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ABSTRACT
MAXIMUM WATER DELIVERY IN IRRIGATION

In order to increasé'the water delivery efficiency of an
existing irrigation system, it is proposed that modern mathematical
optimization techniques be applied to the management of irrigation
water delivery. A deterministic mathematical model is developed to
simulate the events that occur in delivering water, from a supply to
the users, in an interconnecting, open channel irrigation system that
contains reservoirs. The events considered are inflows, outflows,
losses, return flows, demands and storage. The simulation model is
developed so that it can be linked to nonlinear programming and
optimal resultz obtained.

Because of the difficulty in obtaining some of the functions
required for the nonlinear simulation model, linear approximations
are made and a linearized simulation model is derived. This model
is linked to linear programming so that optimal results can be
obtained. The suggested objective function is the minimization of
system losses and unrequired system outflows, a resource conservation
objective.

Two example models were constructed, using the linearized
simulation model, to illustrate model construction and solution,

The results of these solutions show the model adequately fulfills
the purpose for which it is intended. The model solutions also demon-
strate the effects of including future time periods in an analysis

and the effects of modifying a structure in a system,

iii



Because of a lack of data, many of the parameters for the example
models were estimated and no comparisons of the optimal strategies
_determined by the model and the strategies used in practice could be
made. The model, however, shows which data are necessary to provide

these comparisons and, further, those data that are necessary to apply

the model for a particular system.

James Henry Duke, Jr.
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado 80521
August 1971
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Chapter I

INTRODUCTION

Water for irrigation is important to the agricultural production
of many regions, including the Western United States. To supply the
necessary water, irrigation systems have been constructed by private
corporate, and governmental enterprises. Many of these systems,
although built before the turn of the century, are still able to
satisfy the needs for which they were designed. In the intervening
years, however, irrigation demands have increased to such an extent
that existing supplies of water are inadequate. This increase has
made it necessary for new sources of supply to be sought.

There are two methods by which new supplies may be obtained:
through the construction of new facilities, such as dams, for tapping
undeveloped supplies, and through the reclamation of water now being
wasted by existing facilities through evaporation, transpiration, and
percolation losses. The first alternative is rapidly becoming
unfeasible because of the lack of available supplies, the lack of
suitable locations that possess the necessary engineering requirements
for development, the desire to reserve sites for future development,
or simply, increased public opposition to the destruction of the natural
environment.

The alternative of reclaiming water is not independent of the
alternative of constructing new facilities since the reclamation of
wasted water will allow the preservation of both potential sites for
structures and the natural environment. The importance of such an

approach to water resources is exemplified in the statements by



Skinner in Pillsbury (1968), "...specified water saving measures should
precede development of new supplies....," and Rockwell (1968), "A
corollary to the search for more water is the more efficient utiliza-
tion to existing supplies."

There are several approaches that can be used to reclaim water
wasted from an irrigation system: existing facilities can be recon-
structed to lessen the losses, well fields can be constructed to
reclaim percolation losses, and system management techniques can be
improved to reduce the losses inherent in providing the required
services. In any case, the objective of these approaches is to lessen
the volume of water which is made unavailable for use while still
delivering the required volumes of water. To accomplish this objec-
tive, an increase in water delivery efficiency is required (U.S.B.R.
(1963), Bishop (1961)). The approaches available to make irrigation
water delivery more efficient are not independent, but must be examined
simultanecuusly.

Two of the approaches, the reconstruction and consolidatior of
existing facilities and the construction of well fields, require
justification that the measures are economically feasible, a source
of money to pay for the measures taken, and the approval of the system
users. In many irrigation systems which have been built and paid for,

the users are hesitant to take such measures.

Purpose of the Present Study

The purposes of this study are: (1) to derive a method for the
mathematical simulation of water delivery, from a source of supply to

the consumer, in a surface irrigation network, and (2) to couple the



derived simulation method with mathematical optimization techniques to
provide a tool for water managers to use for increasing water delivery
efficiency. By including efficiency as a criterion, it becomes

necessary to account for losses and return flows in the simulation.

Scope of the Study

The derivation of a mathematical model for the simulation of
irrigation water delivery for a particular systém requires that
mathematical statements be written not only for the structure which
compose the system, but also for the institutional constraints that
limit the operation of the system.

The model developed in this study is intended to be sufficiently
general that it can be applied to any system which fulfills the
assumptions made in the development. Thus, no institutional constraints
are considered; however, the model shows the conditions that require
the imposition ;f legal and administrative constraints.

In general, there are two classes of simulation models: the
planning model, which is concerned with meeting long-term objectives,
and the operational model, which is concerned with meeting short-term
objectives. The difference between the two is the time horizon of
the analysis.

The model presented here is an operational model, concerned with
making an existing irrigation water delivery system as efficient as
possible. A single irrigating season is considered as the time horizon.
No restriction is placed on the division of the season into increments,

only that the number of increments be finite.



An examination of the available literature indicates a majority
of the published works describing applications of mathematical pro-
gramming techniques to the analysis of water resource systems are
concerned with the design and operation of new systems, or the operation
of existing systems, with objectives of maximizing or minimizing some
economic criteria. References to many of these studies may be found
in the Bibliography.

The model developed here does not use economic criteria because
the inclusion of such criteria implies an economic policy, a type of
administrative constraint. Instead, the model is designed to incor-
porate physical criteria such as units of water lost, units of water
delivered, and so forth. Such an approach, for resource conservation,

is not in evidence in the literature.

Presentation of the Study

The study is presented in the following manner.

Chapter II is a brief review of the optimization techniquqs to be
used in the study. The purposes of this chapter are to acquaint the
reader, unfamiliar with optimization techniques, with both the termi-
nology of operations research and the formulation of optimization
problems. There is no discussion of solution methodology.

Chapter III is a detailed written description of the problem, the
assumptions made in formulating the model, definiiions of terms to be
used in deriving the model, the model itself, and what the model does.

Chapter IV shows the derivation of the simulation model. No
assumptions are made regarding the form of the functions that describe
the losses and return flows in the model, so the model is termed non-

linear.



In Chapter V, assumptions are made to allow the expresSion of
linear.functions to account for the losses and ie;urn flows. Theée are
substituted into the model of Chapter IV #nd,a linearized model is
obtained. |

Chapter VI presents an application of the linearized model to a
system that is representative of the type for which the model was
developed. Estimates of many of the coefficients are required because
few data are available. The latter half of the chapter discusses the
results of the examples and the practical applications of the model.

Chapter VII is a summary of the study and the conclusions drawn
from it.

Three appendices are included to assist in the understanding of
the model:

Appendix A relates the ﬁodeling technique used in the study to
the more standard "network" technidues found in the references on
operations research.

Appendix B provides a series of four example formulations of the
linear;zed model for a simple system. The examples consist of: a one
time period model that excludes return flows; a one time period model
thaf includes return flows; a two time period model that excludes return
flows, and a two time period modéi that includes‘return flows.

Appendix C is a discussion of points which ﬁay either improve the
applicability of the model or improve the usefulness of the model in
practical applications. The points considered in this section are

untested and must be reghrded as suggestions for future research.



Chapter II

MEVIMLLALIUN TEUVHNIQUED

Mathematical techniques used to maximize or minimize mathematical

functions are known as optimization techniques. There are several

classes of optimization techniques that lead directly to optimal
solutions, if certain conditions are satisfied. Three commonly used
techniques are linear programﬁing, nonlinear prsgramming and dynamic
programming. In this study only linear and nonlinear programming'
will be considered. _

This chapter is devoted to dgfihing common terminology of
programming methods and the prééentation'of formats for the expression -
of problems so that linear and nonlinear programhing téchﬂiques may be
used. There is little discussion of solution methodology."Procédures
for solving programming problems can bé found in standard references,

such as Hadley (1962,1964).

Concegts

Fbr both nonlinear and linear programming, the problen formulation
censists of writing a series of mathematical expressions describing
relationships among variables which characterize the iwportant features
of the process under examination. The variables are called decision
variables, and each of the expressions is called a constraint. The

entire series of expressions is called a constraint set. The constraint

set is a mathematical description of the process and the limitations on
the decision variables of the process. Solutions are normally performed

to obtain values for at least one of the decision variables.



In the formulation of a nonlinear or linear programming problem,
there is no required relation between the number of decisiqnvvariables
and the number of constraints in a constraint set. However, there
are normally more decision variables than constraints. Mathematically,
this implies the existence of more than one set of values for the
decision variables that will satisfy all of the constraints simultd-

neously. Each set of values is called a feasible solution to the

problem. Most problems have several feasible solutions.

The optimal solution is the best feasible solution. To obtain
the optimal solution to a problem, a measurement of the desirability
of each feasible solution must bc introduced. This is accomplished

through the use of a special funciion, called the objective function.

The objective function is used to rank the various feasible sOlutioﬁs
for comparison. The feasible solution that yields the maximum or
minimum value of the objective function, depending on the problem, is
defined as the optimal solution.

It is possible that there will exist either a single feasible
soluticn or no feasible solution to a problem. For those pfoblems
where there is only a unique feasible solution, it is therptimal
solution. However, it is optimal only because there are no competing
solutions.

If no feasible solution exists, there is no set of values for the.
decision variables that will satisfy all of the constraints simulta-
neously. In the methods for modeling irrigation systems, presented
in this study, there are certain conditions which will result in the
inability to obtain a feasible solution. The conditions and their

implications are discussed in Chapter III.



Nonlinear Programming Problem Formulation -

Any programming problem formulation consists of writing ;he
constraints that describe the process éndfwriting an objective
| function to mathematically express a desired policy as a ﬁaximization
or ﬁinimization Statement. - ﬁor nenlinear programming, there is no
restriétion on the functional nature of the constraints or the objec-
tive function.
Using the notation of Hadley (1964), a set of m constraints

that relate n decision variables is written as
gi(xl,...','xn){i.e 23, i=1,...,m, (2-1)

The xj, J =14...,n ", are the decision variables and the bi are
‘.constants. For a given constraint, only one of the signs {< = ,3} »
will be valid.

The objective function for nonlinear programming is written:
(maximize or minimize) 2z = f(xl,...,xn). (2-2)

An objective function measures only the relative desirability of
feasible solutions. Because constants have an equal effect on the
value of an objective function for all feasible solutions, they are

not included in the statement of an objective function.

Linear Programming Problem Formulation

Linear programming problem formulation is a special case of the
nonlinear formulation described above. Computation techniques, however,

may be quite different.



For linear programming, all constraints, as well as the objective
function, must be linear. The constraint set is generally written

(Hadley, 1964):

n
jil a5 xj{_<_, =,2b, i=1l,...m, (2-3)
and the objective function is written:
n
(maximize or minimize) 2= ¢.x., . (2-4)

In practice, all inequality constraints of a linear programming
problem are usually converted to equalities prior to solution. This is
done by including an additional variable of the proper sign in each

inequality. These variables are called slack variables if they con-

vert less-than-or-equal-to inequalities to equalities, anq surplus
variables if they convert greater-than-or-equal-to inequalities to
equalities. Slack and surplus variables are classified aﬁ aecision
variables and may, or may not, have physical significance.

With all constraints written as equalities, a linear programming

constraint set may be written as a matrix equation,

AX = b, (2-5)

in which the A matrix is composed of the aij coefficients, the

X vector consists of unknown decision variables, including the slack
and surplus variables, and b is a vector of constants. Should any of
the bi constants be linear combinations of the other elements in the

b vector, such as
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n

I a x.({<, = >} ; d,.b i=1,...,m, (2-6)
P T e R

equation (2-5) can be written
Ax = Db , 2-7)

in which D is a matrix relating the various elements of b . A
comparison of équations (2-5) and (2-6) shows that they are the same
if D is a unit matrix. This observation will prove useful in

analyzing the linearized model of this study.

Moreover, the elements of the matrix equation (2~6) and the

objective function, equation (2-5), written as
(maximize or minimize) Z =¢X (2-8)

can be partitioned into submatrices and subvectors. Equation (2-7),

then becomes

_ N : T
A1 A2 e Ml % Dy Dy« Dyg| | by
Ryy Axp v Appl %, Dy Doy o+ Doypf | By
. . . . . = . . . 0 . (2-9)
Ay Az ee- Apr| | ¥p Dry Dpp +-+ Dog| | By

and equation (2-8) becomes
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(maximize or m1n1miz¢) Z =] 1 62+ cT]

(2-10)

Xp

where T is the number of block submatrices in each row and column of
the A and B matrices, and the number of subvectors in the X and b
vectors. |

In this study, partitioning proves useful in illustrating some‘
of the features of the model developed. In addition, certain
specialized linear programming algorithms, called decomposition
algorithms, require a problem to have a particular partitioned form
as a necessary condition for the use of the algorithm. Although not
used in this study, decomposition algorithms could prove useful in

solving models, of the type developed, for large systems.

Solution of Programming Problems

Programming techniques are used to find the best solution to any
problem that has a number of alternative solutions. The constraint
set defines the limits within which a process may operate. If for-
mulated incorrectly, an incorrect solution results.

The objective function is the criteria by which the best solution
is selected. It is the heart of an optimization problem.

Although the concept of an objective function is easy to grasp,
the writing of an objective function for a particular problem may be

difficult because it is a mathematical statement of a desired policy.
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For complex problems, the writing of an objective function may require
extensive study to ensure that the policy implied in the mathematical
Statement is equivalent to the desired policy.

There are many algorithms for solving programming problems, all
of which are iterative. Descriptions of these algorithms can be found
in references on mathematical programming, such as Hadley (1962,1964).
The purpose of an algorithm is, of course, to obtain an optimal
solution. For efficiency, developed algorithms ensure that once a
feasible solution is found, all other feasible solutions examined by
the algorithm will be closer to the optimal solution. This requirement
reduces the number of iterations necessary to obtain the optimal

solution because all feasible solutions are not examined,
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Chapter III
THE PROBLEM AND THE MODEL

The Problem

An irrigation system has but one purpose: to transform the
temporal and spatial distributions of a naturally available supply of
water to the quantitative distributions required for crop production.
An irrigation system has two components: physical structures, such as
the conduits used to change the spatial distribution and the reservoirs
used to change the temporal distribution; and a management policy, which
governs the changes of distribution.

In the operation of an irrigation system, losses are incurred in
the delivery of water from the supply to the consumer. These losses
are due to evaporation, transpiration and infiltration from the
structures composing the system. Thus, for a given system, the volume
of water delivered is directly a function of the management policy
governing the delivery.

The magnitude of delivery losses in 22 selected irrigation systems
in the Western United States has been shown by Erie (1968). For the
study period, 1949-1960, the average water diversion was 5.16 acre-feet
per acre (ac-ft/ac), and the average farm delivery was 3.22 ac-ft/ac.
These figures yield an average water delivery efficiency, the ratio of
the average farm delivery to the average water diversion, of 62.4
percent.

Using the figures given by Erie (1968), an average delivery loss

of 1.94 ac-ft/ac over the 828,000 ac represented by the project examined,
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it is found that 1,610,000 ac-ft of water was lost by these systems.*
Were it possible to make these systems perfectly efficient (100%), the
reclaimed water would be sufficient to irrigate an additional 500,000

ac at the present average farm delivery of 3.22 ac-ft/ac. Conversely,
using the 1965 U.S. average municipal per capita water requirements of
157 gallons per capita per day (gpcpd),** increasing the irrigation water
delivery efficiency to 100 percent would yield sufficient municipal

water for 9,160,000 people, enough for a city with a population near

that of Tokyo.

The Water Resources Council study (1968), based on data from 1965,
found that of the 125,000,000 ac-ft of water delivered to irrigate
42,000,C00 ac in the United States, 25,000,000 ac-ft were lost because
of inefficient water delivery structures and practices, yielding a
water delivery efficiency of 80 percent. This national water delivery
efficiency (80%) is considerably better than that shown by Erie for
the western systems.

If, however, it were possible to increase the national irrigation
water delivery efficiency to 100 percent, the reclaimed water would
irrigate an additional 8,400,000 ac at the 1965 delivery rate, or
furnish water for an additional 142,200,000 people. Of course, it is
not possible to obtain perfect efficiency in the delivery of irrigation
water, but it is evident that an increase of only a few percent in the
national water delivery efficiency would result in the conservation of

sizeable quantities of water.

*Although not stated by Erie, it is presumed these are average annual
losses.

**From the Water Resources Council (1968).
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Reclamation of wasted water as an approach to water conservation
is not new. It was advocated by Bishop, in 1961:

“Along with the extensive use of water, irrigation
is probably a major source of waste of the valuable
water resource. This is due, in large measure, to
the inefficiency of existing canals and distribution
systems with their duplication and obsolescence."

And the U.S. Bureau of Reclamation, in 1963:

"Conservation of the nation's water supplies,
particularly in the western states, is becoming
increasingly important as the demand for this vital
quantity continues to increase and new sources of
supply become increasingly scarce. The time is
rapidly approaching when the only natural water
supplies available will be the salvage of those now
being lost through transpiration, evaporation, con-
sumptive waste, and inefficient storage and trans-
portation practices.” (emphasis added)

In recent years, there has been a great deal of reseach devoted
to methods of reclaiming water lost from irrigation systems. The
methods developed are generally concerned with the modification of the
structures in a system. The results of this research are best
summarized by the Water Resources Council (1968):

"Technical changes in irrigation development include
changes in water storage, conveyance and application
methods for the conservation of existing water supplies.
Experimental use of evaporation-retarding films on
reservoirs has been successful in reducing water losses.
Control of phreatophytes makes additional water avail-
able for irrigation use in some areas. Seepage losses
during conveyance have been reduced by lining irrigation
canals with concrete and other impervious materials."

The use of any of these methods to improve an existing system
requires that the improvements be proven economically feasible, that
a source of money be available to pay for them, and that the system's
users approve of them. Failure to meet any of these requirements

results in failure to improve the system. In many small systems,
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already built and paid for, the users are hesitant to improve a system,
even if the improvements are warranted and feasible.

An alternative to improving the structural efficiency of a system
is better management of the water in the system. The approach,
approximated in some systems, but never before described mathematically,
consists of routing the water from the supply to the consumer in such a
way that losses are minimized. Recent developments in mathematical
optimization techniques and high-speed digital computer technology have
made such a minimization procedure for improving the management of
existing systems possible.

There are two steps in applying mathematical optimization techniques
to irrigation water management. The first step is the derivation of a
suitable mathematical model to simulate the process of irrigation
water delivery, and the second step is the derivation of a mathematical
statement that represents the desired operating policy in terms of the
variables of the model.

The developments of this study are concerned with the first step,
the derivation of a simulation model that is sufficiently general to
be applied to any system that satisfies the conditions under which the
model is developed. To keep the model broadly applicable, institutional
constraints, such as legal, administrative and economic policies, are
not included. The simulation model, as developed, can be used for
analysis. The second step, a mathematical statement of the operating
policy, is only necessary when the model is used in conjunction with

programming techniques to determine an optimal water delivery strategy.



17

Model Description

The simulation model developed in this study is designed to be
used as a tool for the management of water delivery from the supplies
to the users, by a network of open-channel conveyance structures and
reservoirs. To obtain an optimal strategy for any given time period,
both the needs of the future and the influences of the past must be
taken into account. Thus, the model is a multiple time period model.

It is assumed in the discussion to follow that future delivery
strategies cannot influence the return flows of preceding time periods.
The converse is not, however, assumed to be true. Delivery strategies
for future time periods are assumed to be directly affected by return

flows resulting from previously selected delivery strategies.

Model Structure

The simulation model, for each time period, consists of a series
of mathematical statements that correctly describe an irrigation system:
the conveyance of water from one point to another within the system, the
storage of water within the system, the division or coalescence of flows
at junctions within the system, and the losses and gains incurred in
these actions.

Figure 1 is a diagram of the type of irrigation system considered
in the study. It reveals the system is composed of three elements:
reaches of open-channel conveyance structures, exemplified by the line
A-L, any of which may be a natural stream, such as the line A-B; junctions
of two or more conveyance structures, such as at points Y and P; and a

number of storage structure (reservoirs), exemplified by the triangle

L-M, which may be either "on-chamnnel" or "off-channel." Throughout
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the remaining text, these elements are referred to as ditch sectors,

nodes . and reservoirs. The. relationship of each element to the others

is shown in Figure 2.

Ditch
Sector
- Reservoir ‘
Ditch Sector Q Ditch Sector @ Node
— —
Flow l Ditech
—— Sector

Figure 2. Relation of Elements

In developing a model to be used for operational purposes, the
logical decision variables are the various ditch sector flows and
reservoir contents. These decision variables must be measured in
commensurable units. If the content of a reservoir is measured as
the number of acre-feet in storage at the end of each time period
and a ditch sector flow is measured as the volume of water released
to the ditch sector in each time period (acre-feet per time period),
then the requirement is satisfied. Ditch sector flows calculated in
this manner can easily be converted to more conventional units of
discharge such as cubic feet per second, or to sﬁch measures as headgate

openings, if the proper conversion factors are used.
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‘There are several events that can occur in each of the elémenté
of h‘system: inflows, outflows, storages, losses, return flows and
demands. For this study, these even‘s are defined as follows.

An inflow to an element is the volume of flowing surface water
that enters the element at the upstream end. For ditch sectors and
reservoirs, inflows are considered to be the headgate releases into
the structures, and for nodes, inflows are the excess flows leaving
the downstream ends of the ditch sectors and reservoirs. All inflows
are decision variables.

A system inflow is the volume of water, at a point, which is

available for delivery and storage by the elements of the system in
each time period. Point A, in Figure 1, is a system inflow point. Ail
system inflows are assumed to occur at nodes and be known, or estimable,
in quantitative time distribution.

The outflow from an element is defined to be the volume of
flowing surface water that leaves the element at its downstream end.
For ditch sectbrs, the outflow is generally the water remaining after
losses, return flows, and demands have occurred, which is a release
that cannot be directly controlled by an operator. Por reservoirs,
the outflow_is usually & controlled release. PFor nodes, the outflows
are the inflows to other elements of the system, the ditch sectors and
reservoirs. All outflows are decision variables.

A system outflow is the volume of water that leaves a system at

the downstream end of an element. Points K, O and S are the system
outflow points of Figure 1. There are two types of system outflows,

required and unrequired. Required system outflows are those flows

which the system is required to pass downstrqam to other systems.
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Unrequired system outflows are those flows released to downstream

systems because the system of interest lacks sufficient storage
capacity to retain them. Required éystem outflows are treated exactly
like demands and are assumed to be known, or estimable, in both quan-
tity and time distribution. Unrequired system outflows are unknown
and assumed to be decision variables.

A demand is another event that can occur in each of the elements.
It consists of a release of water from the system to a user in a
single time period. Demands are not decision variables, but are con- »'
sidered to be volumes of water specified by the system users, for each
time period, that must be delivered. This required delivery will
create difficulties under some conditions; consequently, some discussion
will be devoted to these difficulties later in this chapter.

Losses are those volumes of water removed from the system through
uncontrollable evaporation, transpiration and infiltration. All ditch
sectors and reservoirs in a system are assumed to have losses associated
with their operation.

There are two specific losses that are useful enough in the model
development to be specifically named, the seepage loss and the system
loss. Seepage loss is that portion of a loss due to infiltration.
System loss is the loss defined above, exclusive of those portions of the
seepage loss that reappear in the system as return flows. The definition
and use of system losses is superior to the use of losses, as defined
above, in that it recognizes the importance of return flows to an irri-
gation system as water in temporary storage. An element thut appears to
experience extremely high losses may not, in reality, have a high system

loss rate because a majority of its losses reappear as return flows.,
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ggsézg_giéﬁg_are uncontrolled gains ‘in aitch'ééctor flows or
reservoir éfbrage volumes. Return flows are principally the reéultubf’
a higﬁ éfoundwater téble, a condition that can be caused by a great;many
factors. These causes and their effects on the simulation model will
be discussed in the next chapter.

