PB-223 943

A STOCHASTIC MODEL OF RUNOFF-PRODUCING
RAINFALL FOR SUMMER TYPE STORMS

Lucien Duckstein, et al

Arizona University
Tucson, Arizona

26 October 1971

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




VOL. 8, NO. 3

WATER RESOURCES RESEARCH

APRIL 1372

A Stochastic Model of Runoff-Producing Rainfall
for Summer Type Storms

LUCIEN DUCKSTEIN, MARTIN M. FOGEL, AND CHESTER C. KIAIEL

University of Anzona, Tucson, Arizona 85721

Abstract. Modification of watervheds occurs either through natural processes, such ax
erosion, or human influences, such as urbanization. In either case the rainfall input nwst be
properly modeled before the runoff output can be predicted as the modifications take place.
The paper considers runofl-pmducing summer precipitation of short duration and high spatial
variability as an intermittent atochastic phenomenon. The probability distribution of scasopal
total point or areal rainfall is obtained by convoluting a Poisson number of events with a
geomctric or negative binomial probability of rainfall amount. Close agrecment with the
experimental data is found. Nuxt the probability of various combinations of rainfall amounts,
given the scasonal total and the nunber of events. is computled. With these results, the
theoretical scasonal water yicld distribution can be obtained by using a simple roinfall-
runoff relationship, such as the $oil Conservation Serviee formula. The possibility of using
regional input parsmeters 1o studyv the distribution of the output of poorly gaged small
watersheds is discussed. Ia particular, extreme total flows can be computed.

This paper concerns the runoff cansed by
summer type precipitation, namely, thunder-
storms as found in a continental climate or
local convective storms as found in the south-
western United Stutes. This type of localized
rainfall ac:ivity is pertinent to urban or small
watersheds. Note that the evact meteorologic
origin ¢f the runoff-producing rainfall is of no
concern here; anyway, to the best of our
knowledge there is no accepted classification of
thunderstorms. Eventually, this classification
will be necessary in terms of atmospheric param-
eters, but it is seemingly impossible at present
because of a lack of detailed physical data on
storms. The definitions of a runoff-producing
event given later are based on a substantial
precipitation with a shor. duration and a high
spatial varance; this we have called summer
type precipitation for the sake of brevity:.

The design of fuod control structurcs, such as
storm scewers, culverts, levees, or small dams,
depends on correce identification of rainfall in-
puts. More precisely, in this paper, input to a
given watershed will be defined by stochactic
rainfal]l models; then runoff events can be gen-
erated by using known and simple rainfall-
runoff relationships that have some empirical
support [Fog:l and Duckstein, 1970). Such
simple models are further justified by a fore-

knowledge of the mathematical difficulties con-
nected with more involved stochastic transfor-
mations.

'The stochastic rainfall models used in this
study can be calibrated with 10-15 years of
rainfall record; with as few as 5 vears of data,
useful rainfall estimates can be obtained [Fogel
et al, 1971].

PROCESS DESCRIPTION

Fquispaced and event-based hydrologic
models. For reasons of convenience or tradi- .
tion, hydrologic data are usually taken at or
averaged over equispaced time intervals. For
example, maps of z year-y minute rainfall are
given by meteorologists [[Hershfield, 196G1]; also
average and peak daily, weekly, monthly, or
yearly flows of rivers are traditional hydrologic
quantities, Although such equispaced informa-
tion constitutes useful data, especially for
storms causing evenly distributed rainfall over
space or perennial flows, it is of dubious value
for summer type precipitation or intermiticnt
flows. This limitation is indirectly demonstrated
by Hershfield [1965, 1967], who could not find
consistent isocorrclation contours in the Walout
Gulch Watershied, Arizona, with the concepts
of cither 2 year-1 hour or 2 year-2 hour rain-
fall. Aeceptable rrsults were obtained, however,
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Runoff Modeling

in climates where the summer precipitation
plays a much less important role than it docs .
of Ry, R, *** , Ra for a given day as given vy

in southern Arizona an:l where the sample
gizes were larger. Another d~monstration of the
difficulty of using cquispaced data is given by
Kisiel ¢t al. [1971] in the statistics of the Ril-
lito Creck tlow. The same reference contains an
event-based analysis of the ilow of the Tucson
arroyo that provides a methodology for the
present investigation and deinonstrates the nec-
essity of scparating seasons.

