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ABSTRACT

SALT WATER CONING BENEATH FRESH WATER WELLS

The purpose of this research is to investigate the phenomenon
of salt water coning below a discharge well partially penetrating an
aquifer in which fresh water is underlain by saline water. The
first portion of this report is concerned with the evaluation of
techniques presently available for analyzing the performance of such
wells. Both theoretical considerations as well as experimental re-
sults have shown that some of the assumptions used in the analytical
techniques available are not valid while others are acceptable only
under limited conditions.

‘The study also presents a mathematical model which is de-
veloped for evaluating the performance of a skimming well under a
wide range of field situations. The practical utility of the results in
deciding the optimum discharge from a skimming well is discussed.
It is shown that for given aquifer conditions and well geometry the
maximum steady-state production of uncontaminated fresh water is
obtained at shallower well penetrations and closer well spacings
than that predicted by the theory previously available.

Brij Mohan Sahni
Agricultural Engineering Department
Colorado State University

Fort Collins, Colorado 80521

April, 1972
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INTRODUCTION

Ground water is needed for irrigation and other purposes in
many places where the su;:ply of surface water is inadequate. In
many coastal and several inland areas, including some of the world's
most important agricultural lands, fresh water in the aquifer is
underlain by saline water. The situation is similar in some respects
to a typical petroleum reservoir where oil is underlain by water.
However, unlike a petroleum reservoir, a distinct interface does
not exist between the two fluids. This is because the fluids are
miscible and there is only a slight difference in their densities. In
fact, fresh water and salt water are separated by a zone of dispersion
with density decreasing with elevation. It is not economical to in-
stall wells for pumping fresh water from aquifers in which the fresh
water zone has only a very small thickness, The concern of this
study, therefore, has been those aquifers in which the dispersed
layer is only a small fraction of the total thickness of the fresh
water zone. In such cases the intermediate "'layer' can be con-
sidered, for all practical purposes, as a boundary surface and is,
therefore, referred to as an "interface'' in this study.

The fresh water-salt water interface is not static but moves
in response to motion of both fresh and saline water. When it is

‘desired to pump fresh water, the well should be so {iistalled as to



“"gkim'' the fresh water from above the saline water with a minimum
of mixing, either within the well or within the aquifer itself.

When a well is pumped, the reduced head tawards the well
causes an upconing or mounding of the interface under the well. In
order to get maximum yield, it would be desirable to place the well
deeper into the fresh water zone. However, the bottom of the well
screen must be at a minimum height above the interface to avoid
contamination with saline water when the coning takes place. The
saline water should not be allowed to enter the well for, once it
mixes with the fresh water, the well will produce water of poor
quality. )

Where the saline water occurs at a considerable depth, it ma;y
be possible to install deep wells to produce sufficient water of good
quality which could be used for irrigation. In places where the saline
water is already near the surface, deep wells cannot be installed
without producing saline water. Disposing of the saline water so
produced is a major problem. Obtaining an equivalent amount of
water from relatively shallow wells requires many additional pumping
plants and is a comparatively inefficient and uneconomical opez:'a.tion.

In addition to its function as a source of water for irrigai:'.;ion,
pumping is often needed to lower water tables. If the water table
rises close to the surface, for example, following a prolonged period

of irrigation or rain, pumping can lower the water table and thus



prevent water logging and soil salinity. If the saline water is close
to the surface, the depth of the water table becomes even more
critical. One possible solution in such a.condition is the installation
of horizontal relief drains below the water table, but the cost of
their installation needs to be considered which, for example, in non-
cohesive soils may be too high to be practical. As an alternate
method, groups of several shallow skimming wells can be installed,
each group being operated by a single centrifugal pump.

This research is part of a study to determine the performance
of vertical skimming wells as a means of pumping fresh water from
a free-surface aquifer with maximum efficiency anci minimum dis-
turbance of underlying saline water. The objectives of this research
were:

1) To construct a physical model to study the physics of

the phenomenon of coning below a fresh water skimming
well.

2) To develop a methematical model to predict the maximum
safe yield for given aquifer conditions and well geometry,
and the corresponding amount of coning of tl"z'e interface
below the well. |

3) To study the validity of the available analytic solutions
to the coning problem and the assumptions involved

therein.



Ideally, it is desir.a.ble to have a physical model which would be
a replica of the prototype system in every physical sense, but on a
smaller scale convenient for laboratory use. However, when it is
not practical to design such a model, it becomes necessary to have
one which has physical similarity in all important respects to the
prototype in question. With this in mind, a laboratory model was de-
signed to gain a better understanding of coning problems and to pro-
vide quantitative data which could be utilized for the verification of
the mathematical model. Since the boundary conditions were too
complicated to allow an exact analytic solution to the problem, the
second objective was realized by computer simulation. Finally, the
results obtained from this numerical model were compared with the
experimental results and also with those obtained by using the methods
of earlier investigators, namely, Muskat, Wang, and Bennett, et a.l.l:

The numerical model developed in this research is sufficiently
general to predict the behavior of prototypes with aquifer conditioﬁs
and well geometries different from those existing in the physical

model. It could be modified to simulate many additional situations.



REVIEW OF LITERATURE

The earliest ideas about water - coning were developed by in-
vestigators in the petroleum industry. These investigators were
concerned with water coning under oil wells. In recent years,
several authors have tried to apply those ideas to ground water rese-
voirs in which fresh water is underlain by saline water. 'I‘h.e petro-
leum literature which is applicable to the present study is reviewed
first.

Research on water coning problems in petroleum reservoirs .
falls into three main categories, that is, theoretical analysis, phy-
sical and analog model studies, and numerical model studies. The
earliest mathematical models were reported by Muskat and Wyckoff
"(21) and Muska* (24). They provided the first ph;'sical explanation
for the problem of water coning beneath an oil well, They realized
that the problem was too complex to make an exact theoretical
analysis possible. However, they demonstrated that with certain
approximations an analytical solution for the flow system (before the
water has broken through the well and during the time it lies statically
beneath the oil zone), could be obtained.

It was assumed that the potential distribution in the flow region
was the sarne as if the second fluid were al;éent. Formulas for the

latter case were obtained by analyzing the analogous problem of



electrical potential distribution in a large cylindrical disc with
partialiy penetr"ati.ng electrodes (23). A detailed account of these
theoretical developments are given in a text by Muskat (22). These
mathematical models were later modified and extended by several
authors to incorporate various situations of interest in petroleum
reservoirs.

It is fruitful to distinguish two phenomena, namely, 'coning’
and bottom-water drive, which are responsible for the formation of
the cone beneath an oil well, These are two different mechanisms.
Henley, et al. (13) and Stephen (34) have explained the difference. In
the so called coning, the underlying aquifer is relatively inactive
and the cone is formed beneath the producing well by the pressure
gradients associated with the flow of oil into the well. In a bottom-
water drive, the driving force for oil production is provided by a
vertical upward flthaw of the underlying water. Thus, while the oil-
water interface during 'coning' will be parallel to the adjacent
streamlines in the oil zone, during bottom-water drive it will be
perpendicular to them. It is the water coning problem and the pro--
duction performance of the bottom-water drive which has been the
subject of most of the recent research in petroleum reservoirs.

Rapaport (27) and Geertsma, et al. (12) studied the scaling
laws for use in interpretation of experimental work on design and

operation of water-oil flow system. Their results formed the basis



‘of many laboratory studies. Some of the recent physical model
studies of coning problems in petroleum reservoirs are those of
Caudle (7), Henley, et al. (13), Khan (16), Stephen(34), and
Soengkowo (32). A pie-shaped model was generally used for such
experimental studies. It was shown (13) that the role of interfacial
forces was negligible in the gross fluid movement in a reservoir
where the two fluid phases were under very large pressure gradients.
Therefore, no effort was made to scale capillary forces in the phys-
ical.models. Mutually miscible analog fluids with different viscosi-
ties were used to represent oil and water.

The analogy between the flow through porous media and electric
current through electric conductors has been used to obtain a
solution to Laplace's equation with the help of analog models. Several
analog studies have been reported in petroleum literature (2, 3, 5,
21, 25). Fluid flow in cylindrical coordinates has béen simulated
with the help of a network of resistors and analog computers with
proper boundary conditions. Capacitors were included in the network
if unsteady flow. problems were to be sirm;la.ted.

A rigorous analytic solution describing multidimensional flow
systems with fluids of different densities and viscosities is not
available ‘at the present time. In such cases approximate numerical
methods have been used wherein the complex partial differential

equation describing flow was transformed into a set of algebraic



equations which can be handled by available solution techniques.
Recently, MacDonald and Coats‘ (19) and Letkeman and Ridings (17)
presented numerical models related to some coning problems in
petroleum reservoirs.

Control of water coning in oil wells has been one of the sub-
jects of recent research. Several methods have been proposed to
prevent or suppress water coning (15, 29, 30, 38). Smith (29) and
Smith and Pirson (30) studied (both experimentally and analytically)
the effect of fluid injection as a means of partially or completely
suppressing the water cone. The effect of several f#ctors on the net
water-oil ratio produced was determined. These factors are: the
position and length of the completion interval, the point of fluid in-
jection, the viscosity of the injected fluid and the relative benefit of
the use of impermeable barriers or cement "'pancakes'’.

ﬁoth Hele-Shaw and radial or pie-shaped models were employed
for the experimental work. It was observed that a radial system was
mnst difficult to treat either in the laboratory or analytically. The
positioning of impermeable barriers or pancakes was relatively
quite difficult in a radial model. This could not be done without sub-
stantially altering the packing of the sand which often made it dif-
ficuit to get reproduciblé results. Studies conducted using the Hele-
Shaw model did not have this disadvantage. Howéver, a radial model
had the advantage of providing information relative to a three di-

mensional flow problem. The use of two-dimensional models



provided only qualitative conclusions regarding water coning in a
radial system. Some of the important con'clusions drawn from the
above studies were as follows: ‘

1. The water-oil ratio for a given oil producing rate could be
reduced by the injection of ﬂuid-- It is important from a practical
point of view that the injection fluid could be either oil or water.
ﬁowever, more benefit is derived if the injection fluid is more
viscous than the reservoir oil, or if a zone of reduced permeability
exists in the vicinity of the 'point of injection.

2., For maximuri"a’effvicien'cy in water cone suppression, the
optimum point of fluid injection is the point closeqt to the bottom of
the‘producing interval. |

3. Under test conditions, little benefit is derivéd through the
use of impermeable barriers.

It should be interesting to study, on similar linés. the sup-
pression of a cone beneath a fresh water well in an aquifer which is
underlain by saline water.

The published literature contains relatively little on the subject
of growth of the cone and the time it takes to reach an incipient
breakthrough position. A study of this aspect of water coning could
undoubtedly be very useful in scheduling pumping at an appropriate
interval while getting maximum efficiency in production and keeping
the cone below a desired safe level. Sobocinski aad Cornelius (31)

established a correlation between dimensionless cone height and
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difheﬁ’sioiileas time for predicting the behavior of a water cone as it
builds from the static .water-oil contact to breakthrough conditions.
They realized that simplifying assumptions and-uee of a one cone
model with one set of. fluids and bm_mdary conditions could not supply
enough data for a completely generalized correlation. While their
co:;eletioh was good at intermediate values of dimensionless cone
height, it was not good at the low values and high values. Neverthe-
N less, Sobocinski and Cornelius' work did provide a means to estimate

the rate at which the apex of the cone rises toward a well,

To:summarize, the main purpose of the studies of water coning
in oil wells has been to investigate the effects of coning on’the oil-
to-“;ater ratio. An ideal situation would be one where water cdning
can be completely suppressed or controlled and a relatwely large
Production of oil can be obtained without producing water. This, how-
ever, does not seem practical under field conditions. Since oil and
water are immiscible, petroleum geologists and engineers have not
been concerned about the production of water together with oil as
long as the ratio of oil-to-water production is such as to insure an
economical production of oil, On the other hand, in a fresh wa;er-
salt water aquifer, since the two fluids are miscible, . it is desi';ra.ble
to prevent the brine from entering the well,

A good account of the existence, nature, shape, slope, and

depth of a .fresh water-saline water interface can be found in Hubbert's
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piiiér on the theory of ground-water motion (14) and also in later
texts by' Todd (35), Walton (36), and Polubarinova-Kochina (26). The
physics of salf-wateri éoning beneath a fresh-water well is similar to
that of brine coning beneath an oil well. Theories for oil wells given
by Muskat and some other authors, which have l;eeﬁ discussed above,
have been applied to frésh water wells also. In recent years, some
work has been reported which is directly rela.t_ed to problems as-
sociated with a fresh water-salt water interface.

° Wang (37) presented an approximate theory of a partially pene-
trating well designed for pumping fresh water from é.n aquifer under-
‘lain by saline water. The purpose of this study was to relate the
well discharge to well spacing, well penetration, well radius, thick-
ness of aquifer and densities of the fluids, and to determine the
_maximum production of fresh water without entrainfnent of saline
water as a function of well geometry and aquifer conditions. The
theoretical analysis employed by Wang used Muskat's (2'2) treatment
of a partially penetrating well combined with the Ghyben-Herzberg
approach (18, 35) to make it applicable to 'skimming wells',

The glra.phica.l procedure developed by Muskat (22) to analyze
the water coning problem beneath an oil well has been adapted by
Bennett, et al. (1) to study the upconing of saline water beneath a
fresh water well. Muskat employed the analytic expressions for the
potential distribution about a partially penetrating well in a confined

aquifer of uniform thickness as well as the results of experiments on
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a pressed carbon électric analog. The heid distribution in the fresh
water zone required in the analysis of Bennett, et al. was obtained
from an electric analog model for steady-state axisymmetrical flow
to a partially penetrating well. This model was made up of a net-
work of electric resistances, similar to the one employed by
Stallman (33) in his electric analog study of three-dimensional flow
to wells. It was also equipped with a system of switches by means

Nof which the lower portion of the network of resistors could be ad-
justed by trial-and-error to obtain a lower boundary which would
simulate the fresh wa.ter-ualine water interface for a given set of
conditions.

The underlying principle in the above study was that if the
boundary conditions in the electric analog model conform to the
boundary conditions in the hydraulic prototype, the hydraulic head
distribution could be calculated from the voltage measurements made
at the network junctions. Initially, the model was set up to represent
uniform thickness of the fresh water zone. From the graphical
analysis of the potential distribution so obtained, the highest position
of the stable interface was determined, assumipg that the head
distribution did not change due to coning., The resistors below this
location were switched off and the experiment repeated. This was
done until the lower boundary of the analog model and the interface

position obtained from graphical analysis were in close agreement.
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~ Several authors have studied fresh water-saline water inter-
facé problems in a two-dimensional domain. Charmonman (8) made
a theoretical analysis of the pattern of fresh water flow in a coastal
aquifer, The problem investigated was that of two interfaces,
namely, the upper boundary of the flow region between aix and fresh
water and the lower boundary between the fresh water and salt
water. The following simplifying assumptions were made:

1. the aquifer was two-dimensional, isotropic, and
homogeneous,

2. fresh water flow was steady,

3. the underlying saline water was stationary, and, .

4. the interfaces between air and fresh water and fresh
water and saline water were sharp surfaces of
separation.

Laplace's equations with the known boundary conditions for steady
flow of fresh water in an unconfined aquifer were solved using the
complex potential plane.

The exact solutions of simple situations in an unconfined
aquifer were compared with the approximate solutions obtained by
considering the problem as that of a confined aquifer. The approxi-
mate solutions were found to be satisfactory for practical purposes.
According to Charmonman, if the ratio of the specific gravities of

saline water and fresh water was taken as 1.025, the upper interface
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location would be in error by an amount less than 1.3% and the lower
interface and the outflow face would be in error by an amount less
than 2.6%. Charmonman (9) also studied the effectiveness of an
artificial fresh water barrier for preventing salt water from intruding
inland and presented a numerical solution to the complex free sur-
face problems (10).
Dagan and Bear (11) employed the method of small perturbation,
Noften used in the theory of surface waves, to determine the shape of
the rising interface in connection with the withdrawal of fresh water
by a coastal collector operating a short distance above the interface.
A coastal collector is an array of shallow wells used for exploitation
of fresh ground water in coastal aquifers and controlling sea water
intrusion into it. The assumptions underlying their theoretical ap-
proach were that the medium was homogeneous, nondeformable, and
that the two fluids were incompressible and separated by an abrupt
interface.

A velocity potential satisfying Laplace equ?.tion was defined in
the flow region of each fluid. Because of the non-linear nature of
the boundary conditions along the interface, a linearized approximate
solution based on the method of small perturbations was developed.

It was assumed that the potential in each fluid could be expressed as
a sum of power series of small parameter. In their analytical

treatment, a first order linearized solution was derived. However,
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their method is applicable to second and higher order linearizations

ag well. This method is applicable to unsteady flow where the inter-
face undergoes a sufficiently small displacement at a certain instant
of time relative to some average interface position.

Approximate solutions were obtained for a continuous drain
and for a point sink., The validity of these approximate theoretical
solutions was examined with the help of sand box experiments, and
it was observed that the range of validity of these solutions was for
dispia.cements which (at the crest of the upconing surface) reach a
. value not greater than 1/3 the initial distance between the interface
and the sink,

The validity of the analytic studies of the interface upconing
beneath collector wells was checked by field experiments by Schmorak
* and Mercado (28), It was found that the theoretical results were in
agreement with field results up to some critical rise of the interfece,
which seemed to be approximately half the distance between the
bottom of the well and the undisturbed interface. Also, the pattern
of the dispersion zone was studied with the help of field data and it
was concluded that the linear approximation of the dispersion pattern,
used in the analytic. approach of Dagan and Bear, was acceptable for
all practical enginecring purposes. Therefore, the abrupt interface
referred to in these studies could be considered as the average
position of the transition zone between the fresh water and salt water,

that is, position of relative salinity of 50%.
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Very recently Youngs (40, 41) has presented an exact approach
to the theoretical analysis of some interface problems using his
method of analysis of horizontal seepage. The method has been ap-
plied to calculate the maximum pumping rate of fresh water from
wells located in coastal aquifers and to give optimum conditions for
installation of such wells. The problem considered by Youngs was
one of two-dimensional flow. It was, therefore, possible to arrive

Nat an exact solution by solving Laplace's equation by the method of
conformal transformation, a technique which cannot be employed for

three dimensional flow problems.



THEORETICAL BACK GROUND

The theory described here is intended to apply to the case of fresh
water overlying saline water in an aquifer. The two fluids are miscible
and at their contant, they tend to mix by molecular diffusion and macro-
scopic dispersion. Therefore, they are not separated by an oil-water
type of interface, they do not constitute distinct fluid phases, and there
is no pressure discontinuity where they are in contact. However, for
the sake of simplicity, it is assumed that fresh water and salt water are
separated by an abrupt interface and have distinct and uniform densities

(Figure 1).

q
:\\fz ¢' Fresh water

Interface

e——

Salt water

Figure 1. A fresh water-salt water interface,
A potential ¢ can be defined for each of these fluids as follows:

¢f=—+z (1)
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and
$ =— + z (2)

where p is the pressure, p is the density, z is the elevation of the
point in question measured above some arbitrary datum, and the
subscripts f and s denote fresh water and salt water respectively.
Since it is assumed that no pressure discontinuity exists across
the interface, at any point M on the interface P; = Py = Py the pres-
sure at the interface. Denoting the elevation of M by { and eliminating

pi from (1) and (2) results in

("’if - g) PgE = ("’is - g) Pgt (3)
where the suffix i refers to the interface.