Storage is water reserved in certain locations within the system
during periods of surpius system inflow to be reioased fpr uée by the
system du:inﬁ periods of deficient system inflow. Storage is considered
to belcontrollable and occurs principally in reservoirs for a surface

’

water irrigation network.

Model Construction
| To use a mathematical model for duplicating the events that occur

in an irrigation water‘delivery system, an accounting procedure must be
used'to keep track of the volumes of water available in the various
portions of the system. Furthermore, a reduirement must be specified
that the water be delivered down fhe ditch sector from which it is to
be taken. The method for simulation, developed in this study, contains
these twb features. :

iﬁe tontinuity equation, which states that the change of mass in
storage is equal to the difference between the mass entering an element
and the mass leaving an element, is used to relate the quantities
of water involved in the verious ‘events for each element of a system.
The resulting relations are called mass balances.

Mass balances will be derived for the ditch sectors, reservoirs
and nodes. However, there are certain assumptions, contained in the

derivation of each mass balance, that must be examined.
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A ditch sector mass balance is a mathematical abstraction of the

events that occur in a ditch sector. These events are inflows, outflows,
losses, return flows and demands. Changes in channel storage resulting
from changes in flow between time periods are assumed to be negligible.

A reservoir mass balance is a mathematical abstraction of the

events that occur in a reservoir. These events are inflows, outflows,
losses, return flows, demands and storage.

A nodal mass balance is a mathematical abstraction of the events

that occur at a node. These events are assumed to be only inflows
and outflows. Losses, return flows, demands and storages are assumed
not to occur. Physically, a node is the intersecting space of two or
more ditches. This space is considered to be so small that storage,
losses and return flows are negligible. °
Demands are not considered to occur at the nodes'for different
reasons. If the demands for the various ditch sectors were satisfied
at the nodes, there could exist alternate routes for their delivery.
Because most demands are distributed along the ditch sectors, the
modeling equations must require that the water be delivered along the
proper ditch sector; this condition is not assured if the demands are
included in the equations describing the relationships 't the nodes.
Most man-made structures are limited in their capacity to
transmit or store a quantity of water, and these restrictions must also
be included in the simulation. The net result is a decrease in the
number of feasible solutions, or strategies, for the delivery of the
water. In the model deﬁeloped, all structures are assumed to have both

a minimum capacity restriction, at least zero, and a maximum capacity
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restriction. - However, the expression of all of these restrictions may
not be required.

In irrigation systems, all man-made ditches normally have maximum
capacities that must be specified in the model. The minimum volume of
water any element must transport or store is generally that volume of
water that must be delivered by the element to the users. However, if
a ditch sector is a natural stream, there is usually no maximum capacity
restriction, but minimum capacity restrictions still exist.

Reservoirs are always subject to restrictions on maximum capacities
which must be reflected in the model. Minimum capacity restrictions
may be necessary in some cases, notably to maintain water levels for
recreation or fish and wildlife conservation. In addition, under
certain conditions the judicious use of minimum capacity restrictions

can assist in the solution of the model.

Model Solution

As in a real system, there are innumerable feasible solutions
to the simulation model. Given particular sets of solutions, the
simulation model can be used for the analysis of certain problenms,
such as the legal problems described by Hartman and Seastone (1970)
concerning the changing of points of diversion in Colcrado.

The strength of the model, however, lies in its use with
Programming techniques for deriving an optimal strategy for the
delivery of irrigation water to systems users. To derive an optimal
strategy, an objective function must be introduced. Being a mathe-
matical equation which represents a policy, it must be examined

closely to ensure that it coincides with the desired policy.
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In this study, only one objective function is used: to minimize
the system losses and unrequired system outflows conjunctively. This
function implies that a maximum volume of water be retained in the
system. It is a conjunctive surface water - groundwater use policy,
with emphasis on using surface transportation facilities to deliver
the water. Other objective functions and policies can be defined, but
for this study only one is used,

When the simulation model is used in conjunction with optimization
techniques, the model becomes the constraint set. The individual mass
balances and capacity restrictions are the constraints, and the ditch
sector flows and reservoir storage values are the decision variables.

Multiple time period models are formulated as a series of a
single time period models. However, complications are created by the
return flows which reflect the influence of earlier delivery strategies
on later time period delivery strategies. These complications will be
further discussed in Chapters IV and V. .

There are three conditions where no feasible solution to this
optimization problem will exist. They are: (1) if the system supply
is inadequate to meet the system demands; (2) if the demand for water
from a single element is greater than the volume of water which that
element can supply; and (3) if a system is simulated which has no
outlet for unrequired system outflow, and the system supply is greater
than the volume of water the system can store and use. Each of these
problems exists in systems operations, and each has been solved in
various ways.

The first is solved by legal restrictions that reduce the demand

during the periods of deficient supply. The second is most generally



26

solved by hdmlnistrative restrictions which reduce the demand to that
which the element can supply. The final problem can be solved by
making the system inflow a decision variable to be calculated by the
optimization procedure.

With the elucidation of these basic considerations, the model will
now be derived and further discussed. The model, as first developed in
Chapter IV, is nonlinear, with its application limited at the present
time. In Chapter V, assumptions will be made to linearize the model,

thus providing for more immediate usage.
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Chapter IV
DEVELOPMENT OF THE MODEL

System Description

Any irrigation system can be described using distinct elements:
ditch sectors, nodes and reservoirs. The level of description is the
extent to which a system is described by these elements. This extent
directly affects the accuracy of the results.

The most detailed description involves subdividing the system
at each diversion point or headgate. A ditch sector is defined as
the reach beginning just below one diversion point and extending to
just beyond the nex: downstream diversion point. To preserve reality
in the model, nodes are required to connect the various ditch sectors.

The advantage of such a detailed description is accuracy. The
disadvantage is the immense size of the problem (numbers of equations
and variables) generated for systems with large numbers of diversion
points.

The least detailed description is an aggregation of all demands
along a ditch into a single demand to be satisfied from the supply
stream (see Figufe 1), disallowing any interditch transfers. This
minimizes the problem size and allows extremely large systems to be
modeled. But this problem has only one solution at most, and is of
no interest in this study.

Until efficient solution algorithms are developed that can handle
a multitude of equations and variables, a level of description between
the two listed above is suggested. This intermediate level of
description consists of selecting the major ditches in the system and

defining the node points as the junctions between them. Ditch sectors
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become those reaches of the major ditches between the node points.

The individual demands, normally distributed along each of the ditch
sectors, are aggregated to a single demand which is assumed to be
delivered at the downstream end of each ditch sector, just upstream of
the node. This is the least refined level of description that can be
performed and still retain the alternate routing, or programming
aspects of the model. It is this intermediate level of description
tiat will be used in the models of a representative system in Chapter
VI.

If, however, the exact ditch sector loss function is used in
conjunction with the intermediate level of description, the losses
from a ditch sector will be overestimated. This is because the demand
water is assumed to travel through the entire sector, instead of
being diverted all aloug it, This sacrifice in accuracy can be
partially corrected either by adjusting the exact loss rate or by using
additional nodes on long ditch sectors. Additional nodes result in

an increased level of description.

Development of the Model

Developing the model consists of the derivation of equations to
represent the ditch sectors, nodes and reservoirs and their concomitant
capacity restrictions. To use the model with programming techniques,
an objective function that expresses the operating policy must be
derived,

In developing the model, it will be assumed that the system being
simulated will be composed of M ditch sectors, P nodes, N reser-

voirs (of which U are modeled using the node definition and W are
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modeled using the ditch sector definition), and that an irrigation

_ seasou consists of T time periods. At times, four indices will be
required to properly express the space and time relations of the
variables. It is imperative that the meaning of these indices be
clear,

Two indices, i and j , will be used to express the spatial
relations. The index i will always be used to denote an element of
interest: a node, reservoir or ditch sector. The index j will
always be used to represent those other elements which affect the element
of interest, directly or indirectly. Both of these indices will be
used as subscripts. |

The remaining two indices, h and t , will be used to express
the temporal relations. The index t will be always used to denote
a time period of interest within the irfigating.season. The index h
will be used to represent preceding time periods which affect the time

period of interest. Both of these indices will be used as superscripts.

Ditch Sector Mass Balance

Figure 3 schematically describes a typical ditch sector, i . In
this ditch sector there are two inputs and three separate outputs. For
a particular time period t , the inputs to a ditch sector are the
volume of water entering the sector at the headgate, Q; , and the
return flow volume, RI . In the same time period, the outputs are
the losses, L; , the demand, Dg » and the outflow, V: . It is
assumed that the return flows are not subject to losses in the sector,
but occur in such a manner that they are available for diversion from

the sector.
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Figure 3. Schematic Representation of a Typical Ditch Sector, i .

From the continuity equation, written

Input = Output + Storage,

for a ditch sector,

t_t.vt.pt

t
Q + Ry =Ly +V;+Dy

or

t .t ot t_ .t
Q - Ly +R -V =D

(4-1)

(4-2)

(4-3)

The subscript i denotes the ditch sector of interest, i = 1,...,m

and the superscript t denotes the time period of interest,

t=1,...,T . Equation (4-3) is an effective description of a ditch

sector and is called the ditch sector mass balance.

For those ditch sector outflows VI that leave the system, the

requiréd7system outflows are assumed to be included in the demand Dz

Thus, the variable V; becomes the unrequired system outflow.
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Nodal Mass Balance

Figure 4 schematically describes a typical node. A node has one
or more inflows, designated by the V's , and one or more outflows
designated by the Q's . The reversal in the naming of the variables
is needed because all inputs to the nodes are the outflows from ditch
sectors and reservoirs and all outputs from the nodes are the inflows
of the ditch sectors and reservoirs. Furthermore, the indices on the
variables V and Q are derived from the jndexing of the ditch sec-
tors and reservoirs, and it is essentially impessible to make these
indices consecutive. For this reason, let two sets, Ji and K1
be defined. The first set, Ji , is composed of the indices of those
variables V which supply a node, i . The other, K1 » 1s composed
of those variables (Q that are supplied with water from a node, i .

For example, the node illustrated in Figure 4 has the sets
Ji = {1, 4, 6} and Ki = {3} .

Va4
v Ve
Nodei Q'

Figure 4. Schematic Representation of a Typical Node, i .

Using these definition-~, the variables for a node i are related

by the continuity equation as follows:

DoVi-o® Q§ =0, (4-4)
jeJ1 jeKi
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for i=1,...,P and t=1,,..,T. The symbol ¢ is standard set
notation for the phrase "is contained in the set." The simplicity of
this expression is due to the assumptions that storage, demands, losses
and return flows do not occur at a node.

For a node that is a system inflow point, the nodal mass balance
becomes

t
£ Q t -
jeKi j = Ii (4-4a)

where the set Ji is empty and I; is the volume of flow available

as a system inflow at node i in time period ¢t .

Reservoir Mass Balance

There are two methods for modeling a reservoir: as a node in
which losses, return flows, demands and storage are considered, and as
a ditch sector in which storage is considered. The node method will be
examined first, becaﬁse the ditch sector method is derived from the node
method.

Figure 5 is a schematic representation of a typical reservoir for
which the node definition should be used. In this figure there are
four inputs to and four outputs from the reservoir, although these
numbers will vary as with a node. Because of this, the sets Ji and
Ki , used for expressing the nodal mass balance, must be used here as

well,
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Figure 5. Schematic Representation of a Typical Reservoir, i , Node
Definition.

Three of the inputs, v

Qg , DI and LI are previously defined in the derivations of the

t-1
i

1 V; and R; and three of the outputs,

nodal and ditch sector mass balances. The additional variables S

and S; are the volumes of water in storage at the ends of time periods

(t-1) and t , respectively. Justification for considering Sz-l an
input and S; an output requires that the problem be visualized in
terms of the time domain. For any reservoir the volume of water in
storage at the end of one time period automatically becomes a source of

water for the next time period. Thus, Sz'l

is an input for time
period t . Similarly, S; is an input to time period (t+1) .
Because continuity must be preserved in time, as well as space, S; is
also an output from time period t .

From the continuity equation, after rearranging,

poviesttontanrtostoz et (4-5)
je_Ji jeKi J 1

for i=1,...,U and t=1,...,T , in which the V; are the inflows

to the reservoir from the ditch sectors, j ¢ Ji , the QI are the
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qﬁtflows‘from the reservoir to the ditch sectors, k e L Equatioh
(4;53 is defined to be the reservoir mass balance using the node
definition.

" To derive the reservoir mass balance for the ditch sector
definition from the node definition, it must be assumed that only a
single ditch sector supplies a reservoir, that only a single ditch
sector receives its supply from a reservoir, and that neither of these

ditch sactors have losses or return flows. Figure 6 illustrates this

relation.
t t t t t t
Ql Vj Vj Qj+| Qi*l Y_j:.[
Reservior i

Figure 6. Relation Between the Two Reservoir Definitions.

The mass balances for the two ditch sectors shown in Figure 6 are

t
and
t t _ .t
Q5+1 B VJ‘+1 " Dj+1 . (4-6a)

For the reservoir shown in Figure 6, the mass balance, using the node

definition, is

t, ot-1 t ot ot t .t
Vi+ S - Ly +R/ -8 - Q,; =05, (4-7)
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in which Ji = (j} and Ki = {j+l} . Substituting for Q;+l and V;

in equation (4-7), froﬁ equations (4-65) and (4-6) yields

t

Qt sttt arb st oyt opt. :

t t t t t 't
| S T T £ S Dj+l

+ D . (4-8)

Recognizing that the. sum of the demands is gn aggregated demand,

t
j

relabeling it to be D; and redefining the indices of Q; and V

to correspond with the index denoting the reservoir, yields

t

-t e rb ot oyt
1 1 1

ot ‘ )
-V; =D, , (4-9)

t t-1
Q. + 8, i

1 1

for i=1,...,W and t =1,...,T . This equation is defined to be
the reservoir mass balance, using the ditch sector definition. Figﬁre
7 is a schematic representation of a reservoir modeled according to
the ditch sector definition.

The difference between a reservoir of the node definition and a
reservoir of the ditch sector definition lies in the number of inflows
to, and outflows from, the reservoir. The choice of the proper defini-
tion, for any particular reservoir, will help to minimize the problem
size,

It is recommended that the ditch sector definition be used only
if a reservoir has a single inflow and a single outflqw, and that the
node defirition be used for all other cases. In Chapter VI, a represen-
tative system is modeled consistently using the ditch sector definition
- for all reservoirs. The fact that a larger problem size results is

. illustrﬁted.
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Figure 7. Schematic Representation of a Typ1ca1 Reservoir, i , Ditch
Sector Definition. N

’Capaéity Restrictions

Capacity restrictions are expressed as inequalities and reflect
the upper and lower limits of the values a decision variable can
assume. For ditch sectors, the maximum and minimum capacity restric-

tions are expressed as

t

Q + R - LY <qf (4-10)
max :
and
t. ot . t_ .t A
Q; + R’ - L >Q . (4-11)
i i iin .
respectively, where Q; is the maximum capacity of the secto: and
max
Q; is the minimum capacity. Minimum capacity constraints for
min

ditch sectors are seldom necessary unless to ensure that a variable
re.nains greater than or equal to zero.
Reservoir maximum and minimum capacity restrictions are

expressed:

S+ R; - L , (4-12)
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and
t t t t
S; +R, - LS >8; (4-13)
1 1 1 lmin _

Model Composition

Once the ditch sector mass balance, equation (4-3), the nodal
mass balance, equation (4-4), the reservoir mass balances, equations
(4-5) and (4-9), and the capacity constraints, equations (4-10), (4-11),
(4-12) and (4-13), are defined it is possible to construct a simulation
model foi an irrigation system. The procedure consists of describing
the system using ditch sectors, nodes and reservoirs and correctly
writing the mass balances and capacity restrictions for each element.

With M ditch sectors, N reservoirs, and P nodes, the model
will consist of M ditch sector mass balances, N reservoir mass
balances, P nodal mass balances, (M+N) maximum capacity restrictions
and as few as zero, or as many as (M+N) , minimum capacity restric-
tions for each time period. For a single time period then, the total
number of equations and inequalities in the model will lie between
(M +2N+P) and (3M+ 3N+ P), For T time periods the total number
of equations and inequalities in the model will lie between
T(2M + 2N + P) and T(3M + 3N + P),

When used in conjunction with mathematical programming techniques,
the model becomes the constraint set. Therefore, for T time periods,
the programming model will be composed of between T(2M + 2N + P} and
T(3M + 3N + P) constraints.,

Furthermore, for each time period, the model contains two decision

variables, Q; and Vz » for cach ditch sector mass balance, one
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decision variable, SI , for each reservoir miss balance that uses the
node definition, three decision variables, QI R V; and S; , for
each reservoir mass balance that uses the ditch sector definition,

one slack variable for each maximum capacity constraint and one surplus
variable for each minimum capacity constraint. From these guidelines
on the decision variables and constraints, problem size can be calcu-
lated while the system is being described in terms of its elements so

that the model wil! be within the space limitations of the computer

routine to be used for solution.

Losses and Return Flows

To calculate the loss and return flow voiumes required for the
ditch sector and reservoir mass balances, loss and return flow functions
must be derived. The expression of the loss and return flow functions
for a given element in a system requires consideration of the environ-
ment of the element, those factors that cannot be controlled by the
manager of a system, and the past and present states of the element
and all other elements of the system, those factors that can be con-
trolled by the system manager. Furthermore, for the model to be

completed, the loss and return flow functions must be expressed in

t

terms of the decision variables Q; s Vi

and st .
i
The rates of evaporation, transpiration, and seepage control the
rate of water loss from a ditch sector or reservoir. In turn, each of
these rates is controlled by such environmental factors as wind speed
and direction, air and water temperatures, radiation, vegetation den-

sity, soil types and permeability, etc. The detailed relation of

these factors to the loss rates is not considered in this study,
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although including them would create a more accurate model. Instead,
the effect of the past and present states of the system on the loss
and return flow functions are considered.

In deriving the ditch sector and reservoir mass balances, it was
assumed that a volume of water was lost from an element i in time
period t . For evaporation the volume of water lost is the product of
the evaporation rate per unit area, for the time period, and the water
surface area exposed to the atmosphere. For transpiration the volume
of water lost is the product of the transpiration rate per unit area,
for the time period, and the area of vegetation. For seepage the volume
of water lost is the product of the seepage loss rate per unit area,
for the time period, and the area of the interface of the water and
the structure containing it. Additionally, the seepage loss rate may
change according to the depth of water in the structure.

If it is assumed that single valued functions can be defined to
relate the various areas and depths to the volume of water a structure
transmits or stores, then the losses can be related to the decision

variables. Functionally this is denoted as

t t t
Li = L(Qi’ Vi) (4-14)

for ditch sectors and

t t-1 .t
L, = L(Si » §5) (4-15)
for reservoirs.
Return flows were defined earlier as being the result of a high

groundwater table. A high groundwater table in the vicinity of the
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system is a function of such environmental factors as the areal extent
and hydraulic properties of the aquifer, precipitation, vegevation
above the aquifer, the extent and number of wells that remove water
from the aquifer, etc. Again, the inclusion of each of these factors
creates a more accurate model, but they are not of interest in this
study.

Return flows that are of interest are those that have as their
sources the seepage losses from the various ditch sectors and reser-
voirs. In addition, water that is released from the system to satisfy
a demand but that is in excess of the crops requirement can return to
the system. These excess waters are of interest because they are
major contributors to the return flows,

Functionally, then, a return flow volume may be denoted for a

time period t by

Rt

t h h h
R MO (4-16)

j?
for j=1,...,M , k=1,,,..,N,h=1,,..,t and 2 =1,,..,M¢N .
There are two exceptions to this statement: i # j for h =1t for
ditch sectors and i # k for h =t for reservoirs. These exceptions
are because a return flow to an element in a given time period, due to
a loss from the same element in the same time period, is simply a
reduced loss. Equation (4-16) however, does allow a return flow to the
same element from which a loss occurred if the return flow occurs in

a later time period.

Final Mass Balance Expressions

By substituting equations (4-14) and (4-16) into equation (4-3)

the final ditch sector mass balance can be defined as
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t t t teoh Jh ch hy ot ot 4-17
Q - L(Q;, V)) + Ri(Qj, vj, Sy» D) - Vi =Dy (4-17)
for iﬂl’coo’M’ j=1’...’M’ k=1’.ou’N’ t=1’o-.’T’
h =2 1,-..’t ’ 2 = 1’0-.,M+N and i #j for h = t . SUb'
stituting equations (4-15) and (4-16) into equations (4-5) and (4-9)

yields the reservoir mass balance using the node definition

t . t-l t-1 oty . ot h h h
g:J viesi oLy, s+ RiCa, v?, sh, of)
i
-st. ¢ t=nt (4-18)
1 gekK, g .

1

for i =1,...,U , and the reservoir mass balance usir.z the ditch sector
definition,

t, ot-l ., ot-1 .t t qh h -h t _yt_pt

Q *+ 5y " - LG5 7y 85+ Ry(Qy, V?' Sg> Dg) -85 - Vy =Dy

(4-19)

for i =1,...,¥ . In both equations, j=1,...,M, k=1,...,,N,
t=1’oon.T’ h=1’u.o.t I 2=1’000,M+N a‘ld k#i for h=t .

The nodal mass balance equation (4-4) is unchanged.

Objective Function

The objective function for this study is to minimize the system
losses and unrequired system outflow conjunctively. At present, no
mathematical statement of the function can be made because no approxi-
mations are assumed for the loss and return flow functions. However,
in the next chapter, approximations are assumed for the loss and return

flow functions and an objective function is written.
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Chapter V
LINEARIZATION OF THE MODEL

The model, presented in Chapter IV, is a programming model in
which the decision variables are the various ditch sector flows and the
volumes of water in each of the reservoirs at the end of each time
period. No assumptions were made regarding the relation of the deci-
sion variables to the loss and return flow functions.

In this chapter linear relations are assumed as approximations
of the loss and return flow functions and these relations are
substituted into the ditch sector and reservoir mass balances to
obtain linear mass balance equations. Through this procedure linear
programming can be used for optimization of the objective function;
an advantage since linear programming routines are more commonly
available than nonlinear programming routines.

In developing the linear approximations, it will be assumed that
the ditch sectors and reservoirs are to be indexed consecutively with
the indices i =1,...,M denoting the ditch sectors and

i = M+1,...,M*N denoting the reservoirs. This notation simplifies

the expressions to be developed.

Linear Loss Functions

A linear loss function may be expressed as follows

L =vyQ (s-1)

in which Q is a measure of the water transported, or stored, by an

element and y is a loss rate constant. To use this function,

suitable expressions must be fcund for the Yy and Q.
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Por ditch sectors, one equation for the calculation of y that

has been used in practice is
Yy=u g a - u)i'1 (5-2)
i=1

In the equation, u is defined to be a loss rate per unit length of
ditch (such as per mile), or a unit loss rate, and p is the number of
unit lengths in the ditch sector, such as the number of miles. Equation
(5-2) is nonlinear with respect to distance. However, this presents
no difficulty since y is assumed to be a constant for any particular
ditch sector, and linear programming only requires linearity with
respect to the decision variables, represented by the Q of equation
(5-1).