Such an approach based on naturally occur-
ring events is warranted whenever well-defined
events, such os a point precipitation greater
than 1 inch, occur relatively infrequently, =o
that their cffects are usually separated by a
time interval that contains the ‘null event.’ Most
hydrologic phenomena in semiarid countrics cer-
tainly satisfy this criterion, as flood occurrences
in any climatie condition do [Zclenhasic, 1970).
For example, the considerable scatter of the
correlation coefficients between z year-y minute
point precipitation, on the one hand, and dis-
tance between gages, on the other hand, found
by Hershficld (1967) in southern Aricona is
due to the nature of convective storm events,
which can easily hit one gage repeatedly and
miss the next one. Possible definitions of sum-
mer rainfall events will now be given.

Definition 1. In the study of the convective
storm precipitation over the dense rain gage
petwork of the Atterbury Experimental Water-
shed near Tucson, Arizona, an event was de-
fined as the occurrence of at least one storm
center (point of maximum rainfall) over the 20
mi®* of the watershed [Fogel and Duckstein,
1069).

Such a definition, necessitating a dense net-
work of min gages, includes values of rain{all
that do not produce runoff. Huff (1967, 1068]
suggests several definitions of runuff-producing
storras based on several point rainfall measure-
ments a few miles apart. Fogel et al. [1971]
show that vhe distribution function characteriz-
ing point cvents is insensitive to the definition

of an event, provided the definition reflects a-

substantial diffcrence in measurements between
goges. These precipitation events generally pro-
duce the peak flows on small watersheds. Fur-
thermore, the records (in Chicago, for exanple)
show that high values of point rainfull ure not
evenly spread over space.

411

Definition 2. Let us consider n gages, 1, 2,
+++ , n, with total precipitations, respectively,

the U.S. Weather Burcau records. By definition,
an event i9 said to occur at any of the gages if
the mean precipitation (1/n) SR, i=1,2,+",
n, i3 greater than 0.5 inch and one gage records
more than 1 inch. Most urban arcas have a
sufficient number of gages to use this definition.

Event-based or intermittent process models
are characterized by at least two random vari-
ables and their distribution function: (1) the
random nnmber N of events per unit time
(scason) including the interarrival time between
events during the scason and (2) the random
varable(s) of interest in an cvent, cg., the
rainfall magnitude R, a time factor 7, such as
the maximmm 15-minute rainfall intensity
[Fogel and Duckstein, 1970}, the runoff volume
@, the runoff duration [Kisiel ¢t al., 1971], the
prak runoff, or the like; if more than one ran-
dom variable is of interest, then a joint distribu-
tion is needed.

In this investigation, both discrete and con-
tinuous representation of the distribution func-
tiop of certain random variables, such ns rain-
fall R or total ruroff Q, will be used. The use
of the discrete form generally simplifies convolu-
tions and computations; however, the con-
tinuous form is more convenient for transiorm-
ing random variables. The symnbols, conventions,
and abbreviations to be used for any random
varable V are defined in the notation list. The
first task will be to determine the probability
mass functions (pmf) f«(j) of ¥ aud fa(j) of R.
The runoff @ will then be obtained by trans-
forming the random variable R by means of the
lumped rainfall-runoff relationship; the prob-
ability density function (pdf) of Q is denoted
by fo(y), ¥ > 0. The pdf of the seasonal water
yield will be calculated by adding a random
number N of random runotl events.

RAINFALL MODLL

Number of events N per warm $eason.
Thuaderstorms scem to occur in an independent

_manner in tine and space such that the num-

ber of ruinfall events N per scason follows a
Poisson pmf [Brooks and Carruthers, 1933;
Todorovic and Yevjevich, 1969]. This observa-
tion holds for a varicty of conditivns: for con-
vective storm rainfull in ‘Tucson, Arizona, when
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Fig. 1. Distribution of occurrences of warm
season raiofall in which the areal mean of five
goges exceeded 0.50 iuch and at least one gogo re-
coided more than 10 inch.

definition 1 is used [Fogel and Duckstein,
1069]; for summer type rainfall in Chicago
when definition 2 is used [Fogpel et al., 1971];
and for summer type rainfall in New Orleans
.when definition 2 is used (Figure 1). Further-
more the Poisson pmif seems to hold for more
complex runoff phenomena: for the number of
semmer renoff cvents in the Tueson arroyo,
whose watershed is less than 50 km' [Kisiel
et al, 1971], ond for the number of summer
runoff events in the Rillito Creck, whose water-
shed is more than 2300 km? [Baran et al., 1971].
We can thus write that N is distributed as