Solving for { gives

Pg Pg
fe—m y - —— (4)
Pg=Pg 18 pg-pg if
or, writing Ap = Pg=Pg
P Pg
;=-£¢. -9, . (5)

Equation (5) can be used to describe the interface, if the potentials
¢is and 4)“. are known at a number of points along the interface. If
both potentials vary along the interface, that is, if flow exists in
both fluids, the location and shape of the interface depends on the

velocity components along the interface in both fluids.
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Differentiating equation (5) with respect to S, distance measured

along the interface, we get the slope of the interface at the point in

.
question

sin 6 -—5 —ad,is pf a(b"f

Ap TR (6)

The flux q is given by Darcy's equation which, for isotropic media

gives
s " K9
and ]
o¢
if 1
25 K% (8)

where K is the conductivity coefficient having the dimensions of

velocity. Therefore, equation (6) can be written as

P P
_ﬁ_l[ s o ]
gind = 58 = Ap AP 9, . (9)

If the salt water zone is static, the potential is constant through-
out this zone. Then using equation (5), the elevation difference be-

tween any two points 1 and 2 on the interface is given by’

%

Pg
L, - by = P(¢iﬂ-¢m) : (10)

Also, in this case, equation (9) reduces to

P, 9
sin & -A—f- Kf . (11)
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The case of a partially penetrating well used for pumping fresh
water from an aquifer is considered next. The bottom portion of the
.

aquifer is saturated with brine as is illustrated in Figure 2. The

A

Original position of the interface

Figure 2. Salt water coning below a fresh water well,

thickness of the fresh water zone prior to pumping is He' It is assumed
that the well has been pumped until it reaches a steady state. The
potential in the well is ¢w. At a distance greater than the radius of
influence re from the well, where the flow becomes strictly ra.dia'l with
no vertical components, the fresh water potential along any verti?al

line is a constant designated as ¢e. When flow takes place, in re'r.sponse'
to a drop in fresh water potential toward the well, the inte"rfa.c.é, tends

to mound beneath the well to a height such that it will be in hydrodynamic

equilibrium, The brine will then be static and the flow will take place
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only in the fresh water zone. Also, since there is no flux across
the interface, the latter is the lowest stream surface in the fresh
water zone.and is analogous to an impervious boux;dary. When the
cone becomes stable, the location and shape of the interface at any
point is a function only of the fresh water-velocity along the interface
at that point. Because of symmetry of the radial flow, the apex of
the-upconed interface beneath the well is a stagnation point. The
apex of a stable cone, therefore, must be flat.

| If the original position of the interface prior to pumping (or its
position at the effective radius during pumping) is taken as the datum
for measuring elevations, and noting that at §{ = 0, ¢i£ = ¢e' the

elevation of the interface at any point can be written from equation

(10) as
Pg
tap (Pt 1

The elevation of the apex of the cone is given by

°t
S(x=0) “2 ["’e - (¢if)r=o] ’ (13

If the second term within the brackets in equation (13) is replaced
by the well potential ¢w' the result is

[
(r0) =A—f,[¢e -a,] - 14)
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This is the weli known Ghyben-Herzberg relation. A comparison of
equations (13) and (14) shows that the potential (¢if)r=0 vertically
below the well is greater than the potential ¢w in the well, otherwise
there cannot be any flow into the well from below. Therefore,
g(r=o) calculated from equation (14) is greater than that calculated
from equation (13). Thus, for the same drawdown, the Ghyben-
Herzberg relation overestimates the height of the cone. Similarly,
equation (14) places the interface at a greater depth than would be
predicted by equation (13).

The difference in the two equations (13) and (14) arises due to
the fact that the Ghyben-Herzberg relation was arrived at by using
the Dupuit- Forchheimer approximation, which implies that the
potential does not change along any vertical line in the entire flow
region. This assumption is valid only near the effective radius or
where the vertical flow components are very small., The latter
condition‘can be achieved, for example, at very small discharge
rates, and deeper well penetrations. The theoretical analysis in the
present work is based on equation (13).

In order to use equation (13) to determine the location of :the
interface, one needs to know the densities of the fluids, the frésh
water thickness prior to pumping, and the distribution of the fresh

water potentials along any vertical surface. In order to obtain the

potential distribution analytically, one needs to solve the flow
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equation
1 2 (. 28\ ,2°
1.2 (. 8),38_, (15)
r ar or 2
0z . -

with the boundary conditions

$ = ¢e at r= e \

$=o at r=r.Hb$zSHw

Qi - =

or 0 at r ol g(r=o) S zs. Hb k (16)
g% =0 along the free surface

3

=0 along the interface )

where 9/9n denotes the partial derivative with respect to distance

. along the normal drawn to the surface being considered at tﬁé point
in question. The last three boundary conditions imply that the fresh
water flow has only vertical components along‘ the center line of the
well between the bottom of the well and the interface, and there is no
flux across the free surface and the interface.

Thus, if it is desired to calculate the position of the interface
by an exact analytic method, equation (15) must be solvc:.:d for the
potential distribution using the boundary condifions (16).. However,
these boundary conditions in turn depend on the position of the inter-
face. Therefore, it does not seem possible to obtain an exact

analytic solution to the problem. Apparently, the best way to solve
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this problem is to use numerical analysis. This technique will be
deséribéd in detail in later sections.

It is useful to analyze the two approximate analytic approaches
employed by Muskat (22) and Wang (37) to solve the coning problem
beneath a partiali& penetrating well. Muskat's approach is discussed
first.

A stable cone with brine in static equilibrium requires that any
decrease in the fresh water potential at a point (r, z) along the inter-
face, as a result of pumping, must be compensated for by an equal
increase in the differential hydrostat{c head. This condition can be
expressed raathematically by the equation

Do .
Pg

$(r,2z) = ¢e- . (17)

_Subtracting ¢w from each side of equation (17) gives

- YAV |
¢(riz) -0 = (d -6 ) be z . (18)
Dividing through by (4;e - ¢w) yields
$(r,z) - ¢
———eee W, = ]l - _éL. z (19)
¢ = by PAAd)
or,
adr.z)_ [APH" ]-z— (20)
(Ad) pfAd) |H,

where, Ad(r,z) = ¢(r,2) ~ ¢ (21)



and (&), =4 ~¢ (22)

"Equation (20) is the dimensionless form of equation (17).

) Everyupoint~ on the interface must satisfy equation (20). The
parameters ¢e’ ¢w, He’ Do, pg are known in particular situations.
Therefore, l.f the fresh water potential ¢(r, z) can be determined,
the elevatioﬁ of the interface at a distance r from the well axis can
be calculated by solving equation (20) for z. Equation (20) can also
be solved graphically as suggested by Muskat. The underlying
p;'inciple of Muskat's approach is as follows:s When the potential
‘distribution at a éarticﬁlar value of r is known a’.‘s"‘a function ot'_z,
both sides of equation (20) can be calculated for various values of z.
. If these values of the expressions on both sides of this equation are
plotted on the same graph against z or z/He. the points of inter=-
section of the two curves give the desired solutions. Obviously, the
right hand side of the equation plots as a straight line with a slope
: 'e'ci;za_], to {ApHe/Pf(A¢)e}' This is the graph of equation (20) and re-
presents the interface. -Using the same approach for different values
of r, a composite picture of the interface can be obtained.

Since there was no metﬁod available to ob(:ai.n the exact poten-
tial digtribution required in the above analysis, Muskat found it
necessary to neglect the effect of the cone on this distribution. This

is equivalent to assuming that the potential distribution in the above

case is the same as if the lower boundary of the aquifer was an
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impermeable bed instead of an interface. With this assumption, he
computed the potential distribution for the water coning case from
his formula for a well partially penetrating a conftfied a.quvi‘fer satu-
rated with only one fluid. Muska.t accepted the solution obtained be=
cause it was not possible to obtain a new potential distribution
considering fhe lower boundary to be at the calculated location.
Another important point to be considered is the phenomenon of
instability of the cone. As the well-discharge is increased, the
drawdown is increased and therefore, a greater cone height is
expected. The question arises as to whether.thi,s drawdown-cone
height relationship holds for all values of &rawdown; that is”, will the
condition of static equilibrium of the brine always exist irrespective
of the potential distribution? Muskat predicted that the cone should
in fact become unstable long before it reached the bottom of the well.
Considering the potential at the interface ¢if as a function of
both the well potential (for givén cpe) and the ;alevation of the inter-

face L, the condition for static equilibrium of the brine cone, i.e.,

equation (12), can be rewritten as

Le 5 [¢é - di¢ oy ;)] : i (23)
If the drawdown is increased by lowering the well potential by

an amount Aq:w, the corresponding increase in the elevation of the
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interface at the point in question is given by

AL = - = [ —_—1 N+ [
AQp 8¢w ¢ ¥ ;14

A;] : (24)
¢\V

In equation (24), the first term in the brackets gives the change
in potential Atbif due to change in the well potential and the second
term gives the contribution to Atbif due to change in position of the
interface.

Solving (24) for Al gives

At L 4oL kb4 B A ka4 Ab
Ap | 9L ¢w Ap a¢w L w

(o),
At Ap| 8o, g v
L= (25)

P, (3,
1 4L [—if
Aplat  [o

or,

For a given value of ¢e' a decrease in ¢w leads to a decrease

in ¢if‘ Thevefore, (a4>if /a¢w) is a positive quantity and Atbw is

9
negative so that the numerator on the right hand side of equation (25)
is positive. Since a rise in the interface causes more convergence

and hence decreases ¢.., (8$../30), is a negative quantity. As the
if if

Pw
drawdown in the well is continuously increased, the absolute value
of this term increases until it is numerically equal to one. In that
case, the denominator is zero and A{ is undefined. Physically this

means that the brine begins to flow and the well starts producing

brine. A stable cone does not exist when this condition is present.
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The phenomenon of instability predicted by Muskat can also .
be explained as follows:s since as pointed out before, there is no

pressure discontinuity across the fresh water-saline water interface,

op op
f ]
35 ° 35 (26)

along the interface.

Each of these terms can be considered as a combination of two
terms, namely, one due to gravity alone and the other due to flux q
along' the interface in the respective fluids. Equation (26), there-

fore, can be written as

®e) L2\ (2%, [ 27
38 3S = |38 35 (27)
G 4:1f G qs

where the suffix G denotes the contribution due to gravity alone and
the suffixes q £ and 9, denote contributions due to the flux along the
interface in the fresh water and saline water respectively.

Rewriting equation (27) results in

Pl [2Ps) (2] (2% (28)
asS 198 as ~19S .
qf q G G

The right hand side of this equation is equal to Apg sin §, the dif-
%

ferential hydrostatic pressure gradients along the interface. Here,

g is the acceleration due to gravity and §, as before, is the angle

that the interface makes with the horizontal at the point in question.
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Since the angle 6§ can vary only from 0 to n/2,

%)pf aps
35 ~\3s| 24r8 . _ (29)
U U

From equation (29) it is clear that for static equilibrium of
the cone, (E)pB/BS)qs must be zero and (apf/E)S)qf cannot exceed the
value Apg. However, when the pumping rate is such that (8p£/88)q£
exceeds this value, (apB/aS)qs must have a value greater than zero
so that equation (29) still holds. In other words, the brine is no
longer static. Hence, for a stable equilibrium of the cone, the up-
ward pressure-gradient force due to flow in fresh water must be
less than or equal to the quantity Apg.

Carrying the above explanation further, it is noted that in the
situation' where sin § = 1, the apex of the cone can no longer remain
flat which is a requirement if the cone were to be stable with brine
in static equilibrium. Furthermore, the value of sin § is about 0.71
when 6 = 459, Therefore, when the slope of the interface becomes
45°, a relatively small increment in (8pf/88)qf is sufficient to bring
the cone to the critical condition. In other words, the cone tends to
become vertical rather abruptly. Also, since the maxiqum velocity
of fresh water flow along the interface (that is fhe limiting stream
line) is at its point of inflexion, the abrupt rise in the cone should

take place at that point.
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Alternately, considering the fluxes 9 and 9, along the interface
instead of the pressure gradients, the conditions that lead to instability
can also be understood as follows., As explained before, if no flow
occurs in the underlying saline water, that is, if the cone is in static
equilibriuin, the equation (9) describing the interface reduces to
equation (11), As the production rate is increased, qf increases and
the cone becomes steeper. The maximum value that qg can theoretic~
ally have with no flow in tae brine is equal to Ap K/Pf when sin 6 = 1,
Should q ¢ exceed this volue, since sin 6§ cannot exceed unity, equation
(9) requires that q be g::eater than zero. Physically, this implies
that for given aquifer conditions and well geometry, there exists a
production rate above which the cone cannot remain in stable equili-
brium.

In order to determine the maximum fresh water yield without
producing brine for given aquifer properties and the well geometry,
it is necessary to know the critical drawdown and the position of the
highest stable cone.

Another analytic solution is given by Wang. .This approach
starts with the assumption that the maximum safe yield, that is, the
critical discharge, is for a drawdown corresponding to which the
apex of the brine-cone just reaches the bottom of the well. The
critical drawdown was obtained by using the Ghyben-Herzberg re-
lation corresponding to a cone height equal to the height of the well-

bottom above the original position of the interface. The discharge
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corresponding to this critical drawdown was computed by using
Kozeny's formula (a simpler version of Muskat's formula) for dis-
charge for a partially penetrating aquifer in a confined aquifer of
uniform thickness and saturated with one fluid. This formula does
not deal with the problem of an interface.

Thus Wang's approach differs from Muskat's in three respects;

1. Muskat's original work was related to water coning be-
neath an oil well. Wang was interested in salt water
coning beneath a fresh water well in an unconfined aqui-
fer but she used the discharge formula which was de-
rived for the case of a confined aquifer.

2. Instead of using the potential distribution for the case of
a partially penetrating well, the potential was assumed
to be constant along any vertical line. With this as-
sumption equation (13) becomes the Ghyben-Herzberg
relation. Wang's method is thus essentially the Ghyben-
Herzberg approach.

3. Because of the fact that Wang neglected vertical com-
ponents of flow, her analysis does not predict the phe-
nomenon of instability of the cone. Perhaps that is why
she considered the highest cone to be at the bottom of

the well.



PHYSICAL MODEL AND EXPERIMENTAL PROCEDURE

Scaling of the Model

Ideally a model should be constructed so that the flow phenomena
in the model are identical in terms of scaled variables to the corres-
ponding phenomena in the prototype. When it is not possible to
construct a model which, in every sense, is similar to the prototype,
it is sufficient to build a model which is similar to the prototype with
regard to the most important variables. When the scaled forms of
all the important variables and dimensions which describe the geo-
metry and control the conditions of flow have identical values in the
model and the prototype, the flow phenomena observed in the model
can be applied to evaluate the performance of the prototype.

Simulation of a given set of field conditions was not attempted
in the physical model used in this study. The purpose of using this
physical model was (1) to understand the physics of coning problems,
(2) to check the validity of the existing theoreti.ca.l.. models, and (3)
to check the validity of the numerical model which was developed as
part of this research. It was, therefore, not necessary to simulate
an actual field situation in the model. It was sufficient to apply the
existing theories to a few hypothetical prototypes and compare the
results with those obtained by studying identical situations experi-

mentally with the help of a physical model.
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All pertinent variables were taken into consideration while
designing the model and care was taken not to include any factors in
the model which might make the phenomenop different from that in
the field. For example, since the effect of capillary forces and the
thickness of the dispersion zone were considered to be negligible in
the field situation, an attempt was made to insure that this was the
case for the model also. Thus, although simulation of particular
field conditions was not attempted in the model, the model was
realistic in the sense that it could represent some field situations.

The scaling factors for designing the inodel were selected from
Wang's equation for maximum fresh-water discharg'e from a skimming
well, Although this equation is based on questionable assumptions,
it does give an insight into some of the important variables that need
to be scaled. Wang's equation, in the notation used here, iss

2

27H'K P =p r \i

_ e s f . w_ {2 Ta

Qma.x —I:ln(r 7t )-B ] ( > )a(l-a) [1+7(ZaH ) cos —= ] (30)
e w o f e

where

Qmax is the maximum discharge without entrainment of

salt, .
a= PW/H )
e

Bo is a numerical constant and is equal to 0 for lateral

recharge and 1 for vertical recharge.
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Introducing the dimensionless variable y = r JH,» called "well-

slimness'’, and writing p = wa/2 equation (30) can be written as

w4 n(ré/rw)-'Bo] Qmax

1
W, . =p(1’--p)[1+7(ﬂ)?cosp]= . (31)
B,y 2 4P BKI-I:(ps - g/ eg

Here, is a dimensionless variable called ''well number'" by

WB.Y
Wang and is a function of

(1) degree of well-penetration (f or a) , and

(2) well-slimness Y,

In a single-well leboratory model built with some suitable fixed
length and with constant head maintained at its exterior bo'undary,
the effective drainage radius T, is equal to the radius of the exterior
boundary of the model. In the case of multi-well reservoirs, the
external boundary of the model reprsents the effective drainage
radius of the well being studied. If a square array of producing wells
of equal radius and degree of penetration is simulated in the model,
the well spacing L can be related to a dimensionless parameter

r= re/rw as follows: The drainage area A of each well with effective

radius T, is given by
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and
b o
'y e L
= = = z

In the pie-shaped model used in this study, the radius of the
well and the radius of the outer boundary (where a constant head was
maintained) were fixed. This model is considered adequate to study
multi-well reservoirs in which the wells have a scaled effective
drainage radius f at lease equal to the r value in the model.

According to equation (31) the dimensionless discharge in a
hypothetical prototype computed from Wang's theory and that deter-
mined experimentally in a model simulating the same prototype could
be equal only if the following parameters have the same value in both
model and prototype:

(1) recharge factor Bo ,

(2) well penetration a ,

(3) well slimness vy,

(4) well-spacing .

Since it was not intended to study the transient case, that is,

the rate of growth of the brine cone, the time variable was not

scaled.

Choice of Porous Medium

Since capillary forces in the field situation are considered to

have negligible effect, an attempt was made to insure that this was



36

th; ca:ehfbvr the model also. It is difficult to satisfy the requirement
for negligible capillary phenomena in designing a laboratory model
of p.ractica;l size. It was necessary to select a material to simulaté
the aquifer such that the capillary fringe in the model would be only
a small fraction of the total thickness of the fresh-water zone. After
running several tests with different kinds of materials, it was de-
cided that the simulating material should have an average grain size
of at least 2 mm. Since the present study relates to homogeneous
and isotropic aquifers, it was decided to use spherical glass bea.ds1
about 2. 5 mm size.

The glass beads used as the aquifer material in the ;nodel, in
contrast to soils and sands, could easily be packed to practically the
same density in each run. Therefore, it was possible to obtain re-
producible results. Another reason for the selection of glass beads
as the aquifer material in the model was that their smooth surfaces
made it easy to wash them after each experiment. Thus, the same

glass beads could be used in all the experiments.

Choice of Fluids .

The two fluids in the prototype are fresh water and saliné
water, which are miscible, As explained before, in actual field

conditions a zone of dispersion exists at the contact of the two fluids.

lThe glass beads used in this study were Industrial Glass Beads Type
V-110 (product #12330) manufactured by Potters Bros., Inc.,
600 Industrial Road, Carlstadt, New Jersey 07072.
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This zone, however, may often be a small fraction of the total thick-
ness of the aquifer and therefore, as a simplification in analysis,
could be considered as an abrupt interface™ When tap water and
water with some salt dissolved in it were used in a test model, it
was observed that the dispersion zone was a disproportionately large
fraction of the total thickness of fresh-water aquifer. Also, because
of complete miscibility of the two fluids, this zone of separation was
not well defined.

" It was also necessary that the amount of mounding of the brine,
in response to the production of the well, be a realistic fraction of
the total height of the model. A very coarse material was used for
the aquifer in the model. Therefore, if fresh water and saline water
had been used, the drawdown in the well would have been very small
to keep the mound within realistic limits. However, it was not pos-
sible to measure a very small drawdown with the desired accuracy.
Further, from equation (12) it is observed that the cone height can
be reduced by using two fluids with a larger density contrast.

The.above reasons, therefore, led to the choice of two im-

miscible fluids having a density difference mu~h greater,than that

for fresh water and saline water. Fresh water was simulated by

Soltrol "C"2 and saline water by tap water containing a dye called

2Soltrol "C" is a special core test fluid manufactured by the Special
Products Division of Phillips Petroleurn Co., Bartlesville,
Okla. Some of its physical properties are given in Appendix E.



38

Ponté.cy13. This dye is water soluble and is insoluble in'soltrol. A
very s_mall amount of this dye gave a brilliant pink colorito water
whi‘ch‘ made visu;l obsefiration of the interface at various stages of
coning quite easy. With this choice of simulating fluids and with
careful packing of glass beads in £he model it¢ was possible to obtain

a well-defined interface between the two fluids. .

Equipment and Experimental Set-Up

Idea.lly, in order to minimize the wall effects on flow, it would
be desirable tn construct a very large cylindrical model. However,
a large model is uneconomical to build, irnpractical from the point
of view of simulating all boundary conditions, and difficult to operate.
Since the present work deals with axisymmetrical {low toward a well
in a homogeneous and isotropic medium, it was sufficient to construct
only a sector of a cylindrical model. The model usgd in this study
has radial walls forming an angle of 15° which represents 1/24 of a
complete cylinder. The radial length of the sector was four feet.
Toward the outflow end of the model a brass screen of 50 mesh size
was placed at a distance of 0. 96 inch from the center line of the
cylinder where the gap between the two radial walls of the sector

was 1/4 inch. This screen represented the screen of a well of

3Pont:a.cyl is a product of E, I. duPont de Nemours Co., Wilmington,
Del. It was been used as dye in some sediment transport

studies. Its chemical formula is CZ7HZ9NZO4SZNa'
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radius 2.38 cm with its axis along the center line of the cylinder.
Figure 3 shows the discharge end of the mode.ll and f-igure‘s 4(a) and
4(b) give details of the recharge end. A sketch of the "assem.ﬁly used -
in the experimental study is shown in figux;e 5. |

The model was made of plexiglass, so Fha.t the position of the
interface and free sﬁrface could be clearly seen. At the inflow end
the model was 12,72 inches wid‘e.. The total height of the model was
two feet. The portion of the model containing the beads was sepa-
rated at its inflow end from a reservoir by a wall which was per-
forated uniformly by sixty-three 1/4 inch holes with 2-inch separa-
tions, The purpose of this reservoir was to maintain a constant
hgad at the inflow boundary of the model. The liquid level in ﬂié
reservoir was maintained constant by an overflow tap in the outer
wall of the reservoir at a depth of three inches from the top. Per-
forations at the inner wall insured a uniform distribution of liquid
against the outer end of the sector. These holes were covered with
a screen to prevent glass beads from falling into thé reservoir.