The measure of Q for ditch sectors is defined in this study to
be a weighted average of the inflow to a ditch sector i in time

t

period t , Qi , and the outflow from the same ditch sector in the

same time period, V; » OT
t.t t,,t
Q= aiQi + bivi ’ (5-3)

t

for i =1,...,M, in which a; and b; are weighting factors

defined such that

t t :
a; +b/=1. (5-4)

Substituting equation (5-3) into (5-1) yields the linear loss

function for a ditch sector:

= aty:IQt + b?y??VF (5-5)

t t
L(Qi’ Vi) i i i'ii'i
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for i =1,,..,,M . The meaning of L(Q;, VI) was defined previously
as the volume of water lost from ditch sector i in time period t .
The constant y;; is a loss rate with respect to the volume of water
transported by ditch sectaor i in time period t and is calculated

using equation (5-2). The double subscript and superscript notation

is used in this study to decrease the bulkiness of the expressions to
be developed later. In standard mathematical notation, the meaning

tt |
of Yy 1S

tt
Yii ® 815%he (5-5a)

where Gij =1 if i=j, 6..=20 if i#3j, Ght =1 if h=t

1)
and Ght #0 if h#¢t.
For reservoirs, the losses will be represented by equation (5-1)

in the form
L=yS+ B (5-6)

in which y is a constant, S is an appropriate value of storage,
and B is the intercept on the L-axis where S =0 . Figure 8

illustrates this equation.

S

Figure 8. Relation of Reservoir Loss to Reservoir Volume.
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Following the procedure used for deriving the ditch sector loss
function, let S be determined as a weighted average of the initial and

final volumes of water in storage in reservoir i in the time period

t:
tot-1 tot
§=a8" " + b;S; (5-7)
for i = M+N,...,M#N , in which a; and b; are weighting factors
such that a; + b; =1 . CSubstituting this function into equation

(5-6) yields the reservoir loss function,

L(SF-I,St) . ttst-l + bt ttot t

i 5§) = a;vyyS; S+ 8 (5-8)

i%ii% ¢ P4
for i = M«N,...,M+N . This function is valid for both the node
and ditch sector definitions of a reservoir.

The assumption of a linear loss function for a reservoir appears
to be a gross approximation, but two points must be recalled. First,
the losses are related to the volume of water in storage, rather than
to the surface ar®a or water depth as is usual. Second, any curvi-
linear function may be assumed to be composed of a series of linear
segments, as exhibited in Figure 9. Through the judicious use of
constraints and iterative linear programming, it is possible to insert
a series of linear segments to solve a nonlinear problem. Using
iterative linear programming allows closer approximations of reality,
but it also increases the computational effort.

With these functions, equations (5-5) and (5-8), now defined,
their substitution into equations (4-17), (4-18) and (4-19) only

partially linearizes the ditch sector and reservoir mass balances. The
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linear return flow function, which completes linearization, remains

to be defined.

S

Figure 9. Linear Approximation of Nonlinear Function,

Linear Return Flow Functions

Return flows, as discussed in Chapter IV are a function of both
environmental factors and system variables. In linearizing the return
flow function, only those return flows created by the system operation
will be considered. This is tantamount to assuming that the volume of
water in underground storage, which can become available for return
flows, is solely derived from the losses of the surface delivery
system and the application of excess water to crops. Furthermore,
return flows are not the result of a loss in a single time period, but
are an accumulation which reflects the losses during all time periods
preceeding, and including, the one of interest. This situation must
be recognized in the equation derivation.

The total volume of return flow that results from the losses of
any element, or from excess volumes of water released from an element

to satisfy demands, can be, at most, equal to the original volumes
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lost or released. Generally the return flow volume is less than the
original volumes lost or released because portions of those original
volumes are consumed by evaporation, transpiration and deep percolation
and are not available for return to the system. These considerations
define a theoretical limit on the volume of return flow that a system

can produce and this limit can be mathematically stated as

t MsN t M+N
: ¢ REQVELSE DM < 2 oz vy o+ Ltlsh 0y .
A B L e M A M i %50

(5-9)

For clarity it is advantageous to separately derive the equations
that describe the return flow due to losses from the delivery system
and the return flows due to the application of excess water. After
deriving these equations, the results will be combined to yield the
linearized return flow functions.

Pirst consider the return flows due to losses from the water
delivery system. The water delivery system is composed of two elements
that experience losses, ditch sectors and reservoirs. If it is assumed
that some fraction, c;? » of the original loss from any element j in
time period h returns to a particular element i in time period t ,
then an incremental return flow relating the loss from one element and
the return flow of another can be defined. The incrementél return flow,

ARF(Q@,V@) ,» to any element that results from ditch sector losses is
1737

t, h _ th,,.h
AHC .V‘J?) = cihu] .v'j‘) (5-10)
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for-i' -‘I’C:t.’M"N’ j“ 1,0."0.“ :’ ts= 1,--5,1‘ ’,'h = l.ti'i,t" wd i “ j
if h'mt ., The incremental ‘return flow, ARj(Sj) » to any .element that

results from Teservoir losses is

N ,
thy gh- j ,85) (5-10a)

|

arE (st
1(55) = ¢4
for i s 1,.-¢M+N » j a M"’l’...,M"'N » t = l’coc’T » h = l,oot.t

and ifj if h=t.

The total return flow to an element i in time period t , due to
losses from all elements of the water delivery system, is the sum of
the incremental return flows over all elements of the system that
have'experienced a loss in all time periods prior to, and including,
the time period of interest. Mathematically this can be stated as

: t-1 M+N M+N
R;(Ql-'.V'.'.S;') = I z ARY (Q vh) + ¢ AR (s )|+ £ art (Qj
1) h=1] j=1 j=M+1 1 5e1

i#j

M
+ 1 MREshH
j=M+1 17
i#)

)

(5-11)
for i=1,...,MN and t=1,...,T . The substitution of equations

(5-10) and (5-10a), for the incremental return flows, into equation
(5-11) yields

t-1 M M+N

t.-h Vh h h ,h th, ;.h-1 _h
R. S z L V) ¢+ T ¢, L(S 25,

HOR AR ng e;3 QY3 Rt 3)

Mo, M+N
tt t ,t tt t-1 .t
+ L c,.L(Q.,V.) + £ L(S; S. -

Rt Q5,Y3) Ty S35 (5-12)
i#] i#3

for i=1,...,MtN and t=1,..,,T
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h 1 h)

Further substitut1on for the loss functions L(Qj Vh) L( j

L(Q j'vj) and L(S Sj) from equations (5-5) and (5-8) yields two

expressions, one fbr ditch sectors and one for reserVo1rs. WO

I
expressions are necessary because of the exceptions thdt state that
no element may have a return flow in any time period which is due to

its own loss in the same time period. For ditch sectors,

t-1
toh yhsh h.th hhoh |\ h th hhoh
., V.S, z 2 a.c.
4V55y) = k) R R EL L R T A
M+N
+ 3z (abc?bybbsb'l + bhc?bybbsh + cthsh)
jeMep J 1373377 374373373 135
Moot Sttt L Lttt ttt
+ I (a.c ..Q. + bl vy, V.
jo1 (8501575595 * P5C15755Y5)
i#j '
M+N
+ I (at tt ttSt -1 b?c??y??s? + cttBt) ,
jeMsp 3 15 ¥33% 371373355 0 i35

(5-13)

for i=1,...M, and t=1,...,T . For reservoirs

t-1
55| T cabethingh , gheth thyhy

RIS R RES A E I BARS RES AF IS

Ry (Q

M+N

h,th hhh-1 ,  h th hhch . th h
+ I a, S. ~ + b.c, S, + c.,.B,
j=M+1( 31375375 3%3735%5 * 13852
M t tt tt.t t tt _tt, t
+ I (a; +b/c V.
= £, %5753 * PitiyYs; 9
M+N
t tt ttst-1 t tt_tt.t tt,t
+ .S, + b/c/.v..S, + ¢c..B)) ,
soer 35137355 i%3"55% * %1385
itj

(5-14)
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for is= M+1....,M+N and t=1,...,T. These equations relate'

. return flows in a system to. the losses due to water delivery in terms

.- of the decision variables of the problem,

At this point, two definitions are made to reduce the bulkiness

‘of equations (5-13) and (5f14) In both of the equations, the products

of the consténts thy?h and :;y;; are replaced by the constants yt?

and y » respectively.

J
That is,
th th hh
ij = ®43755 (5-15)
and
tt tt tt
Y ljyjj (5'16)

Inserting these definitions into equations (5-13) and (5-14) yields

t-1
HORWEIRRE [ L (aving +

helf j=1 137
M+N
thch-1 _ . h th
+ I b Sh
j=M+1(a?Y13 AR AHE R B ]
M

t.tt.t .ttt t
+ I + by, .V
j=1 (aJYlJQJ j ij j)

i#j
M+N
t tt t 1 tt t tt t
+ I a. + b. .S, 5-17
j;M+1( Yij ]Ylj 5 iJB ), ( ; )

for i=1,...,M, and
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vt
Rz(qg,v?,s?) = £ |z @ytheh + by thyhy

helfje1 J 333 3'ii)

M+N
h thch-1 , h thch . thh
+ i thgh-1 , phythgh o cthgh
j=M+1(aJY1J j §115% * 1%
M

t tt .t t tt"t
z Y:.Q. + b.y..V.
j=1(aJY1JQJ JYIJ J)

+

MeN
t tt t-1 t tt.t tt, t
+ a/y::8. =~ + b.y.,.S. + c/.B. 5-18
sote1 314553 §715% * ©i38) o 5718)
i#j

for i=M+1,...,MN, and T =1,...,t in both equations, respective-

ly. Although equations (5-17) and (5-18) appear to be complicated

linear functions, many of the y:? values are zero because the c;?
values are zero. A zero ci? is primarily due to the lack of a
hydrsuiic connecfion between two elements of a system. However, even
if a connecting aquifer exists, it is doubtful that any two elements
will receive return flows that originated from the other simultaneously,
because the hydraulic gradient will be unfavorable. Therefore, of the
"mirror image" return flow coefficients, such as yig and Y;? » only
one will be non-zero. This reduces, by one-half, the number of return
flow coefficients in any given problem. Equations (5-17) and (5-18)
adequately describe the flows that return to the various elements of a
system because of the losses occurring during water delivery.

Consider now the retufn flows to element i in time period t
due to the application of excess water from element j to crops in
previous time periods, h ='1,...,t s RE(D?) . The maximum volume

of excess applied water that may reappear in all portions of the system,

from a single element j in time period h , E?', is that volume not
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retained in the soil. Mathematically this is

=

h - h -19
Ej Qa e.)nj , (5-19)

L

in which e? is the irrigation application efficiency for water
released from sector j in time period h . This efficiency is
defined as the ratio of the volume of water necessary to increase the
soil moisture to field capacity to the total volume of water applied.
During application, however, some of the maximum volume of excess
released water, E? , is lost to evaporation, transpiration and deep
percolation. Therefore, the total volume of water that actually
returns to the system, in all time periods concurrent wi£h and
following the time period of the release, is only a fractioﬁ, d? ,

h:h

of the maximum available, djEj or d?(l - e?)D? . If it is further

assumed that only a fraction, g;? , of the actual volume that returns
to the system appears in element i in time period t , then the in-
cremental return flow to element i in time period t that results
from an application of excess water from element j in time period h ,
can be defined as

AR;(D?) - g;?d?(l - e?)D? , (5-20)
for. i=1,...,MN and j =1,...,MN . As with the return flows due
to losses from the conveyance structures, certain terms in equation

(5-20) can be assumed constant for a given system and can be repre-

sented by a single symbol. By defining

th _ thh h
oy = g350;(1 - €3) (5-21)

equation (5-20) can be written as
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ARI(D?) = aE?D? , (5-22)
fori=1,,..,MN, j= ,o..,MN, h=1,...,t and t=1,...,T.
The total return flow, resulting from the application of excess
water to the crops, to an element i in time period t is the sum of
the incremental return flows that result from this application for all
elements of the system in all time periods previous to, and concurrent
with, the time period of interest. Mathematicallf,
t M+N h

RE(D@) = I I AR;(D.) , (5-23)
7" hel j=1 J

fori=1,,..,MN and t =1,...,T. In this equation there is
assumed to be no restriction to prevent an element from receiving a
return flow due to its own release of excess water in the same time
period that the release occurs,

Substituting equation (5-22) into equation (5-23) yields the
return flow function for the application of excess water to crops. It
is
t M+N th-h

t,.
RZ(W) = £ £ ot (5-24)
1 h=1 j=1 13 J

e

for i=1,,..,M*N and t = 1,...,T .

Combining equation (5-24) with equations (5-17) and (5-18) yields
the linearized return flow functions for both losses from the system
elements and the release of excess water from the system. For ditch

sectors,
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-1{ M
th hghoh t h.thh  .ht
R S2,0) = £ ¢ (a + pythyh
i(Qj' j’ jl j nel j=1( jYiij JYij j)
M+N
h_thch-1 . . h th.h . _th,h
+ I ceSe T # boyelst 4 gl
joen 374555 31455 * ©13%5)
M t tt. .t t tt,. t
+ I :Y::Q: + b.y..V
j=1(aJY1JQJ 37135
i#j
M+N '
t tt.t-1 t tt. .t tt, t
+ I Yo:S. " # bryreS: 4 cregt
j=M+1(aJY1J j 3713% * 138
t M+N
+ I g othph (5-25)
h=1 j=1 1))
for i=1,...,M, and t = l1,...,T . For reservoirs
REQR, V80,00 = 3| 7 cahythoh 4 b thuhy
1557375075 =1l3=1 3133 'L
h=1{j=1
M+N
h thch-1 . h thch . thoh
+ I a.vy..S. + b.y..S. .
j=M+1( 3457 3113% * €383
Mo otttt .t ottt
+ I :Y::Q. + b.y..V,
RACKIL RIS
M+N
+ (aFyF?S?-l + b?yF?S? + thBF)
jeMe1 11373 '3 1373
i#j '
t M+N
£z 5 othph (5-26)

h=1j=1 33 °

for i = M+1,...,,M+N and t = 1,...,T , which is sufficient for both

the node and ditch sector definitions of a reservoir., Again, it should
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be emphasized that although equations (5-25) and (5-26) appear to be
complicated, in modeling a real system, many of the coefficients will

be zero.

Relation of Losses and Return Flows

Because of the difficulty in visualizing the assumed relationships
between losses and return flows for the linearized model, graphical
representations of a hypothesized loss from a ditch sector and the
associated return flows are shown in Figure 10. A loss of 1.9 units
of water from ditch sector i in time period 1 is shown in the
graph on the right. Of 1.9 units lost, 0.3 units return to the sector,
as shown in time periods 2 and 3. Other varying amounts return to
the sectors i-2, i-1, i+l, i+2, and i+3 in the distributions shown.

The total return flow to the system from sector i can be calculated
and is found to be 1.18 units. The system loss, defined as the loss
from an element less those volumes of water which reappear in the
system as return flows, is 0.72 units of water.

The relations shown in Figure 10 can also be exhibited in a three-
dimensional graph such as Figure 11. In this figure the horizontal
plane is the element - time plane. The space below this plane shows
the volume of water lost, and the space above shows the related return
flows.

Figure 11, however, shows only the return flows for a loss from a
single element in a single time period. To graphically describe the
loss and return flow relationship for an entire system, similar figures
would need to be constructed for each element that experiences a loss.

The construction of these figures is neither necessary nor recommended.
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They are présented here only to illustrate the relation between losses

and return flows that are assumed in the linear model.

o
Linear Mass Balances

Linear mass balances are obtained by substituting the linear loss
and return flow functions into the mass balance equations, derived

in Chapter IV and repeated here for convenience. For ditch sectors,

Qf - Lat,vh) + HORHCR I (4-17)

for i=1,...,M; for reservoirs using the node definition,

t . t-l t-1 .t t,.h h ch  h t t _ .t
kEJ Vi * 857 - L(S;T,8)) + Ri(Qj,Vj,Sj,Dj) - 8 -kEKiQk =D ,

(4-18)

for i = M+l,.,.,M+U ; and for reservoirs using the ditch sector

definition,
t . ot-l t-1 ot t.h h ch hy .t t_ .t
Q + S5 - LesyTsp ¢ R@LVLsh ol - st - vEs0f, (a9

for i = M+U,...,M+N. In all equations j =1,,..,,MeN, h = 1,...,t ,
and t=1,...,T, except that i #j for h=1¢t .

Substituting equations (5-5) and (5-25) for the loss and return
flow functions, respectively, into equation (4-17) yields the linear

ditch sector mass balance:

M+N
Q? + bby?bvb) + I (aby?bsb'l + b?yE?S?)

Z z Y
(a5y A 16 IR KT

‘t-1] M h th
h=1fj=1 7
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M Ms+N

tttat . Lt ttyt t ttet-1 |t ttot
+ I (a,y;.Q. +b,y,;V.) + L a.y..S. = + b.y.,.S
j=1( 3115 * Byviz'y) j=M+1( 37453 1155
1] ‘
‘ t tt, ot tttot _ ottt
+ (- agy )0 - (1 # by IV = (1 - 050Dy
t-1} M+N M+N M+N M+N
- z| czye@ vz aszb -z cz?ef -z a;?n? (5-27)
half j=M+1 3 521 13D jeMel 130 5oy 13D
i#j

for i=1,...,M and t=1,...,T . Substituting equations (5-8)
and (5-26) into equation (4-18) yields the linear reservoir mass
balance for the node definition:

t-1{ M M+N

t h_thoh . .h thoh h_theh-1 _  h_thch
L V-+ I | I (a,y,.Q. + by, .V. + L a.y..S.  +Db.y..S,
kel K hel j=1( 3743% * %" j=M+1( 345" 315%5)

M M+N ‘
tttt . .t ttt tottot-l .ttt
+ I (a,y..Q; + by, .V.) + I a.v..S5; = + b/y..S;
j=1( 3713% * PyYisYy) j=M+1( 3745 i115%5)
ifj

t_tt, t-1 t_tt, ot t tt, .t
+ (1 aini)si (1 + biYii)si = EK Qk = (1 - o )D

X ii’"i
1
t~1] M+N M+N M+N M+N
+ B; - ¥l = czb b + I aszb - I CIFB? - Z GFFD? (5-28)
h=1] j=M+l 23 =1 1)) j=Me1 133 521 1))
i#j i#j

for i = M+1,,..,M+U and t =1,.,.,T . Further substitution of
equations (5-8) and (5-26) into equation (4-19) yields the linear
reservoir mass balance for the ditch sector definition:

t-1[ M MeN
t h.thoh . . h_thh h_theh-1 . h_theh
Q + | I (a,y..Q. +b.y..V.) + I a.y..5. ~ + b.vy..S.
17 pafger 3043 V345 j=M+1( 3157 1115%)
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t tt t *N'ttttl t tt t
* j" (37139 + Brijv)) + g BIYE555 7 ByYisEp)
ifj
4 - airihstl . bivinst - via 1 - o )0} + 8t
t-1 M+N M+N M+N M+N
thoh thoh cttgt

i hﬁ ij+1clj )" jfl "15% | - ij+1 13 jfl aij j

ifj i#j

(5-29)

for i = M+U,...,M#tN and ¢t = 1,...,T . The nodal mass balance
remains the same as in equation (4-4),
t V-t Qfso . (4-4)
jeJi Jel(i

A close examination of the linear ditch sector and reservoir
mass balances reveals three major parts: a methematical description
of the influence of the past system flows, contained in the t;l
term; a mathematical description of the present system flows,h::fined
by all variables with the t superscripts; and a series of known
terms that reduce to a single constant (those terms on the right of

the equal sign). These observations are the basis for partitioning

the linear programming matrix equation, equation (2-8).

Linear Programming Model

The linear programming model has the same features as the nonlinear
model described in Chapter IV--the necessary linear mass balances and

capacity restrictions to simulate the system for each time period.



61

For T time periods, there are T sets of these equations, and
with the addition of the necessary slack and surplus variables to the
capacity constraints, a matrix of the form of equation (2-6) can be
written. Purther, the matrix equation can be partitioned according
to the time periods, just as equation (2-8) is partitioned. Such

a matrix is shown in equation (5-30)

r M=1 [ 1 =1

TR A I L A A
TR SN | A N | S N 4
MiA o A% [P P2 Prr| | |

(5-30)

Each of the submatrices in equation (5-30) has a particular
physical meaning. Those on the principal diagonal of the A matrix
represent the allocation of the supply in a particular time period to
satisfy the demands in the same time period. For example, submatrix
A11 represents the allocation of the supply available in time period 1
to satisfy the demands of time period 1, and A22 represents the
allocation of the supply available in time period 2 to satisfy the
demands of time period 2, etc. The off-diagonal submatrices of the
A matrix represent the influence of an allocation of the supply
available in one time period on the allocation of the supply available
in another time period. For example, A21 s represents the influence

of an allocation in time period 1 on the allocation in time period 2,

and Ap, represents the influence of an allocation in time period 2 on

the allocation in time period T .
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The upper-triangular submatrices above the principle diagonal
are the null or zero matrices because return flows resulting from
future allocations cannot affect preceding strategies, as explained

in Chapter III, in describing the model. Similer explanations may

be made for the Dth submatrices.

The i; and 5; are, respectively, the vectors of decision

variables and constants, including the supplies, demands, and capacitie:

for time period t , t=1,.,,,T . They correspond to the respective

Ath and Dth submatrices, h=1,...,t , and h <t . Furthermore,
when one has obtained the solution to a problem, the values of the
ii subvector will represent the optimal water delivery strategy in
time period t .

The objective function, yet to be mathematically defined, can
also be partitioned with justification. Such a partitioning i#

exhibited in equation (2-9) and repeated here:

(max or min) z = [_i E&...E&] X, (2-9)

:_;q...

The X, of this equation correspond to the §; of equation (5-30).

The elements of the E; are the coefficients of linear functions which

involve the loss and return flow functions of the various elements.

Objective Function

With the definition of the linear approximations of the loss and

return flow functions, a mathematical relation can be derived for the
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objective of minimizing system loss aﬁd unrequired system outflow

- conjunctively. This objeétive consists of two parts, thd systeém loss
and the unréquired system outflow. Equationk will be defined for each
of these parts,.then combined to express the desired objective.

System losses have been defined as the losses due to evaporation,
transpiration, and infiltration, exclusive of those seepage losses
that reappear in the system as return flows. For a particular element
i and time period t , the system loss is the loss as defined in
Chapter III, from the element minus its incremental contribution
to the return flows of the other elements of the system in the

remaining (T - t + 1) time periods. Mathematically this may be

written as:
M+N T M+N
t t .t t At ,,t h, .t ,t
£:=LQ;,V,) - © AR;(Q,VY) - E & ARM(QL,VYH (5-31)
i i’'i ja1 Qs h=t+l j=1 j Qs
i#j

for ditch sectors, i=1,...,M,and t=1,...,T, and

~ M+N T M+N
£ = L(s;'l,s;) - 3 AR?(s;‘l,sF) - ¢ 1 aistlsh
js1 J h=t+l j=1 J 1 1
1#j

(5-32)

for reservoirs, i = M+1,...,MfN and t=1,...,T. In the equations
f; may be defined as the "cost" of using element i in time period
t . The cost is measured in units of water.

There are (M + N) f; values for each time period, with each
corresponding to a ditch sector or reservoir. For a ditch sector,
i=1,...,M and t=1,..,,T, from equations (5-5), (5-10), (5-15),

(5-16), and (5-31).
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¢ M+N T M+N M+N

t tt .. t. tt t_ht t tt t tt
£f.=[ ajy;, - L ajy., - I I ay ]Q + [b I by
i i'ii j=1 R £ §=1 17317 Yii " j=1 i'ji
i#j ifj
T M+N
-1z e h‘i:]v
h=t+l j=1
(5-33)

For a reservoir, i =M+ 1,,..,MN and t=1,...,T , from equations

(5-8), (5-10a), (5-15), (5-16), and (5-32), since the inflows, and

outflows are assumed to experience no losses.