{
P(N = j) = 1v0) ""'?T (1
j- 0, l, e

where m is the mean number of events per
season, .
Of later use is the generating function of

pmf (1),

Fy()) m e =" )]

Magnitude R of point rainfall. In earlier
papers, it had been established by using Tueson
[Fogel and Duckstein, 1969) and Chicago
[Fogel et al., 1971] data that a geometric pmf
could not be rejected for point rainfall amount
R:

,l(j) - (l - P)p‘ ji=012-- (3)
The generating function of pmf (3) is

Fo() = (1 — p)/(1 — p4) (4

DUCKSTEIN, FOGEL, AND KISIEL

For the Tucson data, definition 1, which re-
quires a dense rain gage nctwork, was used,
and a value of p = 0.48 was found as the
prohability that the point receives one or more
units of rain. For the Chicago data, definition
2, which cun be applicd to National Weather
Service records, was used with n = §, and a
value of p = 0.35 was found. New Orleans
Weather Bureau data for five gages were then
analyzed for warm season rainfall (May-Sep-
tember) under the conditions for the Chicago
data. A value of p = 0.40 was found (Figure 2).
Thus we sce empirically from Figure 2 that the
probability of point rainfail R, given the pres-
ence of rain over the area considered, is geo-
metric on the basis of the heuristic argument
that summer stonms are not persistent. Recall
that a geometric distribution arizes from a se-
quence of independent Bernoulli trials. The
parameter p (Figare 2) may aiso be character-
istic of a region. There is, however, & need to
cvaluate the regional homogeneity of p in arcas
where dense rain gage nectworks exist, but the
authors do not have access to this information.

Total seasonal precipitation. Let Z be the
total number of units ¢f rainfall duning one
summer season:

Z=R +Ry+ - + Ry ®

where Ry, Ry, *** , Ry are mutually indepen-
dent, identically distributed random variables.
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Fig. 2. Distribution of warm season rainfall
dapths per rainy day.
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The generating function of Z is [Feller, 1957,
chapter 12]

Ps(s) = FN[FR(')]

-en[-nen(i=2)]

The pdf of Z is obtained from the geucrating
funetion (8) by succcssive differentintions as
follows:

1s6) = 2 & R0 M
4 Jl d‘ 2 -0

The :nean or expectation E(Z) and variance
var(Z) can be calculated directly without de-
termining (be pmf (7):

E(Z) = E(N)E(R) ®)
var (2) = var(M(ER)]' + [EW)Kvar (R)

(See Benjamin and Cornell {1970] for proof.)

For example, in the Atterbury precipitation
model [Fogel and Duckstein. 1969], E(N) =
m = $.33 and p = 048, s0 that

. 413
E(R) = 0.92 var (R) = 1.77

E(Z) = 4.90 vur (Z) = 55.0

The pmf of Z when the above values of m and
p are used is given in the sccond row of Table
1. The purpose of Table 1 is to gencrate pos-
sible combinations of amounts of point rainfall
per event and the number of events during one
scason. ‘The rows correspond to the number of
events per year N'; the coluinns correspond to
the yearly total 2. Cell (j, k) in the table rep-
resents the joint probability of j 2 0 units of
rain and k& > 0 cvents per year. For example,
the probability that Z = 7 units of rain will
oceur in N = 4 events is

P(Z =7 N = 4)
-P(Z=7]|N= 48PN = 4)
= (771 = )P 1x(4)
= 0.0513 X 0.163

= 0.00835

Within each cell, different cccupancy distribu-
tions of storms are possible. For example, when

E(N) = 5.33 var (N) = 5.33 the goal is to estimate water yicld in u season
TABLE 1. GCeneration of Scasonal Scts of Rainfall Events
g Lol ol 2| s| af s sf 7 )] ojrofurjaziusjaejas|ie 1718

. (203).077].103|.118].120 |. 113 {.101 | .08g .070 | 058 |.0a5].052(.024].018}.013].0091.007].005 |.003 .002

P(Nek)
0 0.008 : :
1] 0.026
21 0.069
3] 022

................................. yeeese o
41 0.162 }.0083;
................................. —coconme
s]o.17 ' H S
6 0.188
71 0.117 1 o total nusher of units of rain per
: season (in hall lnches)

8] 0.0m Re ti-bcr of rainfall events per season
il MZe s, nek)eP(Tes|het) P(aet)
10} 9.0 o (*ha - phpim
1} o0.013 =
12{ 0.006
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jrrespective of the order in which the amounts
occur, 7 units enn be combined into 4 events in
three possible ways: 4-1-1-1, 3-2-1-1, and 2-2-
2.1. When clussical combinatorial analysis
techniques are used, the probability of each
of these occupancics can be calculated [Feller,
1957, chapters 2, 3).