Preliminary tests showed that, unless special precautions
were taken in filling the model with glass beads and the simulating
fluids, air bubbles were trapped in the pores. This destroys the
homogeneity of the pores and causes local discontinuities in the flow
channels. It was important to insure that i:he glass beads in the oil

zone were wet with Soltrol only and those in the water zone with
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Discharge end of the laboratory model.

Figure 3.
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water only. It was also found in the preliminary tests that the same
precautions were required to obtain a well-defined interface. After
trying various techniques to avoid these probiems. the following
procedure was finally adopted for filling the model.

Beads to be used in the oil zone in the model were first im-
mersed in oil in a separate tank. Likewise, beads to be used in the
water zone were immersed in dyed water in another tank to insure
that they were wet with the respective fluids, Next, dyed water was
allowed to flow slowly from the overhead tank into the model, and
beads previously wet with water were slowly placed in the model
while keeping the water level in the model just above the beads. This
layer of beads was thoroughly mixed by stirring to eliminate air
bubbles. The beads were packed by pressing with a flat metal piece
. from above and by tapping the side walls of the model with a rubber
hammer. Each layer of beads was as uniformly packed as possible
and freed of air bubbles before more beads were added. The pro-
cedure was repeated until the level of dyed water and the top of the
layer of the beads in it reached the level which coincided with the
initial position of the interface in a particular set of conditions being
simulated in the physical model.

Next, a thin layer of oil was formed on top of the water-wet
beads by adding oil slowly in very small quantities along the side

wall of the model. It was necessary to take utmost care while adding



44

this first layer of oil in the model to insure that the surface of the
layer of water-wet bezds was not disturbed. After adding some oil,
sufficient time was allowed for the oil to spread evenly over the
water-wet beads. Then, oil-wet beads were placed in this oil layer
in small quantities and evenly distributed throughout the model. The
procedure was repeated layer after layer insuring that the beads
were uniformly packed and that they were freed of air before more
beads were added. The model was filled with beads to a height about
two centimeters above the outflow tap.

The rectangular prism at the 'well-end' of the model was also
filled with beads wet with the fluid they were to be in contact with at
the start of the experiment. The top of the beads in this prism re-
presented the bottom of the well in the prototype conditions being
simulated in the model.

A closed system for circulating the fluids was set up in the
experiment as follows. Oil from overhead tank 3 was allowed to
flow into recharge reservoir 2 of the model at a rate somewhat higher
than the expected discharge rate in the experiment. The excess
fluid drained from the outflow tap and thus the free surface elevation
at the exterior end was maintained at the level of the tap. This
excess fluid was received in oil reservoir 4. From reservoir 4,
oil was recirculated by a pump back into tank 3.

A three-way tap was connected to the bottom of reservoir 2.

Through this tap the reservoir was connected to Mariotte siphon 7
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containing dyed water used in liuz model, and to reservoir 5 containing
the same dyed water. Thus, by opening one valve, small quantities
of dyed water could be added to reservoir 2 from the Mariotte siphon,
whereas by opening th.e other valve any excess water in recharge
reservoir 2 could be drained into water reservoir 5 if needed. The
level of the lower end of the tube open to the atmosphere in the
Mariotte bottle could be adjusted by lowering or raising the latter
with the help of a screw jack.

" Most of the additional water required in upconing was fed to
reservoir 2 from tank 6, but at later stages of the coning, it was fed
in small quantities by opening the valve between the bottom of re-
servoir 2 and Mariotte siphon 7.

It was found convenient to fill the model with water by pumping
it to overhead tank 6 from reservoir 5. Tank 6 was provided with
an overflow outlet near the tap and a valve near the bottom to adjust
flow into reservoir 2.

The pumps used in recirculation of the fluids were cooled by
running tap water. It was thus possible to maintain the temperature
of the fluids nearly constant throughout the experiment to insure that
the fluid properties did not change during the experiment,

Production from the well was simulated in the model by si-
phoning oil with a tube (about 1/4-inch L D.). The height of the fluid

in the well and the production rate were varied with the help of a
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screw clamp. After allowing sufficient time for the flow to reach an
equilibrium following each adjustment of the flow rate, it was pos-
sible to maintain a steady flow in the model. Fluid drained from the
model was collected in a large measuring jar (abov;xt 2 inches in
diameter and of 2000 cc capacity), which was provided near its base
with an outlet and a stop cock. When the measurements for discharge
were not being made, the valve at the outlet of the jar was left open
so that all the fluid drained from the well was continuously received
by reservoir 4. For making measurements of the producing rate,
the valve was closed, so that all the fluid drained by the well was
collected in tne measuring jar. The flow rate was determined by
noting the total volume collected in an increment of time. After the
measurement, the stop cock was again opened and the fluid allowed
to drain back into reservoir 4 as before. The fluid in reservoir 4
was continuously recirculated back into inflow tank 1 and from there
into reservoir 2. This closed circulation had two advantages: (1) A
steady-state condition of flow could be maintained for given levels

in reservoir 2 and the well, and {2) accumulation of air bubbles in
the medium in the model, which would occur if fresh oil were con-

tinuously supplied to the system, could be avoided.

Conductivity Measurement of Glass Beads

Since it was intended to study only steady-state flow of oil,

with brine in static equilibrium, the conductivity of glass beads to
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Soltrol only was determined experimentally. A constant hea.d
permeameter was used for the purpose. It was observed in pre-
liminary tests that conductivity of these glass beads was very high
with the result that the observed gradient of head was too small to
insure desired accuracy with the apparatus being used. A much
larger permeameter, therefore, was constructed from a steel pipe
7.803 cm in I.D. and 160 cm long. The head was measured at
three points, 50 cm apart along its length. The experimental set up
is shown in figure 6.

A lack of consistency in the results wa.# noticed in the first
measurements which was attributed to the following experimental
problems:

1. In order to keep the head in the overhead tank constant,

a closed circulation of Soltrol was maintained between
the overhead tank and the permeameter with the help of
a pump immersed in the reservoir tank. Heat supplied
to the oil by the pump caused an increase in temperature
of the oil and hence an observ;ad increase in measured
conductivity with time.

2. A non-linear head-loss along the length of the measuring

column was indicated by manometers connected to taps
equally spaced along the column. This was found to be

due to a density gradient in the Soltrol caused by a
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Figure 6. Experimental set up for measurement of conductivity.
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temperature gradient between the inflow and outflow
ends of the column., |

3. Air became trapped at the base of the column causing a

-
gradual reduction in flow rate.

These problems were largely overcome in subsequent measure-
ments in the following way. Instead of immersing the pump in oil, it
was immersed in water in a separate reservoir and cooled by running
tap water. This permitted the temperature of Soltrol in circulation to
remain constant at 23.5°C. An elliptical plate of plexiglass with
vertic;al perforations (shown in Figure 7) was installed at an angle of

200 from horizontal inside the vertical column about 10 cm above the

inflow end and was sealed to the inner surface of the pipe. The column

Section A-A through major axis:

"
I

Figure 7. Perforated plate installed in the measuringtcolumn.

was packed with beads above this plate. Immediately below the highest

point of the perforated plate, a valve was installed in the steel pipe to
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Permit periodic purging of air released from the solution before it
entered the measuring column. Subsequent measurements resulted
in consistent values of conductivity,

The permeability k of the beads also was calculated using the
Kozeny-Carman equation

3

k== (33)
S kaT

in which f is the porosity, S the specific surface, ks a numerical
constant d;apending on the shape of pores, and T the tortuosity of the
porous medium.

For spherical glass beads of almost uniform size, equation

(33) can be rewritten as

— 12
2 Vb
: |5 (34
k T(1-97 \®p

k=

where Vb and Kb are the average bead volume and the surface area

respectively. Equation (34) can be further simplified and written as

f3DZ
m

k= (35)

6k _T(1-£)°
where Dm is the median bead diameter.

The porosity f of the porous medium used in the model was
determined by the density method us ing several random samples in

sufficiently large quantities. With each sample, observations were
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repeated. Since there was no problem of reproducing the p «cking
of the beads, a problem often encountered in dealing with soils, con-
sistent results were obtained. The median diameter. of the beads Dm
was determined by a sieve analysis and the semilog plot of cumu-
lative percentage of beads retained vs. bead size obtained. Finally,
it is known from theoretical and experimental considerations (6, 39)
that for the type of material used in the measurement, the shape
factor ks can be taken as 2.5 and the tortuosity as 2, so that the
Iprc;iuct ksT was 5 in this analysis.

Using the Kozeny-Carman equation the value of permeability of
5390u2 was obtained. This was in good agreement (3.9%) with the

experimental value of 5190u2.

Experimental Procedure

The procedure for making an experimental run was as follows.
First the values of the dimensionless parameters were selected for
prototype conditions simulated in the model. Since the wall radius in
the model was fixed, a well slimness parameter was obtained by
selecting a proper thickness He of the oil zone, that is, the thickness
of the flow region prior to pumping. With He fixed, a given well-
penetration parameter was obtained by calculating the actual depth of
penetration of the well using the calculated value of He' With both the
radius of the well T and the position of the constant head boundary
fixed, the important geometrical parameters were simulated in the

physical model.
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Once the model tank was filled with glass beads and fluids, a
steady circulation of the fluids was maintained. A reference line was
etched on the front wall of the model coinciding- with the location of
the original free surface. Since in all the éxperiments, irrespective
of the position of the interface, the free surface position prior to
pumping was the same, it was convenient to use this line as the re-
ference line rather than the position of the interface. Depths beloﬁ
this reference line were marked in millimeters at a number of suit-
able distances from the well axis along the front wall and also along
the well on the discharge-end plate.

The initial position of the interface and the free sur;ace were
noted. Then the production of oil was started at a slow rate. This
induced a drawdown of the free surface toward the well in an ap-
proximately parabolic shape and an upconing of the interface below
the well. In order to insure that the free surface at the recharge end
never went below the level of the overflow outlet of reservoir 2, the
rate of inflow of oil into reservoir 2 was adjusted so that it was
slightly higher than the discharge rate. At the same time, care was
taken that the inflow into the reservoir was not high enough to ;:a.use
ponding at the surface which would result in a higher free surf;é.ce
location at the recharge end than the original position prior to
pumping.

After allowing sufficient time for the flow system to reach a

steady state, several measurements were made for calculating
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discharge. The locations of both the free surface as well as the
vinterface were recorded at several radial distances from the well"
axis, | The readings were taken at much closer intervals in the
vicinity of the well. This was helpful in making a detailed study nf
the effects of convergence near the well on the free liquid surface
and on production rates.

Next, the discharge was increased and after the flow system
had again reached equilibrium under the new conditions, the new dis-
charge was measured and the locations of the free surface and inter-
face were recorded.

Whenever the discharge was increased, the interface rose to
a higher position and the cone in the vicinity of the well became
steeper. In the later stages, as the critical condition was approachéd,
only a slight increase in production rate would raise the cone near
the well by a significant amount, The experiment was continued
until the cone became almost vertical near the well. Any further in-
creases in the production rate forced the cone to become unstable
and eventually the well produced water aldng with oil. Just before
this happened, the cone was considered as 'critical'. The discharge
without producing water corresponding to this critical condition was
measured. This completed the set of observations that were needed
to analyze the performance of a partially penetrating well for a given
set of'aquifer conditions and well geometry. Similar experiments

were made with several other sets of prototype conditions.



COMPUTER SIMULATION OF CONING PROBLEM

The intent of this research is to study the conditions under which
brine cones, in response to steady pumping of fresh water, will re-
main in static equilibrium. The problem, therefore, reduces to one
of steady-state flow occuring only in the upper fluid. Equations of
flow need to be written only for the fresh water zone and solved with
proper boundary conditions.

For simplicity, the following assumptions are made:

1. The 2quifer is nondeformable, and is isotropic and homo-

geneous with regard to its hydraulic properties.

2. Fluids are incompressible.

.3. Flow occurs only in the fresh water zone; it is steady and
radially symmetrical about the producing well.

4. An abrupt interface separates the fresh water and saline
water zones. |

5. Darcy's law is applicable to the entire flow region.

6. An isothermal condition prevails throught the period of
pumping, so that the fluid properties remain unchanged
with time.

Cylindrical coordinates (r, 8, z) are the obvious choi.ce to de-

scribe flow toward a well. With the assumption of radial symmetry,

only radial coordinates and vertical coordinates appear in the flow
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equation which ca‘_n be derived by combining the mass balance equatiun

and Darcy's law.

Flow Equation

The following derivation considers a small element of fluid in the
frame of reference of the cylindrical coordina_.te system shown in Figure 8.
The element has a vertical thickness Az, a le'ngth Ar, and occupies the

angular segment Af .

Z  Axis of the
Well

,2+Az

Az

Figure 8. Fluid element considered for derivation of flow equation,

Because of radial symmetry, flow occurs only in z and r directions.
The average cross-sectional area of this differential fluid element per-
pendicular to flow in the r direction is designated as Ar and that perpen-

dicular to the flow in the z direction as Az. The mass balance of this
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element at steady state requires that the net gain in mass within the
element is zero in any time increment; that is, the total amount going
into the element must equal that leaving the element. Therefore,
considering first only flow in the r direction and taking the center of
mass of the element at (ro. 60. zo), the rate of increment of mass

(RIM) is given by

(RIM)r = (p Qr) - (p Qr) (36)
r +Ar/2 r_-Ar/2
o o
where p and Qr are, respectively, the fluid density and flow rate in
the radial direction. Considering the mass flow function as con-
tinuously differentiable, each of the terms on the left hand side of
equation (36) is expanded about the center of mass of the differential

element by a Taylor series as follows:

(p Q )| +%|(paq) |4&
r +Ar/2 T ie or e 2
o o o
2 2 ;
l a . g
+Z——2l:(p Q) ] (2 ) Foame (37)
or r
o
and
0 ( Ar
(p Q) =(p Q)| — o= ](p Q) i
T r -Ar/2 r i or l r . 2
o o o
2 2
1 o Ar
-a—z[(P Q) J(z—) me-- . (38)
or r
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In the limiting case where Ar is very small, the second and higher
order terms in equations (37) and (38) can be neglected. Using

equations (37) and (38), equation (36) is written as

+ Ar . (39)
r

Similarly, considering flow in the vertical direction, rate of incre-

(RIM)_ = %; [(p Q)

ment of mass in the z direction is written as

s Az . (40)
z

The complete mass balance equation is

(Riv)_ =2 [(p Q)

0
3;[(p Qr)

]-Ar+%; (p Q) ]~Az=0 . (4])
ro,zo

r,r
o’z

Since the fluid is assumed to be incompresible, the density p

is the same at all points, Therefore, equation (41) is written as

d

9
E?(Qr)r o Ar+az (Qz)r 2 Az =0 . (42)
o’ "z o’ “o
Also, by Darcy's law
- oH
Qr - KrAr or ’ (43)
and
8H
Qz - KzAz oz * (44)
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Substituting Qr and Qz from (43) and (44), equation (42) is

rewritten as

9 9H ) BHY Ao
ar (KrAr ar) ar + 2z (KzAz 0z ) Az =0 (45)

where the suffix T2z, has been omitted. It is implied that the
equation refers to the center of mass of the fluid element in question,
This is the flow equation applicable to the system under consideration,-
The conductivity is the same at all points and in all directions in a

homogeneous and isotropic medium as assumed in the study,

Finite Difference Form of Flow Equation

In order to solve equation (45) with given boundary conditions
by a finite difference method it is necessary to write the flow equa-
tion in a discretized form. The entire flow region in a vertical
plane is divided into a convenient grid system with grid blocks small
enough to ensure the desired accuracy of the results and large enough
to keep the total number of grid blocks within a practical limit. For
each of these grid blocks a flow equation is written in the discretized
form. Thus the original problem of solving the complex second-
order non-linear equation is reduced to one of solving a set of
simultaneous linear algebraic equations,

The grid system used is illustrated in Figure 9 where a typical
central block (isolated from the boundaries) is shown together with

its four adjoining grids. Indices i and j denote, respectively, the
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number of the row and column in which a particular grid clement lies,

and they refer to the center of the block.

2
i-1, j 2
[ ]
'C
f
3 L A—-- .0 o—B ] 1 __.'
bj=1 iy L+l J
'5
Y |
i+1,}
4

Figure 9. Grid system used for writing the finite difference form
of the flow equation. "

For convenience, the grid in question is labeled 0 and those
adjacent to it are referred to as 1 through 4 in an anti-clockwise

direction as shown in the figure.

The first term on the left hand side of equation (45) can be

written in the discretized form as

H . -H .
2 (KA -a—H)z[(KA N SRETI

or ror ri Ar
H , -H .
i,jtl L, il L

and the second term as
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3 aH HoyiH
o, LT3 —el] L]
9z (KAz 3z ) [(KAz)t--;-,j Az
H -H
i+1 i, ] 1
KA, —Hhl JAz . (47)

<n writing these finite difference expressions for flow between
two adjacent grid blocks, the values of conductivity and cross-
sectional area to flow have been taken as those at a point midway be-
tween the two blocks.

Substitution of the right side of equations (46) and (47) into

equation (45) results in

Ho B A0~ By
—LJ-__LJ. —t2 »
(ArK)i. j-% Ar ¥ (ArK)i,j-i--é’- Ar
H, ~H, . . =5,
i-1,j i,j i+l i
PR L T A AR A
=0 . (48)

This can also be written as

AH 5 H; )+ BU(H

’

“H )+ C(H_ | -H )

1 1,j 'i,j

+D (Hi'l'l.j-Hi.j) =0 (49)

where A, B, C, and D are the flow coefficients for the grid block
(i,j) for the flow across the boundaries between blocks (i, j-1) and

(1, j), (i,j) and (i, j+1), (i-1,j) and (i, j), and (i+1, j) and (i, ),
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respectively. Rearranging the terms, equation (49) can be written

as

DH +EH, ,=0 (50)

CH 1,5 P, i,

+ +
AHi,j- 1 B Hi.,j+1

where,

=-(A+B+C+D) . (51)

The next step is to obtain expressions for these flow coefficients

in the finite difference form.

Flow coefficients A and B

|
!
| |
N '
! | ,”’\\
! 7{_7‘1\: : \
2 ,-—"\ IRAERAY BN
~ {i,j-1) \ A \
\ \ \
r \
3 0 |
[ ] [ ] [ ]
Ny

Figure 10. A typical grid (i, j) with its adjacent blocks in radial
direction,
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Figure 10 shows the grid block 0 and its two neighboring blocks
3 and 1. The vertical wall or face separating the grid blocks 3 and
0 is denoted by V. The flow in the r direction at8ny point is given

by Darcy's law as

Q =-KA _3E
T r or
oH
= . KZﬂ'rAzr 31
or
oH _ ..._SE__ . (52)
or z«xrazr -

Integrating differential equation (52), the flow between points

3 and V is given by

Q S = K [] (53)

3-V i.j-%
T -l

Similarly, flow from point V and 0 is given by

Az . - T A . - (54)
ipj-%
During the integration which leads to equations (53) and (54),

conductivity and the vertical thickness of the grid block were treated

as constants and equal to their respective values at the wall V.,
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Continuity requires that

Q =Q = Q . (55)

Therefore, solving for the head difference permits equations (53) and

(54) to be written as

r, .,
fn —l=3
T, j-1
-l = R L an e (56)
1=z L=z
and .
r, .
ln —‘—’J——
r. .,
- = 1, ]=5
Hv Ho Qr K..,2r4z, ., , (57)
Lj=3 L J=3
Adding equations (56) and (57) gives
r,. , r
tn —2E% 4 gn e
o. .-l i J-—
H - H - Q & 1 J td 2
3 o r K, ™ Az
l’J-_é" l,J-‘%
rol Did=d, TLi ]
r, . r. . IJ
= Q lpJ-l l’J“'S'
I' K, - 1 2" Az. . 1
l,J-'z l,J--a-
T, .
In _’J_
i, j-1
RS A Y e— (58)
i,j-3 i,j=3
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Comparison of equation (58) with the equation
Q =A(H,-H) - (59)

shows that the flow coefficient A for the flow between grid blocks 3

and 0 is given by

2r (KAz), . 1

A=—s Li-2 . (60)
pn —ei

Ti, 51

Similarly, considering the radial flow between the grid blocks

0 and 1, it can be shown that the flow coefficient B is give;x by

Z‘II' (KAZ)LJ""}

r

gn —eitl

r. .
1,)

B-= . (61)

Coefficients C and D

For obtaining expressions for the flow coefficients C and D,
flow in the vertical direction is considered in grid blocks 2, 0, and

4 as shown in Figure 11.
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Figure 11, A typical grid (i,'j) with its adjacent blocks in the vertical
direction.

