
PB 216 285
 

MAXIMUM WATER DELIVERY IN IRRIGATION 

James Henry Duke 

Colorado State University 
Fort Collins, Colorado 

August 1971 

DISTRIBUTED BY: 

National Technical Information Service 
U.S.DEPARTMENT OF COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 



PB 216 285
 

'MONO 

-O , . . , ..,. ,- . 

2j:..... : ,-.: .. . 

t~ I""-

1"NATIONAL TECHNICAL 
INFORMATION SERVICE 

A' 

. 

r.. 

..... - :.,. 

. . .,-V .. A....-,:.. N .., . ,,:.;'."?
.
 



MAXIMUM WATER DELIVERY IN IRRIGATION 

Water Management Technical Report No. 10 

by 

James Henry Duke, Jr. 

United States Agency for International Development
 
Contract No. AID/csd-2162
 

Water Management Research
 
In Arid and Sub-Humid Lands of the
 

Less Developed Countries
 

and
 

Contract No. AID/csd-2460
 
Optimum Utilization of Water Resources:
 
with Special Emphasis on Water Delivery
 

and Removal Systems and Relevant
 
Institutional Development
 

~TATe 

0 8 

Engineering Research Center
 
Colorado State University
 
Fort Collins, Colorado
 

August 1971
 

71CED70-71JHD45
 

A.I.D. 
WRoerence Center
 

Room 1656 AS 



Reports published previously in this series are listed below. Copiescan be obtained by contacting Mrs. Mary Fox, Engineering Research
Center, Colorado State University, Fort Collins, Colorado 80521. Theprices noted are effective as long as supplies last. After the supply ofreports is exhausted, xerox copies can be provided at 10 cents per page. 

No. No. ofTitle Author Pages Cost 
1 Bibliography with Annotations on K. Mahmood 165 $3.00

Water Diversion, Conveyance, and A. G. Mercer 
Application for Irrigation and E. V. Richardson
 
Drainage, CER69-70KM3, Sept. '69.
 

2 Organization of Water Management P.O. Foss 148 $3.00
for Agricultural Production in J. A. Straayer
West Pakistan (a Progress Report) R. Dildine
ID70-71-1, May 1970 A. Dwyer 

R. Schmidt 

3 Dye Dilution Method of Discharge W. S. Liang 36 $3.00
Measurement, CER70-71WSL- E. V. Richardson
 
EVR47, January 1971
 

4 Water Management in West Robert Schmidt 167 $3.00
Pakistan, MISC-T-70-71RFS43 
May, 1970 

5 The Economics of Water Use, An Debebe Worku 176 $3.00 
Inquiry into the Economic Be­
havior of Farmers in West 
Pakistan, MISC- D- 70-71DW44
 
March, 1971
 

6 Pakistan Government and Garth N. Jones 114 $3.00 
Administration: A Compre­
hensive Bibliography,
 
ID70-71GNJ17, March, 1971
 

7 The Effect of Data Limitations Luis E. 225 $3.00 
on the Application of Systems Garcia-Martinez
 
Analysis to Water Resources
 
Planning in Developing
 
Countries, CED70- 71LG35
 
May, 1971
 



No. Title Author 
No. of 
Pages Cost 

8 The Problem of Under-Irrigation 
in West Pakistan: Research Studies 
and Needs, ID70-71GNJ-RLA19 

G.N. 
R. L. 

Jones 
Anderson 

53 $3.00 

9 Check-Drop-Energy Dissipator G. 
Structures in Irrigation Systems, V. 
AER 70-71, GVS-VTS-WRW3, W. 
May 1971 

11A, 

V. 
T. 
R. 

Skogerboe 
Somorey 
Walker 

180 $3.00 



ABSTRACT
 

MAXIMUM WATER DELIVERY IN IRRIGATION
 

In order to increase the water delivery efficiency of an
 

existing irrigation system, it is proposed that modern mathematical
 

optimization techniques be applied to the management of irrigation
 

water delivery. A deterministic mathematical model is developed to
 

simulate the events that occur in delivering water, from a supply to
 

the users, in an interconnecting, open channel irrigation system that
 

contains reservoirs. The events considered are inflows, outflows,
 

losses, return flows, demands and storage. The simulation model is
 

developed so that it
can be linked to nonlinear programming and
 

optimal results obtained.
 

Because of the difficulty in obtaining some of the functions
 

required for the nonlinear simulation model, linear approximations
 

are made and a linearized simulation model is derived. This model
 

is linked to linear programming so that optimal results can be
 

obtained. 
The suggested objective function is the minimization of
 

system losses and unrequired system outflows, a resource conservation
 

objective.
 

Two example models were constructed, using the linearized
 

simulation model, to illustrate model construction and solution.
 

The results of these solutions show the model adequately fulfills
 

the purpose for which it is intended. The model solutions also demon.
 

strate the effects of including future time periods in an analysis
 

and the effects of modifying a structure in a system.
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Because of a lack of data, many of the parameters for the example
 

models were estimated and no comparisons of the optimal strategies
 

determined by the model and the strategies used in practice could be
 

made. 
The model, however, shows which data are necessary to provide
 

these comparisons and, further, those data that are necessary to apply
 

the model for a particular system.
 

James Henry Duke, Jr.
 
Department of Civil Engineering

Colorado State University
 
Fort Collins, Colorado 80521
 
August 1971
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Chapter I
 

INTRODUCTION
 

Water for irrigation is important to the agricultural production
 

of many regions, including the Western United States. To supply the
 

necessary water, irrigation systems have been constructed by private
 

corporate, and governmental enterprises. Many of these systems,
 

although built before the turn of the century, are still able to
 

satisfy the needs for which they were designed. In the intervening
 

years, however, irrigation demands have increased to such an extent
 

that existing supplies of water are inadequate. This increase has
 

made it necessary for new sources of supply to be sought.
 

There are two methods by which new supplies may be obtained:
 

through the construction of new facilities, such as dams, for tapping
 

undeveloped supplies, and through the reclamation of water now being
 

wasted by existing facilities through evaporation, transpiration, and
 

percolation losses. The first alternative is rapidly becoming
 

unfeasible because of the lack of available supplies, the lack of
 

suitable locations that possess the necessary engineering requirements
 

for development, the desire to reserve sites for future development,
 

or simply, increased public opposition to the destruction of the natural
 

environment.
 

The alternative of reclaiming water isnot independent of the
 

alternative of constructing new facilities since the reclamation of
 

wasted water will allow the preservation of both potential sites for
 

structures and the natural environment. The importance of such an
 

approach to water resources is exemplified in the statements by
 



2
 

Skinner in Pillsbury (1968), "...specified water saving measures should
 

precede development of new supplies.... ," and Rockwell (1968), "A
 

corollary to the search for more water is the more efficient utiliza­

tion to existing supplies."
 

There are several approaches that can be used to reclaim water
 

wasted from an irrigation system: existing facilities can be recon­

structed to lessen the losses, well fields can be constructed to
 

reclaim percolation losses, and system management techniques can be
 

improved to reduce the losses inherent in providing the required
 

services. 
 In any case, the objective of these approaches is to lessen
 

the volume of water which is made unavailable for use while still
 

delivering the required volunes of water. 
To accomplish this objec­

tive, an increase in water delivery efficiency is required (U.S.B.R.
 

(1963), Bishop (1961)). The approaches available to make irrigation
 

water delivery more efficient are not independent, but must be examined
 

simultneous ly.
 

Two of the approaches, the reconstruction and consolidation of
 

existing facilities and the construction of well fields, require
 

justification that the measures are economically feasible, a source
 

of money to pay for the measures taken, and the approval of the system
 

users. In many irrigation systems which have been built and paid for,
 

the users are hesitant to take such measures.
 

Purpose of the Present Study
 

The purposes of this study are: 
 (1)to derive a method for the
 

mathematical simulation of water delivery, from a source of supply to
 

the consumer, in a surface irrigation network, and (2)to couple the
 



derived simulation method with mathematical optimization techniques to
 

provide a tool for water managers to use for increasing water delivery
 

efficiency. By including efficiency as a criterion, it becomes
 

necessary to account for losses and return flows in the simulation.
 

Scope of the Study
 

The derivation of a mathematical model for the simulation of
 

irrigation water delivery for a particular system requires that
 

mathematical statements be written not only for the structure which
 

compose the system, but also for the institutional constraints that
 

limit the operation of the system.
 

The model developed in this study is intended to be sufficiently
 

general that it can be applied to any system which fulfills the
 

assumptions made in the development. Thus, no institutional constraints
 

are considered; however, the model shows the conditions that require
 

the imposition of legal and administrative constraints.
 

In general, there are two classes of simulation models: the
 

planning model, which is concerned with meeting long-term objectives,
 

and the operational model, which is concerned with meeting short-term
 

objectives. The difference between the two is the time horizon of
 

the analysis.
 

The model presented here is an operational model, concerned with
 

making an existing irrigation water delivery system as efficient as
 

possible. A single irrigating season is considered as the time horizon.
 

No restriction is placed on the division of the season into increments,
 

only that the number of increments be finite.
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An examination of the available literature indicates a 
majority
 

of the published works describing applications of mathematical pro­

gramming techniques to the analysis of water resource systems are
 

concerned with the design and operation of new systems, or the operation
 

of existing systems, with objectives of maximizing or minimizing some
 

economic criteria. References to many of these studies may be found
 

in the Bibliography.
 

The model developed here does not use economic criteria because
 

the inclusion of such criteria implies an economic policy, a type of
 

administrative constraint. 
 Instead, the model is designed to incor­

porate physical criteria such as units of water lost, units of water
 

delivered, and so forth. 
Such an approach, for resource conservation,
 

is not in evidence in the literature.
 

Presentation of the Study
 

The study is presented in the following manner.
 

Chapter II is a 
brief review of the optimization techniques to be
 

used in the study. The purposes of this chapter are to acquaint the
 

reader, unfamiliar with optimization techniques, with both the termi­

nology of operations research and the formulation of optimization
 

problems. There is
no discussion of solution methodology.
 

Chapter III is 
a detailed written description of the problem, the
 

assumptions made in formulating the model, definitions of terms to be
 

used in deriving the model, the model itself, and what the model does.
 

Chapter IV shows the derivation of the simulation model. No
 

assumptions are made regarding the form of the functions that describe
 

the losses and return flows in the model, so the model is termed non­

linear.
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In Chapter V, assumptions are made to allow the expression of
 

linear functions to account for the losses and return flows. These are
 

substituted into the model of Chapter IV and a linearized model i%
 

obtained.
 

Chapter VI presents an application of the linearized model to a
 

system that is representative of the type for which the model was
 

developed. Estimates of many of the coefficients are required because
 

few data are available. The latter half of the chapter discusses the
 

results of the examples and the practical applications of the model.
 

Chapter VII is a summary of the study and the conclusions drawn
 

from it.
 

Three appendices are included to assist in the understar:ing of
 

the model:
 

Appendix A relates the modeling technique used in the study to
 

the more standard "network" techniques found in the references on
 

operations research.
 

Appendix B provides a series of four example formulations of the
 

linearized model for a simple system. The examples consist of: a one
 

time period model that excludes return flows; a one time period model
 

that includes return flows; a two time period model that excludes return
 

flows, and a two time period model that includes return flows.
 

Appendix C is a discussion of points which may either improve the
 

applicability of the model or improve the usefulness of the model in
 

practical applications. The points considered in this section are
 

untested and must be regarded as suggestions for future research.
 



Chapter II
 

Mathematical techniques used to maximize or minimize mathematical
 

functions are known as optimization techniques. There are several
 

classes of optimization techniques that lead directly to optimal
 

solutions, if certain conditions are satisfied. Three commonly used
 

techniques are linear programming, nonlinear programming and dynamic
 

programming. 
 In this study only linear and nonlinear programming
 

will be considered.
 

This chapter is devoted to defining common terminology of 

programming methods and the presentation of formats for the expression 

of problems so that linear and nonlinear programming techniques may be 

used. There is little discussion of solution methodology. Procedures 

for solving programming problems can be found in standard references, 

such as Hadley (1962,1964).
 

Concepts
 

For both nonlinear and linear programming, the problem formulation
 

consists of writing a series of mathematical expressions describing
 

relationships among variables which characterize the important features
 

of the process under examination. The variables are called decision
 

variables, and each of the expressions is called a constraint. The
 

entire series of expressions is called a constraint set. 
The constraint
 

set is a mathematical description of the process and the limitations on
 

the decision variables of the process. Solutions are normally performed
 

to obtain values for at least one of the decision variables.
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In the formulation of a nonlinear or linear programming problem,
 

there is no required relation between the number of decision variables
 

and the number of constraints in a constraint set. However, there
 

are normally more decision variables than constraints. Mathematically,
 

this implies the existence of more than one set of values for the
 

decision variables that will satisfy all of the constraints simulta­

neously. Each set of values is called a feasible solution to the
 

problem. Most problems have several feasible solutions.
 

The optimal solution is the best feasible solution. To obtain
 

the optimal solution to a problem, a measurement of the desirability
 

of each feasible solution must bc introduced. This is accomplished
 

through the use of a special'function, called the objective function.
 

The objective function is used to rank the various feasible solutions
 

for comparison. The feasible solution that yields the maximum or
 

minimum value of the objective function, depending on the problem, is
 

defined as the optimal solution.
 

It is possible that there will exist either a single feasible
 

solution or no feasible solution to a problem. For those problems
 

where there is only a unique feasible solution, it is the optimal
 

solution. However, it is optimal only because there are no competing
 

solutions.
 

If no feasible solution exists, there is no set of values for the
 

decision variables that will satisfy all of the constraints simulta­

neously. In the methods for modeling irrigation systems, presented
 

in this study, there are certain conditions which will result in the
 

inability to obtain a feasible solution. The conditions and their
 

implications are discussed in Chapter III.
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Nonlinear Programming Problem Formulation
 

Any programming problem formulation consists of writing the 
constraints that describe the process and writing an objective
 

function to mathematically express a desired policy as a maximization
 

or minimization statement. 
For nonlinear programming, there is 
no
 

restriction on the functional nature of the constraints or the objec­

tive function.
 

Using the notation of Hadley (1964), a set of 
m constraints
 

that relate n decision variables is written as
 

gi(x1'.'"xn)a L,lb i, i = I,...,m . (2-1)
 

The xj. = L...,n ',are the decision variables and the bi 
are
 

constants. 
For a given constraint, only one of the signs 
fc, = ,>_} , 

will be'valid.
 

The objective function for nonlinear programming is written:
 

(maximize or minimize) Z = f(xl,...,Xn). 
 (2-2)
 

An objective function measures only the relative desirability of
 

feasible solutions. Because constants have an equal effect on the
 

value of an objective function for all feasible solutions, they are
 

not included in the statement of an objective function.
 

Linear Programming Problem Formulation
 

Linear programming problem formulation is 
a special case of the
 

nonlinear formulation described above. 
Computation techniques, however,
 

may be quite different.
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For linear programming, all constraints, as well as the objective
 

function, must be linear. The constraint set is generally written
 

(Hadley, 1964):
 

n
 
E a.. x{c_, = ,>lb. i = l,...,m , (2-3)

j=l
 

and the objective function is written:
 

n
 
(maximize or minimize) 
 Z = Z c.x. . (2-4)

j=1 3 1
 

In practice, all inequality constraints of a linear programming
 

problem are usually converted to equalities prior to solution. This is
 

done by including an additional variable of the proper sign in each
 

inequality. These variables are called slack variables if they con­

vert less-than-or-equal-to inequalities to equalities, and surplus
 

variables if they convert greater-than-or-equal-to inequalities to
 

equalities. 
 Slack and surplus variables are classified as decision
 

variables and may, or may not, have physical significance.
 

With all constraints written as equalities, a linear programming
 

constraint set may be written as a matrix equation,
 

T= (2-5)
 

in which the A matrix is composed of the ai coefficients, the
 

vector consists of unknown decision variables, including the slack 

and surplus variables, and 5 is a vector of constants. Should any of 

the b. constants be linear combinations of the other elements in the 

h vector, such as
 

x 
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n aijxj{_ > E dikbi i - it,...,am , (2-6) 
Jul 2k6 

equation (2-5) can be written
 

A!= Db, (2-7) 

in which D is a matrix relating the various elements of . A
 

comparison of equations (2-5) and (2-6) shows that they are the same
 

if D is a unit matrix. This observation will prove useful in
 

analyzing the linearized model of this study.
 

Moreover, the elements of the matrix equation (2-6) and the
 

objective function, equation (2-5), written as
 

(maximize or minimize) Z = T 3 (2-8) 

can be partitioned into submatrices and subvectors. Equation (2-7),
 

then becomes
 

11I 12 "AT 3Fl D11 D12 ' 1T b1
 

A21 A2T
A22  32 D21 D22 D T 2 

. . . . =. . . . .(2-9) 

ATl AT2 ... A e me DT T2. T
 

and equation (2-8) becomes
 



[Xi 

x2
 

(maximize or minimize) Z = [c1 c2 ... CT] . (2-10) 

xr 

where T is the number of block submatrices in each row and column of
 

the A and B matrices, and the number of subvectors in the 7 apd
 

vectors.
 

In this study, partitioning proves useful in illustrating some
 

of the features of the model developed. In addition, certain
 

specialized linear programming algorithms, called decomposition
 

algorithms, require a problem to have a particular partitioned form
 

as a necessary condition for the use of the algorithm. Although not
 

used in this study, decomposition algorithms could prove useful in
 

solving models, of the type developed, for large systems.
 

Solution of Programming Problems
 

Programming techniques are used to find the best solution to any
 

problem that has a number of alternative solutions. The constraint
 

set defines the limits within which a process may operate. If for­

mulated incorrectly, an incorrect solution results.
 

The objective function is the criteria by which the best solution
 

is selected. It is the heart of an optimization problem.
 

Although the concept of an objective function is easy to grasp,
 

the writing of an objective function for a particular problem may be
 

difficult because it is a mathematical statement of a desired policy.
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For complex problems, the writing of an objective function may require
 

extensive study to ensure that the policy implied in the mathematical
 

statement is equivalent to the desired policy.
 

There are many algorithms for solving programming problems, all
 

of which are iterative. Descriptions of these algorithms can be found
 

in references on mathematical programming, such as Hadley (1962,1964).
 

The purpose of an algorithm is, of course, to obtain an optimal
 

solution. For efficiency, developed algorithms ensure that once a
 

feasible solution is found, all other feasible solutions examined by
 

the algorithm will be closer to the optimal solution. 
This requirement
 

reduces the number of iterations necessary to obtain the optimal
 

solution because all feasible solutions are not examined.
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Chapter III
 

THE PROBLEM AND THE MODEL 

The Problem 

An irrigation system has but one purpose: to transform the 

temporal and spatial distributions of a naturally available supply of 

water to the quantitative distributions required for crop production.
 

An irrigation system has two components: physical structures, such as
 

the conduits used to change the spatial distribution and the reservoirs
 

used to change the temporal distribution; and a management policy, which
 

governs the changes of distribution.
 

In the operation of an irrigation system, losses are incurred in
 

the delivery of water from the supply to the consumer. These losses
 

are due to evaporation, transpiration and infiltration from the
 

structures composing the system. 
Thus, for a given system, the volume
 

of water delivered is directly a function of the management policy
 

governing the delivery.
 

The magnitude of delivery losses in 22 selected irrigation systems
 

in the Western United States has been shown by Erie (1968). For the
 

study period, 1949-1960, the average water diversion was 5.16 acre-feet
 

per acre (ac-ft/ac), and the average farm delivery was 3.22 ac-ft/ac.
 

These figures yield an average water delivery efficiency, the ratio of
 

the average farm delivery to the average water diversion, of 62.4
 

percent.
 

Using the figures given by Erie (1968), an average delivery loss
 

of 1.94 ac-ft/ac over the 828,000 ac represented by the project examined,
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it is found that 1,610,000 ac-ft of water was lost by these systems.*
 
Were it possible to make these systems perfectly efficient (100%), the
 
reclaimed water would be sufficient to irrigate an additional 500,000
 
ac at the present average farm delivery of 3.22 ac-ft/ac. Conversely,
 

using the 1965 U.S. average municipal per capita water requirements of
 
157 gallons per capita per day (gpcpd),** increasing the irrigation water
 
delivery efficiency to 100 percent would yield sufficient municipal
 

water for 9,160,000 people, enough for a city with a population near
 

that of Tokyo.
 

The Water Resources Council study (1968), based on data from 196S,
 
found that of the 125,000,000 ac-ft of water delivered to irrigate
 

42,000,000 ac in the United States, 25,000,000 ac-ft were lost because
 
of inefficient water delivery structures and practices, yielding a
 
water delivery efficiency of 80 percent. 
This national water delivery
 

efficiency (80%) is considerably better than that shown by Erie for
 

the western systems.
 

If, however, it
were possible to increase the national irrigation
 
water delivery efficiency to 100 percent, the reclaimed water would
 

irrigate an additional 8,400,000 ac at the 1965 delivery rate, or
 

furnish water for an additional 142,200,000 people. Of course, it is
 
not possible to obtain perfect efficiency in the delivery of irrigation
 
water, but it is evident that an increase of only a few percent in the
 

national water delivery efficiency would result in the conservation of
 

sizeable quantities of water.
 

*Although not stated by Erie, it is presumed these are average annual
 
losses.
 

**From the Water Resources Council (1968).
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Reclamation of wasted water as an approach to water conservation
 

is not new. It was advocated by Bishop, in 1961:
 

"Along with the extensive use of water, irrigation
 
is probably a major source of waste of the valuable
 
water resource. This is due, in large measure, to
 
the inefficiency of existing canals and distribution
 
systems with their duplication and obsolescence."
 

And the U.S. Bureau of Reclamation, in 1963:
 

"Conservation of the nation's water supplies,
 
particularly in the western states, is becoming
 
increasingly important as the demand for this vital
 
quantity continues to increase and new sources of
 
supply become increasingly scarce. The time is
 
rapidly approaching when the only natural water
 
supplies available will be the salvage of those now
 
being lost through transpiration, evaporation, con­
sumptive waste, and inefficient storage and trans­
portation practices." (emphasis added)
 

In recent years, there has been a great deal of reseach devoted
 

to methods of reclaiming water lost from irrigation systems. The
 

methods developed are generally concerned with the modification of the
 

structures in a system. The results of this research are best
 

summarized by the Water Resources Council (1968):
 

"Technical changes in irrigation development include
 
changes in water storage, conveyance and application
 
methods for the conservation of existing water supplies.
 
Experimental use of evaporation-retarding films on
 
reservoirs has been successful in reducing water losses.
 
Control of phreatophytes makes additional water avail­
able for irrigation use in some areas. Seepage losses
 
during conveyance have been reduced by lining irrigation
 
canals with concrete and other impervious materials."
 

The use of any of these methods to improve an existing system
 

requires that the improvements be proven economically feasible, that
 

a source of money be available to pay for them, and that the system's
 

users approve of them. Failure to meet any of these requirements
 

results in failure to improve the system. In many small systems,
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already built and paid for, the users are hesitant to improve a system,
 

even if the improvements are warranted and feasible.
 

An alternative to improving the structural efficiency of a system
 

is better management of the water in the system. The approach,
 

approximated in some systems, but never before described mathematically,
 

consists of routing the water from the supply to the consumer in such a
 

way that losses are minimized. Recent developments in mathematical
 

optimization techniques aid high-speed digital computer technology have
 

made such a minimization procedure for improving the management of
 

existing systems possible.
 

There are two steps in applying mathematical optimization techniques
 

to irrigation water management. The first step is the derivation of a
 

suitable mathematical model to simulate the process of irrigation
 

water delivery, and the second step is the derivation of a mathematical
 

statement that represents the desired operating policy in terms of the
 

variables of the model.
 

The developments of this study are concerned with the first step,
 

the derivation of a simulation model that is sufficiently general to
 

be applied to any system that satisfies the conditions under which the
 

model is developed. 
To keep the model broadly applicable, institutional
 

constraints, such as legal, administrative and economic policies, 
are
 

not included. The simulation model, as developed, can be used for
 

analysis. The second step, a mathematical statement of the operating
 

policy, is only necessary when the model is used in conjunction with
 

programming techniques to determine an optimal water delivery strategy.
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Model Description
 

The simulation model developed in this study is designed to be
 

used as a tool for the management of water delivery from the supplies
 

to the users, by a network of open-channel conveyance structures and 

reservoirs. To obtain an optimal strategy for any given time period,
 

both the needs of the future and the influences of the past must be
 

taken into account. Thus, the model is a multiple time period model. 

It is assumed in the discussion to follow that future delivery
 

strategies cannot influence the return flows of preceding time periods. 

The converse is not, however, assumed to be true. Delivery strategies
 

for future time periods are assumed to be directly affected by return
 

flows resulting from previously selected delivery strategies.
 

Model Structure
 

The simulation model, for each time period, consists of a series
 

of mathematical statements that correctly describe an irrigation system:
 

the conveyance of water from one point to another within the system, the
 

storage of water within the system, the division or coalescence of flows
 

at junctions within the system, and the losses and gains incurred in
 

these actions.
 

Figure 1 is a diagram of the type of irrigation system considered
 

in the study. It reveals the system is composed of three elements:
 

reaches of open-channel conveyance structures, exemplified by the line
 

A-L, any of which may be a natural stream, such as the line A-B; junctions
 

of two or more conveyance structures, such as at points Y and P; and a
 

number of storage structure (reservoirs), exemplified by the triangle
 

L-M, which may be either "on-channel" or "off-channel." Throughout 
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the remaining text, these elements are referred to as ditch sectors,
 

nodes and reservoirs. The relationship of each element to the others
 

is shown in Figure 2.
 