A Monte Carlo simulation can now be set up
to gencrate an unordered suceession of yearly
cembinations of events. This svnthetic rainfall
set moy be uscful, for exmmple, in cvalvating
runoff modification practices and in studying
geparately the cfects of random Quctuations
and control. The order of the occurrence of the
events may be iinportant here, in which case it
can be incorporated into the simulation, and a
time series of events can then be generated.
In any event, transforming the minfall into
runoff by using existing simple wutershed models
is necessary. This transformation is the subject
of the next section.

_ . TRANSFORMING RAINFALL INTI RUNOVF

Two models are considered to obtain the run-
off volume Q@ from a rinfall event: a lincar
mode! with u randomn proportionality parameter
and the Soil Conservation Service formula with
constant parameters. The seasonal water yield
is then calculated by using these results.

Linear model with random parameter. The
following formula secmns to yicld good cocfficients
of determination (squared correlation coetfi-
cients) for small watersheds [Fogel and Duck-
~ stein, 1970]:

Q= C(R — 4) (9)

where A represents the initial abstractions de-
pending on the watershed and C is a function
of the rainfall characteristics for a given water-
shed, in particular, a time factor such as the
maximum 15-minute intensity.

We shall assume on the basis of data pre-
gented in Fogel and Duckstein [1970) that C
is & random variable with a gamma pdf
fc(a, b} 2) = -17(17) bl z>0 (10)
and that the rainfall amount R and the coef-
ficient C arc statistically independent.

These assumpiions are not unrcasonable in
view of the carlicr cited work [#upel and Duck-
stein, 1070) where a lincar relationship between

DUCKSTEIN, FOGEL, AND KISIEL

C and a timo factor T (the maximum 15-minufe
in‘cnsity) was postulated. Typical values found
experimentally were C = 03 + 0072 (T - 3).

The pdf of T may be taken as gammo with
E(T) = 3 and var(T) = 08. Thus EiC) =
03 = a/b and var(C) = 0005 = a/b*;
hence ¢ = 18 and b = 60.

Such ligh vulues of @ and b yicld a flat dis-
tribution of C. Truncation of pdf (10) for C
> 1 may be nccessary for accurate numerical
caleulations; however, from the relationship be-
tween C and T, we find that P(C 2 1) =
P(T > 9.72). This probability is very small
(less than 10°*) and makes truncation unneces-
s.. y for practical purposes.

Since A is assumed to be a constant for a
giver watershed, we can define a shifted or
cffective rainfull as

P=R-—- A

P =0

The pmf of R is geometric (3); the con-
tinuous equivalent is an exponential pdf

R> 4 Q)

otherwise

>0 (12)
where u is approximately given by equating
the means of pmf (3) and pdf (12): 1/u =
p/(1 — p). When (11) and (12) are used, the
distribution function of P is

Ia(z) = ue™

~uingsd)

¢r(2)='l—¢ ZZO

®p(z) = 0 2<0

Note that the pdf of P, strictly speaking,
does not exist, since it has a discontinuity (or
atom) at the origin. Numerical approximations
may be obtained, but they will not be uselul in
the sequel, and we shall deal with only distri-
bution functions. Although the transformaticn
of the random variables represented by (11) is
nonlincar, the kth moment of P ean be vbtained
without difficulty as follows:

(13)

EP) = [ Otata) de
+ [ - e e
- L E u(z — A)e™ dz
= o **E(R")
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In particular, the mean and variance of P are
found to bo

E(P) = ¢=**/u (14)
Sy 264 — ™
var (P) = E(P") — [E(F)]' = =

u=(1/p) =1

Other moments of the distribution of P can be
calculated in a similar manner. Note that the
natural tendency to use ‘mean values’ of (11)
would lend to E(P) = E(R) — A, which w
an erroncous result.*

We have thus obtained Q = CP. If wo
assume that C and P are independent, tho
mean and variance of Q can readily be calcu-
lated as follows:

E(Q) = E(C)E(P) 18)
" var (Q) = var (Q)IE(P)]® + [s(c)d e (P)

Y var(
The latter equation \.xpla%s why the co-

efficient of variation of the tlow K, is higher
than that of the precipitation K,. From (10)
and (14) the following relations are obtained:

var C a (8 1
Ke' = mor ™ ( ) "
3 i._’_P_ - vA
K'=wEpp =% !
8o that ’

KO. - KC’ + K” -(l +)2°IA -1
+i e /-

Because of tho numerical value ¢ = 18 found
earlier, the diffcrence between Ko® and K, is
less than 5¢%; however, other cazes in which
the contribution of K,' is important may be
found.