The flow in the vertical direction at any point is given by

- 8H
Q_ =-KA = . (62)

Therefore, flow from the center of grid block 2 to the boundary V be-

tween the blocks 2 and 0 is

IR, e ,)(H - H, ,.).
Q = —=zl ity -3 i-1,) i-3,) (63)
2-v Az, . . [2 !

i-1,) .
and that between boundary V and the point 0 is

K, 1 .ﬂ'(rz. e rz. . 1) . (H. 1 .-1'!. .)
Q o i=2s) i,j+s i, )-3 i-2,) LY | (64)
v-0 Az, . /2 ‘

1,)
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Here, as before, the conductivity value is taken as that at the

boundary between the grid blocks 2 and 0. Continuity requires that
v ve0o 2

Q2 =Q =Q (65)

Therefore, equations (63) and (64), using (65), are written as

Qz Azi_ l,j

H (66)

H .- =
Lj Uik

(r’- = )
i-%'.j i’ j+';- i’j-%
and

(C!z Azi .
H -H = | (67)

4,57 5 (z 2 ) y
2r K., , .|x, .,2=T; .
i-d i\ Lj+d i -1

Adding equations (66) and (67) results in

Q (Az. FAzZ, )

- - 2 i-1,i i, i
i=1,j i, 2 . 2

szi--;-,j (ri,j+%ri,j-%-

or,

2

r K (r rz 1)
i\ ity " b2 (
= * [H, -H, . . (68
z (Azi-l,j+Azi,j)/2 i-1,j l.J) )

Q

Comparison of equation (68) with the equation

- - \
Q= ¢, H, ) (69)
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shows that the flow coefficient C is given by

K (:L'2 r2 )
C= il i',%’j i,j+d " i,j-1)/ -
., HAZ, . :
(Azl-l,J Azl'J)/z

(70).

Likewise, considering flow between grid blocks 0 and 4 it can

be shown that the flow coefficient D is given by

K 2 2
" Kigj (P Tl
(Azi‘l'l,j +Azi,j)/2

D= (71)

Once the coefficients, A, B, C, and D are defined, the only
remaining coefficient, E, in equation (50) is also d;ﬁned using the
relation (51). Thus, every term in the flow equation is defined in
the finite difference form.

If all the blocks in the entire grid system have the same thick-
ness Az then the denominators on the right-hand side of equations
(70) and (71) reduce to simply Az. While simulating the conditions
employed in the laboratory model, a constan: thickness of 1 ¢cm for
all the grids is used. For studying the fresh water - saline water
aquifers, since the drawdown is a relatively much smalier fraction
of the coning, a grid system with variable thickness Az""ia employed.
In such cases, the upper 7 to 12 grid-rows are of smaller thickness

than the rest of the rows in the model.
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Grid System

The flow region in the mathematical model is bounded by the
well axis on the left, by a vertical line at the radius of influence on
the right, by the initial position of the interface (prior to pumping)
at the bottom and by oné extra row of grid blocks above the initial
position of the free surface on top. This flow region is divided into
NR number of rows and NC number of columns, so that the total
number of grid blocks is NR x NC. The grid rows are numbered 2
throngh NRi and likewise the grid columns are numbered 2 through
NC1, For simplicity, the vertical thickness of all the grid blocks
is taken to be the same and equal to Az which is sufficiently small
to ensure that the free surface and interface locations can be computed
to a desired accuracy. Pressure gradients are much larger in the
vicinity of the well than at points away from it. Therefore, more
detailed information with regard to potential distribution and positions
of the free surface and interface are required in the grid blocks in
the vicinity of the well, This is accomplished by having narrower
columns i.e., smaller grid spacings toward the well. Furthermore,
since the pressure varies in a logarithmic manner with distance from
the well axis, a logarithmic distribution of the radii from the well
axis to the center of the gzid blocks is employed. The grid system

used in this study is illustrated in Figures 12(a) and 12(b).
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Figure 12(b). Grid system in a vertical section.
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Simulation of Boundary Conditions

The boundary conditions as described in equation (16) that
must be considered in solving the flow equations are of three kinds,
namely,

1. Constant potential boundary,

2. No flow boundary,

3. Constant pressure boundary.

Boundary condition at the well - Neglecting the flow within the

well, the éotential inside the well and on the face of the well bore is
constant. In the mathematical model this boundary condition is ine
corporated by setting the value of hydraulic head in all the grid
blocks occupied by the well as Hw, the head in the well. This value
is known for each set of conditions studied. Flow equations are
not written for these grids.

Boundary condition beneath the well - As explained earlier,

there can be no flow across the axis of the well and below the bottom
of the well, Analytically this condition is given by 8¢/8r = 0 in
equation (16). This particular boundary condition is incorporated in
the computer simulation model by setting the flow coefficient A equal
to zero in all grids in the first grid column which are bounded on
the left by the well axis and lie between the bottom of the well and the

interface.
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Boundary condition at the exterior radius - At the exterior

radius of the drainage area, the head remains unchanged by pumping.
Therefore, to the right of all the grids in the last grid column within
the flow region (toward the exterior end of the model), the head is
known and equal to He, its value prior to pumping. For all these
grids in the last column the product of the flow coefficient B and He
is known., Therefore, this product is transferred to the right hand
side of the flow equation (in the finite difference form) and the
coefficient B is replaced by a zero in the coefficient matrix.

Boundary condition at the top of the aquifer - At the 'free

surface' the pressure is constant everywhere and equal to the
atmospheric pressure. Also, there is no flow across the free sur-
face. This condition is incorporated in the mathematical model by
setting the flow coefficient C equal to zero for all the grids bounded
from above by the free surface.

Boundary condition along the interface.- As explained before,
the interface behaves like an impermeable boundary and there is no
flux across this boundary. This condition is simulated in the
rnathematical model by setting the flow coefficient D equal to zero in
all the grids in the flow region along the interface.

Computer Program - It is explained in sections dealing with the

theory that, in order to solve the flow equation for potential distri-

bution, the boundary conditions must be known, but some of these
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boundary conditions are in turn dependent on the potential distri-
bution, Therefore, in the numerical solution of the coning problem,
an iterative procedure is used, The program is written to include
the flow above the water table. The procedure is outlined below.

1. f‘irst, a case is considered where there is no flow. The
free surface and the interface are flat, and the head is the same at
all points in the fresh water zone and therefore, is equal to the given
head at the exterior radius of the model. Thus, the upper and lower
boundarie; of the model are completely defined to begin with. With
giver.x fresh water levels in the well and at the exterior radius of the
model, the boundary conditions at these two ends of the model are
defined. ' Also, other boundary conditions are simulated as explained
in the last section. Each grid is assigned a conductivity value equal
to the saturated conductivity. Flow coefficients are calculated for
all the grid blocks and stored in the coefficient matrix called "T-
matrix' in this program. This matrix is solved for head distribution,
which is of course, quite different from the actual head distribution.
Nevertheless, this distribution does form the basis of further
computations. From the head values calculated above, fresh-water
pressure in each grid and the fivst approximate location of the inter-
face in each grid column are computed. The free surface is located
as a surface at atmospheric pressure (referred to as zero in the

model) by interpolation of pressure values in the top grids in each
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column. Also, from the first ccmputed head values, discharge is
calculated, This completes the first cycle of computations.

2. Next, all the grids lying below the position of the interface
computed in the first iteration are made ""hydraulically dead' in the
mathematical model by setting the conductivity value equal to zero
in these grids. Using the most recently calculated pressure values,

a new conductivity value for each grid above the interface is computed

from the Brooks and Corey formula (4)

K=K for P <P \l
s c— b
(72)
- n
K= Ks(Pb/Pc) for Pc > Pb J
where,

K is the effective conductivity of the medium to the wetting
fluid,

Ks is the conductivity of the medium when it is fully saturated
by the wetting fluid,

Pc is the capillary pressure, and equal to the pressure of the
non-wetting phase (in) minus that of wetting phase (Pw)‘

Pb is that capillary pressure at which the non-wetting phase
first becornes continuous in a desaturation process, and

n is a constznt depending on the pore-size distribution.

Since in is zero in the case considered here, the second part

of the equation (72) is written as
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- - n -
K=K_(P/-P )" for P _>P .

Therefore, by entering Pb as a negative quantity jn the input data,

the formula for calculating conductivities becomes

K=K for P> P
s N -
n (72a)
K= Ks (Pb/P) for P« Pb

where, P refers to the fresh-water pressure in the grid in question.

Thus, new conductivity values are obtained for all the "useable"
grids. A grid is referred toasa useable grid if it participates in
the flow. Only such grids, therefore, have the flow equations. New
boundary conditions, to be used in the next iteration, are defined with
regard to the position of the free surface and the calculated interface.
All other boundary conditions remain the same.

3, With these conductivity values new flow coefficients are
computed for the useable grids and stored in the T-matrix. All the
subsequent steps in the first iteration are repeated in the second
iteration.

4, This iteration process is repeated until the solution con-
verges. 'I'wogpsgible criteria for this convergence can be us;d:

1) the difference between head values calculated in a particular cycle
and those for the same grids calculated in the previous iteration, or

2) the difference between discharge computed in two successive

. iterations. The change DIFQ in the computed value of the discharge
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Figure 13. Flow chart illustrating important steps in
program CONING.
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for two successive iterations was found to be about two orders of
magnitude larger than the change in the H(I,J) values (on percentage
basis). It was,therefore, convenient to select as a criterion for
convergence of the solution, that DIFQ be less than or equal to EPS,
a number so chosen that the discharge computation did not change
by more than 0.005%.

The important steps involved in the above iterative procedure
are illustrated by the flow chart in Figure 13. The mathematical
mo:iel developed in this study is referred to as CONING. This
computer program has been written in Fortran IV language. The
CDC 6400 computer at Colorado State University was used for the
analysis. The main program, CONING, together with its sub-
routines, TCOEF, TTCOEF, and SQSOLYV is listed in its final form
in Appendix A. The function of the subroutines TCOEF and TTCOEF
is to compute the flow coefficients for the ''useable grids'' and store
them in their proper locations in the Coefficient Matrix T. The set
of simultaneous equations that were generated for the flow model by
TCOEF were solved for head distribution by employing another sub-

routine called SQSOLYV.



RESULTS AND DISCUSSION

Verification of Existing Analytic Solutions

In order to check the validity of the two existing analytic
solutions, results of the analysis of six different cases made by using
these solutions are presented here. These cases were also studied
experimentally with the help of the physical model.

In using Wang's approach it has been assumed that the highest
stable cone is one which just reaches the bottom of the well, The

critical drawdown ﬁw is calculated from the formula

-

D =22 g (1.4 (73)
woop e

The critical discharge, that is, the maximum discharge without
entrainment of saline water, is then computed from the following

formula for the case of lateral recharge

Z-rrKHe Ap T 1 -
QW = [f_n(_r_ﬁ—)} ’ o o (l-a) [ 1+ 7 2oH cos 'Z_Jo (74)
e w f e
Since this formula was used many times for computing Qw for
several cases, the calculations were made by using a short computer

program called DISCHRG. A listing of this program is given in

Appendix A.
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In using Muskat's approach, his approximate formulas for
potential distribution due to production of a partially penetrating well
were employed to obtain A¢/(A¢)e vs. ;/He curves, Muskat pre-
sented the following two formulas for potential distribution due to
production from a partially penetrating well. These formulas were
derived assuming that the sink-strength was uniform along the well;
i.e., the flux density toward the well at all points was the same.

For small values of p

T(1+w+x)T(1-wtx) . w+x+[p2+(w+x)2]

¢ =9 {40 Fwon) T (1+wx)

in

i
2

1
w-x+[p 2+(w-x)2] 2

+-i- pz[ £(2, 1-w=x) - £(2, l-wtx) + £(2, liw-x)

82, 1+wix)] +0(p ; (75)

and for large values of p (of the order of 1)

00
¢ = 4q [- 1 Z-l' K (2nmp) cos 2nnw sin 2nrx + x lné] (76)
T 1 n o P
where,
= uniform flux density at the well-face ,
He = thickness of the aquifer ,
w = z/ZHe ,
x = PW/ZHe ,
p = r/ZHe ,
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o0
&(s,y)=Z » and
n=0 (n+y)
K = Hankel function of order zero,

o
The potential in the well was calculated by taking r = T and ¢(0,Z)
by taking r = 0, In the former case, since P = I'W/ZHe was a very
small number, terms containing p4 were neglected. In the latter case
all the terms containing p vanish. In order to facilitate computations
for several cases using Muskat's formula (3), a computer program called
POTEN was written and is presented in Appendix A, The critical draw-
down DM was computed for each case using his graphical approach.
The potential distribution data for the six cases is given in Tables B-1
through B-6 in Appendix B and the results of this analysis are present;ed

in Figures 14 through 19. The slope of the tangent lines to the potential
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Figure 14. Muskat's analysis for Case 1.
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Figure 16, Muskat's analysis for Case 3.
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Case 6.
distribution curves drawn through the point (1, 1) is used to compute the
critical drawdown and the position of the apex of critical cone is deter-
mined by the point of tangency. Muskat's formula, or Kozeny's formula
(a simpler version of the former), was not employed to compute critical
discharge because it holds for the case of a', confined aquifer without a
second fluid and for which the lower boundary always remains horizontal
and fixed. The discharge was, therefore, computed numerically, 'em-
ploying Muskat's potential distribution near the radius of influence of the
well T At this exterior radius the flow is essentially radial and, there-
fore, it is considered reasonable to compute the discharge as a summatio:

of the flow rates for all grid rows.
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The experimental results were obtained as explained in earlier

sections, In Tables 1 through 3, D, Q, and C denote respectively

the critical drawdown, discharge and the amount of coning below the

well, The suffixes E, W, and M designate the corresponding values

obtained by using experimental data, Wang's approach, and Muskat's

procedure, respectively.

Figure 20 shows a comparison of the

Table 1, Experimental Results
Case;; a }v 1=5E _ QEI-L“ éE -coningﬁ—
cm cc/sec cm '
1 0.743 0.0956 1. 60 7.50 6.10 95, 31
2 0.635  0,0956 2.50 10.60  8.45 94,13
3 0.568 0.0956 3.15 11. 50 9,74 90. 48
4 0.450  0.0956  4.35  12.30 11.30  B82.48
5 0. 541 0.0933 4.60 11,50 9.90 84. 61"
6 0. 660 0.0915 3.20 9. 30 7.50 88.24
Table 2. Results from Wang's Thecry
Case # a Y ﬁw Qw Cw coning Error in
cm cc/sec cm (%) QW (%)
1 0.743 0.0956 2.067 10.592 6.40 °"100.00 41.23
2 0./63'5 0.0956 2.938 15.982 9.10 100.00 50,77
3 0. 568 0.09‘56 3.487 18.968 10.80 100.00 64.94
4 0. 450 0.0956 4.424 22.842 13.70 100.00 85.71
5 0,541 0.0933 3.778 16,123 11,70 100.00 40.20
6 0.660 0.0915 2.869 11,937 8.84 100.00 28.36
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Table 3. Results from Muskat's Theory .
m‘
Case # o Y DM QM CM coning Error in

cm  cc/sec _ cm (%) QM (%)

1 0.743 0.0956 2.309 8.653 5.35 83.59 15, 37
2 0.635 0.0956 3.802 12,752 7.60 83. 46 20. 30
3 0.568 0.0956 4.617 14,007 8.84 81.84 21.80
4 0.450 0.0956 6.465 15,863 10,71 68.20 28,97
5 0.541 0.0933 4.394 13.069 9.31 79.56 13. 64

6 . 0.660 0.0915 3.232 11.564 7.15 83. 32 24,34

critical discharge obtained by the three methods for cases | through
4. The comparison indicates the foliowing points:

1) Wang's theory always overestimates the critical discharge.
This departure from the experimente;l results is more conspicuous
at smaller values of ¢ than at larggr values. Wang's theory, how-
ever, can be expected to predict'a reasonable value of critical dis-
charge at very large values of q. | This can be explained as follows,
Production f;om a well with a shallower penetration results in a
st'(eeper. cx}itiéall' cone. When the brine cone is not too stee:p, the
ver_t;ica.l flow components near the well are relatively less':'-significant.
In such a case, the Ghyben- Herzberg relation, which is the basis of
Wang's theory, .is not too serious an approximation. Therefore,
the critical discharge computed by using Wang's skimming-well

formula shows relatively better agreement with the experimental
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values for wells with deeper penetration. On the other hand, in a case
of shallow-well penetration, the cone beneain the well is relatively |
steep. The vertical flow components, especially in the immediate
vicinity of the well, cannot be neglected in this case and the Ghyben-
Herzberg approximation is no longer valid. The resistance to flow due
to much stronger convergence toward the well affects the potential field
in the flow region. This explains why a more conspicuous departure of
Wang's predictions from the experimental results occurs at relatively

smaller values of a.
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Figure 20. Comparison of theoretical critical discharge with
the experimental results,
Further, it would seem possible to explain why Wang's theory always
overestimates the critical discharge regardless of the value of a by the

fact that Wang's analysis assumes that a stable brine cone could reach the
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bottom of the well for a certain drawdown, called the critical draw-
down, and remain there in static equilibrium. With this assumption,
the critical drawdown is computed from the Ghyben-Herzberg re-
lation as that drawdown for which the coning below thie well is' équal
to the height of the bottom of the well above the original position of
the interface. This value of drawdown is in turn used to calculate

the critical discharge. Experiments have shown beyond doubt that,

in fact, the cone does become unstable before it can rise to the bottom
of the well. Therefore, one would expect that the value of the critical
drawdown used in Wang's analysis should always be-grea.ter than the
actual critical drawdown which in turn results in an overestimation

of critical discharge by Wang's f;':rmula.. Howevér, this argument is
not complete. It would be true only if the actual height of the cone
was related to the drawdown exactly as predicted by equation (73). In
reality this is not the case. In fact, it has been verified by experi-
ments that the actual mounding is much less than that predicted by
equation (73). As a result, even if it were physically possible for a
stable cone to rise to the bottom of the well, the dra.wdov‘vn for that

case would be much less than that calculated from equation (73).

1
g -

From Tables 1, 2, and 3, it is observed that each value. of DW is
greater than the corresponding value of ﬁE but less than ﬁM'
Furthermore, the value of critical discharge QW is greater than QE

and also QM for each case even though DM is greater than Dw. It
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is concluded, therefore, that the use of Kozeny's formula for com- '
puting discharge in Wang's theory seems questionable. It is import-
ant to note that in the derivation of Kozeny's formﬁzt it was assumed
_that

.1, the aquifer is confined,

2. the lower boundary is fixed and flat, so that the aquifer
is of uniform thickness which remains constant, and

.3, the aquifer is saturated with only one fluid throughout.
None of thes..e conditions exist in the case which is the subject of in-
vestigation in Wang's analysis and the present study. -

2) Muskat's analysis of the coning problem is also only an ap-
proximate one. The potential distribution in this technique is
obtained from the formulas which assume that the lower boundary of
the flow region is horizontal and remains fixed. Thus the perturbation
in the potential field due to the rise of the interface is not taken into
account, Further, these formulas also assume a uniform flux
density at all points on the surface of a well partially penetrating into
the aquifer. This is not true in the rigorous sense, However,
Muskat's analysis does consider the important physical phenome‘;x'lon
of the instability of the rising cone beneath the well, This has b;aen
explained in detail in earlier sections. Table 3 shows that the height
of the critical cone, that is, the highest stable cone beneath the well,

as computed by Muskat's method, is always less than the height of the
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bottom of the well, Also, the critical discharge calculated by this
method is in much better agreement with the expgri.mental values
than are the results obtained from Wang's*formula as illustrated by
Figure 19.

Thus, both methods of analysis of the coning problem, namely
those given by Wang and Muskat, are only approximate ones and
both have their own limitations. Nevertheless, the results show that

Muskat's analysis is more realistic than Wang's analysis,

Verification of the Results of Computer Analysis

As explained before, the basic difference between Muskat's
analysis and the mathematical model developed in this study is that
whereas in the former analysis th'e perturbation in the potential field
resulting from the rise of the lower boundary cannot be taken into
account, the latter does consider it by employing an iterative pro-
cedure. In that sense the analysis made by the present mathematical
model continues from where Muskat's analysis stops. The fact that
the theoretical model presented in this study does accomplish this
objective is illustrated by the following two examples. Kach case is
analyzed by employing Muskat's approach, computer six;émla.tion, and
the physical model. |

Example 1. Th;a aquifer properties and the well geometry
studied in this example are the same as in Case 5 in Tables 1, 2,

~ad 3.
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In the computer analysis of this case, first some reasonable
value for critical drawdown was assumed and the probiem solved for
the potential distribution by the iterative procedife as explained
earlier. The graphical analysis was performed using the computed
potential distribution for the assumed drawdown, If the line cor-
responding to this drawdown intersects the AH/(AH)e vs. E'/He curve
in two points, it means the drawdown assumed is subcritical for this
case; if it is tangent to the curve the drawdown is critical; if it does
not meet the curve at any point, the assumed value of drawdown is
over=critical. If the critical condition was not arrived at in the first
trial, the drawdown was changed and the procedure repeated.
Generally four to five trials are suffici‘ént ‘t‘o obtain the critical con-
dition, For the sake of .brevity only the reguits obtained for three
| drawdowns including the critical, one subcritical and one over-
critical, are described here.

