa Cruz sould be handied by just these two mills. This represents an increase in the capacity of Guabira from 445,200 metric tons per season to 616,000 metric tons per season and an increase in the capacity of La Belgica from 539,000 tons per season to 770,000 tons per season. The estimated cost of increasing the daily capacity of Guabira by 25 percent is $\$ 68,862,000$ (7). Increasing the daily capacity of La Belgica by 25 percent would require an estimated $\$ \mathrm{~b} 16,352,875$ (7). The total investment of $\$ \mathrm{~b} 25,214,875$ for the two plants would provide the total milling now being supplied by three plants.

The total annual transportation bill for the expanded two-plant system would be $\$ \mathrm{~b} 28,903,321$. This represents a savings of $\$ \mathrm{~b} 5,511,679$ per year over the present system. If the cost of increasing the capacity of Guabira and La Belgica by 25 percent is amortized over the life of the plants, a direct comparison can be made between savings in transportation costs and costs of increasing plant capacities. Assuming life of the plants to be 20

Figure 4. Least-Cost Transpurtation Model with San Aurelio Deleted and a 180 Day Milling Season for Guabirá and La Belgica

years and the interest rate 15 percent, the annual repayment figure for a total investment of $\$ \mathrm{~b} 25,214,875$ would be $\$ \mathrm{~b} 4,029,337$. For a 25 -year period, the annual repayment figure would be $\$ \mathbf{} \mathbf{b} 3,840,225$ which is less than the transport savings. The distribution of influence zones delivering to the two expanded plants is illustrated in Figure 5.

The alternatives by which the sugar cane industry night lower transportation costs are compared in Table 8.

Irrigation and Shifting Production

Areas Nearer Existing Mills
The most logical way of overcoming the effect of the drought in the southern region and relocating cane production to this area is to develop irrigation projects. The feasibility of irrigaiion projects in the southern region depends upon many factors. One of the most important is the type of land available for cane production. Most Santa Cruz areas especially suitable for cane production would be amenable to the development of irrigation
 area. According to Cochrane (4), this area has drainage problems and the natural fertility of the soil has been depleted. Minor possibilities do exist in this area for cane production, but a large-scale irrigation project may not he physically feasible. Area \#20--Chapparal, is described as a low-lying semi-swanp area, which eliminates is adaptability for irrigation development. With these two areas excluded, Area \#21--Piray is the most likely candidate for large-scale irrigation projects. Piray includes all of the land between Santa Cruz and Montero and is the area where cane was initially grown.

Figure 5. Least-Cost Transportation Model With San Aureiio Closed and a 25 Percent Increase in the Capacities of Guabira and La Belgica

Table 8. Alternatives for Reducing Sugar Cane Transportation Costs in Santa Cruz

\vdots	Satrix System	Total Amount of Cane Available (M. T.)	```Total Capacity of Plants (M. T.)```	Total Transportation Cost : $\$ \mathrm{~b}$)	Set Transportation Savings (\$b)
Present					
Situation	--.	1,388,539	1,385,400	34,415,000	---
Alternative 1	3×54^{1}	1,388,539	1,385;400 ${ }^{2}$	33,366,330	1,048,670
Alternative 2	3×54	1,388,539	1,385,400 ${ }^{3}$	30, 225,465	4,189,535
Alternative 3	2×54	1,388,539	1,134,0004	23,885,633	4,294,2675
Alternative 4	2×54	1,388,539	1,386,000 ${ }^{6}$	28,903, 321	5,511,679

$1_{\text {Three plants }}$ sites, 54 producer origins.
2Based on a milling season of 149 days for Guabira with a 2800 M . T. per day capacity, 154 day milling season for La Belgica with a 3500 M . T. per day capacity, and a milling season of 118 days for San Aurelio with a 3400 M. T. per day capacity
${ }^{3}$ Same as \#1 except Buena Vista is substituted for San Aurelio
${ }^{4}$ Based on a 180 day milling season for La. Belgica and Guabirá
5Based on the assumption that $1,134,000$ metric tons of cane would be distributed among the three plants at a total transportation cost of $\$ \mathrm{~b} 28,179,900$ as compared to $\$ \mathrm{~b} 34,415,000$ for $1,385,400$ metric tons
${ }^{6}$ Twenty-five percent increase in capacity of Guabirá and La Belgica with a 176 day milling season

Figure 6. Land Systems Map of the Santa Cruz Region (4).

The economic feasibility of relocating sugar cane production from the northern to the southern region is based on the comparison of the savings from transportation costs (if production takes place in the southern region) with the change in production costs associated with the move. In this case, the change in costs involve irrigation project and fertilizer costs. This comparison utilizes the least-cost transportation model.

For the purposes of this portion of the study, the sugar cane production occurring beyond 30 kilomeiers to the north of Guabira is hypothetically shifted to the area between Santa Cruz and Montero. The distance of 30 kilometers is used because current production within that distance approximates the amount formerly grown in the southern region. If this northern production were shifted back to the southern region, the sugar cane production pattern would closely resemble the original production situation.

Productior that would logically be soifted in the southern region includes the following producer areas: No.'s $4,6,8,11,22,38,41,45$, 47, 51, and 54 (See Table 4). The tonnage involved is 256,469 .

If all cane production occurring more than 30 kilometers to the north of Guabirá were shifted to the southern region, the total annual transportation bill for the system would be $\$ 629,139,450$ per year. The total per year for the existing system is $\$ \mathrm{~b} 34,415,000$. The production shift represents a savings of $\$ b 5,275,550$ per year. On a per ton basis, the average transportation cost of the existing system is $\$ \mathbf{\$} 24.08$. With the relocation of the production areas, the average cost would be $\$ 621.03$ per ton of cane transported. The zones of influence are shown in Figure 7.

According to the USAID Study Team report (i), if the land in the Santa Cruz area is irrigated, and fertilizer is used, a yield of 120 tons per hectare

Figure 7. Least-Cost Transportation Model with Production of Northern Regions Shifted to the South

1-54 Producer Area Numbers (See Table 4)
\square Cane to Guabirá
凅 Cane to San Aurelio
Cane to La Belgica
could be achieved. An irrigation project capable of irrigating at least 2,137 hectares would be needed.

