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ABSTRACT 

SALT WATER CONING BENEATH FRESH WATER WELLS 

The purpose of this research is to investigate the phenomenon 

of salt water coning below a discharge well partially penetrating an 

aquifer in which fresh water is underlain by saline water. The 

first portion of this report is concerned with the evaluation of 

techniques presently available for analyzing the performance of such 

wells. Both theoretical considerations as well as experimental re­

sults have shown that some of the assumptions used in the analytical 

techniques available are not valid while others are acceptable only 

under limited conditions. 

The study also presents a mathematical model which is de­

veloped for evaluating the performance of a skimming well under a 

wide range of field situations. The practical utility of the results in 

deciding the optimum discharge from a skimming well is discussed. 

It is shown that for given aquifer conditions and well geometry the 

maximum steady-state production of uncontaminated fresh water is 

obtained at shallower well penetrations and closer well spacings 

than that predicted by the theory previously available. 

Brij Mohan Sahni 
Agricultural Engineering Department 

Colorado State University 
Fort Collins, Colorado 80521 
April, 1972 
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INTRODUCTION 

Ground water is needed for irrigation and other purposes in 

many places where the supply of surface water is inadequate. In 

many coastal and several inland areas, including some of the world's 

most important agricultural lands, fresh water in the aquifer is 

underlain by saline water. The situat'on is similar in some respects 

to a typical petroleum reservoir where oil is underlain by water. 

However, unlike a petroleum reservoir, a distinct interface does 

not exist between the two fluids. This is because the fluids are 

miscible and there is only a slight difference in their densities. In 

fact, fresh water and salt water are separated by a zone of dispersion 

with density decreasing with elevation. It is not economical to in­

stall wells for pumping fresh water from aquifers in which the fresh 

water zone has only a very small thickness. The concern of this 

study, therefore, has been those aquifers in which the dispersed 

layer is only a small fraction of the total thickness of the fresh 

water zone. In such cases the intermediate "layer" can be con. 

sidered, for all practical purposes, as a boundary surface and is, 

therefore, referred to as an "interface" in this study. 

The fresh water-salt water interface is not static but moves 

in response to motion of both fresh and saline water. When it is 

*desiredto pump fresh water, the well should be so istalled as to 
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"skim" the fresh water from above the saline water with a minimum 

of mixing, either within the well or within the aquifer itself. 

When a well is pumped, the reduced head t.wards the well 

causes an upconing or mounding of the interface under the well. In 

order to get maximum yield, it would be desirable to place the well 

deeper into the fresh water zone. However, the bottom of the well 

screen must be at a minimum height above the interface to avoid 

contamination with saline water when the coning takes place. The 

saline water should not be allowed to enter the well for, once it 

mixes with the fresh water, the well will produce water of poor 

quality. 

Where the saline water occurs at a considerable depth, it may 

be possible to install deep wells to produce sufficient water of good 

quality which could be used for irrigation. In places where the saline 

water is already near the surface, deep wells cannot be installed 

without producing saline water. Disposing of the saline water so 

produced is a major problem. Obtaining an equivalent amount of 

water from relatively shallow wells requires many additional pumping 

plants and is a comparatively inefficient and uneconomical operation. 

In addition to its function as a source of water for irrigation, 

pumping is often needed to lower water tables. Ifthe water table 

rises close to the surface, for example, following a prolonged period 

of irrigation or rain, pumping can lower the water table and thus 
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prevent water logging and soil salinity. If the saline water is close 

to the surface, the depth of the water table becomes even more 

critical. One possible solution in such a .ndition is the installation 

of horizontal relief drains below the water table, but the cost of 

their installation needs to be considered which, for example, in non­

cohesive soils may be too high to be practical. As an alternate 

method, groups of several shallow skimming wells can be installed, 

each group being operated by a single centrifugal pump. 

This research is part of a study to determine the performance 

of vertical skimming wells as a means of pumping fresh water from 

a free-surface aquifer with maximum efficiency and minimum dis­

turbance of underlying saline water. The objectives of this research 

were: 

1) To construct a physical model to study the physics of 

the phenomenon of coning below a fresh water skimming 

well. 

2) To develop a methematical model to predict the maximum 

safe yield for given aquifer conditions and well geometry, 

and the corresponding amount of coning of the interface 

below the well. 

3) To study the validity of the available analytic solutions 

to the coning problem and the assumptions involved 

therein. 
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Ideally, it is desirable to have a physical model which would be 

a replica of the prototype system in every physical sense, but on a 

smaller scale convenient for laboratory use. However, when it is 

not practical to design such a model, it becomes necessary to have 

one which has physical similarity in all important respects to the 

prototype in question. With this in mind, a laboratory model was de. 

signed to gain a better understanding of coning problems and to pro­

vide quantitative data which could be utilized for the verification of 

the mathematical model. Since the boundary conditions were too 

complicated to allow an exact analytic solution to the problem, the 

second objective was realized by computer simulation. Finally, the 

results obtained from this numerical model were compared with the 

experimental results and also with those obtained by using the methods 

of earlier investigators, namely, Muskat, Wang, and Bennett, et al.. 

The numerical model developed in this research is sufficiently 

general to predict the behavior of prototypes with aquifer conditions 

and well geometries different from those existing in the physical 

model. It could be modified to simulate many additional situations. 



REVIEW OF LITERATURE 

The earliest ideas about water . coning were developed by in­

vestigators in the petroleum industry. These investigators were 

concerned with water coning under oil wells. In recent years, 

several authors have tried to apply those ideas to ground water rese­

voirs in which fresh water is underlain by saline water. The petro­

leum literature which is applicable to the present study is reviewed 

first. 

Research on water coning problems in petroleum reservoirs 

falls into three main categories, that is, theoretical analysis, phy­

sical and analog model studies, and numerical model studies. The 

earliest mathematical models were reported by Muskat and Wyckoff 

(21) and Muska (24). They provided the first physical explanation 

for the problem of water coning beneath an oil well. They realized 

that the problem waB too complex to make an exact theoretical 

analysis possible. However, they demonstrated that with certain 

approximations an analytical solution for the flow system (before the 

water has broken through the well and during the time it lies statically 

beneath the oil zone), could be obtained. 

It was assumed that the potential distribution in the flow region 

was the same as if the second fluid were absent. Formulas for the 

latter case were obtained by analyzing the analogous problem of 
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electrical potential distribution in a large cylindrical disc with 

partially penetrating electrodes (23). A detailed account of these 

theoretical developments are given in a text by Muskat (22). These 

mathematical models were later modified and extended by several 

authors to incorporate various situations of interest in petroleum 

reservoirs. 

It is fruitful to distinguish two phenomena, namely, 'coning' 

and bottom-water drive, which are responsible for the formation of 

the cone beneath an oil well. These are two different mechanisms. 

Henley, et al. (13) and Stephen (34) have explained the difference. In 

the so called coning, the underlying aquifer is relatively inactive 

and the cone is formed beneath the producing well by the pressure 

gradients associated with the flow of oil into the well. In a bottom­

water drive, the driving force for oil production is provided by a 

vertical upward flow of the underlying water. Thus, while the oil­

water interface during 'coning' will be parallel to the adjacent 

streamlines in the oil zone, during bottom-water drive it will be 

perpendicular to them. It is the water coning problem and the pro-. 

duction performance of the bottom-water drive which has been the 

subject of most of the recent research in petroleum reservoirs. 

Rapaport (27) and Geertsma, et al. (12) studied the scaling 

laws for use in interpretation of experimental work on design and 

operation of water-oil flow system. Their results formed the basis 
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of many laboratory studies. Some of the recent physical model 

studies of coning problems in petroleum reservoirs are those of 

Caudle (7), Henley, et al. (13), Khan (16), Stephen(34), and 

Soengkowo (32). A pie-shaped model was generally used for such 

experimental studies. It was shown (13) that the role of interfacial 

forces was negligible in the gross fluid movement in a reservoir 

where the two fluid phases were under very large pressure gradients. 

Therefore, no effort was made to scale capillary forces in the phys­

ical.models. Mutually miscible analog fluids with different viscosi­

ties were used to represent oil and water. 

The analogy between the flow through porous media and electric 

current through electric conductors has been used to obtain a 

solution to Laplace's equation with the help of analog models. Several 

analog studies have been reported in petroleum literature (2, 3, 5, 

21, 25). Fluid flow in cylindrical coordinates has been simulated 

with the help of a network of resistors and analog computers with 

proper boundary conditions. Capacitors were included in the network 

if unsteady flow problems were to be simulated. 

A rigorous analytic solution describing multidimensional flow 

systems with fluids of different densities and viscosities is not 

available at the present time. In such cases approximate numerical 

methods have been used wherein the complex partial differential 

equation describing flow was transformed into a set of algebraic 
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equations which can be handled by available solution techniques. 

Recently, MacDonald and Coats (19) and Letkeman and Ridings (17) 

presented numerical models related to some coning problems in 

petroleum reservoirs. 

Control of water coning in oil wells has been one of the sub­

jects of recent research. Several methods have been proposed to 

prevent or suppress water coning (15, 29, 30, 38). Smith (29) and 

Smith and Pirson (30) studied (both experimentally and analytically) 

the effect of fluid injection as a means of partially or completely 

suppressing the water cone. The effect of several factors on the net 

water-oil ratio produced was determined. These factors are: the 

position and length of the completion interval, the point of fluid in­

jection, the viscosity of the injected fluid and the relative benefit of 

the use of Impermeable barriers or cement "pancakes". 

Both Hele-Shaw and radial or pie-shaped models were employed 

for the experimental work. It was observed that a radial system was 

mr-,t difficult to treat either in the laboratory or analytically. The 

positioning of impermeable barriers or pancakes was relatively 

quite difficult in a radial model. This could not be done without sub­

stantially altering the packing of the sand which often made it dif­

ficu't to get reproducible results. Studies conducted u&ing the Hele-

Shaw model did not have this disadvantage. However, a radial model 

had the advantage of providing information relative to a three di­

mensional flow problem. The use of two-dimensional models 
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provided only qualitative conclusions regarding water coning in a 

radial system. Some of the important conclusions drawn from the 

above studies were as follows: 

1. The water-oil ratio for a given oil producing rate could be 

reduced by the injection of fluid. It is important from a practical 

point of view that the injection fluid could be either oil or water. 

However, more benefit is derived if the injection fluid is more 

viscous than the reservoir oil, or if a zone of reduced permeability 

exists in the vicinity of the point of injection. 

2. For maximum efficiency in water cone suppression, the 

optimum point of fluid injection is the point closest to the bottom of 

the producing interval. 

3. Under test conditions, little benefit is derived through the 

use of impermeable barriers. 

It should be interesting to study, on similar lines, the sup­

pression of a cone beneath a fresh water well in an aquifer which is 

underlain by saline water. 

The published literature contains relatively little on the subject 

of growth of the cone and the time it takes to reach an incipient 

breakthrough position. A study of this aspect of water coning could 

undoubtedly be very useful in scheduling pumping at an appropriate 

interval while getting maximum efficiency in production and keeping 

the cone below a desired safe level. Sobocinski aad Cornelius (31) 

established a correlation between dimensionless cone height and 
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dinensionless time for predicting the behavior of a water cone as it 

builds from the static water-oil contact to breakthrough conditions. 

They realized that simplifying assumptions and uve of a one cone 

model with one set of.fluids and boundary conditions could not supply 

enough data for a completely generalized correlation. While their 

correlation was good at intermediate values of dimensionless cone 
height, it was not good at the low values and high values. Neverthe­

' less, Sobocinski and Cornelius' work did provide a means to estimate 

the rate at which the apex of the cone rises toward a well. 

Tosummarize, the main purpose of the studies of water coning 

in oil wells has been to investigate the effects of coning on the oil­

to-water ratio. 
 An ideal situation would be one where water coning 

can be completely suppressed or controlled and a relatively large
 

production of oil can be obtained without producing water. 
 This, how­

ever, does not seem practical under field conditions. Since oil and
 

water are immiscible, petroleum geologists and engineers have not
 

been concerned about the production of water together with oil as 

long as the ratio of oil-to-water production is such as to insure an
 

economical production of oil. 
 On the other hand, in a fresh water­

salt water aquifer, since the two fluids are miscible, it is desirable 

to prevent the brine from entering the well. 

A good account of the existence, nature, shape, slope, and 

depth of a fresh water-saline water interface can be found in Hubbert's 



paper on the theory of ground-water motion (14) and also in later 

texts by Todd (35), Walton (36), and Polubarinova-Kochina (26). The 

physics of salt-water coning beneath a fresh-water well is similar to 

that of brine coning beneath an oil well. Theories for oil wells given 

by Muskat and some other authors, which have been discussed above, 

have been applied to fresh water wells also. In recent years, some 

work has been reported which is directly related to problems as­

sociated with a fresh water-salt water interface. 

Wang (37) presented an approximate theory of a partially pene­

trating well designed for pumping fresh water from an aquifer under. 

lain by saline water. The purpose of this study was to relate the 

well discharge to well spacing, well penetration, well radius, thick­

ness of aquifer and densities of the fluids, and to determine the 

maximum production of fresh water without entrainment of saline 

water as a function of well geometry and aquifer conditions. The 

theoretical analysis employed by Wang used Muskat's (22) treatment 

of a partially penetrating well combined with the Ghyben-Herzberg 

approach (18, 35) to make it applicable to 'skimming wells'. 

The graphical procedure developed by Muskat (22) to analyze 

the water coning problem beneath an oil well has been adapted by 

Bennett, et al. (1) to study the upconing of saline water beneath a 

fresh water well. Muskat employed the analytic expressions for the 

potential distribution about a partially penetrating well in a confined 

aquifer of uniform thickness as well as the results of experiments on 
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a pressed carbon electric analog. The head distribution in the fresh 

water zone required in the analysis of Bennett, et al. was obtained 

from an electric analog model !or steady-state axisymmetrical flow 

to a partially penetrating well. This model was made up of a net­

work of electric resistances, similar to the one employed by 

Stallman (33) in his electric analog study of three-dimensional flow 

to wells. It was also equipped with a system of switches by means 

Nof which the lower portion of the network of resistors could be ad­

justed by trial-and-error to obtain a lower boundary which would 

simulate the fresh water-saline water interface for a given set of 

conditions. 

The underlying principle in the above study was that if the 

boundary conditions in the electric analog model conform to the 

boundary conditions in the hydraulic prototype, the hydraulic head 

distribution could be calculated from the voltage measurements made 

at the network junctions. Initially, the model was set up to represent 

uniform thickness of the fresh water zone. From the graphical 

analysis of the potential distribution so obtained, the highest position 

of the stable interface was determined, assuming that the head 

distribution did not change due to coning. The resistors below this 

location were switched off and the experiment repeated. This was 

done until the lower boundary of the analog model and the interface 

position obtained from graphical analysis were in close agreement. 
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Several authors have studied fresh water-saline water inter­

face problems in a two-dimensional domain. Charmonman (8) made 

a theoretical analysis of the pattern of fresh water flow in a coastal 

aquifer. The problem investigated was that of two interfaces, 

namely, the upper boundary of the flow region between air and fresh 

water and the lower boundary between the fresh water and salt 

water. The following simplifying assumptions were made: 

1. 	 the aquifer was two-dimensional, isotropic, and 

homogeneous, 

2. 	 fresh water flow was steady, 

3. 	 the underlying saline water was stationary, and, 

4. 	 the interfaces between air and fresh water and fresh 

water and saline water were sharp surfaces of 

separation. 

Laplace's equations with the known boundary conditions for steady 

flow of fresh water in an unconfined aquifer were solved using the 

complex potential plane. 

The exact solutions of simple situations in an unconfined 

aquifer were compared with the approximate solutions obtained by 

considering the problem as that of a confined aquifer. The approxi­

mate solutions were found to be satisfactory for practical purposes. 

According to Charmonman, if the ratio of the specific gravities of 

saline water and fresh water was taken 	as 1. 025, the upper interface 
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location would be in error by an amount less than 1.3% and the lower 

interface and the outflow face would be in error by an amount less 

than 2. 6%. Charmonman (9) also studied the effectiveness of an 

artificial fresh water barrier for preventing salt water from intruding 

inland and presented a numerical solution to the complex free sur­

face problems (10).
 

Dagan and Bear (11) 
 employed the method of small perturbation, 

often used in the theory of surface waves, to determine the shape of 

the rising interface in connection with the withdrawal of fresh water 

by a coastal collector operating a short distance above the interface. 

A coastal collector is an array of shallow wells used for exploitation 

of fresh ground water in coastal aquifers and controlling sea water 

intrusion into it. The assumptions underlying their theoretical ap­

proach were that the medium was homogeneous, nondeformable, and 

that the two fluids were incompressible and separated by an abrupt 

interface. 

A velocity potential satisfying Laplace equation was defined in 

the flow region of each fluid. Because of the non-linear nature of 

the boundary conditions along the interface, a linearized approximate 

solution based on the method of small perturbations was developed. 

It was assumed that the potential in each fluid could be expressed as 

a sum of power series of small parameter. In their analytical 

treatment, a first order linearized solution was derived. However, 
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their method is applicable to second and higher order linearizations 

as well. This method is applicable to unsteady flow where the inter­

face undergoes a sufficiently small displacement at a certain instant 

of time relative to some average interface position. 

Approximate solutions were obtained for a continuous drain 

and for a point sink. The validity of these approximate theoretical 

solutions was examined with the help of sand box experiments, and 

it was observed that the range of validity of these solutions was for 

displacements which (at the crest of the upconing surface) reach a 

value not greater than 1/3 the initial distance between the interface 

and the sink. 

The validity of the analytic studies of the interface upconing 

beneath collector wells was checked by field experiments by Schmorak 

and Mercado (28). It was found that the theoretical results were in 

agreement with field results up to some critical rise of the interf-ce, 

which seemed to be approximately half the distance between the 

bottom of the well and the undisturbed interface. Also, the pattern 

of the dispersion zone was studied with the help of field data and it 

was concluded that the linear approximation of the dispersion pattern, 

used in the analytic. approach of Dagan and Bear, was acceptable for 

all practical engineering purposes. Therefore, the abrupt interface 

referred to in these studies could be considered as the average 

position of the transition zone between the fresh water and salt water, 

that is, position of relative salinity of 50%. 
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Very recently Youngs (40, 41) has presented an exact approach 

to the theoretical analysis of some interface problems using his 

method of analysis of horizontal seepage. The method has been ap­

plied to calculate the maximum pumping rate of fresh water from 

wells located in coastal aquifers and to give optimum conditions for 

installation of such wells. The problem considered by Youngs was 

one of two-dimensional flow. It was, therefore, possible to arrive 

at an exact solution by solving Laplace's equation by the method of 

conformal transformation, a technique which cannot be employed for 

three dimensional flow problems. 



THEORETICAL BACK GROUND 

The theory described here is intended to apply to the case of fresh 

water overlying saline water in an aquifer. The two fluids are miscible 

and at their contant, they tend to mix by molecular diffusion and macro­

scopic dispersion. Therefore, they are not separated by an oil-water 

type of interface, they do not constitute distinct fluid phases, and there 

is nopressure discontinuity where they are in contact. However, for 

the sake of simplicity, it is assumed that fresh water and salt water are 

separated by an abrupt interface and have distinct and uniform densities 

(Figure 1). 

2 f Fresh water 

M Interface 

Salt water 

Figure 1. A fresh water-salt water interface. 

A potential 0 can be defined for each of these fluids as follows: 

Pf m +z 
(1)

f Pfg 



and 

41 Ps + z (Z) 
apeg 

where p is the pressure, p is the density, z is the elevation of the 

point in question measured above some arbitrary datum, and the 

subscripts f and s denote fresh water and salt water respectively. 

Since it is assumed that no pressure discontinuity exists across 

the interface, at any point M on the interface pf = ps = p,, the pres­

sure at the interface. Denoting the elevation of M by and eliminating 

pt from (1) and (2) results in 

(3)) psg(+if -4 pig= (Ois ­

where the suffix i refers to the interface. 

Solving for 4 gives 

Ps Pf 
if (4)SPs "fi- Ps P Pfi 

or, writing Ap = Ps - Pf 

Ps Pf 

6P is "P if 

Equation (5) can be used to describe the interface, if the potentials 

0,s and 0if are known at a number of points along the interface. If 

both potentials vary along the interface, that is, if flow exists in 

both fluids, the location and shape of the interface depends on the 

velocity components along the interface in both fluids. 
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Differentiating. equation (5) with respect to S, distance measured 

along the interface, we get the slope of the interface at the point in 

question 

sin 6 P __is - Pf __aif (6)as Ap as Ap as 

The flux q is given by Darcy's equation which, for isotropic media 

gives 

==' q (7) 

and
 

aif (8) 

as X2 

where K is the conductivity coefficient having the dimensions of 

velocity. Therefore, equation (6) can be written as 

sln6 = = [ P qs + L qf (9) 

If the salt water zone is static, the potential is constant through­

out this zone. Then using equation (5), the elevation difference be­

tween any two points 1 and 2 on the interface is given by.' 

1 6 
Also, in this case, equation (9) reduces to 

Pf qf
sin -p K " (11) 
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The case of a partially penetrating well used for pumping fresh
 

water from an aquifer is considered next. The bottom portion of the
 

aquifer is saturated with brine as is illustrated in Figure 2. The
 

Z w Water table prior to pumping
 
- "Water table during pumping
 

H I r" FRESH WATER
 

Interface during steady pumping 

Original position of the interface 

Figure 2. Salt water coning below a fresh water well. 

thickness of the fresh water zone prior to pumping is H . It is assumede 

that the well has been pumped until it reaches a steady state. The 

potential in the well is 4w" At a distance greater than the radius of 

influence r from the well, where the flow becomes strictly radial withe
 

no vertical components, the fresh water potential along any vertical 

line is a constant designated as 0e" When flow takes place, in response­

to a drop in fresh water potential toward the well, the interface, tends 

to mound beneath the well to a height such that it will be in hydrodynamic 

equilibrium. The brine will then be static and the flow will take place 



only in the fresh water zone. Also, since there is no flux across 

the interface, the latter is the lowest stream surface in the fresh 

water zoneand is analogous to an impervious boundary. When the 

cone becomes stable, the location and shape of the interface at any 

point is a function only of the fresh water-velocity along the interface 

at that point. Because of symmetry of the radial flow, the apex of 

the upconed interface beneath the well is a stagnation point. The 

apex of a stable cone, therefore, must be flat. 