Tables C-1, C-2 and C-3 in Appendix C represent the com-
putations for three df‘a.wdowns of 4.00 cm, 4.50 cm, and 4.65 cm
respectively. Figures 21, 22, and 23 show the graphical analysis
c;f these three c%mditioﬁs. | The results of this analyéis are pre,serited

%

in Table 4, where D, Q, and Gy denote critical drawdown, dis-

N’ N
charge and coning, respectively. This analysis shows that a draw-
down of 4.00 cm is subcritical and that of 4. 65 ¢cm is over-critical.

The critical drawdown is 4.50 cm and the apex of the critical cone
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is at a depth of. 10. 14 cm below the original free surface. The critical
discharge is calculated at 12. 38 cc/sec for the 15° sector of the entire
flow region around the well. Experimentally, the depth of the highest
‘stable cone was found to be 9.90 cm for a drawdown of 4. 60 cm. The
correspon&ing critical discharge of 12. 38 cc/sec is different from the

experimental value of 7. 65%.

Table 4. Results from Numerical Model

e e
———— e

-

Case # «a Y Dy QN Cn coning Error in
cm cc/sec cm % Q, (%)

5 0. 541 0. 0933 4.50 12,379 10. 14 86.67 7.65

6  0.660 0.0915 3.15  9.973  8.06 91.18 7.24
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In order to get a composite picture, the position of the free sur-
face and the interface were also computed at a number of distances from
the well-a.x;ts. The data for the critical conditions are given in Table C-4
in Appendix C. The ;:oi-respondi.ng experimental data are given in
Tahle :D-1 in Append_ixng. Figure 24 shows a comparison of the computed

depths of the free surface and the interface with the experimental values.

«
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o
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o

e Experimental Dala
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o
T

I
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i

20} ° o .

. 1 1 | [l (]
05 10 20 30 40 S50 60

Distance From the Well-Axis {(cm)

Figure 24. Location of free surfac;e and interface
for critical conditions in Case 5.

Example 2. The situation described here deals with case 6
studied in the physical model and also by Wang's and Muskat's methods.
The same procedure was followed as in Example 1. The computations
made by using Muskat"s formula are given in Table 3 and the analysis

thereof in Figure 19. According to this analysis the critical drawdown
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should be 3.23 cm, the apex of the critical cone should be at a height of |
7.15 cm above the initial position, and the discharge for this case should
be 11.564 cm/sec. The potential‘distribution computed using the
numerical model for three different values of drawdown is presented in
Tables C-5, C-6 and C-7 and the corresponding graphical analyses in

Figures 25, 26, and 27. This analysis predicts the location of the apex

05 T r T
a*0.660
y*0.0915 .|
04 0+300cm
o ITel
. a T2
£ O3 ouTemaxiT T
q
S
x
q
0.2} -
Subcritical Stoble Cone
4] 3 -
Unstable Cone
o 1 S I 1
05 06 0.7 08 09 1.0

Figure 25. Numerical analysis for
Case 6 (I).
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Figure 26. Numerical analysis for
Case 6 (II)
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Figure 27. Numerical analysis for

Case 6 (III),
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of the critical cone at a height of 8.06 cm for a drawdown of 3. 15 cm

and the corresponding critical discharge of 9.973 cc/sec. The experi-
ments showed an actual coning below _the well under critical conditions

of 7.50 cm for a drawdown of 3,20 cm and a discharge of 9. 30 cc/sec.
The computed value of critical discharge is thus in error by 7.24% for
this case. A comparison of the location of the interface and the free sur-
face as obtained from nurmerical data and experimental data for this case

is shown in Figure 28.

| p00 0 > o o 0b 7
[ ] Expgrimentol Data
_ 10 0 Numerical Model Data
€
L
£
g L
)
20]- T, .
0 g
ae o © 4
T Nlnitial Position of Interface |
3 1 [ 1 ] [ []
o0 0 20 30 40 50 60

Distonce From the Well-Axis {cm)

Figure 28, Location of free surface and
interface for critical conditions
In Case 6.,
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The above two examples show that tho results obtained from the
numerical model are in better agreement with the experimental
results as compared to those obtained by'f‘o'llowing Muskat's approach,
which in turn is more realistic than Wang's model. The mathematical
model developed in this study, therefore, is expected to yield more
accurate and realistic results as compared to the two existing

theoretical models.

Application of the Mathematical Model

Having checked the validity of the model developed in this study,
the model is then used to analyze a number of Possible field situations
with regard to:

1. thickness of the fresh-water zone,

2. hydraulic properties of the aquifer material,

3. densities of fresh water and saline water,

4, radius of the skimming well,

5. depth of penetration of the well, and

6. radius of influence of the well.

Twenty different situations have been studied. In each case the
critical drawdown, position of the interface below the well, and the
maximum fresh water production were determined using the pro-

cedure explained earlier. On the average, four trial runs were made

for each case in order to arrive at the critical conditions.
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T‘he potential distribution data genérated by each computer
run for each case considered were analyzed graphically to check
whether the drawdown for a particular case in question was critical
or not, However, all the computations and graphical analyses for
the entire set of all computer runs are not presented here. Instead,
only the final results for the critical condition for each of the twenty
cases are discussed.

In order to derive a more meaningful inference from the above
results, all the important variables were transformed into dimension-
less parameters and the results were expressed in the form of inter-
relationships among these dimensionless parameters. This has the
advantage that the results would then not only apply to the twenty
cases studied, but to a much wider range of field situations since a
large v:ariety of combinations of various variables involved could pro-
duce similar results in the dimensionless form. With this in view,
the following dimensionless groups are selected:

1. well-penetration

)

a =H—W (77)

e

2. well-slimness

(78)

-
n
02'2"
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3, effective radius of influence

. re
L= a (79)
e
4. drawdown at the well
. P (H - H )
ff e w
D==% H (80)
e
5. dimensionless discharge
o P Q
Q= 5 (81)
Ap H K
e
6. specific capacity
$= Q (82)

KH (H-H )
e e w

The reason for the choice of the first three parameters listed
above is obvious. The dimensionless parameter for drawdown follows
readily from equation (20) which is written in the dimensionless form.
The dimensionless parameter for discharge listed above was ar-

rived at as follows:
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Figure 29. The producing well and the adjoining grids.

A consideration of flow into the well from all the grids surrounding
the well such as in Figure 29, shows that by mass balance the total well
discharge is given by

n
Q=2 Q.+0Q : (83)
. ri 2 :
i=1
where Qri is the radial flow crossing the well face from adjoining grid
i and Qz is the vertical upward flow into the well from the grid just be-
low the well-bottom.

Applying Darcy's law at the well face, the total radial flow into

the well is given by
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) 1 [( 8H
Q_= 2rK . f (a r nr)w dz (84)

where (9H/0f nr)  is the derivative of-head with respect to the
natural logarithm of radial distance evaluated at rw; and zn and zl
are the elevations of the grids n and 1 respectively.

However, since it is difficult to evaluate the integral in -
equation (84), its approximate value ‘B Qri could be used which can

i=1
be written as

n H,-HW '
Qri=z"Kf=l Atnr e Az : (85)

where Hi is the head in grid i and Hw that in the wel'l. Az is the
tﬁickness of grid i and Alnr = Inrz-l nr_ =\ (a dimensionless
number).

Assuming Az is the same for all grids, and since Alnr is a

constant, equation (85) can be written as

n H -H
2K 2°b w
Q= N Az ‘f;l (Hi.- Hw) + K'n'(er) A
2rK n Hi- Hw 2 (He-Hw) Hb- H

Az (H-H )Z
e w .

- w
Y + K T Az TR . (86)
i=]l e w e w

Multiplying the above equation through by pf/Ap Hi K it becomes
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pr _Z_Trl__ﬁ_) H-Hw; Hi-Hw
ApHiK A He He i.=lh hw

" ~z ||H-H (87)

It is now readily seen that every term in equation (87) is in dimen-

sionless form. Hence, a dimensionless parameter for discharge

could be defined as

- pr

2

Q= — s
Ap HeK

The dimensionless parameter for specific capacity (i. e., dis-

charge for unit drawdown) can be obtained as follows:

S = -?'
D
_ PfQ Pf (He' HW)
Ap Hz K Ap He
Q

*"KH (H-H)
e e w

+

The results of the computer analysis of the twenty cases |

b

mentioned earlier are expressed in the form of the above dimension-

less groups in Tables C-9 through C-12 in Appendix C. The inter-

relationships of these dimensionless variables are presenteqd in

Figures 30, 31, 33, and 34.
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Figure 30. Variation of critical drawdown with well

penetration.
The following inferences are drawn from the data showﬁ in these
figures:

1) For a given fresh-water thickness, the critical drawdown in-
creases rapidly as the well penetration « becomes small, and the rate
of this increase is much faster for greater fresh-water thickness He'

2) The critical drawdown becomes infinitesimal a.:s a ap#roaches
100%, tAhat is, as the bottom of the producing well apprc‘;'aches the ini-
tial position of the interface. This implies that when the well penetrates

very deep, even a small drawdown at the well is sufficient to produce

unstable conditions causing the cone to bréak through the well.
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| 3)‘ The dimensionless critical drawdown D versus well-
penetration a curves tend to become asymptotic at‘ .very small values
of « depending on the I...(=r‘«a /He) value. This means that at such
small values.of « the critical drawdown approaches infinity. Further-
more, the curves become asymptotic at relatively larger values of
a for smaller values of L This implies that for a given set of
conditions, as the well penetration a is continually decreased, event;
ually a situation arrives when the critical &rawdown does not exist.
In other words, no cone is critical regardless of the value oi':' drawe
down at the well. This finding is in agreement with the prediction of
Muskat's theory.

4) -1t is also observed from Figure 31 that for a given value of
a, the dimensionless critical drawdown D decreases as the ratio L
increases énd the rate of change in D becomes increasingly pro-
nounced as «a dec;'eases, especially at very large values of L.

5) Furthermore, it is interesting to note that for a given a,
the analysis predicts a higher critical cone for larger values of i.
(Tables C-9 through C-12).

The physical meaning of the inferences 4 and 5 i;x explained as
follows. Consider two situations referred to as case'(a) and case
(b) in Figure 32, where the fresh-water thickness, well-penetration,
axi"d all othgr conditions are the same except that in case (b), the

ré;diu's of influence r, is much greater than in case (a). Assume that
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the production rates are such that the height h_ of the stable cone below

"the well is the same in both'cases. Obviously, the-convergence of the

Case (a) ‘ Case (b)

Figure 32. Explanation of the effect of radius of influence
of the well on the critical drawdown and coning.

streamlines toward the well will be much stronger in case (a) than in
case (b). | This should result in a greater drawdown in case (a).- Further-
more, ii" hc were the critical cone height in case (b), then because of
larger’vertical pressure gradients in case (a), the cone beneath the well
would become unstable before it could rise by an amount hc. This
explains why the critical drawdown is greater and the critical cone heighf _
smaller in a situation such as in case (a) than in a situation like case (b).

6) The above discussion leads to another important conclusion,
that a greater drawdown at the well is not always necessarily accom-
panied by a greater cone-rise beneath the well. The Ghyben-Herzberg
relation is, therefore, not always a conservative one with regard to the

location of the interface as it is usually thought to be.
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' l:})l'f"iﬂ;'o'ther”'éifg'ﬁiﬁcant point brought out by Figure 31 is that
all the D ve;'sus L carves for various \falues ;)f a, on extrapolation
seem to cox;verge to_tﬁe same.‘pqint (0, 1475). "I‘hi.s i.r.npli.es that as
r“;/_He is'increased, D cohﬁnually decreases and approaches an in-
finitesimal value at about re/He = 14,5, |

8) Figure 33 presengs the variation of dimensionless critical
-dischafge Q with well penetration for various values of re/He-' A
comparison of these curves leads to the conc;lusién that‘for a givexi o
é iﬁcreases as L decreases and thag this increase become.s.‘more
pronounced as L decreases. The nature of this variat:ion is in general
agreement witl'; the findings of Bennett, et.al. (1). |

It is also significant to note that the Qvs. a curyés» show
ma,'xima at small values of a (approximately 10 to 20%) depending on
th‘e value of L. Furthermore, it does not seem:'i)ossible thé.t these
curves pass tbrough the origin as predicted by Wang's analysis.

This becorhes clear from the fact that at certain values of a, a D vs.
a curve becomés asymptotic (Figure 30) and that for well penetration
less than this value a critical condition does not. exist. Therefore,

the function Q does not exist and the Q vs. a curves cannot be con-

[
%

tinuous through the origin as predicted by Wang's theory.
It is also important to note that the critical discharge is not
directly proportional to the drawdown as assumed by Wang's analysis,
Figure 34 represents the dimensionless critical specific capa;:ity

S versus well penetration a for various values of Y and L. 1t shows
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that § increases as a increases and that at a given value of a, S

[J
increases as L increases.

Application of Results and their Limitations

The following example illustrates how the results of this study
may be used to indicate the optimum practical conditions with
regard to a skimming well in the field in order to get maximum fresh

water without entrainment of salt water. Consider a case in which

H = 200 feet
e
r = 1250 feet
e
K = 0.002 cfs per sq. ft.

Ap/ pg = 0.015
and it is desired to study the performance of a skimming well 0.7
foot in radius.

Using the nomograms in Figures (30) and (33), a dimensionless
critical drawdown of about 4,425 feet and a dimensionless maximum
permissible discharge of 0. 75 are obtained at @ = . 150 for this case.
Therefore,

D

4.425 (ApH )

13.28 feet

and
2
Q=0.75 (HeK Ap)

= 0,90 cfs or 403.9 gpm.
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The optimal depth of penetration in this case is 30 feet. Thus,
the well should be screened from 13 to 30 feet below the water table,
It should be noted that it has been assumed in this analysis that the
recharge in the area is sufficient to result in a steady-state and that
the ''well-losses' are negligible. If the area under consideration
does not have sufficient recharge, the well should be pumped at a
smaller rate than suggested above in order to avoid depletion of the
aquifer. The second assumption of negigible well-losses requires
that the velocity of flow into and within the well be very small, which
in turn may require a smaller pumping rate and a larger well radius
than those in the present example.

Another important point that must be considered while using the
results of the present study is that it has been assumed that a distinct
interface exists at all times between the fresh water and the under-
lying saline water. The effects of diffusion and dispersion have been
neglected. Therefore, it is possible that at a critical drawdown pre-
dicted by this study the well in the field may produce water with
slight salinity, depending on the vertical thickness of the dispersion
zone and the vertical gradient of salt concentration within this zone.
It would, therefore, in general be safer to suggest a pumping rate
somewhat lower than that predicted by this study. It should further
be pointed out that the results of this study are applicable to homo-

geneous and isotropic aquifers.
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‘-'v"T'l.'n-xs. sgéae of fhe assumptions used in this study might place
certain restrictions on the practical utility of the results. Neverthe-
less, the method appears to have considerable value in the sense that

it is more realistic in approach than the existing analytic methods.



CONCLUSIONS AND REDOMMENDATIONS

The phenomenon of salt-water coning below a fresh-water
skimming well was studied both theoretically and experimentally,
The experimental part of the study gave a better insight into the phy-
sics of the phenomenon and helped check the validity of the existing
analytic solutions and of the mathematical model developed in this

study.

The following conclusions were drawn from the results of this

work.

1. The salt water rises in the form of a cone in response to
pumping of a skimming well with its apex vertically below
the well. Under steady-state conditions the cone rises
until its apex reaches a certain height depending on the
drawdown at the well. However, in every field situation
there is a drawdown, called "cfitical" in this ctudy, at
whiqh the highest stable cone can occur. If the drawdown
exceeds this value, the cone becomes unstable. As a
result, the cone keeps rising and eventually the well
starts producing saline water. This occurs when the
production rate is such that the velocity of fresh water
flow along the interface exceeds the maximum value

ApK/pf which can exist without flow in the underlying brine.
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Regardless of the well geometry and the aquifer and

fluid properties, the highest stable cone can never rise

as high as the bottom of the well-screen. This is in
agreement with Muskat's predictions and the findings of
Bennett, et.al. (1) based on their electric analog studies.
Thus, the phenomenon of instability of the rising cone is
confirmed beyond doubt with the help of the electric analog

and physical models as well as the mathematical model.

" Both Wang's theory as well as Muskat's theory are based

on assumptions some of which are questionable. The
former assumes that |

(a) Ghyben-Herzberg relation is valid,

(b) Kozeny's formula for discharge from a
partially penetrating well in a confined agquifer
with a fixed lower boundary can be used for
the case of an unconfined aquifer with tne inter-
face between two fluids as its lower boundary,

(c) ‘discharge is directly proportional to draw-
down,

(d) maximum uncontaminated discharge occurs
with the apex of the brine cone just at the
bottom of the well.

The present study shows that none of these assumptions,

particularly (d), is valid in the phenomenon of coning
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beneath a skimming well. However, under certain
limited conditions, for example, for very deep well-
penetration, when the cone is 1ot too steep, Wang's
formulas can yield reasonably reliable predictions.
Muskat's analysis is more realistic than Wang's in the
sense that the former does consider the phenomenon of
instability and, therefore, recognizes the fact that the
highest stable cone always occurs with its apex at a lower
elevation than the bottom of the well.

The mathematical model presented in this study takes
into consideration the non-linearity of tl';e boundary
conditions. That is, it takes into account the fact that
while the potential distribution depends on the position of
the lower and upper boundaries, the positions of these
boundaries in turn depend on the potential distribution.
Hence, an iterative procedure was used to arrive at a
solution. The validity of this mathematical model was
checked by comparing the results obtained therefrom with
the experimental results and those obtained ;ay using
Muskat's approach. The results of the mat}r;ematical
model showed better agreement than Muskat's analysis
with the experimental results. The results obtained by

using this mathematical model are summarized as

follows.
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For a given fresh-water thickness, the
maximum permissible drawdown increases
rapidly, especially for gf;ter fresh-water
thickness, as the well penetration decreases.
At very small penetrations, the critical draw-
down approaches infinity.

For a given {resh-water thickness and well
penetration, the critical drawdown decreases
and the coning increases as the radius of
influence of the well increases. i
For a given radius of influence of the well,

the dimensionless critical discharge rapidly
increases as well penetration decreases,
especially at very shallow penetrations,

The Q versus a curves show maxima in the
neighborhood of 10% to 20% well penetration,
For the same cases Wang's analysis shows
maxima at well penetrations of about 33% to
41%. Also, the results of this study sho;{av that
the dimensionless critical discharge ver'sus
well penetration curves tend to become flat

at these maxima and do not pass through the

origin, whereas, the maxima predicted by
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‘Wang's theory are also the points of inflexion

of the curves which pass through the origin.
Physically, it implies that for given aquifer
and fluid properties and well geometry, there
exists a well penetration such that the critical
conditions cannot occur at shallower pene-
trations than this value.

The results of this analysis lead to some
interferences which are of practical sigaifi-
cance with regard to designing a skimming
well procedure. It has been shown that under
a given set of field conditions the maximum
fresh water discharge is obtained with well
penetrations much smaller than those pre-
dicted by analytical skimming well formulations
available at present.

Other conditions being equal, the critical
conditions occur at greater production rates
for smaller radii of influence of the wells.
Furthermore, although it has been shown that
the mounting is not directly proportional to
the drawdown, nevertheless, smaller mounding

occurs for smaller drawdown. Therefore, if



118

several wells are pumped together to give
the same fresh water production collectively
as could be obtained from a single well under
critical conditions according to the results of
this study, the mounding so produced will be
less than critical. It is, therefore, possible
to get more production of fresh water without
getting salt water in the wells when a battery
of larger number of wells is used. However,
a quantitative inference to this effeet could
not be drawn from this analysis. When a
group of skimming wells are operated with
the help of a single suction pump, their closer
spacing would be more economical even from
the installation point of view.

It is suggested that while applying the results presented in this
Dissertation to a field situation, their limitations should be taken
into account. The "entrance losses' at the well and the thicknes’s of
the dispersion zone have been considered negligible in this analysis.
Also, the results apply to homogeneous and isotropic aquifers a;di to
steady-state conditions.

The results presented in this work are intended to indicate the

conditions under which a stable cone can exist and the critical
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‘conditions béydnd which the cone becomes unstable. It has been
shown that the maximum uncontaminated fresh water production oc-
curs as the critical conditions are apnroached. However, it is not
intended to suggest that this alone should be the objective in using
skimming wells tc; pump fresh water. Sometimes it may be more
ecqnomical and practical to pump at lower rates.