M+N T  MeN M+N
t tt t t
=lajry - & oangr- & ¢ oayilsi e piyEE - x bhiE
j=1 h=t+] j=1 *J 1 4y 1
ifj i#j
T M+N
- oz b?ybE]SF :
h=t+l j=1 * jim i
(5-34)

The B terms and demands are not included because they are constants,

as explained in Chapter II.

Unrequired system outflow involves the outflows from those
elements at the extremeties of a system. Let two sets be defined,
Gi and Hi , which have similar definitions to the sets Ji and Ki ,
previously used in defining the nodal mass balance. The set Gy will
contain the indices of those variables V? which represent outflows
that leave the system, from ditch sectors and reservoirs modeled with
the ditch sector definition, at system outflow peint i . The set

H, will contain the indices of those variables Q? which represent

outflows that leave the system, at point i , from reservoirs modeled
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with the node definition. Unrequired system outflow can then be
expressed as
t
T V. + L Q (5-34a)
jeG, J JeH j
i
From these definitions, a general statement of the objective of
minimizing system losses and unrequired system outflows can be written
as
T M+N

Minimize 2 = I [ &£ f: sz Ve 3 Q 1 . (5-35)
t=1 i=1 3&13 jeH;

Substituting equations (5-33) and (5-34) into (5-35) yields a usable

mathematical statement of the objective:

T M M+N T M+N

Minz= I {z: [a: :: - I a:yt: pX > a:Yh:)Q
t=1 i=1 j=1 131 h=ts1 j=1 1D
i#j
R S SR Y L
i'ii j=1 191 poee1 j=1 iv ji’'i
i#j
M+N M+N T M+N
+ 5 ®hi - zbiyiE - g b:Yh:)Sl
i=M+1 j=1 It p=tel j=1 1
i#j
+ V? + I Q }
j
jeGi JeH
T M+N M+N T M+N
+ I T (a:Y:: - I azsz - I z azyh:)sl
t=2 i=M+1 j=1 131 h=tel j=1 1)

(5-36)
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With this objective function now defined, the linearized model
derivation is complete.

Four examples of the structure of the A and D matrices an
the x and b vectors are shown in Appendix B for a simple systel
'The equations are derived, both the constants and objective functi
then put into the form of equation (5-30) for illustration. The m

definition of a reservoir is used for modeling the reservoir shown

Relation of Derived Model to Network Model

The problem of irrigation water delivery is essentially a net
problem, as described in Hadley (1962), and network terminology ca
applied to the modeling of irrigation systems to yield similar res
It is felt, however, that the model descriptions derived here have
advantages over the use of network techniques; Appendix A discusse

these advantages.
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Chapter VI

MODEL OF A REPRESENTATIVE SYSTEM

As stated, the objective of this study is to develop a mathematical
model for simulating the events that occur in an irrigation system and
to use this simulation in conjunction with mathematical programming
techniques to provide a tool for aiding in the management of irrigation
water delivery. Such a simulation model is developed in Chapter IV,

In Chapter V linear approximations are derived for the loss and return
flow fﬁnctions of the model and a linearized model is developed.

If the appropriate functions (or constants) are obtained, the
nonlinear (or linear) programming model may be applied in two ways:
for a preseason analysis to estimate the extent to which the demands
on a supply will be satisfied during an irrigation season, and as an
aid for decision making, which approximates strategies that minimize
the losses resulting from the delivery and storage of water throughout
an irrigating season. Both uses require quantitative estimates of
future time an.! space distributions of supplies and demands. Further
discussion of these uses of the model is included at the end of this
chapter.

In this chapter the linearized model is used to simulate a
representative system. A series of analyses are presented to show the
change in routing strategy in a single time period according to the
number of future time periods included in the analysis, and comparisons

are made of optimal and nonoptimal strategies.
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Prototype System

The system to be used for the examples has been built around the
Gache La Poudre River in Northeastern Colorado. The Poudre River has
its headwaters in the high mountains of Colorado and flows eastward
tcward the plains. It enters the plains at the downstream end of
Poudre Canyon, near LaPorte, Colorado. There is a streamgage, the
"mouth of the canyon gage," at this point. From the streamgage the
river flows southeasterly through Fort Collins to Greeley, Colorado,
where it becomes a tributary to the South Platte River.

The irrigation system consists of structures in both the mountains
and the plains. The mountain structures are: small diversions for
subsystems that are used primarily to irrigate hay meadows, reservoirs
that are used to store water for later release to the plains subsystems,
and transbasin diversions that have been constructed to provide
additional water for the plains. The subsystems on the plains place
the greatest demands on the river as a source of supply. In aggregate,
there are 30 or so subsystems, each operated as a cooperative, and 50
or more reservoirs, mostly off-channel. The extent of the plains sub-
system is shown in Figure 17.

Most of the supply for the Poudre system is defived from the
melting of winter snowpack in the mountains. The peak flow, occurring
during spring thaw, is in May and June. The transbasin diversions
contribute similarly to the supply.

The basin policy is to store water when there is surplus runoff
and to use the stored water when the river flow is deficient. This

policy is based only on hydrologic considerations. The detailed
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procedures governing the delivery of demands from storage vary from
subsystem to subsystem.

The state water law governing the diversions from the river and
its tributaries is the Colorado Doctrine of Prior Appropriations and is
administered by the State Engineer (Black, 1960; Danielson, 1958).

For a number of years the river water has been insufficient to satisfy
the demands on it, and cooperation among the various ditch companies
in the system has affected an operating policy that allows more
efficient delivery of the water than strict interpretation of the law
would allow. The procedure involves the renting and trading of water.
A discussion of this process is beyond the scope ~f this study, but
can be found in such references as: Anderson (1963, 1961b, 1960) ;
Biggs (1968); Davan, Anderson and Hartman (1962) ; Huzar, Seckler and
Rohdy (19¢9); Hartman and Anderson (1963), and Hartman and Seastone
(1970) .

One transbasin diversion of special importance to the Poudre
system is reflected by Horsetooth Reservoir, with a capacity of 151,800
ac-ft. It is part of the Colorado-Big Thompson Project, that was
constructed to supply supplemental irrigation water to the Northeastern
Colorado region. The water made available by this project is governed
by an entirely different set of laws than those governing the river
water, and will not be discussed further because it is excluded from
the developed model. References relating to the project and its impact
may be found in Dille (1958); Anderson and Hartman (1965); Davan,
Anderson and Hartman (1962); i{lartman and Anderson (1964) ; Hartman and
Seastone (1970), and the annual reports of the Northern Colorado Water

Conservancy District.
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Model System

Only portions of the Poudre irrigation system are used for the
model. They are indicated by the heavy black lines on Figure 12. Fig-
ure 13 is a schematic diagram, much like Figure 1, of the modeled system.
It is composed of five ditches, eight reservoirs and the river. In
modeling the system it is assumed that no legal system prevails. This
implies that no ditch has priority over another to the river water.

Using the intermediate level of description, suggested in Chapter
IV, the example system is composed of seventeen ditch sectors, including
those that represent the river, eight reservoirs, and sixteen nodes.
Three time periods are considered in the analysis, corresponding to
June, July and August in the prototype system.

For each time period, the model is composed of seventeen ditch
sector mass balances, eight reservoir mass balances, and sixteen nodal
mass balances. All reservoirs are modeled using the ditch sector
definition, instead of the definition that would best fit each of the
reservoirs. The disadvantage of consistently using a single definition
for modeling reservoirs will be illustrated later in this chapter.

The model also contains nineteen maximum capacity and eight
minimum capacity restrictions. All ditch sectors representing river
flows are assumed to be unrestricted in maxiiun capacity. All ditch
sectors, including those representing river flows, are assumed to be
constrained in minimum flow only by the volume of water each must
deliver. Each of the reservoirs is assumed to have both maximum and
minimum capacity restrictions.

For each time period, then, the model consists of 68 equations

(M=17, N=8, P =16, with 19 maximum capacity and 8 minimum
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capacity vrestrictions) and 85 decision variables (two for each ditch
sector mass balance, three for each reservoir mass balance because

the ditch sector definition is used, and one slack or surplus variable
for each cupacity restriction). For the three time period model, the
numbers of equations and decision variables are three times those for

a single time period model, or 204 equations and 255 decision variables.

Model Parameters

The parameters necessary for the model construction are the loss
coefficients, the return flow coefficients, the maximum capacity
values, and the minimum capacity values for each of the elements. To
use the model, estimates must be available for the initial conditions
and for the time and space distributions of the inflows, demands, and
required system outflows.

Data for deriving the parameters and distributions necessary for
the model were found to be virtually nonexistent. The only accessible
data is from the State Enginecr's Office; this data assembly is
restricted to the diversions from natural systems. Detailed data on
the actual deliveries made within the system are contained in the
files of each of the ditch companies that operate in the system. These
data vary both in their quality and assembly. Further difficulties
are encountered if existing data are used because of implied operating
policies that tend to bias a model based on them.

Because of these difficulties, the parameters used in the example
solution are estimated. To make these estimates as close to reality
as possible, discussions were held with representatives of the State

Engineer's Office throughout the study. For some parameters guidelines



74

were established, but for others only theoretical guidelines could
be derived. The basis of the estimates will be discussed in the follow-

ing sections as thoroughly as possible.

Inflows

The inflows used in the model were obtained by averaging the
monthly flows, in acre-feet, for the 85 years of record at the mouth
of the canyon gage (1883-1968). A slight adjustment was made to the
inflow for the third time period so the supply would be adequate to
satisfy the demands estimated for the season. The inflow values used
were 56,100 ac-ft for the first time period, 24,500 ac-ft for the secend,
and 15,000 ac-ft for the third.

These flow values are not representative of the time distribution
of the natural runoff of the stream because they include water released
from high mountain reservoirs, not included in the model, and trans-
basin diversions. The timing and volume of the reservoir releases
and transbasin diversions are controlled by the need for irrigation
water in the plains, and, therefore, bias the data with an implied
operating policy as discussed in the previous section. The effect of
th: bias is, however, considered to be negligible in the model pre-

sented here.

Demands

Because of the difficulties already cited, there was no real basis
for estimating demands. Selected values, therefore, were made to
exhibit both varying demand patterns on each of the ditch sectors and

varying demand patterns over the system in each time period. No
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satisfaction of demands by diverting water directly from reservoirs
to the fields was assumed.

The demand values used in thc model arc shown in Table I. Each
sector is labeled by a shortencd rcpresentation of the ditch name and
sector number, and the key to the labeling is found on Figure 13, In
addition, the indices to be uscd for the variables of the modeling
equations are shown in the second column of Table I.

Two other studies are currently in progress which will alleviate
the problems of demand estimation in the future. The results of these
studies by Evans and Skogerboe (cited in the bibliography, but as yet,

not published) should be available by the summer of 1971.

Required System Outflows

Although there are water rights on the South Platte River
(downstream of its confluence with the Poudre River) that have a highex
priority than some water rights on the Poudre, return flows are gener-
ally sufficient to satisfy them. Only occasionally is water required
to be released from the Poudre system to satisfy them, generally in
the early spring. Therefore, the required system outflow from the
Poudre is essentially zero throughout an irrigating season and is

assumed to be so in the model for all time periods.

Loss Coefficients

The loss coefficients for the ditch sectors were estimated using
equation (5-2). The variable u was estimated from experience to
range from .0025 per mile to .0100 per mile. Unit loss rates are
difficult to estimate on a historical basis because of the influence

of return flows.
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Table 1
Demands, Models | and Il

(Acre leet per Time Period)

Time Period

Element Index 1 2 3
PVSLC 1 1000 500 500
LCH2 2 1000 1000 500
Lcc, 1 3 1000 2000 2000
LCC, 2 4 2000 2000 1500
Lcc,3 5 1600 1500 1500
PL 6 500 1000 1000
L&W, 1 7 2000 3000 2000
LGW,2 8 1500 2000 2000
L&W, 3 9 1500 2009 1500
G#2,1 10 2000 3000 2500
G#2,2 11 1000 1500 2000
R,1 12 2500 2500 2000
R,2 13 2000 1500 1500
R,3 14 1500 2000 1000
R,4 15 1500 1500 1500
R,5 16 1500 2000 1500
R,6 17 1500 1000 500
FC 18 0 0 0
RR 19 0 0 0
BH 20 0 0 0
RL 21 0 0 0
LP 22 0 0 0
LL 23 0 0 0
WL 24 0 0 0
WR 25 0 0 c
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Two models of the system were analyzed, the difference between
them was the loss ratc used for the ditch sector LCC,1. In both
models, the river was assumed to have the lowest unit loss rate and
those ditch sectors farthest from the river were assumed to have the
greatest unit loss rates. In Model ! it was assumed the sector LCC,1
was lined to decrease its losses, thus giving it a lower unit loss rate
than that of the river. In Model II the sector LCC,1 was assumed
unlined, resulting in a higher unit loss rate than that of the river,
Changing the unit loss rate from Model I to Model II illustrates the
change in delivery strategy that results from system modification,

The sector lengths, unit loss rates, and loss coefficients used in
Models I and II are shown in Table II.

The reservoir loss functions required by the model are related to
the volume of water that a reservoir contains. To derive the V;;
and B; coefficients necessary for the model, the following procedure
was used.

A unit loss rate was derived assuming the net pan evaporation
was equal to the losses. The values used were 0.4 ac-ft/ac for the
first time period, 0.6 ac-ft/ac for the second time period, and 0.5
ac-ft/ac for the third, based on the average measured pan evaporatinn
and precipitation at Fort Collins. Seepage losses were assumed to be
zero.

The volume of water lost from a reservoir was assumed to be the
volume of water contained in the top layer of water with a thickness

equal to the unit loss rate. Figure 14 illustrates this.



Table II
Ditch Sector Loss Coefficient Computations, Models I and II

Model I: Loss Model II: Loss
Ditch Index Length Unit Loss Coefficient Ditch Index Length Unit Loss Coefficient
Sector (i) (n) Rate (u) o Sector @) (n) Rate (u) (Ygg)
PVELC 1 24 .0100 .2143 PVELC 1 24 .0100 .2143
LC#2 2 17 .0080 .1276 LC#2 2 17 .0080 .1276
LCC,1 3 15 .0010 .0149 LCC,1 3 15 .0040 .0583
LCC,2 4 23 .0060 .1293 LCC,2 4 23 .0060 .1293
LCC,3 5 26 .0090 .2095 LCC,3 5 26 .0090 .2095
PL 6 26 .0100 .2300 PL 6 26 .0100 .2300
LGW,1 7 3 .0050 .0149 L&W,1 7 3 .0050 .0149
L&W,2 8 13 .0060 .0753 L&W,2 8 13 .0060 .0753
LGW,3 9 46 .0080 .3089 LEGW,3 9 46 .0080 .3089
‘G#2,1 10 S .0060 -.0296 Gi#2,1 10 S .00€0 .0296
G#2,2 11 40 .0080 .2748 G#2,2 11 40 .0080 .2748
R,1 12 1 .0030 .0030 R,1 12 1 .0030 .0030
R,2 13 3 .0030 .0090 R,2 13 3 .0030 .0090
R,3 14 3 .0020 .0060 R,3 14 3 .0020 .0060
R,4 15 5 .0020 .0200 R,4 15 5 .0020 .0100
R,S 16 9 .0030 .0267 R,S 36 9 -.0030 .0267
R,6 17 34 .0030 .0971 R,6 27 31 ~-0030 .0971

8L
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RRRRRERIAEKLRRKLIKARKKY [Thickness = unit Loss Rate

OO A’A’ . ’

Figure 14. Volume of Water Lost from Reservoir.

]+ B = witial volume
m = Volume Lost

Using the unit loss rates and available capacity tables for each
of the reservoirs, the volume of water lost from a reservoir in a time
period was calculated relative to the initial volume in the reservoir.
The two volumes were then nondimensionalized by dividing by the
maximum capacity of the reservoir, so the loss functions of the variou:
reservoirs could be compared. A sample calculation is shown in Table
III,

The next step involved the plotting of the nondimensionalized
"volumes lost" against the nondimensionalized "initial volumes' on

arithmetic graph paper and relating them with a straight line. Such

a plot is shown on Figure 15. From the graph Y;; and B?/SF
¢ ‘max
were obtained, and multiplication of the latter by Si yielded
max

the necessary B; .
For the eight reservoirs used in the models, the relations were
surprisingly linear. If in other cases, however, the graphs are found
deviate significantly from a single straight line; a series of straight
lines can be drawn and iterative linear programming used, as previousl)

suggested. A severe deviation will always be found when the initial
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Table III

Unit Loss Rate = 0.5 Ac-Ft/Ac

Stage Initial Final e o1 s ST Ly

(h) Volume Volune Li=si -Si St St
(S;“l) S; imax imax
1 29 14 15 .0255 .0132
2 62 45 17 .0545 .0150
3 97 79 18 .0853 .0158
4 135 115 20 .119 .0176
5 176 155 21 .155 .0185
6 219 197 22 .193 .0193
7 265 242 23 .233 .0202
8 312 287 25 .274 .0220
9 363 337 26 .319 .0229
10 416 388 28 .366 .0246
11 472 443 29 .415 .0255
12 531 501 30 .463 .0264
13 593 562 31 .521 .0273
14 658 626 32 .579 .0281
15 726 691 35 .639 .0308
16 800 762 38 .704 .0334
17 878 838 40 .772 .0352
18 960 919 41 .844 .0361
19 1047 1002 45 .921 .0396
20 1137 1092 45 1.000 .0396

st = 1137 Ac. ft.
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reservoir contents are near zero, but this deviation can be neglected
by constraining the minimum capacity of the reservoir to be greater
than the volume at which it occurs.

The reservoir loss coefficients, y§§ , and constant, B; ,

for the sample models, were calculated for all reservoirs and time

periods. The values obtained are tabulated in Table IV.

Table IV

Loss Coefficients and Constants for Reservoirs
Models I and 1I

Time Period 1 Time Period 2 Time Period 3

tt t tt t tt t
Reservoir  Index  Yii By i By Yy Bs
FC 18 .0299  52.80 .0443  78.00 .0372  66.00
RR 19  .0153  30.40 .0268  38.00 .0209  32.40
BH 20 .0257 51.20 .0397 76.80 .0328  64.80
RL 21 .0238 10.70 .0410 15.10 .0281  13.80
LD 22 .0299 22.80 .0302 37.20 .0233  33.20
LL 23 .0328 27,20 .0354  42.60 .0352  35.10
WR 24 .0240  54.00 .0325 104.40 .0277  77.40
WL 25  .0395 23.10 .0603  33.00 .0513  27.40

The weighting factors, az and b; » were assumed to be 1.0 and
0.0, respectively, for all ditch sector mass balances in all time
periods, and, 0.5 and 0.5, respectively, for all reservoir mass
balances in all time periods. By choosing these weighting factors, the

ditch sector losses are calculated entirely on the basis of the flows
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entering at the headgatc, and the reservoir losses are calculated on

the basis of the average volume of water in storage.

Return Flow Coefficicnts

As with the estimation of demands, there is a lack of data for the
estimation of the spatial distribution of return flows. The magnitude
of the difficulties posed by this problem is discussed in detail by
Hartman and Seastone (1970). Theteford, in this study, coefficients
for the spatial distribution of return flows were also estimated to
illustrate features of the model, with equation (5-9) used as a
restriction. Tables V, VI, and VII list the cI? values used in Models
I and II. All az? values were assumed to be zero, eliminating any
return flow resulting from the application of excess water to crops.

For the ditch sectors of both Models I and II, the assumption of a

loss function that is the same for all time periods creates equal return

flow coefficients in corresponding time periods. For example, all
t-1,t
ij

reservoirs in the two models, the pattern is not evident because the

Y values for the same i and j will be equal. For the

loss functions change with the time periods. For a numerical example
of this pattern, compare the coefficients of the ditch sector mass
balance equations contained in equation sets I, II and III, Tables XII,

XIIT and XIV, developed later in this chapter.

Initial Conditions

Because channel storage is neglected in the ditch sectors,
knowledge of the initial conditions is necessary for reservoirs only,
and in an operating model these will be known. For the example of

this chapter, not relative to any particular season, the initial



Table V

ci; Coefficients, Models I and 1I

PVGLC
wce2
ce,1
e, 2
LcC, 3
PL
LEW, 1
LGw, 2
L&Y, 3
cr2,1
Gr2,2
R,1
R,2
R,3
R4
R.5
R.6
(1

RR

1]

RL

LL

g N oo - a8 n -
£ 3 888 2 %8 %8 5% 8§ 3 2 2 22 g s s Fg 3

bndu 1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 X

2 .05 X

3 X

4 X

S X .010

6 X

7 .010 X .010

8 .005 X .00S

9 .005 .003 X .010

10 X .010

11 .010 X .010

12 .030 X

13 .010 .020 X ~

14 .050 .010 X

15 .010 .010 X

16 .005 .010 X

17 .002 .002 X .010

18 X

19 X

2 .010 b ¢

23 .010 .010 X

22 .020 X

23 X

24 .01V .005 X

25 010 X

2]



Table VI

ct-l.t Cocfficients, Models I and Il
4
Losing
Element
§ o 7 0% " S S S B

Receiving £ 3 8 88 25538 588 222222 z8 2 353 ¢g3

{lndex 1 2 3 4 S5 6 7 8 9 10 1 12 13 14 35 16 17 18 19 20 21 22 23 24 25
PVELC 1 | .100
Lce2 2 | .03 .070
Lee, 1 5 .030
Lcc, 2 4 .040 .010
Lcc,3 3 .010 .030 .010
PL 6 .100
L&N,1 7 .020 .020 .040 .030 .020
LGN, 2 8 .020 .00 .010
LEW,3 9 .030 .030 .100 .040
G12,1 10 .030 .040 .020
cr2,2 1 .030 .050 .030
R,1 12 | .010
R.2 13 | .005 .040
R,3 14 .030 .030
R,4 15 .005 .030 .020
R,S 16 .020 .040 .010
R,6 17 .040 .040 .050 .030
FC 18 | .030
RR 19
BH 20 .020
RL 21 .030 .050 .020
Lp 22 .010 .050 .010
L 23 .020 .010 ’
» 24 .020 .020
w 13 .020

98




Table VII

c};’-‘ Coefficients, Models 1 and II
Element .
8 o & U m < N n < 9
Receiving £ § 8§ §:§§§EEEEEEEZ&===&=::
Element
muxzs4ss759mnnnsuxsxsuumzozxzzzsznzs

PVRLC 1] .0s0
1ce2 2] .ot0 .050
10C,1 3 .020
10C,2 1 .020 .010
1cC,3 5 005 .020 _.010
" 3 .050
Lex,1 - .010 .010 .030 .010 .010
Le,2 8 .010 .040 .010
1ex,3 9 .020 .010 .070 .020
6*2,1 10 .010 .020 .010
G*2,2 n .010 .040 .020
R,1 12] .o0s
R,2 13] .00 .030
®,3 11 .010 .020
R4 15 .020 .010
R.S 16 .010 .030 .010
R.6 17 .030 .030 040 .020
FC 18] .o10 .004
RR 19
] 20 .010
RL 21 .020 .030 .010
w 22 .010 .040 .010
T8 23 810 .si0
= 28 .810 .015
" 23 019

98
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condition of each reservoir is assumed to be either 1/3 or 1/4 of the

maximum capacity. The numerical values are shown in Table VIII.

Table VIII

Initial Reservoir Contents
Models I and II

Index s°

Reservoir (1) i
FC 18 4000
RR 19 1000
BH 20 2000
RL 21 250
LP 22 1000
LL 23 250
WR .24 6000
WL : 25 250

Maximum Capacity Values

For those ditch sectors that receive water directly from the
Poudre River, maximum capacity values were available and used in the
model. For the other ditch sectors, the maximum capacity values were
unknown, but were assumedhto be less than the capacity of the next
upstream sector. For example, the sector LCC,Z was assumed to havé a
maximum capacity less than the known capacity of LCC,1. The maximum
capacity of LCC,1 is known because its inflow comes directlf-from-thé
rivér. Those ditch sectors representing the river were assumed to have

no maximum capacities.