If the original position of the interface prior to pumping (or its 

position at the effective radius during pumping) is taken as the datum 

= 
for measuring elevations, and noting that at ; = 0, 0if 0e, the 

elevation of the interface at any point can be written fromn equation 

(10) 	 as 

af( (12)AP=epif 

The elevation of the apex of the cone is given by 

;(r=O) = A ['Oe. (Oif)r=0] (13) 

If the second term within the brackets in equation (13) is replaced 

by the well potential 4w , the result is 

Pf	 014)(r=O) = -p[ e 	 . 4)w] 



This is the well known Ghyben-Herzberg relation. A comparison of 

equations (13) and (14) shows that the potential (4 if)r= vertically 

below the well is greater than the potential 4,w inJ.e well, otherwise 

there cannot be any flow into the well from below. Therefore, 

4(r=0) calculated from equation (14) is greater than that calculated 

from equation (13). Thus, for the same drawdown, the Ghyben-

Herzberg relation overestimates the height of the cone. Similarly, 

equation (14) places the interface at a greater depth than would be 

predicted by equation (13). 

The difference in the two equations (13) and (14) arises due to 

the fact that the Ghyben-Herzberg relation was arrived at by using 

the Dupuit-Forchheimer approximation, which implies that the 

potential does not change along any vertical line in the entire flow 

region. This assumption is valid only near the effective radius or 

where the vertical flow components are very small. The latter 

condition can be achieved, for example, at very small discharge 

rates, and deeper well penetrations. The theoretical analysis in the 

present work is based on equation (13). 

In order to use equation (13) to determine the location of the 

interface, one needs to know the densities of the fluids, the fresh 

water thickness prior to pumping, and the distribution of the fresh 

water potentials along any vertical surface. In order to obtain the 

potential distribution analytically, one needs to solve the flow 
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equation 

ItarP)+ 2 (15)az 2 . 

with the boundary conditions 

at r=re e 

=w at r =rw Hb <z< Hw 

= _a 0 at r = 0, 0 (16) 

Or(r=O):- <Hb (6 

8_ = 0 along the free surface 
an
 

PA = 0an along the interface 

where 8/8n denotes the partial derivative with respect to distance 

along the normal drawn to the surface being considered at the point 

in question. The last three boundary conditions imply that the fresh 

water flow has only vertical components along the center line of the 

well between the bottom of the well and the interface, and there is no 

flux across the free surface and the interface. 

Thus, if it is desired to calculate the position of the interface 

by an exact analytic method, equation (15) must be solved for the 

potential distribution using the boundary conditions (16). H'2wever, 

these boundary conditions in turn depend on the position of the inter­

face. Therefore, it does not seem possible to obtain an exact 

analytic solution to the problem. Apparently, the best way to solve 
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this problem is to use numerical analysis. This technique will be 

described in detail in later sections. 

It is useful to analyze the two approximate analytic approaches 

employed by Muskat (22) and Wang (37) to solve the coning problem 

beneath a partially penetrating well. Muskat's approach is discussed 

first. 

A stable cone with brine in static equilibrium requires that any 

decrease in the fresh water potential at a point (r, z) along the inter­

face, as a result of pumping, must be compensated for by an equal 

increase in the differential hydrostatic head. This condition can be 

expressed mathematically by the equation 

= _(rz) . (17)
e Pj 

.Subtracting w from each side of equation (17) gives 

(r,z)- 4 ) z . (18)
w e w Pf 

Dividing through by (4e " w)yields 

(r, z) - low A P"1I- z (19)( 9 
4e low Pf(\e 

or, 

Ac(r, z)= Ie ez (20) 

r Pf(rz) H 

where, A (r, z) = 4(r, z) - (21) 



and (4)e =10 -eC (22) 

Equation (20) is the dimensionless form of equation (17). 

Everyupoint on the Interface must satisfy equation (20). The 

parameters 4eew, He 0P pf are known in particular situations. 

Therefore, if the fresh water potential 0(r, z)can be determined, 

the elevation of the interface at a distance r from the well axis can 

be calculated by solving equation (20) for z. Equation (20) can also 

be solved graphically as suggested by Muskat. The underlying 

principle of Muskat's approach is as follows: When the potential 

distribution at a particular value of r is known as'a function of z, 

both sides of equation (20) can be calculated for various, values of z. 

If these values of the expressions on both sides of this equation are 

plotted on the same graph against z or z/He, the points of inter­

section of the two curves give the desired solutions. Obviously, the 

right hand side of the equation plots as a straight line with a slope 

equal to {t/pH /p(A-4)}. This is the graph of equation (20) and re­

presents the interface. Using the same approach for different values 

of'r, a composite picture of the interface can be obtained. 

Since there was no method available to obtain the exact poten­

tial distribution required in the above analysis, Muskat found it 

necessary to neglect the effect of the cone on this distribution. This 

is equivalent to assuming that the potential distribution in the above 

case is the same as if the lower boundary of the aquifer was an 
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impermeable bed instead of an interface. With this assumption, he 

computed the potential distribution for the water coning case from 

his formula for a well partially penetrating a confted aquifer satu­

rated with only one fluid. Muskat accepted the solution obtained bea 

cause it was not possible to obtain a new potential distribution 

considering the lower boundary to be at the calculated location. 

Another important point to be considered is the phenomenon of 

instability of the cone. As the well-discharge is increased, the 

drawdown is increased and therefore, a greater cone height is 

expected. The question arises as to whether this drawdown-cone 

height relationship holds for all values of drawdown; that is, will the 

condition of static equilibrium of the brine always exist irrespective 

of the potential distribution? Muskat predicted that the cone should 

in fact become unstable long before it reached the bottom of the well. 

Considering the potential at the interface 4if as a function of 

both the well potential (for given 4e) and the elevation of the inter­

face 4, the condition for static equilibrium of the brine cone, i. e., 

equation (12), can be rewritten as 

If the drawdown is increased by lowering the well potential by 

an amount Atw , the corresponding increase in the elevation of the 
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interface at the point in question is given by 

Pf [ "f 64w 1f A;(4AP 4 3w (24); 

In equation (24), the first term in the brackets gives the change 

in potential A)if due to change in the well potential and the second 

term gives the contribution to A if due to change in position of the 

interface. 

Solving (24) for A gives 

[+ P A-f - A a,j =~ 
"8 A-P A+W 

oro 

Pf if 
AI_(25)
 

Pf f 8if 1
' + a- l 

For a given value of 4e 0 a decrease in w leads to a decrease 

in if" Thprefore, (aif /0w) is a positive quantity and A0w is 

negative so that the numerator on the right hand side of equation (25) 

is positive. Since a rise in the interface causes more convergence 

and hence decreases +ifI (aif/at)w is a negative quantity. As the 

drawdown in the well is continuously increased, the absolute value 

of this term increases until it is numerically equal to one. In that 

case, the denominator is zero and A; is undefined. Physically this 

means that the brine begins to flow and the well. starts producing 

brine. A stable cone does not exist when this condition is present. 
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The phenomenon of instability predicted by Muskat can also 

be explained as follows# since as pointed out before, there is no 

pressure discontinuity across the fresh water-sa&Une water interface, 

pf ps26)
WE-S0 as (6 

along the Interface. 

Each of these terms can be considered as a combination of two 

terms, namely, one due to gravity alone and the other due to flux q 

along the interface in the respective fluids. Equation (26), there­

fore, can be written as 

+ f-a = +las G F qf W (27)FS ) q 

where the suffix G denotes the contribution due to gravity alone and 

the suffixes qf and qs denote contributions due to the flux along the 

interface in the fresh water and saline water respectively. 

Rewriting equation (27) results in 

(FS-qf SAq=kas )G aS G (8 

The right hand side of this equation is equal to Ap g sin 6, the dif­

ferential hydrostatic pressure gradients along the interface. Here, 

g is the acceleration due to gravity and 6, as before, is the angle 

that the interface makes with the horizontal at the point in question. 
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Since the angle 6 can vary only from 0 to r/2, 

(a (29)as Apg .
-sf 

From equation (29) it is clear that for static equilibrium of 

the cone, (aps/aS)qs must be zero and (8pf/aS)qf cannot exceed the 

value 16pg. However, when the pumping rate is such that (apf/ 8 S)qf 

exceeds this value, (8 ps/8S)qs must have a value greater than zero 

so that equation (29) still holds. In other words, the brine is no 

longer static. Hence, for a stable equilibrium of the cone, the up­

ward pressure-gradient force due to flow in fresh water must be 

less than or equal to the quantity 6p g. 

Carrying the abovc explanation further, it is noted that in .he 

situation where sin 6 = 1, the apex of the cone can no longer remain 

flat which is a requirement if the cone were to be stable with brine 

in static equilibrium. Furthermore, the value of sin 6 is about 0.71 

when 6 = 450 . Therefore, when the slope of the interface becomes 

450, a relatively small increment in (apS)qf is sufficient to bring 

the cone to the critical condition. In other words, the cone tends to 

become vertical rather abruptly. Also, since the maximum velocity 

of fresh water flow along the interface (that is the limiting stream 

line) is at its point of inflexion, the abrupt rise in the cone should 

take place at that point. 
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Alternately, considering the fluxes qf and q along the interface 

instead of the pressure gradients, the conditions that lead to instability 

can also be understood as follows. As explained before, if no flow 

occurs in the underlying saline water, that is, if the cone is in static 

equilibrium, the equation (9) describing the interface reduces to 

equation (11). As the production rate is increased, qf increases and 

the cone becomes steeper. The maximum value that qf can theoretic­

ally have with no flow in the brine is equal to Ap K/p f when sin 6 = 1. 

Should qf exceed this va1ue, since sin 6 cannot exceed unity, equation 

(9) requires that qs be gr.eater than zero. Physically, this implies 

that for given aquifer conditions and well geometry, there exists a 

production rate above which the cone cannot remain in stable equili­

brium. 

In order to determine the maximum fresh water yield without 

producing brine for given aquifer properties and the well geometry, 

it is necessary to know the critical drawdown and the position of the 

highest stable cone. 

Another analytic solution is given by Wang. This approach 

starts with the assumption that the maximum safe yield, that is, the 

critical discharge, is for a drawdown corresponding to which the 

apex of the brine-cone just reaches the bottom of the well. The 

critical drawdown was obtained by using the Ghyben-Herzberg re­

lation corresponding to a cone height equal to the height of the well­

bottom above the original position of the interface. The discharge 
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corresponding to this critical drawdown was computed by using 

Kozeny's formula (a simpler version of Muskat's formula) for dis­

charge for a partially penetrating aquifer in a confined aquifer of 

uniform thickness and saturated with one fluid. This formula does 

not deal with the problem of an interface. 

Thus 	Wang's approach differs from Muskat's in three respects: 

1. 	 Muskat's original work was related to water coning be­

neath an oil well. Wang was interested in salt water 

coning beneath a fresh water well in an unconfined aqui­

fer but she used the discharge formula which was de­

rived for the case of a confined aquifer. 

2. 	 Instead of using the potential distribution for the case of 

a partially penetrating well, the potential was assumed 

to be constant along any vertical line. With this as­

sumption equation (13) becomes the Ghyben-Herzberg 

relation. Wang's method is thus essentially the Ghyben-

Herzberg approach. 

3. 	 Because of the fact that Wang neglected vertical com­

ponents of flow, her analysis does not predict the phe­

nomenon of instability of the cone. Perhaps that is why 

she considered the highest cone to be at the bottom of 

the well. 



PHYSICAL MODEL AND EXPERIMENTAL PROCEDURE 

Scaling of the Model 

Ideally a model should be constructed so that the flow phenomena 

in the model are identical in t,4rms of scaled variables to the corres­

ponding phenomena in the prototype. When it is not possible to 

sense, is similar to the prototype,construct a model which, in every 

similar to the prototype withit is sufficient to build a model which is 

regard to the most important variables. When the scaled forms of 

all the important variables and dimensions which describe the geo­

metry and control the conditions of flow have identical values in the 

model and the prototype, the flow phenomena observed in the model 

can be applied to evaluate the performance of the prototype. 

Simulation of a given set of field conditions was not attempted 

in the physical model used in this study. The purpose of using this 

physical model was (1) to understand the physics of coning problems, 

(2) to check the validity of the existing theoretical models, and (3) 

to check the validity of the numerical model which was developed as 

part of this research. It was, therefore, not necessary to simulate 

an actual field situation in the model. It was sufficient to apply the 

existing theories to a few hypothetical prototypes and compare the 

results with those obtained by studying identical situations experi­

mentally with the help of a physical model. 
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All pertinent variables were taken into consideration while 

designing the model and care was taken not to include any factors in 

the model which might make the phenomenop different from that in 

the field. For example, since the effect of capillary forces and the 

thickness of the dispersion zone were considered to be negligible in 

the field situation, an attempt was made to insure that this was the 

case for the model also. Thus, although simulation of particular 

field conditions was not attempted in the model, the model was 

realistic in the sense that it could represent some field situations. 

The scaling factors for designing the inodel were selected from 

Wang's equation for maximum fresh-water dischargle from a skimming 

well. Although this equation is based on questionable assumptions, 

it does give an insight into some of the important variables that need 

to be scaled. Wang's equation, in the notation used here, is: 

r 2HK 1fps-p I
Qmaxenr J Pf a()[" 1+ 7 wa cos-r (30) 

where 

Q is the maximum discharge without entrainment of max
 

salt,
 

a = PW/H ee 

B is a numerical constant and is equal to 0 for lateral 
o 

recharge and for vertical recharge. 
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Lnroducing the dimensionless variable y = r /H , called "well­

slimness", and writing i = na/2 equation (30) can be written as 

up (~P)l+7 ~Y) [n(r/r)-B]Q 

WISWP +(pkop= e a (31)
8KH2e(Ps" Pf) / Pf 

Here, W ,Y is a dimensionless variable called "well number" by 

Wang and is a function of 

(1) degree of well-penetration (P or a) , and 

(2) well-slimness Y. 

In a single-well leboratory model built with some suitable fixed 

length and with constant head maintained at its exterior boundary, 

the effective drainage radius r is equal to the radius of the exterior 

boundary of the model. In the case of multi-well reservoirs, the 

external boundary of the model reprsents the effective drainage 

radius of the well being studied. If a square array of producing wells 

of equal radius and degree of penetration is simulated in the model, 

the well spacing L can be related to a dimensionless parameter 

= r e/rw as follows: The drainage area A of each well with effective 

radius r e is given by 

A=r2 = 2 
A irr L e 

so that 

r e =L/ ^F­
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and 

re L 
4 L (32) 

r Af00
W. 

In the pie-shaped model used in this study, the radius of the 

well and the radius of the outer boundary (where a constant head was 

maintained) were fixed. This model is considered adequate to study 

multi-well reservoirs in which the wells have a scaled effective 

drainage radius i at lease equal to the i value in the model. 

According to equation (31) the dimensionless discharge in a 

hypothetical prototype computed from Wang's theory and that deter­

mined experimentally in a model simulating the same prototype could 

be equal only if the following parameters have the same value in both 

model and prototype: 

(1) recharge factor B 00 

(2) well penetration a , 

(3) well slimness y , 

(4) well-spacing . 

Since it was not intended to study the transient case, that is, 

the rate of growth of the brine cone, the time variable was not 

scaled. 

Choice of Porous Medium 

Since capillary forces in the field situation are considered to 

have negligible effect, an attempt was made to insure that this was 
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the case for the model also. It is difficult to satisfy the requirement 

for negligible capillary phenomena in designing a laboratory model 

of practical size. It was necessary to select a nmterial to simulate 

the aquifer such that the capillary fringe in the model would be only 

a small fraction of the total thickness of the fresh-water zone. After 

running several tests with different kinds of materials, it was de­

cided that the simulating material should have an average grain size 

of at least 2 mm. Since the present study relates to homogeneous 

and isotropic aquifers, it was decided to use spherical glass beads 1 

about 2. 5 mm size. 

The glass beads used as the aquifer material in the model, in 

contrast to soils and sands, could easily be packed to practically the 

same density in each run. Therefore, it was possible to obtain re­

producible results. Another reason for the selection of glass beads 

as the aquifer material in the model was that their smooth surfaces 

made it easy to wash them after each experiment. Thus, the same 

glass beads could be used in all the experiments. 

Choice of Fluids 

The two fluids in the prototype are fresh water and saline 

water, which are miscible. As explained before, in actual field 

conditions a zone of dispersion exists at the contact of the two fluids. 

1 The glass beads used in this study were Industrial Glass Beads Type 
V-110 (product #12330) manufactured by Potters Bros., Inc., 
600 Industrial Road, Carlstadt, New Jersey 07072. 



37
 

This zone, however, may often be a small fraction of the total thick­

ness of the aquifer and therefore, as a simplification in analysis, 

could be considered as an abrupt interface. When tap water and 

water with some salt dissolved in it were used in a test model, it 

was observed that the dispersion zone was a disproportionately large 

fraction of the total thickness of fresh-water aquifer. Also, because 

of complete miscibility of the two fluids, this zone of separation was 

not well defined. 

It was also necessary that the amount of mounding of the brine, 

in response to the production of the well, be a realistic fraction of 

the total height of the model. A very coarse material was used for 

the aquifer in the model. Therefore, if fresh water and saline water 

had been used, the drawdown in the well would have been very small 

to keep the mound within realistic limits. However, it was not pos­

sible to measure a very small drawdown with the desired accuracy. 

Further, from equation (12) it is observed that the cone height can 

be reduced by using two fluids with a larger density contrast. 

The above reasons, therefore, led to the choice of two im­

miscible fluids having a density difference mu'h greater, than that 

for fresh water and saline water. Fresh water was simulated by 

Soltrol "C" 2 and saline water by tap water containing a dye called 

2 Soltrol "C" is a special core test fluid manufactured by the Special 
Products Division of Phillips Petroleum Co., Bartlesville, 
Okla. Some of its physical properties are given in Appendix E. 
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Pontacyl 3 . This dye is water soluble and is insoluble in soltrol. A 

very small amount of this dye gave a brilliant pink color to water 

which made visual observation of the interface at various stages of 

coning quite easy. With this choice of simulating fluids and with 

careful packing of glass beads in the model it was possible to obtain 

a well-defined interface between the two fluids. 

Equipment and Experimental Set-Up 

Ideally, in order to minimize the wall effects on flow, it would 

be desirable to construct a very large cylindrical model. However, 

a large model is uneconomical to build, impractical from the point 

of view of simulating all boundary conditions, and difficult to operate. 

Since the present work deals with axisymmetrical flow toward a well 

in a homogeneous and isotropic medium, it was sufficient to construct 

only a sector of a cylindrical model. The model used in this study 

has radial walls forming an angle of 150 which represents 1/24 of a 

complete cylinder. The radial length of the sector was four feet. 

Toward the outflow end of the model a brass screen of 50 mesh size 

was placed at a distance of 0. 96 inch from the center line of the 

cylinder where the gap between the two radial walls of the sector 

was 1/4 inch. This screen represented the screen of a well of 

3 Pontacyl is a product of E. I. duPont de Nemours Co., Wilmington, 

Del. It was been used as dye in some sediment transport 
N204S2Na.studies. Its chemical formula is C27H 



39
 

riius 2. 38 cm with its axis along the center line of the cylinder. 

Figure 3 shows the discharge end of the model and figures 4(a) and 

4(b) give details of the recharge end. A sketch of the assembly used 

in the experimental study is shown in figure 5. 

The model was made of plexiglass, so that the position of the 

interface and free surface could be clearly At the inflow endseen. 

the model was 12. 72 inches wide. The total height of the model was 

two feet. The portion of the model containing the beads was sepa­

rated at its inflow end from a reservoir by a wall which was per­

forated uniformly by sixty-three 1/4 inch holes with 2-inch separa­

tions. The purpose of this reservoir was to maintain a constant 

head at the inflow boundary of the model. The liquid level in the 

reservoir was maintained constant by an overflow tap in the outer 

wall of the reservoir at a depth of three inches from the top. Per­

forations at the inner wall insured a uniform distribution of liquid 

against the outer end of the sector. These holes were covered with 

a screen to prevent glass beads from falling into the reservoir. 

Preliminary tests showed that, unless special precautions 

were taken in filling the model with glass beads and the simulating 

fluids, air bubbles were trapped in the pores. This destroys the 

homogeneity of the pores and causes local discontinuities in the flow 

channels. It was important to insure that the glass beads in the oil 

zone were wet with Soltrol only and those in the water zone with 



40
 

We lI- a xis - -,-

A B 

0 

0 0 -Screen 

D 

C 

Discharge end of the laboratory model.Figure 3. 



41 

1/2" overflow top 

18" 
24" I 

1/2"plexiglas 

% i 

of-F 

A 
(a) Side view 

'--- 12.72 ' 
- r 

0 
0 0 0 0 a 0 

0 0 0 0 0 0 

0 0 0 0 0 0 /4" holes on 

0 0 0 0 0 0 2" spacing 

0 0 0 0 0 0 

0 0 0 0 0 0 

10 0 0 0 0 0 

(b) Section A-A 

Figure 4. Recharge end of the model. 
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Legend:
 

I Pie-shape model 7 Mariotte siphon 

2 Recharge reservoir 8 Measuring jar 

3 Overhead tank (oil) 9 	 Pump for ooi­
circulation4 Oil reservoir 

5 Water reservoirciuaio 10 Pump for water­
circulation 

6 Overhead tank (water) 11 Water-tank for 

cooling the pumps 

Figure 5. Complete assembly of the experimental equipment. 
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water only. It was also found in the preliminary tests that the same 

precautions were required to obtain a well-defined interface. After 

trying various techniques to avoid these problems, the following 

procedure was finally adopted for filling the model. 