Ditch
 
Sector
 

Reservoir
 

Ditch Sector Ditch Sector Node
 
OW 

< 

Flow j Ditch 
-Sector
 

Figure 2. Relation of Elements
 

In developing a model to be used for operational purposes, the
 

logical decision variables are the various ditch sector flows and
 

reservoir contents. These decision variables must be measured in
 

commensurable units. If the content of a reservoir is measured as
 

the number of acre-feet in storage at the end of each time period
 

and a ditch sector flow is measured as the volume of water released
 

to the ditch sector in each time period (acre-feet per time period),
 

then the requirement is satisfied. Ditch sector flows calculated in
 

this manner can easily be converted to more conventional units of
 

discharge such as cubic feet per second, or to such measures as headgate
 

openings, if the proper conversion factors are used.
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There are several events that can occur in each of the elements
 

of a system: inflows, outflows, storages, losses, return flows and
 

demands. 
For this study, these evens are defined as follows.
 

An inflow to an element is the volume of flowing surface water
 

that enters the element at the upstream end. For ditch sectors and
 

reservoirs, inflows are considered to be the headgate releases into
 

the structures, and for nodes, inflows are the excess flows leaving
 

the downstream ends of the ditch sectors and reservoirs. All inflows
 

are decision variables.
 

A system inflow is the volume of water, at a point, which is
 

available for delivery and storage by the elements of the system in
 

each time period. Point A, in Figure 1, is 
a system inflow point. All
 

system inflows are assumed to occur at nodes and be known, or estimable,
 

in quantitative time distribution.
 

The outflow from an element is defined to be the volume of
 

flowing surface water that leaves the element at its downstream end.
 

For ditch sectors, the outflow is generally the water remaining after
 

losses, return flows, and demands have occurred, which is a release
 

that cannot be directly controlled by an operator. For reservoirs,
 

the outflow is usually a controlled release. For nodes, the outflows
 

are the inflows to other elements of the system, the ditch sectors and
 

reservoirs. 
All outflows are decision variables.
 

A system outflow is the volume of water that leaves a system at
 

the downstream end of an element. Points K, 0 and S are the system
 

outflow points of Figure 1. There are two types of system outflows,
 

required and unrequired. Required system outflows are those flows
 

which the system is required to pass downstream to other systems.
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Unrequired system outflows are those flows released to downstream
 

systems because the system of interest lacks sufficient storage
 

capacity to retain them. Required system outflows are treated exactly
 

like demands and are assumed to be known, or estimable, in both quan­

tity and time distribution. Unrequired system outflows are unknown
 

and assumed to be decision variables.
 

A demand is another event that can occur in each of the elements.
 

It consists of a release of water from the system to a 
user in a
 

single time period. 
Demands are not decision variables, but are con­

sidered to be volumes of water specified by the system users, for each
 

time period, that must be delivered. This required delivery will
 

create difficulties under some conditions; consequently, some discussion
 

will be devoted to these difficulties later in this chapter.
 

Losses are those volumes of water removed from the system through
 

uncontrollable evaporation, transpiration and infiltration. 
All ditch
 

sectors and reservoirs in
a system are assumed to have losses associated
 

with their operation.
 

There are two specific losses that are useful enough in thL model
 

development to be specifically named, the seepage loss and the system
 

loss. 
 Seepage loss is that portion of a loss due to infiltration.
 

System loss is the loss defined above, exclusive of those portions of the
 

seepage loss that reappear in the system as return flows. 
The definition
 

and use of system losses is superior to the use of losses, as defined
 

above, in that it recognizes the importance of return flows to an irri­

gation system as water in temporary storage. An element that appears to
 

experience extremely high losses may not, in reality, have a 
high system
 

loss rate because a majority of its losses reappear as return flows.
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Return flows are uncontrolled gains in ditch sector flows or
 

resqrvoir storage volumes. Return flows are principally the result of
 

a high groundwater table, a condition that can be caused by a great many
 

factors. These causes and their effects on the simulation model will
 

be discussedin the next chapter.
 

Storage is water reserved in certain locations within the system
 

during periods of surpius system inflow to be reioased for use by the
 

system during periods of deficient system inflow. Storage is considered
 

to be controllable and occurs principally in reservoirs for a surface
 

water irrigation network.
 

Model Construction
 

To use a mathematical model for duplicating the events that occur
 

in an irrigation water delivery system, an accounting procedure must be
 

used to keep track of the volumes of water available in the various
 

portions of the system. Furthermore, a requirement must be specified
 

that the water be delivered down the ditch sector from which it is to
 

be taken. The method for simulation, developed in this study, contains
 

these two features.
 

The Continuity equation, which states that the change of mass in
 

storage is equal to the difference between the mass entering an element
 

and the mass leaving an element,,is used to relate the quantities
 

of water involved in the various events for each element of a system.
 

The resulting relations are called mass balances.
 

Mass balances will be derived for the ditch sectors, reservoirs
 

and nodes. However, there are certain assumptions, contained in the
 

derivation of each mass balance, that must be examined.
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A ditch sector mass balance is a mathematical abstraction of the
 

events that occur in a ditch sector. These events are inflows, outflows,
 

losses, return flows and demands. Changes in channel storage resulting
 

from changes in flow between time periods are assumed to be negligible.
 

A reservoir mass balance is a mathematical abstraction of the
 

events that occur in a reservoir. These events are inflows, outflows,
 

losses, return flows, demands and storage.
 

A nodal mass balance is a mathematical abstraction of the events
 

that occur at a node. These events are assumed to be only inflows
 

and outflows. Losses, return flows, demands and storages are assumed 

not to occur. Physically, a node is the intersecting space of two or 

more ditches. This space is considered to be so small that storage, 

losses and return flows are negligible.
 

Demands are not considered to occur at the nodes for different
 

reasons. If the demands for the various ditch sectors were satisfied
 

at the nodes, there could exist alternate routes for their delivery.
 

Because most demands are distributed along the ditch sectors, the
 

modeling equations must require that the water be delivered along the
 

proper ditch sector; this condition is not assured if the demands are
 

included in the equations describing the relationships :,t the nodes.
 

Most man-made structures are limited in their capacity to
 

transmit or store a quantity of water, and these restrictions must also
 

be included in the simulation. The net result is a decrease in the
 

number of feasible solutions, or strategies, for the delivery of the
 

water. In the model developed, all structures are assumed to have both
 

a minimum capacity restriction, at least zero, and a maximum capacity
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restriction. 
However, the expression of all of these restrictions may
 

not be required.
 

In irrigation systems, all man-made ditches normally have maximum
 

capacities that must be specified in the model. 
 The minimum volume of
 

water any element must transport or store is generally that volume of
 

water that must be delivered by the elemeat to the users. 
However, if
 

a ditch sector is
a natural stream, there is usually no maximum capacity
 

restriction, but minimum capacity restrictions still exist.
 

Reservoirs are always subject to restrictions on maximum capacities
 

which must be reflected in the model. 
Minimum capacity restrictions
 

may be necessary in some cases, notably to maintain water levels for
 

recreation or fish and wildlife conservation. In addition, under
 

certain conditions the judicious use of minimum capacity restrictions
 

can assist in the solution of the model.
 

Model Solution
 

As in a real system, there are innumerable feasible solutions
 

to the simulation model. 
Given particular sets of solutions, the
 

simulation model can be used for the analysis of certain problems,
 

such as the legal problems described by Hartman and Seastone (1970)
 

concerning the changing of points of diversion in Colorado.
 

The strength of the model, however, lies in its use with
 

programming techniques for deriving an optimal strategy for the
 

delivery of irrigation water to systems users. 
 To derive an optimal
 

strategy, an objective function must be introduced. Being a mathe­

matical equation which represents a policy, it must be examined
 

closely to ensure that it coincides with the desired policy.
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In this study, only one objective function is used: to minimize
 

the s)stem losses and unrequired system outflows conjunctively. This
 

function implies that a maximum volume of water be retained in the
 

system. It is a conjunctive surface water - groundwater use policy,
 

with emphasis on using surface transportation facilities to deliver
 

the water. Other objective functions and policies can be defined, but
 

for this study only one is used.
 

When the simulation modol is used in conjunction with optimization
 

techniques, the model becomes the constraint set. The individual mass
 

balances and capacity restrictions are the constraints, and the ditch
 

sector flows and reservoir storage values are the decision variables.
 

Multiple time period models are formulated as a series of a
 

single time period models. However, complications are created by the
 

return flows which reflect the influence of earlier delivery strategies
 

on later time period delivery strategies. These complications will be
 

further discussed in Chapters IV and V.
 

There are three conditions where no feasible solution to this
 

optimization problem will exist. They are: (1)if the system supply
 

is inadequate to meet the system demands; (2)if the demand for water
 

from a single element is greater than the volume of water which that
 

element can supply; and (3)if a system is simulated which has no
 

outlet for unrequired system outflow, and the system supply is greater
 

than the volume of water the system can store and use. Each of these
 

problems exists in systems operations, and each has been solved in
 

various ways.
 

The first is solved by legal restrictions that reduce the demand
 

during the periods of deficient supply. The second is most generally
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solved by administrative restrictions which reduce the demand to that
 

which the element can supply. The final problem can be solved by
 

making the system inflow a decision variable to be calculated by the
 

optimization procedure.
 

With the elucidation of these basic considerations, the model will
 

now be derived and further discussed. The model, as first developed in
 

Chapter IV, is nonlinear, with its application limited at the present
 

time. In Chapter V, assumptions will be made to linearize the model,
 

thus providing for more immediate usage.
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Chapter IV
 

DEVELOPMENT OF THE MODEL
 

System Description
 

Any irrigation system can be described using distinct elements:
 

ditch sectors, nodes and reservoirs. The level of description is the
 

extent to which a system is described by these elements. This extent
 

directly affects the accuracy of the results.
 

The most detailed description involves subdividing the system
 

at each diversion point or headgate. A ditch sector is defined as
 

the reach beginning j'ist below one diversion point and extending to
 

just beyond the nex' downstream diversion point. To preserve reality
 

in the model, nodes are required to connect the various ditch sectors.
 

The advantage of such a detailed description is accuracy. The
 

disadvantage is the immense size of the problem (numbers of equations
 

and variables) generated for systems with large numbers of diversion
 

points.
 

The least detailed description is an aggregation of all demands
 

along a ditch into a single demand to be satisfied from the supply
 

stream (see Figure 1), disallowing any interditch transfers. This
 

minimizes the problem size and allows extremely large systems to be
 

modeled. But this problem has only one solution at most, and is of
 

no interest in this study.
 

Until efficient solution algorithms are developed that can handle
 

a multitude of equations and variables, a level of description between
 

the two listed above is suggested. This intermediate level of
 

description consists of selecting the major ditches in the system and
 

defining the node points as the junctions between them. Ditch sectors
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become those reaches of the major ditches between the node points.
 

The individual demands, normally distributed along each of the ditch
 

sectors, are aggregated to a single demand which is assumed to be
 

delivered at the downstream end of each ditch sector, just upstream of
 

the node. 
Thin is the least refined level of description that can be
 

performed and still retain the alternate routing, or programming
 

aspects of the model. It is this intermediate level of description
 

that will be used in the models of a representative system in Chapter
 

VI. 

If,however, the exact ditch sector loss function is used in
 

conjunction with the intermediate level of description, the losses
 

from a ditch sector will be overestimated. This is because the demand
 

water is assumed to travel through the entire sector, instead of
 

being diverted all alorag it. This sacrifice in accuracy can be
 

partially corrected either by adjusting the exact loss rate or by using
 

additional nodes on long ditch sectors. 
 Additional nodes result in
 

an increased level of description.
 

Development of the Model
 

Developing the model consists of the derivation of equations to
 

represent the ditch sectors, nodes and reservoirs and their concomitant
 

capacity restrictions. To use the model with programming techniques,
 

an objective function that expresses the operating policy must be
 

derived.
 

In developing the model, it will be assumed that the system being
 

simulated will be composed of 
M ditch sectors, P nodes, N reser­

voirs (of which U are modeled using the node definition and W are
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modeled using the ditch sector definition), and that an irrigation
 

season consists of T time periods. At times, four indices will be
 

required to properly express the space and time relations of the
 

variables. It is imperative that the meaning of these indices be
 

clear.
 

Two indices, i and j , will be used to express the spatial
 

relations. The index 
i will always be used to denote an element of
 

interest: a node, reservoir or ditch sector. 
The index j will
 

always be used to represent those other elements which affect the element
 

of interest, directly or indirectly. Both of these indices will be
 

used as subscripts.
 

The remaining two indices, h and t , will be used to express
 

the temporal relations. The index t will be always used to denote
 

a time period of interest within the irrigating season. The index h
 

will be used to represent preceding time periods which affect the time
 

period of interest. Both of these indices will be used as superscripts.
 

Ditch Sector Mass Balance
 

Figure 3 schematically describes a typical ditch sector, i .
 In
 

this ditch sector there are two inputs and three separate outputs. For
 

a particular time period t , the inputs to a ditch sector are the
 
t 

volume of water entering the sector at the headgate, Q! , and the 
return flow volume, R! . In the same time period, the outputs are 

tthe losses, , the demand, Di . and the outflow, V. . Itis 

assumed that the return flows are not subject to losses in the sector, 

but occur in such a manner that they are available for diversion from
 

the sector.
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t
 

QID 

4Ri 
Figure 3. Schematic Representation of a Typical Ditch Sector, i
 

From the continuity equation, written
 

Input = Output + Storage, (4-1) 

for a ditch sector,
 

t t t t tQt + Ri =tLi + Vi+Di (4-2)
 

or
 

t t t.Qi i i - i "=Dt (4-3) 

The subscript i denotes the ditch sector of interest, i =1,...,m 

and the superscript t denotes the time period of interest, 

t = 1,...,T . Equation (4-3) is an effective description of a ditch 

sector and is called the ditch sector mass balance. 

t
For those ditch sector outflows V. that leave the system, the
1 

required system outflows are assumed to be included in the demand D!1
 

Thus, the variable V! becomes the unrequired system outflow.

1
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Nodal Mass Balance
 

Figure 4 schematically describes a typical node. A node has one 

or more inflows, designated by the V's , and one or more outflows 

designated by the Q's . The reversal in the naming of the variables 

is needed because all inputs to the nodes are the outflows from ditch
 

sectors and reservoirs and all outputs from the nodes are the inflows
 

of the ditch sectors and reservoirs. Furthermore, the indices on the
 

variables V and Q are derived from the indexing of the ditch sec­

tors and reservoirs, and it is essentially impossible to make these
 

indices consecutive. For this reason, let two sets, Ji and Ki 

be defined. The first set, Ji , is composed of the indices of those 

variables V which supply a node, i . The other, Ki , is composed 

of those variables Q that are supplied with water from a node, i 

For example, the node illustrated in Figure 4 has the sets 

i 1, 4, 6) and Ki = {3) 

t f4 t
 
V,
I
 

Qt
Node 1-A 

3
 

Figure 4. Schematic Representation of a Typical Node, i
 

Using these definitionr, the variables for a node i are related
 

by the continuity equation as follows:
 

SVt - Qt 0 (4-4) 

Jei J JeK1 I
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for i m ,...,P and t = I,...,T . The symbol e is standard set 

notation for the phrase "is contained in the set." The simplicity of
 

this expression is due to the assumptions that storage, demands, losses
 

and return flows do not occur at a node.
 

For a node that is a system inflow point, the nodal mass balance
 

becomes
 

1


jEeKi Ilit U Iti (4-4a) 

where the set J is empty and I! is the volume of flow available
1
 

as a system inflow at node i in time period t
 

Reservoir Mass Balance
 

There are two methods for modeling a reservoir: as a node in
 

which losses, return flows, demands and storage are considered, and as
 

a ditch sector in which storage is considered. The node method will be
 

examined first, because the ditch sector method is derived from the node
 

method.
 

Figure 5 is a schematic representation of a typical reservoir for
 

which the node definition should be used. In this figure there are
 

four inputs to and four outputs from the reservoir, although these
 

numbers will vary as with a node. Because of this, the sets J and
 

Ki , used for expressing the nodal mass balance, must be used here as
 

well.
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t Vt 

t t
 

Di 03 LA 

Figure S. Schematic Representation of a Typical Reservoir, i , Node
 
Definition.
 

Three of the inputs, V1 , and RI and three of the outputs, 

Ltt, Di and 
 are previously defined in the derivations of the 
nodal and ditch sector mass balances. The additional variables S!t l 

1 
tand SI are the volumes of water in storage at the ends of time periods 

l
(t-l) and t , respectively. Justification for considering St- an
 

St
input and an output requires that the problem be visualized in
 
i
 

terms of the time domain. For any reservoir the volume of water in
 

storage at the end of one time period automaticaily becomes a source of
 

St - 1water for the next time period. Thus, is an input for time 

period t . Similarly, S! is an input to time period (t+l) 

Because continuity must be preserved intime, as well as space, St is 

also an output from time period t 

From :he continuity equation, after rearranging,
 

E V + " Lt + S - EKt = (4-5) 
jE.3. LiR -S~ 

for i = I,...,U and t = 1,...,T , inwhich .the Vt are the inflows
3 

to the reservoir from the ditch sectors, j e Ji # the t are the
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outflows from the reservoir to the ditch sectors, 
k z Ki . Equation
 

(4-5) is defined to be the reservoir mass balance using the node
 

definition.
 

To derive the reservoir mass balance for the ditch sector
 

definition from the node definition, it must be assumed that only a
 

single ditch sector supplies a reservoir, that only a single ditch
 

sector receives its supply from a reservoir, and that neither of these
 

ditch sectors have losses or return flows. 
 Figure 6 illustrates this
 

relation.
 

0t t Vt t t VI Vi 014j1 Qj +I j+I 

Reservior i 

Figure 6. Relation Between the Two Reservoir Definitions.
 

The mass balances for the two ditch sectors shown in Figure 6 are
 

Qt - V D.t (4-6)
 

and
 

qj+l Dtj+lt tj+l "(-aQ +1-V =D1 C+
4-6a) 

For the reservoir shown in Figure 6, the mass balance, using the node
 

definition, is
 

Vt + St-_ Lt+ Rt1 -t 1 Qtj+ DtI (4-7) 
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tin which Ji= (jI and Ki {j+l) . Substituting for QJ+I and V 

in equation (4-7), from equations (4-6a) and (4-6) yields 

t st-l Lt ZtS V V .t Vt
 
Q. + S. -L + Rt- S! - V!'= Dt D + D (4-8)1 1 1 i i j+l j+l 1 

Recognizing that the.sum of the demands is an aggregated demand,
 

relabeling it to be D! and redefining the indices of 
Q! and V 

to correspond with the index denoting the reservoir, yields 

t st-l t R V q + St" -"L + R! - S! V! D (4-9)

'1 1 i 1 1 i1 

for i = 1,...,W and t = 1,...,T . This equation is defined to be 

the reservoir mass balance, using the ditch sector definition. Figure
 

7 is a schematic representation of a reservoir modeled according to
 

the ditch sector definition.
 

The difference between a reservoir of the node definition and a
 

reservoir of the ditch sector definition lies in the number of inflows
 

to, and outflows from, the reservoir. The choice of the proper defini­

tion, for any particular reservoir, will help to minimize the problem
 

size.
 

It is recommended that the ditch sector definition be used only
 

if a reservoir has a single inflow and a single outflow, and that the
 

node definition be used for all other cases. In Chapter VI, a represen­

tative system is modeled consistently using the ditch sector definition
 

for all reservoirs. The fact that a larger problem size results is
 

illustrated.
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tt
 

Si
 

Figure 7. Schematic Representation of a Typical Reservoir i , Ditch 
Sector Definition. 

Capacity Restrictions
 

Capacity restrictions are expressed as inequalities and reflect
 

the upper and lower limits of the values a decision variable can
 

assume. For ditch sectors, the maximum and minimum capacity restric­

tions are expressed as
 

t t Qt 
q + R!-L < (4-10) 

1 i­
max 

and 

t t t t 
Q. + 

3. 
L 

1 
>-Qi 

min.mmn 
(4-11) 

respectively, where is the maximum capacity of the secto. and 
Q;maxt 


Q.m
min 

is the minimum capacity. Minimum capacity constraints for
 

ditch sectors are seldom necessary unless to ensure that a variable
 

re*nains greater than or equal to zero.
 

Reservoir maximum and minimum capacity restrictions are
 

expressed:
 

S +R! - <-- ' (4-12)max 
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and 

s! + R-L.> S! (4-13) 
1 - min 

Model Composition 

Once the ditch sector mass balance, equation (4-3), the nodal 

mass balance, equation (4-4), the reservoir mass balances, equations 

(4-5) and (4-9), and the capacity constraints, equations (4-10), (4-11), 

(4-12) and (4-13), are defined it is possible to construct a simulation 

model for an irrigation system. The procedure consists of describing
 

the system using ditch sectors, nodes and reservoirs and correctly 

writing the mass balances and capacity restrictions for each element. 

With M ditch sectors, N reservoirs, and P nodes, the model 

will consist of M ditch sector mass balances, N reservoir mass 

balances, P nodal mass 	balances, (M+N) maximum capacity restrictions 

and as few as zero, or as many as (M+N) , minimum capacity restric­

tions for each time period. For a single time period then, the total 

number of equations and inequalities in the model will lie between 

(2M + 2N + P) and (3M + 3N + P). For 	 T time periods the total number 

of equations and inequalities in the model will lie between
 

T(2M 	 + 2N + P) and T(3M + 3N + P). 

When used in conjunction with mathematical programming techniques, 

the model becomes the constraint set. Therefore, for T time periods,
 

the programming model will be composed of between T(2M + 2N + P) and 

T(3M 	 + 3N + P) constraints. 

Furthermore, for each time period, the model contains two decision
 

variables, Q1 V. ,and for each ditch sector mass balance, one

K I.
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decision variable, t, for each reservoir mtiss balance that uses the 

node definition, three decision variables, Q , V and S! , for 

each reservoir mass balance that uses the ditch sector definition, 

one slack variable for each maximum capacity constraint and one surplus
 

variable for each minimum capacity constraint. From these guidelines
 

on the decision variables and constraints, problem size can be calcu­

lated while the system is being described in terms of its elements so
 

that the model will be within the space limitations of the computer
 

routine to be used for solution.
 

Losses and Return Flows
 

To calculate the loss and return flow volumes required for the
 

ditch sector and reservoir mass balances, loss and return flow functions
 

must be derived. The expression of the loss and return flow functions
 

for a given element in a system requires consideration of the environ­

ment of the element, those factors that cannot be controlled by the
 

manager of a system, and the past and present states of the element
 

and all other elements of the system, those factors that can be con­

trolled by the system manager. Furthermore, for the model to be
 

completed, the loss and return flow functions must be expressed in
 
t Vt t 

terms of the decision variables Q! , V. and Si 

The rates of evaporation, transpiration, and seepage control the 

rate of water loss from a ditch sector or reservoir. In turn, each of 

these rates is controlled by such environmental factors as wind speed 

and direction, air and water temperatures, radiation, vegetation den­

sity, soil types and permeability, etc. The detailed relation of 

these factors to the loss rates is not considered in this study, 
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although including them would create a more accurate model. Instead,
 

the effect of the past and present states of the system on the loss
 

and return flow functions are considered.
 

In deriving the ditch sector and reservoir mass balances, it was
 

assumed that a volume of water was lost from an element i in time
 

period t . For evaporation the volume of water lost is the product of
 

the evaporation rate per unit area, for the time period, and the water
 

surface area exposed to the atmosphere. For transpiration the volume
 

of water lost is the product of the transpiration rate per unit area,
 

for the time period, and the area of vegetation. For seepage the volume
 

of water lost is the product of the seepage loss rate per unit area,
 

for the time period, and the area of the interface of the water and
 

the structure containing it. Additionally, the seepage loss rate may
 

change according to the depth of water in the structure.
 

If it is assumed that single valued functions can be defined to
 

relate the various areas and depths to the volume of water a structure
 

transmits or stores, then the losses can be related to the decision
 

variables. Functionally this is denoted as
 

L= L(Q., V.) (4-14)

1 1 1 

for ditch sectors and
 

"
L = L(St 1, S!) (4-15) 

for reservoirs.
 

Return flows were defined earlier as being the result of a high
 

groundwater table. A high groundwater table in the vicinity of the
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system is a function of such environmental factors as the areal extent
 

and hydraulic properties of the aquifer, precipitation, vegetation
 

above the aquifer, the extent and number of wells that remove water
 

from the aquifer, etc. Again, the inclusion of each of these factors
 

creates a more accurate model, but they are not of interest in this
 

study.
 

Return flows that are of interest are those that have as their
 

sources the seepage losses from the various ditch sectors and reser­

voirs. In addition, water that is released from the system to satisfy
 

a demand but that is in excess of the crops requirement can return to
 

the system. These excess waters are of interest because they are
 

major contributors to the return flows.
 

Functionally, then, a return flow volume may be denoted for a
 

time period t by
 

Rt = R ( Qh Sh Dh (4-16)1 1 j j) k# 

for j=l...,M , k =l ,...,N , h = l,...,t and P = 1.... N 

There are two exceptions to this statement: i J j for h = t for 

ditch sectors and i 0 k for h = t for reservoirs. These exceptions 

are because a return flow to an element in a given time period, due to 

a loss from the same element in the same time period, is simply a 

reduced loss. Equation (4-16) however, does allow a return flow to the 

same element from which a loss occurred if the return flow occurs in 

a later time period. 