The varigbles representing'theiinfiows to anﬁ outflows from.the;
'»resérvoirs,'using the ditch sector definitioﬁ;:were assumed to‘haVe no
maximum caﬁacity restrictions. The maximum reservoir contents were
given those values shown in available capacity tables, rounded to the
nearest 1000 ac-ft. All maximum capacity values were assumed to be
the same for both Models I and II for all time periods. They are

listed in Table IX.

Table IX

Maximum Capacity Values
Models I and II

Maximum : Maximum
Capacities g Capacities
Qt | st
Element Index ‘;max Element Index “max
PVELC 1 6,500 FC 18 12,000
LC#2 2 11,000 RR 19 4,000
cc,1 - 3 36,000 BH 20 8,000
LCC, 2 4 24,000 RL 21 1,000
Lcc,3 5 12,000 LP 22 4,000
PL 6 6,000 LL 23 1,000
LGH,1 7 50,000 WR 24 18,000
L&W,2 8 34,000 WL 25 * 1,000
LEW,3 9 17,000
G#2,1 10 36,000

G#2,2 11 24,000
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.-Minimum Capacity Values

he minimum cépacit? values for ali ditch sectors, including th
reservoir'inflows and outflows, were aésumed to be the required deli:
Thus, no explicit statement of the minimum capacity values were
necessary.
The reservoir minimum c#pacity values, in reality zero, were
.assumed to be the volume at which the linear loss rate approximation
(Figure 15) became inapplicable. For each reservoir the minimum
capacity remainéd'the same for all time periods, but among the
reservoirs values'Varied from 2.5 percent to 11 percent of the maxim
capacity. In Figure 15, for example, the minimum capacity value is
.025'82 . Table X gives the minimum capacity velues used for th

max
reservoirs.

Linearized Simulation Models

The linearized simulation model consists of the linear mass
balances and capacity restrictions. The equations of Model I are
developed separately for each time period to clearly illustrate the
construction of the model. Because only one column of the A matrix,
that can be developed from the equations of Model I, is changed for
Model II, no separate listing of the equations for Model II is inclu
Instead, only the changed constants are listed.

The equations of the linearized model are those developed in
Chapters IV and V: for the ditch sectors, equation (5-27); for the
reservoirs, equatio~ (5-29), using ditch sector definition; for the
nodes, equation (4-4); for the ditch sector maximum capacities,

equation (4-10) modified to



Minimum Capacity Values
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Table X

‘Models I and II

Minimum Minimum
Capacities Capacities
L Q | 5

Element = Index min Element Index min
PVELC 1 * FC 18 1,320
LCk2 2 . RR 19 100
' LcC,1 3 * BH 20 800
1CC,2 4 * RL 21 25
. LCC, 3 5 * LP 22 200
PL 6 * LL 23 25
L§W,1 7 * WR 24 450
L&W,2 8 * WL 25 50
L&W,3 9 *

G#2,1 10 *

G#2,2 11 *

R,1 12 *

R,2 13 *

R,3 14 *

R,4 15 *

R,5 16 *

R,6 17 *

* Minimum Capacity is that required to deliver the demand.
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G @

< st ; (6-2)

and for the reservoir minimum capacities, equation (4-13), modified t«

t . ot
CHETE (6-3)

mn

These modifications presume that return flows and losses are small,

The tables used for the determination of the constants vary for
each of the time periods and are stated in each section. Specific
points of interest are discussed at the appropriate locations. A table
relating the indices of variables used in the equations to the element

abbreviations is given in Table XI.

Model I, Time Period 1

The data necessary to construct the ditch sector and reservoir
mass balances are given in Tables I, II, IV, V and VIII; the data
necessary for the maximum and minimum capacity restrictions are given
in Tables IX and X. Equation set I, Table XII, results from the
substitution of these data into the equations listed above. Before
developing the model further, however, there are four points that
should be discussed: the elimination of some nodal mass balances, with
a consequent reduction in the number of decision variables; the nature
of the nodal mass balances in the various time periods; the nature of
the capacity constraints in the various time periods; and the nature

t-1

of S4 in the first time period.
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Table XI

Element Indexing
Models I and II

Llement Index Element Index
PVELC 1 FC ' 18
LC#2 2 RR 19
Lcc,1 3 BH 20
Lcc,2 4 RL 21
LCC,3 5 LP 22
PL 6 LL 23
L&W,1 7 WR 24
L&W,2 8 WL 25
L&W,3 9

G#2,1 10

G#2,2 11

R,1 12

R,2 13

R,3 14

R,4 15

R,5 16

R,6 17

Note: Ditch sector definition for reservoirs.
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An examination of the equations for nodes 2,‘4, 7, 14 and 16, in
equation set I, shows they could be eliminated by substituting into
the appropriate reservoir mass balance. To eliminate them would be the
same as changing the reservoir mass balance to either a node definition
or a mixed node-ditch sector definition. There is no reason why this
should not be done when constructing a model for operational usage
because it would reduce the problem size. For this example, however,
the definition that best suits a reservoir was not used in order to
show that a larger problem than necessary results from using only a
single reservoir definition.

Because it is unlikely that a real system will be changed from one
time period to the next, nodal mass balances will usually remain the
same for all time periods. This condition is assumed in the model,
so the nodal mass balences are the same for all three time periods,
only the superscripts change (see equation sets II and III).

In some situations, it may be desirable to change the maximum or
minimum capacity restrictions of one or more structures from one time
period to the next. This flexibility is provided for in the model
through specification of the maximum and minimum restrictions for each
time period. The example discussed here, however, maintains the same
capacity restrictions for all time periods, only the superscripts
change.

In time period 1, the variable Sz'l is Sg

, an initial

condition. All initial conditions are presumed known and are treated
as constants. Thus, for time period 1, a slightly different form of
the linear reservoir mass balances is required. For the ditch sector

definition,


lfiore
Rectangle
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M M+N
1 111.1 111,1 111.1 111,..1 1
b Vi) + 2 b S, - (1 +by,;)S; -V
ifj
M+N M+N
11,.1 1 11,1 11.1
= (1 -a,;)D; +8; - £ ¢c.:8. - I a,,D
(1 - ay5)D; + 85 T Rt
idkj ifj
M+N
1 110 111, .0 .
-j-§+1 a,jyijsj - Q1 - aiYii)si ’ (6-4)
i)
for i = M+1,...,M+*U , and for the node definition
M M+N
1 111.1 111.1 111.1 111,..1
b Vi) + T biy,.S; - (1 +b S
szivk + jflcajyijqj + jYij j) 5aMe1 jYiJ j ( 1711) 4
ifj
M+N M+N
1 11..1 1 11,1 11,1
- = (1 - . - - I a;sD
kix LR T j-fmcije j-lcij 3
i 145 i)
M+N
1 110 111, 0 i
j_a,lajyijsj = (1 = aiyii)si ’ (6 s)
i#j

for i = M+U,,..,M¢N .

Because the initial conditions are constant, they appear on the
right of the equal sign. If the storage in a reservoir in time period
1 1is greater than the demand for water directly from the reservoir in
the same time period, the constants will reduce to a negative value.
However, if the demands for water directly from a reservoir are greater
than the initial reservoir contents, the constants will remain positive,
This point is important because some solution algorithms require a
positive constant on the right side of the equal sign. In the model
developed here, all constants on the right side of the equal sign are
negative for the reservoir mass balances of time period 1 because the

demands have been assumed to be zero.
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Finally, equation set I could be written in matrix form. The

result would be the All and D11 submatrices and the §i and 5&
subvectof§ of equation (5-30). Specifically,
A X, =D_b, . (6-6)

1171 1171

The elements of the submatrices and subvectors are not listed because

of limitations of space.

Model I, Time Period 2

The data necessary to construct the ditch sector and reservoir
mass balances and capacity constraints for time period 2 are given in
Tables I, II, IV, V, VI, IX and X. The resulting equations are listed
in equation set II, Table XIII.

Written in matrix form, the equation set becomes

A21x1 + Azzx2 = D21b1 + DzéF , (6-7)

in which ii and 51 are the same as discussed in equation (6-6).

Model I, Time Period 3

The data necessary to construct the ditch sector and reservoir
mass balances for time period 3 are listed in Tables I, II, IV, Vv, VI,
VII, IX, and X. The resulting equations are listed in equation set III,
Table XIV.

Written in matrix form, this equation set becomes

Az1%y * AspXy * AggXg = Dy by + Db, + DB, (6-8)
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Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Ditch
Reservoir
Reservoir
Reservoir
Reservoir
Reservoir
Reservoir
Resexrvoir
Reservoir
Node

Node

Node

Node

Node

Node

Node

Node

Node

L, 1
Lan, 2
v, 3
92,1
62,2
R,1
R,2
R,3
R,4
R.S
R,6

L

c U e wN
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Table XII

tquation Set 1

L7 T S~ E

o & - o

11
12
13
14
15
16

18
19
20
21
22
3
24
5
26
7
28
29
30
31
32
33
M

.7857Q; - V] = 1000
.0107] + 87240} -

. 1 1
.OOSIQS - VS = 1000

1 1
.07070‘ - V‘ = 2000

79053 + .0023Q -
177000} - V3 = 500

000103 + .9851Q}
.0006Q + .9247Q) o
.0006Q + .0006Q
.97040}00 .ooozsgs-
.0031q] + .7252q}
.0064Q] + .99700] , -
00210} + .0003q}
.00110] + .00640} +
00153 + .0081Q] +
.0001Q} + .0008Q)

.0006Q} o+ .0055Q)

V3 = 1000

v; « 1000

1 1
19 Vy = 1999.70

1 1
+0001S,,- Vy ® 1499.89

1
20

.0001S

.6911Q5 + 000181+ V] = 1489.49

1
le = 1999.73
1 1
.000152‘- V" = 999.46

Vi, = 2500

1
12
199100} (- V14 = 2000

1000103 + .9940Q},- V1, = 1500
.9900Q}5- ":s - 1500

9733} - V] = 1500

.9029Q] ,+ .00025],- V], « 1499.47

Qg - 1.01508], - v, = -3887.20

1 1
Q) - 1.00765

1
.vl

9" -962.00

.0023Q5 + Q3 - 1.01288} - ";o = 1923.20

.0001Q3 + .0013Q) +

1 1
Qg - 1.01198;, - Vy, = -236.32

.0026Q} + Q3 - 1015083, - V}, = -962.20

1 1
Q.‘.,3 - 1.016452

1
3 Vas

= -218.70

1 1 1 1 1
+008Qg + .OOISQ9 + QZ‘ - 1.012082‘ - VZC = «5874.00
1 1 1 1
Qs ¢ .000!82‘ - 1.0198525 = Vyg = 222,49

 dy s
I
Vip - Q- Qg e 0
V3-Qge0

Vip - Q4 - Qg = 0
VG- Q=0
oo

Vig - Q- Q0
Vit Q- Qg e 0
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Equation Set 1 (continued)

Node 0 s Vievl, -qp-qgye0
Node 1 3% Vy-Q-Q) =0
Node 12 7 - v}s . vgs - Q:c .0
Node 13 3 vl vl -qgp-aly .0
Node 14 ¥ V-0

Node 15 0 V), evi-Qf -0
Nods 16 v Qg0
Maxcap® PVELC 2 Q< 650

Maxcap L2 s Q) 11,000

Maxcap Lee, 1 4 Q) < 36,000

Maxcap wce,2 a5 Q) < 24,000

Maxcap 1cc, 3 46 Qg < 12,000

Maxcap PL a7 Qs 6,000

Maxcap Law, 1 48 Q) £ 50,000

Maxcap L2 49 Q)= 34,000

Maxcap Lew, 3 50 QgL 17,000

Maxcap 12,1 51 Q) & 36,000
Maxcap 12,2 2 Q) & 24,000
Maxcap FC 53 S}y £ 12,000
Maxcsp RR 54 Spo L 4,000
Maxcap B 5 Siy< 8,000
Maxcap AL 56 5;1 < 1,000
Maxcap v, 57 )< 4,000
Maxcap L 58 Shy < 1,000
Maxcap R 59 3, < 18,000
Maxcap w 60 Sh < 1,000
Mincap**  FC 6l Sjp2 1,320
Mincap AR &2 Slg2 100
Mincap B 6 s),2 800
Mincap RL o s B
Mincap e 6 S}, 200
Mincap LL 66 S;’ 2 25

Mincap WR 67 sh 2 450
Mincap Wl 8 Sig2 50

*Maxcap = Maximm Capacity Restriction
**Mincap « Minimum Capacity Restriction
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Ditch
Ditch
Ditch
Ditch
Ditch
Ditch

Ditch

Ditch
Ditch

Ditch
Ditch
Ditch
Ditch
Ditch

Diteh
Ditch
Ditch

Reservoir
Reservoir
Reservoir

Reservoir

Reservoir

Reservoir

Reservoir

Reservoir

Node

LEW,1

LE&w,2
LW, 3

Gi2,1
Gr2,2
R,1

R,2
R,3

R4

R,6

FC
RR

RL

LL

WL

10
1

13
14

15
16
17

18
19
20
21

22

23
28

25
26
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Table XIII
Equation Set II

.ozuq} . .7as7qf - vf = 500

.0064q] + .0085Q} + 01077 + .8724Q% - V3 = 1000

.0004q] + 985107 - v = 2000

.00520) + .00025], + .8707Q7 - V2 = 1999.70

.0021Q} + 00690} + .0003 s1; + 790502 + .0023q; - vi = 499,49

1 2 2
.0230Q, + .7700Q; - Vg = 1000

1
19

2 2
. .0001519 - Vy . 2997.62

1
22

.0039q; + .0063q) + .030%Q) + 00108} « .000607 ¢ .0006Q] + 691103
000283, - V3 = 1997.18
1y + 97000} + 000253, - Vi, s 2999.02
N .oo.nqg o 725203, 0 000283, - vfl . 1497.34

1
,0021q] + .006402 + 997007, - V2, = 2500

.0003Q} + .0003Q)} + .00085], + .0007], + 00065, 000103 ¢ .le;

2

.0026Q + .0036Q5 + .00035, + .0006Q + .9za7q: « .000183, - v: . 1999.88

L d

.0023Q} + .00120], + .007S
.ooosq; s .037], + 000753,

1 1 2 2 P
.0011Q} + .0006q) + .002107 + 00030 + 991003 - V3, = 1500
.0005Q] + .0038Q) + .0004Q3 + 001107 + .0064Q + .000103 ¢ .994003‘

2
- v3, = 2000

1 1 1 2 2 2 2
,0006Q + .0004Q) + 000755, + 001303 + 000107 + 990002 - V3, = 1499.46
.0003} + .0030Q3 + .oooss;3 + .0001Q2 + .oooaqg . .97330}6 . vfe « 1999.73

1 1 1 1 2 2 2
.00120], + .0110Q], + .0015S}5 + 00125} + .0006Q3 + .0055Q3, ~ .902903,

. .ooozsf8 - v3, = 995.89
oosdal 1,2 2 2
.0064Q, + 977855 ¢ Q3g - 1.022253, - V3 = 78.00
1 .2 2
1o+ Uy - 1.013as3, - V3
00460} + .9802s! + 002302 + Q2 - 1.019852 - v2 a7
-0046Q, + .98025,, + .0023Q; ¢ Q3 - 1.01985y, - V3, = 76.80

.0004Q} + .0065Q + .oooss}9

.98665 - v3 = 38.00

1 2 2 2 2
+ .9795521 + .0001Qy + .OOISQ‘ + Q21 = 1.020555,

2
V21 = 14,49

. v?

.0001Q3 + .0065Q) + 00025} + 98495}, .0026Q] ng - Losisd, - vi,

22
= 56.90

.0003Q} + .0008Q} + 982353, + Wy - 1.0177523 . v§3 = 43,60

.0015Q3 + .ooezq; s .98365}, .ooosqg . .ooxsqg . Q;‘ . 1.015253‘ -vg‘

= 104,40

1 1 2 2 2 2
.000552‘ . .9698525 + st . .000282‘ - 1.0302525 -V

25 = 30.88
Q¢ + o2, = 24.500
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Lquation Set 1 fcontlnuod)

Type Element %ﬂ

-~

2.2 2
7 VieVy- Qg0

2 2 .2
B V-t Q- Qpyn 0

Node 2
s
Node 4 » vi.dd .0
5
3
7

Node

2 o2 2
Node 30 Viy-Q-Qy 0
2 .2 a2
] V;-Qb-on-O
2
32 V3 -Qge0

Node
Node

Node ] 3 vii-dd-dd .0
Node ) u -0
Node 10 5 vievi-d-ddro
Node 1 s vi-gd-dd 0
Node 12 3 vievii-df -0
Node 13 B Vig* Vg - Q- Oy =0
Node 14 w vi-deo0

Node 15 w0 vievi-dd -0
Node 16 a  vi-d .0
Maxcap PVSLC 2 o< 650

Maxcap 1cn2 s Qs 11,000

Maxcap 1cC,1 a0 Qd < 36,000

Maxcap e, 2 s Q@< 24,000

Maxcap 1cc,3 46} <12,000

Maxcap Lo a7 Q<6000

Maxcap L, 1 a8 q < 50,000

Maxcap Lew, 2 ®  q}<34,00

Maxcap Law,$ 50 Qf < 17,000

Maxcap 62,1 st Qfp < 36,000
Maxcap 62,2 52} < 24,000
Maxcap FC 53 5352 12,000
Maxcap RR s s« 4,000
Maxcap B 55 52,5 8,000
Maxcap RL 56 §3, < 1,000
Maxcap P 57 53,5 4,000
Maxcap L 58 Siy< 1,000
Maxcap " 59 S2, < 18,000

Maxcap " 6  Si < 1,000
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Bquation Set II {continued)-

Hincap K o1 83y 21,320
Nincsp. M e s> 100
Mincsp B 63 83,2 800
Mincap RL “  sh>
Nincap w e sh> 200
Mincap LL 6 s>
Mincap » & 83,> 450

3
Mincap WL 63 8332 50
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Table XIV
Equstion Set III

Type Elessnt %&:‘!

Ditch PVaLC 1 .ow0m} + .0214q] + .7857q] - v} = 500
Ditch e 2 .0021Q] + .0064Q} + 00640} + .0089Q2 + 01070} + 87240} - v} = 5000
Ditch 1ec,1 s .ooosq; + .0004q3 + 98515 - V3 = 2000
Ditch e, 2 4 .0026Q} + 000253 .005203 + 000383, + 87070 - vi‘- 1499.32
Ditch e, s 3 ,0010Q} + .0046QF + 000383, + .0021Q2 + .006907 + 000483 + .7905Q3 v
+ .0025Q) - Vg = 1498.72 :
Ditch PL 6 01150} + 02307 + .7700Q5 - Vg = 1000
Ditch Lav,1 7 .0001Q} + .0001} + .000sS], + .000253, + .000383, + 00033 + .ooom;_
+ .oonsdg ¢ 001283, + 000653, + 000103 + 98513 + 000153
- V3 = 1995.72 -
Ditch 14w, 2 8 .0015Q) + 003005 + 00035}, + .0026Q% + .0038Q; ¢ .00038%, + .qoooqj
‘ o 924703 + 000153, - Vg = 1999.23
Ditch Law,3 9 .0026Q) + .0021Q3 + .0216Q + .000553 + 0035} + .006302 + 03050
+ .001652, + .0006Q] + .0006Q] + .6911Q] + 000283 - Vg = 1495.26
Ditch 12,1 10 .0008Q) + .0006], + .0003835 o .0023QF + 00123 + 0007835 + 97040}
+ .000283; - V3, = 2498.51
Ditch G12,2 1 .0031Q) + .01200], + .000583, ¢ .009%0; o .01370%, + 001085, + 00313
o 725203, + 0001}, - V3, = 1995.02 '
Ditch R,1 12 .0011q} + 00210 + .0064Q; + 997005, - V3, = 2000 '
Diech R,2 13 .0005q] + .0004q] + .0011Q] + .0006Q3 + .0021Q] + .000%C3 ¢ 991003
- V3 = 1500
Ditch - R,3 14 0013} + 00030} + .000s0] + 003807 + 000403 + 00110} « 0064,
+ .0001Q + 99400}, - V3, = 1000 )
Ditch R,4 15 .0005Q) + .0003Q} + .0003Q}5 ¢+ .0006Q] + .0004Q + .0007Q7; + 001G
+ .0001Q} + .99000}; - Vig = 1498.86
Dltch R,S 16 .0001Q} + 00250} + .0003Q} + -000303 + 003007 + .0004Q3; + 000107
+ 000803 + 97350} - V}, = 1499.29 ,
Ditch R,6 17 .09}, + .0082q}, + 00125}, + .0008S)g + 001202, + 011002 + .002257
‘ + .001853; + 000607, + .005Q7, + .9029Q], + .000253; - V}, = 491.88
Reservoir  FC 18 00210} + 006402 « 981453, + Q - 1.01865] - Vig = 66.00
Reservoir  RR 19 .9esesd) ¢ Qfg - 1000487, - Vi) = 32.40
Reservoir BN 20 .0023Q} + .0046Q + .983653) + 00233 + Q3 - 101643 - V3, « 64.80
Reservoir  RL 21 .0003Q) + .003%0} + 00025}, + 000402 + 00657 + 00052, + .98605%,

+ 0001Q3 + .0015Q] ¢ Q3 - 1.014083, - V3, = 12.74



102

quation Set 111 (continued)

- "-1 Equation .

Type Element 3

Maxcap FC 53 83y £12,000
Maxcap KR 54 S5y < 4,000
Maxcap ™ 55 53 < 8,000
Maxcap RL 56 83 < 1,000
Kaxcap 13 57 5, < 4,000
Maxcap u 8 8 < 1,000
Maxcap wm 83, <18,000
Maxcap wL 60 s:_,. £ 1,000
Mincap FC &1 83,2 1,32
Mincsp R e sha 100
Mincap M & 535> 80
Mincap AL o 8>
Mincap ) 6 83,2 200
Mincap i 66 s;‘S 2 25
‘Hincap ® &7 83> 450
Mincap ¥l 68 sgs 2 50



Ipe

Reservoir

Reservoir

Reservoir

Reservoir
Node
Node
Node
Node
Node
Node
Node
Node
Node
Neae
Node
Node
Node
Node
Node
Node
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap
Maxcap

Maxcap

L

10

1n

12

13

L)

15

16
PVSLC
e
Lce,1
Lee,2
Lce,3
PL
Law,1
LgN,2
LGN, 3
Gr2,1
Ge2,2

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
S0
s1
52
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Equation Set III (continued) »

0001} + .0052q} + .00028), + 00010 + 00650 + .c003s3 + o802,
+ .0026Q] + Q3, - 1.01165), - V3, » 32.52 .

.00010} + .0008Q} + .00030Z + .0008Q] + .982483; + Qg - 1.017683,
- V3y = 35,10

.0008Q; + .0046Q} + .0015Q7 + 006207 + 986283, .0n08Q3 + 001503
+ Q) - 1013853, - V3, = 77,40

.00028}, + 000652, + 9744835 + Q3¢ + .000183, - 1.025683 - V3 = 24.00

q{ + q}, = 15,000

Viev3-Qiyeo0

Viz - G - Qg = 0

Y3 Qg0

Vip- Q3 - Q=0

RS AR

120 - Q5" 0

Vs - Q- Qq = 0

Vig- Q- Qg = 0

V24 Vit G- Qgm0

Vg Q- Qg0

Vig * Va5 - Q3 = 0

Vi * Vig - Qg - Gy = 0

Vig - Q5= 0

Voe * Va5 - Q4 =0

V) - Qg% 0

Q} = 6,500

Q3 < 11,000

oi < 3,600

Q} < 24,000

q} < 12,000

Q} < 6,000

q} < 50,000

Q} < 34,000

Q; < 17,000
q';'o <.36,000

Qj, < 24,000
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| Jin which xl and b1 are the same as discussed in equation (6-6) and
»¢fé' and 'F are the same as discussed in equation (6-7).