Beads to be used in the oil zone in the model were first im­

mersed in oil in a separate tank. Likewise, beads to be used in the 

water zone were immersed in dyed water in another tank to insure 

that they were wet with the respective fluids. Next, dyed water was 

allowed to flow slowly from the overhead tank into the model, and 

beads previously wet with water were slowly placed in the model 

while keeping the water level in the model just above the beads. This 

layer of beads was thoroughly mixed by stirring to eliminate air 

bubbles. The beads were packed by pressing with a flat metal piece 

from above and by tapping the side walls of the model with a rubber 

hammer. Each layer of beads was as uniformly packed as possible 

and freed of air bubbles before more beads were added. The pro­

cedure was repeated until the level of dyed water and the top of the 

layer of the beads in it reached the level which coincided with the 

initial position of the interface in a particular set of conditions being 

simulated in the physical model. 

Next, a thin layer of oil was formed on top of the water-wet 

beads by adding oil slowly in very small quantities along the side 

wall of the model. It was necessary to take utmost care while adding 
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this first layer of oil in the model to insure that the surface of the 

layer of water-wet beads was not disturbed. After adding some oil, 

sufficient time was allowed for the oil to spread evenly over the 

water-wet beads. Then, oil-wet beads were placed in this oil layer 

in small quantities and evenly distributed throughout the model. The 

procedure was repeated layer after layer insuring that the beads 

were uniformly packed and that they were freed of air before more 

beads were added. The model was filled with beads to a height about 

two centimeters above the outflow tap. 

The rectangular prism at the 'well-end' of the model was also 

filled with beads wet with the fluid they were to be in contact with at 

the start of the experiment. The top of the beads in this prism re­

presented the bottom of the well in the prototype conditions being 

simulated in the model. 

A closed system for circulating the fluids was set up in the 

experiment as follows. Oil from overhead tank 3 was allowed to 

flow into recharge reservoir 2 of the model at a rate somewhat higher 

than the expected discharge rate in the experiment. The excess 

fluid drained from the outflow tap and thus the free surface elevation 

at the exterior end was maintained at the level of the tap. This 

excess fluid was received in oil reservoir 4. From reservoir 4, 

oil was recirculated by a pump back into tank 3. 

A three-way tap was connected to the bottom of reservoir 2. 

Through this tap the reservoir was connected to Mariotte siphon 7 
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containing dyed witter used iWt the mnidel, and to reservoir %containing 

same dyed water. Thus, by opening one valve, small quantitiesthe 

of dyed water could be added to reservoir 2 from the Mariotte siphon, 

excess water in rechargewhereas by opening the other 	valve any 

into water reservoir 5 if needed. Thereservoir 2 could 	be drained 

end of the tube open to the atmosphere in thelevel of the lower 

Mariotte bottle could be adjusted by lowering or raising the latter 

with the help of a screw jack. 

was fed toMost of the additional water required in upconing 

but at later stages of the coning, it was fedreservoir 2 from tank 6, 


in small quantities by opening the valve between the bottom of re­

servoir 2 and Mariotte siphon 7.
 

to fill the model with water by pumpingIt was found convenient 

it to overhead tank 6 from reservoir 5. Tank 6 was provided with 

the tap and a valve near the bottom to adjustan overflow outlet near 

flow into reservoir 2. 

The pumps used in recirculation of the fluids were cooled by 

thus possible to maintain the temperaturerunning tap water. It was 

of the fluids nearly constant throughout the experiment to insure that 

the fluid properties did not change during the experiment. 

Production from the well was simulated in the model by si­

phoning oil with a tube (about 1/4-inch 1. D.). The height of the fluid 

in the well and the production 	rate were varied with the help of a 
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screw clamp. After allowing sufficient time for the flow to reach an 

equilibrium following each adjustment of the flow rate, it was pos­

sible to maintain a steady flow in the model. Fluid drained from the 

model was collected in a large measuring jar (about 2 inches in 

diameter and of 2000 cc capacity), which was provided near its base 

with an outlet and a stop cock. When the measurements for discharge 

were not being made, the valve at the outlet of the jar was left open 

so that all the fluid drained from the well was continuously received 

by reservoir 4. For making measurements of the producing rate, 

the valve was closed, so that all the fluid drained by the well was 

collected in tne measuring jar. The flow rate was determined by 

noting the total volume collected in an increment of time. After the 

measurement, the stop cock was again opened and the fluid allowed 

to drain back into reservoir 4 as before. The fluid in reservoir 4 

was continuously recirculated back into inflow tank 1 and from there 

into reservoir 2. This closed circulation had two advantages: (1) A 

steady-state condition of flow could be maintained for given levels 

in reservoir 2 and the well, and (2) accumulation of air bubbles in 

the medium in the model, which would occur if fresh oil were con­

tinuously supplied to the system, could be avoided. 

Conductivity Measurement of Glass Beads 

Since it was intended to study only steady-state flow of oil, 

with brine in static equilibrium, the conductivity of glass beads to 



47 

Soltrol only was determined experimentally. A constant head 

permeameter was used for the purpose. It was observed in pre­

liminary tests that conductivity of these glass beads was very high 

with the result that the observed gradient of head was too small to 

insure desired accuracy with the apparatus being used. A much 

larger permeameter, therefore, was constructed from a steel pipe 

The head was measured at7.803 cm in I.D. and 160 cm long. 

three points, 50 cm apart along its length. The experimental set up 

is shown in figure 6. 

A lack of consistency in the results was noticed in the first 

measurements which was attributed to the following experimental 

problems: 

1. 	 In order to keep the head in the overhead tank constant, 

a closed circulation of Soltrol was maintained between 

the overhead tank and the permeameter with the help of 

a pump immersed in the reservoir tank. Heat supplied 

to the oil by the pump caused an increase in temperature 

of the oil and hence an observed increase in measured 

conductivity with time. 

2. 	 A non-linear head-loss along the length of the measuring 

column was indicated by manometers connected to taps 

equally spaced along the column. This was found to be 

due to a density gradient in the Soltrol caused by a 
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reservoir mare nT cdivt 

Figure 6. Experimental set up for measurement of conductivity. 
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temperature gradient between the inflow and outflow 

ends of the column. 

3. Air became trapped at the base of the column causing a 

gradual reduction in flow rate. 

These problems were largely overcome in subsequent measure­

ments in the following way. Instead of immersing the pump in oil, it 

was immersed in water in a separate reservoir and cooled by running 

tap water. This permitted the temperature of Soltrol in circulation to 

remain constant at 23. 50 C. An elliptical plate of plexiglass with 

vertical perforations (shown in Figure 7) was installed at an angle of 

200 from horizontal inside the vertical column about 40 cm above the 

inflow end and was sealed to the inner surface of the pipe. The column 

3" Section A-A through major axis: 

A 

Figure 7. Perforated plate installed in the measuring'.column. 

was packed with beads above this plate. Immediately below the highest 

point of the perforated plate, a valve was installed in the steel pipe to 
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permit periodic purging of air released from the solution before it 

entered the measuring column. Subsequent measurements resulted 

in consistent values of conductivity. 

The permeability k of the beads also was calculated using the 

Kozeny-Carman equation 

Sk T (33)
Sk T 

in which f is the porosity, S the specific surface, k a numerical 
5 

constant depending on the shape of pores, and T the tortuosity of the 

porous medium. 

For spherical glass beads of almost uniform size, equation 

(33) can be rewritten as 

k - 3lf 2 Vb 2(34)
 

ksT(l-f X
 

where Vb and X b are the average bead volume and the surface area 

respectively. Equation (34) can be further simplified and written as 

f3D2 
k m 
 (35)


6k T(l-f)) 

where D is the median bead diameter. m 
The porosity f of the porous medium used in the model was 

determined by the density method using several random samples in 

sufficiently large quantities. With each sample, observations were 
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no problem of reproducing the p .ckingrepeated. Since there was 

con­
of the beads, a problem often encountered in dealing with soils, 

sistent results were obtained. The median diameter of the beads Dm 

was determined by a sieve analysis and the semilog plot of cumu­

bead size obtained. Finally,
lative percentage of beads retained vs. 


it is known from theoretical and experimental considerations (6, 39)
 

that for the type of material used in the measurement, the shape
 

can be taken as 2.5 and the tortuosity as 2, so that the
factor k 

5 in this analysis.product k T was 
S5 

Using the Kozeny-Carman equation the value of permeability of 

5390p2 was obtained. This was in good agreement (3. 9%) with the 

2
experimental value of 5190 

Experimental Procedure
 

run was as follows.
The procedure for making an experimental 

were selected for
First the values of the dimensionless parameters 

Since the wall radius in 
prototype conditions simulated in the model. 

the model was fixed, a well slimness parameter was obtained by 

of the oil zone, that is, the thickness
selecting a proper thickness H 

of the flow region prior to pumping. With H fixed, a given well­

obtained by calculating the actual depth of
penetration parameter was 

. With both the
penetration of the well using the calculated value of H 


and the position of the constant head boundary

radius of the well r w 


were simulated in the

fixed, the important geometrical parameters 

physical model. 



Once the model tank was filled with glass beads and fluids, a 

steady circulation of the fluids was maintained. A reference line was 

etched on the front wall of the model coinciding wth the location of 

the original free surface. Since in all the experiments, irrespective 

of the position of the interface, the free surface position prior to 

pumping was the same, it was convenient to use this line as the re­

ference line rather than the position of the interface. Depths below 

this reference line were marked in millimeters at a number of suit­

able distances from the well axis along the front wall and also along 

the well on the discharge-end plate. 

The initial position of the interface and the free surface were 

noted. Then the production of oil was started at a slow rate. This 

induced a drawdown of the free surface toward the well in an ap­

proximately parabolic shape and an upconing of the interface below 

the well. In order to insure that the free surface at the recharge end 

never went below the level of the overflow outlet of reservoir 2, the 

rate of inflow of oil into reservoir 2 was adjusted so that it was 

slightly higher than the discharge rate. At the same time, care was 

taken that the inflow into the reservoir was not high enough to pause 

punding at the surface which would result in a higher free surface 

location at the recharge end than the original position prior to 

pumping. 

After allowing sufficient time for the flow system to reach a 

steady state, several measurements were made for calculating 



discharge. The locations of both the free surface as well as the 

interface were recorded at several radial distances from the well 

axis. The readings were taken at much closer intervals in the 

vicinity of the well. This was helpful in making a detailed study of 

the effects of convergence near the well on the free liquid surface 

and on production rates. 

Next, the discharge was increased and after the flow system 

had again reached equilibrium under the new conditions, the new dis­

charge was measured and the locations of the free surface and inter­

face were recorded. 

Whenever the discharge was increased, the interface rose to 

a higher position and the cone in the vicinity of the well became 

steeper. In the later stages, as the critical condition was approached, 

only a slight increase in production rate would raise the cone near 

the well by a significant amount. The experiment was continued 

until the cone became almost vertical near the well. Any further in­

creases in the production rate forced the cone to become unstable 

and eventually the well produced water along with oil. Just before 

this happened, the cone was considered as 'critical'. The discharge 

without producing water corresponding to this critical condition was 

measured. This completed the set of observations that were needed 

to analyze the performance of a partially penetrating well for a given 

set of aquifer conditions and well geometry. Similar experiments 

were madc with several other sets of prototype conditions. 



COMPUTER SIMULATION OF CONING PROBLEM 

The intent of this Tesearch is to study the conditions under which 

brine 	cones, in response to steady pumping of fresh water, will re­

main 	in static equilibrium. The problem, therefore, reduces to one 

of steady-state flow occuring only in the upper fluid. Equations of 

flow 	need to be written only for the fresh water zone and solved with 

proper botindary conditions. 

For simplicity, the following assumptions are made: 

1. 	 Thl aquifer is nondeformable, and is isotropic and homo­

geneous with regard to its hydraulic properties. 

Z. 	 Fluids are incompressible. 

3. 	 Flow occurs only ir. the fresh water zone; it is steady and 

radially symmetrical about the producing well. 

4. 	 An abrupt interface separates the fresh water and saline 

water zones. 

5. 	 Darcy's law is applicable to the entire flow region. 

6. 	 An isothermal condition prevails throught the period of 

pumping, so that the fluid properties remain unchanged 

with time. 

Cylindrical coordinates (r, 0 , z) are the obvious choice to de­

scribe flow toward a well. With the assumption of radial symmetry, 

only radial coordinates and vertical coordinates appear in the flow 
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equation which can be derived by combining the mass balance equatiun 

and Darcy's law. 

Flow Equation 

The following derivation considers a small element of fluid in the 

frame of reference of the cylindrical coordinate system shown in Figure 8. 

The element has a vertical thickness Az, a length Ar. and occupies the 

angular segment AO. 

Axis of the 
I Well 

I +A 

// 

~i I / I 

'-e 

Figure S. Fluid element considered for derivation of flow equation. 

Because of radial symmetry, flow occurs only in z and r directions. 

The average cross-sectional area of this differential fluid element per­

pendicular to flow in the r direction is designated as A and that perpen­

dicular to the flow in the z direction as A . The mass balance of this 
z 
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element at steady state requires that the net gain in mass within the 

element is zero in any time increment; that is, the total amount going 

into the element must equal that leaving the element. Therefore, 

considering first only flow in the r direction and taking the center of 

mass of the element at (r ,0 z o), the rate of increment of mass 

(RIM) is given by 

(RIM)r =( ,Qr)a -rp Qr)jP (36)rrIr -(o + A r l 2 . )r - Arl2 
0 

o 

where p and Q are, respectively, the fluid density and flow rate inr 

the radial direction. Considering the mass flow function as con­

tinuously differentiableb each of the terms on the left hand side of 

equation (36) is expanded about the center of mass of the differential 

element by a Taylor series as follows: 

Or ) r p 2(P Q = (P .8 r 

ro + [( hloir0+Ar/2 r° 

+I-[( I]"
2+(37 

and 

(P Qr I = (' Qr ) - r Qr) I] " 
r-Ar/2 =r) r 

2f0 2 (P Qr .... (38) 



57
 

In the limiting case where Ar is very small, the second and higher 

order terms in equations (37) and (38) can be neglected. Using 

equations (37) and (38), equation (36) is written as 

(RIM)r= P Qr I r Ar . (39) 

Similarly, considering flow in the vertical direction, rate of incre­

ment of mass in the z direction is written as 

(RIM) = [(P Qz)l Az . (40) 

The complete mass balance equation is 

(r) o(PJ [P zl rorCz 

Since the fluid is assumed to be incompresible, the density p 

is the same at all points. Therefore, equation (41) is written as 

8 (Q) ' Ar+ (Q) Az =0 (42)8r r rr 1z z rz 

Also, by Darcy's law 

Q -KA OH(43) 
r r r ar 

and 

Q =-KA H 
z z az (44)z 
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Substituting 0 and Q from (43) and (44), equation (42) isr z 

rewritten as 

aKrAr3 Ar +A aH -= 0 (45) 

where the suffix r0 , z0 has been omitted. It is implied that the 

equation refers to the center of mass of the fluid element in question. 

This is the flow equation applicable to the system under consideration. 

The conductivity is the same at all points and in all directions in a 

homogeneous and isotropic medium as assumed in the study. 

Finite Difference Form of Flow Equation 

In order to solve equation (45) with given boundary conditions 

by a finite difference method it is necessary to write the flow equa­

tion in a discretized form. The entire flow region in a vertical 

plane is divided into a convenient grid system with grid blocks small 

enough to ensure the desired accuracy of the results and large enough 

to keep the total number of grid blocks within a practical limit. For 

each of these grid blocks a flow equation is written in the discretized 

form. Thus the original problem of solving the complex second­

order non-linear equation is reduced to one of solving a set of 

simultaneous linear algebraic equations. 

The grid system used is illustrated in Figure 9 where a typical 

central block (isolated from the boundaries) is shown together with 

its four adjoining grids. Indices i and j denote, respectively, the 
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number of the row and column in which a parlicular grid element lies. 

and they reftar to the center of the block. 

2 

IC 
A I I -r3 0 B 

1to 


1ttl,ji 

4 

Figure 9. 	 Grid system used for writing the finite difference form
 
of the flow equation. a
 

For convenience, the grid in question is labeled 0 and those 

adjacent to it are referred to as 1 through 4 in an anti-clockwise 

direction as shown in the figure. 

The first term on the left hand side of equation (45) can be 

written in the discretized form as 

H r, H, -H a KArrKAr)= 	 I 0r'r) ij-

ar 3rr i 	 H. /- H 

Hi,j+l" Hi, j (+ (KAr) i, j+I 6r Ar 	 (46) 

and the second term as 
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az -KA zz- {KA zi H Az-H. 

+(KA ) +11i I1 
z i+., Az .6 (47) 

:n writing these finite difference expressions for flow between 

two adjacent grid blocks, the values of conductivity and cross­

sectional area to flow have been taken as 
thosc at a point midway be­

tween the two blocks.
 

Substitution of the right side of equations (46) and (47) 
 into
 

equation (45) results in
 

(AK) Hi, i-lH + (A ) H ,j+1 Hi,1

rKi, j- Ar r i,j+z Ar
 

+tAK-1 H lj -Hi, j H -H.,j_.. 
+ (AzK)i. I -- + (AzK)M+i, jz , j Az +Z A 

=0 (48) 

This can also be written as 

A(H j.I-Hi, j ) + B (Hi, j+l-Hi, j + C (H j-Hi, j) 

+ D (H - H j) = 0 (49)
i+l' j i,J 

where A, B, C, and D are the flow coefficients for the grid block 

(i,j) for the flow across the boundaries between blocks (i,j-l) and 

(i,j), (i,j) and (i,j+I), (i-l,j) and (i,j), and (i+1,j) and (i,j), 
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respectively. Rearranging the terms, equation (49) can be written 

as 

AH ij. i.j-+ B H. ,j+l + CH i-l,j +DHHi+l,j +EH. j = 0 (50)1 

where, 

E= -(A+ B + C+D) . (51) 

The next step is to obtain expressions for these flow coefficients 

in the finite difference form. 

Flow coefficients A and B 

3 I
 

Figure 10. A typical grid (i,j) with its adjacent blocks in radial 

direction. 
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Figure 10 shows the grid block 0 and its two neighboring blocks 

3 and 1. The vertical wall or face separating the grid blocks 3 and 

0 is denoted by V. The flow in the r direction at'ny point is given 

by Darcy's law as 

Q - aH 
r r 8r 

aHO­= K2"rr z 
r r 

or 

8HQ r (52) 
8r 2irKrAz 

Integrating differential equation (52), the flow between points 

3 and V is given by 

= 3 (53)Q3-v K.i"j)7z.2 . v3- 1
nin
 

r i, j-I 

Similarly, flow from point V and 0 is given by 

H-H 
(54)Q a-K.j 2 r Az. o r v 

In ,r.r,, j-

During the integration which leads to equations (53) and (54), 

conductivity and the vertical thickness of the grid block were treated 

as constants and equal to their respective values at the wall V. 
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Continuity requires that 

(55)3-v Qv-o = Qr 

Therefore, solving for the head difference permits equations (53) and 

(54) to be written as 

r. 
In r.t 

H -H =Q ' ,j- 1 (56)3 v rK. j 2 r z. j 

and. 

r.
 
In -."I
 

H , H = Q r.lj- * (57) 
v o r Ki, j. 1 2r z. * 

Adding equations (56) and (57) gives 

r. . 

-In '+in .i _ .
3 r r.j-1 -

H3- H0:QrK. I Az , . 

0 rK.. r..,.1 

SK.i 27r Az. * 

r.~ 

In 

r,, r 1(58)" Ki, jl 2 1ir Az. 
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Comparison of equation (58) with the equation 

0 = A (H 3- Ho) ... , (59) 

shows that the flow coefficient A for the flow between grid blocks 3 

and 0 is given by 

2 7 (K~z). 1 
A = r. (60) 

r,n 

r.InJ-

Similarly, considering the radial flow between the grid blocks 

0 and 1, it can be shown that the flow coefficient B is given by 

2w (z)i j + - (61) 

r.id 

Coefficients C and D 

For obtaining expressions for the flow coefficients C and D, 

flow in the vertical direction is considered in grid blocks 2, 0, and 

4 as shown in Figure 11. 
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2 

V 	 ri~j 

r Olir 

(1 l,j) (X-section of grid block i,j 
through its center) 

4 

U 

Figure 11. 	 A typical grid (i,'j) with its adjacent blocks in the vertical 

direction. 

The flow in the vertical direction at any point is given by 

(62)Q =-KA 	 O 
z z az 

flow from the center of grid block 2 to the boundary V be-Therefore, 

tween the blocks 2 and 0 is 

- r . •K. I	 . .- H. ,
2Z-v 

-_2- Az. 2	 *_(63 

and that between boundary V and the point 0 is 
K. 	 I r -r • 1.j ) 

,r j+i r i) . [~) (64)
- , Azi, 2(Qo 
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Here, as before, the conductivity value is taken as that at the 

boundary between the grid blocks 2 and 0. Continuity requires that 

Q2-v = Q - --	 (65) 

Therefore, equations (63) and (64), using (65), are written as 

H i-l'jHil " Qz Azi" 1, j 2 2(6H.'' Hi = 	 K.l .(r .. r.. ) (66) 

IKt.I , tj+I- ij- i/ 

and 

Q Az.6
 
Hi.IHi' H-H.'J 2wr--a
'J K . r a 2 (67) 

t- ,j +j+-ri, ij-

Adding equations (66) and (67) results in 

Hi-l'J H. QJ2 ' i- , i + g , -
H.-H l-r.
 

i.-~j, K (rZj+rr2,j )
 

or, 

0 ir K. . - .j
z 

Comparison of equation (68) with the equation 

Q C (H -H ) (69) 
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shows that the flow coefficient C is given by 

C- i ij+Azl, j)/ ) (70). 