The distribution function Q = CP is obtained
by randomizing C [Feller, 1967, chapter 2):

2 = [ oLz 10
Using (10) and (13) yiclds

’U(y) =1 I'(a)f

c-l ~slip/s) eA)~bs dz

(17)
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Numerical methods are necded to compute this
function, whose usefulness depends on the accu-
racy obtainable on the parameters g, b, 4, and
u (or p).

Soil Conservation Service formula. An alter-
nate method of obtaining the pdf of Q will be
examined next. The Soil Conscrvation Service
(SCS) has cstablished ar empirical rainfall-
runoff relationship whose cocflicients depend on
the physical characteristics of .the watershed
[Kent, 1968). This relationship can be writtco
as

Q= _ﬁk___ﬁ)_. (18)
R—-4A)+ S
where A reprcﬂcnts, as before, the initial ab-
stractions and S is a watershed factor. Equa-
tion 18 does not account for the effect of rainfall
intensity as (9) does; on the other hand it
shows a nonlinear increase of Q with R.
The effective rainfall is the same as belore
(equation 11), so that (18) becomes

¢ =515 (19)

The distribution function of @', denoted
&, (y), is obtained by a classical tronsformation
of random variables [Benjamin and Cornell,
1070). Let y represent, Q' and z represent P;
thea

Bo-() = ®rlz(1)] (20)

. .
”'z:s or z =iy + @'+ 48)"7

Since ®»(z) is given by (13), we can rewrite
(20) as

Po-(y) = 1 — exp ("%_IU +24
+ G+ 48l (@)
. ue=(1/p) — 1
As was true for (17), a numerical evaluation

of (21) is possible, but it is warranted only if
the parameters p, 4, and S are known with

. sufficient accuracy. For purposes of illustration,

the distribution function (21), which is condi-
tioned on the occurrence of an cvent, is repre-
gented in Figure 3 for a given watershed with
A = 08, S = 3, and different values of the
rainfall parameter p = 035, p = 040, and
p = 045,
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. Fig. 3. Distribution function of storm runoff
volumes per cvent using the SCS formula for a
given watershed (A = 06 and S = 3).

Seasonal water yield from small watersheds.
"~ From the rainfall record, the point rainfall pmf{
(3) can be obtained; hence with 4 known the
distribution fuuction (13) can bLe evaluated.
A simple procedure to obtain the mcan sca-
sonal water vield W can be defined as follows:

1. Obtain a simulated set of point rainfalls
Rl, Rl, °ry, R'.

2. Transiorm the AR, into MP,: P, =0 if
R’SAﬂndP'=R;—AifR; >A.

3. Use @ = E(C)P, 0t Q/ = PY(P) +
S) to obtain the set Q, -+ , Qx or Q/,
ese ,Qy. Then W = Q, + -+ + Qu or
W = Q’ + -+ + Q). In this procedure,
the moments of the yield could be ealculated
from the simulation. In the equations to follow,
only the symbol Q will be used to denote run-
off volume.

Another method of obtaining not only the
mean and variance but also the pdf of the sea-
sonal water yicld consists of the fallowing steps.

1. Obtain the pmf of the number of runoff-
producing events M. Using definition 2, we have
fx(j) = fs(j) (cquation 1), since definition 2
considers only runeff-producing cvents. Using
definition 1, we must first evaluate the probabil-
ity that any given rainfall produces runofi: 1 —
&,(A) = ¢4 Then we obtain

Tu(h) = ); M = )TN0 (22)

DUCKSTEIN, TOGEL, AND KISIEL

This formuln is derived under the assumptions
that each rainfall is equivalent to a Bernoulii
trial with probability e** of success (runoff)
and that there is & random number § of rainfall
events per scason. Precipitation is measured at
a sirgle rain gage that is taken as representative
of the area.