" Model | 11 A11 Time Periods

The equatlons for Model II are the same as those for Model I,
except that the coefflcxents for the variable Q3 are changed. The
data for calculating the new coefficients are listed in the various
tables already discussed for Model I. The Model II values are listed

in Table XV along with the Model I values they are to replace.

Linear Programming Models

| Three linear programﬁiﬁg problems are formulated using each model
(the equations in Tables XII, XIII and XIV for Model I and the same
-equations, with the necessary changes, listed in Table XV, for Model
11). The first problem to solve is to obtain the optimal de11very
strategy in time period I, using knowledge of the events to occur in
time period 1 only. The constraints for this case are represented by
" equation (6-6), formed from equation set I, and the optimal water
delivery strategy is represented by the numerical valpes obtained for
the vector ii .

The second problem to solve is to obtain the optimal delivery

strategy in time period 1, based on knowledge of events to occur in
time periods 1 and 2. The constraints for this case are formed from
equation sets I and II and are represented by equaticns (6-6) and (6-7)

in the form:

Ay O X1 Dy O 1
- - . (6-9)
Ay Axndlx, D1 Dy JLb,
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Table XV

Changes in Equation Sets I, 1l and I1I, for Model I,
to Obtain Model I1

Type Element Equation Equstion Replace Model With Model 11
Set Number 1 Parameter Parameter
Ditch 1cC,1 3 .9851Q} .9417Q}
Ditch Law,1 7 .0001Q} 00060}
Ditch R,2 13 .0003Q; .0012Q;
Ditch R,3 1 .0001Q3 .0006Q}
Reservoir  RL 1 21 .0001} .0006Q3
Ditch 1CC, 1 1 3 .0004Q} .0017q;
s 9851Q3 941702
Ditch L4, 1 7 .000303 .0012q}
7 1000103 .0006Q3
Ditch R,2 13 100060} 00230}
13 .0003Q3 .00122
Ditch R,S 14 .0004Q3 .0017Q
14 .0001Q3 1000603
Reservoir AL 2 .0004Q} .0017Q}
21 1000103 .0006Q3
Reservoir P 1 22 .0001Q} .0006Q;
Ditch e, I 3 00050} 00120}
3 1000403 .0017Q3
3 98510 .9417Q3
Ditch Lew,1 7 .0001Q} .0006Q}
7 .0003Q3 001203
7 000103 .0006Q3
Ditch R,2 13 100040} .0017q;
13 000603 .0023q3
13 .0005Q3 .001203
Ditch R,3 14 .0005Q} 00120}
14 .0004Q3 00170
14 .0001Q3 .0006Q3
Reservoir  RL 21 +0003Q3 001203
21 -0004Q3 .00173
2 .0001Q3 .oooeqi
Reservoir P i 22 .0001Q} .0006Q;

22 .0001Q3 .0006Q3
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The optimal solution that results from this pfoblem is the optimal
water delivery strategy for time period 1, contained in the subvector
§i , and the optimdl water delivery strategy for time period 2, con-
tained in the subvector ié. However, only those values in §i are
of interest.

The final problem to solve is for an optimal routing strategy in
time period 1, based on knowledge of events to occur in time periods
1, 2 and 3. The constraints are formed from equation sets I, II and
III and are represented by equations (6-6), (6-7) and (6-8) in the

following form:

- 1= - A=

A, 0 0 % D, 0 O B

Ay Ay, O 5| = oy D, O B, | (6-10)
:31 Rsy A3z i X3 Dy D3y Dyz || B3

For phis'problem, the optimal solution yields the optimal water delive:
strategy in time period 1, contained in the subvector X, ; the optima
water delivery strategy in time period 2, contained in the subvector
ii ; and the optimal water delivery strategy in time period 3, con-
tained in the subvector is . Again, only the values contained in Xx

1
are of interest.

Objective Functions

For each of the three problems for Model I and Model II, an
objective function is required. In Chapter V, a mathematical statemen!
for minimizing system losses aﬁd system outflows, conjunctively, was
made, (see eaquation (5-36)). The data necessary to construct the

objective functions are contained in Tables 1I, IV, V, VI, and VII.
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The objective functions for Model I are:

MIN Z =

for the

MIN 2 =

for the

13960, +
0128Q} +
-0128Q;

.0090Q] ,+

1
.0183819+

1

.0480s! + v1 4 v

25

.0984Q; +
1
.0546Q5

.0060Q] ,+

1
.0304820+

1

5*V%*

first problem;

13960, +
1
0128} +

.0090Q13+

1
.0183819+

1
.0480825+

0121 +
2
.2579QC +

.0100Q3 .+

2
.0333821+

2, v2 +

Vo* Vi

v

v

.0984Q; +
1
05460 +

.ooeoqi4+

.030481 +

20

1

stV

+

N OV

.0995Q +

.0266Qf0+

.0267Q§6+

2
.0257822+

2
17

second problem, and

.0106Q; +
1

.2286Q9 +
1

.0100Q) .+

1
.0315821+

1.1
Vo + Vi1t

.0106Q; +
1
2286Q) +

'°1°°Qis*

1
.0315821+

1 1
V9 + V11+

.2005Q% +
2446Q% +

0971Q%

2
.0333523+

.0839¢; +
1

.0251Q] +

02670}

-0267Q) ¢+

1
.0285822+

.0839Q, +
1

.0251Q10+
1

.0267Q16+

1
.0285822*

1

v17

.1909Q§ .

.oosoqu*

2
.0384818+

2
.0280824+

.1974Q; +
1

.2254Q] +
1

.0971Q] +
1

.0313523+

.1974Q§ '

.2254Q) +
1

09710} +

.0313s1 _+

23

.0343s

.0261S

.1725Qé

.oosoq}z'

1
.0343518
1

.0261824

(6-11)

17250,

.oosoqi2

1
18

1
24

+ .1561Q] + 10660,
01342 + 0623

100902 ,+ .0060Q%,

2 2
0215530+ 034082
054082 + V2 + V2
+05405,5 + Vg + V¢
(6-12)



MIN Z = .1396Q] + .0984Q; +

.0128Q; + .0546Q5 +

.oosoq}3+ .ooaoqi4+

.0183s! +

1
19 .0304S,, .+

20

1
.0480525+

1 1
V5 + V6 +

0121¢% + 09952 +

.2579¢ + .0266Q3 +

.0100Q3+ .0267Qi6+

2
.0333821+

2
.0257522+

V2 + V2 +

3
11t Vip* -1940Q; +

2254Q; + .0147Q] +

00300} ,+ .oosoqfs+

.0103S> _+

3
.0134S, + 19

18

3

3
.0136524+

.0256825+

for the third problem. The

same as
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.0106Q; + .0839) + .1974q] + 1725,

228603 + .ozslqio+ .2254Q] 1+ 00300}

.0100Q} ¢+ .0267Q) ¢+ .0971Q) ,+ 03438}

1
.0315821+

1
.0285522+

.031381 +

1
23 .0261S

24

1

V17

1 .1
Vg + Vgt

o + 15617 + .1066Q3

2005 + 190902 + 013407 + 06230

.2446Q + .0030Q% + 0090 5+ .0060Q,

2
.0384818+

ol
.0215519+

2

2
.0971Q17+ 20

.03408

2
.0333523+

2
.0280824+

2 2
.0540825+ v

stV

w»B ON

119905 + .0143Q] + 1242Q] + .2089Q

5

.0737Q + .3043Q> + .0290Q° + .2693Q>
8 10 11

.00600; ,+ .0100Q] .+ .0267Qi6+ 097103,

3
.0115822+

3 3
.0140S, . + 23

3
.0162S, .+ 21

20 .0174s

3
6

3 .3
Vo + V1t

3 3
Vo + V 17

5 +

(6-

objective functions

is changed to .0396 in equation (6-11), the coefficients of the

+V

13)

for Model II are the

for Model I, except that the coefficient of the variable Q;

variables Qé and Q§ are changed to .0396 and .0461, respectively,

in equation (6-12), and the coefficients of the variables Q; ’ Q§ s

2
9
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and Qg are changed to .0396, ,0461 and .0553, respectively, in
equation (6-13).
Examining equations (6-11), (6-12) and (6-13), it is evident tha

equation (6-11) could be written in matrix form as

MIN Z = €% 3 (6-14

equation (6-12) could be written as

X

- =2 %
MIN Z = [c1 c2] _ (6-15)
2
and, equation (6-13) could be written as
i}
MIN Z = [c1 ¢y c3] X . (6-16)
Eg

In each of the equations, the contents of the Ei subvector represent
the 'costs" of using any particular element in time period 1, the
contents of the Eé subvector represent the 'costs" of using any
particular element in time period 2, and the contents of the Es

subvector represent the "costs" of using any particular element in
time period 3. The i& R §é and is are the vectors of decision
variables for each time period discussed previously with respect to
equations (6-6), (6-9) and (6-10).

A close examination of equations (6-11), (6-12) and (6-13) reveals
that they are composed of exactly the same terms for corresponding

time periods. The implication of this is that even though the purpose

of the first problem formulation of either Model I ar Model II is to



110

find an optimallwater delivery strategy in time period 1, based only on
knowledge of events to occur in the time period, the return flows for
time periods 2 and 3 are considered in the objective function. Likewise,

even though the purpose of the second problem formulation is to find an

optimal water delivery strategy in time period 1, based on knowledge
of events to occur in time periods 1 and 2, the return flows in time
period 3 are considered in the objective function,

There are two reasons for using these objective functions. The
physical reason is that once a delivery strategy is selected and used
the return flows will occur regardless of whether the system is operated
in the future. Just because these return flows do not occur within the
time period of analysis is no justification for discounting them as a
system loss. Further, for the types of analysis discussed in the
following sections, the use of this type of objective function provides

results that are more easily compared.

Solution of Linear Programming Models

The three linear programming problem formulations for each of the
two models were solved using the Control Data Mathematical Programming
System 3 (CDM3) routine, adapted to the CDC 6400 computer in the
University Computer Center at Colorado State University. The routine,
as adapted, can solve a problem of 300 rows by 600 columns with no more
than 2,400 non-zero coefficients in the A matrix. For the three time
period models, characteriged by equations (6-10) and (6-16), the
largest solved, containing 204 rows, 255 columns and 712 non-zero

coefficients, the solution time was approximately two minutes.
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Results from Linear Programming Models

The optimal water delivery strategy for each problem of Models I
and II are shown in Tables XVI and XVII, respectively. Results from
these tables are combined with the diagram of the system, Figure 13,
and presented in Figures 16 and 17. These figures give a visual
representation of how the water should be delivered to satisfy the
various demands so that the system losses and unrequired system out-
flows are minimized.

There are three major points related to the results of the two
models that should be discussed. The first is the difference in
strategies between Models I and II themselves; the second is the vari-
ation in optimal stragegies for time period 1 resulting from the
inclusion of additional time periods in both models; and the third is
that in both models there is no system outflow.

Comparing Figures 16 and 17 it can be seen that the corresponding
water delivery strategies are different for some elements. It should
be recalled that the difference between the two models is the unit
loss rate assumed for the ditch sector LCC,1. In Model I, LCC,1 is
assumed to be lined and in Model II, unlined.

From Figures 16 and 17, it can be seen that the major difference
in strategies centers about ditch sectors LCC,1 and LGW,1. In Model I,
the sector LCC,1 has a lower loss rate than even the river, and can
supply six reservoirs (RR, BH, RL, LP, LL and WR) and seven ditch
sectors (LCC,1; LCC,2; LCC,3; PL; L&W,2; LGW,3; and G#2,2). To
minimize the system losses in Model I it is advantageous then to divert
as much water as possible into LCC,1. This is evidenced in Figure 16,

and is done regardless of the number of time periods in the analysis.
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Table XxVI

Results from Example Model [ for Optimal Water
Delivery Strategies in Time Period 1

Number of Time Periods in Anslysis

Element Index 1 2 3

PVALC, Inflow 1 1273 1273 1273
LC2, Inflow 2 1131 217 1131
1£C,1, Inflow 3 36000 36000 36000
" 1€C,2, Inflow 4 5532 5570 6936
1£C,3, Inflow 5 1263 1263 1263
1£C,3, Outflow 5 0 0 0

PL, Inflow s 649 649 649
PL, Outflow - 6 0o 0 0

L&, 1, Inflow 7 2126 2164 3121
L&¥,2, Inflow 8 17286 17286 16868
L&, 3, Inflow 9 2163 2163 2162
15,3, Outflow 9 0 0 0

Gr2,1, Inflow 10 4288 3313 3329
G#2,2, Inflow 1 1366 1366 1
92,2, Outflow 1 0 0 0

R,6, Outflow 17 0 0 0

FC, Inflow 18 0 860 0

FC, Contents 18 3830 4677 3830
FC, Outflow 18 0 0 0

RR, Inflow 19 34464 34464 34464
RR, Contents 19 8000 8000 8000
RR, Outflow 19 27365 27365 27365
B, Inflow 20 2167 2200 3390
BH, Contents 20 2793 2826 4000
BH, Cutflow 20 1263 1263 1263
RL, Inflow 21 21833 21795 20429
RL, Contents 21 1000 1000 1000
RL, Outflov 2 21068 21030 19666
LP, Inflow 22 21068 21030 19666
LP, Contents 22 4000 4000 4000
LP, Cutflow 22 17985 17947 16586
LL, Inflow 23 798 798 798
LL, Contents 23 1000 1000 1000
LL, Outflow 23 0 0 0

WR, Inflow 24 12825 12325 11940
WR, Contents 24 18000 18000 "17620
WR, Outflow 24 0 0 0

WL, Inflow 25 2162 1216 1231
WL, Contents 25 1000 72 87

WL, Outflow 25 1366 1366 1367
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Table XVII1

Resuits from Exaaple Model 1I, for Optimal Water
Delivery Strategies in Time Period 1

Nusber of Time Periods in Analysis

Element Index 1 2 3

PVRLC, Inflow 1 1273 1273 1273
LC#2, Inflow 2 2493 1131 1131
LCC,1, Inflow 3 16123 18617 20063
LCC,2, Inflow 4 3214 5570 6936
LCC,3, Inflow S 1263 1263 1263
LCC,3, Outflow v ] 0 0

PL, Inflow 6 649 649 649
PL, Outflow 6 0 0 ]

LEW,1, Inflow 7 20381 20283 18842
L&W,2, Inflow 8 17290 17195 15777
L&W,3, Inflow 9 2166 2163 2162
L6W,3, Outflow 9 0 0 0

G62,1, Infiow 10 4288 3314 3331
G#2,2, Inflow 11 1366 1366 1367
G#2,2, Outflow 1 0 0 0

R,6, Outflow 17 0 0 0

FC, Inflow 18 1189 0 0

FC, Contents 18 5001 3830 3830
FC, Outflow 18 0 0 0

RR, Inflow 19 14183 16531 17893
RR, Contents 19 8000 8000 8000
RR, Outflow 19 7084 9433 10793
BH, Inflow 20 149 2200 3390
BH, Contents 20 800 2825 4000
BH, Outflow 20 1263 1263 1263
RL, Inflow 21 3871 3863 3858
RL, Contents 21 1000 1000 1000
RL, Outflow 21 3089 3083 3080
LP, Inflow 22 3089 3083 3080
LP, Contents 22 4000 4000 4000
LP, Outflow 22 1] 0 0

LL, Inflow 23 798 798 798
LL, Contents 23 1000 1000 1000
LL, Outflow 23 0 [} 0

WR, Inflow 24 12325 12241 10931
WR, Contents 24 18000 17917 16622
WR, Outflow 24 0 0 0

WL, Inflow 25 2162 1216 1233
WL, Contents 25 1000 73 88

WL, Outflow 25 1366 1366 . 1367
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Figure 16. Optimal Water Delivery Strategies, Model I



115

PV LC
§ |ry Lee, §
2lan v [1e,123
s [1213 (2 {10,617
a s | 20p83
L .
AR, infiow [[AR,Conteats | RR,Outtiow
Law,! 1 Jrete3 || 1 Jeooo {1 [ 7084
1 20380 2 fies3 [ 2] 0000 J 29433 ﬂ‘n
X 3[1renn {[ 3|ec00 | 3| oere
[ o2 ]| i |
1 f2483 T RL Intiow
2 (usi | 1 [3em Lec, 2
sju 2| 3063 AL 1 13214
3 | ss30 =1 2 [s370
RL, Contents 36938
+ {1000
LL, inflow JLL,Contenty Lg.owlln z‘ x A
i Jros JorJiooo Ji | o r—
2{mwe J2fwoo J2] o T30
3|8 f3fwoo 3] o = T5663
[\k "3 3080
e
FC,inflow JFC Lontents] FC,Outtion LP, latiow
1 {nae |1 Jscor | ) G2, Law,2 1_| 3089
re 2 o fafse Jzi o 1 |e208 1] 17290 2} 3083
3] o s (3830 3] o 2|3314 2] 193 3 | wses
3 | 3334 3 a1y 1P, Contenn
) 1_{4c00
WR, Inflow 2 | 4000
1 [i2s2s s T4000
2 [12244
wL _':'!1-__ S Tosst l.".m:m-
Ljasz WR,Contants
2 [1218 ; ‘naooo 21 o
s [1233 oy ii 3| o
WL Contents 3 18632
1 |t000
2113 _%\ WR Quitiow LCW,.J_‘
sTea ! g 1 {2188
2 2 | 2163
Wi, Outfiow P
T Tises 3 o 3]282 ~Tees
2 | 1nes BH, Infiow 2 | 849
. s er t |49 3] 649
Res| lnitigt | W ) __:_12‘2’:(;
Fc{a000 |12,0n0 | 1320 — )
Ar[i000 [ 8000 | 100 o aﬁ
8n|2000 |[4000 | 800
aLl2s0 |000 25 692, 2 2 {2028
weliooo [3000 | 200 Y 1368 3 14000 [
wLi2% |woo | 28 2 [136¢ BH,Outtiow
wr[e000 [18000 | 4s0 M 1 [ize3
w.[290 [1000 | %0 2 1263
3 [12¢3
Lce, 3
1 raes
2 [1263
EXPLANATION sTes
=~ Sector
Identificotion
w -Flow of
Storage In
Sector, Ac. Ft
Number of Time
Penods n Anolysis ¢ < < J J
RS Outliow 6%2,2 Ovittow L8 W,30vlive LCC.3 Owtfiod] [PL OVIiiew
1] o ) [ 7 ° ; P T o
210 CH 2] o 1] o I[2] o
3 o 31 ¢ 3] o 3] o 3| o

Figure 17. Optimal Water Delivery Strategies, Model II
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In Model II, however, LCC,1 has a higher 10s3 rate than both tﬁe
river and the sector L&§W,1 (.0583 as opposed to .0149 and .0149
respectively). The model solutions show a better strategy is to divert
water into ditch sectbf L§¥,1 for s.orage in the reservoirs LL and WR
or delivery by ditch sectofs LGW,2 and LGW,3.

Those ditch sectors with no change in delivery strategy are those
with only one ditch sector that can deliver the demand. These results
from the models are both reasonable and to be expected.

A comparison of the optimal strategies in iime period 1 according
to the number of time periods in the analysis, using either Figure 16
or 17, indicates that for some ditch sectors and reservoirs the optimal
strategy is a function of the number of time periods in the analysis.
This is also expected. Bellman's principle of optimality statos
(Hadley, 1964, p. 362):

"...we cannot have an optimal value of the objective
function for k stages unless for any Xx selected
for stage k , the value of the remaining k-1 stages
is optimal given the Xy for stage k."

The reason for the variation in optimal strategies in physical
terms, is that an optimal strategy in one time period may not store
water in a location where it is available to satisfy a future demand.
To obtain an optimal strategy throughout the period of analysis, there
mﬁst be a balance of losses in delivering the water to a reservoir.
in storing the water in a reservoir for one or more time periods, and
in delivering the water to satisfy a demand. The derivation of optimal
strategies for each time period independently of the others, while

yielding the absolute minimum system losses and unrequired system
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outflows, does not guarantee all demands can be met in the future
because in minimizing system losses, surplus watér.in early time periods
may be stored in reservoirs that cannot supply areas where a water
deficiency exists in later time periods.

As stated, solving for the optimal water delivery strategy for a
single time period, using only knowledge of events to occur in that cime
period, will yield the absolute minimum value of the objective function.
When more than ome time period is used in an analysis, the value of
the objective function for the time period of interest is required to
increase if the strategy is changed to satisfy the additional conditions
imposed by those additional time periods. The first column of numbers
in Table XVIII exhibits the values of the objective functions resulting
from the optimal water delivery strategies for time period 1 of Models
I and II, respectively, according to the number of time periods in
the analysis. As expected, there is some additional system loss
incurred in time period 1 to ensure that the demands in time periods
2 and 3 can be satisfied. Again, these results are reasonable and to
be expected.

Finally, in both Figures 16 and 17, it can be seen that the outflows
from the ditch sectors R,6; G#2,2; L&W,3; LCC,3 and PL are all zoro
regardless of th: number of time periods in the analysis, even though
the system inflow is 31,100 ac-ft greater than the demand in time period
1. This occurs because the system has adequate storage to retain all of
the excess water and because the objective function specifies that the

uniequired system outflow is to be minimized.
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- Table' XVIII-

" Values' of the ‘Objective Functions at the Optimal Solutions, Nonoptimal
Soluticns and Comparicons of the Two for Models I and Im .

Value of
Time Value of Objective
Periods Objective Function for :
in Function for ~ Nonoptimal ' Nonoptimal
‘Analysis Optimal Solution Solution Ratio: Uﬁtimai
1 5,278 38,642 7.32
Model I - 2 5,296 22,450 O 4.24
' 3 5,307 17,104 3,22
1 ] 5,977 : 38,417 6.43
Model II 2 . 6,052 26,548 S 4,39
3 6,072 6,422 1.06

To provide a comparison of an alternate, but nonoptimal solution
to the problem with the optimal solutions exhibited in Tables XVI and
XVII and ﬁigures 16 and 17, the first feasible, but nonoptimal, sélution
examined by the computer was pripted. Although not necessarily the
worst'of all possible feasible solutions to the problem, tﬁe first
feasible‘solution is the worst solution examined by thevcomputer. These
results are listed in Table XIX, for Model I, and in Table XX for Model
IT, and shown in Figures 18 and 19. Also contained in Table XVIII is
a comparison‘of the values of the objective function for time period 1
fbr both the optimal solutions and the nonoptimal solutions. It can be
seen that éﬁnsiderable water can be saved if proper management is

used in system operations.
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In progressing from feasible, but nonoptimal, solutions such as
those shown in Tables XIX and XX, to the optimal solutions, such as
those shown in Taﬁles XVI and XVII, decisions are made by the computer
not only to store water in reservoirs, but to store it in the reservoirs

with the least system losses.

Practical Applications

It has already been stated in Chapter III that the power of the
simulation model lies in its use with programming techniques to derive
optimal water delivery strategies that satisfy given demands. Toward
this end, the model can provide a preseason analysis for determining
how much of the demand on a system can be satisfied during the
irrigating season, based on forecasts of the supply available to the
system. The object of such an analysis is to find the maximum amount
of the demand that can bq satisfied during the season, not to determine
the delivery strategies that should be used during.the season.