Final Mass Balance Expressions
 

By substituting equations (4-14) and (4-16) into equation (4-3)
 

the final ditch sector mass balance can be defined as
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Q- L(Qi, Vi) + Ri(Q , V', Sk, DI) - Vi Di(-) 

for i = 1,...,M , j *,...,M, k 1,...,N , t = 

h = 1,...,t , X = I,... ,M+N and i j for h = t . Sub­

stituting equations (4-15) and (4-16) into equations (4-5) and (4-9) 

yields the reservoir mass balance using the node definition 

t - tl t t h Sh hEV+ S!. - L(S. , S!) + R jD) 
1 QJ j" Sk,
gCJ g 1I I1 

St £ t Dt C­
-S!.- E Qt = D!.48 

1 geK~ g 1.(-8 

for i = 1,...,U , and the reservoir mass balance usin~g the ditch sector 

definition, 

t +t - L "t Kt+h .t 
+ S.-_ L Si-, Sj' j' Sh ' D) - Si - Vi Di 

(4-19)
 

for i = 1,...,W . In both equations, j = 1,...,M , k = l,...,N , 

t = 1,...,T , h = 1,...,t , Z = 1,...,M+N and k j i for h = t 

The nodal mass balance equation (4-4) is unchanged. 

Objective Function
 

The objective function for this study is to minimize the system
 

losses and unrequired system outflow conjunctively. At present, no
 

mathematical statement of the function can be made because no approxi­

mations are assumed for the loss and return flow functions. However,
 

in the next chapter, approximations are assumed for the loss and return
 

flow functions and an objective function is written.
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Chapter V
 

LINEARIZATION OF THE MODEL
 

The model, presented in Chapter IV, is 
a programming model in
 

which the decision variables are the various ditch sector flows and the
 

volumes of water in each of the reservoirs at the end of each time
 

period. No assumptions were made regarding the relation of the deci­

sion variables to the loss and return flow functions.
 

In this chapter linear relations are assumed as approximations
 

of the loss and return flow functions and these relations are
 

substituted into the ditch sector and reservoir mass balances to
 

obtain linear mass balance equations. Through this procedure linear
 

programming can be used for optimization of the objective function;
 

an advantage since linear programming routines are more commonly
 

available than nonlinear programming routines.
 

In developing the linear approximations, it will be assumed that
 

the ditch sectors and reservoirs are to be indexed consecutively with
 

the indices i = 1,...,M denoting the ditch sectors and
 

i = M+I,...,M+N 
denoting the reservoirs. This notation simplifies
 

the expressions to be developed.
 

Linear Loss Functions
 

A linear loss function may be expressed as follows
 

L = yQ (5-1) 

is
in which Q a measure of the water transported, or stored, by an
 

element and y is a loss rate constant. To use this function,
 

suitable expressions must be found for the 
y and Q .
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For ditch sectors, one equation for the calculation of y that 

has been used in practice is 

p u 1i-I 
Y= u E (I- u) (5-2) 

i-l
 

In the equation, u is defined to be a loss rate per unit length of
 

ditch (such as per mile), or a unit loss rate, and p is the number of
 

unit lengths in the ditch sector, such as the number of miles. Equation
 

(5-2) is nonlinear with respect to distance. However, this presents
 

no difficulty since y is assumed to be a constant for any particular
 

ditch sector, and linear programming only requires linearity with
 

respect to the decision variables, represented by the Q of equation
 

(5-1).
 

The measure of Q for ditch sectors is defined in this study to
 

be a weighted average of the inflow to a ditch sector i in time
 
t 

period t , Q , and the outflow from the same ditch sector in the
 

Vt
same time period, , or 
1 

t t t t
 
Q = aiQi + bii (5-3) 

for i = l,...,M , in which a. and b. are weighting factors 

defined such that
 

at bt 
a. +b = 1. (5-4)
1 1
 

Substituting equation (5-3) into (5-1) yields the linear loss
 

function for a ditch sector:
 

tt t ttt t ttL(Q., V.) o aiyiiQi + biyiiv! (s-5) 
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for 	 i 1...,H . The meaning of L(Qj, Vi) was defined previously 

as the volume of water lost from ditch sector i in time period t . 

The constant is a loss rate with respect to the volume of water 

transported by ditch sectnr i in time period t and is calculated 

using equation (5-2). The double subscript and 3uperscript notation 

is usod in this study to decrease the bulkiness of the expressions to
 

be developed later. In standard mathematical notation, the meaning
 
tt 

of Yi is 

tt 
i= 6ij 6h (-Sa) 

1
where 6ij = if i=j 6ij = 0 if i 0 j , 6ht I if h = t 

0 0and 	 6ht if h 0 t . 

For reservoirs, the losses will be represented by equation (5-1) 

in the form
 

L = yS + 0 	 (5-6) 

in which y is a constant, S is an appropriate value of storage,
 

and a is the intercept on the L-axis where S = 0 . Figure 8
 

illustrates this equation.
 

L
 

S 

Figure 8. Relation of Reservoir Loss to Reservoir Volume.
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Following the procedure used for deriving the ditch sector loss
 

function, let S be determined as a weighted average of the initial and
 

final volumes of water in storage in reservoir i in the time period 

t :
 

S= aiS!i + biSi (5-7)
 

for i = M+N,...,M+N ,inwhich at and bt are weighting factors
 
t t
 1 :1 

such that ai + b. = . Substituting this function into equation 

(5-6) yields the reservoir loss function,
 

L(St I 'S = aiyiS l + bYiiSi + (5-8) 

for i = M+N,...,M+N . This function isvalid for both the node 

and ditch sector definitions of a reservoir. 

The assumption of a linear loss function for a reservoir appears 

to be a gross approximation, but two points must be recalled. First, 

the losses are related to the volume of water in storage, rather than
 

to the surface a'rOa or water depth as is usual. Second, any curvi­

linear function may be assumed to be composed of a series of linear 

segments, as exhibited in Figure 9. Through the judicious use of 

constraints and iterative linear programming, it is possible to insert 

a series of linear segments to solve a nonlinear problem. Using 

iterative linear programming allows closer approximations of reality, 

but it also increases the computational effort. 

With these functions, equations (5-5) and (5-8), now defined,
 

their substitution into equations (4-17), (4-18) and (4-19) only
 

partially linearizes the ditch sector and reservoir mass balances. 
The
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linear return flow function, which completes linearization, remains
 

to be defined.
 

S 

Figure 9. Linear Approximation of Nonlinear Function.
 

Linear Return Flow Functions
 

Return flows, as discussed ini Chapter IV are a function of both
 

environmental factors and system variables. 
In linearizing the return
 

flow function, only those return flows created by the system operation
 

will be considered. This is tantamount to assuming that the volume of
 

water in underground storage, which can become available for return
 

flows, is solely derived from the losses of the surface delivery
 

system and the application of excess water to crops. Furthermore,
 

return flows are not the result of a loss in a single time period, but
 

are an accumulation which reflects the losses during all time periods
 

preceeding, and including, the one of interest. 
This situation must
 

be recognized in the equation derivation.
 

The total volume of return flow that results from the losses of
 

any element, or from excess volumes of water released from an element
 

to satisfy demands, can be, at most, equal to the original volumes
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lost or released. Generally the return flow volume is less than the
 

original volumes lost or released because portions of those original
 

volumes are consumed by evaporation, transpiration and deep percolation 

and are not available for return to the system. These considerations
 

define a theoretical limit on the volume of return flow that a system
 

can produce and this limit can be mathematically stated as
 

t M+N t M+Nlh h
 
E E R. , ,SjD) ! E E [L(Q ,Vh) + L( .,S) + 0]
 

hul i=l 1 h=lj=l 3 3 3 1 3
 

(5-9)
 

For clarity it is advantageous to separately derive the equations
 

that describe the return flow due to losses from the delivery system
 

and the return flows due to the application of excess water. After
 

deriving these equations, the results will be combined to yield the
 

linearized return flow functions.
 

First consider the return flows due to losses from the water 

delivery system. The water delivery system is composed of two elements 

that experience losses, ditch sectors and reservoirs. If it is assumed 

that some fraction, c!t , of the original loss from any element j in 

time period h returns to a particular element i in time period t , 

then an incremental return flow relating the loss from one element and 

the return flow of another can be defined. The incremental return flow, 

AR!(Qj,Vh) , to any element that results from ditch sector losses is 

AR!(Qh,Vj) = ctjL(Q>,'b (5-lO) 
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-
for"i:*l,.,,;M N , j = 1,...,M, t * l,..,,T , h = l,...,t and i 0 j 

if 'h"-=t The'incremental 'return flow, AR CSh) , to any-element that 

results from reservoir losses is 

I51a
AR iS')c i L(j A 


for i = I,...M+N j = M+l,...,MN , t = 1,...,T , h = ...t 

and i jJ if h= t. 

The total return flow to an element i in time period t , due to
 

losses from all elements of the water delivery system, is the sum of
 

the incremental return flows over all elements of the system that
 

have experienced a loss inall time periods prior to, and including,
 

the time period of interest. Mathematically this can be stated as
 
M +N ­[ 	 M+N .. ) R..,j

Ri(n. ,,Sj t- 1 t h r h t
"J 	 t
R~~'S) AR.( + Ar.O + ~(j'R Q, h=~ [ l= J j=M+ 3]1 j=l iJJ 

ij
 

M
 
+ 	 E ts! 
J=M+l 123 

ijj
 

(5-11)
 

for i = 1,...,M+N and t = 1,...,T . The substitution of equations
 

(5-10) and (5-10a), for the incremental return flows, into equation
 

(5-11) yields
 
h-l
t-1 th h MAX 


Rt hVSh) t E ciLCQ.,V.) + E c..L(S. PS!
J 'I = J1 3 j M + I 3h= J ' 	 = J 

M 	 M+N 1t
 
+ E cijL(Qj,V!) + E c. L(S.S (5-12) 

-l j=M+l 13 S J 
iIj ij 

for i = l,...,M+N and t = ll...,T.
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h­
)L~j ,s3),Further substitution for the loss functions L(Qh,'V'), L(S-',S)
t t t-1 

L(QjIVj) 'and L(Sj ,St) from equations (5-5) and (5-8) yields two 

expressions; one for ditch sectors and one ior reserioirs. Two 

expressions are necessary because of the exceptions that state that 

no eiement may have a return flow in any time period which is due to 

its Own loss in the same time period. For ditch sectors,
 

t& h Mh thhhh hthhh 

Z (QjI S) = h 1 [a jc..Y.Q +bcQ.V+)
=3 3ih=1 j j ijj33 

M+N h th hh h-1 h th hh h th hl 

j=M+l 3 1 J3 j jJj ij j 

M t tt tt t -t 	 tt tt, t.+ 	(Ec!. .Q. +b.c..y..V.) 
j=l 3 ijyjj 3 13 33 3 
i,'j 

+NrM+N t tt tt t-1 _tj tt tt tt . 
+ 	 E (a.c..y..S + b s + c. O.) 
j=M+l 1 3 3 313333 13 3J 

(5-13) 

for i = l,...,M , and t = 1,...,T . For reservoirs 

t h h I t-1 M h th hh h h th hh.. 
i j j j 1 +Ri(QjVjSj)1 33 1 = E [I1 a.CYy Q. + ° vh=1 	 bjc 3I	 JiY 

M+N h th hhh-1 h th hh h th h 
+E (a.c..y.S + b c. y .S + C. j].)
j=M+l J 1j3j 3 ijyjj 3 ij 

+ M ,t tt tt t -t!t tt. t. 
+ 	 E (a c~y .Q + bc y. .V. 

j=l 33ijYjj 3Ji333 

+N t+ 	 iE(ajc..y.tt tt-t-I + bcy.S!.t tt tt~t + ctt.. ) 

j=M+l 331 
iJ'j 

(5-14) 
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for i = M+l..:,M+N and t =:,...,T These equations relate' 

return flows in a system to the losses due to water delivery in terms
 

of the decision variables of the problem.
 

At this point, two definitions are made to reduce the bulkiness
 

-of equations (5-13) and (5-14). In both of the equations, the products

cth hh an t t"th 

of the constants hijyjj jt"
a are replaced by the constants Yi
 
tt
 
T .,jrespectively.
and 


That is,
 

th = th hh 
ij cijyjj 

and
 
tt ctttt 
j . jjY . (5-16) 

Inserting these definitions into equations (5-13) and (5-14) yields
 

RR3. hj-Vj'Sj)h( hh 4h=I[Qi1 j=Ij h hb3ihVhj ayj jiyj j 

h+. N h th h-l thsh th 
8)
+ . (aY.S + b thc 

j=M+l jij j jijj + ij j 
M 
M . tt t tt t. 

" E (aYij Q + byttVj)
yi
j= 


ij
 

M+N t ttS.t-1 ttt" i(aj ~ + btyiSj + cij!) , (5-17) 
..j=Ml 3 ii, ii i 

for i l... ,andIs SM 




"V, i, jh) t ijla M th h ._ th~h 
Rt (Q

h V '.Sh. 


thl j 3yijv3
1 


M.N h th h-1 +h thh thh 
+ 	Z (ay .S +b .S. c.0 

j=M+l jyij ijj i j 

+ MM t ttt t t t 
+ 	E (a.y. .Q + b~y!V!)
 

j=l 3133 31331
 

+ 	E (a. S + b S + c. (5-18) 
j=M+l 3133 313 133 

i~j 

for i = M I,...,M+N , and T = l,...,t in both equations, respective­

ly. Although equations (5-17) and (5-18) appear to be complicated 

linear functions, many of the values are zero because the 
th
 

values are zero. A zero c.. is primarily due to the lack of a

13
 

hydraulic connection between two elements of a system. However, even
 

if a connecting aquifer exists, it is doubtful that any two elements
 

will receive return flows that originated from the other simultaneously,
 

because the hydraulic gradient will be unfavorable. Therefore, of the
 
th and hol 

"mirror image" return flow coefficients, such as y12 and y , only 

one will be non-zero. This reduces, by one-half, the number of return 

flow coefficients in any given problem. Equations (5-17) and (5-18)
 

adequately describe the flows that return to the various elements of a
 

system because of the losses occurring during water delivery.
 

Consider now the return flows to element i in time period t
 

due to the application of excess water from element j to crops in
 

previous time periods, h = ,...,t ,R( ) . The maximum volume 
1L3
 

of excess applied water that may reappear in all portions of the system,
 

from a single element j in time period h ,E., is that volume not
 
3
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retained in the soil. Mathematically this is
 

h=(I h h (5-19) 

J 1- ej)D, 

.
in which e is the irrigation application efficiency for water
J 

in time period h . This efficiency is
released from sector j 


defined as the ratio of the volume of water necessary to increase the
 

soil moisture to field capacity to the total volume of water applied. 

During application, however, some of the maximum volume of excess 

released water, E. , is lost to evaporation, transpiration and deep 

percolation. Therefore, the total volume of water that actually
 

returns to the system, in all time periods concurrent with and
 

following the time period of the release, is only a fraction, 

of the maximum available, dhEh or dh.(I - e)Vh. If it is further 

assumed that only a fraction, , of the actual volume that returns 

to the system appears in element i in time period t , then the in­

cremental return flow to element i in time period t that results 

from an application of excess water from element j in time period h 

can be defined as
 

AR t(P = gthdh(- h h (5-20) 

for i = 1,...,M+N and j = 1,...,M+N . As with the return flows due 

to losses from the conveyance structures, certain terms in equation 

(5-20) can be assumed constant for a given system and can be repre­

sented by a single symbol. By defining 

th gthph1 h (5-21) 

equation (5-20) can be written as 
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t h th~h 

AR ( Dj) = a..D. (5-22)13 13 3
 

for i = I,...,M+N , j =i ,...,M+N , h 
= 1,...,t and t = 1,...#T 

The total return flow, resulting from the application of excess
 

water to the crops, to an element i in time period t is the sum of
 

the incremental return flows that result from this application for all
 

elements of the system in all time periods previous to, and concurrent
 

with, the time period of interest. Mathematicallp,
 

Dh t M+N t h
 
R(D

3
) = E E AR (D.)
1 h=l j=l (5-23)1 1 

for i = l,...,M+N and t = 1,...,T . In this equation there is
 

assumed to be no restriction to prevent an element from receiving a
 

return flow due to its own release of excess water in the same time
 

period that the release occurs.
 

Substituting equation (5-22) into equation (5-23) yields the
 

return flow function for the application of excess water to crops. It
 

is
 
t M+N th h
 
E E i..j 
 (5-24)


h=l j=l 1 JJ 

for i = 1,...,M+N and t = 1,...,T 

Combining equation (5-24) with equations (5-17) and (5-18) yields
 

the linearized return flow functions for both losses from the system
 

elements and the release of excess water from the system. 
For ditch
 

sectors,
 



S4 

Rt(Q ,Vh Sh D) 	 bjyJijvj)ha.t'IFM=1 + b y 

M+N h thh.1 hthh th hi 
+ 	 E (ay S +b0c.Sth.h)i 
J=M+L j ij j Yiji Cij j 

M+.'tj tt t t tt t.
 
" E (ay.Q + bjyijVj)
 

i,'i 

M+N 
 t t 
 -

" j=M+IlE ta.jyiiJJS.j j3ij 3 j lj ji~m~ + b.Yts +iJctt.) 

t M+N
 
+ 	 E E athDh 

h=l j=l z3J 

for i = 1,...,M , and t = l,...,T . For reservoirs 

Rt h h t [ M ah thh h tV
Qi Sh=l 	 j= I jy'jqi" j,D =E 
 Ea 3+ Jyi
 

M+N h thsh- h th h th h
 
+ 	 E (a.y..S. + b .5 +c*0) 

j=Ml j IjJ 3 Jij j + Jij 

M ttt 
+ 	 E (a. .Q!+ b! tt. t 

j=l j 1 3j + ij3 

M+N t t
+ E (a.y. .. - + btyt!S- + ct .) 

j=M+l 3 3t31j + oji ij j 

i~ji
 

t M+N
 
+ 	 E E ah5h 

h=l j=l i jiJ ' (5-26) 

for i = M+I,...,M+N and t = 	1,...,T , which is sufficient for both
 

the node and ditch sector definitions of a reservoir. Again, it should
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be emphasized that although equations (5-25) and (5-26) appear to be
 

complicated, in modeling a real system, many of the coefficients will
 

be zero.
 

Relation of Losses and Return Flows
 

Because of the difficulty in visualizing the assumed relationships
 

between losses and return flows for the linearized model, graphical
 

representations of a hypothesized loss from a ditch sector and the
 

associated return flows are shown in Figure 10. A loss of 1.9 units
 

of water from ditch sector i in time period 1 is shown in the
 

graph on the right. Of 1.9 units lost, 0.3 units return to the sector,
 

as shown in time periods 2 and 3. Other varying amounts return to 

the sectors i-2, i-1, i+l, i+2, and i+3 in the distributions shown.
 

The total return flow to the system from sector i can be calculated
 

and is found to be 1.18 units. The system loss, defined as the loss
 

from an element less those volumes of water which reappear in the
 

system as return flows, is 0.72 units of water.
 

The relations shown in Figure 10 can also be exhibited in a three­

dimensional graph such as Figure 11. In this figure the horizontal 

plane is the element - time plane. The space below this plane shows 

the volume of water lost, and the space above shows the related return
 

flows.
 

Figure 11, however, shows only the return flows for a loss from a
 

single element in a single time period. To graphically describe the
 

loss and return flow relationship for an entire system, similar figures
 

would need to be constructed for each element that experiences a loss.
 

The construction of these figures is neither necessary nor recommended.
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Figure 10. Two-Dimensional Representation of a Hypothesized Loss and 
Its Associated Return Flows
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Figure 11. Three-Dimensional Representation of a Hypothesized Loss
 
and Its Associated Retu:n Flows.
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They are presented here only to illustrate the relation between losses
 

and return flows that are assumed in the linear model.
 

Linear Mass Balances
 

Linear mass balances are obtained by substituting the linear loss
 

and return flow functions into the mass balance equations, derived
 

in Chapter IV and repeated here for convenience. For ditch sectors,
 

h tQi -	LCQi'VP i ( V- Vi=DiJ 4ttt t hh 	 (4-17) 

for 	i = 1,...,M ; for reservoirs using the node definition, 

Vk+ l t- RiQj,V.,Sj,Dj) - tk~
 

E + S. L(StlS!) + R -~ t=D
 
keJ*i1 k 3 3j j 3 _Si kiQ=Di'
 

(4-18)
 

for i = M+1,...,M+U ; and for reservoirs using the ditch sector 

definition, 

Q. + S - L(St-1 ,St.)+ Rt Qh Vh Sh Dh) S! V D
 

1 1 i 1 1 i ISD I 13
 

for 	i = M+U,...,M+N. In all equations j = l,...,M+N , h ­

and 	t = ,...,T , except that i 0 j for h = t .
 

Substituting equations (5-5) and (5-25) for the loss and return
 

flow 	functions, respectively, into equation (4-17) yields the linear
 

ditch sector mass balance:
 

.tlM .h thh h tbh M+N h thh-I hth
 
Z lJajyjQ + b Y 0) + E (a .S + by 
 ]


h= I 	=1 : ,j ij~ij J j=M+laj + .... 
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.attt t t tt 	 -1 t
 
+ 	 Z(atyt!q! +eby V . E (atyttSt + b.yfjSjt)
 

j ijj jijj j=M+l I j jijj
 
i~j 

1t tt.^t ,t tt..t tt. t 
+ (I - aiYin)Qi - (I + biYii)Vi = (1 - oii)Di 

til[M.N thh M+N M+N M+N t 
. cc .. + E athj E E a..D. (5-27)

jh={j=M+l j=l j=M+l 13 j=l 1J 3 
i~i 

for i =lI,...,M and t 	 = 1,...,T . Substituting equations (5-8) 

and (5-26) into equation 	(4-18) yields the linear reservoir mass
 

balance for the node definition:
 

E V t'[FMi j hpth h +h th h + M+N h thh-IjYijQ 	 h th h+ ojYij j j= El(ajyij S + bji 

kcJ i h= =jM+ 	 1 

M 	 M+N 
+ E (ayj.Q. + bjyijVj) + E (ay..S. + bt ttSt) 
j=l1 	3 31j=M+l 3IJ3 j yij j 

ii'j 

= 
+ (1- "iYii)itt t - (I + btiiittst . = iiuIt " 	 k (1- att.tD112. 	 L 111 1 kzK. 1 

tolM+N
+ E C. 0thi~ h M+NE ai.j[ E tt t - E a..D. (S-28)E + th h M+N C..O. M+N tt(t
h j=l ij j=M I 3 j=l J13 

i~4j i,~i 

for i M+I,...,M+U and t = 1,...,T . Further substitution of
 

equations (5-8) and (5-26) into equation (4-19) yields the linear
 

reservoir mass balance for the ditch sector definition:
 

tl[ M "a h hh h thVh, M+N h thh-l hth~h 
i ~ +by~~ E (~.S + .. S]i h~lj = j 'i J j ij j) j=M+I ajyij i3 i
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+ t tt t t tt ,. M N 
+~ j1'j*° V ). E tot.~ jj + t tt t-1 

SUjYjJ =JM+I (ajYijj + bjij 

(1t tt--t-1 .ttt.t tt.-
 t
 
+ a(Yi -(I +
i bYii)St. 
V. ( a )Dt +B
 

-Di.i
 

-E/ j! 


E -y-


i , j] tt t MI tt
 
th M+N
t-MN thh + MN MN 

h= ulial J j=M+l ij - Jul iijj 
i#j ij 

(5-29)
 

for i = M+U,... M+N and 
t n l,...,T . The nodal mass balance
 

remains the same as in equation (4-4),
 

E V.- E Q=0 
.jcji jcK. J44 (4-4) 

A close examination of the linear ditch sector and reservoir
 
mass balances reveals three major parts: 
 a mathematical description
 

of the influence of the past system flows, contained in the 

t-1
 
Z
 

term; a mathematical description of the present system flows, defined

h=l 

by all variables with the 
t superscripts; and a series of known
 
terms that reduce to a single constant (those terms on the right of
 
the equal sign). These observations are the basis for partitioning
 

the linear programming matrix equation, equation (2-8).
 

Linear Proeramming Model
 

The linear programming model has the same features as the nonlinear
 
model described in Chapter IV--the necessary linear mass balances and
 
capacity restrictions to simulate the system for each time period.
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For T time periods, there are T sets of these equations, and
 

with the addition of the necessary slack and surplus variables to the
 

capacity constraints, a matrix of the form of equation (2-6) can be
 

written. 	Further, the matrix equation can be partitioned according
 

to the time periods, just as equation (2-8) is partitioned. Such
 

a matrix is shown in equation (5-30)
 

A11 0 	 . .. 0 x D11 0 . .. 0 b 

.. 0 . 0A21 A22 	 .. 0 12 
 D21 D22 . . . 0 * 

AT .	 °AT DT2 DTj bT
2 	 DT1 


(5-30)
 

Each of the submatrices in equation (5-30) has a particular
 

physical meaning. Those on the principal diagonal of the A matrix
 

represent 	the allocation of the supply in a particular time period to
 

satisfy the demands in the same time period. For example, submatrix
 

A11 represents the allocation of the supply available in time period 1
 

to satisfy the demands of time period 1, and A22 represents the
 

allocation of the supply available in time period 2 to satisfy the
 

demands of time period 2, etc. The off-diagonal submatrices of the
 

A matrix represent the influence of an allocation of the supply
 

available in one time period on the allocation of the supply available
 

in another time period. For example, A21 , represents the influence 

of an allocation in time period 1 on the allocation in time period 2, 

and AT2 represents the influence of an allocation in time period 2 on 

the allocation in time period T . 
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The upper-triangular submatrices above the principle diagonal
 

are the null or zero matrices because return flows resulting from
 

future allocations cannot affect preceding strategies, as explained
 

in Chapter III, in describing the model. Similar explanations may
 

be made for the Dth submatrices.
 