Also, in some situations an entrainment of some brine along
with fresh water may not be as undesirable as in some other situations.
If the underlyind saline water is not of very poor quality, it may be
desirable to pump the well at a higher rate than critical as lohg as
the quality of the water produced is within tolérable limits; depending
on the use it is intended for. Hence, while making a decision with
regard to the rate of pumping various factors such as water quality
in the aquifer, the tolerable limits of salinity, amount of recharge
available in the area, and economics of the operation must also be
taken into account.

Further study is required to analyze several aspects of the
phenomenon of coning. The utility of the nomograms presented in
this Dissertation can be increased by considering a wider range of
possible situations. It would be worth-while to study the effect of
dispersion on the maximum fresh water production predicted in this
study. Finally, the mathematical moadel presented here should be
further generalized by considering the effects of heterogeneity and

anisotropy with regard to the hydraulic properties of the aquifer.
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PROGRAM POTEN] (INPUT +OUTPUT s TAPES = INPUT ¢ TAPE20HTPUT)

CALLING PRNGRAM FOR SIMPSOveS OULE INTEGRATION

OLFINE INTEGRANT FOR SIHPSONeS wULE INTEGHATINN
DIMENSION w(JO)oA(30)08(30).C(30)-D(30).YA(JO).YAL(JO).YB(JO)o
IYHL(30)oYC(30)vYCL(30)oYD(30)-YDL(30)oTSUH(30)

COMMON Cx

EYTERNAL ARG

READ (Se1)X

FORMATLF7,5)

NRITE (6024)

FOPMAT (141 4 IX o W@ TX o 2 TSUM®)
All)=)eX

B(1)=A(l)

Ctlr=te=x

o1=Ctly

Wil)30.00

GL=0.00001

DO 10 1=2:26

Kzt-]l

WilleWiK) e, 02

ALI)=ALK) ¢, 02

B(1)=BIK)=.02

Ci{11=CIK)=,02

D{1)=D(KY* N2

CONTINUE

00 20 1=1¢26

cCxeAll)

YALTI=SIHPSN(ARGYG)L +99949.,0001)
YAL (1) =ALOG(ABSIYA(II))

cx=3(1)

YR(I)=SIMPSN(ARGGL 19994140001)
YAL (1) =ALOG(ABS(YB(]I)))

cx=Ct1
YC(1)=SIMPSN(ARGoGLo999.o.000!|
YCL(IY=ALOGLASS(YC (1))

Cx=D(1)

YU (1) =STHPSN{ARGGL 999949.0001)
YOL (1) =ALOA LARS (YO L) D))
T%UM(!):-YAL(I)-YBI(I)OYCL(IIOYDL(I)
WRITE (642) (W () o TSIIMUID )
FNOVAT(1+09s1XeFaalde2XeF10.5)
CONT INUE

Capr EXIT

EnD
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FUNCTION ARG(X)
CO¥MON C

ANGaXee (C-],)9EXP(=X)
X23FXP (=X}
Kizxee{Cel,)

RETURN

END

FUNCTTON STHURPSN({ARGeY1:Y24FERAY

GT4PSN INTFGRATION ROUTINE wRITTEN AS FORTRAN [V FUNCTION
DIMENSION F2T(20) sFMY(20) +FIT(20)eFaT(20) eFpT (20}
IDKT(ZO)cxlf(?O)onT(EO)oAHT(ZO)wEPST(ZO)oESZT(ZO)c
2ESIT(2N)LFG(20)9SUML (20) »SUM2(20)
CO*"uq0N C

INITIAL SET=UP

A=Yyl

EPS=FERR

8=v2

NDA=8-A

FA=ARG(A)

Fuz4,2 ARG (AeB) #,5)

FR=ARG(8B)

AREA=],0

EST=1,0

L=}

AFGIN SIMPSON

Dx=DA/3,

X1=A*DX

X23X]+DX

FIz4.®ARG(A®,5°0X)

F2=ARG(X"}

FI=ARG(X?)

Fuzle?ARG(A+2,5%0X)

Dx6=Dx/6,

ESTI=(FAF]1¢F2)00Xh

EST2=(F2+FM4eFI)oDXs

EST3=(FIsFbLeFH)ODXA
AREASAREA-ARS (EST) ¢ ABS{EST1) ¢ABS(EST2) ¢ABS (ESTI)
SIM=EGT]+EST2¢ESTI

TEST FOR CONVERGENCE

IF (ARG (FST-SU“)=EPS2AREA) 29203
IF(EST=1,015¢306

JIFIL=20)5¢6+6

L=Le}

LEGILY=3

STNULE PANAMETERS FOR SIMPSON Il AND I1I1
FaT(LY=F2

FUT(L)=FM

FIT(L)=F?

FoT(L)=Fa

FRT(L)=Fn

OxT(LY=0x

X)ITy=x1



1

x2T(LY=X2?

AT (L) =AREA

EPSTILI=ERPS/) LT

£S2TLLIRESTR

€SITILIY=ESTI

RETURN TO SIMPSON 1

DA=0X

FuzfFl

FR=F2

EST=EST]

EPS=ERST (L)Y

GO 10 )
IFLECILY=2)9¢BRe7

SUM] (L) =SUM

LEGwLY =2

RETURN TO SIMPSON 11
=X17(Ly

DA=DXT (L)

FAsF2T (LY

FM=FMT (L)
FB=FIT(L)
AREA=ART (L)

EST=ES2T (L)

EPS=EPST L)

6o 70 I

SUM2(L) =SUM

LEGILY=]

RETURN TO SIMPSON 111
A=X2T (L)

DA=DXT (L)

FASFIT (L)

Fu=FGeT (LY

FB=FBT (LY
AREASART (L)
EST=ESIT (L)
EPS=EPST (L,

60 10 1
SUM=SUM] (L) eSUM2 (L) *SUN

L=t-1
IF(L=1111¢11s6
SIMPSN = SUM
RETURN

END
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PROGRAM POTEN2 (INPUT.OUTPUTTAPES=INPUTTAPEG=01TOUT)

CALCULATION OF NATURAL LOOG OF (AeC)/(HeD) WHERE A=WeX AND Hew=X
ROSRADILAL NISTANCE FwD4 TiF WELL OIVIDED B8y TwICE THE THIKNESS OF
FLESH wWATER? AT THE RADIUS OF INFLUENCE.

WzNEPTH FROU TOP OIVINED AY TWICE THE THIKMESS OF FRESH WATER AT
T+ RADJUS OF INFLUEMCE,

X=NEPTH nF PENETRATION OF WELL DIVIDED RY TWICE YHE THICKNESS OF
FRESH WATER AT THE RADIUS OF INFLUENCE.

DIMENSION w(30)+P(30)

READ(SsIY ROsX

FORMAT (2F10.5)
ROS=R0°*2,0

MAXL IN=24

I®ax=26

1=}

WRITE(642)

FORMAT (1H1/)

WRITE(6+3)

Y=FLOAT(T)

W(l)=ye.02-,02

AzW(l)eX

Rzw(l)=-X
C=SNRT(RNSeAs02,0)

N=SORT IRNS+ (ABRS (B))®e2,D)
E=(A*C)/(ReD)
P(1)=ALOGLABS(E))
WPITE(6e4)w (1) P

I=1el

1F(1.GT.1M4AX) GO TO 20

IF (1.GE.MAXLIN) GO YO S
GO T0 10

FORUAT (1 4043X«®Wo 40X o0P®)
FNAMAT (1H0 ¢ L XoF & e2e4X1FB44)
CaL EXIT

END


http:WRITE(69.aI
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http:FOD.AATt2F10.5j

130

PRANGRAY POTEN] (INPUT sQUTPUT 9 TAPES = INPUT » TAPE63OUTPUT)

OTHENSION W0}
REANISs6) ROeX
FoRuAT(2F10.5)
ROSzROee2,0

READCS«1) N

FORMATLLS)

REAN(Se2) (W{I)el=1926)
FORMATIRS10,2)

00 3 1=1.26 |

S1M=0,0

Wiavttl)

IFtwl.GT.X) GO TO 3

DO & J=1.N

ON=J=1

Az1,0/7(NNe] 0=X=W(])) 082
Rz1.0/7(DNe]loX=W(I))e02
C=1,0/7(DONe1.0=-XeN{]))0e2
-0=1 .OI(ONOl.OXOH(IH"Z
SUM=53UM=A+B8=CeD

TSUM=SUM
TSIM1=2TSUMS0425#R0S
WOITE(Ae5) [oTSUMe TSUM]
FOPMAT(/710X012¢F155905XeF1SeT)
CONT INVE

END
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PROGRAM DISCHRG (14PUT s OUTPUT s TAPES=INPUT « TAPEA=NUTPUT)

COND 1S CONNUCTIVITY OF THE ANUIFER MATERIAL TO THE FLUID
REING SKIMMED (L/T).

DY 1S THE DRAWDOWN AT THE WELL (L).

Pa IS THE RADJUS OF THE WELL (L)

HE 1S THE THICKNESS OF THE FLOW REGION ABOVE THE INTERFACE
PRIOR TO PUMPING (L),

Pw 1S THE WELL PENFTRATION (L).

0 1S WELL DISCHARGF FOR A 15 OFLREE SEGMENT OF THE ENTIRE
FLOW REGION AND 1S 1726 OF THE TOTAL DISCHARGE (VOL./TIME).

READ (5+1)} CONDsRW.RE+HEsPWoD1
FORMAT (6F10.3)

ALPHA =P /HE

RETA=SURT (Rw/ (2. *HF *ALPHA))
GAVMA=RW/HE

Xuy=5,2R32¢CONDOHES ALPHA®D]
XNU=CNS (1 ,5708%ALPHA)
X1=ALOG(RE/PW)
O=(XMH'(I.07.°BETAOXNU))I(26-'XI)
WRITE(62) ALPHA+GAMMAQ

2 FOPMAT(IH .sxo'ALPHA“oF6.4.5x.06AMMA='.Elo.'nSX.

1#D1SCHARGE=*+F10e3)
CalL EXIT
€END
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PROGRAM CONING (INPUTOUTPUTTAPESSINPUTTAPEG=0UTPUT)

DIMENSION P(13020)s JIN(19)s ZETA(IIe1F)e JS(19), ZW{19) s H{(IIe20)
Lo NSUMIS,19)e DIFN(Se19)

COMMON T(532+119) ¢RnS1532) o KBOUN(3I920) 9COMNN(II020) eR{IIe20) +DELRZ
LIHE s H o NCoNCWEL ¢ JP3 ¢ JPL9CONSTeNRLINCLeDELZ (390D yNUSNCW9Z2(23020) oD
2EL71eNELZ2

INTEGER €£TA

REAL JIN

NR J=522

NCT=19

Je2

1=2

READ (5¢65) PB'ETARHOF «RHOS+ CONDS eNC

READ (S¢66) RWIRE9?]1oHE eHWeNR

READ (5¢67) D1ePWe IN1eJPLoNCWEL ¢+RJUEX

READ (S5¢68) ICeMAXIV.EPSeDELZ)4DELZ2

JOd=uN} e}

w2d2JPl ey

NCW=NCWEL *1

NCW2=NCWFL+2

NCWISNCWEL ]

PI1=3.1416

NC1=NCel

NR1=NRe}

NC2=HC) +1

00 1 I=24NR1

READ (Se¢69) (KBOUN(IeJ)eJ=25NC2)

RALPHA=PW/HE

GAMA=RW/HE

ene DPRINT INPUT DATA,

WRITE (5970) PReETAIRHOF ¢RHOS+sCONNSeNCIRWREsZ]1 vHE ¢ HWoNR9D19PWe D1
190JP) oNCWEL oRJEX« ICoDELZ 1o DELZ2 v ALPHASGAMAIHMAXITHEPS

CALCULATION OF HORTZONTAL DISTANCE OF GRIDS.
RADIUS MEASURED TO THE BOUNDARIES OF THE GRIDSe
CONST=RADIUS OF THE FIRST COLUMN.

CONST=Rw

1=?

R(1+2)=2CONST

RE(T«NC1)=RE

PLN=ALOG(CONST) .

TC=HCY

OPLN= (ALOG(RE) =ALOG (CONST))/(TC~2.0)

00 2 .I1=3.NC2

BLN=RLN*DRLN

? R(1eJ)=EXPIRLN)
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*

00 J 13J.NR1

Nn 3 J=2.NC2

R(leJIZR(T=10J)

WRITE (AeT1) ((R(1eJ) ¢ JS24NC2) o 122:sNR])
OELR1=DISTANCE HET, COLSe J=NC AND JENCl e
NFLR2=01STANCE BET, COLSe J=NC1 AND J3NC2e
NELRI=R(2eNC1)=R (24NC)
OFLR2=PR(2+NC2)=R(24NC1}

COMPUTE THE ELEVATION 2(leJ) OF THE CENTER OF GRIU(Is ) e
Je?

2(2e ) =21

1C1=1Ce}

00 7 [=23.NR])

1€ ¢(1.GT,.IC) GO TO &

Z(TeJ122(1=14J)=DE} 2]

GO 70 7 ) ’
1IF (1.EN.1C)
60 TO 6
Z(1eJ)=2(1=10J) =~ (DELZ) ¢DELZ2) #0,5

GO 10 7

Z11eJ)=Z(1=10J)=DELZ2

CONT INUE

00 8 J=3.NC})

DO R 1=2.NRI]

Z(1e V=7 (Led=1)

WRITE (6472) ((Z(1,J)9J=2eNCL) 9 1=24NR1)

i 6o 10 S

INITIALISE THE PRESSURE HEAD AND CONDUCTIVITY IN EACH GR1D. 1T IS
ASSUMED THAT PRIOR TO PUMPING TOTAL HEAD IS SAME EVERYWHERE AND
ENUAL TO HE,

N0 10 1=24NR1

00 13 J=2sNC1

H{TeJ)=HE

PLIsJIZH(T oD =2(10 )

1F (P(1+J),LT.PB) GO TO 9

COND(14J)=CONDS

GO 10 i0

CONN(1+J)=CONDS® ( (PB/P (1+J) ) #ETA)

CONTINUF

COMPUTE FLOW COEFFICIENTS USING MOST RECENTLY CALCULATED VALUES
OF CONNUCTIVITY.

11=1

K.1TNaNP)
CALL TCOEF

N=NY
NCOF=NC]
NC4=NC

CaiL. sosoLv (T9RHS «NoHCOF «NCHoDET 1 QUAD » ISUMEPS s TPRNT1 ¢ IPRNT2+ IREA
10eNRJNCT) .

WOITE (A7)}
Ir=0

0N 17 1224001
0C 17 J=2NC2
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" KAEKBOUN( Lo J)

R
13
14
15

16
17

18

19
20
21

22
23
24
25
eh

a7

28
v

39

k]

37
N

60 T0 (12¢13114415)0 KA
H(leJ120,0

60 Y0 16
H{leJ)EHE

60 10 146
H(]eJI=HY

GO0 10 16
IK=1Ke}

HET e JI=RHS L IK)
CONT INUF,
CONTINUE

WRITE (6074) ((H{1,J).9J22eNC2) s IR24NR])
evee CALCULATE PRESSURE DISTRIHUTION.

DO 21 J=3NC1

D0 20 1=27iNR1

PlleJ)=HE

IF (JLE.NCWeANDeI,LEsJDl) GO TO 18
GO0 70 19

P(leJ1=0,0

50 10 20

PLleI=H{1eJ) =210} .

CONT INUE

CONTINUE

see LOCATE FREE SURFACE.
D0 27 'J=2¢NCl

Do 26 1=7.J03

IF (J.LE.NCW) GO T0 22
G0 T0 23

JStJ) =201

WRLITE (6+7S) JeJS(Y)

G0 10 27

15 (P(I=10J) oLEOo0sANDoP (TrJ) +GE40+0) GO TO 24

GO TO 26

IF (ARS(P(T=1¢J))sGT.ARS(P(IsJ))) 6O TO 25

JstIr=l-1 .
WRTTE (6475) JeJSLJ)
GO T0 27

JstI =1

WRITE (6475) JeJS(J)
Go 10 27

COMT INUE

CONTINUE

00 33 J=2NC)

TIF (JJ.LE.NCw) GO Tn 28
60 10 29

Zu(J)=HW

60 70 33 L

1IF (P(l1eJ)NEL.0.0) GO TO 30
7elN=2(1J)

GO 70 3]

00 32 1=7.90)

1F (P(1e¢J).LT.0.,0) GO TO 22

60 10 32

NELP=P(Te NN =P (T=1e )

2l =Z (1o IV (P {14V *DELZ (10J) /7DELP)
6n 70 3)

CoMT INUE

CHNT INUE

IF (ITEQ.VAXIT) WRITE (6076) (24(J)eJ=24NC1)

“IF (Pl1eJ)eGTe0e0e&NDP(I=19J)4LTe0.0) GO YO N
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35

n

37

3y

39

4
ol

4?

L3
(¥

L3

ees CALCULATE THE POSITION OF THE INTERFACE ON THE BASIS OF HOST
QECENT WEAN NISTRIBUTION.JIN 1S THE NUMABEQ OF THE ROW IN wHICH
THE INTERFACF FALLS IN COLUNN J AND ZETA IS THE EXACT LLEVATION
OF THE JINTERFACE. :

WAITE (6477)

WRITE (6,78)

J=2 :

IF (IT.En.l) GO TO 34

60 10 23S

RNI=NRY

JIN(J)=RN]

60 10 36

KJIN=JIN(D)

RN1=KJIN

JIN(JI=RNI]

11=J0S¢(J)

§ZETA=0

D0 40 1I=I1+KJUIN

12KJINe]) =11 .

2ETA(T¢J) = (RHOF /7 {RHOS=RHOF) ) ® (HE=H(1eJ))
DZETA=ZETA(I+J)

1F (ZETA(14J) oLEeZ{1=19J) ¢AND,ZETA(I0J),GEL.Z(10J)) GO TO 37
GO0 TO «0 :

IF (ZETA(T4J) NEeZ(IsJ)) GO TO 38
JIN(JII=FLOAT(I)

1ZETA=)

60 70 4}

IF (ZETA(14J).NEeZ(I=1+J)) GO TO 39
JINCJY=FLOAT(])=]le0

12FTA=]

GO 70 41
JIN(JI=NRI=((2ETA{T e J)=Z(NRI s J))}/DELZ(I+J))
12ETA=]

G0 T0 4l

CONT INUE

CONTINUE

IF (17ETALEN.1) WRITE (6479) JeJIN(J)+DZETA
IF ((1Z2ETAL.ENO0)eAlDe (JIN(JI+EQLRNL)) WRITE (6+79) JeJIN(JY +DZETA
JzJel )
IF (J.GTNC1) GO To 42 :
IF (IT.6T.1) GO TO 35

GO 10 34

CONT INUE

ROUND THE NUMBRS. IN JINe IF JIN 1S EVEN RNUND tT TO THE LOWER
INTEGERy IF 0ODDs &OUND 1T TO NEXT HIGHER MUMBER, INT AND AINT
ARE SYSTEM SUBROUTINES FOR TRUNCATION.

NN 45 J1=2nC1

N=JINTJ]Y

N=INT (1))

1F ((n.GE.0.0).aNO;(D-LE.O.SO)) 60 TO 4&

1€ (D.LT,0.0) GO TO 46

RNI1=AINT /D)

R1=0=R4}

IF (MOD(N+2).NEWO) GO TO 43

IF (R1.6T.050) N=nel

R0 10 4&

IF (R}1.6e0+50) N=hme]

JINtJl =N

WRITE (6.30) DedIN(JY)

COMTINUE


http:fRI.G'.O.S0
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46

&7
&3

49

S0
S1
s
53

54
SS

56

ses CALCULATE COHOUCT!VITY BASED ON NEW PRESSURE DISTRIBUTION.
FIRST SET CONDUCTIVITY IN ALL GRIDS BELOW JIME INTERFACE EQUAL

TQ‘ZERO.

Ja2
KJINZJINtSY
KJIN)EKJINe]

IF (KJIN,EQ.NR1) GO TO 48
00 &7 IK=XJUN]sNR]
CONN(IKeJ) =060

J=Jel

IF (J.GT.NC1) GO YO 49
60 T0 46

CONTINUE

00 S5 J=2NC)
KJINSJINGSY
00 S& I=2yKJIN

IF (J.LEJNCW.ANDeT1,.LT+JD1} GO TO 51
IF (J,LE,NCWe.ANDel,EN.JD1} GO TO SO

GO 70 S2

COND (] ¢ J)=CONDS

GO TO S4

COND(1+J)=0.0

G0 T0 S4

IF (P(1+JY.LT.PB} GO TO S3
COND{ 1+« J)=CONNS

G0 70 5S4

COND( 1 ¢ J)=CONDS® ((PB/P(TeJ) ) oeETA)

CONT INUE
CONTINUE

ese DISCHARGE COMPUTATION.