This consists of looking for the last increment of demand that
yields a feasible solution. If all demands cannot be satisfied, a
legal policy is required to specify those demands that are to be
satisfied and those demands that are not.

With this assistance, a farmer will have better estimztus of the
volume and time distribution of his water supply. However, it should
be expected that more than one preseason analysis will be required as
the irrigating season approaches and forecasts of the supplies and
demands become more accurate.

A logical extension of the preseason analysis, and the use for

shich the model was derived, is the application of the model as a tool
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Table XIX

Results from Bxample Model I, for Nonoptimsl Water
Delivory Strategies in Time Period 1

Mumber of Time Periods in Analysis

Blement Indey 1 2 3

PVELC, Inflow 1 1273 1273 1273
ce2, Inflow 2 1131 10636 10636
LCC,1, Inflow 3 21589 9706 22188
1£C,2, Inflow 4 21129 5570 13049
10C,3, Inflow s 11524 1263 1248
1CC,3, Outflow 3 8123 0 0

PL, Inflow 6 6030 649 6000
PL, Outflow [ 4120 [] 4120
LeW,1, Inflow 7 21496 20984 14058
Lew,2, Inflow 8 19393 18649 8722
L, 3, Inflow 9 17000 15748 4724
LeW, 3, Outflow 9 10269 9389 1774
G#2,1, Inflow 10 2061 2061 2061
Gr2,2, Inflow 1 $460 3007 5328
GF2,2, Outflow 1 3013 5457 2879
R,6, Outflow 17 0 0 3685
FC, Inflow 18 0 8203 2293
FC, Contents 18 1320 12000 12000
FC, Outflow 18 2547 [] 0

RR, Inflow 19 20268 8561 20857
RR, Contents 19 100 3924 8000
RR, Outflow 19 21129 5570 13759
BH, Inflow 20 10397 2200 3362
BH, Contents 20 800 2826 4000
BH, Outflow 20 11524 1263 1248
RL, Inflow 21 0 0 710
Ry, Contents 21 263 242 954
RL, Outflow 21 0 0 []

1P, Inflow a2 0 [] []

LP, Contents 22 200 200 981
LP, Outflow 22 814 774 0

LL, Inflow 23 - 0 798 5127
LL, Contents 23 25 1000 25
LL, Outflow 23 193 0 5320
WR, Inflow 24 0 0 0

WR, Contents 24 450 450 ' 8§52
WR, Outflow 24 5460 5457 5328
WL, Inflow 25 0 0 0

WL, Contents 25 218 218 218

WL, Outflow 25 0 0 0
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Table Xx

Results from Example Model II, for Nonoptimal Water
Delivery Strategies in Time Period 1

Number of Time Perfods in Analysis

Element Index § 2 3

PVALC, Inflow 1 1273 1273 1273
1092, Inflow 2 131 10636 4960
1£C,1, Inflow s 21628 9161 15965
1£C,2, Inflow 4 20228 8488 6936
LCC,3, Inflow S 10740 1256 1263
1£C, 3, Outflow 3 7503 0 0

PL, Inflow 6 6000 3239 649
PL, Outflow 6 4120 1994 0

LV, 1, Inflow 7 21488 21535 25808
14N,2, Inflow 8 19993 20001 18289
AN, 3, Inflow 9 17000 17000 2162
14,3, Outflow 9 10268 10255 0

62,1, Inflow 10 2061 2061 2061
62,2, Inflow 11 5460 5460 1367
G#2,2, Outflow 1 3013 s0138 0

R,6, Outflow 17 0 0 1649
FC, Inflow 18 0 8208 3340
FC, Contents 18 1320 12000 na
FC, Outflow 18 2547 0 0
R, Inflow 19 19367 7627 14038
RR, Contents 19 100 100 8000
R, Outflow 19 20228 8488 6936
B, Inflow 20 o613 2152 3390
M, Contents 20 800 2791 ' 4000
M, Outflow 20 10740 1256 1263
RL, Inflow 21 0 0 0

RL, Contents 21 247 239 238
RL, Outflow 2 0 0 0

LP, Inflow 22 0 0 0

LP, Contents 22 200 200 966
1P, Outflow 22 812 781 0

L, Inflow 23 0 0 5142
LL, Contents 23 25 218 2
LL, Outflow 2 103 0 (1113
"R, Inflow 2 0 0 13254
WR, Contents 2 450 450 17569
¥R, Outflow 24 5460 5460 1367
WL, Inflow 25 0 0 °

WL, Contents 25 218 218 220

WL, Outflow a5 0 0 0
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Figure 18. Nonoptimal Water Delivery Strategies, Model I
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Figure 19. Nonoptimal Water Delivery Strategies, Model II
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for finding optimal water delivery strategies during an irrigation
season. This use is illustrated in the example Models I and II.

The procedure consists of solving for the optimal delivery
strategy for each time period of the season, coasidering the distribu-
tions of the inflows and the demands in future time periods. An
accou ting procedure is required for all time periods following the
first so that return flows are properly considered and the problem
size is reduced as the remaining irrigation season beccmes shorter.
For the linearized model, this consists of programming the following

matrix equation of the form of equation (5-30):

A 0 o | [z ]
t’t . o ] xt
At+1,t At+1,t+1 e 0 xt+1 =
. . . . . b1

Ae  Ares R M) '
Dt,l . e Dt,t 0 e .. 0 bt
Dt+1.1 e Dt+1.t Desr,ee1 * * 0 b.s1 (6-17)
{P%,l vt DT.t DT,t+1 e DT,T LPT

_ 1
Aol Az cc At X
Mear,1 Beer,2 ¢ 0t Ae,e-1| | %2
A Az e | [

for the derivation of a water delivery strategy in the tth

time period.
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There is no restric'tio‘n that the time fae‘riods used in the model
must be of equal length, but care must be exercised in expressing loss
and return fiow functions if the irrigation seasoh is divided into
time periods of unequal léngth. If the ditch sectors have high capa-
cities, however, the assumption that channel storage is negligible may

not be valid wiien very short time periods are assumed.
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"Chapter VII
SUMMARY AND CONCLUSIONS

Persons using surface irrigation systems are major consumers of
- water in the United States, and the demand for irrigation water is
continually increasing. To meet present and projected demands, new
sources of supply must be sought. An alternative to the construction
of new facilities such as reservoirs, for tappiﬁg undeveloped supplies,
is the reclamation of water wasted through evaporation, transpiration
and percolation from the structures that compose a surface irrigation
water delivery system.

There are two methods that can be used to reclaim wasted water:
improvement of the structures that compose a system, and improvement
of the irrigation water delivery management. The improvement of the
water delivery management is particularly attractive if a system is
composed of several reservoirs and interconnecting ditches that allow
alternate routes for the delivery of water to satisfy some of the
demands on a system.

In this study, a nonlinear model has beon developed to simulate
the events that occur in an irrigation system. These events are
inflows, outflows, losses, return flows, demands and storage. It
was shbwn ;hét any interconnecting irrigation system can be described
by threé elements: reaches of ditches, called ditch sectors; junctions
of ditches, called nodes; and reservoirs. The events ditch sectors
were assumed to experience were inflows, outflows, losses, return
flows and demands. The events reservoirs were assumed to experience

were inflows, outflows, losses, return flows, demands and storage.
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The events nodes were assumed to experience were inflows and outflows
only. Using these elements to describe a system aliows any system
to be modeled to any desired degree of refinement.

After the derivation of the nonlinear simulation model was
completed, the model was linked to nonlinear programming so that
optimal results could be obtained. The objective chosen for the
optimization was a resource conservation objective, to minimize
system loss and unrequired system outflow:

The mathematical functions that describe the lusses and return
flows of a system in a nonlinear model are both highly particilar to
the system and difficult to obtain. Therefore, linear approximations
of the loss and return flow functions were derived and the substitu-
tion of these approximations into the equations of the nonlinear
simulation model yielded a linearized simulation model. This linearized
simulation model was then linked to linear programming so that optimal
results could be obtained. The objective of minimizing the system loss
and unrequired system outflow, expressed for the nonlinear model, was
also used in the linear programming model. The ability to use linear
programming is advantageous because linear programming routines for
computers are more readily available than nonlinear programming computer
routines.

Using the linearized simulation model, two example models were
constructed for a represe:.tative system and used to obtain optimal
water delivery strategies under various conditions. The available data
were not adequate to define the model parameters, so a majority of

the parameters were estimated.



128

The results obtained from the linear models indicate an optimal
water’' delivery strategy, for a particular time period, is highly
dependent on the number of future time periods included in the analysis
and that the modification of even a single structure in a system
such as lining a ditch to reduce seepage, can markedly affect optimal
strategies. These fesults, concerning the influences of future time
periods and system modifications, are reasonable and show the model
performs its purpose well. Because of the lack of adequate data,
no comparisons of the optimal strategies determined by the model and
the strategies used in practice could be made.

The model developed in the study, in either its nonlinear form
or its linear form, is designed to be calibrated for a particular
system before the model is used. Therefore, it is imperative that
data are available to calibrate the model. If data are not available,
the model cannot be used with any degree of reliability. If a data
collection program is anticipated, the model itself indicates those
data that are important. They are the inflows to and outflows from
the various ditch sectors and reservoirs composing the system. The
exact procedure for obtaining the loss and return flow functions is
not clear at this time, but some suggestions are presented in
Appendix C.

The simulation model, developed in this study, has a number of
very practical applications. It can be used as a tool to analyze a
system for a great number of problems, such as the best locations for
system improvement. However, the most important use of the simulation

model is in conjunction with mathematical optimization techniques to
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minimize losses in delivering water to system users. Any interval
of time may be used in the model, but time periods of at least one
week are suggested.

By using forecasts of system inflows and demands throughout an
irrigation season, the model provides a tool for increasing the
efficiency of a water delivery system through an entire season, under
the specification that certain demands must be_met.. The model includes
the effects of return flows, and recognizes the iuportance of these
flows as water in temporary storage. The efficiency obtained in any
solution to the model, using forecasts of events to come, is directly
related to the accuracy of the forecasts and continual updating is
necessary to obtain a maximum efficiency. The structure of the model
under conditions where updating is required is shown in the study.

As developed in the study, the model simulates one facet of
irrigation water management, that of minimum loss water delivery.
There are several improvements, or extensions, that are immediately
evident, such as the inclusion of legal constraints. Some of these
improvements are briefly discussed in Appendix C. Each improvement
or extension will increase the detail to which a system can be modeled,
with a resulting increase in the complexity of the model. But the
increased detail and complexity do not necessarily imply increased
reliability of the results. Therefore, any model results should not
be taken as absolute, but should be tempered with engineering judge-
ment. The model is simply a tool for the irrigation system manager.

In the context of managing a total water resnurce for irrigation,
the model developed here is a first but necessary step. With further

developments toward including the institutional arrangements that affect
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ﬁéigr‘mgpagémant,asuch,as,the legal criteria, the end result will be
”affééhﬂidue,fbr the'intggrated management and operation of irrigation

systems for water resource conservation.
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APPENDIX A
RELATION OF DERIVED MODEL T NETWORK FLOW MODELS

In this appendix it is shown that the model derived in the study is
equivalent to network models (Hadley, 1962, Ch. 10), and that the de-
rived model is the more desirable. The derived model accounts for all
sources and sinks of water in all elements, the ditch sectors, the
reservoirs, and the nodes. Network flow models accouﬁt for all sources
and sinks only at the nodes, Qith minimum capacity constraints explicitly
stated to ensure demands are delivered down the proper legs of the
network.

Consider the following network of ditch sectors:

Figure A-1. Network of Ditch Sectors

in which the ditch sectors, AB, AD, DB, BC and DC, each experience
losses, LAB’ LAD’ IDB’ LBC and LDC; return flows, RAB’ RAD’ RDB
RBC’ and RDC; and demands, DAB’ DAD’ DDB’ DBC’ and DDC’ respec-

tively. The symbols I and ¢ denote the system inflow and outflow.
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Applying the continuity equation to each ditch sector and each node,

the following definitions are obtained - for the ditch sectors,

Along AB, Q,, - Lyp * Rag = Dpp © Qg (A-1)

Along AD, Qp = Lap * Rap = Dap = Qg (A-2)

Aleng DB, Qpp - Lo+ Rpg = Dpg = Qp (A-3)

Along BC, Q. - Lgc + Rye = Dpe = Qg (A-4)

Along DC, Q. - Lpc * Ry = Dpe = %p (A-5)
and for the nodes

At A, T-Q - Qp = 0 (A-6)

At B, Qpy *+ Qpp - Qg =0 (A-7)

At C, Qp+Qp-9¢=0 (A-8)

At D, Qpp - Qpp - Q=0 (A-9)
where

QAB is the outflow from node A directed toward node B

QAD is the outflow from node A directed toward node D

QDB is the outflow from node D directed toward node B
QBC is the »utflow from node B directed toward node C
QDC is the outflow from node D directed toward node C
is the inflow to node B from node A
QDA is the inflow to node D from node A
is the inflow to node B from node D
QCB is the inflow to node C from node B
and QCD is the inflow to node C from node D.
To account for all sources and sinks of water at the nodes, as in a
network model, the ditch sector equations, (A-1) through (A-5), are sub-
stituted into the node equations, (A-6) through (A-9). The best decision

variables for the simulation of an irrigation water delivery system are
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those that represent the headgate settings on the various ditch sectors,
Ups Up: Qps Qe and Qy.. Therefore, in substituting the ditch
sector equations into the node equations, the variables QBA’ QDA’ QBD’

QCB and QCD are eliminated. These substitutions yield

At A, T1-Qp - Q= 0 (A-10)
At B, Qg - Lyg* Ryg - Dyp+ Qpp - Lyp + Rpp

- DDB - QBC =0 (A-11)
At €, Que - Lpo ¢ Ryg - Do+ Qpo - Loc + R,

-Dpc-¢=0 (A-12)
At D, Qp - Lap * Rap ~Pap - Qg = Y = O (A-13)

and rearranging yields

At A, Qp Q=T (A-14)
At B,  Qup - Lpg* Ryg * Qpp = Lpp * Rpp

- Qgc = Dap * Dpp (A-15)
At €, Qpp - Lpg * Ry + Qe - Lye * Rye

-¢ = DBC + DDC (A-16)
At D, Qup - Lyp * Rap - Qpp = Q¢ = Dy - (A-17)

These equations, (A-14) through (A-17), preserve continuity for
the water delivered by the system, but in the substitution process the
requirement that demand volumes must be delivered down the proper ditch
sector has been lost. In essence, this model places the demands at the
nodes,

To satisfy the requirement that the demands must be delivered down
the proper ditch sector, explicit minimum capacity restrictions must be
stated:

L

Along AB, Q (A-18)

4B ~ UaB * Rap 2 Dpp
Along AD, QAD - LAD + RAD i-DAD (A-19)
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Along DB, QDB - LDB + RDB Z-DDB (A-20)
Along BD, QBC - LBC + RBC Z-DBC (A-21)
Along DC, QDC - LDC + RDC Z-DDC . (A-22)

Equations (A-14) through (A-22) are a proper formulation of the
problem as a network model. Equations (A-14) through (A-19) account
for the water flowing through the system, so that continuity is main-
tained, and equations (A-18) through (A-22) require that demands be
delivered down the proper ditch sectors. This model consists of nine
equations and eleven decision variables, after surplus variables are
added to convert the minimum capacity restrictions to equalities.

Adding the surplus variables, V , to equations (A-18) through

(A-22), the following equations are obtained,

Along AB, QAB - LAB + RAB - VAB = DAB (A-23)
Along AD, QAD - LAD + RAD - VAD = DAD (A-24)
Along DB, Qpp - Lpy + Rpp = Vpp = Dpp (A-25)
Along BC, QBC - LBC + RBC - VBc = DBC (A-26)
Along DC, Qpe - Lpo + Rpe = Vpo = Do . (A-27)

The substitution of these equations into equations (A-14) through (A-17)

yields
At A, Qp * Qg = I (A-28)
At B, VAB + VDB - QBc =0 (A-29)
At C, Vpe * Vpe = ¢ =0 (A-30)
At D, Vap ~ g - Qe =0 - (A-31)

The equations, (A-23) through (A-31), contain both the requirement
that the demands must be delivered down the proper ditch sector and
account for all water in the system. They result in exactly the model

derived in the study. Further, recognition that



Vag = QG (A-32)
Vap = Qa (A-33)
Vop = Qp (A-34)
Ve = Qp (A-35)
Vpe = p (A-36)

reveals equations (A-23) through (A-31) are exactly the same as the
definitions, equations (A-1) through (A-9), on which the network flow
model, eduations (A-14) through (A-22), are based.

Further examination of equations (A-23) through (A-31) reveals the
model to be composed of nine equations and eleven decision variables,
exactly the same problem size as the network flow model. Thus, no
reduction in problem size is gained by using the network flow model.

There are additional advantages of using the derived model rather
than a network model: (1) the requirement that a demand must be
carried down the proper ditch sector is implicit and cannot be
inadvertently neglected; (2) two flow values in each ditch sector are
available for use in the expression of loss and return flow functions,
the volume of water entering the sector and the volume of water leaving
the sector; (3) the relations in the model are equivalent to the de-
finitions on which a standard network formulation is based, and the
algebra necessary to obtain a network formulation is eliminated as one
possible source of error in problem formulation; and, (4) all ditch
sectors are modeled with equations of the same form, allowing for

easier problem formulation.

166
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APPENDIX B

EXAMPLE LINEARIZED MODELS FOR A SIMPLE IRRIGATION SYSTEM

Applying the linearized model to a simple system illustrates and
clarifies the developments in Chapter V because the results of an ap-
Plication can be seen without the aid of the model. Such an application
is illustrated in the following text.

A simple irrigation system is illustrated in PFigure B-1.

System Inflow = I'
=*=,f
QY Q}
Q3
t
t Vb 1
Vs .V
sy —»/ \—=s!,

System Outflow = Qg

Figure B-1 Simple System

Four linear models are developed for this system: a single time period
model with return flows excluded, a single time period model with return
flows included, a two time period model with return flows excluded, and

@ two time period model with return flows included. General notation is
used for all constants in the problem. The A and D matrices in their
partitioned forms and the x and b vectors also in their partitioned

form are presented.
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The first step in simulating the simple system is to describe it
by its elements. From Figure B-1, we can see there are three ditch
sectors, one reservoir, and one node. Thus, M=3, N=1 and P = 1.
To simulate the system, three ditch sector mass balances, one reservoir
mass balance, and one nodal mass balance must be written for each time
period. In all four linear models the node definition is used for
writing the reservoir mass balance, because there are three sources
of inflow, and the minimum capacity restrictions of all elements are
assumed to be the volume of water necessary to deliver the demand,

thereby eliminating the need to explicitly state them.

Single Time Period with Return Flows Excluded

From equation (5-27) the ditch sector mass balances are:

111, 1 1111 _ 1

d-am) @ - A+bmpVy =D (B-1)
1111 111,01 _ o1 _
1111 1111 _ 1

(1 - a}yas)Q; - (1 + byyzs)Vy = D3 . (B-3)

The superscript is both t and T because only one time period is
examined.
The nodal mass balance is written according to equation (4-4a)

because it is a point of system inflow. The set K, is Kl = {1,2,3},

1
because all ditch sectors receive water from the node. The nodal mass

balance is written

1 1 1 1
Ql + Q2 + Q3 = Il (8-4)
in which Ii is the system inflow to the node.
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For the reservoir the set J4 is J, = {1,2,3} because all ditch
sectors empty into the reservoir. The set K, is’ k4 = {5} because of
the outflow from the system, Q;. Using equation (5-28), the reservoir

mass balance can be written

111 111,01 o1l gl
Vi #Va # V3 - (1 +byvy,)S, - Qg =Dy + 8y
111..0
- (1 = 34744)84 (B'S)

in which Qé is the unrequired system outflow, and 82 is the initial
reservoir storage, presumed known.

The equations used to define the capacity restrictions are the
modified equations (6-1) and (6-2), defined in Chapter VI. Denoting the
maximum capacities of the three ditch sectors and the reservoir by

and S: » Trespectively, the maximum capacity

1
q QG QG
max max max max

restrictions are,

1.1
Q; < Q (B-6)
129
Q< Q (8-7)
max
11
Q: < Q (B-8)
3 = Spax
1l
S4 < S4max . (B-9)

The unrequired system outflow, Qé, is assumed to be unrestricted.
Converting the maximum capacity inequalities into equalities
requires the addition of a slack variable, x§, to each inequality.

Rewriting, we obtain

Qp + X} = Q (8-10)
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Q; + x; = Q; (8-11)
max

Q; + x; = Q; (B-12)
max

si + x: = s: i (B-13)
max

Equations (B-1), (B-2), (B-3), (B-4), (B-5), (B-10), (8-11), (B-12),
and (B-13) can be written as a matrix equation of the form of equation

(2-5):
AX=b° . (2-5)

The elements of the A matrix and the x and b vectors are listed in
Exhibits 1 and II. Since there are twelve decision variables and only
nine rows in the A matrix, there exists more than one solution to the
problem. In fact, there are 220 possible optimal solutions; the best of
these must be s€lected according to the objective function.

The same objective function is used here as was used for the

example models in the study, Chapter VI. Mathematically the objective

function is
_ 1111 1111 1.11.1 1111 1.11.,1
MIN Z = 217119 + 257250 * a3¥33Q5 *+ byvu,S, + bivy V)
1.11.,1 1.11.1 1
* ByYaaVy * bavaslz + Qg (B-14)
in which the sets 54 and H4 for the unrequired system outflows, are
empty and H4 = {5}, respectively. This completes the linearized model

constructior {ur the simplest model, the model for a single time period

with return flows excluded.



111
(l-alYll)

0

EXHIBIT I:

0 0 0 0 -(blyD 0
(1-a3v35) 0 0 0 0 -(1+b;y;;)
0 (1-ajvsy) 0 0 0 0
0 0 -(1+biy::) -1 1 1
1 1 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

A Matrix, Single Time Period Example, Excluding Return Flows.

-(1+b

111
3733

(=]

8st
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1
Q
1
Q,
1 1 ]
Q Dy
1 1
55 D
1 1
Q Dy
1 1 11,0 .1
! Dy = (1-a4744)5, + 8,
1 1
_ Va _ L
X = b =
1 1
\ Q
3. Lya
X] Q!
max
1 1
X Q
2 3nax
X3 s,
| max i
1
_X4J

EXHIBIT II: X and b Vectors, Single Time Period Example, Excluding
Return Flows. v
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Single Time Pefiod with Réturn Flows Included

The mode; for a single time period that includes return flows is
similar to the previous mcdel. The nodalvmass balances and the capa-
city constraints remain the same, but the ditch sector and reservoir
mass balances éﬁange; the changes include more of the term: ' equations
(5-27) and (5-28).