The cost of implementing such a project varies greatly with the type of water delivery system chosen. The USAID Study Team (1) considered four methods: (1) sprinkler irrigation from a well, (2) surface irrigation from a well, (3) sprinkler irrigation from a river, and (4) surface irrigation from a river. The per hectare costs are based on an assumed unit size of 150 hectares for sprinkler irrigation and 100 hectares for surface irrigation. This results in per hectare costs estimated at: (1) sprinkler irrigation from a well, \$b2505; (2) surface irrigation from a well, \$b2470; (3) sprinkler irrigation from a river, \$b1630; and (4) surface irrigation from a river, \&b675. These may turn out to be conservative estimates if some economies of scale can be realized in a large project.

Some positive economies of scale might be realized in irrigating 2,137 hectares. Using the USAID figures, the total annual cost of developing these systems to irrigate 2137 hectares would be: (1) sprinkler irrigation from a well, $\$ \mathrm{~b} 5,353,185$ per year, (2) surface irrigation irom a we $11, \$ \mathrm{~b}, 278,390$ per year, (3) sprinkler irrigation from a river, $\$ b 3,483,310$ per year, and (4) surface irrigation from a river, $\$ \mathrm{bl}, 431,790$ per year (Table 9).

Fertilizer is also essential if 120 tons per hectare are to be grown in the southern region. The soils in the area between Santa Cruz and Montero are depleted and would require fertilizer application if a yield of this magnitude is to be realized. Table 10 gives the cost of fertilizers and the types available in the Santa Cruz area. To rehabilitate the land in the area between Santa Cruz and Montero, 300 kg . per hectare per year would be necessary. Allowing an average cost of $\$ 120$ per 50 kgs ., the cost of fertilizer per

Table 9. Annual Costs of Irrigating 2137 Hectares in Santa Cruz

Type of System	$\frac{\text { Annual cost per Hectare }}{\$ \mathrm{~b}}$	$\begin{aligned} & \text { Annual Cost for Irrigating } \\ & 2137 \text { Hectares }\end{aligned}$ $\$ b$
1. Sprinkler from well	2,505	5,353,185
2. Surface from well	2,470	5,278,390
3. Sprinkler from river	1,630	3,483,310
4. Surface from river	675	1,431,790

Source: Irrigation Analysis for Selected Crops, Santa Cruz, Bolivia, USAID Study Team, 1972.

Table 10. Fertilizers Available in Santa Cruz and Fertilizer Costs

Unit	Product	Price
Sack (50 kilos)	$15-15-15$	$\$$ b119.00
"	$18-46-0$	124.00
$"$	$13-39-0$	
$"$	$16-20-0$	
$"$	Urea 46\%	115.50

Source: Grace and C. I. A. (Bolivia) S. A, 1972.
hectare would be $\$ \mathrm{~b} 720$. The total cost of fertilizing 2137 hectares would be \$b1,538,640.

The costs of developing irrigation projects and fertilizing the land in the southern regions are compared with the savings that would be obtained from lower transportation costs in Table 11.

Two types of irrigation development would cost less per year than the yearly savings from transportation costs. These two systems are: (1) sprinkler irrigation from a river which would cost $\$ 65,021,950$ annually to irrigate 2137 hectares; (2) surface irrigation from a river which would cost $\$ \mathrm{~b} 2,970,430$ annually to irrigate 2,137 hectares. The annual savings of transportation costs are $\$ \mathrm{~b} 253,600$ and $\$ \mathrm{~b} 2,305,120$ respectively.

Another factor that must be considered if cane production is to be relocated in the southern region is the question of regional comparative advantage. The major crop now being produced in the southern region is cotton. If sugar cane is relocated to this area, it must compete with cotton on an economic basis. According to the study completed by the USAID Study Team, sugar cane is second to cotton as the most profitable crop in the Santa Cruz region. With fertilizer use and gravity irrigation in the southern region, the estimated net return per hectare of cotton is $\$ 65,773$ and the net return per hectare of sugar cane is $\$ \mathrm{~b} 3,762$. As these data are estimates for the total Santa Cruz region, and not just the southern area, sugar cane data reflect the 'righer transportation costs associated with the present distribution of cane production and delivery. Individual producer situations and/or those related specifically to the southern region will reflect more favorable transportation costs and consequently the returns versus cotton will improve. Furthermore, sugar prices in Bolivia have been increased approximately 30 percent since the USAID Study Team Report.

Table 11. A Comparison of the Cost of Developing 2137 Hectares in the Southern Region of Santa Cruz, with the Savings from Lowered Transportation Costs

Type of System	Annual Irrigation Costs per Hectare	Annual Fertilizer Costs Per Hectare	Total Annual Cost for 2137 Hectares	Total Annual Transportation Savings	Net Gain or Loss
	\$b	\$b	\$b	\$b	\$b
1. Sprinkler from a well	2,505	720	6,891,825	5,275,550	-1,616:275
2. Surface from a well	2,470	720	6,817,030	5,275,550	-1,541,480
3. Sprinkler from a river	1,630	720	5,021,950	5,275,550	+ 253,600
4. Surface from a river	675	720	2,970,430	5,275,550	+2,305,120

The high return for cotton depends in laree part on the present world prices for hand-picked cotton. If this market should falter, cotton would lose much of its profitability. On the other hand, folivia's sugar cane production is consumed in Bolivia and is not as susceptible to risk of fluctuating prices. Moreover, a portion of Rolivia's sugar production is linked to a sugar quota from the United States which adds additional stability to future prices. Whether irrigated cane production would support irrigation development as a single crop or become part of a broader crop rotation is a matter for speculation at this point in time. Sugar cane is normally replanted each five years and rotates with legumes, green manure or in a fallow cycle as do other competitive crops in the region. But cane production can be sustained in a continuing production cycle with commercial fertilizer in the same manner as cotton, soya, etc. Consequently, the reality of cane production in the south is dependent upon its relative profitability at a given point in time and under relative economic conditions. The issue cannot be conclusively resolved on the basis of existing information. Rut the qualitative projection does suggest good probabilities that sugar cane could compete with other creps in the southern region, given the irrigation development essential to attaining the projected yield levels.