2, The seasonal water yield W is the sum
of M identically distributed, mutually indepen-
dent variables Q,:

WoeQ+ QG+ o+ Qu

Hence the mean and variance of I¥ as given
by (8) are

E(W) = E(M)E(Q) 23)
var (W) = var (M)[E(Q)*] + [E(3)"] var (Q)

3. If we use the lincar rainfall-runoff rela-
tionship, then (11), which gave E(Q) and
var(Q), can be substituted into (23). Thus we
have an explicit expression for the mean and
variance of the scasonal water yicld. The
Fouricr transform of the distribution of W (also
called the characteristic function) is

Fu(w) = Fy[Fo(w)] (29)
where Fo(w) is the characteristic function of Q
obtained from (17).

4. If the SCS formula (18) for rainfall-
runoff is used, the mean and variance of Q’
given by (21) can be substituted into (23) to
obtain the explicit enpression of E(W) and
var(W). The characteristic function of ¥ is
then ’

Ow(w) = Fu[Go(w)] (25)
where Go(w) is the characteristic function of Q'
obtained from (21). The moments of W can
be obtained by taking the succcssive derivatives
of (25) evaluated at @ = 0.

The above considerations concern situations
in which point rainfall measurcmients at only
one station are quite representative of the areal
pattern; ther would not be applicable to the
larger watersheds, for which runoff must be
caleulated from arcal rainfall. In the next see-
tions, generalization of the proposed model to
arenl rainfall estimated from point measure-
ments, the problem of estimating runoff in
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poorly gnged watersheds, and the forecust of
extreme flow events using point rainfall meas-
urements aro discussed.

REGIONALIZATION

Extension to area models. The arcal rainfall
B corresponding to a given cvent may be con-
sidered a3 the avernge of a fixed number of n
point rainfall measurements R,, Ry, ***, Ra.
The pmf of the sum T R, and of the average
(1/n) T R,k =1, -+, n, diffier only by a
constant scaling factor, so that we shall deal
with the sum, which has a simpler expression
than the average. If the point rainfall variates
R,, *+* , R. are mutually independent and have
an identical gcometric pmf (equations 3 and 4),
then B = I R, has a negative binomial pmf
with parameters p ard r = n:

BG) = 7N =P (28)
The generating function of this pmf is
- l hnd ’ .
o-[(22)] e

The validity of (26) was demonstrated for
Tueson and Chicago data by Fogel et al. [1971].
Although the fit at low values was not outstand-
ing, the tail did fit well.

If the gage measurements are correlated, then
the parameter r is less than the number of
gages. At the limit, if a uniform rainfall occurs
over the n gages, the result reduces to the infor-
mation given by a single point rainfall; hence
r = 1. In other words

1<r<n (28)

To fiud the parameter r for the New Orleans
data, the method of moments was used, and a
value r = 2 was found for n = 5 gages. Note
that five gages were available for the area under
consideration and these gave reasonable esti-
mates of the mean arcal rainfall. As Figure 4 il-
lustrates, the theoretical and empirical distribu-
tions aro closer together for the New Orleans
data than for the Chicago data. The null
Lypothesis that the mean rainfall was negative
binomial (p = 040, r = 2) could not be
rejected at any level of significance by using
a Kolmogorov-Smirnov test for goodness of fit.
All the calculations presented using point rain-
fall B enn he repeated step by step by using
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areal rainfall B, defined by (20) and (27). For-
simulation purposcs, a table of rainfall com-
binations similar to Tablo 1 can be used to
gencrate scusonal sets of areal rainfall, which
are transformed into sets of runoff by using the
linear formula (9) or tho SCS formula (18).
Analytically, the mean and variance of Q are
given by formulas similar to (16). I B is the
runofi-producing area rainfall, then we have

E(Q) = E(C)E(B) 29)
e Q) = v (OO + [HO) vor B)

The seasonal water yield W‘.b';‘;’nczz\&‘x\nrn
variance given by (23) when E(Q) and var(Q)
uvre calculated by (29). As we have secn above,
areal rainfall B requires a point paramecter p
and a spatial parameter r. If several gages are
present within a 250400 km® watershed, as is
the case for Tucson, Chicago, and New Orleans,
p and r can be determined from the record. The
estimation problem in the absence of such data
is discussed in the next section.

Poorly gaged watersheds. Assume we have
a 250-km® waterzhed with a short record of
summer rainfall, say § years, at a single gage.
How can the pdf of the areal minfall B be
estimated? The following steps are suggested.