Likewise, considering flow between grid blocks 0 and 4 it can 

be shown that the flow coefficient D is given by 

22 2 

D=(zi+l, j+ i, j)/ 

Once the coefficients, A, B, C, and D are defined, the only 
U 

remaining coefficient, E, in equation (50) is also defined using the 

relation (51). Thus, every term in the flow equation is defined in 

the finite difference form. 

If all the blocks in the entire grid system have the same thick­

ness Az then the denominators on the right-hand side of equations 

(70) and (71) reduce to simply Az. While simulating the conditions 

employed in the laboratory model, a constant thickness of 1 cm for 

all the grids is used. For studying the fresh water - saline water 

aquifers, since the drawdown .s a relatively much smalier fraction 

of the coning, a grid system with variable thickness Az' is employed. 

In such cases, the upper 7 to 12 grid-rows are of smaller thickness 

than the rest of the rows in the model. 
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Grid System 

The flow region in the mathematical model is bounded by the 

well axis on the left, by a vertical line at the radius of influence on 

the right, by the initial position of the interface (prior to pumping) 

at the bottom and by one extra row of grid blocks above the initial 

This flow region is divided intoposition of the free surface on top. 

NR. number of rows and NC number of columns, so that the total 

number of grid blocks is NR x NC. The grid rows are numbered 2 

through NRl and likewise the grid columns are numbered 2 through 

NCI. For simplicity, the vertical thickness of all the grid blocks 

is taken to be the same and equal to Az which is sufficiently small 

to ensure that the free surface and interface locations can be computed 

to a desired accuracy. Pressure gradients are much larger in the 

vicinity of the well than at points away from it. Therefore, more 

detailed information with regard to potential distribution and positions 

of the free surface and interface are required in the grid blocks in 

the vicinity of the well. This is accomplished by having narrower 

columns i.e., smaller grid spacings toward the well. Furthermore, 

since the pressure varies in a logarithmic manner with distance from 

the well axis, a logarithmic distribution of the radii from the well 

axis to the center of the grid blocks is employed. The grid system 

used in this study is illustrated in Figures 12(a) and 12(b). 
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Figure 12(b). Grid system in a vertical section. 
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Simulation of Boundary Conditions 

The boundary conditions as described in equation (16) that 

must be considered in solving the flow equations are of three kinds, 

namely, 

1. Constant potential boundary, 

2. No flow boundary, 

3. Constant pressure boundary. 

Boundary condition at the well - Neglecting the flow within the 

well, the potential inside the well and on the face of the well bore is 

constant. In the mathematical model this boundary condition is in­

corporated by setting the value of hydraulic head in all the grid 

blocks occupied by the well as H , the head in the well. This value 

is known for each set of conditions studied. Flow equations are 

not written for these grids. 

Boundary condition beneath the well - As explained earlier, 

there can be no flow across the axis of the well and below the bottom 

of the well. Analytically this condition is given by a8/&r = 0 in 

equation (16). This particular boundary condition is incorporated in 

the computer simulation model by setting the flow coefficient A equal 

to zero in all grids in the first grid column which are bounded on 

the left by the well axis and lie between the bottom of the well and the 

interface. 
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Boundary condition at the exterior radius - At the exterior 

radius of the drainage area, the head remains unchanged by pumping. 

Therefore, to the right of all the grids in the last grid column within 

the flow region (toward the exterior end of the model), the head is 

known and equal to H , its value prior to pumping. For all thesee 

grids in the last column the product of the flow coefficient B and H 
e 

is known. Therefore, this product is transferred to the right hand 

side of the flow equation (in the finite difference form) and the
 

coefficient B is replaced by a 
zero in the coefficient matrix. 

Boundary condition at the top of the aquifer - At the "free
 

surface" the pressure is constant everywhere and equal to the
 

atmospheric pressure. 
 Also, there is no flow across the free sur­

face. 
 This condition is incorporated in the mathematical model by
 

setting the flow coefficient C equal to zero for all the grids bounded
 

from above by the free surface. 

Boundary condition along the interface. - As explained before, 

the interface behaves like an impermeable boundary and there is no 

flux across this boundary. This condition is simulated in the 

mathematical model by setting the flow coefficient D equal to zero in 

all the grids in the flow region along the interface. 

Computer Program - It is explained in sections dealing with the 

theory that, in order to solve the flow equation for potential distri­

bution, the boundary conditions must be known, but some of these 
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boundary conditions are in turn dependent on the potential distri­

bution. Therefore, in the numerical solution of the coning problem, 

an iterative procedure is used. The program is written to include 

the flow above the water table. The procedure is outlined below. 

1. First, a case is considered where there is no flow. The 

free surface and the interface are flat, and the head is the same at 

all points in the fresh water zone and therefore, is equal to the given 

head at the exterior radius of the model. Thus, the upper and lower 

boundaries of the model are completely defined to begin with. With 

given fresh water levels in the well and at the exterior radius of the 

model, the boundary conditions at these two ends of the model are 

defined. *Also, other boundary conditions are simulated as explained 

in the last section. Each grid is assigned a conductivity value equal 

to the saturated conductivity. Flow coefficients are calculated for 

all the grid blocks and stored in the coefficient matrix called "T­

matrix" in this program. This matrix is solved for head distribution, 

which is of course, quite different from the actual head distribution. 

Nevertheless, this distribution does form the basis of further 

computations. From the head values calculated above, fresh-water 

pressure in each grid and the first approximate location of the inter­

face in each grid column are computed. The free surface is located 

as a surface at atmospheric pressure (referred to as zero in the 

model) by interpolation of pressure values in the top grids in each 
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column. Also, from the first computed head values, discharge is 

calculated. This completes the first cycle of computations. 

2. Next, all the grids lying below the position of the interface 

computed in the first iteration are made "hydraulically dead" in the 

mathematical model by setting the conductivity value equal to zero 

in these grids. Using the most recently calculated pressure values, 

a new conductivity value for each grid above the interface is computed 

from the Brooks and Corey formula (4) 

K = Ks for Pc < Pb s c b1 (72) 

K = Ks(Pb/P)" forI 
P > Pb 

where, 

K is the effective conductivity of the medium to the wetting 

fluid, 

K 5 is the conductivity of the medium when it is fully saturated 

by the wetting fluid, 

PC is the capillary pressure, and equal to the pressure of the 

non-wetting phase (Pnw) minus that of wetting phase (P w), 

Pb is that capillary pressure at which the non-wetting phase 

first becomes continuous in a desaturation process, and 

tj is a constant depending on the pore-size distribution. 

Since P is zero in the case considered here, the second part
nw 

of the equation (72) is written as 
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K=Ka (Pb/-Pw )n for -Pw > Pb 

negative quantity.i the input data,Therefore, by entering Pb as a 

the formula for calculating conductivities becomes 

K = K for P > Pb 

(72a) 

IC= K (Pb/Pin for P < Pb 

where, P refers to the fresh-water pressure in the grid in question. 

are obtained for all the "useable"Thus, new conductivity values 

to as a useable grid if it participates in
grids. A grid is referred 

the flow. Only such grids, therefore, have the flow equations. New 

to be used in the next iteration, are defined withboundary conditions, 


regard to the position of the free surface and the calculated interface.
 

same. 

new flow coefficients are 

All other boundary conditions remain the 

3. With these conductivity values 

computed for the useable grids and stored in the T-matrix. All the 

subsequent steps in the first iteration are repeated in the second 

iteration. 

4. 	 This iteration process is repeated until the solution con­

can be used: verges. Two-possible criteria for this convergence 

the difference between head values calculated in a particular cycle1) 

grids calculated in the previous iteration,and those for the same or
 

successive
2) the difference between discharge computed in two 

The change DIFQ in the computed value of the dischargeiterations. 
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Figure 13. Flow chart illustrating important steps in 
program CONING. 
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for two successive iterations was found to be about two orders of 

magnitude larger than the change in the H(IJ) values (on percentage 

basis). It was,therefore, convenient to select as a criterion for 

convergence of the solution, that DIFQ be less than or equal to EPS, 

a number so chosen that the discharge computation did not change 

by more than 0.005%. 

The important steps involved in the above iterative procedure 

are illustrated by the flow chart in Figure 13. The mathematical 

model developed in this study is referred to as CONING. This 

computer program has been written in Fortran IV language. The 

CDC 6400 computer at Colorado State University was used for the 

analysis. The main program, CONING, together with its sub­

routines, TCOEF, TTCOEF, and SQSOLV is listed in its final form 

in Appendix A. The function of the subroutines TCOEF and TTCOEF 

is to compute the flow coefficients for the "useable grids" and store 

them in their proper locations in the Coefficient Matrix T. The set 

of simultaneous equations that were generated for the flow model by 

TCOEF were solved for head distribution by employing another sub­

routine called SQSOLV. 



RESULTS AND DISCUSSION 

Verification of Existing Analytic Solutions 

In order to check the validity of the two existing analytic 

solutions, results of the analysis of six different cases made by using 

these solutions are presented here. These cases were also studied 

experimentally with the help of the physical model. 

In using Wang's approach it has been assumed that the highest 

stable cone is one which just reaches the bottom of the well. The 

critical drawdown I5 is calculated from the formula 
w 

D - H ( -) (73)
w Pf e 

The critical discharge, that is, the maximum discharge without 

entrainment of saline water, is then computed from the following 

formula for the case of lateral recharge 

e~ w Ira 
P ar(1-a)1+7 cos • (74)[ ~ e /rw)I-Pf I aHe 2 

Since this formula was used many times for computing Qw for 

several cases, the calculations were made by using a short computer 

program called DISCHRG. A listing of this program is given in 

Appendix A. 
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In using Muskat's approach, his approximate formulas for 

potential distribution due to production of a partially penetrating well 

were employed to obtain e/(A¢) z/H Muskat pre­vs. curves. e 

sented the following two formulas for potential distribution due to 

production from a partially penetrating well. These formulas were 

derived assuming that the sink-strength was uniform along the well; 

i. e., the flux density toward the well at all points was the same. 

For small values of p 

2 21X 
=qq tnr(11.wx)r(l+x)n r+w+___1-w__ -n w+x+[P +(w+x) 12
 

r( l-w-x)'( i+wx)l 2 2'X
w-x+ [p +(w-x) ]2 

+ 1 p. (, l-w-x) - 1(l..w+x) + (2, l+w-x) 

_ (2+w+xl] + o(p41(75 

and for large values of p (of the order of 1) 

00 2 =* 4q IZ K2nT cos 2nw sin nrx+xn-
T" i n 0P p ) (76) 

where, 

q = uniform flux density at the well-face , 

H e thickness of the aquifer
e 

w = /2H 
e 

x = PW/ZH e 

p = r/2He 
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V----	 andV)=, 


n=O (n+y) a
 
K

0 
= Hankel function of order zero.
 

The potential in the well was calculated by taking r = r , and (O,7)W 

by taking r = 0. In the former case, since pw = r /2H was a very
w e
 

small 	number, terms containing p were neglected. In the latter case 

all the terms containing p vanish. In order to facilitate computations 

for several cases using Muskat's formula (3), a computer program called 

POTEN was written and is presented in Appendix A. The critical draw­

down DM was computed for each case using his graphical approach. 

The potential distribution data for the six cases is given in Tables B-1 

through B-6 in Appendix B and the results of this analysis are presented 

in Figures 14 through 19. The slope of the tangent lines to the potential 

0.5 

0.4 	 a '0.743
 
y-0.0956
 0J 

6,0.3
 
-0.
 
S 

0.1 

a, 

o 
0.6 0.7 0.8 0.9 1.0 

/H. 

Figure 14. Muskat's analysis for Case 1. 
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Figure 15. 	 Muskat's analysis for Case 2. 
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Figure 16. Muskat's analysis for Case 3. 
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Figure 19. 	 Muskat's analysis for 
Case 6. 

distribution curves drawn through the point (1, 1) is used to compute the 

is deter­critical drawdown and the position of the apex of critical cone 

mined by the point of tangency. Muskat's formula, or Kozeny's formula 

(a simpler version of the former), was not employed to compute critical 

case of a confined aquifer without a
discharge because it holds for the 

second fluid and for which the lower boundary always remains horizontal 

The discharge was, therefore, computed numerically, em­
and fixed. 

ploying Muskat's potential distribution near the radius of influence of the 

At this exterior radius the flow is essentially radial and, there­
well r e . 

to compute the discharge as a summatiol
fore, it is considered reasonable 

of the flow rate:i for all grid rows. 
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The experimental results were obtained as explained in earlier 

sections. In Tables 1 through 3, D, Q, and C denote respectively 

the critical drawdown, discharge and the amount of coning below the 

well. The suffixes E, W, and M designate the corresponding values 

obtained by using experimental data, Wang's approach, and Muskat's 

procedure, respectively. Figure 20 shows a comparison of the 

Table 1. Experimental Results 

Case # a Y D E aE CE coning (%) 

cm cc/sec cm 

1 0.743 0.0956 1.60 7.50 6.10 95. 31 

2 0.635 0,0956 2.50 10.60 8.45 94.13 

3 0.568 0.0956 3.15 11.50 9.74 90.48 

4 0.450 0.0956 4.35 12.30 11.30 82.48 

5 0.541 0.0933 4.60 11.50 9.90 84. 61' 

6 0.660 0.0915 3.20 9.30 7.50 88.24 

Table 2. Results from Wang's Thec.ry 

Case # a Y D W QW CW coning Error in 
M QW(Mcm cc/sec cm 

1 0.745 0.0956 2.067 10.592 6.40 *100.00 41.2.3 

2 0.635 0.0956 2.938 15.982 9.10 100.00 50.77 

3 0. 568 0.0956 3.487 18. 968 10. 80 100.00 64. 94 

4 0.450 0.0956 4.424 22.842 13.70 100.00 85.71 

5 0.541 0.0933 3.778 16.123 11.70 100.00 40.20 

6 0.660 0.0915 2.869 11.937 8.84 100. 00 28.36 
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Table 3. Results from Muskat's Theory 

Case # a Y D QCM coning Error in 

cm cc/sec cm M QM M 

1 0.743 0.0956 2.309 8.653 5.35 83.59 15.37 

2 0.635 0.0956 3.802 12.752 7.60 83.46 20.30 

3 0.568 0.0956 4.617 14.007 8.84 81.84 21.80 

4 0.450 0.0956 6.465 15.863 10.71 68.20 28.97 

5 O.541 0.0933 4.394 13.069 9.31 79.56 13.64 

6 . 0.660 0.0915 3.232 11.564 7.15 83.32 24.34 

critical discharge obtained by the three methods for cases i through 

4. The comparison indicates the following points: 

1) Wang's theory always overestimates the critical discharge. 

This departure from the experimental results is conspicuousmore 


at smaller values of a than at larger values. 
 Wang's theory, how­

ever, 
 can be expected to predict'a reasonable value of critical dis­

charge at very large values of a. This can be explained as follows. 

Production from a well with a shallower penetration results in a 

steeper critical cone. When the brine cone is not too steep, the 

vertical flow components near the well are relatively less"significant. 

In such a case, the Ghyben-Herzberg relation, which is the basis of 

Wang's theory, is not too serious an approximation. Therefore, 

the critical discharge computed by using Wang's skimming-well 

formula shows relatively better agreement with the experimental 



86
 

values for wells with deeper penetration. On the other hand, in a case 

of shallow.-well penetration, the cone beneach the well is relatively 

steep. The vertical flow components, especially in the immediate 

vicinity of the well, cannot be neglected in this case and the Ghyben-

Herzberg approximation is no longer valid. The resistance to flow due 

to much stronger convergence toward the well affects the potential field 

in the flow region. This explains why a more conspicuous departure of 

Wang's predictions from the experimental results occurs at relatively 

smaller values of a. 

y .0.0956 
a Wang's Theory 

2o Muskot's Theory 
20 S Experimental Oata 

0 
10. 

5­

0.3 	 0.4 0.5 0.6 0.0.8 0.9 1.0 

Well Penetration a 

Figure 20. 	 Comparison of theoretical critical discharge with 
the experimental results. 

Further, it would seem possible to explain why Wang's theory always 

overestimates the critical discharge regardless of the value of a by the 

fact that Wang's analysis assumes that a stable brine cone could reach the 
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bottom of the well for a certain drawdown, called the critical draw­

down, and remain there in static equilibrium. With this assumption, 

the critical drawdown is computed from te Ghyben-Herzberg re­

lation as that drawdown for which the coning below th well is equal 

to the height of the bottom of the well above the original position of 

the interface. This value of drawdown is in turn used to calculate 

the critical discharge. Experiments have shown beyond doubt that, 

in fact, the cone does become unstable before it can rise to the bottom 

of the well. Therefore, one would expect that the value of the critical 

drawdown used in Wang's analysis should always be 
q 
greater than the 

actual critical drawdown which in turn results in an overestimation 

of critical discharge by Wang's formula. However, this dr'gunient is 

not complete. It would be true only if the actual height of the cone 

was related to the drawdown exactly as predicted by equation (73). In 

reality this is not the case. In fact, it has been verified by experi­

ments that the actual mounding is much less than that predicted by 

equation (73). As a result, even if it were physically possible for a 

stable cone to rise to the bottom of the well, the drawdown for that 

case would be much less than that calculated from equation (73). 

From Tables 1, 2, and 3, it is observed that each value of DW is 

greater than the corresponding value of D but less than DM. 

Furthermore, the value of critical discharge 0W is greater than QE 

and also QM for each case even though D M is greater than DW. It 
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is concluded, therefore, that the use of Kozeny's formula for com­

puting discharge in Wang's theory seems questionable. It is import­

ant to note that in the derivation of Kozeny's formula it was assumed 

that 

., 	 the aquifer is confined, 

2. 	 the lower boundary is fixed and flat, so that the aquifer 

is of uniform thickness which remains constant, and 

*3. the aquifer is saturated with only one fluid throughout. 

None of these conditions exist in the case which is the subject of in­

vestigation in Wang's analysis and the present study. 

2) Muskat's analysis of the coning problem is also only an ap­

proximate one. The potential distribution in this technique is 

obtained from the formulas which assume that the lower boundary of 

the flow region is horizontal and remains fixed. Thus the perturbation 

in the potential field due to the rise of the interface is not taken into 

account. Further, these formulas also assume a uniform flux 

density at all points on the surface of a well partially penetrating into 

the 	aquifer. This is not true in the rigorous sense, However, . 

Muskat's analysis does consider the important physical phenomenon 

of 	the instability of the rising cone beneath the well. This has been 

explained in detail in earlier sections. Table 3 shows that the height 

of the critical cone, that is, the highest stable cone beneath the well, 

as computed by Muskat's method, is always less than the height of the 
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bottom of the well. Also, the critical discharge calculated by this 

method is in much better agreement with the experimental values 

than are the results obtained from Wang'sformula as illustrated by 

Figure 19. 

Thus, both methods of analysis of the coning problem, namely 

those given by Wang and Muskat, are only approximate ones and 

both have their own limitations. Nevertheless, the results show that 

Muskat's analysis is more realistic than Wang's analysis. 

Verification of the Results of Computer Analysis 

As explained before, the basic difference between Muskat's 

analysis and the mathematical model developed in this study is that 

whereas in the former analysis the perturbation in the potential field 

resulting from the rise of the lower boundary cannot be taken into 

account, the latter does consider it by employing an iterative pro­

cedure. In that sense the analysis made by the present mathematical 

model continues from where Muskat's analysis stops. The fact that 

the theoretical model presented in this study does accomplish this 

objective is illustrated by the following two examples. Each case is 

analyzed by employing Muskat's approach, computer simulation, and 

the physical model. 

Example 1. The aquifer properties and the well geometry 

studied in this example are the same as in Case 5 in Tables 1, 2, 

- d 3. 
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In thq computer analysis of this case, first some reasonable 

value for critical drawdown was assumed and the problem solved for 

the potential distribution by the iterative procedure as explained 

earlier. The graphical analysis was performed using the computed 

potential distribution for the assumed drawdown. If the line cor­

responding to this drawdown intersects the AH/(AH) e vs. 7/He curve 

in two points, it means the drawdown assumed is subcritical for this 

case; if it is tangent to the curve the drawdown is critical; if it does 

not meet the curve at any point, the assumed value of drawdown is 

over-critical. If the critical condition was not arrived at in the first 

trial, the drawdown was changed and the procedure repeated. 

Generally four to five trials are sufficient to obtain the critical con­

dition. For the sake of brevity only the results obtained for three 

drawdowns including the critical, one subcritical and one over­

critical, are described here. 

Tables C-I, C-2 and C-3 in Appendix C represent the com­

putations for three drawdowns of 4. 00 cm, 4. 50 cm, and 4. 65 cm 

respectively. Figures 2 1, 22, and 23 show the graphical analysis 

of these three conditions. The results of this analysis are presented 

in Table 4, where DND QND and CN denote critical drawdown, dis­

charge and coning, respectively. This analysis shows that a draw­

down of 4.00 cm is subcritical and that of 4.65 cm is over-critical. 

The critical drawdown is 4. 50 cm and the apex of the critical cone 
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Figure 23. 	 Numerical analysis for 
Case 5 (III). 

14 cm below the original free surface. The criticalis at a depth of 10. 

discharge is calculated at 12.38 cc/sec for the 150 sector of the entire 

flow region around the well. Experimentally, the depth of the highest 

for a drawdown of 4.60 cm. Thestable cone was found to be 9.90 cm 

of 12. 38 cc /sec is different from thecorresponding critical discharge 

experimental value of 7. 65%. 