RECOMMENDATIONS FOR FURTHER PESEARCH

The two most feasible producer-oriented alternatives were: (1) to develop "zones of influence" based on the least-ccst analysis of the present system, and (2) develop surface irrigation projects from the rivers. Both of these alternatives are producer oriented. The "zones of influence" concept requires no additional investment by either the bills or the producers. The plants to which individual producers deliver their cane are designated so as to minimize the cost of transportation, given the existing spatial distribution of plants and producers. The development of surface irrigation projects would require investment by producers, but no investment from the mills, and would improve the spatial relationships among mills and producers.

If either of these alternatives were chosen, there would be a minimum of equity problems to be resolved. This is because investment costs would be borne by the producers and they would reap any forthconing benefits in the form of transportation savings or net gains from greater yields. However, if the alternatives of either shifting the mills nearer to production areas or closing the mill most distant from the current production areas were followed, equity issues may be relevant.

The mills would pass some or all of the cost of moving their operations or increasing their capacity on to the producers and/or the consumers. Closing or relocating a mill could affect the income distribution and economic conditions of the cane producers and mill workers. Predefinition of the equity issues and distribution of benefits and costs related to these two alternatives would be relevant to the development strategy of Bolivia and the Santa Cruz region. If either of these two alternatives were chosen, the producers would realize savings in their transportation costs. However, the
mills might feel justified in requesting a price adjustment either by lowering the price they pay to the producers or the price received for their sugar in order to cover the costs of moving or increasing the plant capacities. Further research would be beneficial in explaining how these factor interrelate and the ultimate effect they would have on the distribution of income and the economic condition of producers in Santa Cruz.

Research dealing with the price elasticity of demaid for sugar in Bolivia would help policymakers decide whether a portion of the cost of moving or of increasing the capacity of the mills could be borne by the consumers. It would also facilitate projections of future demand for sugar in Bolivia.

If sugar cane production is to be relocated by means of irrigation projects, a study dealing with the sources of credit in Santa Cruz would be helpful. Most cane producers in Santa Cruz have small operations and would find difficulties in raising the necessary capital required for an irrigation project. Possible sources of credit for these small producers would have to be predefined if irrigation projects were to be developed in Santa Cruz.

Finally, if sugar cane production is relocated to the southern region, the comparative advantage of sugar cane relative to other crops, especially cotton, should be evaluated.

SOURCES CITED

(1) Bolivia-Utah State/USAID Study Team, "Irrigation Analysis for Selected Crops, Santa Cruz, Bolivia." USU Series 13/72, Logan, Utah, 1972.
(2) Castro, Carlos. Oficina De Cana, Iniorme Anual, Zafra, 1969. Guabirá, Santa Cruz, Bolivia, 1969.
(3) Gomez, Enrique. "Costos de Producción Agrícola." Unpublished. La Paz, Bolivia, 1972. 36 questionnaires.
(4) Cochrane, T.T. Land Systems Map of Central Tropical Bolivia. Ministry of Agriculture, Bolivia, British Agricultural Mission, Santa Cruz, Bolivia, 1967.
(5) Comisión Nacional de Estudio de la Caña y Del Azúcar. La Industria Azucarera Boliviana, Santa Cruz, Bolivia, 1970-71.
(6) Ministerio de Agricultura, Estación Experimental de Saavadra. Resumen Climatológico de la Estación Experimental Agricola de S zavedra, Saavedra, Santa Cruz, Bolivia, 1971
(7) Comisión Nacional de la Caña Azúcar. Las Cifras en Las Proyecciones Azucareras--Bolivia, Santa Cruz, Boiiivia, May, 1972.
(8) Federación Departmental de Empreserios Privados de Santa Cruz. Estadísticas Económicas y Sociales del Departmento de Santa Cruz, 1972.

Appendix A

PRECIPITATION

The dependency of sugar cane production in the Santa Cruz area upon rainfall has severely limited production. Rainfall records have been kept at the experiment station at Saavedra from 1943 to the present. The station is located in the region where much of the past and present cane production takes place. According to the Station's records, since the production of sugar cane began in 1949-50, precipitation has exceeded the estab1ished optimum of 1500 mm . per year in only two years (1955 and 1958). This is illustrated in Appendix Table A1 and Figure A1.

As can be observed from Figure A1 yearly amounts of precipitation have steadily decreased from 1965 to 1970. From 1950 through 1970, an average of 5 months per year of serious moisture shortage have hampered good cane growth (1). In 1970, about 10 months were considered deficit (Figure A2).

The drought has been mont severe in the southern part of the region. According to the data collected near the city of Santa Cruz, the average rainfall for the last 20 years has been about 1000 mm . per year. The experiment station at Saavedra, which is 70 km . north of Santa Cruz, reports an average of about 1250 mm . per year for the same period. This difference has been greater during the last five years as a result of the period of severe drought in the southern region. Farther north, around the Rio Grande, annual rainiall averages over 130 mm . As cne moves further north, there is a marked increase in annual rainfall. Although the area north of Montero receives less than the optimum amount of rainfall per year, it is still much more favorable for growing sugar cane than the southern region in terms of available moisture.

Figure Al. Recorded Rainfall at Saavedra, 1943-1970

Source: Saavedra Experiment Station (Santa Cruz)

Figure A2. Recorded Rainfall at Saavedra, Wet and Dry Seasons, 1963-64, 1969-70.