The It and F are, respectively, the vectors of decision
t
 
variables and constants, including the supplies, demands, and capacitie
 

for time period t , t = 1,...,T . They correspond to the respective 

Ath and Dth submatrices, h = 1,...,t , and h < t . Furthermore,
 

when one has obtained the solution to a problem, the values of the
 

xt subvector will represent the optimal water delivery strategy in
 

time period t
 

The objective function, yet to be mathematically defined, can
 

also be partitioned with justification. Such a partitioning is
 

exhibited in equation (2-9) and repeated here:
 

xl
 

(max or min) z I 1] Vc (2-9) 

The It of this equation correspond to the xt of equation (5-30). 

The elements of the "t are the coefficients of linear functions which 

involve the loss and return flow functions of the various elements. 

Objective Function
 

With the definition of the linear approximations of the loss and
 

return flow functions, a mathematical relation can be derived for the
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objective of minimizing system loss and unrequired system outflow
 

conjunctively. This objective Consists of two parts, thd system loss
 

and the unrequired system outflow. Equati*rib will be defined for each
 

of these parts, then combined to express the desired objective.
 

System losses have been defined as the losses due to evaporation,
 

transpiration, and infiltration, exclusive of those seepage losses
 

that reappear in the system as return flows. For a particular element
 

i and time period t , the system loss is the loss as defined in
 

Chapter III, from the element minus its incremental contribution
 

to the return flows of the other elements of the system in the
 

remaining (T - t + 1) time periods. Mathematically this may be 

written as:
 

ft = t Vt t tR.(QJV.)- h tf L(Q.,V.)
. 

- T M.N ARRA(0q,Vtj=l h=t+l j=l i ) 

ij 

for ditch sectors, i = 1,...,M , and t = 1,...,T , and 

f M+N T M+N h
 
t=L(S-st E AR(S-S . h t 

I I j=l J 1 h=t+l j=l 3 1 1
 

i,'j
 
(5-32)
 

for reservoirs, i u M+I,...,M+N and t = l,...,T . In the equations 

f.t may be defined as the "cost" of using element i in time period1 

t . The cost is measured in units of water. 

There are (M + N) ft values for each time period, with each
1 

corresponding to a ditch sector or reservoir. 
For a ditch sector, 

i = 1,...,M and t = 1,...,T , from equations (5-5), (5-10), (5-15), 

(5-16), and (5-31). 
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t
M attt T M+N atyht]Qt 	 +Nt 	 attt. Z i JiJ .i E 
= 
1 i 	 j=l 

-

h=t+l j=l iii j=l
 

i~j i~j
 

T M+N 
 t , t3 V 

h=t+l j=l 	 Ji "
 

(5-33)
 

For a reservoir, i = M + 1,...,M+N and t = l,...,T , from equations 

(5-8), (S-lOa), (5-15), (5-16), and (S-32), since the inflows, and
 

outflows are assumed to experience no losses.
 

M+N T MN t ttN 	 M+Nft~ t t.£ tt 	 t_-1 +,,t tt +N t 

i
i = [ aiYi - l a y. - £ ay]S + - E b Yt

j=l h=t+l j=l 1Y31 1 11i j=l 1i31 

i#j i~j 

T M+N t ht
 
- £ 

h=t+l j=l i Ji 1 

(5-34)
 

The a terms and demands are not included because they are constants,
 

as explained in Chapter II.
 

Unrequired system outflow involves the outflows from those 

elements at the extremeties of a system. Let two sets be defined, 

Gi and Hi , which have similar definitions to the sets J. and K. ,
1 	 1 1 

previously used in defining the nodal mass balance. The set Gi will
 

contain the indices of those variables V which represent outflows
3
 

that leave the system, from ditch sectors and reservoirs modeled with
 

the ditch sector definition, at system outflow point i . Th set
 
t
 

Hi will contain the indices of those variables Q. which represent 

outflows that leave the system, at point i , from reservoirs modeled
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with the node definition. Unrequired system outflow can then be
 

expressed as
 

E vt+ E t. (5-34a) 
jeGi J jd I i j 

From these definitions, a general statement of the objective of
 

minimizing system losses and unrequired system outflows can be written
 

as 

T M+Nt
 
Minimize Z= E [ E f + E V. + E Q] (5-35)
 

t=l i=l jeG JcH
 

Substituting equations (5-33) and (5-34) into (5-35) yields a usable
 

mathematical statement of the objective:
 

T M tt M+N ttt T M+N tht t
 
Min Z Z E E [aiYii - Z a y. E E a.y..Q
 

t=l i=1 j=l i j' h=t+l j=l ij 1 

ii'i 

+ 	 (b - MZbY. i Ylbi)iVt]
I=l 1=31 h=t+l j=l+N.tt M+N t tt T M+N t ht~e


ij 

M+N tt M+N t tt T M+Nt 
htt
" E (b Y bly -Z Z 1b.Y.)S. 
i=M+l 1 11 j=l 1 31 h=t+l j=l 1 i 

i5-j 

" Z V. + rE
 
jc ' jcHi i
 

T M+N t t M+N t t T M+N tht t-l 
4E E(aiy. E- j aiy. )S. 
t=2 i=M+l j=l1 h=t+l j=l 1i 31 

i~j 
(5-36) 
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With this objective function now defined, the linearized model
 

derivation is complete.
 

Four examples of the structure of the A and D matrices ani 

the I and S vectors are shown in Appendix B for a simple syste 

The equations are derived, both the constants and objective functil 

then put into the form of equation (5-30) for illustration. The n 

definition of a reservoir is used for modeling the reservoir shown 

Relation of Derived Model to Network Model
 

The problem of irrigation water delivery is essential1y a net,
 

problem, as described in Hadley (1962), and network terminology ca
 

applied to the modeling of irrigation systems to yield similar res
 

It is felt, however, that the model descriptions derived here have
 

advantages over the use of network techniques; Appendix A discusse
 

these advantages.
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Chapter VI
 

MODEL OF A REPRESENTATIVE SYSTEM
 

As stated, the objective of this study is to develop a mathematical
 

model for simulating the events that occur in an irrigation system and
 

to use this simulation in conjunction with mathematical programming
 

techniques to provide a tool for aiding in the management of irrigation
 

water delivery. Such a simulation model is developed in Chapter IV.
 

In Chapter V linear approximations are derived for the loss and return
 

flow functions of the model and a linearized model is developed.
 

If the appropriate functions (or constants) are obtained, the
 

nonlinear (or linear) programming model may be applied in two ways:
 

for a preseason analysis to estimate the extent to which the demands
 

on a supply will be satisfied during an irrigation season, and as an
 

aid for decision makiiig, which approximates strategies that minimize
 

the losses resulting from the delivery and storage of water throughout
 

an irrigating season. Both uses require quantitative estimates of
 

future time an! space distributions of supplies and demands. Further
 

discussion of these uses of the model is included at the end of this
 

chapter.
 

In this chapter the linearized model is used to simulate a
 

representative system. A series of analyses are presented to show the
 

change in routing strategy in a single time period according to the
 

number of future time periods included in the analysis, and comparisons
 

are made of optimal and nonoptimal strategies.
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Prototype System
 

The system to be used for the examples has been built around the
 

Cache La Poudre River in Northeastern Colorado. The Poudre River has
 

its headwaters in the high mountains of Colorado and flows eastward
 

tcward the plains. It enters the plains at the downstream end of
 

Poudre Canyon, near LaPorte, Colorado. There is a streamgage, the
 

"mouth of the canyon gage," at this point. From the streamgage the
 

river flows southeasterly through Fort Collins to Greeley, Colorado,
 

where it becomes a tributary to the South Platte River.
 

The irrigation system consists of structures in both the mountaihs
 

and the plains. The mountain structures are: small diversions for
 

subsystems that are used primarily to irrigate hay meadows, reservoirs
 

that are used to store water for later release to the plains subsystems,
 

and transbasin diversions that have been constructed to provide
 

additional water for the plains. The subsystems on the plains place
 

the greatest demands on the river as a source of supply. In aggregate,
 

there are 30 or so subsystems, each operated as a cooperative, and 50
 

or more reservoirs, mostly off-channel. The extent of the plains sub­

system is shown in Figure 1'.
 

Most of the supply for the Poudre system is derived from the
 

melting of winter snowpack in the mountains. The peak flow, occurring
 

duriig spring thaw, is in May and June. The transbasin diversions
 

contribute similarly to the supply.
 

The basin policy is to store water when there is surplus runoff
 

and to use the stored water when the river flow is deficient. This
 

policy is based only on hydrologic considerations. The detailed
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Figure 12. The Lower Cache La Poudre Ditch and Reservoir System
 
(Courtesy of M.W. Bittinger and Associates).
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procedures governing the delivery of demands from storage vary from
 

subsystem to subsystem.
 

The state water law governing the diversions from the river and
 

its tributaries is the Colorado Doctrine of Prior Appropriations and is
 

administered by the State Engineer (Black, 1960; Danielson, 1958).
 

For a number of years the river water has been insufficient to satisfy
 

the demands on it, and cooperation among the various ditch companies
 

in the system has affected an operating policy that allows more
 

efficient delivery of the water than strict interpretation of the law
 

would allow. The procedure involves the renting and trading of water.
 

A discussion of this process is beyond the scope )f this study, but
 

can be found in such references as: Anderson (1963, 1961b, 1960);
 

Biggs (1968); Davan, Anderson and Hartman (1962); Huzar, Seckler and
 

Rohdy (1909); Hartman and Anderson (1963), and Hartman and Seastone
 

(1970).
 

One transbasin diversion of special importance to the Poudre
 

system is reflected by Horsetooth Reservoir, with a capacity of 151,800
 

ac-ft. It is part of the Colorado-Big Thompson Project, that was
 

constructed to supply supplemental irrigation water to the Northeastern
 

Colorado region. The water made available by this project is governed
 

by an entirely different set of laws than those governing the river
 

water, and will not be discussed further because it is excluded from
 

the developed model. References relating to the project and its impact
 

may be found in Dille (1958); Anderson and Hartman (1965); Davan,
 

Anderson and Hartman (1962); flartman and Anderson (1964); Hartman and
 

Seastone (1970), and the annual reports of the Northern Colorado Water
 

Conservancy District.
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Model System
 

Only portions of the Poudre irrigation system are used for the
 

model. They are indicated by the heavy black lines on Figure 12. Fig­

ure 13 is a schematic diagram, much like Figure 1, of the modeled system.
 

It is composed of five ditches, eight reservoirs and the river. In
 

modeling the system it is assumed that no legal system prevails. This
 

implies that no ditch has priority over another to the river water.
 

Using the intermediate level of description, suggested in Chapter
 

IV, the example system is composed of seventeen ditch sectors, including
 

those that represent the river, eight reservoirs, and sixteen nodes.
 

Three time periods are considered in the analysis, corresponding to
 

June, July and August in tha prototype system.
 

For each time period, the model is composed of seventeen ditch
 

sector mass balances, eight reservoir mass balances, and sixteen nodal
 

mass balances. All reservoirs are modeled using the ditch sector
 

definition, instead of the definition that would best fit each of the
 

reservoirs. The disadvantage of consistently using a single definition
 

for modeling reservoirs will be illustrated later in this chapter.
 

The model also contains nineteen maximum capacity and eight
 

minimum capacity restrictions. All ditch sectors representing river
 

flows are assumed to be unrestricted in naxij;un capacity. All ditch
 

sectors, including those representing river flows, are assumed to be
 

constrained in minimum flow only by the volume of water each must
 

deliver. Each of the reservoirs is assumed to have both maximum and
 

minimum capacity restrictions.
 

For each time period, then, the model consists of 68 equations
 

(M = 17, N = 8, P = 16, with 19 maximum capacity and 8 minimum
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Figure 13. Schematic Diagram of Example System
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capacity restrictions) and 8S decision variables (two for each ditch
 

sector mass balance, three for each reservoir mass balance because
 

the ditch sector definition is used, and one slack or surplus variable
 

for each capacity restriction). 
 For the three time period mode], the
 

numbers of equations and decision variables are three times those for
 

a single time period model, or 204 equations and 255 decision variables.
 

Model Parameters
 

The parameters necessary for the model construction are the loss
 

coefficients, the return flow coefficients, the maximum capacity
 

values, and tht minimum capacity values for each of the elements. To
 

use the model, estimates must be available for the initial conditions
 

and for the time and space distributions of the inflows, demands, and
 

required system outflows.
 

Data for deriving the parameters and distributions necessary for
 

the model were found to be virtually nonexistent. The only accessible
 

data is from the State Engineer's Office; this data assembly is
 

restricted to the diversions from natural systems. 
Detailed data on
 

the actual deliveries made within the system are contained in the
 

files of each of the ditch companies that operate in the system. 
These
 

data vary both in their quality and assembly. Further difficulties
 

are encountered if existing data are used because of implied operating
 

policies that tend to bias 
a model based on them.
 

Because of these difficulties, the parameters used in the example
 

solution are estimated. To make these estimates as close to reality
 

as possible, discussions were held with representatives of the State
 

Engineer's Office throughout the study. 
For some parameters guidelines
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were established, but for others only theoretical guidelines could
 

be derived. 
The basis of the estimates will be discussed in the follow­

ing sections as thoroughly as possible.
 

Inflows
 

The inflows used in the model were obtained by averaging the
 

monthly flows, in acre-feet, for the 85 years of record at the mouth
 

of the canyon gage (1883-1968). A slight adjustment was made to the
 

inflow for the third time period so the supply would be adequate to
 

satisfy the demands estimated for the season. 
The inflow values used
 

were 56,100 ac-ft for the first time period, 24,500 ac-ft for the second,
 

and 15,000 ac-ft for the third.
 

These flow values are not representative of the time distribution
 

of the natural runoff of the stream because they include water released
 

from high mountain reservoirs, not included in the model, and trans­

basin diversions. 
The timing and volume of the reservoir releases
 

and transbasin diversions are controlled by the need for irrigation
 

water in the plains, and, therefore, bias the data with an implied
 

operating policy as discussed in the previous section. 
The effect of
 

the bias is, however, considered to be negligible in the model pre­

sented here.
 

Demands
 

Because of the difficulties already cited, there was no real basis
 

for estimating demands. 
 Selected values, therefore, were made to
 

exhibit both varying demand patterns on each of the ditch sectors and
 

varying demand patterns over the system in each time period. 
No
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satisfaction of demands by diverting water directly from reservoirs
 

to the fields was assumed.
 

The demand values used in the model arc shown in Table I. Eath
 

sector is labeled by a shortened representation of the ditch name and
 

sector number, and the key to the labeling is found on Figure 13. In
 

addition, the indices to be used for the variables of the modeling
 

equations are shown in the second column of Table I.
 

Two other studies are currently in progress which will alleviate
 

the problems of demand estimation in the future. The results of these
 

studies by Evans and Skogerboe (cited in the bibliography, but as yet,
 

not published) should be available by the summer of 1971.
 

Required System Outflows
 

Although there are water rights on the South Platte River
 

(downstream of its confluence with the Poudre River) that have a highel
 

priority than some water rights on the Poudre, return flows are gener­

ally sufficient to satisfy them. Only occasionally is water required
 

to be released from the Poudre system to satisfy them, generally in
 

the early spring. Therefore, the required system outflow from the
 

Poudre is essentially zero throughout an irrigating season and is
 

assumed to be so in the model for all time periods.
 

Loss Coefficients
 

The loss coefficients for the ditch sectors were estimated using
 

equation (5-2). 
 The variable u was estimated from experience to
 

range from .0025 per mile to .0100 per mile. Unit loss rates are
 

difficult to estimate on a historical basis because of the influence
 

of return flows.
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Table I 

Demands, Models I and II 

(Acre Feet per Time Period) 

Time Period 

Element Index 1 2 3 

PV&LC 1 1000 500 500 

LC#2 2 1000 1000 Soo 

LCC,l 3 1000 2000 2000 

LCC,2 4 2000 2000 1S00 

LCC,3 5 1000 1500 1500 

PL 6 500 1000 1000 

L&W,1 7 2000 3000 2000 

L&W,2 8 1500 2000 2000 

L&W,3 9 1500 2000 1500 

G#2,1 10 2000 3000 2500 

G#2,2 11 1000 1500 2000 

R,1 12 2500 2500 2000 

R,2 13 2000 1500 1500 

R,3 14 1500 2000 1000 

R,4 15 1500 1500 1500 

R,5 16 1500 2000 1500 

R,6 17 1500 1000 500 

FC 18 0 0 0 

RR 19 0 0 0 

BH 20 0 0 0 

RL 21 0 0 0 

LP 22 0 0 0 

LL 23 0 0 0 

WL 24 0 0 0 

WR 25 0 0 C 
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Two models of the system were analyzed, the difference between
 

them was the loss rate used for the ditch sector LCC,l. In both
 

models, the river was assumed to have the lowest unit loss rate and
 

those ditch sectors fnrthest from the river were assumed to have the
 

greatest unit loss rates. 
 In Model I it was assumed the sector LCC,l
 

was lined to decrease its losses, thus giving it a lower unit loss rate
 

than that of the river. 
 In Model II the sector LCC,l was assumed
 

unlined, resulting in a higher unit loss rate than that of the river,
 

Changing the unit loss rate from Model I to Model II illustrates the
 

change in delivery strategy that results from system modification.
 

The sector lengths, unit loss rates, and loss coefficients used in
 

Models I and II are shown in Table II.
 

The reservoir loss functions required by the model 
are related to
 

the volume of water that a reservoir contains. To derive the tt
 
t
 

and 0 coefficients necessary for the model, the following procedure
 

was used.
 

A unit loss rate was derived assuming the net pan evaporation
 

was equal to the losses. 
 The values used were 0.4 ac-ft/ac for the
 

first time period, 0.6 ac-ft/ac for the second time period, and 0.5
 

ac-ft/ac for the third, based on the average measured pan evaporation
 

and precipitation at Fort Collins. 
Seepage losses were assumed to be
 

zero.
 

The volume of water lost from a reservoir was assumed to be the
 

volume of water contained in the top layer of water with a thickness
 

equal to the unit loss rate. 
Figure 14 illustrates this.
 



Table II 

Ditch Sector Loss Coefficient Computations, Models I and II 

Model I: Lo Model II: Loss 
Ditch Index Length Unit Loss Coefficient Ditch Index Length Unit Loss Coefficient 

Sector i) (n) Rate (u) (yU) Sector i) (n) Rate (u) (YM) 

PV&LC 1 24 .0100 .2143 PVLC 1 24 .0100 .2143 
LC#2 2 17 .0080 .1276 LC#2 2 17 .0080 .1276 
LCC,1 3 15 .0010 .0149 LCC,1 3 15 .0040 .0583 
LCC,2 4 23 .0060 .1293 LCC,2 4 23 .0060 .1293 
LCC,3 5 26 .0090 .2095 LCC,3 S 26 .0090 .2095 
PL 6 26 .0100 .2300 PL 6 26 .0100 .2300 
L&W,l 7 3 .0050 .0i49 L&W,l 7 3 .00so .0149 
L&W,2 8 13 .0060 .0753 L&W,2 8 13 .0060 .0753 
L&W,3 9 46 .0080 .3089 L&W,3 9 46 .0080 .3089 
G#2,1 10 S .0060 .0296 G#2,1 10 S .0060 .0296 
G#2,2 11 40 .0080 .2748 G#2,2 11 40 .0080 .2748 

R,l 12 1 .0030 .0030 R,l 12 1 .0030 .0030 
R,2 13 3 .0030 .0090 R,2 13 3 .0030 .0090 

R,3 14 3 .0020 .0060 R,3 14 3 .0020 .0060 
R,4 15 S .0020 .0100 R,4 15 5 .0020 .0100 
R,S 16 9 .0030 .0267 R.5 16 9 .0030 .0267 
R,6 17 34 .0030 .0971 R,6 17 34 .0030' .0971 
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j__Thickness Unit Loss Rate 

+ initial volume 
=Volume Lost 

Figure 14. Volume of Water Lost from Reservoir.
 

Using the unit loss rates and available capacity tables for each
 

of the reservoirs, the volume of water lost from a reservoir in a time
 

period was calculated relative to the initial volume in the reservoir.
 

The two volumes were then nondimensionalized by dividing by the
 

maximum capacity of the reservoir, so the loss functions of the variou!
 

reservoirs could be compared. A sample calculation is shown inTable
 

III.
 

The next step involved the plotting of the nondimensionalized
 

"volumes lost" against the nondimensionalized "initial volumes" on
 

arithmetic graph paper and relating them with a straight line. Such
 

a plot is shown on Figure 15. From the graph y!! and oi/Sa
 

were obtained, and multiplication of the latter by S. yielded
 

the necessary B!
 

For the eight reservoirs used inthe models, the relations were
 

surprisingly linear. If in other cases, however, the graphs are found
 

deviate significantly from a single straight line; a series of straighl
 

lines can be drawn and iterative linear programming used, as previousl
 

suggested. A severe deviation will always be found when the initial
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Table III
 

Example Computations for Reservoir Loss Coefficients
 

Unit Loss Rate = 0.5 Ac-Ft/Ac
 

t
Stage Initial Final 

(h) 	 Volume Volume L.=S "lS
 

I" 1 i t 
 St
(S St 	 Simax imax 

1 29 14 15 .0255 .0132
 

2 62 45 17 .0545 .0150
 

3 97 79 18 .0853 .0158
 

4 135 115 20 .119 .0176
 

S 176 155 21 .155 .0185
 

6 219 197 22 .193 .0193
 

7 265 242 23 .233 .0202
 

8 312 287 25 .274 .0220
 

9 363 337 26 .319 .0229
 

10 416 388 28 .366 .0246
 

11 472 443 29 .415 .0255
 

12 531 501 30 .467 .0264
 

13 593 562 31 .521 .0273
 

14 658 626 32 .579 .0281
 

15 726 691 35 .639 .0308
 

16 800 762 38 .704 .0334
 

17 878 838 40 .772 .0352
 

18 960 919 41 .844 .0361
 

19 1047 1002 45 .921 .0396
 

20 1137 1092 45 1.000 .0396
 

S = 1137 Ac. ft.
imax
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reservoir contents are near zero, but this deviation can be neglected
 

by constraining the minimum capacity of the reservoir to be greater
 

than the volume at which it occurs.
 
tt t
 

The reservoir loss coefficients, y!! . and constant,
 

for the sample models, were calculated for all reservoirs and time
 

periods. The values obtained are tabulated in Table IV.
 

Table IV
 

Loss Coefficients and Constants for Reservoirs
 
Models I and II
 

Time Period 1 Time Period 2 Time Period 3 

tt t tt t tt t 
Reservoir Index Yii 8i Yii 8i Yii 

FC 18 .0299 52.80 .0443 78.00 .0372 66.00
 

RR 19 .0153 30.40 .0268 38.00 .0209 32.40
 

BH 20 .0257 51.20 .0397 76.80 .0328 64.80
 

RL 21 .0238 10.70 .0410 15.10 .0281 13.80
 

LD 22 .0299 22.80 .0302 37.20 .0233 33.20
 

LL 23 .0328 27.20 .0354 43.60 .0352 35.10
 

WR 24 .0240 54.00 .0325 104.40 .0277 77.40
 

WL 25 .0395 23.10 .0603 33.00 .0513 27.40
 

t tThe weighting factors, a. and b. , were assumed to be 1.0 and1 1 

0.0, respectively, for all ditch sector mass balances in all time
 

periods, and, 0.5 and 0.5, respectively, for all reservoir mass
 

balances in all time periods. By choosing these weighting factors, the
 

ditch sector losses are calculated entirely on the basis of the flows
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entering at the headgate, and the reservoir losses are calculated on
 

the basis of the average volume of water in storage. 

Return Flow Coefficients
 

As with the estimation of demands, there is a lack of data for the
 

estimation of the spatial distribution of return flows. The magnitude
 

of the difficulties posed by this problem is discussed in detail by
 

Hartman and Seastone (i90). Theteford, in this study, coefficients 

for the spatial distribution of return flows were also estimated to 

illustrate features of the model, with equation (5-9) used as a 

restriction. Tables V, VI, and VII list the cth values used in Models 
th ij 

I and II. All eh.. values were assumed to be zero, eliminating any1j
 

return flow resulting from the application of excess water to crops.
 

For the ditch sectors of both Models I and II, the assumption of a
 

loss function that is the same for all time periods creates equal return
 

flow coefficients in corresponding time periods. For example, all

t-l,t 

Yijl values for the same i and j will be equal. For the
 

reservoirs in the two models, the pattern is not evident because the
 

loss functions change with the time periods. For a numerical example
 

of this pattern, compare the coefficients of the ditch sector mass
 

balance equations contained in equation sets I, II and III, Tables XII,
 

XIII and XIV, developed later in this chapter.
 

Initial Conditions
 

Because channel storage is neglected in the ditch sectors,
 

knowledge of the initial conditions is necessary for reservoirs only,
 

and in an operating model these will be known. For the example of
 

this chapter, not relative to any particular season, the initial
 



Table V 

C Coefficients, Models I and 11 

ms i n g 

Receiving
Element 

C . x .010 

Idex 1 2 3 4 S 6 7 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 2S 

PV&LC I x 

LU2 2 .0 x 
La.,1 3 

LCC.2 4 x 

LC.3 5 x .01 
PL 6 X 

L&W.1 7 .010 x .010 

L&W,2 

LAW,3 

8 

9 

.005 

.OOS .003 

X 

X .010 
.005 

OD 

G#2.1 10 X .010 

G#2,2 11 .010 x .010 

R.1 12 .030 x 

R,2 13 .010 .020 X 

R.3 14 .050 .010 x 

R,4 is .010 .010 x 

R1S 16 .OOS .010 x 

R.6 17 .002 .002 X .010 

PC18 x 

RR 19 

MI 20 .010 x 

RL 21 .010 .010 X 

LP 22 .020 

LL 23 X 

MR 24 .010 .005 X 

L IS .010 x 
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condition of each reservoir is assumed to be either 1/3 or 1/4 of the
 

maximum capacity. The numerical values are shown in Table VIII.
 