Table 4. Results 	from Numerical Model 

Y QN CN coning Error inCase # a 	 DN 
)cm cc/sec 	 cm 0 0N ( 

5 0. 541 0.0933 4.50 12. 379 10.14 86.67 7.65 

6 0.660 0.0915 3.15 9.973 8.06 91.18 7.24 
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sur-
In order to get a composite picture, the position of the free 

face and the interface -were also computed at a number of distances from 

The data for the critical conditions are given in Table C-4 
the well-axis. 

in Appendix C. The corresponding experimental data are given in 

comparison of the computed
Table D- I in AppendixrD. Figure 24 shows a 


depths of the free surface and the interface with the experimental values.
 

1 Experimental Data 
10. 	 o Numerical Model Data 

20 -	 o 0 

.niTiClPosition of Interface 
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Distance From the Well-Axis (cm) 

Figure 24. 	 Location of free iiurface and interface 
for critical conditions in Case 5. 

case 6
Example 2. The situation described here deals with 

studied in the physical model and also by Wang's and Muskat's methods. 

as in Example I. The computations
The same procedure was followed 


in Table 3 and the analysis

made by using Muskat"s formula are given 

19. According to this analysis the critical drawdown 
thereof in 	Figure 
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should be 3.23 cm, the apex of the critical cone should be at a height of 

7. 15 cm above the initial position, and the discharge for this case should 

be 1 . 564 cm/sec. The potential distribution computed using the 

numerical model for three different values of drawdown is presented in 

Tables C-5, C-6 and C-7 and the corresponding graphical analyses in 

Figures 25, 26, and 27. This analysis predicts the location of the apex 

a x0.660 

S63.ocm -

S
oIT"I 
* IT *2 

00.3 a IT wMAXIT112 
Subcritical Stable Cone 

0.1I 

Unstable Cone 

0.15 0.6 0.7 08 0.9 1.0 

Figure 25. Numerical analysis for
 
Case 6 (I).
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4a IT AXI 

0
0.5 0.6 0.7 0.8 0.9 to 

Figure 26. Numerical analysis for
 
Case 6 (II)
 

0.5
 

a00.660
 

04- ,3.20 cm
 

0 ITwlI
 

40.3 A IT w2~l 

0.1 	 nstbleCon 

<10.2­

0. I Unstable Cone 

0.6 	 0.7 0.8 0.9 8.0 

2/H 6 

Figure 27. 	 Numerical analysis for 
Case 6 (II). 
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of the critical cone at a height of 8.06 cm for a drawdown of 3. 15 cm 

and the corresponding critical discharge of 9.973 cc/sec. The experi­

meints showed an actual coning below-the well under critical conditions 

of 7.50 cm for a drawdown of 3.20 cm and a discharge of 9. 30 cc/sec. 

The computed value of critical discharge is thus in error by 7. 24% for 

this case. A comparison of the location of the interface and the free sur­

face as obtained from nurnerical data and experimental data for this case 

is shown in Figure 28. 

9 Experimental Data 
10-1 a Numerical Model Data 

20 0 a 	 e 

-.. . - Initil Position of Interface 

300 ,L ', - _ , _ - _ _ _ 0 10 20 30 40 50 60
 

Distance From the Well-Axis (cm)
 

Figure 28. 	 Location of free surface and 
interface for critical conditions 
in Case 6. 
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The above two examples show that tho results obtained from the 

numerical model are in better agreement with the experimental 

results as compared to those obtained by following Muskat's approach, 

which in turn is more realistic than Wang's model. The mathematical 

model developed in this study, therefore, is expected to yield more 

accurate and realistic results as compared to the two existing 

theoretical models. 

Application of the Mathematical Model 

Having checked the validity of the model developed in this study, 

the model is then used to analyze a number of possible field situations 

with regard to: 

1. thickness of the fresh-water zone, 

2. hydraulic properties of the aquifer material, 

3. densities of fresh water and saline water, 

4. radius of the skimming well, 

5. depth of penetration of the well, and 

6. radius of influence of the well. 

Twenty different situations have been studied. In each case the 

critical drawdown, position of the interface below the well, and the 

maximum fresh water production were determined using the pro­

cedure explained earlier. On the average, four trial runs were made 

for each case in order to arrive at the critical conditions. 
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The potential distribution data generated by each computer 

run for each case considered were analyzed graphically to check 

whether the drawdown for a particular case in question was critical 

or not. However, all the computations and graphical analyses for 

the entire set of all computer runs are not presented here. Instead, 

only the final results for the critical condition for each of the twenty 

cases are discussed. 

In order to derive a more meaningful inference from the above 

results, all the important variables were transformed into dimension­

less parameters and the results were expressed in the form of inter­

relationships among these dimensionless parameters. This has the 

advantage that the results would then not only apply to the twenty 

cases studied, but to a much wider range of field situations since a 

large variety of combinations of various variables involved could pro­

duce similar results in the dimensionless form. With this in view, 

the following dimensionless groups are selected: 

1. well-penetration 

pW 
a = (77) 

e 

2. 	 well-slimness
 

r
 
wY= -	 (78) 
e 
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3. 	 effective radius of influence 

e
• r 
-e 	 (79)H 
e 

4. 	 drawdown at the well 

• 	 Pf(He - Hw) 
V =V (80)AP 	 H. 

e 

5. 	 dimensionless discharge 

* PfQ 
H2K	 (81) 

AP 	H•
 

6. 	 specific capacity 

S=KH)(82) H-H
K He (He - Hw ) 

The reason for the choice of the first three parameters listed 

above is obvious. The dimensionless parameter for drawdown follows 

readily from equation (20) which is written in the dimensionless form. 

was ar-The dimensionless parameter for discharge listed above 

rived at as follows: 
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Q 

hr2 Well-Face 

• S JAZ i:2 

Well-Axis 

Figure 29. The producing well and the adjoining grids. 

A consideration of flow into the well from all the grids surrounding 

the well such as in Figure 29, shows that by mass balance the total well 

discharge is given by 

n 
Q =M Q . + Q (83)

t= ri z 

where Q . is the radial flow crossing the well face from adjoining grid 

i and Q z is the vertical upward flow into the well from the grid just be­

low the well-bottom. 

Applying Darcy's law at the well face, the total radial flow into 

the well is given by 
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Q=UK( r H) (84)
 

where (8H/8lnr)w is the derivative of'head with respect to the 

natural logarithm of radial distance evaluated at r w; and zn and zI 

are the elevations of the grids n and 1 respectively. 

However, since it is difficult to evaluate the integral in 

n 
equation (84), its approximate value Z Q .could be used which can

i= l rt 

be written as 

n H.-H 
Q.u =2rKZ1=1l tnr w Az (85)rz 


that in the well, Az is thewhere H.1 is the head in grid i and Hw 

thickness of grid i and inr = Inr 2 -nrw = X (a dimensionless 

number). 

Assuming Az is the same for all grids, and since Alnr is a 

constant, equation (85) can be written as 

2UrK n 2 HbA- H w~(rWX= Azl: (H.-H) + 

i=1 w
 

n Hi-H (H -H )Hb-H 
K z(H H4)rEr w 2 e w 8w 

w H-H w Az H-H (86)e 

Multiplying the above equation through by Pf/LAp H e 
2 K it becomes' 
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PfQ 2W/z(H( -H \n Hi-H
 

Ap aX He i:1 ho- h w
 
e
 

Hr~H eIH 
+ 4 )(f) ( H H (87) 

It is now readily seen that every term in equation (87) is in dimen­

sionless form. Hence, a dimensionless parameter for discharge 

could be defined as 

".PfQ
 
Ap H2 K
 

e 

The dimensionless parameter for specific capacity (i. e., dis­

charge for unit drawdown) can be obtained as follows: 

* Q
8-m
 

- PjQ Pf (He-Hw) 

Ap H2 K Ap He 

KH e (H -H)we 

The results of the computer analysis of the twenty casest 

mentioned earlier are expressed in the form of the above dimension­

less groups in Tables C-9 through C- 12 in Appendix C. The inter­

relationships of these dimensionless variables are presented in 

Figures 30, 31, 33, and 34. 



103
 

0 C,,I1.574 
0 ,a 9.873 

4.0- et 6.289 
.& C a,2.500 

I 

3.0 

' 2.0
 

1.0 

01 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9, 1.0 

Well- Penetration a 

Figure 30. 	 Variation of critical drawdown with well 

penetration. 

The following inferences are drawn from the data shown in these 

figures: 

1) For a given fresh-water thickness, the critical drawdown in­

creases rapidly as the well penetration a becomes small, and the rate 

of this increase is much faster for greater fresh-water thickness He 

2) The critical drawdown becomes infinitesimal as a approaches 

100%, that is, as the bottom of the producing well approaches the ini­

tial position of the interface. This implies that when the well penetrates 

very deep, even a small drawdown at the well is sufficient to produce 

unstable conditions causing the cone to break through the well. 
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3) The dimensionless critical drawdown D versus well­

penetration a curves tend to become asymptotic at very small values 

of a depending on the L(=r /H ) value. This means that at such 
e e 

small values. of a the critical drawdown approaches infinity. Further­

more, the curves become asymptotic at relatively larger values of 

a for smaller values of L. This implies that for a given set of 

conditions, as the well penetration a is continually decreased, event­

ually a situation arrives when the critical drawdown does not exist. 

In other words, no cone is critical regardless of the value of draw­

down at the well. This finding is in agreement with the prediction of 

Muskat's theory. 

4) It is also observed from Figure 31 that for a given value of 

a, the dimensionless critical drawdown b decreases as the ratio Lu 

increases and the rate of change in D becomes increasingly pro­

nounced as a decreases, especially at very large values of L. 

5) Furthermore, it is interesting to note that for a given a, 

the analysis predicts a higher critical cone for larger values of 

(Tables C-9 through C-12). 

The physical meaning of the inferences 4 and 5 is explained as 

follows. Consider two situations referred to as case (a) and case 

(b) in Figure 32, where the fresh-water thickness, well-penetration, 

and all other conditions are the same except that in case (b), the 

radius of influence r 
e 

is much greater than in case (a). Assume that 
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Figure 31. 	 Dimensionless critical drawdown versus 
dimensionless radius of influence of the 

well. 
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the'production rates are such that the height h of the stable cone below 
c 

'the well is 	the same in both'cases. Obviously, the-convergence of the 

- . ____; 

Case (a) 	 Case (b) 

Figure 32. 	 Explanation of the effect of radius of influence 
of the well on the critical drawdown and coning. 

streamlines toward the well will be much stronger in case (a) than in 

case (b). This should result in a greater drawdown in case (a). Further­

more, if h were the critical cone height in case (b), then because of
C 

larger vertical pressure gradients in case (a), the cone beneath the well 

would become unstable before it could rise by an amount hc . This 

explains why the critical drawdown is greater and the critical cone height 

smaller in a situation such as in case (a) than in a situation like case (b). 

6) The above discussion leads to another important conclusion, 

that a greater drawdown at the well is not always necessarily accom­

panied by a greater cone-rise beneath the well. The Ghyben-Herzberg 

relation is, therefore, not always a conservative one with regard to the 

location of the interface as it is usually thought to be. 
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1) Another signiftcant point brought out by Figure 31 is that 

-all the f) versus L curves for various values of a, on extrapolation 

seem to converge to the same point (0, 14./5). This implies that as 

re/H is increased, D continually decreases and approaches an in­
e- e 

finitesimal value at about r /H = 14. 5. 
e e 

8), Figure 33 presents the variation of dimensionless critical 

discharge Q with well penetration for various values of r e/He. A 

comparison of these curves leads to'the conclusion that for a given a 

increases as L decreases and that this increase becomes more
 

pronounced as L decreases. The nature of this variation isingeneral
 

agreement with the findings of Bennett, et. al. (I). 

It is also significant to note that the Q vs. a curves show 

maxima at small values of a (approximately 10 to 20%) depending on 

the value'of L. Furthermore, it does not seem possible that these 

curves pass through the origin as predicted by Wang's analysis. 

This becomes clear from the fact that at certain values of a, a D vs. 

a curve becomes asymptotic (Figure 30) and that for well penetration 

less than this value a critical condition does not, exist. Therefore, 

the function Q does not exist and the Q vs. a curves cannot be con­

tinuous through the origin as predicted by Wang's theory. 

It is also important to note that the critical discharge is not 

directly proportional to the drawdown as assumed by Wang's analysis. 

Figure 34 represents the dimensionless critical specific capacity 

versus well penetration a for various values of Y and L. It shows 
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that S increases as a increases and that at a given value of a. 

increases as L increases. 

Application of Results and their Limitations 

The following example illustrates how the results of this study 

may be used to indicate the optimum practical conditions with 

regard to a skimming well in the field in order to get maximum fresh 

water without entrainment of salt water. Consider a case in which 

H = 200 feet 
e
 

r = 1250 feet
 

K = 0. 002 cfs per sq. ft. 

Ap/Pf = 0.015 

and it is desired to study the performance of a skimming well 0.7 

foot in radius. 

Using the nomograms in Figures (30) and (33), a dimensionless 

critical drawdown of about 4.425 feet and a dimensionless maximum 

permissible discharge of 0. 75 are obtained at a = • 150 for this case. 

Therefore, 

= 4.425 (ApH e ) 

= 13.28 feet 

and 

=0.75 (H 2K Ap)
e 

=0.90 cfs or 403.9 gpm. 



The optimal depth of penetration in this case is 30 feet. Thus, 

the well should be screened from 13 to 30 feet below the water table. 

It should be noted that it has been assumed in this analysis that the 

recharge in the area is sufficient to result in a steady-state and that 

the "well-losses" are negligible. If the area under consideration 

does not have sufficient recharge, the well should be pumped at a 

smaller rate than suggested above in order to avoid depletion of the 

aquifer. The second assumption of negigible well-losses requires 

that the velocity of flow into and within the well be very small, which 

in turn may require a smaller pumping rate and a larger well radius 

than those in the present example. 

Another important point that must be considered while using the 

results of the present study is that it has been assumed that a distinct 

interface exists at all times between the fresh water and the under­

lying saline water. The effects of diffusion and dispersion have been 

neglected. Therefore, it is possible that at a critical drawdown pre­

dicted by this study the well in the field may produce water with 

slight salinity, depending on the vertical thickness of the dispersion 

zone and the vertical gradient of salt concentration within this zone. 

It would, therefore, in general be safer to suggest a pumping rate 

somewhat lower than that predicted by this study. It should further 

be pointed out that the results of this study are applicable to homo­

geneous and isotropic aquifers. 
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T'hus, some of the assumptions used in this study might place 

Neverthe­certain restrictions on the practical utility of the results. 


less, the method appears to have considerable viaue in the sense that
 

it is more realistic in approach than the existing analytic methods.
 



CONCLUSIONS AND REDOMMENDATIONS 

The phenomenon of salt-water coning below a fresh-water 

skimming well was studied both theoretically and experimentally. 

The experimental part of the study gave a better insight into the phy­

sics of the phenomenon and helped check the validity of the existing 

analytic solutions and of the mathemaLical model developed in this 

study. 

The following conclusions were drawn from the results of this 

work. 

cone in response to1. The salt water rises in the form of a 

pumping of a skimming well with its apex vertically below 

the well. Under steady-state conditions the cone rises 

until its apex reaches a certain height depending on the 

in every field situationdrawdown at the well. However, 

there is a drawdown, called "critical" in this otudy, at 

which the highest stable cone can occur. If the drawdown 

exceeds this value, the cone becomes unstable. As a 

result, the cone keeps rising and eventually the well 

starts producing saline water. This occurs when the 

production rate is such that the velocity of fresh water 

flow along the interface exceeds the maximum value 

\pK/pf which can exist without flow in the underlying brine. 
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2. 	 Regardless of the well geometry and the aquifer and 

fluid properties, the highest stable cone can never rise 

as high as the bottom of the well-screen. This is in 

agreement with Muskat's predictions and the findings of 

Bennett, et. al. (1) based on their electric analog studies. 

Thus, the phenomenon of instability of the rising cone is 

confirmed beyond doubt with the help of the electric analog 

and physical models as well as the mathematical model. 

3. 	 Both Wang's theory as well as Muskat's theory are based 

on assumptions some of which are questionable. The 

former assumes that 

(a) 	 Ghyben-Herzberg relation is valid, 

(b) 	 Kozeny's formula for discharge from a 

partially penetrating well in a confined aquifer 

with a fixed lower boundary can be used for 

the case of an unconfined aquifer with tne inter­

face between two fluids as its lower boundary, 

(c) 	 discharge is directly proportional to draw­

down, 

(d) 	 maximum uncontaminated discharge occurs 

with the apex of the brine cone just at the 

bottom of the well. 

The present study shows that none of these assumptions, 

particularly (d), is valid in the phenomenon of coning 



beneath a skimming well. However, under certain 

limited conditions, for example, for very deep well­

penetration, when the cone isfot too steep, Wang's 

formulas can yield reasonably reliable predictions. 

Muskat's analysis is more realistic than Wang's in the 

sense that the former does consider the phenomenon of 

instability and, therefore, recognizes the fact that the 

highest stable cone always occurs with its apex at a lower 

elevation than the bottom of the well. 

4. The mathematical model presented in this study takes 

into consideration the non-linearity of the boundary 

conditions. That is, it takes into account the fact that 

while the potential distribution depends on the position of 

the lower and upper boundaries, the positions of these 

boundaries in turn depend on the potential distribution. 

Hence, an iterative procedure was used to arrive at a 

solution. The validity of this mathematical model was 

checked by comparing the results obtained therefrom with 

the experimental results and those obtained by using 

Muskat's approach. The results of the mathematical 

model showed better agreement than Muskat's analysis 

with the experimental results. The results obtained by 

using this mathematical model are summarized as 

follows. 
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(a) 	 For a given fresh-water thickness, the 

maximum permissible drawdown increases 

rapidly, especially for greater fresh-water 

thickness, as the well penetration decreases. 

At very small penetrations, the critical draw­

down approaches infinity. 

(b) 	 For a given fresh-water thickness and well 

penetration, the critical drawdown decreases 

and the coning increases as the radius of 

influence of the well increases. 

(c) 	 For a given radius of influence of the well, 

the dimensionless critical discharge rapidly 

increases as well penetration decreases, 

especially at very shallow penetrations. 

(d) 	 The Q versus a curves show maxima in the 

neighborhood of 10% to 20% well penetration. 

For the same cases Wang's analysis shows 

maxima at well penetrations of about 33% to 

41%. Also, the results of this study show that 

the dimensionless critical discharge versus 

well penetration curves tend to become flat 

at these maxima and do not pass through the 

origin, whereas, the maxima predicted by 
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Wang's theory are also the points of inflexion 

of the curves which pass through the origin. 

Physically, it implies that for given aquifer 

and fluid properties and well geometry, there 

exists a well penetration such that the critical 

conditions cannot occur at shallower pene­

trations than this value. 

(e) 	 The results of this analysis lead to some 

interferences which are of practical signifi­

cance 	with regard to designing a skimming 

well procedure. It has been shown that under 

a given set of field conditions the maximum 

fresh water discharge is obtained with well 

penetrations much smaller than those pre­

dicted by analytical skimming well formulations 

available at present. 

(f) 	 Other conditions being equal, the critical 

conditions occur at greater production rates 

for smaller radii of influence of the wells. 

Furthermore, although it has been shown that 

the mounting is not directly proportional to 

the drawdown, nevertheless, smaller mounding 

occurs for smaller drawdown. Therefore, if 
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several wells are pumped together to give 

the same fresh water production collectively 

as could be obtained froma single well under 

critical conditions according to the results of 

this study, the mounding so produced will be 

less than critical. It is, therefore, possible 

to get more production of fresh water without 

getting salt water in the wells when a battery 

of larger number of wells is used. However, 

a quantitative inference to this effect could 

not be drawn from this analysis. When a 

group of skimming wells are operated with 

the help of a single suction pump, their closer 

spacing would be more economical even from 

the installation point of view. 

It is suggested that while applying the results presented in this 

Dissertation to a field situation, their limitations should be taken 

into account. The "entrance losses" at the well and the thickness of 

the dispersion zone have been considered negligible in this analysis. 

Also, the results apply to homogeneous and isotropic aquifers and to 

steady- state conditions. 

The results presented in this work are intended to indicate the 

conditions under which a stable cone can exist and the critical 
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It has beenconditions beyond which the cone becomes unstable. 

shown that the maximum uncontaminated fresh water production oc­

curs as the critical conditions are approached. However, it is not 

intended to suggest that this alone should be the objective in using 

Sometimes it may be moreskimming wells to pump fresh water. 

rates.economical and practical to pump at lower 

Also, in some situations an entrainment of some brine along 

with fresh water may not be as undesirable at; in some other situations. 

it may beIf the underlyind saline water is not of very poor quality, 

desirable to pump the well at a higher rate than critical as long as 

the quality of the water produced is within tolerable limits, depending 

Hence, while making a decision with on the use it is intended for. 

regard to the rate of pumping various factors such as water quality 

amount of rechargein the aquifer, the tolerable limits of salinity' 

and economics of the operation must also beavailable in the area, 

taken into account. 

Further study is required to analyze several aspects of the 

The utility of the nomograms presented inphenomenon of coning. 

a wider range ofthis Dissertation can be increased by considering 

possible situations. It would be worth-while to study the effect of 

dispersion on the maximum fresh water production predicted in this 

study. Finally, the mathematical model presented here should be 

further generalized by considering the effects of heterogeneity and 

anisotropy with regard to the hydraulic properties of the aquifer. 
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PROeRA4 POTEN)I (INPUT9OUTPUT TAPES= INPUT 9TAPEOP',TPUT) 

CALLIf4G 0Rj')qA'4 FOR~ SIMPSO'.,S 1"tLE IN.TE6aATIOJ c 

SIMPSONsS alULE INTEIRATInN"

C DEFINE 1N1EGRAWj' FOO 
DIMENSION 30A(0o30C(0o)3lY(OYA(09S09 

.Tot30) .y0L(301,TSUM(30)
lYIFL(30).YC(30)tYCL(3O) 

CO'440NI CX
 
CNTER'JAL ARG
 
READ (sel)K
 

I FOPMATIF7.S)
 
VQI IC(6. .) 