Sour ce: Saavedra Experiment Station (Santa Cruz)

Table Al. Monthly Rainfall at Saavedra, 1943-1970 (millimeters)

Month	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952
January	119.0	54.2	147.7	100.1	272.5	238.4	191.6	172.6	265.4	221.3
February	295.7	135.9	201.4	194.1	148.0	240.7	106.8	61.7	123.2	211.1
March	75.0	96.8	359.9	243.4	196.7	158.8	132.3	124.0	39.9	69.0
April	134.0	56.3	116.2	32.9	89.3	5.5	119.6	91.0	62.1	20.9
May	40.0	39.5	27.1	407.5	250.3	7.5	32.2	135.0	43.7	44.9
June	80.6	94.4	11.6	58.9	61.5	60.7	233.3	1.5	73.8	173.3
July	17.5	11.0	100.8	57.7	166.8	194.3	39.5	129.5	0.2	1.7
August	24.0	118.3	1.0	13.8	120.6	40.8	0.7	4.5	74.9	7.7
September	88.0	12.4	88.3	147.4	98.9	40.8	--	48.2	95.1	130.8
October	107.5	292.3	33.1	44.7	43.9	200.2	69.0	172.3	137.3	109.0
November	82.9	26.0	93.5	78.5	128.8	77.0	213.0	61.2	130.7	149.7
December	463.1	113.3	172.9	227.2	222.5	238.1	253.1	70.9	86.8	88.1
Total	1.527 .3	1.060 .4	1.353 .5	1.006 .2	1.799 .8	1.503 .1	---	1.072 .4	1.143 .1	1.227 .6

Table Al. Continued

Month	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962
Januery	66.8	191.1	395.9	220.8	132.0	106.6	218.4	111.7	160.0	175.0
February	48.0	114.8	127.7	167.6	162.5	231.1	93.9	137.1	266.7	132.0
March	189.3	221.5	105.2	20.3	48.2	48.2	154.9	114.3	83.8	157.4
April	252.4	201.2	125.5	220.9	96.5	152.4	147.3	142.2	106.6	22.8
May	173.7	116.8	73.2	50.8	93.9	53.3	12.7	71.1	53.3	30.4
June	28.8	80.9	104.7	76.2	73.6	63.5	91.4	12.7	60.9	15.2
July	3.9	32.1	149.5	88.9	223.5	35.5	71.1	33.0	53.3	5.0
August	0.0	18.0	23.3	58.4	96.5	0.0	30.4	60.9	0.0	48.2
September	35.8	81.5	0.1	58.4	180.3	165.1	0.0	63.5	20.3	66.0
October	126.8	25.0	55.7	152.4	96.5	149.8	99.0	63.5	76.2	96.5
November	184.6	24.0	232.0	91.4	147.3	160.0	109.2	81.2	109.2	66.4
Decemiar	100.3	79.0	157.4	269.2	114.3	434.3	129.5	71.1	254.0	190.5
Total	1.210 .4	1.185 .9	1.550 .2	1.475 .3	1.465 .1	1.599 .8	1.157 .8	962.3	1.244 .3	1.005 .4

Table Al. Continued

Month	1963	1964	1965	1966	1967	1968	1969	1970	Average
January	127.0	132.0	281.0	177.8	281.9	134.6	114.3	73.7	174.7
February	213.3	259.0	160.0	132.1	127.0	180.3	96.5	199.2	160.3
March	144.7	195.6	71.1	137.2	53.3	15.2	71.1	33.0	120.0
April a	40.6	66.0	106.7	7.6	65.3	40.6	73.7	33.0	93.9
May	33.0	38.1	86.4	36.4	106.7	2.5	76.2	48.2	79.8
June	40.6	15.2	5.0	68.6	170.2	43.2	101.6	73.7	70.5
July	7.6	5.0	139.7	0.0	96.5	33.0	20.3	7.6	61.6
Augusta	7.6	35.6	35.6	0.0	27.9	91.4	17.8	7.6	34.5
September	40.6	81.3	2.5	96.5	10.2	25.4	44.5	2.5	63.9
October	78.7	190.5	180.0	144.8	45.7	119.4	68.6	83.8	109.4
Novenber	132.0	147.3	96.5	93.9	38.1	78.7	170.2	53.3	109.2
December	170.2	154.9	228.6	170.2	111.8	307.3	63.5	96.5	179.9
Total	1.035 .9	1.320 .5	1.394 .0	1.115 .1	1.134 .6	1.071 .6	918.3	622.1	1.257 .70

Source: Saavedra Experiment Station (Santa Cruz)

Appendix B
PHYSICAL FACTORS RELATED TO THE PRODUCTION
OF SUGAR CANE IN SANTA CRUZ

Soil Types

The ten major soil types in the region of Santa Cruz have been classified by T. T. Cochrane of the British Agricultural Mission (See Figure 6). The ten areas of interest within Santa Cruz are distinguished primarily on the basis of differing soil types. These ten areas and their characteristics are described according to Cochrane's study (4).

Soil Type 非 1 -- Caranda
Area: 166,000 Hectares
General Topogrpahy: 3mall, even, steep sided on hills. Fairly young topography.

Characteristics of Agricultural Importance, Including Climate: The steep topography of these hills will largely limit agriculture to a small proportion of the lower gentler slopes. Rainfall in the region is in excess of 1300 mm . per year. The dry season includes the months of June to September, but is not too severe. There are frequent cool southerly winds between May and August.

Agricultural and Animal Product on Potentials: Some tree crops on lower stabler slope positions in the south and possibly cacao in the north. Only a small percentage of the total area might be used.

Soil Type 非2 -- Colpa
Area: 106,000 Hectares
General Topography: Some small rolling to steep hills complexed with cldish plain surfaces and recent river valleys.

Characteristics of Agricultural Importance, Including Climate: There is a relatively small acreage of cultivatable soil, and the fertility of such appears to deplete very rapidly. Because of inherent drainage problems, the planosolic soils
cannot be used for arable cropping without sub-soiling and artificial drainage. The climate is very similar to that of Caranda, but is possibly a little drier.

Agricultural and Animal Production Potentials: Minor agricultural possibilities do exist, including sugar cane and coffee. The region appears suitable for cattle production.

Soil Type \ddagger 3 - Santa Rosa
Area: 32,000 Hectares

General Topography: A series of small hills with moderate to steep slopes. Hills rise about 400 feet above surrounding plains.