For the ditch sectors the mass balances become:

1111 . 1111 . 1111, .11il 1111 . 1111
(1-3;v1;)Q) + 87150, * 837385 + byYyySy - (+byvyIV) + bpvy 5V

11,1 11,1 11,1 11,1 1.11.0

1.1
3Vz = (1-07))D; = a;,D) = aj3Dy - €48, - 84¥45, (B-15)

11
+ bsyl

for ditch sector 1;

1111 111,01 1111 . 1111 . .1 111 111..1
8)Y57Q) + (1-35755)Q) * 83753Q5 *+ byvsSy + b1v5)V) - (14bgvo0) V5

111 111

1111 111 11,1
Vé = - a21D1 + (l-uzz)D2 - 0.0

*bvo3

111.0
2303 = 2484 ~ Y2454 (B-16)

for ditch sector 2; and

111.1 1111

111 1111
3;v51Q * 8;¥350;

1 L1111 1111
+ (1-35733)Q + byYzQy + byvy V) + DyvaoVy

1.11,,1 111 11 11,1 11,1 0

- S, . ) 111 _
- (1#b3Ygg)Vy = - ogyDy - agDy + (LoaggdDg - C3ufy - B4¥5,S  (B-17)

for ditch sector 3. The reservoir mass balance equation becomes

1111 1111 . 1111 111,11 111..1
a171Q) *+ 857459 * 837,30 - (L+byv, )5, - Qg + (1+byy, V)

111 111 11,1 11.1 11

1 1_ _ 1 11, 1
+ (L+byyyp)Vy + (1 + byy,5)Vg = - ay D) - ool - aygDy + (1-0,,)0,

111..0 .1
- (1 - ay7)8, + 8 - (B-18)
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The matrix equation describing these constraints is defined by

equation (2-6):

AX=Db . (2-6)
The elements of the A and D matrices and the x and b vectors are
listed in Exhibits III, 1V and V.
| The objective function for minimizing system losses and unrequired

system outflows conjunctively is

111 111 111 111 1 11 1 11 111

(a)v]) - 81v5) - 873 - 1*41)Q1 + (85755 - 8575 - 3573

MIN Z = 1721

111 111 111 111 11
- a2Y42)Q2 *+ (agvz3 - 83Yy3 - 83753 - 3*43)Q3

111,111 111,11 111 g1l 1011
+ (Vg - bavyy - Bavay - 4”34)S + (byvyy - Byvay - byvg - Y41)"1
111 111 111 b1 111 111 111
+ (byvpp = bavy; - byYsg, - z)V + (bzvzz = bzvyz = b3Ypg
L1 1101
bavyg)Vs + Q. (B-19)

This completes the model construction for both the single time period

models,

Two Time Periods with Return Flows Excluded

For the example of two time periods with return flows excluded,

the constraint matrix equation (2-5) is partitioned into

A A12 x1 b1

11

Ay B

(B-20)

ol
(=

2 2



aaldh L ol o casbih ohlh b
R N L T T
RN N - TV S T
A An Al aeddh o aebih aepip anhip
1 1 1 0 c 0 0 0
1 0 0 0 0 0] 0 0
0 1 0 0 ¢ 0 0 0
0] 0 1 0 0 0 0 0
|0 0 0 1 0 0 0 0

EXHIBIT III: A Matrix, Single Time Period Example, Including Return Flows.

o o
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(l'all)

11
21

11
31

-

11
41

-

EXHIBIT IV:

! s
12 13
(-ap) -3
gy Gog)
il s
42 43
0 )
0 0
0 0
0 0
0 0

11
14

-

11
24

-

11
34

-

11

(1 '0'44)

R
T I
B o
+1 -(l—a:Y:i) 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

D Matrix, Single Time Period Example, Including Return Flows.

| e

£91
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- e
1
Q D
1 1
Q, D,
1 1
Q D,
1 1
S4 Dy
1 1
Qs B4
1 0
vl 55
- 1 - 1
X - Vz b - Il
1 1
v Q
3 1
1
xi Q
max
1 1
X Q
2 3
xé si
L max
1
X4

EXHIBIT V: X and b Vectors, Single Time Period Example, Including
Return Flows.
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where Alz is null. This yields

(B-21)

>
>
ted

[=x

The equations comprising the first row of the partitioned matrix equation
(B-21), Ay ii = Fl’ are exactly the same as those derived for the
single time period model with return flows neglected, so they will not
be repeated here; they are, however, included in the listing of the
matrix elements, Exhibits VI and VII,

Writing the mass balance equations and capacity restrictions for
the second time period as a matrix equation yields the second row of

X, + A

A21 29%y = b2' The partitioning of this equation

is based on the superscripts of the variables in the mass balance

equation (B-21),

equations. Because return flows are not included, the A submatrix

21
contains only one non-zero element. This results because neglecting
return flows leaves only the volume of water in the reservoir at the
end of time period 1 that can affect time period 2.

The ditch sector mass balances for the second time period of this

problem are: for ditch sector 1,

2 22, .2 2.22,.2 2 .
(l-alyu)Ql - (1 + blyn)v1 = D1 H (B-22)
for ditch sector 2,
2.22. 2 2.22,.,2 _ 2 .
(l-azyzz)Q2 - (1 + szzz)V2 = D2 ; (B-23)

and, for ditch sector 3,
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2.22, 2 2.22,.2 _ 2 _
a-a522)¢% - a + v22hvE =0 . (E-24)
The reservoir mass balance is
2 22,1 2222 2 ..2..2. .2 2. 2
(1-84744)Sy - (1 + byysa)Sy - Qg + Vy + Vy + Vy =Dy + 8, ,  (B-25)

and the nodal mass balance is

Crded=1 . (B-26)

With the addition of the slack variables, the capacity constraints are

2 2 2

Qs + X, =Q (B-27)
1 1 1 ax
2 2 _ 2

Qz + xz = szax (8'28)
2

QG+ x%=q} (8-29)

max
and

2 2 _ 2

S4 +.x4 = S4max . (B-30)

These equations form the second row of the partitioned constraint

A and A sub-

11° 21° 22
Eé, Ei, and 5} subvectors are listed in

matrix equation (B-21). The elements of the A
matrices and the Ei,
Exhibits VI, VII, VIII, IX and X.

The objective function for minimizing system losses and unrequired

system outflows for this case is



111

(l‘alyll)

0

EXHIBIT Vi:

111,

(1 -32Y221

(1-a

111,
3733

-(1+b

111,
a¥aa

]
ot

-(1+b

111,
1"

0

-(1+b

111,
2722

0

A11 Submatrix, Two Time Period Example, Excluding Return Flows.

-(1+b

111
3733

o

L91
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1
Q
1
Q
1 1
Q D)
1 1
s o}
1 1
QG D3
111..0 . .1
v D, - (1-3,¥44)54 * B4
AN o=,
va =1
1 1
Vs leax
1
1 1
Q
X 3 ax
1 1
1
-&—

EXHIBIT VII: X, and b, Subvectors, Two Time Period Example,
Excluding Return Flows.




_o 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0 0
0 0 0 (1-a5v33) 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

EXHIBIT VIII: A21 Submatrix, Two Time Period Example, Excluding Return Flows.
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(l-alyll'

EXHIBIT IX:

0 0 0
(1-22v52) 0 0

0 (l-ajvsy) 0

0 0 -(1+b2y22)

1 1 0

0 0 0

1 0 0

0 1 0

0 0 1

A

22

Submatrix, Two Time Period Example, Excluding Return Flows.

0

-(1+b

2 22y
111

-(1+b

2,22y
2722

0

-(1+b

2 22
3733

)

o

0LT
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9
% L
% 5
7 3
Qg Di + Bi
v 5

X = v; B, = Qimax
Vi %

max

: i
xg _Qimax i
X
%

EXHIBIT X: §é and 5} Subvectors, Two Time Period Example, Excluding
Return Flows.
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1111 1111 . 111 . A111 . 2221
MIN 2 = a)v;Q) *+ 8,Y55Q * 857330 + (vyy + 2474405,

2 2,22.2

1111
+ 357220

1111
1111

1111 . 2 22
a¥2oVa *+ b

Vv, +

+b 3¥33's * 47114

+b

2.22.2

2222 . .2.222
+ a3Y330Q;

V, +b A\

S 2¥22%2 * P3¥33V3

2222 . .2.222
+ byYasSy DIV D

N (8-31)

thus completing the construction of the two time period model with

return flow is excluded.

Two Time Periods with Return Flows Included

The linearized model for two time periods with return flows
included is the most complicated of the four models presented in this
Appendix. The matrix equation from equation (5-30) defining the

constraints 1is

o

D 0
. (B-32)

A

21 P2 o "2 P2

The A}, and Dy submatrices and the ii and 5} subvectors are

exactly the same as the A and D matrices and X and b vectors de-
fined previously for the single time period model with return flows
included, so the equations will not be repeated; however, the elements
are listed in Exhibits XI, XII and XIII.

The A A22’ 021 and D22 submatrices and the X, and o

21° 2
subvectors, in the second row of the partitioned matrix equation (B-32),
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Ayy ¥ % Ay %y =Dy By #+ D)y By,
are obtained by writing the ditch sector mass balances; the reservoir
mass balance, the nodal mass balance and the maximum capacity con-
straints for the model.

The ditch sector mass balances are:

10 . 1211 1211 . 121 . 2221  .121.1
14 * 85715Q + agv QG+ (byvy, + ayv,)S, + by V)

* byvigVy * bivig¥ + (1 - avipQ] + apvis} + e3risa

+ bpviesh - (1 oh iV ¢ oINS+ b3 VS = - al0) - apphy
it - lld - R 0 - o - o

- 73D - agqD} - cla8y

for ditch sector 1;

1211 . 1211 . 1210 . 121 . 2221 .12L1
31210 * 37250 * 23vy3Q * (byvpy * 2475405, *+ bivo, V)

2.22

2 2. 2222
v Qp + (- a3¥55)Q + a3vp3Q;

+

1211 . ,121,1 . 222
bavaaYs * bavo3Vs + 2yvy;

2 1222 . .2222 211
V1 - @+ bovpp)Vy + byl = - ayD)

2.22.2 . 2.2
S4 * 0177

0472454

+

2
1

211 211 211 211 1210 222
= GyaD5 = agaDg - anaD) - CouBy - 8yY545, - 051D

22.2 222 2122 22,2
22007 - 92303 - 340y - €248y

+

1-a

for ditch sector 2; and,

(B-33)

(B-34)

(B-35)



174

e+ el L ob e el b shi
o B G o - B e i
N W - v - ik - ik - o2
ok - - - 3 e - o
o -

for ditch sector 3. The reservoir mass balance is

1211 1211 1.21.1 121 2.22..1 121,1
8171 * 85740 * agvs3Qs + (1 + byvay - 84vs)S, *+ b1Yg Yy

+

1 21,1 1.21,1 2. 22,2 2.22.2 2,222

" PaYa2'z * Pavas's * A%t 22Ye2% T 5%
I TRY S

e g - k- o2 - ol -

- aiyﬁisg - aiinf - aing - aigbg + (1 - aii)Di + Bi . (B-37)

The nodal mass balance and capacity constraints for this case are
the same as those for the two time period model where return flows are
excluded, equations (B-26), (B-27), (B-28), (B-29) and (B-30). They
will not be repeated. The elements in the submatrices and subvectors
comprising the two time period model with return flows included, All’
are shown in Exhibits

Ayps Agps Dyps Dyys Dygs Xps X5, by, and by,
X1, XII, XIII, XIV, XV, XVI, XVII, and XVIII. The A21 submatrix for

this case, Exhibit XIV, has considerably more elements than the A21
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EXHIBIT XI:
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1 0 0 0 0 0
0 0 0 0 0 0 0
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0 1 0 0 0 0
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Submatrix, Two Time Period Example, Including Return Flows.
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EXHIBIT XII:
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0 0 0 0 0 5
0 0 0 0 o o
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Submatrix, Two Time Period Exampie, Including Return Flows.
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EXHIBIT XIII: X, and b, Subvectors, Two Time Period Example,
Including Return Flows.
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EXHIBIT XIV:
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Submatrix, Two Time Period Example, Including Return Flows.
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EXHIBIT XV: A22 Submatrix, Two Time Period Example, Including Return Flows.
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EXHIBIT XVI:
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Submatrix, Two Time Period Example, Including Return Flows.
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D22 Submatrix , Two Time Period Example, Including Return Flows.
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EXHIBIT XVIII: X, . and Fé Subvectors, Two Time Period Example,
Including Return Flows.
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submatrix for the two time period model with the return flows excluded,

Exhibit VIII,

This results from the influence of earlier strategies

(the time period 1 strategy) on later strategies (the time period 2

strategy) because of the inclusion of return flows.

The objective function for minimizing system losses and unrequired

system outflows for this case is

111 111

111

1 11

121

121

1 21 1 21

MIN Z = (ajvq) - 8)Y31 - 8)¥31 = 21741 = 8111 ~ ®1¥21 © #1731 ° 017410
b - - b -
el - o o -
- e+ oblh e - ol - bl
oty B - -
et b - -l o b
b oot - ol - o -
o o ol b
b o b -
- GE R R B
- - b ol vl b - i
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'APPENDIX C
IMPROVEMENT OF ‘THE MODEL

The model presented in the study is a basic model; considerable
improvement could be made to increase its flexibility as a tool for the
management of irrigation water delivery. This appendix is devoted to
indicating the areas that need improvement.

It is the writer's opinion that thé most profitable future work
(in order of descending importance) should deal with: the derivation
of procedures to include legal and administrative restrictions in the
model; methods for deriving from field data either the coefficients of
the linear model or the nonlinear loss and return flow functions;
methods for making the model a conjunctive use model, including
application to both surface and underground sources of water; solution
algorithms that are more efficient, and methods for using the model to
find the most prof;table (water saving) locations for improving a
system through sensitivity analyses. Each of these suggestions is

examined in detail in the following sections.

Legal and Administrative Constraints

Because it is the function of a legal system to intervene only
when the supply available.to a system is less than the volume of water
needed to satisfy the demands qflthe users, the assumption made iﬁ the
example models, that no legal system was applicable, is equivalent fo
assuming the supply was always adequate to satisfy the demands.
Because the losses are at the minimum, however, solutions from the

model represent the maximum volume of water, with the available system
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inflow, that can be delivered to satisfy the demands. Any other
routing strategy would not result in the satisfaction of as much
demand.

When a supply is insufficient to méet the demands, even though
the model is applied with a minimum loss objective, there is no feasible
solution to the problem. To obtain a feasible solution, the demands
must be reduced and most operating systems have a legal :procedure to
do this in an equitable manner.

If no feasible solution can be derived for a problem using the
mode;.in this study, a legal procedure can be manually applied to the
model to reduce the demands. However, this can be a tedious and time-
consuming process.

| A more efficient procedure would be to simulate the legal
procedure with a computer program and to use the simulated procedure
in connection with the optiﬁizing water delivery model as illustrated
in Figure C-1. The solution methodology:which results is iterative:

(1) Attempt to ;olve for an optimal strategy with the initial set

of demands. If an optimal solution resuits, the legal procedure

simulation was not necessafy. If no optimal solution results, go

to step 2.

(2) Call the legal proceduré simulation to reduce the demands

and attempt to solve for an optimal strategy with the new set of

~demands. If an optimal solution results, the problem is

completed. If ho optimal solution resuits, repeat this step

until an optimal solution does result.
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Initial
Input
Optimizing No Feasible =
Water Solution Legal
Delivery Procedure
Model Modified Simulation
Demands .
Optimal
Solution

Figure C-1. Relation of System Model to Legal Model.

In the United States there are two brodd legal doctrines of water
fights: appropriations and riparian (Trelease, Bloomenthal and Geraud,
1965). Both of these doctrines treat water as property on a "here and
now" basis. The application of a multiple time period irrigation water
delivery model, such as the one developed in this study, could present
difficulties in the interpretation of either of these doctrines: in
the riparian doctrine because if does not consider the storage of water
and in the appropriations doctrine because of the timing inherent in
the reduction of the demands.

For example, if the demand for waier in a system that is governed
by .the appropriations doctrine must be reduced, which demands are to go
unsatisfied, those demands which are estimated to occur in the last time
periods of analysis, or those which are estimated to occur in earlier
time periods? The answers to these types of questions, of course, rest
with lawyers, and the necessary modifications of existing statutes rest

with the administrators and legislators of the various states.
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Loss and Return Flow Function Derivations

In the development of the linearized water delivery simulation
model, Chapter V, linear approximations were derived for the loss and
return flow functions. In the example models of Chapter VI, estimated
coefficients were used. For actual application of the linearized model
as an aid in optimum water delivery strategy determination, a procedure
for field data collection and reduction must be derived so that the
coefficients are as real as possible.

If it is initially assumed that each elemert of a system is

'independent of all other elements in the system, that is, there are no
return flows, then knowledge of the inflows, outflows, demands and
storages of each element will yield estimates of the loss coefficients,
Y;E. However, some variation in these loss coefficients should be
expected. Comparison of these variations in the loss coefficients and
the inflows, outflows, demands and storages of the other elements of
the system could provide a beginning for obtaining the returﬁ flow
coefficients. To perform these types of analyses, the data collection
techniques must be very accurate.

Once these steps have been taken, the influence of other factors
such as the environmental variables described in Chapter IV can be
included, and eventually the nonlinear loss and return flow functions
described in Chapter IV can be devzloped. The idea is to make the
simulation model as accurate as possible, even to the point of using
short-term forecasts of the environmental variables in the loss and

return flow functions.
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Conjunctive Use Model

If it is assumed that groundwater table levels are a function of
the losses and return flows from a surface water deliverv and
irrigation system, various wells in the system, and inflows from, or
outflows to, other groundwater storage basins, then it is conceptually
possible to define 'well sector" mass balances to account for the
removal of water from underground storage to satisfy surface demands.
The cost of this increased flexibility is increased complexity in the
model. Changes in the groundwater table location in the vertical
direction, will undoubtedly influence the loss and return flow functions
in the surface water delivery system, and these influences would have to
be mathematically described in a conjunctive use model.

The use of mass balances creates a '"well-oriented" groundwater
model as opposed to the 'grid-oriented" models found in the literature
(Bittinger, et.2l., 1967). This could allow larger models to be
solved. For groups of closely spaced wells, the effects could be
combined to represent a single well.

Including wells in the model would make it applicable to the
types of systems most commonly used. The Poudre system, used for the
example models, is estimated to have 1500 wells that are used for
irrigation. The objective function for a model that includes ground-
water withdrawals will reduce to the minimization of evapbration losses,
transpiration losses, and basin outflow from both surface and subsurface

sources.
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Sdlution Algorithms

The extent of a system can be described using elements is directly
a function of the solution algorithm for a given amount of computer
storage capacity. It is probable that use of the nonlinear model will
require the preparation of a computer code for the solution algorithm.
If so, the algorithm should be the most efficient possible, in terms of
information storage, to allow for the greatest possible level of
description.

Linear programming routines, for solution of the linearized model,
are more available than nonlinear programming routines. If a routine
is to be chosen that is already coded for a computer, it should allow a
maximum amount of information to be stored.

If a linear programming routine is to be developed, specialized
algorithms, such as decomposition algorithms, should be examined
closely. An even more detailed study could develop the use of non-
linear programming routines to solve large linear programming problems.
Such routines could result in greater efficiency in saving computer

storage and time (Hayman, personal communication, 1969).

System Improvement Using the Simulation Model

After a programming model has been constructed for a system,
certain analyses, called sensitivity analyses, can be made for various
purposes (Orchard-Hayes, 1968; Au and Stelson, 1969). For the derived
model, sensitivity analyses can be used to determine the effect a
change in one or more of the loss or return flow coefficients can have

on the value of the objective function.
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A particular technique that appears to hold some provise, towards
sensitivity analysis of this type, is an input-output analysis,
described by Chenery and Clark (1959) and Miernyk (1965). A cursory
examination indicates it could be of great value in designating those
ditch sectors or reservoirs that could be most profitably reconstructed

to save water.
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APPENDIX D
NOTATION

Interpretation

Matrix of coefficients for decision variables,
linear programming description.

Submatrix of partitioned A .

Matrix of coefficients for b constants, linear
programming description.

Submatrix of partitioned D .

Volume of water released from element i in time
period t to satisfy demand for water.

Volume of water released as a demand, from element
j in time period h , that is in excess of the
volume required to saturate the soil.

A set for elemeni i , the contents of which are
the indices, j , of those flows, V! , which are
system outflows. J

A set for element i , the contents of which are
the indices, j , of those flows, Qt , which are
system outflows. J

System inflow at node i in time period t .

A set for node i , the contents of which are
the indices, j , of those flows, V! , which
supply a node. J

A set for node i , the contents of which are the
indices, j , of those flows, Q% , which receive
their supply from a node. J

Measure of the volume of water lost.

Volume of water lost from a ditch sector i in
time period t as a function of the ditch sector
decision variables.

Volume of water lost from a reservoir i in time
period t as a function of the reservoir decision
variables.
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NOTATION - (Continued)

Interpretation

Volume of water lost from &n element i in time
period t .

Number of ditch sectors.
Number of reservoirs.
Number of nodes.

Measure of the volume of water transported or
stored by an element.

Inflow to an element i in time period ¢ .

Maximum capacity of element i in time period t .
Minimum capacity of element i in time period t .

Total volume of return flow to element i in time
period t .

Volume of return flow to element i in time period
t as a function of the decision variables and
demands of the model.

Volume of return flow to element i in time period
t resulting from water delivery system losses.

Volume of return flow to element i in time period
t resulting from the release of excess water from
element j in time period h .

Incremental volume of return fiow to element i in
time period t due to conveyance or storage loss
from element j in time period h .

Incremental volume of return flow to element i in
time period t due to the release of excess water
from element j in time period h .

Measure of water stored in a reservoir.

Volume of water stored in reservoir i at the end
of time period t .
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NOTATION - (Continued)

Interpretation

Maximum volume of water that can be stored in.
reservoir i at the end of time period t .

Minimum volume of water to be maintained in
reservoir i at the end of time period t .

Initial volume of water stored in reservoir i .
Number of time periods in the model.

Number of reservoirs modeled with the node
definition.

Outflow from element i in time period t .

Number of reservoirs modeled with the ditch sector
definition.

Slack or surplus variable.

Objective function values (to be muximized or
minimized). v

Weighting factor for: Q; for ditch sectors,

gt-1

i for reservoirs.

Coefficient in the A matrix, linear programming
description.

Constant in b , linear programming description.

Weighting factor for: V; for ditch sectors,

S§ for reservoirs.

Vector of constants.

Subvector of b created by partitioning of the D
matrix,

Constant in objective function, linear programming
description.

Fraction of water lost from element j in time
period h that returns to element i in time
period t .

Vector of constants in objective function, linear
programming description,
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NOTATION - (Continued)

Intexrpretation

Subvector of ¢ created by partitioning of A
and D matrices.

Fraction of excess water applied to crops, released
from element j in time period h , that returns
to all elements in the system in the remaining
(T-t+1) time periods.

Element of D matrix, linear programming description.

Irrigation application efficiency for demand.
waters released from element j in time period h .

Notation used for nonlinear objective function,
nonlinear programming description.

System loss from element i in time period t .
Index for elements.

Notation used for nonlinear constraints, nonlinear
programming description.

Fraction of excess water released from element j
in time period h that returns to element i in
time period t .

Index for time periods.

Index for elements.

Index for elemcits.

Index for elements.

Index for elements.

Total number of constraints, nonlinear and linear
programming descriptions.

Total number of decision variables, nonlinear and
linear programming descriptions.

Number of unit lengths in a ditch sector.

Index for time periods, normally used for the
time period of interest.

Unit loss rate for ditch sector loss rate computa-
tion.
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NOTATION - (Continued)

laterpretation

Decision variables, nonlinear and linear programming. ..

description.

Decision variables, quote from Hadley on Bellman's
Principle of optimality,

Vector of decision variables.

Subvector of X , created by partitioning the A
matrix.

Reservoir water level, used in reservoir loss
computation.

Fraction of demand, Db » that returns to element
i in time period t .J °

Intercept on loss axis, where storage is zero,
Teservoir loss computation.

Intercept on loss axis, where storage is zero,
for loss function of reservoir i in time period
t [ ] :

Loss coefficient.

Loss coefficient fu: element i in time period t .

Return flow coefficient for return flows to element
i in time period t due to losses from element j
in time period h .

Used for phrase "is contained in the set."
Kronecker delta,

Kronecker delta.
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