J=NC)
KJIIN=JIN(D)
NJINSKJIN=]
QSHUMIIT+J)=0.0
00 56 1=2.NJIN

AVCOND=(COND(T1+NC])*COND(T9NC)) /2.0

AVR=R (1 eNC) N, SeDELRL

Q=2,00P0AVRODNELZ(TeJ)®AVCOND® ((H{TWNCI)=H(TIsNC))/DELR]1}

OSHUVIITe NN =ASUM(IT.J) *Q
CONYINUE

QS =aSUM(IT+J)

WRITE (6.81) 1T«QSIM]

- IF (IT.EN.1) 60O TO S7

57

OIFN(ITeJ)=ABS(ASU(ITe S} =0SUM(IT=]4J})}

DIFRI=DIFQ(IT. N .
IF (DIFO).LELEPS) GO TO 64
GO TO S7

ees NEFINE THE NE. BOUNOARY CONDITIONS SUCH THAT HMYD<AULICAELY DE
GRIDS AROVE THE FUEE SURFACE AND HELOW THE INTEWFACE ARE

PRNPERL ¢ SIMULATEN,

DO L9 11=2NCI
Kdl=Jd10103]) e],.0

TF (KJ1.GT,.'1R1) GO TO S9
DN S8 I1=KJleNR]

136
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Sn
59

60
f)

62
63

66

6S
66
67
64
69
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KRNIl 610 5]
CONT INUE

J=NC1

I=gIvtd)

IF (KROUN(T1oJ=1) eMEn%) GO TO 60
G0 70 ¢}

K4 IN( L1 e ) =2

CONTY INUE

RIEXM=RJEX=1,.0

D0 /3 J1=24NC1
JSM=JS (U1 =]

IF (JSMLLE.RJEXM) GO TO 63
00 62 I1=2.J5M

KROUN(T1.J1)=1]

CONTINUE

eee REPEAT THE CYCLE. IT DENOTES THE ITERATION NU4BER.
JT=1Tel |

IF (IT.LE.MAXIT) Gn TO 11

60 TO 64

ASYM1 =QSUM(IT J)
~NRITE (6481) 1T.0SuMl
CONT INUE

CALL EXIY

FORMAT (F10.3+11003F10,3+110)

FNARUAT (S5F10.2+110)

FORMAT (2F10,3+3110+F10.3)

FOR4AT (2f1093F10.3)

FOMAT (2110)

FNOMAT (1M +5Xe 3HPB=eFl104393Xe &HETA=e11093Xe SHRHOFZeF10e3¢3X
le SHRPHOS=+F10eJ93xs GHCOMNDS=94F10630/93Xs  IHNC=e11093Xy 3HRW=eF
210,3+43%s  JIHRE=eF1NededXs 3HZ21=eF1063943Xe 3hhEzeF10.393Xe  IHHW=
AeF10e393Xs  3IHNR=91100/1Xe  3IHDI=sF10e393Xy JIHP=eF10.393Xe  4HID

41=¢11093%s  4HIP1=J10e3Xy OHNCHEL=91109s3%Xe/93Ke SHRUEX=9sF104303
SXe 3IHIC=¢T1D0e3Xe GHOELZI=4F104303%s SHOELZZ=eF1l0.3+2X9 O6HALPHA
62eF10.3¢2Xe SHGAMASIE)04392Xe O6HUAXKIT=e11092Xe 4HHEPS=9F10.5)

7
12
73
74
7%
76
17

79
Ko
“1

FNARMAT (10Xs10F10.7)

FORVMAT ('0%x«10F10.3)

FARMAT (1HN4SXe YTHHEAD DISTRIBUTION)

FNRMAT (1HO0«SX910F12.6)

FORMAT (]15%X+2115)

FNRVAT (YH «3Xe10F)2.4)

FARMAT (1HNJ10Xs 34HLOCATION OF INTERFACE IN THE MNDEL) .
FADMAT (1H0«BXs GHCOL.91CXe 3HROWellXe lAHELEV. OF INTERFACE)
FORMAT (1-0e110¢5X4E17,845X4E17,8)

FARMAT (10Xe2F20e0)

FAQYAT (1HO91OXs IHIT=913010%e 10HDISCHARGF=4E20.10)

Enb

SUHMROTINE TCOEF

COMMON T(532+19) 9R4S(532) +KBOUN(II920) 9CONNIII 203 sR(33920) 9DELR2,
leoHioNCoNCNEL'JPJ.JPl-CONST.NRIsHCl.DELZ(]3'20).NUoNCHoZ(JJoZO)sO
2ELZVeNFL22

ees IMITIALISE THF COEFFJICIENT MATRIX TO 7ERQ.

. XOL 16§ THE NUMBEW OF COLU“NS IN THE T MATIRIX.


mailto:14.H~.NCNCVWELJP3.JP1.CONSTN.UNPC1,DELZ(3,gO)@NUQNCW@Z(3
http:1OHDISCHARE*EO.1O

1a=0
NCALENC)

D0 2 1=2.NR1
No 2 .132.M(1

IF (KMOUN(TeJ) oNEes) GO TO 2

INzIRe]

DO 1 KOL=1.NCOL
RHS(IR)=0.0
TIIRXOL) =040
CONTINUE

IR=0
00 19 1=2+NR1
00 19 .1=2eNC1

201 )22 (20J) +DELZY
COMND{14J2=0,0
RE1eJIZR (29 D)
KAOUN(L e J) =1
NR2=NRY *
Z(NR24JY==NELZ2%0.5
RINR24+JI=R(NR1J)
COND(NP2¢J1=0,0
KROUN(NR2eJ) =]
2€(3e1)=2(1+2)
COND(1+13=0,0
R(Y1+1)==CONST
KROUN(Te 1) =1
NC2=NC]+1
Z(TeNC2) =2 (TsNCY)

138

COND (I +MC2)=COND(T4NCY)

xB8=xBOIIN(I+J)

IF (K3eNEes) GO TO 19
AS0.0

R=0.,0

¢=0,0

03000

€=0,0 .

RHSIDE=0,0

IR=]Re1

JPlzde]

Juisdet

fpi=l.1

141=1-]
DFL1=DELZ(1+D)
DEL2=7(1=1e0)=2(10J)
DEL3I=NEL7 (144}
DELG=7(1eJ) =210l e)
Co=CONDIT )
C1=COD (14 .4P))
cesconNDEIMI e N
CI=COND (1 e.1])
Cu=CONRIPL e J)
RAZR(T o Sy
R1=2(1..J°1)
R2=R(IMY N}
RI=R(Te 1)
Ru=R((P1.J)
KR1=KH4Dtnt1eJ01)
KH2=KHOUN(IY]eJ)
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KRY=KHNUNL [ JM])
Ka4=KROUN(TP] » )

IF (J.MEL2) GO TO 3

Q32=CONST

IF (1.60.4P3) C23Co
GO 70 4

IF (JJNEJNCY) GO T &
R1=R0O0E) R2

€1=C0

CONT INUE

eseee CALCULATE COEFFICIENT B RETHEEN GRIDS IeJ AND IeJel
G0 TO (7+54746)0 KA)

CONT INUE
see CALCULATE COEFFICIENT B IF GR]D IrJdel IS A CONSTANT HEAD BOUN

9=11COEF(C00C1'C20C30C4ODEL1'DELEODEL3.DSLB'POO“I'RZURJnRQ'l’
RMSTDE=RHSIDE ¢ BaHE

E=Ee8

8z0,0

GO TO 7

CONTINUE
see CALCULATE COEFFICIENT B IF GRID TvJel IS A USEABLE GRID,

Q=TYCOEF(CO.CIoC?oC3oCQoDELl'DELZODELJODELéoROOWlORZoRJoR“'l)
t:E.u . . . - . - e .

R

CONTINVE

see CALCULATE COEFFICIENT C BETWEEN GRID sy AND I=1leJde
IF (1.EN,2) GO TO 0

1f (J.EQ.NC].AND.KHJ.EQ.I! G0 10 10

GO TO (] +84849)y xB82

CONTINUE
eee CALCULATE COEFFICIENT C IF GRID I=14J IS A CONSTANT HEAD BOUN

C=TTCOEF(C00CIoC?oCJoCboDELl'DELZ.DELJQDEL“oROQRl'Q2'R30R6o2)
RUS JDE=RHSI0E ¢ CoHY

E=EeC

C=OQ°

Gn T0 10

CONTINUE
see CALCULATE COEFFICIENT C IF GRID I=-1¢J IS A USEABLE GRI1D,

C=1TCOEF(COoCloC2'C3oCh'DELlODELZOOELJODELaoQO'Rl'RZORJQRQOZ)
€=€eC

C==C

CONT INUE

see CALCULATE COEFFIC!ENI A BETWEEN GRIOS I+J AND [ey-i.
IF (J.E0.2) GO TO 13
GO TO (12110119121 KA3

CovTINUE
ees  CALCULATF COEFFICIENT A JF GRIDS IvJ=) IS A CONSTANT HEAD aou

A:TTCQEF(C“cC)oC2'C3oCﬁoDEL||FEL2-DEL3!DELQ'ROQP|cUBoNJoRQoJ)
RNSTOF =ANSINE+AoHW

F.2FeA

Az0,0

60 10 13

CONTINUE
see CALCULATE COEFFICIENT A IF GRID Teu=1 IS A NSEAHLE GR1D,

A='TCHEF(CO-CIlCZofJoCéc“ELloPﬁLeoﬂtL]'UELhoRO'RIo”dodJoRéoJ)
E=FeA
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Avel

CONT INUE

ses CALCULATE COEFFICIENT O BETWEEN GRINS lod AMD Ie)ode

IF (1.FN.,4R)) GO Tn 1S .

GO0 YO0 (1Se15¢])5e1410 KBG

CONTINUE

seae CALCULATE COEFFICIENY D IF GRID I*1+J IS 2 USEABLE GRID<
D:TlCnEF(COOCl'CZOCJ.CQ'DELIODEL?ODEL3ODEL6090.R]OQZQRJORQOQ.
E3€<D

0==D

COMT INUE

eees STORE COEFFICIENTS IN THE COEFFICIENT MATRIX Yo

ese STORE COEF.D

[11=10]

IF (111.GT.NR1)Y GO YO 18

IF (KHOUN(TT1eJ)eNEe4) GO TO 18
JUSE=*C)=Je]

DO 16 JU1=24d

IF (KROUM(TTI1eJJ1) NEo&) GO TO 16
JUSE=JUSE+]

CONT INUE

JP2=JISE

IF (JP2.6T.2) GO YO 17

60 70 )8

T(IRs JP2)=D

COMTINUE

T(IReY)=E

T(IRe«2) =R

RHS(IR) =qQHSIOE

CONTINUE

NU=1IR .
5.. THE ABOVE VALUE OF NU IS THE NOe. OF USEABLE GRIDS FOR THIS IT
ETYURN .

END

FUNCI!ON TTCOEF (C0sCleC29C34C4eDELY ¢DEL2+DELIIVELS+ROIRIOR2IR3eR4 o
LICNF1Y

ses CALCULATE THE COEFFICIENTS ReCoAsAND D FOR SURROUTINE YVCOEF.
sse NOTE THAT R3 WILL BE NEGATIVE FOR GRID= CLMN. J=2.
PI1=3.14159

GO TO (1424d04)e ICOF)

TTCOEF=PLo(C14L0)*DELI/ZALOG(R1I/ZRO)

RF TURN

TICOEF=P 1@ (R]992-30982)8 (C2+C0)*0.5/DEL2

PETURY

TTCNEF=PI®(CI«COI*DEL)/ALOG LARS (RO/R3))

RETHHN o

VICNEF=P o (R)9#2=Rn®82)0 (C4+CN)®*0,5/DELG

RFTURN .

EMN

SURAGUTINF SNSOLV (TeRHSeNyNCOF «NCMsDET+QUADS ISUMIEPS« IPRNT L ¢ IPRNT
120 IREADINR JONCT)

eeoUSE THE SNUARE ROOT METHOD TO SOLVE A SET OF
SIMULTANEOUS LINEAR EGUATION,


http:TTCOEF(COCIC2ZC3,C4,DELI.DEL2,DEL3,UEL4'RORtR2tR3.R4

"

OO0 00 0000000000 NOND

o

1O

141

-d
]

RHS
CALLING PROCRANM,

N = TOYAL NOo OF LSABLE GRIOS (DOES mOT INCLUOE
B0UINDARY GRIDS) I4 THE MOUEL FOR WHICH ThE FLOW

EQUATIONS ARE JRITTEN,
NCOF = NO. OF COLUMNNS IN MATRIX T,
NCM = MAX, NQo OF USAHLE COLUMN nR10S.

DET = VALUE OF THE NETEQINANT FOR THE ORIGINAL
COFFFICIENT MATNIX COMPYTED IN TH]S SUSROUTINE.

QUAD = VAI UE OF THE GUADRATIC FOR' FOR THE ORIGINAL
COFFFICIENT MaTRIX 8 COMPUTED IN THIS SUSROUTINE.
IF X 1S THE Snt.uTION VECTOR AND xA IS THE TRANSPOS

OF Xe THEN QUAD = xAeRex,

ISUM = CODE 0 IF THE ORTGINAL COFFFICIENT MATRIX IS TRI-
DIAGONAL OR If ThE SUMMATION TERM USED TO COMPUTE
YHE NEw OFF~=DIAGONAL ELEMENTS 1S5 ZERO
THE TAO0=DIMENSINNAL GROUND-WATER FLOW PROHLEM) e

OTHERYISEs CODE ISuUM=1.

€PS = TOIERANCE VALl FOR THE DIAGONAL ELEMENT (SUGGEST
1.0E=5 AS A MAX[MUM VALUE), IF THE DJIAGONAL
ELEMENT IN EITHER THME OPIGINAL T-MATRIX OR THE NEW
T=MATRIX IS LESS THAN EPSe AN ERPOR MESSAGE IS
PRINTED AND PROGRAM EXECUTION IS TERMINATED (CALL

EXIT).

DOUALE PRECISION TEMP1+TEMP2+T1+0ETERSUML.T29ROUAD
NOUBLE PRECISION T RHS

DIMENSION T(NRJINCT)s RHS(NRJ)

N HY NCOF REDUCED COEFFICIFNT MATRIX. -
N HY 1 RIGHT=HAND SIDE VECTOR. THE SOLUTION VECTO
1S STOPED IN TrIS YECTOR HEFORE RETURNING TO ThE

IPRNT1=0
IPPNT2=0
KARUG1l=IPRNTI
KRUGZ=IPPNT2
IREAD=0
1suM=]
EPS=,00001
QUAD=0.0
1nab=1
DETER=0,0
INET=1

IF (KRG ¢ NEoVeO0RKBUG2NFE0) WRITE (64+21)
IF (KRUG2.NE«D) WRITE (6422)
18 (IREANLEN.N) GO TO 2

OFAD (S¢23) NoNCOF ¢NCMo TSUMIEPS

NO 1 I=l«N
PFELD) (Se26) RHSII) o (TCIeJ) e J=ToNCOF)

! CONTINUE

IF (KHUG2,FON) GO TO &

WITE (Ae25) NeNCOFoNCHo ISUMIEPS

DN Y 1=].N

W elTE (6¢29) ToRHSII) o (T (1eJ) e J=]1MCOF)


http:IREADA.00

ODOHHON

AOOOO0 OO0

O OO0 O

142

0esCALCIH ATE NEW €1 EVENTS FOR THE FIRST ROW OF THE UPPER

es o WEWINN SCRATCH TAPF,
QEAD FIRST ROW OF ANTH MATRIX T AND THE RIGHT=-HAND SI0E FROM
§CRATCH TAPE,

0=}

IF (T(1e}),.LTLEPSY GO TO 18

IFET (1)) LT EPS) »RITEL648360) 10
TisT(le 1)

¥120SNRT(T1?

1F (KHUGYNE .0} WRITE (6+27) T2e7(1e 1)
Tile1)2V)

00 S J=2.NCOF

TEMPL=T (10 J)

TL)eJ)=TEN2I/T

IF (KRUGI.NE.0) WRITE (6428) JoTENPL T (1o )
CONTIHUE

TEMP ] =RHS (1)

RHS(1)=TENPL/T]

IF (KRUG]GNE.O) WRITE (6429) TEMP14RHS (1)

veoJPDATE DETERMINANT VALUE.
DETER=T)

oo CALCULATE NEW ErEMENTS FOR RO4S 2 TO N IN THE UPPER 7RIENGULAR
MATPIX T AND THE RJGHT-HAND SIOE.

00 12 11=24N

OEE R

NUMY=1]=)

oo CALCULATE THE NEW DIAGONAL ELEMENT FOR POW 11 IN MATRIX T,

SUM1=0.

eeoREWIND THE SCRATCH TAPE

eooREAD ELEMENTS IN ROW 11 FROM SCRATCH TAPE AND SAVE THEM FOR USE
TH2a0UGH STATEMENT NOo 250.
QEWIND THE SCRATCH TAPE.

D0 A 12=1aNiM1

esoREAD FLEMEMNTS 1M ROW 12 FROM SCRATCH TAPEe

IF (I1.6T.(12+NCH)) GO TO &

J1s11=12.1

TFMO1=T(12+J1)

1M1 =S5UM) s TEHP ) e TEMP]

IF (K4UG) NELN) WPTTE (6430) 12+J14TEHP19SIUN]

COMNT INUE

Ti=T([Le1)

1F (F(1)1s1).LTL.EPS) GO 70 18

1F (T1.LF.SUML) GO TO 19

IF(TI L ELSuME) »RITE(648870) 1D

T1=NSRT(T1=SUM))

1IF (INFT.EN,0) DETFR=DLTER®T]

IF (XMUGYNEWD) WRITE (6+31) I1eT(1191)sT1.OFTER

T(tle12=T1

IF (T(1141).LT.FPSY 6N TO 20
JFIT(E1 01 LTLEPS) ARITE(64B880) ID
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0esCALCHULATE THE NFW OFF-DIAGONAL ELEMENTS FOR RnW 1) IN MATRIX T,
NOTF THAT THE S!MPATION TESM (PRECEDFES STATEMENT NOe 160) WILL
o€ ZERD FOX SYMuETRIC TRI-DIAGONAL MATRICES. IN THIS CASEe
THE COMPYUTATIONAL EFFORT REQUIRED FOR OF TERMInING THE NEW OFF=
DIAGONAL ELEMENTS CAN SE RENUCED BY SETTING I5UM=0,

IF (11.EneN) GO TO 10
IF (ISUM_NE.O) GO 1O 7

J1=2

Y2=T(1141)

T(lledl)=T2/17)

IF (KRUG) «MEe0) WRITE (6932) 110019T1leT2:T (1101}

Gn 10 10

Je=ll

00 9 J1=2NCOF

JesJ2e1

SuMlzp,

IF (J2.GT.N) GO TO 10

(X +REWIND SCRATCH TAPE .

0N 8 12=veNUML

esePEAN ELEMENTS OF ROW 12 FROM SCRATCH TAPE.

IF (J2.GT.(12+NCM)) GO TO 8

Jaz]la[241

Joxl1=12+J1

TEMPLI=TLI2¢9D)

TFUP2=T(12+J4%)

SUMI=SUM) +« TEMPI®TEMP?

IF (KRLIG]«NEoO) WRITE (6¢33) 129J3¢J4eTEMP]yTEMP24SUM]
CONT INUE

T2=T{11.J1)

TC(Iledl)=(T2=SUM])/T]

IF (KRUG).ME.0) WRITE (6934) 11e4J1eT1eT2eSUMLeT(]10J])
CONT INUF

e s« CALCULATE THE NEW ELEMENT IN ROW 11 OF THE RIGHT-HAND SIDE
VECTOR RHS,

SIM]1 =0,

ee o REWIND SCRATCH TAPE,

00 11 12=14Nuv)

esoPEAD FLEMENTS OF ROW 12 FRNOM SCRATCH TAPE.

IF (11.6T<(12eNCM)) GO TO 11

Ji=11=12+}

TEMPI=T(124J1)

TEVP2=PHA (]2)

SHM) =SUMy e [ MO e TEVP? .

1F (KAUGY «NEJO) WRITE (6435) J2¢J1¢TEMP]9TEMP2eSIIM]

CNNT INUE.

TEUPR)L=PHS (1))

PHE (11 =(TE4R)=SUM])/T]

1IF (KIUG)MEL0) WPITE (6436) 11+TEMPLeTIsRHS(IL)

CONTINUE

NETER=DETER*DETER
DET=DETER
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oo CALCULATF THE VALUE OF THE QUADRATIC FOOM FOR MATRIX T,
eesREWIND SCRATCH TAPE,

RPEAD VECTOR RMS FROM SCRATCH TAPE AND STOHE.