Characteristics of Agricultural Importance, Including Climate: Topography and the sandy, infertile nature of these soils limit agricultural use. Soil moisture is adequate for coffee cultivation but marginal for cacao. Rainfall is in excess of 1300 mm . per year, with a moderate dry season from June to September. There are frequent cool, southerly winds between May and August.

Agricultural and Animal Production Potentials: Only those soils on relatively gentle more stable slopes might be cultivated, and preferably only for tree crop production. Such probably represents less than 30 percent of the total land surface.

Soil Type 非20 -- Chaparral

Area: 45,000 Hectares
General Topography: Low, semi-swamp areas
Characteristics of Agricultural Importance, Including Climate: These soils are partly covered with $\mathfrak{f l o o d}$ waters for 4 to 6 months of the year.

Agriculture and Animal Production Potentials: There is the possibility of the cultivation of water-resistant pasture plants that might be used for dry season gra:ing.

Soil Type $\$ 21$-- Piray
Area: 397,000 Hectares
General Topography: Nearly flat, but gently undulating in areas subject to wind blow.
Characteristics of Agricultural Importance, Including Climate: While the predominant soils are poor, there are considerable areas of heavier soils, which with adequate fertilization might sustain arable cropping for some time. Rainfall in the region is in excess of 120 mm ., and falls mainly during the warm summer months of November to April. The area is exposed to frequent cool southerly winds during the months of May to August, although the effect of such is not as severe as in the case of the Northern Chaco.
Agricultural and Animal Production Potentials: The region is the most developed agricultural region in Bolivia. Sugar cane is the principal crop. The marked drop of yield in sugar is a reflection of a number of agronomic factors including fertility. It appears that a more intensive study of this region is warranted to indicate the more suitable areas for sugar cane production and to find ways of improving cane yields either through fertilization and/or rotation. Alternative uses for the poorer land might profitably be investigated, with perhaps spectal emphasis on improving pastures for more intensive animal production, e.g., fattening cattle, dairying, etc.
Soil Type 非22 -- Central Rio Grande
Area: 559,000 Hectares
General Topography: Nearly flat.
Characteristics of Agricultural Importance, Including C!imate: There are extensive areas of well-drained, arable soils. Rainfall throughout the region is probably less than 1200 mm . The dry season is quite well-marked between the months of June to September. Cool southerly winds are commom between May and August.
Ag-iculture and Animal Production Potentials: Rice and maize can be produced successfully on a "small scale" farming basis, as evidenced by the success of the Okinawan colonists located on a part of the region. There appears to be sound prospects for the cultivation of soil-seed crops such as soya beans. Improved pastures should do well.
Soil Type 非23 -- Northern Rio Grande
Area: 190,000 Hectares
General Topography: Nearly flat.

Characteristics of Agrisultural lmportance, Incl uding Climate: There $a: e$ considerable areas of well-drained, arable soils not subject to wet season water-logging. Rainfall in the region is in excess of 1300 mm . The dry season is not too severe. Cool southerly winds are common between May and August.

Agriculture and Animal Production Potentials: Small-scale arable farming, including rice, maize, oil seed and fibre production, might be suggested for extensive areas of the younger alluvi,ums. The possibility of planting improved pastures on the older soils might be profitably investigated.

Soil Type 非26-- Portachuelo Pampas

Area: 51,000 Hectares
General Topography: Slightly indulating.
Characteristics of Agricultural Importance, Including Climate: The soils remain water-logged for considerable periods of each year. Rainfall is about 1200 mm . per year. The driest months are from July to September. Cool southerly winds are common between May and August.

Agricultural and Animal Production Potentials: Agricultural prospects do not appear to be very good. There may be some scope for the introduction of water-tolerant, improved pasture species, on the soils near Portachuelo.

Soil Type 报27 -- Yapacani Palacios
Area: 242,000 Hectares
General Topography: Nearly flat.
Characteristics of Agricultural Importance, including Climate: There is a considerable acreage of arable land in the region, but the soils are only moderately fertile and will tend to lose their fertility fairly quick. Rainfall in the area averages about 1400 mm . per year. The dry season does not appear to be too severe. Cool southerly winds are common between May and August.

Agricultural and Animal Production Potentials: With the exception of the more recent rapacani alluviums, because of the marginal nature of soil drainage and fertility, possibly only "hardier" crops including fibers, such as kenaf, might be suggested. A careful forest "inventory" of the northern part of the region should be taken to ascertain the value of the forest, especially in view of reputed belts of mahogany occurring in the extreme north.

Soil Type 非33 -- Central Hydromorphic Zone
Area: 3,035,000 Hectares
General Topography: Flat and low. Micro-topography of surface often shows evidence of a "hog-wallow" effect.

Characteristics of Agricultural Importance, Including Climate: Over 80 percenc of these lands appear to have serious drainage problems. The forest cover obviously plays a very important role in the hydrological control of the Beni Basin. Rainfall ranges from 1400 mm . to an excess of 2500 mm . per year. Cool southerly winds are common between May and August, but are not as severe as in the Santa Cruz region.

Agricultural and Animal Production Potentials: Immediate development prospects do not appear promising. A percentage of these lands may eventually be used for the cultivation of water-tolerant crops. However, careful investigations should be carried out, especially hydrological and ecological investigations, before any project of any scale to remove these forests is initiated.

Only five of the ten areas (2, 21, 22, 23, and 27) have significant potential for the production of sugar cane. Of these five areas (Figure 6), area 21 (397,000 hectares) seems the best suited for the production of sugar cane. This region, however, is the most developed area in Bolivia and because of the extensive development, soil fertility is a problem. Within area 21 , the land from Montern northward still retains much of its natural fertility and is best suited physically for the production of cane. This is the area to which cane production, displaced in the southern region, has now been shifted.