4.VOP4AT(I193X*W7X9*TSU4#)
 

C(1)dI.-X
 

wil)=0u.00
 
GLO0.00001
 
00 	10 1=2s26
 
Kul-) 
WjI3W(K) '.02
 

AfI()2AtK**02
 
H(IIZCIK)-.02
 
041) D -02
* 

10 	CONTINUE
 
00 20 1=1#26
 

YA(I)=SII4PSN(AR0G1 .999.,.000I)
 
YALf1)=ALOG(AE1S(YA( I)))
 

YR(I3cSImPSNIARG9SLq9O
9 9q.000I)
 

YEL(I)zAL0GlABS(YB( I)J)
 
CK=C(I I
 
YClI)=SlMPSN(AWGvGL9999e .0001)
 

YCLtI)=ALOG(AbS(YC(I)))
 

YD(I3)=SIMPSNIAPGGL ,999q.,o0l)
 

T~j0'4IIVz-YAt.( I)-Y~j (!)*YCL(I)*YOL(11 

P F90MAT(i-i0*jX9F4.@d2Av*HO5)
 
20 CONTINUE
 

CAIL EXIT
 
END 

mailto:F90MAT(i-i0*jX9F4.@d2Av*HO5
http:H(IIZCIK)-.02
http:wil)=0u.00
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FIIMCTI104 ARG(XI
 
COMMON C
 
AQICaAOO IC-I .)vEXP(-Z) 
X,2=F~XP -I­
EIZX**(C-1.) 
PE.TURN
 
ENn
 

Fu'JCIION SI!4PSN(APGYI.Y2sFER
 
FUNCrIIJN
C STUDSN INT.64ATION ROUTINJE WRITTEN AS FOPRPAN IV 

DIMENSIdON F2T(2ohv,4T(2o),F3T(i?.fuF4r(20).F'br(do)t 
IDET(2o,.XIT(2O),X2T(zO).APT(2O),EPST(20IIESZT(20). 
2ESIT(?fl),LFG(2O),SUM1 (201 ,SUH2(20)
 
CO"140N4 C
 

C INITIAL SE7-UP
 
A=Y 1 
EPSzFERR
 
G=Y2
 
QA8B-A
 
FA =ARG (AI
 
FM:4.oAqGI (A*B)*.5)
 
FR=ARG(6)
 
AQFA=I.0
 
ESTZ 1.0 
Lu I
 

C I3F61N SIMPSON
 
I OX=DA/3.
 
X1EA#DX
 
X22X1eDX
 
F7X4**APG(A#*S5DXI
 
F2=ARG(Xs)
 
F3ARl(X?)
 
F4L.o*AP6(A*2.5ODX)
 
0X6=DX/6.
 
ESTl=(FA*FI.F2l*OXfi

CT2: (F2.F'4#F31 DXb
 
£?'T3 (F3*F4*Fw4) DXf.
 
AREA=AREA-AHS(EST) ,ABS(ESTI).ABS(EST2)4ABS(EST3I
 
%IIU=EST 1 EST2*EST3
 

C TEST Fnp CO'4VPGENCE 
IFIASSIFST-SUM)-FPSAREA)29293 

p IF(EST-I.O)6*3v6 
3 1F(L-Mrsi,6i6 
5 L=L.I 

LEC,IL)3 
C 	 STAULE PAk1AMETEPS Fog SIMPSON 11 AND III
 

FPT IL)=F
 
FMTILI:Fm
 
F3TIL)=Fl
 
VE.T ILl=
 
FAT IL)=F'4
 
DinT L):0K
 
ElY IL)=Xl 
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C 


C 


C 


AQT (LI=AQEA 
EPSY (LISEPSI .7 
V.521(11 EST2 
ES3T (L) =EST 3 
RETUIRN To SIMOSON I 
OA=OX 
VJ=Fl
 
FR=F2
 
ESTmESTI
 
EPS=EPST (U
 
GO TO 1
 

6 Ir(LEc(L)-2199847
 
7 SU)If1L)cSUM
 
LCG (L~z2
 
RETURN TO SIMPSON 11
 
A=X1T LI
 
DA:DXT (LI
 
FAxF2T (L%
 

-F'4FMT(L)
 

FB=F3T IL)
 
AREAmARr (LI
 
EST=ES2T (L)
 
EPS=EPST eLl
 
60 TO I
 

P 5L112(L)=SUM
 

RETURNJ TO SIMPSON III
 
A.12T (L)
 
OA=DXT (L)
 
FAzF3T (L%
 
FM=V.T (Ll
 
FB=FBT (Li
 
AQEAzART (LI
 
EST=ES3T (L)
 
EPS=EPSTILib 
00 TO I 

Q SIM=SUMI (L)*SUM2(LI.SUM 
L1L-1
 
IF(1-1) j116
 

31 	SJMPSN = SIJ'4 
RETURN 
END 
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PROGRAM POTEI42 (INPUT*OUTPUT 9TAPES= INPUT,9TAPEC,:OITPUT) 

c CALCUI*1IZO OF NATiiRAL Lor, OF (A*C)/('i#O) WHERE A=W*X AIJO tir-W-X 
C ROuPADJAL fl!STAN~CE Fko'4 lTpE WELL OIVIflEO BY TwICE THE IKeNESS OF 
C F9,E%H wATE.l Al THlE RADIUS OF INFLUENCE. 
C WanEPTt" VFR04 TOP 6JVIDED AT TWICE THE THIKrIESS OF FR~ESH WATER AT 
C 	 T*4E RAMSIU OF IJFLt'EmCE. 
C 	 X~')EPrH OF PENETRATION OF WELL DIVIDED BY TWICE THE THICKNESS Of 
C 	 FPFSH WATER AT THE RADIUS OF INFLUENCE. 

OI'AENSInN 'E(30)*P(301 

REAOI5,It ROvX
 
I FOD.AATt2F10.5j

ROS=RO@O2.O
 
04AXL 1N=24 
IMAX=26
 
I., 

5 WRITE(69.aI
 
2FnR'4AT(IHI/)
 
WR#!rE(6*3)
 

10 Y=FLOAT(T)
 
WfI)2Y*o02-sO2
 

* A=WfII.X
 
R:WIII-X
 

O=S0RT (RoS. (ABSIB))**2&O)
 

P(I)=A100(A8S(E))
 
* WPITE(691tlW(11vP(I)
 

1=101
 
IPI.GT*IMAX) GO TO 20
 

* IF (I*GE.I4AXLIN) G0 TO 5
 
6O TO 10
 

3 rOU~mAT(Id,3X9*WeQXo*P*)
 
4.FnQMATIHiOIX9F4.2s4X9F8S.
 

20 	CAI E.XIT
 
ENn
 

http:WRITE(69.aI
mailto:ROS=RO@O2.O
http:FOD.AATt2F10.5j
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panlGQSIP POTEN3 (INPUT 9OUTPUToTA9CS=uIN~PUT *TApE6wOUTPUT1 

OIIJCNSKON 130)
 

6 FORQ.Ar(2FIO.5)
 

iFAD(ioll N
 
I FfOJAMIS)
 
OEA0(5,?) iw(i)oI.1,26)
 

00 3 1=1926
 

1FIW1.GT.Xl 00 TO 3
 
Do 4 J=1.N
 
ONXJ-1
 

Cu1.0/ION*1 ,Q-X*W(J)1**Z
 

4 SU4=UM-A&8-C#
 
TStl4SUM
 
TSIIMITSUM0. ?5*R0,
 
bP1TEf69S) 1,TSUI49TSU4I
 

5 FuAPIAT//1XI2,F15.5WSX9FIS*?I
 
3 CONTINUE
 

END
 

http:1FIW1.GT.Xl
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PROGRA4 DISCHNG (IIPUT0UTPUT.TAPES=INPUToTAPE6:nUTPUT)
 

C COND IS CONr)UCTIVITY OF THE AnUIFER MATERIAL TO THE FLUID
 

C RFIN6 SKIMmED (L/T).
 
IL).


C D IS THF OQAoDOWN AT THE WELL 


C, P* IS THE RADIUS OF THE WELL (LI.
 INTERFACE
 
C HE IS THE THICKNESS OF THE FLOW REGION ABOVE THE 


C PRIOR TO OUMP!Nb (L).
 

C Pj IS THE WELL PENFTPATION (Il.
 

0 IS WELL DISCHARGF FOQ A 15 OFUREE SEGmEIT OF 
THE ENTIRE
 

C 
FLOW RrGION AND IS 1/24 OF THE TOTAL DISCHARGE (VOL./TII4E).
C 


READ 5.il COND9RWoRE9HEPWOI
 
I FORMAT(610o31
 

ALPHA=Pi/HE
 
RETAmSURT(RW/(2,*HF0ALPHA))
 
GAVMA=RW/HE
 
XtIJ=6.2A32#COND0HE*ALPHA*DI
 
XNIJ:CoS(I.'708eALPHA)
 
XIcAL0G(PE/PW)
 
O=(Xt4uI*(l .7..BETADXNUI))/(24*Xl)
 
WQITE(6s?) ALPHAGA MAO 

A=
A =
 tE 1Oe4 9sxq
2 FOPMATCIH ,SX.*ALPH *,F6.4tS X 0GAHM


I*DISCHAQGE=*F1Os31
 
CArL EXIT
 
END
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PROGRAM CONING IINPUT.OUTPUTTAPC5UINPUTTAPE6ZOUTPUTI
 
DIMENSION P13392019 JIN(19)9 ZETA(33919). .JS(191 ZW(1919 11(33#201
 

COMM"ON T(532919),PH 1 532),KBOIJlI332O)CONI~332OIR(33.ZO)IOELR2,
 
1HF?,I*INCNCWELJP3JPICONSTNR1,NCI10ELZ(33IeOI.NU.NCW.L(33.ZO5 .D
 
ZEL7I .fEL?2
 
INTEGER ETrA
 
REAL ANM
 
NRJ:53Z
 
NCTC19
 
J?2
 

READ (5#65) PB9ETA9RHDF9RHOS9CONDS9NC
 
READ (So66) RWQE971.IHEoHWPNR
 
READ (5o67) 0I.PW9!O1,JP1,NCWEL9RJEX
 
READ (5968) ICIAXITgEPStDELZ19DELZ2
 
JDI=Jn) .1
 
.jp=JP1 91
 
NCWvNCWEL *
 
NCW2ZNCWFL*2
 
NCW3=NCWE~L*3
 
P~IR3. 3416
 
NCI NC.
 
WRI =NR *
 
NC?=NC1 .
 
Do 1 1=29NRI
 

I REAO (59691 (KBOUN(I9Jl9Jx2,NC2J
 
PALPHA =PW/HE
 
GAMARQw/HE
 

c *Do PRINT INPUT DATA.
 
WRITE 16970) PE4ETARHOFRHOSCONOSNCRWREZISHEHWNRDIPVJDI
 
1,JD1,NCWEL.RJEXKC.OE"LIOELZ2,ALPHAGAMAI4AXITEPS
 

C CALCULATION OF HORIZONTAL DISTANCE OF GRIDS* 
C PAOIUS MEASURED TO THE BOUNDARIES OF THE GRIDS* 
C CflNST=RADItJS OF THE~ FIRST COLUMN* 

CnNST=RW 
In?
 
R(Iv2)ZCONST
 
R(TsNCl)=RE 
PLN=ALOG(CO'lSTl 
TC='JCl
 
DPLN=(ALOG(RE)-AL0t6ICONST) 3/(TC-2.OI
 
00 2 .13.NC2
 
RLN=RLN .ORLN 

http:3/(TC-2.OI
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00 3 ta3.4ql
 
On 3 J=2.NC2
 

3 9(t.J)=R(1-tJ) 2 %N R I)
 W41TE 	14,711 f(QIIJ*j:~2vNC2)91m


C OELRI=OISTANJCE iIET. COLSe J=NC AND J=NCe
 
C nFLQ2:lnSTAVCE BET. COLS. J=NCj AND J2NCZ.
 

OfLRI= f?,tPCil-Q(29NC)
 

OFLR2z:P(2NC2)-(R2.NCII
 
C
 
C
 
C COMPUTE THE ELEVATION Z(I.J) OF THE CENTER OF GOIUi(IJ)*
 

J=-?
 

Z(?.Jl=ZI
 
IC =IC*I
 
00 7 I:3,NRI
 
I (I.GTIC) 00 TO 4
 
ZiliJl=Z(I-1.J)-OEIZI
 
GO TO 7
 

4 IF (I.EQ.ICi) GO TO S
 
GO TO 6
 

5 Z(1.J)=Z(I-itJ)- iOELZ1*DELZ2) 0e0S
 
GO TO 7
 

6 Z(I.J):Z(I-J1J)-ELZ2
 
7 CONTINUE
 
Do 8 J=3*NCI
 
DO R 1=2.NRI
 

' Z(IJ)=Z(I.J1I)
 
WRITE 169721 ((Z(I.JIJc2NC1),

=29NR I )
 

C
 
C 

INITIALISE THE PRESSURE HEAD AND CONDUCTIVITY IN EACH GRIO. IT IS
C 
ASSUMED THAT PRIOR TO PUMPING TOTAL hEAD IS SANE EVERYWHERE AND
C 


C 	 EftlAL TO HF.
 
00 10 1=2,NRI
 
DO 10 J:2,NCI
 
H(IJI=HE
 
P(I.J)=H(IOJ)-Z(IJ)
 
Ir (P(IsJ).LT.PB) GO TO 9
 
COD(I.JI=CONDS
 
GO TO 10
 

9 CO OItJ)=CONDSO((PO/P(ItJ))OOETA)
 
10 CONTINUF
 

C
 
C
 

HOST RECENTLY CALCULATED VALUES
C COMPUTE FLOW COEFFICIENTS USIN 


C OF CONnUCTIVITY.
 
C
 

1=1
 
C
 

K.) p4=NPI 
11 CALL TCOEF
 

C
 
C
 

N:U
 

NCOFt:tCl
 
NC4=NC
 

C
 
C
 

CAI.L SOSOLV (TQHStNtCOFNCMDETtOUADISUMEPSIPRNTIRIPRNT29IREA
 
IDNRJ9NCT)
 

C
 
C
 

WOITE (.73)
 

DO 17 	J=?9NC2
 

http:P(IsJ).LT.PB
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' 	KRUKBOUI(StJ)

Gp TO (1?.13,14.o519 KS
 

GO TO 16
 
13 Hf4,Jl=HE
 

60 to 16
 
14 NI(.J)=w
 

GO TO 16
 
IS IK=IK.1
 

HIIJ)=RHS(IKI
 
16 CONTINUE
 
17 CONTINUE 2 9N R I|
WRITE (6974) ((HiIqJ) oJ229NC2)9I#


C
 
CALCULATE PRESSURE DISTRIBUTION.
C ... 


DO 21 J=oNCI
 
Do 20 1='sNRI
 
P(|.J)=HE
 
IF (J.LE.NCW.AND.I.LE4JDI) GO TO 18
 
GO TO 19
 

iP P(loIJ)=O.O
 
so TO 20
 

19 PL&IJI=HflJ)-Z(IIJI
 
20 CONTINUE
 
21 CONTINUE
 

C
 
C 
 .. LOCATE FREE SURFACES
 

0 27"J=2,NCI
 
On 26 I=,JD3
 
IF (J.LE.NCW) GO TO 22
 
0 TO 23
 

22 	JS(J)=J01
 
WPITE (6,75) JoJS(J)
 
GO TO 27
 

23 	Ir (P(I-1IJ).LE.O.OeANDOP(ItJ)eGE-OO) GO TO 24
 

GO TO 26
 
2. IF (A9S(P(T-19J))eGToA0S(P(T'J))) GO TO 25
 

JS(JI=I-1
 
W41TE (6,75) JoJ(J)
 
GO TO 27
 

25 JS(Jl=I
 
WRITE (6975) J*JS(J)
 
GO TO 27
 

26 CONTINUE
 
27 CONTINUE
 

C
 
00 33 J=29NCI
 
IF (J.LEICW) GO TO 28
 
GO TO 29
 

26 ZW(J):HW
 
60 TO 33
 

'29 IF (P(IJ|.NE.O.O) GO TO 30
 
7w(.lI:?(J,J)
 

GO TO 33 
30 On 32 1=*.lf3 

IF (P(I|JI.LT.0.O) GO TO 32 
AF (P(IoJ).GT.O.O.NO*PII-IJ)OLToOOO) GO TO 31 

GO TO 32 
31 DlP:P(T.J)-P(1-I.J) 

ZWJ):Z(I.J)*(PIIJ)DOELZ(19J)/OELP) 
On TO 33
 

3? COT INUE
 
33 COPIT INUE
 

IF (IT.Qo'AXIT) WPIT (6976) IZW(J)v.J:2oNrI) 
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C a.. CALCULATE THE POSITION OF THE INTERFACE ON THE OASIS OF HOST 
RO IN WHICH
C QECL4T NEAn DISTRIBUTION..)IN IS THE NUq4EQ OF TI-E 


C THE INTE4FACr FALLS IN COLUMN J AND ZETA I'S 
THE EXACT LLEVATION
 
C OF THE INTERFACE.
 
C
 

UQITE (6,77)
 
WQITE (6.78)
 

IF (IT.EQ.1) GO TO 34
 
GO TO 3S
 

34 RNI:NQI
 
JIN(JI=qNI
 
GO TO 36
 

35 KJIN:JIN(J)
 
RN|=KJJN
 
JIN(J)=RNI
 

36 	ll=JS(J)
 

IZETA:O
 
DO 40 II=IIKJIN
 
I=KJIN*II-I1
 
ZETA(Ij)=(HOF/IRHOS.RHOF)IO(HE-H(Ij)) 

OZTA=7ETA(JJ)
 
IF (ZETA(I.J).LE.Z(I-IJ).AND.ZETA(IJ).GE.Z(19JI GO TO 37
 
0 	TO 40
 

37 	IF (ZETA(TJJ).NE.Z(ItJ)) GO TO 38
 
JIN(J)=FLOAT(I)
 
IZETA=I
 
00 TO 41
 

3d 	IF (ZETA(IJ).NE.ZfI-I9J)) GO TO 39
 
JIN(J)=FLOT(I)-.CD
 
IZFTA:I
 
GO TO 41
39 	JIN(Ji:NRI-(IZETA(1,J)-Z(NRItJ))/OELZ(ItJ)I
 

IZETA:I
 
60 TO 41
 

40 CONTINUE
 
41 CONTINUE
 

IF 	(I1ETA.Eq.1) WRITE (6.79) JoJIN(J)*DZETA
 
IF ((IZETA.EQ.O)eAUO.IJIN(J)eEQ.RNI)) WRITE (6.79) JJIN(J)9OZETA
 
J=J*l
 
IF (J.GTNCI) 0 To 42
 
IV (IT.GTl) 0 TO 35
 
GO TO 34
 

4P 	CONTINUE
 

C 
C ROUINO THE NUMPPS. IN JIN. IF JIN IS EVEN RnUND IT TO THE LOWER
 

C INTEAER9 IF ODD9 OOUNO IT JO tEXT HIGHER NIUHIER. INT AND AINT
 

C APE SYSTE4 SUBPOUTINES FOR TRUNCATION.
 
00 	45 JI=2.'jC!
 
n=JINfJlv
 
N=INT (I))
 
IF ((j).Gs.O.O),AND.(O.LE*O.50)) GO TO 44
 
I' (O.LT.Oo) GO TO 44
 
RNI0AINT1I
 

IF (monI(Ni.Nf.O) GO TO 43
 
IF (RI.GTe.50) N:.0
 
AD 10 44
 

4l IF fRI.G'.O.S0) N=mio
 
44 	JloifJ| )=4
 

WOTTE (6.900 O.JINIJI)
 

45 	CONlT NUE 
C 

http:fRI.G'.O.S0
http:RI.GTe.50
http:j).Gs.O.O),AND.(O.LE*O.50
http:JIN(J)=FLOT(I)-.CD
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C
 
C see CALCULATE CONnUCTIVITY BASED ON NEW PPESSURE DISTRIBUTION.
 
C
 
C rIRST SET CONDUCTIVITY IN ALL GRIDS BELOwIJ[E INTERFACE EQUAL
 
C TO*ZERO.
 

46 KJIN=JINtJl
 
KJN)cKJINOI
 
IF (KJIN.EQ.NRI) GO TO 48
 
00 47 IKzKJNI*Nql
 

47 CnNf)(IKsJ)=O.O
 
48 J=J~l
 

IF (J.GT.NCI) GO TO 49
 
GO TO 46
 

49 CONTINUE
 
C
 

00 SS J22NCI
 
KJIN=JIN(J)
 
DO 54 I=I*KJIN
 
IF (J.LE.NCW.ANDTI.LT.JDI) GO TO S
 
IF (J.LE.NCW.AND.I.EQ.JDI) GO 0 50
 
GO'TO 52
 

SO COND(IvJi=CONDS
 
GO TO 54
 

St COND(I*J)=O.O
 
GO TO 54
 

SP IF (P(1IJI.LT.PS) GO TO 53
 
COND(I.J=CONOS
 
60 TO 54
 

53 CONDiI4 J)=CONDSO((PB/P(IJ))**ETA)
 
54 CONTINUE
 
SS CONTINUE
 

C
 
C 	 ... DISCHARGE COMPUTATION. 

J=NCI 
KJIN=JIN(J) 
NJIN=KJIN-' 
O5'IMlIT9J)=OoO
 

DO 56 I=?,NJIN
 
AVCONn=(COND( JNCI,*COND(ITNC))/2oO
 
AVR=P(I.NC).l5*OLRl

O= QOePIDAVPELZ(IIJ)eAVCONDO(CH(IoNCI)-H(19NCI)/DELRlI
 
O~lJ#( IT J)=0SUM (lT.J) #O 

56 COrJTINUE 
Q IJ41| = gP4(ITtJ) 

WRITE (6.811 IT, SI1MI 
IF (IT.Ef).l) 6O TO 57 
DIrn(IToJ)=ABS(OSU"*(IToJ)-QSUV(IT-19J)I 
DIrQOIDIhXIT.J) . 