Table VIII
 

Initial Reservoir Contents
 
Models I and II
 

Index o
 
Reservoir (i) i
 

FC 18 
 4000
 

RR 
 19 1000
 

BH 20 
 2000
 

RL 21 
 250
 

LP 
 22 1000
 

LL 
 23 250
 

WR 24 
 6000
 

WL '25 250
 

Maximum Capacity Values
 

For those ditch sectors that receive water directly from the
 

Poudre River, maximum capacity values were available and used in the
 

model. For the other ditch sectors, the maximum capacity values were
 

unknown, but Were assumed to be less than the capacity of the next
 

upstream sector. For example, the sector LCC,2 was assumed to have a
 

maximum capacity less than the known capacity of LCC,l. The maximum 

capacity of LCC,1 is known because its inflow comes directly-from the
 

river. Those ditch sectors representing the river were assumed to have
 

no maximum capacities.
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The variables representing the inflows to and outflows from.the
 

'reservoirs, using the ditch sector definition, were assumed to have no 

maximum capacity restrictions. The maximum reservoir contents were
 

given those values shown in available capacity tables, rounded to the
 

nearest 1000 ac-ft. All maximum capacity values were assumed to be
 

the same for both Models I and II for all time periods. They are
 

listed in Table IX.
 

Table IX
 

Maximum Capacity Values 
Models I and II
 

Maximum Maximum
 
Capacities Capacities
 

St
Qt 

1
Element Index max Element Index 'max
 

PV&LC 1 6,500 FC 18 12,000
 

LC#2 2 11,000 RR 19 4,000
 

LCC,l 3 36,000 BH 20 8,000
 

LCC,2 4 24,000 RL 21 1,000
 

LCC,3 S 12,000 LP 22 4,000
 

PL 6 6,000 LL 23 1,000
 

L&W,l 7 S0,000 WR 24 18,000
 

L&W,2 8 34,000 WL 25 1,000
 

L&W,3 9 17,000
 

G#2,1 10 36,000
 

G#2,2 11 24,000
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Minimum Capacity Values
 

rhe minimum capacity values for all ditch sectors, including thi
 

reservoir-inflows and outflows, were assumed to be the required deli,
 

Thus, no explicit statement of the minimum capacity values were
 

necessary.
 

The reservoir minimum capacity values, in reality zero, were
 

assumed to be the volume at which the linear loss rate approximation
 

(Figure 15) became inapplicable. For each reservoir the minimum
 

capacity remained the same for all time periods, but among the 

reservoirs values varied from 2.5 percent to 11 percent of the maxim 

capacity. In Figure 15, for example, the minimum capacity value is 

.025 S . Table X gives the minimum capacity values used for th 
Lmax

reservoirs.
 

Linearized Simulation Models
 

The linearized simulation model consists of the linear mass
 

balances and capacity restrictions. The equations of Model I are
 

developed separately for each time period to clearly illustrate the
 

construction of the model. Because only one column of the A matrix,
 

that can be developed from the equations of Model I, is changed for
 

Model II, no separate listing of the equations for Model II is inclu
 

Instead, only the changed constants are listed.
 

The equations of the linearized model are those developed in
 

Chapters IV and V: for the ditch sectors, equation (5-27); for the
 

reservoirs, equatio-' (5-29), using ditch sector definition; for the
 

nodes, equation (4-4); for the ditch sector maximum capacities,
 

equation (4-10) modified to
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Table X 

Minimum Capacity Values
 
Models I and II
 

Minimum Mintimum
 
Capacities Capacities
 

t st 
Element Index 2min Element Index tmin 

PV&LC 1 * FC 18 1,320 

,C#2 2 * RR 19 100 

LCC,1 3 * BH 20 800 

LCC,2 4 * RL 21 25 

LCC,3 5 * LP 22 200 

PL 6 * LL 23 25 

L&W,1 7 * R 24 450 

L&W,2 8 * WL 25 50 

L&W,3 9 * 

G#2,1 10 * 

G#2,2 11 * 

Rl 12 * 

R,2 13 * 

R,3 14 * 

R-,4 i5 * 

R,5 16 * 

R,6 17 * 

• Minimum Capacity is that required to deliver the demand. 



t t *(6-1)
 

Qi-Qmax
 

for the reservoir maximum capacities, equation (4-12), modified to
 

St < St (6-2) 
max
 

and for the reservoir minimum capacities, equation (4-13), modified t(
 

t st
 

S! > S! (6-3)
- min 

These modifications presume that return flows and losses are small.
 

The tables used for the determination of the constants vary for
 

each of the time periods and are stated in each section. Specific
 

points of interest are discussed at the appropriate locations. A table
 

relating the indices of variables used in the equations to the element
 

abbreviations is given in Table XI.
 

Model I, Time Period 1
 

The data necessary to construct the ditch sector end reservoir
 

mass balances are given in Tables 1, II, IV, V and VIII; the data
 

necessary for the maximum and minimum capacity restrictions are given
 

in Tables IX and X. Equation set I, Table XII, results from the
 

substitution of these data into the equations listed above. Before
 

developing the model further, however, there are four points that 

should be discussed: the elimination of some nodal mass balances, with 

a consequent reduction in the number of decision variables; the nature 

of the nodal mass balances in the various time periods; the nature of 

the capacity constraints in the various time periods; and the nature
 

St 1  
of 1 in the first time period. 
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Table XI
 

Element Indexing

Models I and II
 

Element 
 Index Element 
 Index
 

PV&LC 
 1 FC 18
 

2 RR 19
LC#2 


3 BH 20
LCCl 


4 RL 
 21
LCC,2 


LCC,3 5 
 LP 22
 

PL 6 LL 23
 

L&W,1 7 
 WR 
 24
 

L&W,2 
 8 WL 
 25
 

L4W,3 9
 

G#2,1 10
 

G#2,2 11
 

R,l 12
 

R,2 13
 

R,3 14
 

R,4 15
 

R,5 16
 

R,6 17
 

Note: 
Ditch sector definition for reservoirs.
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An examination of the equations for nodes 2, 4, 7, 14 and 16, in
 

equation set I, shows they could be eliminated by substituting into
 

the appropriate reservoir mass balance. To eliminate them would be the
 

same as changing the reservoir mass balance to either a node definition
 

or a mixed node-ditch sector definition. There is no reason why this
 

should not be done when constructing a model for operational usage
 

because it would reduce the problem size. For this example, however,
 

the definition that best suits a reservoir was not used in order to
 

show that a larger problem than necessary results from using only a
 

single reservoir definition.
 

Because it is unlikely that a real system will be changed from one
 

time period to the next, nodal mass balances will usually remain the
 

same for all time periods. This condition is assumed in the model,
 

so the nodal mass balances are the same for all three time periods,
 

only the superscripts change (see equation sets II and III).
 

In some situations, it may be desirable to change the maximum or
 

minimum capacity restrictions of one or more structures from one time
 

period to the next. This flexibility is provided for in the model
 

through specification of the maximum and minimum restrictions for each
 

time period. The example discussed here, however, maintains the same 

capacity restrictions for all time periods, only the superscripts
 

change. W, 

t ' 

In time period 1, the variable SI is s , an initial 

condition. All initial conditions are presumed known and are treated
 

as constants. Thus, for time period 1, a slightly different form of
 

the linear reservoir mass balances is required. For the ditch sector
 

definition,
 

lfiore
Rectangle
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for i ?M I,...,M U , and for the node definition
 
1 11Q1 +b1 11 1)
a +N 1 11 1 1
 

E V + E(a y Q+ 
 + b )kei k J.l ° jJ=M+l J j (1
ii uM 


i,'j 

1 = 11.1 + 1 M N M+NkEi k l sii)Di 0! E ci.8 - E a D.keJKi kI JMl i J J-1 ij 

i,'j i,'j
 

1 1o
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M N a Yi S (I1 aiyii)SIll 

i ,(-) 

i,'j
 
for i =M+U,..,+N
 

Because the initial conditions are constant, they appear on the
 

right of the equal sign. If the storage in a reservoir in time period 

1 is greater than the demand for water directly from the reservoir in 
the same constants to 

However, if the demands 

time period, the will reduce a negative value. 

for water directly from a reservoir are greater 

than the initial reservoir contents, the constants will remain positive. 

This point is important because some solution algorithms require a
 

positive constant on the right side of the equal sign. 
In the model
 

developed here, all constants on the right side of the equal sign are
 

negative for the reservoir mass balances of time period 1 because the
 

demands have been assumed to be zero.
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Finally, equation set I could be written in matrix form. 
The 

result would be the A11 and D submatrices and the 1 and F, 

subvectors of equation (5-30). Specifically, 

Ai . ­1 (6-6) 

The elements of the submatrices and subvectors are not listed because
 

of limitations of space.
 

Model I, Time Period 2
 

The data necessary to construct the ditch sector and reservoir
 

mass balances and capacity constraints for time period 2 are given in
 

Tables I, II, IV,V, VI, IX and X. The resulting equations are listed
 

in equation set IT,Table XIII.
 

Written in matrix form, the equation set becomes
 

2 ffA21 1 + A22 D2151 + D222 , (6-7) 

in which I and b are the same as discussed in equation (6-6). 

Model I, Time Period 3
 

The data necessary to construct the ditch sector and reservoir 

mass balances for time period 3 are listed in Tables I, II, IV, V, VI, 

VII, IX,and X. The resulting equations are listed in equation set III, 

Table XIV. 

Written in matrix form, this equation set becomes
 

A31x'1 + A32 '2 + A33x'3 = D31 "1 + D32b2 + D33 , (6-8) 
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Table Xll 

liquation Set I 

Ditch PVLC I " £8 v I 

Ditch LU, 2 	 .10 .°, I I 
. .8724Q 2 V2 1000' , 

Ditch LACC, 1 85Q VI 100 

Ditch LCC.2 4 .8707Q: - V: . 2000 

Ditch LCC, . I 
795 .0023Q6 V5 - 1000 

Ditch PL. 6 .770q 1 1~.0 

Ditch LGW,l 7 .0001QI .915Q I .011 -V7 . 199.70 

Ditch LAW.2 8 .0006Q4 * .9247Q * .00015 2 1 . 1499.39 
* .01-Ditch O,+~~~°,,IW,3 9 	 .OV8".®Sh.000.1 ~ :"".220 1 1..o 

. D149 .00 0. 9.496.oo 

Ditch GR2,1 10 .*9704(Q4 .0002S 3 Vi00 1999.73 

1 2 10 

Ditch R,4 12 .0064%Q, . V .* 20 
1 99012 V 1 150 

Dch U? 13 .0021Q1 * *0003Q3 + .99 1 3- 2000V13 . 

V1
Ditch R.3 14 1OIQ 1 OQ106 90Ivi1500 
1 1 1 1 4' 1 

Ditch R,4 i5 .0013I + .OOIUQ7 + .9900QI- - 1500 

Ditch R.2 ,I Io I.OQ.,mI-]°-. 
V15 

1 16 16 
Ditch R.6 16 .0001%' .008 * 9vQiI V 6 -10 Ditch R,6 17 06Qo* O SQ:iv .9029Q 7* .oo02sIS V17 1499.47 

Reservoir PC 18 	 Q- 1.015081 I -3887.20
,9 	 +-962.00
,.,.,o19 ,.,s V!-:DReservoir RR 19 Q- 1.07S 19 1 920 

Reservoir ON 20 .002%*.* .01,8S ­1o 	 1923.
3%Q0 1.128S20 -V201932 

OOOIQ* * v1 1'-236.3Reservoir RL 21 "0013Q.3 4 ~Q21 -1.0119821 -V21 -263 

Reservoir LP 22 .0026Q 1 2 -ii-
1 1 -922 

6Qi*Q2 -1.05O22 ' 22-920 
Reservoir LL 23 Q2- 1.0164S V1. -218.70 
Reservoir WU 24 1OQ OQ 1 I 

.008% . 901%24 1.0120S24 - V 4 - -5874.00 

Reservoir WL 25 QI .0001S-I.019S. - -222.49 

Node 1 26 Q Q+ "56,100 
1 12 510 

Node 2 27 vi- -° 

Node 3 28 	 VI 1 112 'Q 1 
Node 4 29 v. 1 

Node 5 30 V 1. 1 019 Q2 
1Node 6 31 v --1 1 

Node 7 32 VI -1 Q s020 - S 
Node 8 13 - 1 

Node 9 34 1Q Q1 0 
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Equation Set 1 (continued) 

Type Element W HIM__ 

Node 10 35 vI1V7 
-V 2 2 .Q Q2 3  0 

Node 11 36 vI - QI °-o 

Node 12 37 *Vi V 
15 ~"23 q 1 6  0 

Node 13l 36 v I v I 16+ 18 -Q'0 Q1 0 
Node 14 39 v Q~u 
Node i 40 v1I 1 1 

v24 .v 25-Q 1 1 .0 

Node 16 41 v1 . o 

I4axcap* PVIILC 42 Q1 6,500 

Maxcap 
14axcap 

LCC2 
ICCI 

43 
44 1 

QI_ 11,000 
QI. 36,000 

Maxcap LCC,3 4 S Q 4 -_2 , 0 

Mucap LCC,3 46 Q 12,000 

Ixcap PL 47 QI . 6,000 

Naxcap !AW.I 48 Q(I. 50.000 

M4xcap LRW,2 49 Q8 34,000 

14axcap LW.3 50 Q . 17,000
 

-

Maucap G12,1 51 Q1O 	! 36,000 

-
Maxcap G12,2 52 QI 24,000 

Maxcap FC 53 S 8 I 12,000 

Maxeap RR 54 19 4,00019 
Maxcap Ni SS S I 	<1 8.000
 

Maxcap RL 56 S21 . 1,000
 

Maxcap LP 7 s 1. 4,000 

Naxcap LL 58 SI3 'c 1.000 

Maxcap WR 59 S4 _ 18,000 

Maxcap WL 60 SIS ! 1,000 

Mincap" FC 61 S18 z 1,320 

Mincap RR 62 S19 ± 100 
1S 800 

Mincap DH 63 S 0­2 25 

Mincap RL 64 S 1 2521 20 

Mincap LP 65 S 1 20022 -

Minlcll LL 66 S23 25 

S1 
Mincuj. WR 67 450 

i:.+c., WL 68 S s so 
25
 

Maxcap . Maximum Capacity Restriction 

S"Ilincap . Minimum Capacity Restriction 
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Table XIII
 

Equation Set It
 

___erie. Element 

Ditch PVSLC I .0214I * .7857Q - 2 S002 1.® 2.oo 2.7Ditch W,2 1o V1 _v2 oo 
Dtc , 2 .0064Q,+ .00892 .0107Q, + .87242V . 10002

Ditch LCC,1 3 . 1, 2 2 2000.3 9851Q 3 V3 
Ditch LCC,2 1 1 * 2 21997

4 .002Q4 +.0002519 .8707Q 4 V4 19.7 

Ditch ,,3 1 1 1 2 2 2 149.4°, .0021+ • .0069% .0003 20 .. 7905% * .0023.6%, VS .49 
Ditch PL,2., 6 . *.7o, 62o.oQ .,1000 ...2Q6 60Q 

1 .00071 .000SQ4 + 97Ditch L12N 7 .0003 1 03 7 1 * 000871 * .0006S221 2 .9851 

.0001S52 2997.62-2 


Ditch LiV,2 .0026Q4 + .00 1 * 0 +- 2 2 + 2 2 2 

04 .0006Qj 2 6911Q2Ditch L413 9 .0039Q .0063% 0303 .01+2D # .0006 ­

2
.2 ; 1997.18-020
2 


. .007SI Q 22008QI02S "2 V 42 90Ditch G02.1 0 ..oo~4 *..9247, *.0001822.., 19,9.50,+ . , .0026% • .003 
2 

.. o 22 o 23 10, ,.2.o02%. o010 .007523 .0 10  . 

200 22 4 a1 1 1 2 2 2 2Ditcho G1,2 25 .0093Q9 + .0137Q .0007S 24 .0031Q 7252 24 11 10.83,.0.00
9 

12 .40064Q29970Q 2Ditch R,6 .0021Q 1 + V 212 12 2 250 

Ditch R,2 13 011Q I * .0006%I +.0021Q 12 .0003%2 + *9910Q 13 V12 30 
1 1 

*00112Ditch R.3 14 .0005Q I .0038% .004 * 2064 2 * . 2 

- V2 . 2000 
V
14
 

Dite'. R,4 is .0006Q2I .0004Q' + .0007523 *0013Q 2 + .00Q72 .9900Q
21
2 V12

2 1499.46 
Ditch 1 oo~ I.- 1, 1 2,2 O8 2, 9733 - 19.7 

.03Q .0001Q 7 

Ditch R,6 17 .0012Q1 0 1, 1, 200~ 2 .92 

16 0008+.0003S23 16oVo16 , 199916 

*.0002S 8 V17 

Reservoir FC 18 .064 I 8 iQ2- 1.02225 2 -V 2 - 78.00
1064 1Ti Qis .18 18 

Reservoir RR 19 .96S14Q2 - 2 
_ V 9 - 38.009 19 1.0134S 19 


Rsror .04 1 2 + 2 2 2
Ei2 90S1

Reevi 0 .06Q; *.8220 * 0023Q6 Q2 I.0198S20 - a 76.80V20 

Reservoir RL 21 .004 1 1, 1 1, 2, 2,2 2 
0043 .0065Q4 *OOOSig9 99S2 .0001Q 3.0013Q Q21 1.0205S 21 

V2
 
21-14.49 

RsrorL22 .0001Q3I0065Q 4 .+0002S519+.98452 .0026Q: Q~2 *2 22 
3 36.90 4 1 9; 2-L II 2'V2 

Reservoir LL 23 .0003Q7 .0008Q I.*98235213 + 23 _ 1.0177S23 - - 43.6023 
24 7~ 2 * 2, 2, 2 23
 

Reservoir .015O IO62% *.0028Q Q24  1I2 V24
 24 00 .9382 .0013%2 
a 104.409 93S2 00Qa 9 2 .12 4V2 

Reservoir WL 25 1005I IS Q2 + .0002S30.88
 
.0S24 +.96985 25 Q2S .024 '1.0302S 2 V2 3.8 

Node 1 26 Q 24.500 

http:21-14.49
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Type


Nods, 
Node 

Nod. 

Node 


Node 

Node 

Nod. 

Node 
Nods 

Node 

Nod.NodeNode 

Node 

Node 
14acap 
Maxcap 


maxcap 


Maxcap 


liaxcap 


Pexcap 


Imxcap 


14axcap 


Wixcap 

Wixcap 


l48xcap 


Maxcap 


Itxcap 


Heap 


msxcap 


Maxcap 
M,xcap 
Naxcap 

Maxcap 


Elment 


2 

2 

Node~ 
4 


s 

Nod 530 

6 

.o,. .7 

8 

9 
10 

11 

12141 

15 

16 
FVSLC 
LCD? 

LCC,1 


LCC,2 


LCC,3 


PL 


L4Wl 


L4W,2 


L6W,3 


G#2,1 


012,2 


FC 


RR 


OH 


RL 


LP 

LL 
LL 


ML 


Equation Set It (continued)
 

___er 

, v Q~27 0. ­
1 2 20 '
 27 2 Q 

3 Y Q.Q u 
2) v2. 2 2 0 3 

0V3 Q19230 v2 2
 
19 4 Q21 0 

31 v2. 2 2 

32 v2. 24 Q;.Q20 0+.
 
33 v2 2 2.o 

34 v2. Q 

35 2 2 2 Q2 Q2 0 

2 2 82 
36 Ve V8-~-+­

37 VV2 5- 2 Q37 - -0 . 636 v12 2 2 
40 2 2 2 1
 

V25 -Ql 1 .0 

41 v2.1 Q2 0 
42 Q 6,500 
43 Q2 2 

2,00 

44 Q2 ..36,000
 

V24 

4S 2 24,000
42 


2
46 12,000
Q5 


47 "6,000
Q6 


48 Q2 50,000
 

2

49 Q8 34,000
 

'so Q2 17,000
 

51 36,000
Q20 

52 Q~2 24,000 

53 52 12,000 

54 529 4,000 

S s 2 8,000 

56 1,000S21 


S7 
 4,000 

58 S2 3 , 0
 

59 524 18,000
 

60 S2SI 1,000
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sfitimo Sot 1(coatilnued) 

HiMAp PC 61 $18 1,320 

Nincap 

mlncap 

Hincap 

Wincap 

mincap 

Nincap 
mincap 

RR 

AL 

LP 

LL 

WR 
WL 

62 

eI63 

64 

65 

67 
68 

32 

82 3. 

2l1 .. 

8 

82 ). 

324 
24 -

b:.. 

100 

too 

2S 

200 

2S 

450 
so 
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oi+ , 
Ditch PVLC 

Ditch LCI2 

Ditch LC,3 

Ditch LCC,2 

Ditch LCC,3 

Ditch PL 

Ditch L|,2 

L4W3
Ditc
I 


Ditch R#2,1 

G#,2
DitchDitch G2, 

Ditch ral 

Ditch R,4 

Ditch ,S 

Ditch R,6 


Reservoir FC 

RReevirREResevoi 
ReeviH


Re6vi 

aeservoir RL 

Table XIV 

Equotion Set III 

Bomat 


, .oiomq . .o214Q..7a7Q3 - v:. 50 
.+ 3,V3v500 .oS7. hI+ .o2 Dr+ 

-
2 .002 + .0064S + .0064Q 2 * + .107Q3 .74 3 3 

3 .0003Q .0024 .0SQi V. 2000 

02S 4OS2 -V 3 1499.32
4 .0026Q 1 M2, 877Q3 ­
- 4• .D%.g + 19 4 4 

+ i, 
9 .0046% .ooS 2 0 +.o01, ,..ODD, *-,45 • .o,;790

, .00114.,4 1ooo 2.0021Q+ 2.006 o2 3 

+ .0023Q7- V. 1498.722 5 
6 .011 , .030% * .7700,32 V6 . 1000 

.004 7 8* .0001 * 1 .22 2 3 
3 

+OI2 , 2 +.062 3*+ 3 * 0S 
19S.001S+ .0012S21 .00622 .00041 .98SQ 7 + 

V .- 1995.72 
.00032 +0006Qj 

8 .0013QI * .0030Q 1 + 2, 2 002 

S.9247Q * .oooi, 2 - *- 1999.23 
1 1 1 03Q+.062+.392 

10032.02 +O3~ 

9 0021
9 .DO'Qot%itch.0021 S+ .0216%9 ,00-S20+ . 4o 0 
3 . 1495.26

.0016SS 20 ,.o3 e . .6911% .0002520 V9 

0 .003Q+22+ M + 0007S2 +.704310 .0008Q 1+, .00032 1 	 +.0723 .908 	 1~ .0323 +.03 8 *0Q 10 

-
223.00 1.00 2498.51 

. , 3 
, .D 11 + .0ooQ+ 2 .O0. 2 o m

0D+1. o 
11 .1o..oo .0005524 + .0093 + .0137Q +o.001o24 + .0031%
 

.7252Q3 .0001S3 - .0i - .02
 
20 0-0634 20100
.O0 *3.00406Q4 


12 .OO1QI + .0021Q2, .00643+ .99703 0
 

13
 

1 	 1 2 2 2 2 2 

3 +O~~ V14 -1000.9940Q1 


is.I 1, .oo042,+...1 , 2 ,, 	 .13V3I$,9902
1 0 03Q1 3 24 7V007 200067 .003Q43 	 2 .74 3.04 

+0001Q3 + .9900Qi3- V35S 1498.86 
7 1 2 

16 .00017 .03 8 23 + .0003Q 7 .00*a *.0Q *OOQ 0004Q23 + .00017 

+ 0O08Q3 3 _ V36 - 1499.29 
a,+1 97 1 122 0 0


17 *ooo9 1I002+	 * l Q2 + .0022S2s
I .0012S18 4 .0008525 + .0012Q20 


+ .0018S25 . .0006Q30 +.005SQ3 * .9029Q3, .0002S3 . V17 . 491.88 
3 


18 .0021QI + .0064Q2 + 9814S28 * Q3 -11 - 3 60
 

395.99652 , 3 1.143
9 * 19 Q19 - 1.004 - V9 - 32.40
 

2 0023"I .0046%2 .9836S20 023 +2 203
 
20 	 2,23 202 q2 - 1.0164S20 ,V20 a 64.80 

21 .0003QI .003904 + .0002S19 . 2 * 4*.0005S 1 9 .8021+04 206

+ 0013 3 10140S3 - 1.700Q3 + .0013Qi + Q21 21 -V 21 127 
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.quation Set III (continued)
 

Nuxcsp PC 53 63k12,000
I'xcp AR 54 sg, .o 

Is -

Nucap RH 554 S3 8,000 

Ka p RL 6 S3| c 8,0001,000
201 

""icap LP 57 S 
22 - 4,000 

Hacap L. 58 23± 1 .000 
Hemap W. 5 ss
 

24 - 18,000 
Nxcap WL 60 25 - 1,000 _
 

Mincap PC 61 S 1,320 

Kincap RR 62 S3 100 - 10
 
Mincep mi4 63 S30 0
19 

M1~cpI *~ 20~ 800 
Mincap RL 64 Sl 25221 
mincap 11 65 *22'3 200 

mtncap LL 66 S33. 2502S
S 22±-

-Mincap WA 67 S 43 450 

kincap ML 68 S35 50-
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Equation Set III (continued)
 

Mae Elment _____ 

Reservoir LP 22 .0001Q + o0052Qj + .0002S . 2001 OSQ2 + .00032 + .983S 23 oo2,9 Q, 4,++ 19. 22 
002Q3 *3. 1 .006S2 

22o~s u!32.52'v
*.6 4 Q2 2 22 
.
1.021,63Reservoir LL 23 .0001Q +. .004S2 + Q22,+ .182S2 

.007 a 03 7 .08 .2423 23 .0 23 
-3 
- 35.1023 . 