Appendix C

USAID Study Team Budgets for Sugar Cane Production

Table Cl. Sugar Cane - Per Hectare Costs, Revenues and Profits---Without Irrigation and Without Fertilizer

	Practices P	Plantation each 5 Year/Hectare	Annual \$b. Hectare
Fixed Costs			
	Land Preparation	\$b. 450.	\$b. 134.
	Seed: 6 tons at \$b.94.	564.	168.
	Planting: with tractor 2 hrs .	100.	30.
	manual (10 men)	150.	45.
(4)	Replanting: 7 men	100.	30.
	 (Amortized for 5 yrs. at 15%)	\$b.1.364.	\$b. 407.
Variable Costs			
(5) Cultivation with tractor, 2 hrs . @ \$b.50. (3 times)			\$b. 300.
(6) Cleaning: 7 men (3 times) at $\$ \mathrm{~b} .70$.			210.
(7) Harvesting: \$b.15./ton			525.
(8) Transportation: \$b.25./ton at 35 ton/ha			875.
(9) Maintenance of field roads			20.
(10) Depreciation: tools, sheds, etc.			19.
(11)	Repairs: tools, sheds, etc.		12.
	Total Variable Costs ------------		\$b.1.961.
(12)	Interest on operating capital ($1 / 2$ total variable costs for 6 months at 15%)		74.
	Total Annual Cost ---------------		\$b.2.442.
	Total Revenue: $\$ \mathrm{~b}$. $90 . /$ ton at 35 tons/ha		\$b.3.150.
	Annual Returns to Land, Family Labor \& Management		\$b. 708.

Table C2. Sugar Cane - Per Hectare Costs, Revenues and Profits-With Irrigation and Without Fertilizer

	Practices	Planta 5 Yea	ion each /Hectare	Annual \$b. Hectare
Fixed Costs				
(1)	Land Preparation	\$b.	450.	\$b. 134.
(2).	Seed: 6 tons @ \$b.94. ea		564.	168.
(3)	Planting: with tractor 2 hrs		100.	30.
	Manual (10 men)		150.	45.
(4)	Replanting: 7 men		100.	30.
	Total Fixed Costs (Amortized for 5 years at 15\%)	\$b	364.	\$b. 407.
Variable Costs				
(5) Cultivation with tractor 2 hrs @ $\$ \mathrm{~b} .50$. (3 times)				
(6)	Cleaning: 7 men (3 times) \$b.10. ea			210.
(7)	Harvesting: \$b.15./ton © 85 ton/ha			1.275.
(8)	Transportation: \$b.25./ton at 85 ton/ha			2.125.
(9)	Maintenance of Field Roads			20.
(10)	Depreciation: tools, sheds, etc.			19.
(11)	Repairs: tools, sheds, etc.			12.
	Total Variable Costs ----m-n-m			\$b.3.961.
	Interest on operating capital (1/2 total variable costs for 6 months at 15%)			149.
				\$b.4.517.
(13)	Totai Revenue: \$b.90. ton at 85 tons/ha			\$b.7.650.
	Gross Annual Return to Water, Land, Family Labor and Management			\$6.3.133.

[ab].e C2. Continued

Plantation each	Annual	
Practices	5 Year/Hectare	\$b. Hectare

(14) Annual Irrigation Costs--

Sprinkler from well	\$b.2.505.	\$L. 628.
Surface from well	2.470.	663.
Sprinkler from river	1.630.	1.503.
Surface from river	675.	2.458.

Table C3. Sugar Cane - Per Hectare Costs, Revenues and Profits-With Irrigation and Fertilizer

Practices	Plantation each 5 Years/Hectare	Annual \$b. llectare
Fixed Costs		

Table C3. Continued

	Practices	Plantation each 5 Years/Hectare	Annual \$b. Hectare
(14)	Gross Annual Returns to Water, Land, Family Labor \& Management		\$6.4.437.
(15) Annual Irrigation Costs--			
	Sprinkler from well	\$6.2.505.	1.932.
	Surface from well	2.470	1.967.
	Sprinkler from river	1.630.	$\begin{aligned} & 2.807 . \\ & 3 \\ & 7 \end{aligned}$
	Surface from river		3,762.

Appendix D

Sugar Cane Budgets Prepared by Carlos Castro

Table Dl. Evaluation of One Hectare of Forested Land, Within a 15 Kilometer Radius of Guabira'

The value of 1 hectare of land in this zone is $\$ \mathrm{bl}, 500$.
The investment required for 1 hectare of sugar cane grown on cleared land.

1st Stage

Manual forest removal o $\$ b 450 / \mathrm{ha}$	$\$ \mathrm{l}$
leveling	50.
Burning	50.
Seed: j tons © $\$ \mathrm{~b} 60 /$ ton	300.
	100.
Planting	100.
Furrowing	100.

Total Investment for 5 years $\$ \mathrm{bl}, 150$.

2nd Stage
Two weedings @ $\$ \mathrm{bl} 50$ each
Harvesting @ $\$ \mathrm{~b} 16 / \mathrm{ton}, 60$ tons/ha
\$b 300.
Transporting A \$bl3/ton
960.
780.

Total 1st year expenses $\$ \mathrm{~b} 2,040$.
NOTE: The 5 year investment total of $\$ b 1,150$ will be pro-rated over the period.

1 st Year
Expenses for 1st year $\quad \$ b 2,040$.
Social Benefits for Workers
200.

Pro-rated fixed investment
230.

Total Investment
For 60 tons @ $\$ 665 /$ ton
\$b2,470.

Total Cost $\$ \mathrm{~b} 3,900$.

2,470
Return
\$b1,430.

Table D1. Continued

NOTE: The expenses for the 2nd year will be the same as for the lst year because ylelds are the same.