IF (DIFOI.LEsEPS) .0 TO 64 
GO TO S? 

C .., EFINE T4E NE#: BOUNDAPY CONnlTIO'S SUCH T14AT HYDtAULICAELY DE 
C ADIUI AROVE THE F*',EE SIJUPFACE AND bELOW THF INTEOFACE ARE 
C PPflPIkLo SIHULATEn. 

57 DO Sy .1'=,ZoCI 
KJl=JllJ|) *1.0 
IF (K.JI.GT.'0I) GO TO 59 

DO 8 IIKJI,%I 

http:P(1IJI.LT.PS
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99 CONJTINUE
 

JXNCI
 
IIL=jI~kjlJ
 
IF (K4OUN(110J1I)o.Em4i GO TO 60
 
G0 TO el
 

60 K'4flN I I 9J)=2
 
fil CONTINUE
 

C
 
RJEXP42RJEX-1 .0 
DO 63 J1=24NCI
 
JS4=JSCJI 1-1
 
IF IJSMI.LE*RJEXM) GO TO 63
 
Onl 62 Iir2oJS4
 

62 KHO(IN(tIJl)=l
 
63 CONTINUE
 

C
 
C *so REPEAT THE CYCLE. IT DENOTES THE ITERATION NU'4BER* 

IT=IT.1
 
IF (IT*LE.'4AXIT) 00 TO 11
 

- 60 TO64 

.IPITE (6981) IT90SUMI
 
64 CONT INUJE
 

CALL EXIT
 
C 

65 FORMAT (F1O.3,1O,3FI0.39IIO) 
66 FnQMAT (SFI0.3,I1O) 
67 FLOR4AT (2FI00933I1O.V1O3) 
6N4 F004AT (,1O,93FI0.3) 
69 FOO"AT (0110) 
TO FnQifAT* (14 9Sic 31PB=*FlO.393X* 'HETA=9I10,3X9 5HRIOF=9FlOe3t3X 

It 5HPHOS=oFlOe3#3X9 6HCOtNOSFIO.3,/v3X, 3HNIC=9 110 ,3X 9 3IiRWrF 
210*393Xo 3HRE,9Ffl.393X, 3HZI=vFIO.393X9 3h*iE=,FlO.3v3Xv 31'HW= 
39FIO.3,3X, 3HNRtIOt/1X, 3H01:,FIO.3v3X, 3IP,FIO.393X., 411JU 

41=*.11~X9 41JP=1JO3X9 6HNCvELlOo3X,/,3X. 5HI4JEXz9F1Os3v3 
5X* 341C=9IIO,3X, 6HDELZl=*F1Oo393X9 $H0LZ2=FIf.392X9 6IiALPHA 
6m.FIO.3*2X* 5HS(AA9EIOe392X9 61*AXIT=*1I1O*X. 4HEPS=tflO.5) 

71 FnPI4AT ()OXIOF10o.)
 
72 FOPUAT ('O2C.IOF)O.1)
 
71j FnP4AT (Ii0.5X9 17HHitEAD DISTRIBUTION)
 
74 FnDMAr II'iO,5Y,1OFi2*6)
 
75j Ff)O4AT (ISX*2115)
 
76, r,)PAT 11H .',X,10F12.4)
 
77 FOOM~AT O(l.IQlXv 34HLOCATION OF INTERFACE IN TtiE MODEL)
 
743 F'nDUAT fIHfl8Xs 4IiCOL.91CX9 3HPOweI1Xt lahIELEV. OF INTERFACE)
 
?Q FOP'4AT 1I.1o.IiO9SxEI7o8.5X9EI7*8)
 
Nn. FnP4AT (1bC"2F20a3l
 

141Fq0R4AT (1140.10K. IHIT=913910X* 1OHDISCHARE*EO.1O)
 

%UPROTINE TCOFF
 
COmmUON T(%32.19),PS(32)KOUN(33ZO.C~tflI339e!O).(33920-).0ELR2,
 
14.H~.NCNCVWELJP3.JP1.CONSTN.UNPC1,DELZ(3,gO)@NUQNCW@Z(

3 3 920)90
 

C as* INITIALISbE THE COEFFICIENT 44TRIX TO 7ERO.
 

C es 1(01 IS THE NUmU'Ew. OF COLUMANS IN THE T MA1.4IE.
 
C 

mailto:14.H~.NCNCVWELJP3.JP1.CONSTN.UNPC1,DELZ(3,gO)@NUQNCW@Z(3
http:1OHDISCHARE*EO.1O
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c 

4C'nLuNC1
 
00 2 122SNRI
 
n0 2 Bu229mci 
ir fK64OUNh19JIGNE.4) 

00 1 voLuIet4COL 
RHS(1R)0O
 

I T(IR.S(OL)=0O
 
P CO'JTI'UE
 

c
 
IRMO 
00 19 1=29NRI
 
00 19 .1=2NCI
 

c
 
2(1 .jI=Zf?*J) DEIZ1 
COND(1sJ)=O.0
 
R(1,JI:R(29J)
 
K'30IN(19 J)=1
 
NR2NIO'
 

G~O TO 2
 

2 ENR29J) =-fELZ?0.5S 
R(NQ29J)=R(NR19J)
 
COND(NP2*J) =0.0
 
KaflUN(NP2J)=
 

COND (I, ) 0.0
 
At 1,1I=-CONST
 
K'A01N I1)1=1
 
NCZ=NC1 *
 
Z(TONC2I :Z(1,NC1)
 
C0N9( I NC2)=C0ND(1 eNCI)
 

IF (K,1*NF*~41 
Az0* 

P=000 
C=oq0 
020.0
 
r=O.0
 
R,SIDEO*0
 
IRMIR41
 
JPl=J#I 

111 =1-1 

GO TO 19
 

OFLI DELZ II J) 
fEL2=7( -I.J)-Z(I.J) 
DEL3DrEL7 (IsJ I 
flEt.4=7(1J-ZII*1$J) 

ci=co,oI ',,PI 
C1jCON-DI ) .P4) 

CI=c0jrf)( rP.I4J) 
RflC~j~II 9 ) 

CI=R(It. 

K$I:VjPJC.J' h
 

http:fELZ?0.5S
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KSizKfinUNfI9Jv|)
 

KH42KROUm(|pl3 Jl
 

R:TTCnFF(CO*CIC2C3tC4,tD1EL2,OEL3,DL
 

C es 

C 
IF (J.NE.2 GO TO I 

a3'-COiST 
IF (I.FO.JP3) C uCo 
GO TO 4 

3 IF (J.NE.NCII GO TO 4 
Q1wR*0OEj R2 
CIuCO 

4 COITINUE 

C 

C 

t... CALCULATE COEFFICIENT B RETEEN GRIDS 
GO TO (7959796)o KR| 

5 CONTINUE 
... CAI.CULArE COEFFICIENT B IF GqO I,jol I

19J AND 

S A CON

1.J.1 

STANT HEAD BOUN 
4 ,ORItR2vR39R49I
P"SIDE:RmSIOE#84HE
 

E=E*H
 

GO TO 7 
6 CONTINUE 

C - .s CALCULATE COEFrICIENT 8 IF GRID IqJ*1 IS A 1ISEABLE GRID.
R:TTCOEF(COCI 9C29C39C4*DELI 'DEL2 9DEL3,DEL4aRO9RTR2,R39R
EmE*8 
 . 4 91 )
lafl-B. 

.
 

7 CONTINUE 
CC *.. CALCULATE COEFFICIENT C SETWEEN GRID IJ AND 1-lJ*


IF (I.EO.2) GO TO 10

IF (J.EQ.NCI.AND.KH3.EO.1) GO TO 10
 
GO TO (I 09899), X82
 

8 CONTINUE
C 

C=TTCnEFiC49Cl9C29C3tC49DEL~tOEL2oDEL3tOEL4tROtRl9RZ9R3eR4*2)

CALCULATE COEFFICIENT C IF GRID I-I#J IS A CONSTANT HEAD BOUN
 
R45IDE:RHSIDE*CoHW
 

C=O.O
 

GO TO 10
 
9 CONTINUE
C .So CALCULATE COEFFICIENT C IF GRID IJ-1J IS A IISEABLE GRID.
C:TTCOEF(COCI 9C2.C39C4,DELI 9DEL2t9EL3tOEL4,POH1*R2%3,R 4I 2 )
 

Cu-C
 
10 CONTINUE
 

CC *. CALCULATE COEFFICIENT A PETWEEN GRIDS IJ 
AND ItJ-l.

IF (J.EQ.?2 G0 TO 13
60 70 W*?,l91i91219 KA3
 

1I CONTINUE
 
,0CALCULATF COEFFICIENT A IF GPIOS IJ-|
A=TTCIEF(K C) 
 IS A CONSTANT HEAD ROU
 

9C2tC3 9C4t DELI #PL29nEL39OEL4 9RO 4R) 9449jqR493) 
RF=lF#A S EAH
 

A:0.0
 
60 TO 13
 

I? CONTINUE

C 0.. CALCULATE COEFFICIEtNT A IF GPll) I.J-I IS GRID.A:TTCEFfC.)C)¢,C2r3,C4al)ELI'I.;L29,rLLl,,EL4,ROiA 'IS LAFJE 

9 U*?t 43 H 4 9 3 )
E=C*A
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Av-.A 
11 CO4TINUE
 

C 	 *.. CALCULATE COEFFICIENT 0 BETWEEN GRIDS IJ AND 1*1J.
 
IF (IFf*.Iik) GO Tn IS
 
GO TO (15*i59IS9141 K84
 

14 CONTINUE
 
C *.. CALCULATE COEFFICIENT 0 IF GRID I.I.J IS A USEABLE GRID.
 

n=TTCnEF(CICl9C2C3C4DELIDEL2OEL3DEL4PO.R0,R2R3,R4t41
 

O=-D 

IS CONTINUE
C 
C 	 see. STORE COEFFICIENTS IN THE COEFFICIENT MATRIh T.
C
 

C S* STORE COEF.D
 

IF (II1.GT.NRI) G0 TO 18
 
IF (K4OUN(IIJJ).N.4) GO TO I8
 
JUqE=NICI-J*l
 
DO 16 JJI=29J
 
IF (K4l0jU(IIIJJI).NE.4) GO TO 16
 
JLSE=JUSE41
 

I6 CONTINUE
 
JP?=J'JSE
 
IF (JP2.GT.2) GO TO 17
 
GO TO 18
 

17 TtlRoJP2)=O
 
18 CONTINUE
 

T(IR*))=E
 

T(IR9?)=n

RmqIIRI=RHSIDE
 

19 CONTINUE
 
C 

NU=IR
 
C 	 *.. THE ABOVE VALUE OF NU IS THE NO. OF USEALE GRIDS FOR THIS IT
 

RETURN
 
C
 

END
 
FUNCTION TTCOEF(COCIC2ZC3,C4,DELI.DEL2,DEL3,UEL4'RORtR2tR3.R4.
 
IICOFIl
 

C *.. CALCULATE THE COEFFICIENTS 8,CtAvAND n FOR 4UqROUTINE TCOEFs
 
C 	 fee NOTE THAT R3 WILL BE NEGATIVE FOR GRID- CLUN. J=2.
 

Pc;3.1.159
 
60 TO (1,293,4) ICOFI
 

I TTCnEF=PIOC.*CO)oDEL3/ALOG(RI/PO)
 
RFTIJRN
 

2 TYrnEF=PeI(R1o2e-Rn*e2)o(Cctc)e.O3/DEL2
 
RE TI)PIN 

3 TTCrEFPI.(C3,CO,.OELI/ALOG(ARS(RO/R3)
 
RF TtJQN
 

4 	 vvcnEr=PI.(RO1*2-RO..2eI(C4.CO),OSi/DEL4
 
RFTURN
 

StIPRGUTIVE SISOLV (T9RHSNNCOFNCMOETOUADISUMEPSIPRNT1,9PRNT
 
12.1REA0)NkJ9NCT)
 

C
 
C .*.USE THE SOIJAPE ROOT METHOD TO SOLVE A SET OF
 
C SIMIJLTANEOUS LINEAR EQLUATION*
 
r 

http:TTCOEF(COCIC2ZC3,C4,DELI.DEL2,DEL3,UEL4'RORtR2tR3.R4
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T a N PY NCOF PEOUCEO COEFFICIFNT MATRIX.
 

C RH$S a N Y i RIGHT-HAJO SlOF VECTOR. THE SOLUrION VECTO
 
IS STOPEn IN THIS VECTOR 1*FOWE RETURNING TO ThE
 

c 


C 

CAILING PROC-RA*%.
C 


C N a 	TOTAL NO. OF USAtLE 64IDS (DOEi NOT INCLUDE 
C BOINDARY GPIDS) II THE 1400EL FOR W1HIC1 ThE FLOW
 
C E1oiATIONS ARE PITTEN.
 
C NCOF a NO. OF COLUMNS IN 4ATrIX T.
 

NCM= MAX. No* OF USAHLF COLUmN rHIOS.
C 

C OCT a 	VALUE OF THE nETEq-tINANT FnR THE ORIGINAL 

C0FFICIENT MAT'iI COMPtJTED IN TmI% SUaROUTINE.C 
C QUAD • VAtUE OF THE GUADRTIC FOP1S FOR THE ORIGIJAL 

C COEFFICIENT MATWIX 8 COMPUTLD IN THIS SUdHOUTINEo 

C 	 IF X Ic THE SOILUTION VECTOP AND XA IS llE TRANSPOS 
OF X9 THEN OUAO = XAOR*Xo
C 


C ISUM * CODE 0 IF THE OQTGI'JAL COFFFICIENT MATRIX IS TRI-

C DIAGONAL OR IF ThE SUMMATION TERM USEU TO COMPUTE 

C THE NEW OFF-DIAGONAL ELEMEtITS 15 ZERO (CODE 0 FOR 
C THE TWO-DIMENSIONAL GROuNO-wATER FLOW PHOHLEM). 

C OTwERwISE, CODE IStIM=l. 
C EPS TOI.ERANCE VALI!; rOR THE DIAGONAL ELEMENT (SUGGEST 

ienE-5 AS A MAXIU4 VALUE), IF THE DIAGONAL
C 

C ELEMENT IN EITHER THE ORIGINAL T-MATRIX OR THE NEW
 

"C T-MATRIX IS LESS THAN EPS, AN ERPOR MESSAGE IS
 
PRINTED AND PPOGRAM EXECUTION IS TERMINATED (CALL
C 


C EXIT).
 
C
 

DOURLE PRECISION TM4PITEMP2,TIOETERSUMT2ROUA
 
C nOt.BLE PRECISION TeRHS
 
C
 

DIMENSION TfNRJtNCT)v 	RHS(NRJ)
 
C 
C --------------------------------------

C 
IPRNTI:O
 
IPPNT?=0
 
KRLGI=lIPqNTI
 
KmtG2=IPRNTZ 
ipAD=O
 
ISIJM=!
 
EPS:.O0001
 
OUAD=OO 
IQ'IAD=l
 
OETER=O.O
 
IflET=I 

C 

IF (KA'JGINEo.OR.f8UG2.NE.O) WRITE (6921) 

c 
IF (KRtJG2.NE.O) WRIIE 	 (6922)

C 

Ir (IREADA.00) GO TO 2
 
OFAD (is3) NiNCOFeNC149ISUMiLPS
 
no I II.N
 
PFA) (5974) R'iSII),(TlIJ)sJ=jNCOF)

¢ONT INIJL 

IT (K't4li'FOeA) GO TO 4
 
VIT. IA*2) N9NCOFvNCMsISIJM9rPS
 
On 1 I=i.N
 

3 i'dTL (626) I9RHSIIls(T(IeJ)sJ=I"ICUF)
 
C 

http:IREADA.00
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C
 THE UPPER

C ...CALCth ATE NEw El EIFNTS FOR THE FIRST ROW OF 

C ,Ew"IWNn %CPATCH TAPE. 
READ FIRqT ROO OF ROTH MATRIX T AND THE RIGmT-HAjD SIOE FROM
 

C 

C SC4ATCH TAPE.
 

C 

IF (T(I.1).LToEPS) GO To 18
 

C UF(T(I.I).LT.PS) wRITE(6,88601 10
 

TIwT(I.I
 
T)lOSnRTfTI)
 
IF (KYUGI.NE.O) WRITE (6,?) T19T(1911
 

T1I1912T1
 
C
 

DO 5 Jz?.NCOF
 
TEMPI=T(I JI
 
TfI9Jt=TEmlI/TI
 

(KPUGI.NE.O) WRITE (6t28) J9TEMPI9T(I9J)
IF 

5 CONT!IUE
 

TEMPI=RHS(I)
 
RHS(I)=TEMOI/T
 
IF IKnUGI.NE.O) WRITE (6s29) TEMPItRHS(I)
 

C
 
C ,,,|JPDATE DETERMINANT VALUES
 

DETER=TI
 
C
 

C
 
eseCALCULATE NEW E.EMENTS FOR ROOS 2 TO 

N IN THE UPPER TRTINGULAR
 
C 

MATPIX T AND THE RIGHT-HAND SIDE.
C 

C
 

00 12 11=29N
 
ID:II
 
NUN I=I-I
 

IN MATRIX T,
 
C ***CALCULATE THE NEW DIAGONAL ELEUENT FOR POW 11 

C *,.REWIND THE SCRATCH TAPE
 
11 FROM SCRATCH TAoE AND SAVE IHE14 FOR USE
 

C osoREAD ELEMENTS IN ROW 

C 
 TH4OUsm STATEMENT NO. ?5O.
 

REWINO THE SCRATCH TAPE.
C 

DO 6 |2=1iNI1I4
 

TS |'j ROW 12 FROM SCRATCH TAPE,
C ,.READ FLE14C 

GO TO 6IF (II.GT.f12"NCM))


Ji=iI-!?.1
 

TFmPI=T((2.JI)
S11MI=SU'41 "TFMPI9TEaPI
 

(6030) 12.JI*TEMPI9SIJHI
IF 1K4t16I.4E .fl WPITE 
6 COPIT INUJE 

TI=T(II)) 
GO TO 18IF IT(I),II.LT.EPS) 


IF T.LF. JMI) G1) TO 19
 
C IF(TI.t[.S:.1IM ) .?ITC(6t887O) ID
 

IF (InfT.En.) DETFP:DCTEPOTI46031)1)v|T(III),TI9DETEQ
Ir ('ll. [ 41 TE 

T(IIvl)=Tl
 
C
 

IF (IIo|1I.LT*rPSi 
 G TO 20
 

C IF(T(II1t.LT.EPS) dPITE(6,A86O) If 

http:1K4t16I.4E
http:TFmPI=T((2.JI
http:KYUGI.NE
http:UF(T(I.I).LT.PS


143
 

C
 

C *..CALCUJLATE THE NFW OFF-DIAGONAL ELEMENTS FOR RnW 11 
IN MATRIX T.
 

C NOTF THAT THE SUiMPATION TEO' (PPECEOES STA|kMFNT NO. 160) WILL
 

C df ZERO FOP SYM,'TTRIC TRI-VIAGnNAL MATRICES. IN THIS CASE*
 

THE COMPUTATONL EFFORT RFQUI|ED FOP DPTEPMl'.i'G THE NEW OFF-
C 

C DIAGONAL ELEMENTS CAN SE REDUCED BY SETTING IJU=0.
 

C
 
If III.E.Ni GO TO 10
 
IF IISUM.NEo0) GO TO 7
 

C
 
Jl2
 

TvTYlllojt$

TtT(II.JIT2/T|
 

IF (KRUGI*IEeO) WRITE 

GO TO 10
 

C
 
7 JpwIl
 

00 9 Ji:29NCOF
 
J2uJ2#1
 
S(IM)Oo
 

If (J2*GT.N) G0 TO 10
 

(69321 II9JI9TI9T2T(II9JI)
 

C *eREOINn SCRATCH TAPE.
 
0O B 12:'.NUM!
 

C- e..PEAn ELEMENTS OF ROW 12 FROM SCRATCH TAPE*
 
Ir (J?.GT.(I2#NCM)) GO TO 8
 
J3=11-I241
 
J4=11-12*J4
 

TFMDlfT(2.J3)

TFmP2fT(t2,J4)
 

Stlg:SUMI#TEMPl*TEmP2
 
IF (KlGl.NEe0) WPITE (6933) 129J39J49TEMPI TEMP29SUHl
 

A CONTINUE
 
T2=TfI).JI)
 
TIIIejl=(T2-SUMI)/T1
 
IF (K4UGI.ME.0) WRITE (69343 Il*J1,Tl*T2,SU1,tI(IloJl)
 

9 CONTINUE
 
C
 

OF THE PIGHT-HANO SIDE
C o..CALCU.ATE THE NEW ELEMENT IN ROW 11 

C VECTOR RHS.
 

10 Si'M=O.
 
C o,.DEwINI SCOATCH TAPE*
 

C 	 *.,PEaf FLE4ENTS OF ROW 12 FRO4 SCRATCH TAPE&
 
IF (Il.T.(I2#NCM)) GO TO 11
 
Jilll-I?*i
 
TFMPI:T(12*JI)
 
T'u'2=PH (12)
 
qIlMJ=SU41*lEmlJ*TEvP2
 
IF (K*IJG'.NE0) WRITE 16.35) 12oJI*TEMPlITEMP29StlM
 

11 C(NTINUE.
 
TFMP I=HSf(II)

PH5(IIJ:ITE-4PI-SUml)/TI
 

IF (K.3UGj.%EoO) WPTTE (636) I1oTEMPI9TIRHS(II)
 
I? CONTI NUE
 

4fTER=OETEP*ODETER
 
DET:DETER
 

C
 

http:T2=TfI).JI
http:TFMDlfT(2.J3
http:III.E.Ni
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C
 
C oe.CALCULATF THE VALUE OF THE QUADRATIC FOQM FOR MATRIX T,
 

C ooo.EwIN SCRATCH TAPE.
 