Reservoir WR 24 .224 OON0%*. 1, 1 2, 2 2 3 3 
.00% .0046% .015 .062 9 *A~ 005 

S- 1.01383 . 3 77.40 
Reservoir WL 25 .000281 .062 2 3 1 02S6S3 V!3 24.00

24 * 24 o -. 9744S25 +,Q + 0001S24 25 25 

Node ,odo~2 26 3 3 24 24'+.1 ,,15000 

Node 2 27 V3 . V3 3 

Node 3 28 V34- 03 

Node 4 29 V3 3 0 

Node 5 30 v3 - _Q-Q o 

Node 6 31 3 3 3 

Node~1 3 13V-:-] 
,++. , - vQ.Q-,0. 

11Node 7 32 _ Q3,0 

Node 8 33 V 

Node 9 34 V 3 3Q5 . 

NC'Ge 10 35 V3 3 3 3 

Node 11 36 V 
; 0
Ha~xcpPV.C ; Q Q26, 


Node 12 37 V 5 .V 3 -Q3= 

Node 13 38 V33 V 3 . 3
Maxcap~~ S53 _2,~ ~LC, 
 16 1410Q 

V3Node 14 39 - 30
10 25 
V3
Node 15 40 +V3 Q3
24 25 ~11 *
 

Node 16 41 33 33 3200
 
46 1aa- 2C3 Q16 


Maxcap PVLC 42 Q 36,500
 

Maxcap L ,2 43 11,000
.~I3 


Kaxcap LCC,1 44 Q2 3,0
 

Maxcap LCC, 45 Q3 243,00 

Maxcap LCC,3 46 3.1,0
 

Maxcapi
PL4724 ,000
 

Maxcap~ 48 ,4,
125,000
 
Maxcap LCW.? 46 QS 3400
 

Nexcap PLW 50 Q~ 176,000
 

Nexcap L&52 51 Q8o -. 6, 

Naxcap G#2,2 52 Q3 I 24,000
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in which and are the same as discussed in equation (6-6) and 
2 and are the same as discussed inequation (6-7).'2a 


22
 

Model I, All-Time Periods
 

The equations for Model II are the same as those for Model I,
 

except that the coefficients for the variable are changed. The
 

data for calculating the new coefficients are listed in the various
 

tables already discussed for Model I. The Model IIvalues are listed
 

inTable XV along with the Model I values they are to replace.
 

Linear Programming Models
 

Three linear programming problems are formulated using each model
 

(the equations inTables XII, XIII and XIV for Model I and the same
 

equations, with the necessary changes, listed in Table XV, for Model
 

II). The first problem to solve isto obtain the optimal delivery
 

strategy intime period I,using knowledge of the events to occur in
 

time period 1 only. The constraints for this case are represented by
 

equation (6-6), formed from equation set I, and the optimal water
 

delivery strategy is represented by the numerical values obtained for
 

the vector 1
 

The second problem to solve is to obtain the optimal delivery
 

strategy intime period 1,based on knowledge of events to occur in
 

time periods 1 and 2. The constraints for this case are formed from
 

equation sets I and IIand are represented by equatirns (6-6) and (6-7)
 

in the form:


21 A2 Fi1 o22'o
D2 

[D1 
D . ­[A:20 U11 02L (6-9) 
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Table XV
 

Chies in Equation Sets I 11 and 111, for Model I,
 

to Obtain Model 11
 

TYP Element Equation Equation Replace Model 
Set Number 

3
Ditch LCC,1 

7
Ditch L1 


13 


Ditch R,3 14 


Reservoir L 1 21 


Ditch LCC, 


Ditch R,2 


II 3 


3 


Ditch AV.,1 
 7 


7 


Ditch R,2 13 


13 


Ditch R,3 	 14 


14 

Reservoir EL 	 21 


21 


Reservoir LP if 22 


Ditch LCC,1 111 3 


3 


3 


Ditch LW,I 	 7 

7 


7 

Ditch R,2 	 13 


13 


13 


Dth R314 

Dt 


14 


Reservoir RL 22 


22 


I Parameter 

1 

.9851Q
 

1 

.oooIQ 

.oo3% 

.ooo 

.100 1o 
1 


.0004(
 

..sSI( 


.000 


.0001 


.000( 10031
 

.o003 


.0004Q1 


2
.000Qi 
.00 4 1 


.ooo, 2 


.oooIQ. 

.0003(1 

.0004Q 
3 


.9851 


.oooIQ3 


.001)OO 

.0001 
.ooo 1 

.0004Q

. .m% 

2


.0006Q

13 003 
.0003.001 

14 


Ro3,14
.oooi.oo 
14 .0004Q2 

3
.00014 


.0003i(1 


.0001Q2 


With Model II
 
Parameter
 

1
 
.9417Q
 

% 
.oooQ
 

.OOl 

.061
 

1
 

.0017 2
 

.9417(4
 

.01
 

.0o0624
 

.001
 

.0017Q3
 
2
.0006%
 

1
 
2
 

*;0OO6Qj
 
1
 

1
 
2


.0017%

.9417Q3
 

.OOO6j
 
2Qj2 

0006Q3
 

.0006%1
 

.0017Q
 

.00232
 

*0 Q
3
 

2
 

1
 
.0017 2
 

I.0012Q33
D006Q


1
 

3 .0006Q 3
 

2
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The optimal solution that results from this problem is the optimal
 

water delivery strategy for time period 1, contained in the subvector
 

x, , and the optimal water delivery strategy for time period 2, con­

tained in the subvector x2. However, only those values in ;1 are
 

of interest.
 

The final problem to solve is for an optimal routing strategy in
 

time period 1, based on knowledge of events to occur in time periods
 

1, 2 and 3. The constraints are formed from equation sets I, II and
 

III and are represented by equations (6-6), (6-7) and (6-8) in the
 

following form:
 

A 0 0 x1- 0 0
 

A21 A22 0 i2 D 22 0 '2 (6-10)
 

A x3D31
A31  A32  L3 D 3 t
 

For this problem, the optimal solution yields the optimal water delivel
 

strategy in time period 1, contained in the subvector x1 ; the optima:
 

water delivery strategy in time period 2, contained in the subvector
 

x2 ; and the optimal water delivery strategy in time period 3, con­

tained in the subvector 3 . Again, only the values contained in 1
 

are of interest.
 

Objective Functions
 

For each of the three problems for Model I and Model II, an
 

objective function is required. In Chapter V, a mathematical statemeni
 

for minimizing system losses and system outflows, conjunctively, was
 

made, (see equation (5-36)). The data necessary to construct the
 

objective functions are contained in Tables II, IV, V, VI, and VII.
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The objective functions for Model I are:
 

MIZu 139 * 94 1 +1 1 1 175r 
MIN Z=a .1396Q I•+ .0984Q21+..0106Q3 + .0839Q4 + .197472 

+ .0128Q7 + .S46q1+8 
 .2286M + .0251Q1O. .2254Q,1 + .0030Q12
 

+.0090Qo1 +.0060Q I + .0100QIe .0267QI .0971Q1 .0343S
.0013 14 is1 718 

+ .0183SI9 20304S0+ .0315SS1 +..0285S 2 + .0313S5+ .0261S14 

+ .048051 + 1 1 1 VI + 11 (6-16)25 Vi+V 6 +V 9 11 1(6-1)
 

for the fis t problem; 

MIN Z - .1396QI + 0984Qi + . 1Q + 83i1 .197Q +1725Q 6
 

".121+.04 1 +.261 1 1 1
Q; 226 


" .09Q+.0060Q I+ .010QI + .0267Q1 + .0971Q1I + .0343S
1
 

13 14 1s 16 17 .218
 
" .0183S519+ .0304S21 + .031551+ .0285S12 + .0313S523+ . 24
 

+ 02Qi .04% + .0251Q10+ .2254Q11 + .0030Q12 

+ 1 V1 V1 * 1
1080 1 2, 2
"+08S2 5 6
V+V9 +11'l V17+ .161Q1 +*1066Qi 

" .0121Q2 + .0995Q2 + .2005Q2 + .19092+ .0134Q2 + .0623Q2 

. 259+. 2Q 20 2 2 2 
" .27N.066Q10+.2446Q11 + .
0030Q12 + .0090Q13+ .0060Q14
 

" .0100Q2+ .0267Q2+ .0971Q127+ .0384S18+ .0215S519+ .0340S2
15 16 171 920
 

+ .0333S2 + .0257S52,+.33 2 +. 2 S0 2 +V2 + 221 22 
 .3523+ .2024+ .5025 +5 6
 

"V2 + 2 +V 2
 
V9V 11e 17 (6-12)
 

for the second problem, and
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MIN Z a .1396Q' + .0984Q2 + .0106%1 + .0839Q4 + .1974%1 + .1725
 

1 1 1 1 11".0128Q7 + .0546%8 .2286% + .0251Q10. .2254Q11. .0030%12
 

S.0090QI+ .0060QI+ .0100QI+ .0267 I+ .0971QI. o3 18 

13 14 is 16 1 o 18 

" .0183SI .0304S1+ .0315S 1 + .0285S2I+ .031321,+ .0261S1 

11 1 1 1 1 2 2U.0480S 25+ V + V6 + Vi + V11 + V17 +.1561Q +.1066Q2 
.O2 + 2., 2, 2 2 0 2 

"+.0121Q3 + .099Q + .200Q 5 +.1909%Q; .0134Q70+ .02 Q8 

2 2 2 2 2oOo1o 2" .579 +.0266Q 10+ .2446Q11+ .0030Q12+ .0090Q13+. 000Q14
 

" .0100Q125+ .0267Q12 + .0971Q127+ .0384S2 + .021S 192. . 0340S2 
is 1 17 8 1920
 

".033S21+ .0257S22+ .03335234+ .0280S + . S40S2+ 2 2 2 
24 25 V
 

2 2 3., 3 34 34."V1V17 +..1940Q1I 
 .1199Q2 +.0143% .1242Qi .2089Q5
 

" 4 3 3 +h 7 3bje 30433 3 .or 33 
.2254% + .0147Q7 .3Q 8 + .3043% + .0290Qin .269he 11
 

4. 3 3 3 3 3 3 
a .0030Q12+ .0090Q 13e .0060Q14+ .0100Q + .0267Q16 .0971Q17
 

01834S3+ .0103S 3.I+ .0162S3 + .0140S3 +.*0115S3 +.014 3
 

"033+.26 3 + 3 + 3 + 3 + 3 +3( 3
01624+ 0225 5 4V 6 + 11 V179 ~ ' 6-3
 

for the third problem. The objective functions for Model IIare the
 

same as for Model I, except that the coefficient of the variable Q 
is changed to .0396 in equation (6-11), the coefficients of the 1 

variables Q1and 2are changed to .0396 and .0461, respectively,
 

in equation (6-12), and the coefficients of the variables Q1 9Q2
 
Q3 Q3
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and are changed to .0396, .0461 and .0553, respectively, in
 

equation (6-13).
 

Examining equations (6-11), (6-12) and (6-13), it is evident tha
 

equation (6-11) could be written in matrix form as
 

MIN Z T11i ; (6-14 

equation (6-12) could be written as
 

MIN Z [1 c2]- x (6-15) 
x2 

and, equation (6-13) could be written as 

x1 

MINZ= [ 1 c'2 ' 3] ' 2 " (6-16) 

x3
 

In each of the equations, the contents of the subvector represent
c1 

the "costs" of using any particular element in time period 1, the 

contents of the E2 subvector represent the "costs" of using any 

particular element in time period 2, and the contents of the 
c3 

subvector represent the "costs" of using any particular element in 

time period 3. The x1 1 X2 and 13 are the vectors of decision 

variables for each time period discussed previously with respect to
 

equations (6-6), (6-9) and (6-10). 

A close examination of equations (6-11), (6-12) and (6-13) reveals 

that they are composed of exactly the same terms for corresponding 

time periods. The implication of this is that even though the purpose 

of the first problem formulation of either Model I or Model II is to 



110
 

find an optimal water delivery strategy in time period 1, based only on
 

knowledge of events to occur in the time period, the return flows for
 

time periods 2 and 3 are considered in the objective function. Likewise,
 

even though the purpose of the second problem formulation is to find an
 

optimal water delivery strategy in time period 1, based on knowledge
 

of events to occur in time periods 1 and 2, the return flows in time
 

period 3 are considered in the objective function.
 

There are two reasons for using these objective functions. The
 

physical reason is that once a delivery strategy is selected and used
 

the return flows will occur regardless of whether the system is operated
 

in the future. Just because these return flows do not occur within the
 

time period of analysis is no justification for discounting them as a
 

system loss. Further, for the types of analysis discussed in the
 

following sections, the use of this type of objective function provides
 

results that are more easily compared.
 

Solution of Linear Programming Models
 

The three linear programming problem formulations for each of the
 

two models were solved using the Control Data Mathematical Programming
 

System 3 (CDM3) routine, adapted to the CDC 6400 computer in the
 

University Computer Center at Colorado State University. The routine,
 

as adapted, can solve a problem of 300 rows by 600 columns with no more
 

than 2,400 non-zero coefficients in the A matrix. For the three time
 

period models, characterijod by equations (6-10) and (6-16), the
 

largest solved, containing 204 rows, 255 columns and 712 non-zero
 

coefficients, the solution time was approximately two minutes.
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Results from Linear Programming Models
 

The optimal water delivery strategy for each problem of Models I
 

and II are shown in Tables XVI and XVII, respectively. Results from
 

these tables are combined with the diagram of the system, Figure 13,
 

and presented in Figures 16 and 17. These figures give a visual
 

representation of how the water should be delivered to satisfy the
 

various demands so that the system losses and unrequired system out­

flows are minimized.
 

There are three major points related to the results of the two
 

models that should be discussed. The first is the difference in
 

strategies between Models I and II themselves; the second is the vari­

ation in optimal stragegies for time period 1 resulting from the
 

inclusion of additional time periods in both models; and the third is
 

that in both models there is no system outflow.
 

Comparing Figures 16 and 17 it can be seen that the corresponding
 

water delivery strategies are different for some elements. It should
 

be recalled that the difference between the two models is the unit
 

loss rate assumed for the ditch sector LCC,1. InModel I, LCC,1 is
 

assumed to be lined and in Model II,unlined.
 

From Figures 16 and 17, it can be seen that the major difference
 

in strategies centers about ditch sectors LCC,l and L&W,l. In Model I,
 

the sector LCC,1 has a lower loss rate than even the river, and can
 

supply six reservoirs (RR, BH, RL, LP, LL and WR) and seven ditch
 

sectors (LCC,l; LCC,2; LCC,3; PL; L&W,2; L&W,3; and G#2,2). To
 

minimize the system losses in Model I it is advantageous then to divert
 

as much water as possible into LCC,1. This is evidenced in Figure 16,
 

and is done regardless of the number of time periods in the analysis.
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Table XVI 

Results from Eumple del I for Optimal Water 
Delivery Strategies in Time Period 1 

Number of Tim Periods in Analysis 

Element Index 1 2 3 

PV4LC, Inflow 1 1273 1273 1273 

LC#2, Inflow 2 1131 2117 1131 
LCC.1, Inflow 3 36000 36000 36000 
LCC,2, Inflow 4 5532 5570 6936 
LCC,3. Inflow S 1263 1263 1263 

LCC,3, Outflow 5 0 0 0 
PL, Inflow 6 649 649 649 

PL, Outflow 6 0 0 0 

L&W,l, Inflow 7 2126 2164 3121 

L&W,2. Inflow 8 17286 17286 16868 

L6W,3, Inflow 9 2163 2163 2162 

IAW,3, Outflow 9 0 0 0 
G12,1, Inflow 10 4288 3313 3329 

G#2,2, Inflow 11 1366 1366 1x 

G#2.2, Outflow 11 0 0 0 
R,6, Outflow 17 0 0 0 

FC, Inflow 18 0 860 0 

FC, Contents 18 3830 4677 3830 

FC, Outflow 18 0 0 0 
RR, Inflow 19 34464 34464 34464 

RRt,Contents 19 8000 8000 8000 

RR, Outflow 19 27365 27365 27365 

211Inflow 20 2167 2200 3390 
BI, Contents 20 2793 2826 4000 

8I, Outflow 20 1263 1263 1263 

RL, Inflow 21 21833 21795 20429 
RL. Contents 21 1000 1000 1000 
RL, Outflow 21 21068 21030 19666 

LP, Inflow 22 21068 21030 19666 
LP, Contents 22 4000 4000 4000 

LP, Outflow 22 17985 17947 16S86 

LL, Inflow 23 798 798 798 

LL, Contents 23 1000 1000 1000 
LL, Outflow 23 0 0 0 

MR. Inflow 24 12325 12325 11940 

WR, Contents 24 18000 18000 17620 
WR, Outflow 24 0 0 0 

WL, Inflow 25 2162 12i6 1231 

ML. Contents 25 1000 72 87 
ML, Outflow 25 1366 1366 1367 
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Table XVII
 

Results from Exaple Model II,for Optimal Water
 

Delivery Strategies in Time Period 1
 

Number of Time Periods in Analysis 

Element Index 1 2 3 

PVILC. Inflow 1 1273 1273 1273
 

LC#2, Inflow 2 2493 1131 1131
 

LCC,I, Inflow 3 16123 18617 20063
 

LCC,2, Inflow 4 3214 5570 6936
 

LCC,3, Inflow S 1263 1263 1263 

LCC,3, Outflow . 0 0 0 

PL. Inflow 6 649 649 649 

PL, Outflow 6 0 0 0 

L4WI, Inflow 7 20381 20283 18842 

LAW,2, Inflow 8 17290 17195 15777 

LAW,3, Inflow 9 2166 2163 2162
 

L&W,3, Outflow 9 0 0 0
 

G92.1, Inflow 10 4288 3314 3331
 

G#2,2, Inflow 11 1366 1366 1367
 

G12,2, Outflow 11 0 0 0
 

R,6, Outflow 17 0 0 0
 

FC, Inflow 18 1189 0 0
 

FC. Contents 18 5001 3830 3830
 

FC, Outflow 18 0 0 0
 

RR, Inflow 19 14183 16531 17893
 

RR, Contents 19 8000 8000 8000
 

RR. Outflow 19 7084 9433 10794
 

BH, Inflow 20 149 2200 3390
 

B81,Contents 20 800 2825 4000
 

BH, Outflow 20 1263 1263 1263
 

RL, Inflow 21 3871 3863 3858
 

RL. Contents 21 1000 1000 1000 

RL. Outflow 21 3089 3083 3080
 

LP, Inflow 22 3089 3083 3080
 

LP, Contents 22 4000 4000 4000
 

LP, Outflow 22 0 0 0
 

LL, Inflow 23 798 798 798
 

LL, Contents 23 1000 1000 1000
 

LL, Outflow 23 0 0 0 
WR, Inflow 24 12325 12241 10931 

WR, Contents 24 18000 17917 16622 

WR, Outflow 24 0 0 0 

WL, Inflow 25 216Z 1216 1233 

WL, Contents 25 1000 73 88 

WL, Outflow 25 1366 1366 1367 
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InModel II, however, LCC,l has a higher loss rate than both the
 

river and the sector L&W,l (.0S83 as opposed to .0149 and .0149
 

respectively). The model solutions show a better strategy is to divert
 

water into ditch sector L&W,1 for s.orage in the reservoirs LL and WR
 

or delivery by ditch sectors L&W,2 and LW,3.
 

Those ditch sectors with no change in delivery strategy are those
 

with only one ditch sector that can deliver the demand. These results
 

from the models are both reasonable and to be expected.
 

A comparison of the optimal strategies in time period 1 according
 

to the number of time periods in the analysis, using either Figure 16 

or 17, indicates that for some ditch sectors and reservoirs the optimal
 

strategy is a function of the number of time periods in the analysis.
 

This is also expected. Bellman's principle of optimality statos 

(Hadley, 1964, p. 362):
 

"...we cannot have an optimal value of the objective

function for k stages unless for any xk selected
 
for stage k , the value of the remaining k-i stages
 
is optimal given the xk for stage k."
 

The reason for the variation in optimal strategies in physical
 

terms, is that an optimal strategy in one time period may not store
 

water in a location where it is available to satisfy a future demand.
 

To obtain an optimal strategy throughout the period of analysis, there
 

must be a balance of losses in delivering the water to a reservoir.
 

in storing the water in a reservoir for one or more time periods, and
 

in delivering the water to satisfy a demand. The derivation of optimal 

strategies for each time period independently of the others, while
 

yielding the absolute minimum system losses and unrequired system 
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outflows, does not guarantee all demands can be met in tbe future 

because in minimizing system losses, surplus water in early time, periods 

may be stored in reservoirs that cannot supply areas where a water 

deficiency exists in later time periods.
 

As stated, solving for the optimal water delivery strategy for a
 

single time period, using only knowledge of events to occur in that dnie
 

period, will yield the absolute minimum value of the objective function.
 

When more than one time period is used in an analysis, the value of 

the objective function for the time period of interest is required to 

increase if the strategy is changed to satisfy the additional conditions
 

imposed by those additional time periods. The first column of numbers
 

in Table XVIII exhibits the values of the objective functions resulting
 

from the optimal water delivery strategies for time period 1 of Models 

I and II, respectively, according to the number of time periods in
 

the analysis. As expected, there is some additional system loss
 

incurred in time period 1 to ensure that the demands in time periods
 

2 and 3 can be satisfied. Again, these results are reasonable and to
 

be expected.
 

Finally, in both Figures 16 and 17, it can be seen that the outflows
 

from the ditch sectors R,6; G#2,2; L&W,3; LCC,3 and PL are all zno
 

regardless of tIh3 number of time periods in the analysis, even though
 

the system inflow is 31,100 ac-ft greater than the demand in time period
 

1. This occurs because the system has adequate storage to retain all of
 

the excess water and because the objective function specifies that the
 

unrequired system outflow is to be minimized.
 



Table'XVIII',
 

Values' of the Objective Functions at the Optimal Solutions, Nonoptimal

Solutions and Comparirons of the Two for Models I and II
 

Value of
 
Time 
Periods 
in 
Analysis 

Value of 
Objtctive 
Function for 
Optimal Solution 

Objective 
Function for 
Nonoptimal 
Solution Ratio: 

Nonopimal 
OpjtimIl 

I 5,278 38,642 7.32 

Model I 2 5,296 22,450 4.24 

3 5,307 17,104 3.22 

1 5,977 38,417 6.43
 

Model II 2 6,052 
 26,548 4.39
 

3 6,072 6,422 1.06
 

To provide a comparison of.an alternate, but nonoptimal solution
 

to the problem with the optimal solutions exhibited in Tables XVI and
 

XVII and Figures 16 and 317, 
 the first feasible, but nonoptimal, solution
 

examined by the computer was printed. Although not necessarily the
 

worst:'of all possible feasible'solutions to the piablem, the first
 

feasible solution is the worst solution examined by the computer. These
 

results are listed in Table XIX, for Model I, and in Table XX for Model
 

II, and shown in Figures 18 and 19. Also contained in Table XVIII is
 

a comparison of the values of the objective function for time period 1
 

for both the optimal solutions and the nonoptimal solutions. It can be
 

seen that considerable water can be saved if proper management is
 

used in system operations.
 



119 

In progressing from feasible, but nonoptimal, solutions such as
 

those shown in Tables XIX and XX, to the optimal solutions, such as
 

those shown in Tables XVI and XVII, decisions are made by the computer
 

not only to store water in reservoirs, but to store it in the reservoirs
 

with the least system losses.
 

Practical Applications
 

It has already been stated in Chapter III that the power of the
 

simulation model lies in its use with programming techniques to derive
 

optimal water delivery strategies that satisfy given demands. Toward
 

this end, the model can provide a preseason analysis for determining
 

how much of the demand on a system can be satisfied during the
 

irrigating season, based on forecasts of the supply available to the
 

system. The object of such an analysis is to find the maximum amount 

of the demand that can be satisfied during the season, not to determine 

the delivery strategies that should be used during the season.
 

This consists of looking for the last increment of demand that
 

yields a feasible solution. If all demands cannot be satisfied, a
 

legal policy is required to specify those demands that are to be
 

satisfied and those demands that are not.
 

With this assistance, a farmer will have better estimAtes of the
 

volume and time distribution of his water supply. However, it should
 

be expected that more than one preseason analysis will be required as
 

the irrigating season approaches and forecasts of the supplies and
 

demands become more accurate.
 