1st and 2nd Year Cost/Ton

Weeding
Pro-rated fixed investment
Total Investment

$$
\frac{\$ \mathrm{~b}}{6 \cdot \frac{30}{60}}=\$ \mathrm{~b} 8.83 / \text { ton ready to be harvested }
$$

Cane ready to be harvested
Harvesting and transporting
Total Cost at Mill
Average price paid for cane at the mill Less costs for cane

Return

Pre-harvest interest costs
Net return per ton
Percentage of price paid at mill returned to the producer for the lst and 2 nd year $=40 \%$

3rd Year
Average yield $=50$ tons/ha.
Two weedings \$ $\$ 150$ each
Harvesting © $\$ \mathrm{tl} / 6 /$ ton, 50 tons/ha.
Trar porting @ \$bl3/ion
Total 3rd Year Expenses
Expenses for 3rd Year
Social Benefits for Workers
Pro-rated fixed investment
Total Investment
\$b 300 .
\$b 300. 230.
\$b 530.
\$b 8.83/ton
29.00/ton
\$b 37.83/ton
\$b 65.00/ton 37.83/ton
\$b 27.17/ton
$\$ \mathrm{~b} \quad 1.20$
\$b 25.97

800 .
650.
$\$ \mathrm{~b} 1,750$.
\$bl,750.
200.
230.
\$b2,180.

Table D1. Continued

50 tons/ha@ \$b65/ton	\$63,250.	
Total Cost	2,180.	
Return	\$61,070.	
Cost Per Y'on		
Weeding Pro-rated fixed investment	\$b	$\begin{aligned} & 300 . \\ & 230 . \\ & \hline \end{aligned}$
Total Investment	\$b	530.
$\frac{\$ b 530}{50 \text { ton }}=\$ b 10.60 /$ ton ready to be harvested		
Cane ready to be harvested Harvesting and transporting	\$b	$\begin{aligned} & 10.60 / \text { ton } \\ & 29.00 / \text { ton } \end{aligned}$
Total Cost at Mill	\$b	39.60/ton
Average price at mill l.ess costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 39.60 / \text { ton } \\ & \hline \end{aligned}$
Return	\$b	25.40/ton
Pre-harvest jinterest costs		1.20
Net return per ton	\$b	24.20
Percentage of price paid at mill returned to the producer for the 3 rd year $=37.2 \%$		

4th Year
Average yield $=45$ tons/ha.
Two weedings $\$ \mathrm{P} 150$ each
Harvesting @ \$bl6/ton, 45 tons/ha.
Sh 300.
Transporting A \$bl3/ton
720.
585.

Total 4 th Year Expenses
\$b1,605.
Expenses for 4 th Year
Social Benefits for Workers
\$b1,605.
Pro-rated fixed investment
200.
230.

Total Investment
\$b2,035.

Table Dl.. Ccntinued

For 45 tons @ \$b65/ton	\$62,925.	
Total Cost	\$62,035.	
Return	\$b	890.
Cost Per Ton		
Weeding Pro-rated fixed investment	\$b	$\begin{array}{r} 300 . \\ 230 . \end{array}$
Total Investment	\$b	530.
$\frac{\$ b 530}{45 / \text { ton }}=\$ b 11.78 /$ ton ready to be harvested		
Cane ready to be harvested Harvesting and transporting	\$b	$\begin{aligned} & \text { 11.78/ton } \\ & 29.00 / \text { ton } \\ & \hline \end{aligned}$
Total Cost at Mill	\$b	40.78/ton
Average price paid at mill Less costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 40.78 / \text { ton } \\ & \hline \end{aligned}$
Return	\$b	24.22/ton
Pre-harvest interest costs		1.20
Net return per ton	\$b	23.02
Percentage of price paid at mill returned to the producer for the 4 th year $=35.41 \%$		

5th Year
Average yield $=40$ tons/ha.

Two weedings @ \$bl50 each	\$6 300.
Harvesting @ \$bl6/ton, 40 tons/ha.	640.
Transporting © ${ }^{\text {a }}$ bl3/ton	520.
Total 5th Year Expenses;	\$b1,460.
Expenses for 5th Year	\$bl,460.
Social Benefits for Workers	200.
Pro-rated fixed investment	230.
Total investment	\$b1,890.

Table D1. Continued

For 40 tons a $\$ 665 /$ ton	\$b2,600.	
Total Cost	\$bl, 890.	
Return	\$b	710.
Cost Per Ton		
Two weedings	\$b	300
Pro-rated fixed investment		230
Total Investment	\$b	530.
$\frac{\$ b 530}{\text { tons/ha }}=\$ \mathrm{bl} 3.25 /$ ton ready to be harvested		
Cane ready to be harvested Harvesting and transporting	\$b	$\begin{aligned} & 13.25 / \text { t on } \\ & 29.00 / \text { ton } \\ & \hline \end{aligned}$
Total Cost at Mill	\$b	42.25/ton
Average price paid at mill Less costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 42.25 / \text { ton } \end{aligned}$
Return	\$b	22.75/ton
Pre-larvest interest costs		1.20
Net return per ton	\$b	21.55
Percentage of price paid at mill returned to the producer for the 5 th year $=33.15 \%$		

Source: Guabira', Cane Office, February. 1971.

Summary of lable Dl, Appendix D

Annual cost per hectare delivered at the mill

Yield
Tons/Ha.
1-60
2-60
3-50
4-45
$5-40$
255 Total Average $=5 /$ tons $/$ ha .

1. - $\$ \mathrm{~b} 3,900$.

2 - 3,900.
3-3,250.
4- 2,925.
$5-\quad 2,600$.
\$bl6,575 Total
Average $=\$ 33,315$.

Net Return/Ha. Sh

1-\$b1,430.
2 - 1,430.
3-1,070.
4 - 890.
5-710.
\$b5,530. Total Average $=$ \$b1,106./ha.

Average deliverd at the mill cost per ton $=\$ 643.31$
Average yield per hectare $=51$ tons
Average net return per ton $=\$ 621.68$
Average price pidid at mill $=\$ 66.5 /$ Lon
Average return to investment per ton $=33.35 \%$

Source: Carlos Castro, Cane Manager. Guabira' Nill, 1971.

Table D2 Evaluation of One Hectare of Forested Land, Within a 15 Kilometer Radius of the Guabira' Mill

The value of 1 hectare of land in this zone is $\$ \mathrm{bl}, 500$.
The ilivestment required for 1 hectare of sugar cane grown on plowed land.