C READ VECTOR RNS FROM SCRATCH TAPE AND STORE.
 
C LEAVE TAPE ON 7PE N-TH RECOQD*
 

IF (I':UAD.NE.o) 0 10 14
 
R)A=IJ:O. 
On 13 11=194
 
TrfJPI=vHS(I I
 

1' ROlJAO=ROUAl#TEMPI0TEMP1 
OUAD:ROUAO
 
IF (KRUGIoNE.O) WRITE (69371 QUAD
 

C
 

C
 
C oeeBACK SUBSTITUTE INTO MATRIX T AND SOLVE FOR THE UNKNOWN
 
C VARIABLES* STOPE THE UNKNOWNS IN VECTOR RhS.
 
C
 
C ***READ ELEMENTS OF ROW N IN MATRIX T FROM SCRATCH TAPE.
 
C BACKSPACE SCRATCH TAPE TO PEGINNING OF N-TtH RECORD.
 

14 CONTINUE
 
TEmPI=RHS(N) 
TI=T(?tI I
RH~fN)=TrPP/Tl 

IF (KRUGI.NE.O) WRITE (5938) N9TEMP1.TIrHS(N)
 
JP:N*!
 

DO 17 11=29N
JP:JP-!I 
IRHS:JP-l
 
SIJUI:0,
 

C ,e.ACKSPACE SCRATCH TAPE I RECORD.
 
C READ ELEAENTS IN ROw IH OF MATRIX To
 
C BACKSPACE SCRATCH TAPE I RECORD.
 

O0 15 I2=J*N
 
IF (I?.GT.(IPHSoNCM)I 60 TO 16
 
Jlc12-IRSl
 
TFMPI:T(TCHS9JI)
 
TEWP2:kH,,(1)
 
SIJMI:UMiTEMPIOTEMP2
 
IF (K4UG!*NEe0) WRITE (639) IQHSeJ1,I2vTEMP19TE'P2SUMl
 

IS CONTINUE
 
16 TFMPI=RHS(IPHS)
 

TI:T(IRHssI)
PHS(IRHSl:|IEmPI-SiI)/Tl
 

C .. AVE ALL NEW VALUES OF RHS.
 
IF (K'4UJI.JE.0) WRITE (6t40) IQHSTEMPITItRHS(IPHS)
 

17 CONTINUE
 
C
 

IF (K4UGI. IEOeORow8UG2.NE.O) WRITE (6941)
 
RFTURN
 

C
 
C
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C
 
to WRITE f6s421 ID
 

CAL.L EXIT
 
c
 

19 WDITE (6s431 ID
 
CAlL EXIT
 

C
 
20 WRITE (69441 ID
 

CALL EXIT
 
C
 

C21 FOPAT (I1f3X93(H*)/3IX35HOEGIN OUTPUT FROH SUBRO~UTINE SOSOLV 

?2 FoQmi'AT (1l.V1'lxt 17i.ORIGINAL DATA AREI
 
23 FCIP14AT ('15triO.O
 
?m. FOD0IAT (.tF1o~o)
 
25 VQI)JAT (IH0/~x. 2&N=*139 811 NCOF=9139 711 NCM=913, 811 ISU
 

14=0139 7H4 EPSzor13.5
 
?f. FOOmAT (W~O/5%. 3H-4,Ov3/XE35(/?X,8E13.5)1
 
2? FOOM~AT Illle/X.s HTI= ,03.59 T(191)=tE13.51
1O'4 


2A F(W!A4T lIti0vI~s 2'IJ2,!39 91l TEMPIpD13.5, 10m. 7(lvJl=9E13.51 
24)FmoAT (I'MIxt 6k.TEAPl=,Ul:1.S 8H4 RH%(l)=vE13.5) 

1 CWMJt41,13.51 
31 Fn;?MAT (111091K, 3H11,9139 1111 T(I1,1)=9E13.5. 6H1 T12*013e5t 

I QH. OErEP=,D13.5) 
3Hb-,1,39 6H1 J1,9139 6H T129D13o5. 61 Td

3Z FOW4AT 11rO/2xv 


33 F0OkAAT (1"0//2X9 3H12=913# 6lH J3=9139 611 J4,13/2Xt 6IITEMP 

11035 9H TE-M2=39013.5- 7H SUMID13.5) 
T 1,013.59 911T2
34 FflP4AT (IrlO.IXv 3,.113o SH I 19D35 6H 


H(1)E35S)~D35 2 T1*l=E3S 
v9
le)3c/X 

31 7001W4AT (IHO//2X9 'IHUAD,13 H J.tS)H TEP=01 

38 FnPMAT (IHO*Zxs 3H4N=9139 8r1 TEMPL.9013,S' 6m TZ=,OIJ.59 10H 

1 YH'fN)=*E13.5) 
Jl=913* 6hi 12=13/2X9 6HTE
34 FflOJAT (I'1(//2X* ZIHlS=*139 6H1 


Im4p1:,flI3.5,e 9H1 TEM02=,13*.e ON SUP41:.D13.Sl
 
4nl F004AT 1114091X* 5w1R1S.13v gum TkmP1:fl13,b9 6H1 T1=.013..5
 

111-4 PHSI.4ThSV9E13.5)
 
0 
 SOSGL
41 F'OD40T (1,4f/31X,3f(1&i/31X.36HLV4 or OUTPUT FROM SUHR~OUTIIWE 


IV/lIXs36(1.41)
 
W~ SUI RnUT1NE SOSOLV--//24? rrlQAT tl"0939(1HO)/2x937HfRRnp DETECTED 

IXq?ltiTHE UJI&C-1111AL FLELMrNT IN 0Dwv,..,3i OF THlE OOIGI19AL T-I4ATbR1 I 

IN StrstRfUTIN. SOQSOLV--//243 FOM*AT (11,1l~/X3.~PDE7ECrED 
)E.Ecd4HT IS15 .I SUuI Fnv C-'.C!JLATING THiE VIAGO%AL ELL,'1.NT 1IN ROW.I 

ILdI GG4. ILs33'" or TIIE NFW Irj4%THIX IS *LfIX*:ITE ;IIAGIJAL FLEMf.NI 


2.rs/2 9:CL xI/X3)(hl
 

http:FLEMf.NI
http:ELL,'1.NT
http:IV/lIXs36(1.41
http:SUP41:.D13.Sl
http:TZ=,OIJ.59
http:1,013.59
http:CWMJt41,13.51
http:7(lvJl=9E13.51
http:T(191)=tE13.51
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TABLE B-I. 	 POTENTIAL DISTRIBUTION FOR CASE 1 USING 
MUSKAT'S FORMULA 

i/H e-,0(0,3) 	 * vo,3)/(w e 

0.743 	 6.426 0.0 

0.76 	 5. 619 0. 126 

0.80 	 4.590 0.286
 

0.84 	 4.151 0.354 

0.395
0.88 	 3.889 


0.92 	 3.715 0.422
 

0.96 	 3.594 0.441
 

1.00 3.510 0.454 

In tables B-1 through B-6, e = 0. 0 (reference). 
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TABLE B-2. 	 POTENTIAL DISTRIBUTION FOR CASE 2 USING 
MUSKAT'S FORMULA 

"/H 	 -4(o0i) At ,' )/(A+) e 

0.635 	 5.922 0.01 

0.64 	 5.128 0.134 

0.68 	 4.089 0. 309 

0.72 	 3. 639 0. 386 

0.76 3.364 0.432 

0,80 3.177 0.464 

0.84 	 3.042 0.486 

0.88 	 2.943 0.50.3 

0.92 	 2.870 0. 516 

0.96 	 2.816 0.524 

1.00 	 2.779 0.531 
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TABLE'B-3. POTENTIAL DISTRIBUTION FOR CASE 3 USIG 
MUSKAT'S FORMULA 

"T/H'e -Co'00 60(0,z)/(0:) e 

0.568 5.628 0.0: 

0.60 4.211 0.252 

0..64 3..574 0.365 

0.68 3.225 0.427 

0.72 2.996 0.468 

0.76 2.832 0.497 

0.80 2.710 0.519 

0.84 2.618 0.535 

0.88 2.548 0.547 

0.92 2.495 0.557 

0.96 2.457 0.563 

1.00 2.388 0.576 
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TABLE B-4. POTENTIAL DISTRIBUTION FOR CASE 4 USING
 
MUSKAT'S FORMULA 

' IH -00,7) .d,Z)I(A )e 
ee 

0.45 4.999 0.0 

0.48 3.744 0.251 

0.52 3.106 0.379 

0.56 2.756 0.449 

0.60 2.S23 0.495 

0.64 2.354 0.529 

0.68 2.227 O.555 

0.72, 2.128 0.574 

0.76 2.049 0.590 ° 

0.80 1.988 0. 60i 

0.84 1.939 0.612 

0.88 1.901 0.620 

0.92 1. 873 0.625 

0.96 1.853 0.629 

1.00 1.840 0.632 



TABLE B-5. POTENTiAL DISTRIBUTION FOR CASE 5 USING 
MUSKAT'S 

"T/He-40(,"T) 
ee 

0.56 

0.60 

0.64 

0.6 8 

0.72 

0.76 

0.80 

0.84 

0.88 

0.92 

0.96 

1.00 

FORMULA 

4.865 

3.764 

3.300 

3.017 

2.821 

2.677 

2.568 

2.485 

2.421 

2.373 

2.338 

2.314 

604 (0,Z)/L)
 

0.0 

0.223 

0.319 

0.378 

0.418 

0.448 

0.470 

.0.487 

0.500 

0.510 

0.518 

0.523 
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TABLE B-6. 	 POTENTIAL DISTRIBUTION FOR CASE 6 USING 
MUSKAT'S FORMULA 

i/H 	 -C0' 1 0(0,' ) e 

0.68 	 6.225 0.0 

0.72 	 4.510 0.276 

0.76 	 3.957 0.364 

0.80 	 3.644 0.415 

0.84 	 3.437 0.448 

0.88 	 3.292 0.471 

0.92 	 3.188 0.488 

0.96 	 3.112 0.500 

1.00 	 3.059 0.509 



APPENDIX C - RESULTS OF NUMERICAL ANALYSIS
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TABLE C-1. RESULTS OF NUMERICAL ANALYSIS - CASE 5: (I) 

pf = 0.755 gm cm-3 y = 0.0933a = 0.541 

cm H = 21.5 cm Ap = 0.245gm cm-3 
H = 25.5 

AH/ (AH) e
 

e
 

IT = IT= 2 IT = MAXIT 

0.0000. 541 0.000 0. 000 

0.1710.549 0.199 0.175 

0.2520.588 0.297 0.259 

0.2970.627 0.358 0.307 

0.667 0.400 0.337 0.322 

0.706. 0.430 0.355 0.333 

0. 745 0.453 0. 363 

0.784 0.470 

0.824 0.483 

0.863 0.493 

0.902 0.500 

0.941 0.505 

0.980 0.507 



3 
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TABLE C-2. RESULTS OF NUMERICAL ANALYSIS - CASE 5: (II) 

pf = 0.755 gm cm-3Y = 0.0933a 0. 541 

H =25.5cm H =21.0 cm Ap = 0.245gm cm 
W6 

AH/(AH) e
 

T/H
 
e 

1 = IT MAXITIT = IT 2 = 

0.000
0.000 0.000
0.541 


0. 1520.549 0.205 0. 176 

0.2390.588 0.306 0.260 

0.306 0.2690.627 0.368 

0.410 0.332
0.667 


0.706 0.441 0.345 

0.745 0.464 

0.784 0.482 

0.824 0.495 

0.863 0.505 

0.902 0.512 

0.5170.941 

0.980 0. 519 
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TABLE C-3. RESULTS OF NUMERICAL ANALYSIS - CASE 5: (111) 

a = 0. 541 Y = 0. 9033 p =0.755 gm cm- 3 

H = 25.5 cm H = 20.85 cm Ap = 0.245 gm cm-3 
e w 

S/H AH//AH)ee 

IT= I IT = 2 IT = MAXIT 

0. 541 0.000 0.000 0.000 

0.549 0.205 0. 173 0.157
 

0.588- 0.306 0.254 0.218
 

0.627 0.368 0.299 

0.667 0.410 0.321 

0.706 0.441 

0.745 0.464 

0.784 0.482
 

0.824 0.495
 

0.863 0.505
 

0.902 0.512
 

0.941 0.517
 

0.980 0.519
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TABLE C-4. 	 FREE SURFACE AND INTERFACE LOCATION 
FOR CASE 5 UNDER CRITICAL CONDITIONS 
(NUMERICAL ANALYSIS) 

Distance from Well-Axis Depth of Free Surface Interface Depth 
cm cm 	 cm 

2.38 	 4.50 15.36 

3.00 	 3.98 15.53 

3.78 	 3.34 16.23 

4.77 	 3.17 16.52 

6.01 	 3.00 16.99 

7.58 	 2.82 17.88 

9.54 	 2.37 18.25 

12.04 	 2.16 18.86 

15.17 	 2.00 19.85 

19.13 	 1.99 20.29 

24.11 	 1.45 21.03 

30.39 	 1.26 21.68 

38.31 	 1.07 22.21 

48.29 	 1.00 22-.83 

60.87 	 0.99 23 .36I 

76.73 	 0.98 23.94 

96.72 	 0.33 24.47 

121.92 	 0.17 24.98 



TABLE C-5. RESULTS OF NUMERICAL ANALYSIS - CASE 6: (I)
 

a = 0.660 


H = 26.0 cm 
e 

7/H 

0.660 

0.673 

0.712 

0.750 

0.788 

0.827 

0.865 

0.904 

0.942 

0.981 

Y = 0.0915 pf = 0.755 gm cm-3 

H = 23.0cm Ap = 0.245 gm cm- 3 
w 

AH/(AH) e 

IT= I IT = 2 IT = MAXIT 

0.000 0. 000 0.000 

0.174 0.145 0.134 

0.260 0.210 0.187 

0.312 0.241 

0.347 

0.372 

0.389 

0.401 

0.409 

0.412 
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TABLE C-6. RESULTS OF NUMERICAL ANALYSIS - CASE 6: (11)
 

a = 0.660 y = 0.0915 pf = 0.755 gm cm 3 

H. = 26.0
0 

cm H = 22.85 cmsLp 
w 

= 0.245gm cm 3 

AH/(AAH)e 

IT= I IT = 2 IT = MAXIT 

0.660 0.000 0.000 0.000 

0.673 0. 174 0. 139 0. 120 

0.712 0.260 0.197 0.172 

0.750 0.312 0.221 

0.788 0.347 

0.827 0.372 

0. 865 0. 389 

0.904 0.401 

0.942 0.409 

0.981 0.412 
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TABLE C-7. RESULTS OF NUMERICAL ANALYSIS - CASE 6: (Il) 

a=0.660 Y = 0.0915 pf = 0.755 gm cm-3 

H;,= 26.0 cm H =22.80 cm Ap = 0.245 gm cm-3 
e w 

AH/(AH) 
e 

e 
IT'= 1 IT = 2 IT = MAXIT 

0.660 0.000 0.000 0.000 

0.673 0.174 0.138 0.121 

0.712 0.260 0.197 0.163 

0.750 0.312 0.221 

0.788 0.347 

0.827 0.372 

0.865 0.389 

0.904 0.401 

0.942 0.409 

0.981 0.412 
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TABLE C-8. FREE SURFACE AND INTERFACE LOCATION FOR 
CASE 6 UNDER CRITICAL CONDITIONS 
(NUMERICAL ANALYSIS) 

Distance from Well-Axis Depth of Free Surface Interface Depth 
cmcmcm 

17.932.38 3.15 

18.103.00 2.73 

18.44
3.78 2.60 


19.164.77 2.50 

19.476.01 2.49 

19.667.58 2.25 

20.399.54 1.83 

21.0812.04 1.68 

21.4615.17 1.51 

21.8719.13 1.49 

22.4724.11 1.49 

22.9030.39 1.48 

23.4238.31 0.84 

23.8548.29 0.70 

0.55 24.3160.87 

0.50 24.73
76.73 


0.45 25.1796.72 

25.58121.92 0.20 
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TABLE C-9. RESULTS OF NUMERICAL ANALYSIS OF SET I
 

y = 0.00865 = 2.890x 10
 

L= 2. 500 K 53.42 ft/day
 

a Ap PfD Q Q Q Q
 

(gmcm ) (ft) APHe (cfd) (cfs) H KD H 2 KAp

e e 

0.250 0.012 13.10 3.495 5.343x104 0.618 0.2450 0.8562 0.395 

0.350 0.012 8.00 2.140 4.590x104 0.531 0.3443 0.7356 0.462 

0.500 0.025 10.40 1.333 7.874x104 0.911 0.4543 0.6057 0.590 

0.600 0.030 8.80 0.940 7.568x104 0.876 0. 5160 0.4851 0.665 

TABLE C-10. RESULTS OF NUMERICAL ANALYSIS OF SET 2 

; = 2.890x103V = 0.00217 


L = 6. 2893 K = 53.42 ft/day
 

a Ap D p Q Q Q Q
 
(gmcm ) (ft) ApH (cfd) (cfs) H KD H2 K.p
 

4 e
 

0.150 0.020 28.00 4.425 8.309x104 0.962 0.1725 0.72500.348 

0.352 0.025 12.88 1.600 8.309xi04 0.962 0.3750 0.6000 0.450 

0.450 0.025 9.66 1.200 7.560x104 0.875 0.4550 0.5460 0.510 

0.550 0.025 6.40 0.795 5.885xi04 0.681 0.5346 0.4250 0.620 

0.650 0.025 4.60 0.571 4.613x104 0.534 0.5831 0.3332 0.695 
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TABLE C-ll. RESULTS OF NUMERICAL ANALYSIS OF SET 3. 

Y= 0.0150 6. 583xi02 

L = 9.8736 K= 53.42 ft/day 

Ap 3 D Q Q a z 
2
(gmcm ) (ft) ApH (cfd) (cfs) H KD H e mpe 
 e e 

0.100 0.020 11.90 2.975 2.707x104 0.313 0.2147 0.6334 0.323 

0.150 0.021 9.60 2.286 2.820x104 0.326 0.2749 0.6284 0.328 

0.250 0.025 7.55 1.510 3.238x104 0.375 0.401.4 0.6061 0.370 

0.733 7. 10xlO 4 0.823 0.6050,! 0.6050 0.5600.500 0.075 11.00 

0.650 0.075 5.76 0.384 4.441x104 0.514 0.7217 0.2771 0.700 

TABLE C-12. RESULTS OF NUMERICAL ANALYSIS OF SET 4 

i = 2.315x10 2 

y= 0.050 

L= 11. 574 K = 133.69 ft/day 

Q z 
a Ap - 5 PD 

(gncrn (ft) ApH (cfd) (cfs) 2 
e HeKD H2Ka p
 

0.100 0.027 4.72 1.802 2.049xi04 0.237 0.3347 0.5949 0.310 

0.150 0.050 6.49 1.338 3.597x104 0.416 0.4274 0.5720 0.320 

0.250 0.059 5.09 1.050 3.482x104 0.403 0.5275 0.5536 0.360 

0.350 0.050 4.18 0.862 3.246x104 0.376 0.5988 0.5160 0.420 

0.400 0.050 3.51 0.725 3. 033x104 0.351 0.6627 0.4822 0.465 

0.650 0.109 3.45 0.326 3..702x104 0.428 0.8275 0.2700 0.690 



APPENDIX D - EXPERIMENTAL DATA FOR LOCATION OF 

FREE SURFACE AND INTERFACE 
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TABLE D- 1. 	 FREE SURFACE AND INTERFACE LOCATION FOR 
CASE 5 UNDER CRITICAL CONDITIONS 
(EXPERIMENTAL DATA) 

Distance from Well-Axis 	 Depth of Free Surface Depth of Interface 
cmcm 	 cm 

0.0 	 4.60 16.10 

2.5 	 4.60 16.20 

3.5 	 3.75 -­

5.0 	 3.00 16.75 

7.0 	 2.55 17.60 

9.0 	 2.40 18.00 

15.0 	 2.00 20.10 

20.0 	 1.75 20.40 

25.0 	 1.50 21.20 

-- 22.1530.0 

1.10 	 22.5040.0 

0.80 	 23.3060.0 

0.50 	 24.1080.0 

100.0 	 0.25 24.60 

119.0 	 0.15 25.40 
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TABLE D-2. 	 FREE SURFACE AND INTERFACE LOCATION 
FOR CASE 6 UNDER CRITICAL CONDITIONS 
(EXPERIMENTAL DATA) 

Distance from Well-Axis Depth of Free Surface Depth of Interface 
cm 	 cm cm 

0.0 	 3.20 18.50 

2.5 	 3.20 18.50 

3.5 	 2.70 18.80 

5.0 	 2.50 -­

i. 0 	 2.20 19.70 

9.0 	 1.80 20.30 

15.0 	 1.50 21.50 

20.0 	 1.40 22.10 

25.0 	 1.35 22.60 

30.0 	 1.30 22.90 

40.0 	 1.00 23.50 

60.0 	 0.65 24.30 

80.0 	 0.50 24.80 

100.0 	 0.35 25.30 

119.0 	 0.20 25.80 



APPENDIX E - PHYSICAL PROPERTIES OF SOLTROL "C"
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TABLE E- 1. PHYSICAL PROPERTIES OF SOLTROL "C"
 

Temperature
OC 

Density 
gram/cc 

Viscosity 
Poise 

20.0 0.5782 0.10589 

21.0 0.7576 0.01555 

22.0 0.7569 0.01524 

23.0 0.7562 0.01494 

24.0 0.7556 0.01468 

25.0 0.7549 0.01440 

26.0 0.7542 0.01414 

27.0 0.7536 0.01388 

28.0 0.7529 0.01362 

29.0 0.7522 0.01337 

30.0 0.7515 0.01315 