A logical extension of the preseason analysis, and the use for
 

ohich the model was derived, is the application of the model as a tool
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Table XIX 

Results fom Example Model I, for Noptiual Water 

Delinry Strateaios in Tim Period 1 

Iumber of Tine Periods in Analysis 

Element Indeu 1 2 3 

PVLSC, Inflow 1 1273 1273 1273 

LCI2, Inflow 2 1131 10636 10636 

LCC.I. Inflow 3 21589 9706 22188 

LCC,2, Inflow 4 21129 5570 13049 

LCC,3, Inflow S 11524 1263 1248 

LCC,3, Outflow 5 8123 0 0 

PL, Inflow 6 6000 649 6000 

PL, Outflow 6 4120 0 4120 

lAW,l, Inflow 7 21496 20964 1405S 

L4W,2, Inflow a 19993 18649 6722 

L4W,3, Inflow 9 17000 15748 4724 

L4W,3, Outflow 9 10269 9389 I7M4 

G#2,1, Inflow 10 2061 2061 2061 

G#2,2, Inflow 11 5460 3007 5328 

G12,2, Outflow 11 3013 5457 2879 

R,6, Outflow 17 0 0 3685 

FC, Inflow 16 0 6293 6293 

FC, Contents 18 1320 12000 12000 

FC, Outflow 16 2547 0 0 

RR Inflow 19 20268 8561 20857 

RR, Contents 19 100 3924 6000 

RR, Outflow 19 21129 5570 13759 

N, Inflow 20 10397 2200 3362 

iH, Contents 20 800 2826 4000 

N, Outflow 20 11524 1263 1248 

RL, Inflow 21 0 0 710 

Rt, Contents 21 263 242 954 

RL, Outflow 21 0 0 0 

LP, Inflow 22 0 0 0 

LP, Contents 22 200 200 981 

LP, Outflow 22 814 774 0 
LL. Inflow 23- 0 798 5127 

LL, Contents 23 25 1000 25 

LL, Outflow 23 193 0 5320 

WR, Inflow 24 0 0 0 

V, Contents 24 450 450 552 

Wi, Outflow 24 5460 5457 5328 

L, Inflow 25 0 0 0 

VL, Contents 25 218 218 218 

WL, Outflow 25 0 0 0 
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Table Xx 

results from Example M4del I1, for Nonoptimal Water 

Element 

PVILCI Inflow 
LC2, Inflow 
LCC,1, Inflow 


LCC,2, Inflow 

LCC.3, Inflow 

LCC,3, Outflow 
PL, Inflow 
PL, Outflow 


LN.1, Inflow 


L4W.2, Inflow 
LAW.3, Inflow 


LIW,3, Outflow 
G02,1, Inflow 
G#2,2. Inflow 


G92,2, Outflow 


R,6, Outflow 
PC, Inflow 
PC, Contents 


PC, Outflow 
RR, Inflow 

ER, Contents 
ER, Outflow 

Ill,Inflow 
MI, Contents 
811,Outflow 
RL, Inflow 
RL, Contents 
RL, Outflow 

LP, Inflow 
LP, Contents 
LP, Outflow 

U., Inflow 
LL, Contents 

U., Outflow 
WR, Inflow 

WE,Contents 
YR, Outflow 
L, Inflow 

WL,Contents 
WL, Outflow 

Delivery Stretelies In Tim Period I 

Number of Tine Periods In Analysis 

Index 1 2 3 

1 1273 1273 1273 
2 1131 10636 4960 
3 21628 9161 15965 
4 20228 8488 6936 
S 10740 1256 1263 
5 7503 0 0 
6 6000 3239 649 
6 4120 1994 0 
7 21488 21535 25805 
8 19993 20001 18289 
9 17000 17000 2162 
9 10268 10255 0 
10 2061 2061 2061 
11 5460 5460 1367 
11 3013 3013 0 
17 0 0 1649 
18 0 8293 3340 
18 1320 12000 7121 
18 2547 0 0 
19 19367 7627 14035 
19 100 100 8000 
19 20228 8488 6936 
20 9613 2152 3390 
20 800 2791 4000 
20 10740 1256 1263 
21 0 0 0 
21 247 239 233 
21 0 0 0 
22 0 0 0 
22 200 200 966 
22 812 781 0 

23 0 0 5142 
23 25 215 25 
23 193 0 5335 
24 0 0 13254 
24 450 450 17569 
24 5460 5460 1367 
25 0 0 0 
25 218 218 220 
25 0 0 0 
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for finding optimal water delivery strategies during an irrigation
 

season. This use is illustrated in the example Models I and II.
 

The procedure consists of solving for the optimal delivery
 

strategy for each time period of the season, considering the distribu­

tions of the inflows and the demands in future time periods. An
 

accou ting procedure is required for all time periods following the
 

first so that return flows are properly considered and the problem
 

size is reduced as the remaining irrigation season becomes shorter.
 

For the linearized model, this consists of programming the following
 

matrix equation of the form of equation (5-30):
 

A 0 . . . 0 

At+lt At+l,t+l 
 •0 xt+ 1
 

D . . . D 0 . . . 0 
t'l t't 0
 

Dt+l,l . Dt+lt Dt+l,t+l 0 bt+l (6-17)
 

DT, . . DT,t DT,t+l • TT T
 

At,1 At,2 At,t-1 

At+ll At+,2 * • . At+l,t.1 


ATl AT, 2 n h t e
 

for the derivation of a water delivery strategy in the tt time period. 

2 
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There is no restriction that the time peklods used in the model 

must be of equal length, but care must be exercised in expressing loss 

and return flow functions if the irrigation seakoh is divided into
 

time periods of unequal length. If the ditch sectors have high capa­

cities, however, the assumption that channel storage is negligible may
 

not be valid wihen very short time periods are assumed. 
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Chapter VII
 

SUMY AND CONCLUSIONS
 

Persons using surface irrigation systems are'major consumers of
 

water in the United States, and the demand for irrigation water is
 

continually increasing. 
To meet present and projected demands, new
 

sources of supply must be sought. 
An alternative to the construction
 

of new facilities such as reservoirs, for tapping undeveloped supplies,
 

is the reclamation of water wasted through evaporation, transpiration
 

and percolation from the structures that compose a surface irrigation
 

water delivery system.
 

There are two methods that can be used to reclaim wasted water:
 

improvement of the structures that compose a system, and improvement
 

of the irrigation water delivery management. The improvement of the
 

water delivery management is particularly attractive if a system is
 

composed of several reservoirs and interconnecting ditches that allow
 

alternate routes for the delivery of water to satisfy some of the
 

demands on a system.
 

In this study, a nonlinear model has beon developed to simulate
 

the events that occur in an irrigation system. These events are
 

inflows, outflows, losses, return flows, demands and storage. 
It
 

was shown that any interconnecting irrigation system can be described
 

by three elements: 
 reaches of ditches, called ditch sectors; junctions
 

of ditches, called nodes; and reservoirs. The events ditch sectors
 

were assumed to experience were inflows, outflows, losses, return
 

flows and demands. The events reservoirs were assumed to experience
 

were inflows, outflows, losses, return flows, demands and storage.
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The events nodes were assumed to experience were inflows and outflows
 

only. Using these elements to describe a system allows any system
 

to be modeled to any desired degree of refinement.
 

After the derivation of the nonlinear simulation model was
 

completed, the model was linked to nonlinear programming so that
 

optimal results could be obtained. The objective chosen for the
 

optimization was a resource conservation objective, to minimize
 

system loss and unrequired system outflow&
 

The mathematical functions that describe the losses and return 

flows of a system in a nonlinear model are both highly partic lar to 

the system and difficult to obtain. Therefore, linear approximations 

of the loss and return flow functions were derived and the substitu­

tion of these approximations into the equations of the nonlinear
 

simulation model yielded a linearized simulation model. This linearized
 

simulation model was then linked to linear programming so that optimal
 

results could be obtained. The objective of minimizing the system loss
 

and unrequired system outflow, expressed for the nonlinear model, was
 

also used in the linear programming model. The ability to use linear 

programming is advantageous because linear programming routines for 

computers are more readily available than nonlinear programming computer 

routines. 

Using the linearized simulation model, two example models were
 

constructed for a represe7.tative system and used to obtain optimal
 

water delivery strategies under various conditions. The available data
 

were not adequate to define the model parameters, so a majority of
 

the parameters were estimated.
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The results obtained from the linear models indicate an optimal 

water'delivery strategy, for a particular time period, ishighly 

dependent on the number of future time periods included in the analysis 

and that the modification of even a single structure ina system 

such as lining a ditch to reduce seepage, can markedly affect optimal 

strategies. These results, concerning the influences of future time 

periods and system modifications, are reasonable and show the model 

performs its purpose well. Because of the lack of adequate data, 

no comparisons of the optimal strategies determined by the model and 

the strategies used in practice could be made. 

The model developed in the study, ineither its nonlinear form
 

or its linear form, isdesigned to be calibrated for a particular
 

system before the model is used. Therefore, it is imperative that 

data are available to calibrate the model. Ifdata are not available,
 

the model cannot be used with any degree of reliability. Ifa data
 

collection program isanticipated, the model itself indicates those
 

data that are important. They are the inflows to and outflows from
 

the various ditch sectors and reservoirs composing the system. The 

exact procedure for obtaining the loss and return flow functions is
 

not clear at this time, but some suggestions are presented in
 

Appendix C.
 

The simulation model, developed in this study, has a number of
 

very practical applications. Itcan be used as a tool to analyze a
 

system for a great number of problems, such as the best locations for
 

system improvement. However, the most important use of the simulation
 

model is in conjunction with mathematical optimization techniques to
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minimize losses in delivering water to system users. Any interval
 

of time may be used in the model, but time periods of at least one
 

week are suggested.
 

By using forecasts of system inflows and demands throughout an
 

irrigation season, the model provides a tool for increasing the
 

efficiency of a water delivery system through an entire season, under
 

the specification that certain demands must be met. The model includes
 

the effects of return flows, and recognizes the importance of these
 

flows as water in temporary storage. The efficiency obtained in any
 

solution to the model, using forecasts of events to come, is directly
 

related to the accuracy of the forecasts and continual updating is
 

necessary to obtain a maximum efficiency. The structure of the model
 

under conditions where updating is required is shown in the study.
 

As developed in the study, the model simulates one facet of
 

irrigation water management, that of minimum loss water delivery.
 

There are several improvements, or extensions, that are immediately
 

evident, such as the inclusion of legal constraints. Some of these
 

improvements are briefly discussed in Appendix C. Each improvement
 

or extension will increase the detail to which a system can be modeled,
 

with a resulting increase in the complexity of the model. But the
 

increased detail and complexity do not necessarily imply increased
 

reliability of the results. Therefore, any model results should not
 

be taken as absolute, but should be tempered with engineering judge­

ment. The model is simply a tool for the irrigation system manager.
 

In the context of managing a total water resource for irrigation,
 

the model developed here is a first but necessary step. With further
 

developments toward including the institutional arrangements that affect.
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water!management,, such as the legal criteria, the end result will be
 

a-technique for the integrated management and operation of irrigation
 

systems for water resource conservation.
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APPENDIX A
 

RELATION OF DERIVED MODEL TO NETWORK FLOW MODELS
 

In this appendix it is shown that the model derived in the study is
 

equivalent to network models (Hadley, 1962, Ch. 10), and that the de­

rived model is the more desirable. The derived model accounts for all
 

sources and sinks of water in all elements, the ditch sectors, the
 

reservoirs, and the nodes. Network flow models account for all sources
 

and sinks only at the nodes, with minimum capacity constraints explicitly
 

stated to ensure demands are delivered down the proper legs of the
 

network.
 

Consider the following network of ditch sectors:
 

QAB 

B QBC 

QNC QCB 

Figure A-i. Network of Ditch Sectors
 

in which the ditch sectors, AB, AD, DB, BC and DC, each experience 

losses, LAB' LAD- LDB' LBC and LDC; return flows, RAB RAD, IB 

RBC, and RDC; and demands, DAB, DAD, DDB, DBC, and DDC, respec­

tively. The symbols I and 0 denote the system inflow and outflow.
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Applying the continuity equation to each ditch sector and each node,
 

the following definitions are obtained - for the ditch sectors, 

Along AB, QAB - LAB + RAB - DAB QBA (A-l) 

Along AD, QAD - LAD + RAD - DAD QDA (A-2) 

Along DB, QDB - LDB + RDB - DDB QBD (A-3) 

Along BC, QBC - LBC + RBC - DBC = QCB (A-4) 

Along DC, QDC - LDC + RDC - DDC QCD (A-S) 

and for the nodes 

At A, I - QAD - QAB = 0 
(A-6) 

At B, QBA + QBD - QBC = 0 
(A-7) 

At C, QCB + QCD - (A-8) 

At D, QDA " QDB - QDC 0 (A-9) 

where 

QAB 	is the outflow from node A directed toward node B
 

QAD 	is the outflow from node A directed toward node D
 

QDB 	is the ottflow from node D directed toward node B
 

QBC 	is the sjutflow from node B directed toward node C
 

QDC 	 is the outflow from node D directed toward node C
 

QBA 	is the inflow to node B from node A
 

QDA is the inflow to node D from node A
 

QBD is the inflow to node B from node D
 

QCB is the inflow to node C from node B
 

and 	QCD is the inflow to node C from node D.
 

To account for all sources and sinks of water at the nodes, as in
a
 

network model, the ditch sector equations, (A-l) through (A-S), are sub­

stituted into the node equations, (A-6) through (A-9). The best decision
 

variables for the simulation of an irrigation water delivery system are
 



1SO
 

those that represent the headgate settings on the various ditch sectors,
 

QAB' QAD' QDBI QBC and QDC. Therefore, in substituting the ditch 

sector equations into the node equations, the variables QBA' QDA' QBD' 

QCB 	 wl' QCD are eliminated. These substitutions yield 

At A, 'QAD " QAB 0 (A-10) 

At B, QAB " LAB + RAB " DAB + QDB -LDB + RDB 

- DDB - QBC = 0 (A-11) 

At C, QBC -LBC + RBC -DBC + QDC -LDC + RDC 

- DDC - * = 0 (A-12) 

At D, QAD - LAD + RAD - DAD - QDB " QDC - 0 (A-13) 

and 	rearranging yields
 

+ 	 =At A, QAD QAB - I (A-14) 

+ + +At 	 B, QAB " LAB RAB QDB -LDB RDB 

- QBC = DAB + DDB (A-15) 

+ + +At 	 C, QBC -LBC RBC QDC -LDC RDC 

- = DBC 	+ DDC (A-16)
 

At 	 D, QAD " LAD + RAD - QDB " QDC = DAD (A-17) 

These equations, (A-14) through (A-17), preserve continuity for
 

the water delivered by the system, but in the substitution process the
 

requirement that demand volumes must be delivered down the proper ditch
 

sector has been lost. In essence, this model places the demands at the
 

nodes.
 

To satisfy the requirement that the demands must be delivered down
 

the proper ditch sector, explicit minimum capacity restrictions must be 

stated: 

Along AB, QAB - LAB + RAB >DAB (A-18)
 

Along AD, QAD-LAD+RAD >DD (A-19)
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Along DB, QDB - LDB + RDB DDB (A-20) 

Along BD, QBC - LBC + RBC >DBC (A-21) 

Along DC, QDC - LDC + RDC >DDC * (A-22) 

Equations (A-14) through (A-22) are a proper formulation of the 

problem as a network model. Equations (A-14) through (A-19) account
 

for the water flowing through the system, so that continuity is main­

tained, and equations (A-18) through (A-22) require that demands be
 

delivered down the proper ditch sectors. This model consists of nine
 

equations and eleven decision variables, after surplus variables are
 

added to convert the minimum capacity restrictions to equalities.
 

Adding the surplus variables, V , to equations (A-18) through
 

(A-22), the following equations are obtained, 

Along AB, QAB - LAB + RAB - VAB = DAB (A-23) 

Along AD, QAD " LAD + RAD - VAD = DAD (A-24) 

Along DB, QDB - LDB + RDB - VDB DDB (A-25) 

Along BC, QBC - LBC + RBC - VBC = DBC (A-26) 

Along DC, QDC - LDC + RDC - VDC = DDC " (A-27) 

The substitution of these equations into equations (A-14) through (A-17) 

yields 

+At A, QAD QAB= (A-28) 

At B, VAB + VDB " QBC =O (A-29) 

At C, VBC + VDC - = 0 (A-30) 

At D, VAD " QDB - QDC = 0 (A-31) 

The equations, (A-23) through (A-31), contain both the requirement 

that the demands must be delivered down the proper ditch sector and
 

account for all water in the system. They result in exactly the model
 

derived in the study. Further, recognition that
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VAB QBA (A-32) 

VAD QDA (A-33) 

VDB =QBD (A-34) 

VBCB (A-35) 

VDC= QCD (A-36) 

reveals equations (A-23) through (A-31) are exactly the same as the
 

definitions, equations (A-1) through (A-9), on which the network flow
 

model, equations (A-14) through (A-22), are based.
 

Further examination of equations (A-23) through (A-31) reveals the
 

model to be composed of nine equations and eleven decision variables,
 

exactly the same problem size as the network flow model. Thus, no
 

reduction in problem size is gained by using the network flow model.
 

There are additional advantages of using the derived model rather
 

than a network model: (1)the requirement that a demand must be
 

carried down the proper ditch sector is implicit and cannot be
 

inadvertently neglected; (2)two flow values in each ditch sector are
 

available for use in the expression of loss and return flow functions,
 

the volume of water entering the sector and the volume of water leaving
 

the sector; (3)the relations in the model are equivalent to the de­

finitions on which a standard network formulation is based, and the
 

algebra necessary to obtain a network formulation is eliminated as one
 

possible source of error in problem formulation; and, (4)all ditch
 

sectors are modeled with equations of the same form, allowing for
 

easier problem formulation.
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APPENDIX B 

EXAMPLE LINEARIZED MODELS FOR A SIMPLE IRRIGATION SYSTEM 

Applying the linearized model to a simple system illustrates and
 

clarifies the developments in Chapter V because the results of an ap­

plication can be seen without the aid of the model. 
Such an application
 

is illustrated in the following text.
 

A simple irrigation system is illustrated in Figure B-1.
 

Inf low I t System 

3 I 

t 
t V2 

~ss" 

System Outflow Q5 

Figure B-1 Simple System
 

Four linear models are developed for this system: a single time period
 

model with return flows excluded, a single time period model with return
 

flows included, a two time period model with return flows excluded, and
 

a two time period model with return flows included. General notation is
 

used for all constants in the problem. The and
A D matrices in their
 

partitioned forms and the X b
and vectors also in their partitioned
 

form are presented.
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The first step in simulating the simple system is to describe it 

by its elements. From Figure B-I, we can see there are three ditch 

sectors, one reservoir, and one node. Thus, M - 3, N = 1 and P = 1. 

To simulate the system, three ditch sector mass balances, one reservoir 

mass balance, and one nodal mass balance must be written for each time 

period. In all four linear models the node definition is used for 

writing the reservoir mass balance, because there are three sources 

of inflow, and the minimum capacity restrictions of all elements are
 

assumed to be the volume of water necessary to deliver the demand,
 

thereby eliminating the need to explicitly state them.
 

Single Time Period with Return Flows Excluded 

From equation (5-27) the ditch sector mass balances are: 

1 11 1 111..1 1D 
(1 alY1 1) Q1 " (1 + b1 Y1 1 )V1 (B-1) 

D1
(1- a2Y22Q (1 + b1Y221)V = (B-2) 

( 111 1 +II11 1 D 1 (B-3)- a3 Y3 3 )Q3 - (1 + b3Y3 3)V3 = 3 . 

The superscript is both t and T because only one time period is 

examined.
 

The nodal mass balance is written according to equation (4-4a) 

because it is a point of system inflow. The set K1 is K1 = {1,2,3), 

because all ditch sectors receive water from the node. The nodal mass 

balance is written 

+ =QI+ Q2 Q3 1 (B-4) 

in which I is the system inflow to the node.
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For the reservoir the set J4 is J4* (1,2,3} because all ditch 

sectors empty into the reservoir. The set K4 is- K4 = {5} because of 

the outflow from the system, Q1. Using equation (5-28), the reservoir 

mass balance can be written 

1I I 1 11 1 1 1 1
V1 + 	V =2 + V3 +b 4 y4 4 )S 4 - Q5 D4 + 4 

(1 1a11.)0(_ . aY44)s4 
(B-S)( S 

1 01 

in which Q is the unrequired system outflow, and S is the initial 

reservoir storage, presumed known.
 

The equations used to define the capacity restrictions are the
 

modified equations (6-1) and (6-2), defined in Chapter VI. Denoting the
 

maximum capacities of the three ditch sectors and the reservoir by
 

1 1 1 d 
Q max Q2max' Q3m and S4max. respectively, the maximum capacity
 

restrictions are,
 

l(B6
 

1 - 1max 
Q1 < Ql (B-7)
2- 2ma x 

Q1 <1(B8 
21Q3- 3max 

Q1 1 


-8 

1 < S1 (B-9) 

4 4max 
The unrequired system outflow, Q 1 is assumed to be unrestricted. 

Converting the maximum capacity inequalities into equalities
 

requires the addition of a slack variable, Xt, to each inequality.
 

Rewriting, we obtain
 

1 + 	1 = Q1 (B-10) 
1 1max 

170
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Q + QX
2 (im-i
 

QJ 1 _-1Q1 (B-12) 

max 

1 (B-13)
S+ 
 - max
 

Equations (B-i), (B-2), (B-3), (B-4), (B-5), (B-10), (B-11), (B-12),
 

and (B-13) can be written as a matrix equation of the form of equation
 

(2-S):
 

Ax=b . (2-5)
 

The elements of the A matrix and the 
x and F vectors are listed in
 

Exhibits 1 and II. Since there are twelve decision variables and only
 

nine rows in the A matrix, there exists more than one solution to the
 

problem. 
In fact, there are 220 possible optimal solutions; the best of
 

these must be s~lected according to the objective function.
 

The same objective function isused here as was used for the
 

example models in the study, Chapter VI. Mathematically the objective
 

function is
 

MI1N Z =a1Y11^Q1 +l 11^QI +1 111 1 11 1 1 11.V1
1 a2Q22 2 +11=1a + a3 33Q + b4Y444 + bY11v1 

+ I11, i +I 11 1 
 (1
 
2y22V2 + b3y33V3 + Q(B4) 

in which the sets 
i 4 and H4 for the unrequired system outflows, are
 

empty and T14 = (5}, respectively. 
This completes the linearized model
 

construct.nr.fr the simplest model, the model for a single time period
 

with return flows excluded.
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Q; 

.L4 1 D21 

1
4S	 D1 11
 

Q5 3 

V1 
- 4Y-a4 44)s4 + 04
 

V1 411
 

x = 
2 

b =	 1
 

1
V 


1 	 1
 
Q.max 

1 	 1
 
23max
 

1X~S 
L 4max 

Lx4 

EXHIBIT II: 	 x and b Vectors, Single Time Period Example, Excluding

Return Flows.
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Single Time Period with Return Flows Included 

The model for a single time period that includes return flows is 

similar to the previous meJel. The nodal mass balances and the capa­

city constraints remain the same, but the ditch sector and reservoir 

mass balances change; the changes include more of the term.- equations 

(5-27) and (5-28). 

For the ditch sectors the mass balances become:
 

.11^1 1 111 1 11^1 1 11 1 111 1 11.1 
l-alylQ1 1 + a2y1 2Q2 + a3y13Q$ + b4Y14S4 - (l+bl1ll)V1 + b2y12V2 

11 D1 a1 11 0
+1 11 1 11 1 11DI a 111 

3Y13v3 = (1.c&l)D1 . c12u2 13 3 c14 4 - a414 4 , (B-I) 

for ditch sector 1;
 

1 11Q1 + a1111 1111 +1 11 . 1111 1111 
a1Y21Q1 +l-a 2Y22)Q2 + a3y23Q3 + b4y24S4 + Oly 21V1 - (lb2y22)V2 

11 1 111 (B-16) 

3y23v+ (1_ 22)D2 - 23 - c24 4 - a4y24S4 

•1 11, 11D1 1 111 1 110 


for ditch sector 2; and
 

1 11Q^i l11 1 1 11 1 11111 1 111 
a1y31Q1 a2y32Q2 + (1-a3 33)Q3 + b4y34Q4 + by 31VI + b2Y32V2
 

11 11 1 111 11 1 111 1 110
(1+b 3 - c3 1D1 32 2 (1-a 3 - - a4y34S4 (B-17)3Y33)V = 33)D c3484 

for ditch sector 3. The reservoir mass balance equation becomes
 

1 11 1 1 11 1 1111 1 11 1 1 1 11 1 
aly41Q1 + a2y42Q2 + a3y43Q3 - (l+b4Y44)S4 "Q + (14lb 1Y4 1)V1 

4311.1. 1. 11 1 1 

= 42D - a11D1 + (1-a11 + (1+b2y42)V 2 + (1+ b1y4)V1 - 11 1 

(1 - a41Y441)S0 + B1 (B-18)
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The matrix equation describing these constraints is defined by 

equation (2-6):
 

AY = Db . (2-6) 

The elements of the A and D matrices and the 7 and F vectors are 

listed in Exhibits III, IV and V. 

The objective function for minimizing system losses and unrequired
 

system outflows conjunctively is
 

11 1111
MIN Z ( I 11 I a11 1 111 111N Z a1 11 - aly21 - aly 31 - a1Y41)QI + (a2Y22 - a2y12 -2Y32 

111 1 111 1 111 1 1 1
 
- a2Y42)Q2 + (a3y33 - a3 13 - a3y23 - a3y43)Q3
 

11  1 1
1 11 b1y ,1y11 -
1 1 ,,1 + 111 y11  .1y11  b. y11 . 1 

+ (b4Y44 b4Y14 - b4Y24 - o4Y34J 4 + (b1 11 - 1Y21 - 131 1
IY41PV 1 

(b 11 ,D - b 1 111 )1+ 1 3 1 b3 11 b.1 11 

222 2 12 - 2y32 - b422)V 33 D1 3 - 3Y23 

b Y11)V + Q1 (B-19) 

This completes the model construction for both the single time period
 

models.
 