1st Stage

Forest removal with D7 tractor $=12 \mathrm{hrs}.{ }^{\text {a }}$ ($\$ \mathrm{~b} 300 / \mathrm{hr}$.	\$b3,600.
Plowing $=4$ hrs. @ \$b 60/hr.	240.
Harrowing $=2 \mathrm{hrs} \mathrm{©} \$$.b 60/hr.	120.
Vre-sceding land preparation $=11 / 2 \mathrm{hrs}$. © $\$ 660 / \mathrm{hr}$.	90.
Sned $=7$ tons @ \$b 60/ton	420.
Hand Seeding	90.
Seed-covering by machine	30.
Total Investment for 5 years (pro-rated)	\$b4,590.

2nd Stage
1 macline cultivation
$=2 \mathrm{hrs}$. © $\$ b 60 / \mathrm{hr}$.
\$b 120.
2 manual weedings between furrows a $\$ \mathrm{~b} 60 / \mathrm{hr}$.
120.
Average harvesting cost
$=\$ b 16 /$ ton @ 70 ton/ha 1,120.
Transportation cost
$=\$ b 13 /$ ton -70 ton/ha 910.
Total lst Year Expenses
\$b2,270.

1st Year

Expenses of the 1st Year
Social Benefits for Workers
Pro-rated fixed investment
Total Investment
70 tons/ha. ($\$ \mathrm{~b} 65 /$ ton
Total Investment

Net Return
\$b2,270.
50.: 918.
\$b3,238.
\$b4, 550 .
3,238
Shl, 312/ha.

NOTE: The costs for the lst and 2nd Year will he the same because the yields are equal.

Table D2. Continued

Cost Per Ton		
Cultivatjng and weeding	\$	240.
Pro-rated expense		918.
Total	\$b1,158.	
$\frac{\text { \$bl, } 142}{70 \text { ton/ha. }}=\$ 616.54 /$ ton ready to be harvested		
Cane ready to be harvested Harvesting and transporting.	\$b	$\begin{aligned} & 16.54 / \mathrm{ton} \\ & 29.00 / \mathrm{ton} \\ & \hline \end{aligned}$
Total Cost at the Mill	\$b	45.54/ton
Average price paid for cane at the mill less costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 45.54 / \text { ton } \\ & \hline \end{aligned}$
Return	\$b	19.46/ton
Interest on pre-harvest loans		1.20
Net return per ton	\$	18.26
Percentage of price paid at mill returned to producer for lst and 2 nd year $=28.1 \%$		

3rd Year
Average production $=55$ tons/ha.
1 machine cultivation $=2$ hrs.@ $\$ b 60 / \mathrm{hr} . \quad \$ \mathrm{~b} 120$.
2 manual weedings between furrows @ \$b60/ha. 120.
Harvesting $\quad=\$ b 16 /$ ton @ 55 ton/ha. 880.
Transporting @ \$bl3/ton 715.
Total 3rd Year Expenses
Sbl, 835 .
Expenses of the 3rd Year
\$b1,835.
Social Benefits for Workers
50.

Pro-rated Fixed Irvestment 918.

Total Investment
\$b2,803.
Cose Per Ton
Cultivating and Weeding
\$b 240.
Pro-rated expense
918.

Total
\{bl, 158

Table D2. Continued

$\frac{\$ 61,158}{55 \text { tons }}=\$ 621.05 /$ ton ready to be harvested		
Cane ready to be harvested Harvesting and transporting	\$b	$\begin{aligned} & 21.05 / \text { ton } \\ & 29.00 / \text { ton } \\ & \hline \end{aligned}$
Total Cost at the Mill	\$b	50.05/ton
Average price paid for cane at the mill Less costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 50.05 / \text { ton } \end{aligned}$
Return	\$b	14.95/ton
Interest on pre-harvest loans		1.20
Net return per ton	\$b	13.75
Percentage of price paid at mill returned to producer for 3rd Year $=21.15 \%$		

4th Year
Average production $=45$ tons/ha.

1 machine cultivation	2 hrs.	\$b 120.
2 manual weedings between	furrows @ \$b60/ha.	120.
Harvesting	= \$bl6/ton @ 45 tons/ha.	720.
'Transporting	@ \$b13/ton	585.

Total 4th Year Expenses \$bl,545.
Expenses of the 4th Year \$bl,545.
Social Benefits for Workers
Pro-rated fixed investment 50.

Total Investment
\$b2,513.
Cost Per Ton
Cultivating and Weeding
Pro-rated expenses
Total
\$b 240. 918.
\$b1,158.
$\frac{\$ \mathrm{bl}, 158}{45 \text { tons }}=\$ \mathrm{~b} 25.73 /$ ton ready to be harvested

Table D2 . Continued

Cane ready to be harvested Harvesting and transporting	\$b	$\begin{aligned} & 25.73 / \text { ton } \\ & 29.00 / \text { ton } \\ & \hline \end{aligned}$
Total Cost at Mill	\$b	54.73/ton
Average price paid for cane at mill less costs for cane	\$b	$\begin{aligned} & 65.00 / \text { ton } \\ & 54.73 / \text { ton } \end{aligned}$
Return	\$b	10.27/ton
Interest on pre-harvest loans		1.20
Net return per ton	\$b	9.07
lercentage of price paid at mill returned to producer for 4th Year $=13.95 \%$		

Sth Year

Average production $=40$ tons $/$ ha.

Table D2 . Continued
Average price paid for cane at mill
Less Costs for cane
Return
Interest on pre-harvest loans
Net return per ton
Percentage of price paid at mill returned to the
producer for the $5 t h$ Year $=9.00 \%$

Source: Ingenio Guabira', February, $19 \% 1$.

Sumnary of Table D2, Appendix D

Annual cost per hectare delivered at the mill

[^0]: ${ }^{1}$ The government began reassigning quotas in 1971 and raised the 1972 season support price to $\$ \mathrm{~b} .92 / \mathrm{MT}$. This price is higher than the equivalent world price and represents a subsidy that may alter the profit situation but it will not change the basically high cost character of Bulivian cane production.

[^1]: ${ }^{2}$ Mill capacities and plans for future expansion were obtained by personal interview with officials of the three mills.