LEAVE TAPE ON THE N=TH RECORDe.
IF (I7TUADWNE.N) GO TO 16 .-
90"‘“300
no 13 1l=1eN
TFUPL=PHS (1))
ROVAD=RQUANDTEMP] ® TEMP)
OUAD=ROUAD
IF (KRUG) NEO) WRITE (6+37) QUAD

o9 oBACK SUBSTITUTE INTO MATRIX T AND SOLVE FOR THE UNKNOWN
VARIABLESe STORE THE UNKNNOWNS IN VECTOR RHSe

eeoeREAD ELEMENTS OF ROW N IN MATRIX T FROM SCRATCH TAPE.
BACKSPACE SCRATCH TAPE TO REGINNING OF N=TH RECOROD.
CONT INUE
TEMP ] =RHS (N)
Ti=T(N
RRS(N)=TFuUP]/T]
IF (KAUG1 eNESO) WRITE (95038) NoeTEMPloT1oNHS(N)
JPeNe}
00 17 11=2.N .
JP=JP=1 )
IRHS = JP=]
Sum1 =0,
00 e 3ACKSPACE SCRATCH TAPE 1 RECORD,.
READ ELEYENTS IN ROW IH OF MATRIX Te
BACKSPACE SCRATCH TAPE 1 RECORD.
00 15 12=J%«N
IF (12.GT.(IRHSeNCM)}) GO TO 16
JIE12=]R=Se]
TEUP I =T (1&HSe J])
TEUP2:=KHG (12)
SIM) =SUMY + TEMP ] TEMP2
IF (KRUGY4NE«D) WRITE (6¢39) IRHSeJe12,TEMPLeTEMP2,SUM]
CONT INUE
TEMP L =RHS (IPHS )
TI1=T (IR ]))
PHS (IRHSI=(TEMP=SUM1Y/T]
ee e SAVE ALL NEW VALUES OF RHS,
IF (KW6G]eNELO) WRITE (6040) IUHSTEMPL«T1RHS(IPMS)
CONT INUE

IF (KAUGY eMEeNeORewBUG2eNE«O) WRITE (H941)
RETURN
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IR WRITE (6,642) 1D
CaLL EXxIY

19 WRITE (6443) 10
CalL ExIY

20 WRTTE (6,440 1D
CALL €EXIT

21 FOPMAY (1H41/31%X¢35(1H®) 731X+ ISHREGIN OUTPUT FROM SUSROUTINE SQSOLYV
1731X935(1H9))

22 FORMAT (1M0/774s JTHORIGINAL DATA ARE)

23 FOPMAT (415+710.0)

2u FOPMAT (3F10.0)

26 FOPVAT (1HO/%%e 24N=¢]13e BH NCOF=el3s TH NCM=e]1Js B8H 15U
IM=413s TH ERPS=2er13,5)

26 FODPMAT (1HU/5%e 340¥e 13/TXsE13e50 (/77X98E13.5))

27 FOPMAT (1M1 /72X AHT1=e013.5s 104 Tile1)=+E13,5)

24 FOR2AT (110el%s  2HJI=e13y 111 TEMPI=9D13,5s 10M T(led)=eE]3.5)

29 FNAOMAT (1'10viXe 6WTEMPI=4013.5+ 8H RHS(1)=9E13,5?

30 FORMAT (1A3//2Xe INI2=913s  6H J1=2e13s 9YH TEMP1=9D13.5¢ 8H
1 SUMI=4013,%)

31 FOIMAT (1H0s1xs  3HID=913y 11H T(Il1e1)=9E13:S5e 6N T1=4013.5¢
1 OH DETER=4D13.5)

32 FNRUAT (LHO/2xe 3JHIL=eI3s 6H  J1=913s  AH T1=eD13.5¢ O6H T2
12¢N13,5¢ 12K T(11eJ1)29D1365) -

33 FORMAT (1HO//2Xe  2JHIZ=e[de AH J3=el3e 6H Jeae13/72Xe GHTEMP
11=¢013.5, 9H TE“P2=4013.5¢ ™ SUMI=eD]3eY)

364 FAPUYAT (JHOe1xe 3nl1=e13s SH J1zsel3s 6H T1=2e013.5¢ 6H T2=
1eD13.65/72Xs  SHSUM1=3013.54 12H T(I1+J1)=4E13:5)

AL FOOUAT (1H0//2Xs  AH[2=9130  AH J1=413y 9H TEMPL=9013.59y 9H
] TEMD2=,D13.5¢ 8n  SUM1=+D13.5)

26 FORMAT (Ir0e1Xe 3HIl=e13y 6&n TEMP1=9D13.5+ 60 T1=9013.5¢ 9H
1 PHS(I1)=+E1}3.5)

37 FARMAT (1HO//72X%s SHOUAD=4E13.%5)

38 FORMAT ()1H0/2%e 2HN=e13s 9n TEMP1=+013.5¢ 6M T1=¢01245¢ 10H
1 RHS IN)=¢E13.5)

39 FAODUAT (]JHO//72Ke SHIPHS=413e 6H J12913e¢ 6h 12=41372Xe G6HIE
IMB2)1=24N13,5¢ 9H TEMP224N13e%e 8H SUM1 =+013.5)

40 FOOMAT (1HDelae SwIRNS=9e]13e 94 TEMP1=eD13.5e  6H T1=4013459
1134 RHS(I9HS)=eE13.5)

4] FOPYAT (110/31Xe3611HP)/31%e36HEND OF OUTPUT FRO™ SUHBAROUTYINE SQSAOL
IV/Z31Xe3A(LHOLY ’

42 FOOUAT 1110439 {1He) /72X« ITHERRNR DETECTED In SUSKRAUTIME 3QSOLV==//2
1Xe2 IHTHE DIAGANAL FLEMENT IN POws lus334 OF THE U°IGINAL T=MATRIX 1]
26 JLTe EPS/Z2HeMCALL EXITZIKeIvL]HO))

43 FORYUAT (1HO+ST{IHE1 /72X« ITHESROR DETECTED IN SUBRNUTINE SNSOLV==//2
1XeSUMT] 1S JLEe SUul FOR CALCYLATING THE UIAGONAL ELEVEMT IN ROWeI
26/2KeHCALL EXIT/Z1xeS1(1He)) .

Gt FABRYAT (1109 35( 1N /727 3THERRNR DETECTED TN SURRNUTINE SQSOLVe=//2
1Xe 2 JHTHE DTAGINAL FLEMENT N Cowelueddtt OF THE NFW TeuATRIX IS oLT
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iy . ] . .
TABLE B-1, POTENTIAL DISTRIBUTION FOR CASE 1 USING
MUSKAT'S FORMULA

q——————_— 51— e i
e

=/H, -2(0,2) ¥ A4(0,2)/(2¢),
0.743 . 6.426 0.0

0.76 5.619 0. 126
0.80 4.590 0.286
0.84 4. 151 0.354
0.88 3.889 0.395
‘0.92 3.715 0. 422
0.96 3.59%4 0. 441
1.00 3.510 0. 454

*
In tables B-1 through B-6, 4>e = 0.0 (reference).
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TABLE B-2.  POTENTIAL DISTRIBUTION FOR CASE 2 USING
MUSKAT'S FORMULA

TH, -$(0, %) A0(0, ) /(29)
0.635 5.922 0.0
0. 64 5,128 0.134
0.68 4.089 0. 309
0.72 3.639 0.386
0.76 3.364 0.432
" 0,80 3.177 0. 464
0.84 3.042 0.486
0.88 2.943 0.503
0.92 2.870 0.516
0.96 2.816 0.524

1.00 2.779 0.531
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“TABLE'B-3. - POTENTIAL DISTRIBUTION FOR CASE 3 USING
o o  MUSKAT'S FORMULA

t

T/H ~ -9(0,7) 2910, 2) /10%)
0.568. 5. 628 0.0.
0. 60 4.211 0.252
L 0..64 3.574 0.365
0.'68 3.225 0.427
0. 72 ' 2.996 0.468
0.76 .- 2.832 ‘ 0. 497
0.80 2.710 0.519
vo.s4 2.618 . 0.535
0.88 2,548 0.547
0.92 ' 2. 495 0.557
0.96 2.457 . 0.563

1.00 ~ 2.388 0.576
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TABLE B-4., .. POTENTIAL DISTRIBUTION FOR CASE 4 USING'
: '~ MUSKAT'S FORMULA ‘

W

’z'/He : ’ -_'NO-?) , OG0, z)/(A‘I’)“e
- 0.45 4.999 0.0
0,48 3.744 0.251
0.52 3.106 0.379
' 0.56 | 2,756 0. 449
0,60 " 2,523 0.495
0. 64 2.354 0.529
0.68 2.227 0.555
0.72 2.128 0.574
0.76 12,049 0.590
0.80 1.928 0. 602
0.84 1.939 0.612
0.88 1.901 0. 620
0.92 . 1.873 - 0.625
0.96 " 1,853 " 0.629

1.00 - - 1,840 0. 632
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"“TABLE B-5, POTENTIAL DISTRIBUTION FOR CASE 5 USING
MUSKAT'S FORMULA
-

'55'/1'1e -$(0,%) Ad(0, Z)/(A¢)e
0.56 4.865 0.0
0. 60 3. 764 0.223
0. 64 3. 300 0.319
0. 68 3.017 0.378
0. 72 2.821 0. 418
0.76 2.677 0. 448
0.80 2,568 £ 0.470
0.84 2. 485 0. 487
0.88 2,421 0.500
0. 92 2.373 0.510
0.96 2.338 0.518

1.00 2.314 0.523
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;"TAB}LE B-6. POTENTIAL DISTRIBUTION FOR CASE 6 USING
MUSKAT'S FORMULA

Z/H_ ~$(0,%) 29(0,3)/ (A9)
0. 68 6.225 0.0
0.72 4.510 0.276
0.76 3.957 0.364
0.80 3.644 0.415
0.84 3.437 0. 448
'0.88 3.292 0.471
0.92 3.188 0. 488
0.96 3.112 0.500

1.00 3,059 0.509




APPENDIX C - RESULTS OF NUMERICAL ANALYSIS
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TABLE C-~1. RESULTS OF NUMERICAL ANALYSIS - CASE 5: (I)

a = 0.541 Y = 0.0933 pg = 0.755 gm cm™>

He =25.5 cm Hw =21.5 cm Ap = 0.245 gm crn-3
AH/ (AH)e
Z/H,
IT = 1 IT = 2 IT = MAXIT

0. 541 0.000 0.000 0.000
0. 549 0.199 0.175 0.171
0,588 0.297 0.259 | 0.252
0. 627 0,358 0. 307 6.297
0. 667 0. 400 0.337 0.322
0. 706. 0. 430 10.355 0.333
0. 745 0.453 0.363
0. 784 0. 470
0.824 0.483
0.863 0.493
0.902 - 0. 500
0.941 0.505

0.980 0.507
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TABLE C.2. RESULTS OF NUMERICAL ANALYSIS - CASE 5: (II)

a = 0. 541 Y = 0.0933 p, = 0.755 gm em™3
He;25.5cm Hw=21.0 cm Ap = 0.245 gm cm'3
- AHNAH%
Z/H_
IT=1 IT = 2 IT = MAXIT

0. 541 0.000 0.000 0.000

0. 549 0.205 0.176 0.152
0.588 0.306 0.260 0.239

0. 627 _ 0.368 0. 306 0.269

0. 667 0.410 0.332

0.706 0.441 0. 345

0.745 0. 464

0.784 0. 482

0.824 0.495

0.863 0.505

0.902 0.512

0.941 ' 0.517

0.980 0.519
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TABLE C-3., RESULTS OF NUMERICAL ANALYSIS - CASE 5; (III)

a = 0,541 Y = 0.9033 pe = 0,755 gm em™>
H_=25.5 cm H_=20,85 cm Ap = 0.245 gm cm”™>
M AH/(AH)_
IT = | IT=2 IT = MAXIT
0. 541 0.000 0. 000 0.000
.
0. 549 0.205 0.173 0.157
0.588- - 0. 306 0.254 0.218
0. 627 0. 368 0.299
0. 667 0.410 0.321
0.706 0.441
0.745 0. 464
0.784 0.482
0.824 0.495
0.863 0. 505
0.902 0.512

0.941 0.517

0.980 0.519
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TABLE C-4, FREE SURFACE AND INTERFACE LOCATION
FOR CASE 5 UNDER CRITICAL CONDITIONS
(NUMERICAL ANALYSIS)

—_— —

Distance from Well-Axis Depth of Free Surface Interface Depth

cm cm cm
2.38 4.50 15.36
3.00 3.98 15. 53
3.78 3. 34 16.23
4.77 3.17 16. 52
6.01 3.00 16.99
7.58 | 2.82 17.88
9.54 2.37 18.25
12. 04 2.16 18.86
15.17 2.00 19.85
19.13 1.99 20.29
24.11 1.45 21.03
30. 39 1.26 21. 68
38.31 1.07 22.21
48.29 1. 00 22.83
60.87 0.99 23.36
76.73 0.98 23.94
96.72 0.33 24. 47

121.92 0.17 24,98
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TABLE C-5. RESULTS OF NUMERICAL ANALYSIS - CASE 6: (I)

a = 0.660 ¥=0.0915  p, = 0.755 gm cm”

I-Ie = 26,0 cm H_=23.0cm Ap =0.245 gm em™>

Tm, AH/(AH)
IT=1 IT =2 IT = MAXIT

0. 660 0.000 0. 000 ~ 0.000
0.673 0.174 0.145 0.134
0.712 0.260 0.210 0.187
0. 750 0.312 0.241
0.788 0. 347
0. 827 0.372
0.865 0. 389
0.904 0. 401
0.942 0. 409

0.981 0.412
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TABLE C-6., RESULTS OF NUMERICAL ANALYSIS - CASE 6: (II)

@ = 0.660 Y=0.0915 p = 0.755 gm cm™3
H.e = 26,0 cm Hw =22.85 cm Ap = 0.245 gm cm-a
—_—
-E/He AH/(AH)e
IT =1 IT =2 IT = MAXIT

0. 660 0.000 0.000 0.000
0.673 0.174 0.139 0. 120
0.__712 0.260 0.197 0.172
0. 750 0.312 0.221
0. 788 0. 347
0.827 0.372
0.865 0. 389
0.904 0.401
0.942 0. 409

0.981 0.412
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TABLE C-7. RESULTS OF NUMERICAL ANALYSIS - CASE 6: (I1I)

a=0.660 . Y = 0.0915 P, = 0.755 gm em™3
H; = 26.0 cm Hw = 22,80 cm Ap = 0.245 gm em™>
AH/(AH)
Z/H_ ©
IT=1 IT=2 IT = MAXIT

0. 660 0.000 0.000 0.000
0.673 0.174 0.138 0.121
0.712 0.260 0.197 0.163
0.750 0.312 0.221
0.788 0. 347
0.827 0.372
0.865 0. 389
0.904 0.401
0. 9.42 0. 409

0.981 0.412
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TABLE C-8. FREE SURFACE AND INTERFACE LOCATION FOR
' .~ CASE 6 UNDER CRITICAL CONDITIONS
(NUMERICAL ANALYSIS)

Distance from Well-Axis Depth of Free Surface Interface Depth -

cm cm cm
2.38 3.15 17.93
3.00 2.73 18.10
3.78 2.60 18.44
4.77 2.50 19.16
6.01 2.49 19.47
7.58 2.25 19. 66
9.54 1.83 20,39
12.04 1.68 21.08
15. 17 1. 51 21,46
19.13 1.49 21.87
24.11 1. 49 22.47
30.39 1.48 22.90
38.31 0.84 23.42
48.29 0.70 23.85
60.87 0.55 24,31
76.73 0. 50 24.73
96.72 0.45 25.17

121,92 0.20 25,58
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TABLE C-9, RESULTS OF NUMERICAL ANALYSIS OF SET 1

Y = 0.00865 = 2.890x10°

L = 2.500 K

53,42 ft/day

: 8F , B P Q Q _a__aq@
(gmcm 7) (ft) ApH (cfd) (cf8) 4 xp HzKAp
e e

0.250 0.012 13.10 3.495 5.343x104 0.618 0.2450 0.8562 0.395

0.350 0.012 8.00 2.140 4. 590x104 0.531 0.3443 0.7356 0.462

0.500 0.025 10.40 1.333 7.874x104 0.911 0.4543 0.6057 0.590

0.600 0.030 8.80 0.940 7.568x104 0.876 0.5160 0.4851 0.665

TABLE C-10. RESULTS OF NUMERICAL ANALYSIS OF SET 2

. K}
Y = 0.00217 ¥ =2.890x10"
L = 6.2893 K = 53.42 ft/day
a Ap D PP Q Q _ @ Q %

(gmem™) (£t) Ap H (cfd) (cfs) H, KD HzeKAp

0.150 0,020 28,00 4.425 8.309x104 0.962 0.1725 0.7250 0.348

0.352 0.025 12.88 1.600 8.309x104 0.962 0.3750 0.6000 0.450

0.450 0.025 9.66 1.200 7.560:»;104 0.875 0.4550 0.5460 0.510

0.550 0.025 6.40 0.795 5.885x104 0.681 0.5346 0.4250 0.620

0.650 0.025 4.60 0.571 4.6l3x104 0.534 0,5831 0.3332 0.695
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FABLE C-11. RESULTS OF NUMERICAL ANALYSIS OF SET 3.

Y= 0.0150 © #=6.583x10°

L= 9.8736 K = 53.42 ft/day
B e a. Apiv 15 pfls ‘ Q Q e . Q -.E

(gmem™>) (5 BpH, (cfd) (cfs) HeKlS Hzmp

0.100 0.020 11.90 2.975 2.707x10% 0.313 0.2147 0.6334 0.323
0.150 0.021 9.60 2.286 2.820x10% 0.326 0.2749 0.6284 0.328
0.250 0.025 7.55 1.510 3.238x10% 0.375 0.4014 0.6061 0.370
0.500 0.075 11.00 0.733 7.110x10% 0.823 0.6050. 0.6050 0.560

0.650 0,075 5.76 0.384 4.44lx104 0.514 0.7217 0.2771 0.700

TABLE C-12. RESULTS OF NUMERICAL ANALYSIS OF SET 4

y= 0.050 = 2.315x102
L=11.574 K = 133, 69 ft/day
a Ap D pr Q Q o a z

-3 ————
ft) ApH fd f =
(gmecm 7) (ft) pH, (cfd) (cfs) 4 KD

H2 KAp
(<] e

0.100 0.027 4.72 1.802 2.049x"104 0.237 0.3347 0.5949 0.310

0.150 0.050 6.49 1.338 3. 597XI04 0.416 0.4274 0.5720 0.320

0.250 0.059 5.09 1.050 3.482x104 0.403 0.5275 0.5536 0.360

0.350 0.050 4.18 0.862 3.246x104 0.376 0.5988 0.5160 0.420

0.400 0.050 3.51 0.725 3.033x104 0.351 0.6627 0.4822 0.465

0.650 0.109 3.45 0.326 3..702x104 0.428 0.8275 0.2700 0.690




APPENDIX D - EXPERIMENTAL DATA FOR LOCATION OF

FREE SURFACE AND INTERFACE
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TABLE D-1. FREE SURFACE AND INTERFACE LOCATION FOR
CASE 5 UNDER CRITICAL CONDITIONS
(EXPERIMENTAL DATA)

e

Distance from Well-Axis Depth of Free Surface Depth of Interface

cm cm cm
0.0 4. 60 16. 10
2.5 4. 60 16.20
3.5 3,75 —
5.0 3,00 16.75
7.0 2.55 17. 60
9.0 2.40 18. 00
15.0 2,00 20. 10
20,0 1,75 26. 40
25,0 1. 50 21.20
30.0 -- 22,15
40.0 1.10 22.50
60. 0 0. 30 23. 30
80.0 0.50 . 24.10
100.0 0.25 : 24.60

119.0 0.15 25.40
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TABLE D-2, FREE SURFACE AND INTERFACE LOCATION
FOR CASE 6 UNDER CRITICAL CONDITIONS
(EXPERIMENTAL DATA)

Distance from Well-Axis Depth of Free Surface Depth of Interface

cmi cm cm
0.0 3.20 18.50
2.5 3.20 18.50
3.5 2.70 18.80
5.0 2.50 --
7.0 2.20 19.70
9.0 1.80 20.30
15.0 1. 50 21.50
20.0 1. 40 22,10
25.0 1.35 22,60
30.0 1. 30 22.90
40.0 1.00 23.50
60.0 0. 65 24.30
80.0 0. 50 ‘ 24.80
100.0 ‘ . 0.35 25,30

119.0 0.20 25,80




APPENDIX E - PHYSICAL PROPERTIES OF SOLTROL "C"
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TABLE E-1, PHYSICAL PROPERTIES OF SOLTROL "C"

——— —

e ———————— et et

Temperature Density Viscosity
°c gram/ cc Poise
20.0 0.5782 0. 10589
21,0 0.7576 0.01555
22.0 0.7569 0.01524
23.0 0.7562 0.01494
24.0 0.7556 0.01468
25.0 : 0. 7549 0.01440
26.0 0.7542 0.01414
27.0 0.7536 0.01388
28.0 0. 7529 0.01362
29.0 0.7522 0.01337

30.0 0.7515 0.01315