Two Time Periods with Return Flows Excluded
 

For the example of two time periods with return flows excluded,
 

the constraint matrix equation (2-5) is partitioned into
 

[11 A12 ["1] 1] (B-20) 
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1
1 	 I 

1
1 


D1
Q1 


Q2
Q3 	 1 

4 	 S 

1Q1 4Q5 

0S
 
V11 S4
 

x V
•
2	 -- 1 
2V1
 

3 	 1max 

X1 Q1 
1-_ 2max 

X1 	 Q1
 
2 	 max 

S1
X13 	 4max 

4 

EXHIBIT V: 	 x and b Vectors, Single Time Period Example, Including
 
Return Flows.
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where A12 is null. This yields
 

= [(B-21)
 
LA21 A22 L 2jLbJ 

The equations comprising the first row of the partitioned matrix equation
 

(B-21), A1 XI = are exactly the same as those derived for the 

single time period model with return flows neglected, so they will not 

be repeated here; they are, however, included in the listing of the 

matrix elements, Exhibits VI and VII. 

Writing the mass balance equations and capacity restrictions for
 

the second time period as a matrix equation yields the second row of
 

equation (B-21), A21x1 + A22x2 =b2' The partitioning of this equation 

is based on the superscripts of the variables in the mass balance 

equations. Because return flows are not included, the A21 submatrix 

contains only one non-zero element. This results because neglecting
 

return flows leaves only the volume of water in the reservoir at the
 

end of time period 1 that can affect time period 2.
 

The ditch sector mass balances for the second time period of this
 

problem are: for ditch sector 1, 

22,2 _ 2 22, 2 = D2 (B-22) 

(1-alyll)Ql - (1 + I 11)V1 a 

for ditch sector 2,
 

(- 22 A.2 (1+2 22 .2 2 (B-23)
a2y22)Q2 b2y22)V2 = D2 

and, for ditch sector 3,
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(1-a33)3 2 i + bo3Y3322)V3 2( 2 32 2 = D3 . (B-24) 

The reservoir mass baiance is
 

2 221 2 22 2 2 +2 2 2 D2 2 (B-25) 
(-a 4 Y4 4 4 4 y4 4 )S 4 - q+ + V2 + V 4 4 , 

and the nodal mass balance is 

q2 +2 2 2 (-6 

With the addition of the slack variables, the capacity constraints are
 

2 2 2 
+ X1 = x (B-27) 

q2 + 2 = 2 (B-28)

2 2 2K 

+ 2= Q2max 

q24 X =2 (B-29) 
3 X3 max 

and 

S2
2 + 2 (B-30) 

4 4 max
 

These equations form the second row of the partitioned constraint
 

matrix equation (B-21). The elements of the A,,, and sub-
A21, A22  


matrices and the x1. x2s bl' and b2 subvectors are listed in 

Exhibits VI, VII, VIII, IX and X. 

The objective function for minimizing system losses and unrequired 

system outflows for this case is 
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Q1
 

Qi
 

1 	 1
 

1 	 D1
S

4; 2
 

D1
Q1 


1 	 - (1-a1 11S0 

V1 
 1 

3 Q1v 31max 

1 	 Q 1
 
X max 

1 1 

Q3max 

X3-	 Q4max 

IL 

EXHIBIT VII: 	 7, and F, Subvec.tors, Two Time Period Example, 

Excluding Return Flows. 
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Q2 2
 

3S2
 

4 	 3 

2 	 D2 +a2
 

V1 	 1
 

2 	 2 

2' max
vQ2
2 Q2 
max 
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4
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EXHIBIT X: 	 72 and 2 Subvectors, Two Time Period Example, Excluding
 
Return Flows.
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MIN Z 	 a11 1+ 1 11.1 1 11.1 1 11 2 22,1
 

S aY a2y22Q2 *a (b4y44 a4444
11 1 3y33Q3 + 

b1 111 + + b1 1111 2 22 2 2 22 2 

b1 11V1 	+ 2Y22V2 3y33V3 + a1Y11Q1 + a2Y22Q2 

2 22 2 + b2 22 S2 4b2Y 22V2 b2Y22V2 + 2 222
 
a3y33Q 4Y444 1111 2 22 2 b3Y33v3
 

+ Q1 + Q2 	 (B-31) 

thus completing the construction of the two time period model with
 

return flow is excluded.
 

Two Time 	Periods with Return Flows Included
 

The linearized model for two time periods with return flows
 

included is the most complicated of the four models presented in this
 

Appendix. The matrix equation from equation (5-30) defining the
 

constraints is
 

11 0 1 11 0 b1
 
= 	 (B-32)
 

The A11 	 and D submatrices and the i and Fl subvectors are 

exactly 	the same as the A and D matrices and i and F vectors de­

fined previously for the single time period model with return flows
 

included, so the equations will not be repeated; however, the elements
 

are listed in Exhibits XI, XII and XIII.
 

21' A2 2, 	 D21 and D22 submatrices and the 2 and i2 

subvectors, in the second row of the partitioned matrix equation (B-32),
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A2 1 x1 + 22 X2 21 1i+ 22 b2 (-3 

are obtained by writing the ditch sector mass balances, the reservoir
 

mass balance, the nodal mass balance and the maximum capacity con­

straints for the model.
 

The ditch sector mass balances are:
 

1 21 1
1 211 1 21.1 1 21 1 1 21 2 22 1 
alYll 1 	+ a2y12Qi 1yllV1
2 + a3Y13Q3 + (b4Y14 + a4 14)S4 + 


1 21 1 1 21 1 2 22 2 2 22 2 2 22 2
 

2y12V2 +b 3 + - alyl)Q1 a2y12Qi a3y13Q3
2 


2 1 1
222 +2 2 22 2 2222 222 2 21 1
" - (1+ b 1
Yll)V 1
b4y14S4 	 b2Y12V2 + 3Y13V3 =- D1 - a12D2
 

2 1D1 	 2 1D1
a 211 1 21 0 22)D2 22D2 
13 3 - 14 4 C1484 - a4 (14S4 + (1 1 12 2 

22D2 
_222 222 
 (B-34)
13 3 
 14 4 	 1 44
 

for ditch sector 1;
 

1 21Q1 1 211, 1 21 1 ,.(b1 21 222 1 + b1 21. 1 
a1y2 1 1 a2y22Q2 a3y2 3Q3 + (b4y2 4 + a4Y2 4)S4 iY2 1v1 

2 22A 2 	+ a2 22 2
+ ,bI121V1 + ,b121 1 2 22 2 + 1 2 22
22y2V 2 + 3y23V 3 + alY2l1+ (1- a y 2 + 23 3 

+ 222222 , 	 1 22.. 2 +b2 22 2 21D1S24 4 211 (1 2y22 2 + 3 2 3 3 - 21U1
 

a2 1D1 21 21 21a1 1 21 0 22D2
 
22 2 -

211 
- c24 14 - &4(24 4 21 1
 

2 2)D2 2 2D2
+ (1 	 a a 2,*D2 22_2 (B=35) 
22 2 23 3 - a24u4 - c24 4 

for ditch sector 2; and,
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2 22 1 b1 21 .1
1 21,1 + 1 21.1 21 1 1 21 	 b1 21.1
 
a1y31Q1 a2Y32Q2 + a3y33Q3 b4Y34 + a4y34)S4 + 1y31v1 + 2Y32V2
 

1 21 1 2 22,2 2 222 2 222.2 

+ b3y33V3 + a1y31QI + a2y32Q2 + (I a3y33)Q3 +4Y34S4
 

+ 	 2 22,2 + b 2 22 2 .2222 2 -21 1 21DI 21D1 

b1y31V1 232V2 + b3Y33)V - ct ­3 =31D1 32D2 "33 3
 

21 1 21 1 1 21S0 222 22D2+ (122 222
 - 34D4 Cc3404 -aY3464 - 't31D, - c*32uD2 + ( a33)Du3
 

22D2 C222
- 34u4 -341 4	 (B-36)
 

for ditch sector 3. 	The reservoir mass balance is
 

1 21 1+ 1 21^1 1 21 1 +b1 21 2 22 1 b1 21V1
 

a1Y41Q+ a2Y42Q2 + a3Y43Q + ( - a4y44)S4 + 1y411
 
1
+1 21+1 b1 2 1 , 2 22 2 2 22 2 2222 

b2y42V2 3y43V3 + a1y41QI + a2 42Q2 + a3 43Q3 

(1+2 22 _2 2 + 222 2 (1+2 22) 2
 
4-44b	 1y41 V1 b2y42)V2
 

21 1  21 1  
1+ 	 2 22. 2 21D1 a a 21 1 21 1 

33y43)v3 41D1 42 2 43 3 44u4 - c44 

1 21S0 22D2 M22D2
a	 22-2 22)2 2
 - Y44 - 41 1 42u2 - a43D3 + (1- a44)D4 + 04 . B-37) 

The 	nodal mass balance and capacity constraints for this case are
 

the same as those for the two time period model where return flows are
 

excluded, equations (B-26), (B-27), (B-28), (B-29) and (B-30). 1ey
 

will not be repeated. The elements in the submatrices and subvectors
 

comprising the two time period model with return flows included, All,
 

A21, A22, Dill D21, D22, x1, x2, b1, and b2' are shown in Exhibits
 

X1, XII, XIII, XIV, XV, XVI, XVII, and XVIII. The A21  submatrix for
 

this case, Exhibit XIV, has considerably more elements than the 
A21
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2
 
Q, 

1 

2D2 
Q3 2 

2 2
 

S- 4 
V2 2

1 D4 

!F2 
V2 12 

v2 Q2 
3 

max 

2 2 
I ,ax
 

X2 Q2 
2 3max 

4
max 

2
 

EXHIBIT XVIII: i 2 and V2 Subvectors, Two Time Period Example, 

Including Return Flows.
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submatrix for the two time period model with the return flows excluded,
 

Exhibit VIII. This results from the influence of earlier strategies
 

(the time period 1 strategy) on later strategies (the time period 2
 

strategy) because of the inclusion of return flows.
 

The objective function for minimizing system losses and unrequired
 

system outflows for this case is
 

1 11 1 11 1 21 1 21 1 21 1 21.1IN Z . 111 111 
aly3 1 -y - a1Y41)= (al11 - a1Y21 - - 4 - a1y1 1 a1Y2 1 - a1y31 ­

+ 1 11 1 11 1 11 1 11 1 21 1 21 1 21 
a2Y2 2 -2Y2+ a2 2 2 - a2Y12 - a2 32 - a2y4 2 - a2Y12 ­

1 21 1 111 1 11 1 11 1 11 1 21 _1 21 
a 2 y4 2 )Q2 + (a 3 3 3 - a3y1 3 - a3Y2 3 - a3Y43 - a3y13 - a3Y2 3 

.1 .1 11 2 22 1 11 b1Y11a1y21 a1 21 
Sy33- a3Y43)Q3 + (b444 + a4Y44 - b4Y14 - b4y24 

b1Y21 2 22 1 21 2 22 
S1 11 1 21 2 22 
4 34 b4 14 a4y14 4 24 a4Y24 - b4y34 - 4 34 

b1y
1 21 .1 11 -1 11 1Y11 b1Y11 21 

-4 444 1 11 1 - 1L31 1 41 1 11 1 21
 

b1 11
b.1Y21-_ b.1 21.)V1 + (b.1 11 b.1 11 

bIY41)V 1 - -2
- Iy31- 412 (2y2 2 y32 

b111 b1 21 b,1 21 b1 21 b1 21,)V 1 + (b1 11 b1 11 
-2Y42 -2Y12 ?Y22 2Y32 -2Y42 2 3Y33 3Y13 

1 2 1 b1 21 b1 21.,,1 +a2 22 2 22 
1111 b1 11 b1 
3Y23 3Y4-3 3 3 3Y2 b3 Y3 3 - b3Y4 3 v3 + lYll a1y2 

222A.2 + 2 22 2 22 2 22 2 22A 2 222
2 22 

-a 1Y3 1 -" a1y4 1 Q1 + (a2Y2 2 - a2Y1 2 - a2Y3 2 - a2Y4 2 )Q2 +a 3Y3 3 

2 222  2 22  b22 22 222 222 2 22 b. b y
 
a3y13 a3Y23 a3Y43)Q3 + 444 014 4Y24 b4Y34J 4 
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APPENDIX C
 

IMPROVEMENT OF'THE MODEL
 

The model presented in the study is a basic model; considerable
 

improvement could be made to increase its flexibility as a tool for the
 

management of irrigation water delivery. This appendix is devoted to
 

indicating the areas that need improvement.
 

It is the writer's opinion that the most profitable future work
 

(inorder of descending importance) should deal with: the derivation
 

of procedures to include legal and administrative restrictions in the
 

model; methods for deriving from field data either the coefficients of
 

the linear model or the nonlinear loss and return flow functions;
 

methods for making the model a conjunctive use model, including
 

application to both surface and underground sources of water; solution
 

algorithms that are more efficient, and methods for using the model to
 

find the most profitable (water saving) locations for improving a
 

system through sensitivity analyses. Each of these suggestions is
 

examined in detail in the following sections.
 

Legal and Administrative Constraints
 

Because it is the function of a legal system to intervene only
 

when the supply available,to a system is less than the volume of water
 

needed to satisfy the demands of the users, the assumption made in the
 

example models, that no legal system was applicable, is equivalent to
 

assuming the supply was always adequate to satisfy the demands.
 

Because the losses are at the minimum, however, solutions from the
 

model represent the maximum volume of water, with the available system
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inflow, that can be delivered to satisfy the demands. Any other
 

routing strategy would not result in the satisfaction of as much
 

demand.
 

When a supply is insufficient to meet the demands, even though
 

the model is applied with a minimum loss objective, there is no feasible
 

solution to the problem. To obtain a feasible solution, the demands
 

must be reduced and most operating systems have a.legal procedure to
 

do this in an equitable manner.
 

Ifno feasible solution can be derived for a problem using the
 

model in this study, a legal procedure can be manually applied to the
 

model to reduce the demands. However, this can be a tedious and time­

consuming process.
 

A more efficient procedure would be to simulate the legal
 

procedure with a computer program and to use the simulated procedure 

in connection with the optimizing water delivery model as illustrated 

in Figure C-1. The solution methodology which results is iterative:
 

(1)Attempt to solve for an optimal strategy with the initial set
 

of demands. Ifan optimal solution results, the legal procedure
 

simulation was not necessary. If no optimal solution results, go
 

to step 2.
 

(2)Call the legal procedure simulation to reduce the demands
 

and attempt to solve for an optimal strategy with the new set of
 

demands. If an optimal solution results; the problem is
 

completed. If no optimal solution results, repeat this step
 

until an optimal solution does result.
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Initial 
Input 

Optimizing No Feasible 

WaterDelivery Solution LegalProcedure 

Model Modified Simulation 
Demands 

Optimal 

Solution 

Figure C-1. Relation of System Model to Legal Model.
 

In the United States there are two broad legal doctrines of water
 

rights: appropriations and riparian (Trelease, Bloomenthal and Geraud,
 

1965). Both of these doctrines treat water as property on a "here and
 

now" basis. The application of a multiple time period irrigation water
 

delivery model, such as the one developed in this study, could present
 

difficulties in the interpretation of either of these doctrines: in
 

the riparian dactrine because it does not consider the storage of water
 

and in the appropriations doctrine because of the timing inherent in
 

the reduction of the demands.
 

For example, if the demand for wa'.er in
a system that is governed 

by the appropriations doctrine must be reduced, which demands are to go 

unsatisfied, those demands which are estimated to occur in the last time 

periods of analysis, or those which are estimated to occur in earlier
 

time periods? 
The answers to these types of questions, of course, rest
 

with lawyers, and the necessary modifications of existing statutes rest
 

with the administrators and legislators of the various states.
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Loss and Return Flow Function Derivations
 

In the development of the linearized water delivery simulation
 

model, Chapter V, linear approximations were derived for the loss and
 

In the example models of Chapter VI, estimated
return flow functions. 


coefficients were used. For actual application of the linearized model
 

as an aid in optimum water delivery strategy determination, a procedure
 

for field data collection and reduction must be derived so that the
 

coefficients are as real as possible.
 

If it is initially assumed that each element of a system is
 

independent of all other elements in the system, that is, there are no
 

return flows, then knowledge of the inflows, outflows, demands and
 

storages of each element will yield estimates of the loss coefficients,
 

However, some variation in these loss coefficients should be
Yt. 


expected. Comparison of these variations in the loss coefficients and
 

the inflows, outflows, demands and storages of the other elements of
 

the system could provide a beginning for obtaining the return flow
 

coefficients. To perform these types of analyses, the data collection
 

techniques must be very accurate.
 

Once these steps have been taken, the influence of other factors
 

can be
such as the environmental variables described in Chapter IV 


included, and eventually the nonlinear loss and return flow functions
 

described in Chapter IV can be developed. The idea is to make the
 

simulation model as accurate as possible, even to the point of using
 

short-term forecasts of the environmental variables in the loss and
 

return flow functions.
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Conjunctive Use Model
 

If it is assumed that groundwater table levels are a function of
 

the losses and return flows from a surface water delivery and
 

irrigation system, various wells in the system, and inflows from, or
 

outflows to, other groundwater storage basins, then it is conceptually
 

possible to define "well sector" mass balances to account for the
 

removal of water from underground storage to satisfy surface demands.
 

The cost of this increased flexibility is increased complexity in the
 

model. Changes in the groundwater table location in the vertical
 

direction, will undoubtedly influence the loss and return flow functions
 

in the surface water delivery system, and these influences would have to
 

be mathematically described in a conjunctive use model.
 

The use of mass balances creates a "well-oriented" groundwater
 

model as opposed to the "grid-oriented" models found in the literature
 

(Bittinger, et.al., 1967). This could allow larger models to be
 

solved. For groups of closely spaced wells, the effects could be
 

combined to represent a single well.
 

Including wells in the model would make it applicable to the
 

types of systems most commonly used. The Poudre system, used for the
 

example models, is estimated to have 1500 wells that are used for
 

irrigation. The objective function for a model that includes ground­

water withdrawals will reduce to the minimization of evaporation losses,
 

transpiration losses, and basin outflow from both surface and subsurface
 

sources.
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Solution Algorithms
 

The extent of a system can be described using elements is directly
 

a function of the solution algorithm for a given amount of computer
 

storage capacity. It is probable that use of the nonlinear model will
 

require the preparation of a computer code for the solution algorithm.
 

If so, the algorithm should be the most efficient possible, in terms of
 

information storage, to allow for the greatest possible level of
 

description.
 

Linear programming routines, for solution of the linearized model,
 

are more available than nonlinear programming routines. If a routine
 

is to be chosen that is already coded for a computer, it should allow a
 

maximum amount of information to be stored.
 

If a linear programming routine is to be developed, specialized
 

algorithms, such as decomposition algorithms, should be examined
 

closely. An even more detailed study could develop the use of non­

linear programming routines to solve large linear programming problems.
 

Such routines could result in greater efficiency in saving computer
 

storage and time (Hayman, personal communication, 1969).
 

System Improvement Using the Simulation Model
 

After a programming model has been constructed for a system,
 

certain analyses, called sensitivity analyses, can be made for various
 

purposes (Orchard-Hayes, 1968; Au and Stelson, 1969). For the derived
 

model, sensitivity analyses can be used to determine the effect a
 

change in one or more of the loss or return flow coefficients can have
 

on the value of the objective function.
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A particular technique that appears to hold some promise, towards
 

sensitivity analysis of this type, is an input-output analysis,
 

described by Chenery and Clark (1959) and Mie-*nyk (1965). A cursory
 

examination indicates it could be of great value in designating those
 

ditch sectors or reservoirs that could be most profitably reconstructed
 

to save water.
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APPENDIX D
 

NOTATION
 



Symbol 

A 


Aij 


D 


D	ij 


tD 

1 

E. 


Gi 


H. 


tI. 


Ki. 


L 


L(tV ) 

L(S -1 s'St 

1 1 
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APPENDIX D
 

NOTATION 

Interpretation
 

Matrix of coefficients for decision variables,

linear programming description.
 

Submatrix of partitioned A .
 

Matrix of coefficients for 
b constants, linear
 
programming description.
 

Submatrix of partitioned D
 

Volume of water released from element
period t to satisfy demand for water.
i in time
 

Volume of water released as a demand, from element

j in time period h , 
that is in excess of the
 
volume required to saturate the soil.
 

A set for elemcnt i , the contents of which are
 
the indices, 
j , of those flows, Vt , which are
 
system outflows.
 
A set for element i , the contents of which are
the indices, j , of those flows, Qt , which are
 
system outflows.
 

System inflow at node 
i in time period t
 

A set for node 


indices, 
j , 
of those flows, 


the indices, i ,j ,of the contentsthose flows, of wV! 
hich are , which 

supply a node. 

A set for node i , the contents of which are the 
which receive
their supply from a node. 

t 


Measure of the volume of water lost.
 

Volume of water lost from a ditch sector 
i in
time period 
t as a function of the ditch sector
 
decision variables.
 

Volume of water lost from a reservoir i in time

period t 
as a function of the reservoir decision
 
variables.
 



Symbol 


L 


L
1 


M 


N 


P 


Q 


t
Q.
 

tm 


max 

mit 


Rt 

J. 


R!(Qh VhSkD)
Ss is kZ 


Zt h vh h
 
R 


t h
 

Ri(D. 


ARt( VhSh)

j j 

,R!(Dh

2 j 


S 


St 

1 
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NOTATION - (Continued)
 

Interpretation
 

Volume of water lost from an element i in time 

period t. 

Number of ditch sectors. 

Number of reservoirs. 

Number of nodes. 

Measure of the volume of water transported or 
stored by an element. 

Inflow to an element i in time period t 

Maximum capacity of element i in time period t .
 

Minimum capacity of element i in time period t .
 

Total volume of return flow to element i in time
 
period t
 

Volume of return flow to element i in time period
t as a function of the decision variables and
 

demands of the model.
 

Volume of return flow to element i in time period
 
t resulting from water delivery system losses.
 

Volume of return flow to element i in time period

t resulting from the release of excess water from
 

element j in time period h
 

Incremental volume of return flow to element i in
 
time period t due to conveyance or storage loss
 

from element j in time period h .
 

Incremental volume of return flow to element i in
 
time period t due to the release of excess water
 
from element j in time period h .
 

Measure of water stored in a reservoir.
 

Volume of water stored in reservoir i at the end
 
of time period t
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NOTATION - (Continued)
 

Sybol 

St 
,max 


St 
imin 

0S0 


Si 

T 


U 


1 


W 


!Slack 


Z 


a! 


aij 


bi 


b 


SVector 


S. 

cj 


cth 

ci 


c 


Interpretation
 

Maximum volume of water that can be stored in.
reservoir i at the end of time period 
t .
 

Minimum volume of water to be maintained in
 
reservoir i at the end of time period t .
 

Initial volume of water stored in reservoir i
 

Number of time periods in the model.
 

Number of reservoirs modeled with the node
 
definition.
 

Outflow from element i in time period t
 

Number of reservoirs modeled with the ditch sector
 
definition.
 

or surplus variable.
 

Objective function values (to be maximized or 
minimized). 

Weighting factor for: Q for ditch sectors,
 
°1
SS for reservoirs.
 

Coefficient in the A matrix, linear programming
 
description.
 

Constant in W , linear programming description. 

Weighting factor for: Vt for ditch sectors,
 

S! for reservoirs.
 
I 

of constants.
 

Subvector of S' created by partitioning of the D

matrix.
 

Constant in objective function, linear programming

description.
 

Fraction of water lost from element 
j in time
period 
h that returns to element i in time
 

period t. 

Vector of constants in objective function, linear
 
programming description.
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NOTATION - (Continued)
 

Symbol Interpretation
 

C. 	 Subvector of T created by partitioning of Aand D matrices.
 

d Fraction of excess water applied to crops, released
 
from element j in time period h , that returns
 
to all elements in the system in the remaining
 
(T-t+l) time periods.
 

dik Element of D matrix, linear programming description.
 

eh 	 Irrigation application efficiency for demand.
 
waters released from element 
 j in time period h
 

f(-) 
 Notation used for nonlinear objective function,
 
nonlinear programming description.
 

ftx 
1 

System loss from element i in time period t
 

g 
 Index for elements.
 

gi(-)  
 Notation used for 	nonlinear constraints, nonlinear
programming description.
 

th j
Fraction of excess water released from element 

gij 
 in time period h that returns to element 
 i in
 

time period t .
 

h Index for time periods.
 

i 
 Index for elements.
 

j Indux for elemaicts.
 

k 
 Index for elements.
 

I Index for elements.
 

m 
 Total number of constraints, nonlinear and linear
 
programming descriptions.
 

n 
 Total number of decision variables, nonlinear and
 

linear programming descriptions.
 

p 
 Number of unit lengths in a ditch sector.
 

t 
 Index for time periods, normally used for the
 
time period of interest.
 

it 
 Unit loss rate for ditch sector loss rate computa­
tion.
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Sybonterpretation 

Z M 

z- ( 

Xj 

Xk 

Decision variables, nonlinear and linear programming.,description. 

Decision variables, quote from Hadley on Bellman's 

x 

xi 

y 

th 

iJ 

principle of optimality. 

Vector of decision variables. 

Subvector of x , created by partitioning the A 
matrix. 
Reservoir water level, used in reservoir loss 

computation. 
Fraction of demand, D. that returns to element 
i in time period t .3 

Intercept on loss axis, where storago is zero,reservoir loss computation. 

Intercept on loss axis, where storage iszero,for loss function of reservoir i in time period
t. 

y 
tt 

ii 

thij 

Loss coefficient. 
Ls 

Loss coefficient fo element i in time period t 

Return flow coefficient for return flows to elementi in time period t due to losses from element j 
in time period h . 

e Used for phrase "iscontained in the set." 

6ij Kronecker delta. 

6t Kronecker delta. 