1. Obtain a prior value of p from regional
considerations. Tnus around Chicago or New
Orleans, when definition 2 of an event is used,
p = 0.35 or p = 0.40, respectively.

2. Improve the estimate of p using the 5
years of single poiut data over the watershed by
using, for example, Baycs’ formula [De Groot,
1970, p. 55; McGilchrist et al., 1970]).

3. Obtain a prior valuc of r based on the
size of the watershed. When definition 1 of an
event is used, r is approximately equal to the
mean number of cells centered over the water-
shed per event (1.23 for 50 km® near Tucson).
When definition 2 is used, r is approximately
cqual to tiie mean nuraber of independent
runoff-producing storm events over the area
(r = 2 or r = 3 for 150 km* ncar Chicago or

‘New Orleans). If a uniform distribution of

thunderstorm cells is assumed, r can be expected
to vary lincarily with the watershed area; then
for 250 km® a value of r between 4 and 5 seems
reasonable. The data that have been examined
to date do not warrant further extrapalation,
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Fig. 4. Distribution of areal mcan depth of
warm scason rainfall per event.

4. Improve the estimate of r by using an
areal observation method, if feasible, to count
the number of cells producing precipitation
. -over a certain area at a given time.

6. Quantify the uncertainty on the pdf f, of
B (equation 26) as a function of the uncer-
tainty on the purameters p and r. Note that
the mean and variance characterize completely
the pmf of B (20), since we are dealing with a
two-parameter distribution.

Further rescarch is necessary to validate and
eventually to implement such a method. Once
the areal rainfall distribution is determined,
runofl can be calculated by one of the methods
presented earlier.

Extreme events. Let the areal rainfall dis-
tribution {unction be given as &,(k). For
runoff-producing ramfall (definition 2), by using
the pinf of B (1), we obtain )

@l = X (771 - AP
j - or L, k

Two methods can then be used to obtain the
distribution function of the maximum seasonal
runoff ©4*(k) called the maximum (or extreme)
distribution.

The first method consists of using the Monte
Carlo simulation to generate seagonal arcal
rainfall scta from which the runoff. values are
computed. The relative cunulative, frequency
of yearly floads of magnitude k or less is, by
definition, d," (k).

(30)
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The sccond method is analytic and uses the
pmf fu(j) of the yearly number of runofi-
producing events M. Either M = N or (22)
gives fx for poiut rainfall. For arcal rainfall,
fu . obtained as the pmf of a random number
of events over the watershed; that is, fy is &
compound Toisson pmf if the indcpendence
assumption holds in both space and time. At
any rate, the distribution function of the sca-
sonal maximum areal rainfall per event is given
by the equation .

Ot (k) = ‘E (®x(0)])' 10 () (31)
j =01, 2,

If we assume that the pmf of M is Poisson
(1) with mean m, then (31) can be written as

@,0(k) = exp — [m[1 — (D]}  (32)

Distribution function (32) is plotted in Fig-
ure 5 for m = 10; p = 0.35, 0.40, and 0.45;
and r = 3. As can be expected, the probability
that the areal rainfall renches u certain mag-
nitude increases with r, since r represents the
number of independent point events that may
add up to cause runoff. The maximum distri-
bution function of seasonal runoff ®.*(k) can be
obtained from (31) by using a rainfall-runoff
relationship such as (9) or (19).

RAINFALL DEPTH, k INCHES

.0
050 070 080 090 095 097 0% 099 093

PROBABILITY RAINFALL NOT
EXCEEDING k INCHES

Fig. 5. Maximum distribution function of arcal
mean minfll forr = 3 and »m = 10.
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Omne of tha problems that may develop with
this procedure concerns the reproduction of the
extreme or rare cvent. Parameter estimation
is port of the problem, but so is the selection
of the distribution function itself. Many of the
hydrologie processes have exceedingly long tails
that are difficult to characterize with the more
commonly used distribution function. A closer
look at this aspect is currently being taken.
Possible techniques to be investigated will in-
volve the use of a combination of distributions
and paramecter randotnization.

DIBCUSSION AND CONCLUSIONS

The proposed models have several shortcom-
ings. For example, the influence of antecedent
moisture conditions on runoff has not been con-
sidered. ror adequate consideration, a time
series of rainfall events would have to be simu-
Iated, and such a simulation would require many
more data than are available. Independence
assumptions have been made between events,
between the number and magnitude of events,
and within an event (independence of tine
factors and total rainfall). Distribution func-
tions have been hypothesized. The effects of
parameter uncertainty on the results have not
been thoroughly asscssed. To assess these effects
thoroughly, a managerial goal and the notion of
economic risk must be defined, when the effect
of parameter uncertainty can be a.certained
using Bayesian decision theory [Davis, 1971].

Another restrictive aspect of this paper is
that only summer rainfall has been considered.
Winter precipitation exhibits different charac-
teristics, such as lower intensity, longer dura-
tion, more uniform areal distribution, and per-
sistence from one event to another. Ultimately,
if and when validated models of summer and
winter runoff become available, the yearly
yicld of water can be obtained by adding the
two corresponding random variables [Kisiel
et al, 1071].

In conclusion, we have demonstrated the
following points.

1. The description of thunderstorm type
rainfall as an intermittent process i advane
tageous because of the temporarily independent,
infrequent, irregularly spaced occurrences of
precipitation,

2. Rainfull-runofl models can be based on
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cither of two definitions of an event, one cun-
ditioncd on an area, the other conditioned on
adjacent point measurements,

3. Whether the location is Tweson, Chicago,
or New Orlcans and whether definition 1 or
definition 2 is used, the following distribution
functions cannot be rejected for summer rain-
fall: (a) Poisson, for the number of events per
scason; (b) geometric, for the rainfall quantity
at a point; and (c) negative binomial, for the
areal rainfall. As a result, at most three parum-
eters are necessary for the analysis.

4. Monte Carlo simulation can be set up to
obtain secasonal sets of rainfall events.

5. The distribution function for runoff vol-
umes i3 obtained by randomizing the multipli-
cative constant in a lincar rainfall-runoff rela-
tionship to account for a randomly varving
time factor of the hyetograph. An alternate
mcthod is a transformation of random vari-
ables using the Soil Conservation Service
formula, -

6. The totul scasonal water yield can be
computed either by analytical methods or
Monte Carlo simulation,

7. Areal rainfall models have been obtained.
For poorly gaged watersheds, the parameter
estimation is facilitated by regional considera-
tions and the usc of Bayes' formula.

The approach taken in this paper is baced
on empirical and heuristic considerations. Given
the stochastic hypotheses about rainfall and
runoff patterns, the use of probability theory
leads to analytical solutions for the probability
distributions of seaconal rainfall totals and
areal rainfall. Such solutions have advantages
over simulated probability distributions to the
extent that underlying hypotheses are aceept-
able tn the user and are consistent with condi-
tions in the geographic area of application.

NOTATION

a, parameter of gamma distribution;
A, initial abstraction, inches;
b, paramoter of gamma distribution;
E( ), expected valuoof ( );
IrC )av( ), probability of mass (or density)
function of discrete (or continu-
. ous) randoin varinblo V;
gencrating (or chameteristic) fune-
tion of discrete (or continuons)
randoin variable V;

P’( )p o'( )p
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J, discrete index, dummy variable in
the physical domain;
k, discrete index, dummy variable in
the physical domain;
. Ky, coefficient of vuriution of V;

m, average number of events per

86as0n;

n, number of rain gages over area
considered;

p, perameter of the geometrio dis-
tribution;

v, parameter of negative binomial
distribution;

s, dummy varisble in the generation
function transform domain cor-
responding to discrete functions of
jork,0<as<1;

8, oonstant in Soil Conservation Ser-
vice rainfall-runoff formula;

1, mean interarrival time between
events;

z, continuous dummy variable in the
physical domain;

¥, continuons dummy variable in the
physical domain;

&y( ), distribution function of V; .
¢, maximum (or exireme) distribu-
tion function of 1";

w, dummy variable in charzcteristic
function, in the Fourier transform
domain corresponding to the con-
tinuous function of z or y, w > 0;
gamma function;

B Y G 8
Random variables:

B, aresal rainfall;
C, nainfull-runoff proportionality
factor;
M, number of runofl-producing rain-
falls per season;
N, number of minfall rvents per
season;
P, total effective rainfall per event,
inches (P = R ~ A);
Q, ¢, total runoff per event, inches;
R, total minfall per event, inches;
R(s), precipitation on day i,
R,, precipitation at point j;
T, time factor of hydrugraph;
V, randca: varinble;
W, seasonul water yicld, inches;
Z, total number of units of precipita-
tion per season.
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