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ABSTRAL-T
 

Duckstein, L., Fogcl, M.M. and Thames, J.1., 1972. Elevation effects on ainfall: astochastic model.
 
J.Hylrol.. 18: 21-35. 
The variation in point precipitation with elevation is Investigated using an event-based stochastic 

model of thunderstorm rainfall and empirical data. Parameters of the model co.respond to the number 
of events per unit of time and the depth of rainfall per event. An increase in precipitation with eleva
don may be due to an Increase in the number of events, in the amount of rainfall per event of to some 
combination of both possibilities. The distribution of the number of event%per season isassumed to 
be aPoisson variatc while the distribution of point rainfall depths may be taken as geometric. The 
summation of a random number of random variables i%used to represen, seasonal point precipitation. 
Assuming that the two parameters of the rcdcl increase linearly with elevation, then total seasonal 
ainfall increases as aquadratic polynomial with elevation. The use of the model allows one to obtain 

the return period of storm rainfall of agiven magnitude despite ashort historical record. An indeen
dent set of data was used to verify the procedure. 

INTRODUCTION 

Elevation of the precipitation gaging station is considered to be one of sever
al topographic parameters that affect annual or seasonal totals (Wiesner, 1970). 
In one of the most detailed studies of orographic influences on precipitation, 
Spreen (1947) correlated mean seasonal precipitation with such factors as 
elevation, rise, exposure and orientation for western Colorado. Elevation 
alone accounted for 30% of the variation in precipitation while all five para
meters together explained 85% of the variation. Schermerhorn (1967) also 
noted that for western Oregon and Washington station elevation alone does 
not explain much of the variation in annual precipitation which predominant
ly occurs in winter. Indices of terrain elevation and barrier elevation with the 
latter being difficult to define in a simple. objective fashion, together with a 
latitude index explains most of the variation. 

Hamun ( 1971 ) suggests that the weak correlations in precipitation
elevation relationships "are attributable to the inability of the unshielded 
gage to capture the falling precipitation. particularly snow. when exposed to 
even light winds". Using data from a dual-gage network in southwestern 
Idaho, he states that the catch in the shielded gages are 23% reater than the 
unshielded catch and that computed values of "actual" precipitation are in
creased by 43% over the unshielded catch. The computed values are derived 
using an empirical relationship involving both unshielded and shielded catches. 
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When the annual precipitation isseparated into that resulting from winter 
frontal systems and summertime air mass convective storms, it is noted ihat 
winter precipitation is increased more than four-fold at the 7000-ft. elevation 
as compared to that found at 4000 ft. For these same elevations, summer 
rainfall isnot quite doubled. Thus, it appears that analyses using annual pre
cipitation data m iy also introduce considerable bias and that individual 
storm analysis offers the soundest basis for determining topographic effects 
on precipitation. 

In all such studies, little or no attempts have been made to determine 
whether the increase in precipitation with elevation is due to an increase in 
the number of storns that occur, or in the amount of precipitation per storm 
or to some combination of both possibilities. lamon (1971) reports on a 
single winter storm in which precipitation increases linearly from 0.4 inch at 
4000-ft. to about 1.2 inches at the 7000-ft. elevation. 

This paper considers summer rainfall only, that is,essentially rainfall 
caused by air mass convective storms occuiu-ing in July, August and Septem
ber. To verify the model developed, data from a cloud seeding experiment 
designed to investigate the possibility of increasing thunderstorm rainfall in 
the Santa Catalina Mountains near Tucson, Arizona (320 25' N 1100 45' W) 
were used (Battan and Green, 1971). 

BASIC RAINFALL IROBABILITY MODEL 

Event-based models are characterized by at least two random variables and 
their distribution. First, there is the random number of events per unit of time 
(season or year) designated as N. An alternate choice would be the interarri
val time between events. Then there are one or more of the random variables 
of interest such as the depth of rainfall R or the duration of rainfall D. If 
more than one such random variable isof interest, then a joint distribution 
would be needed. 

Number of events per season 

Thunderstorms seem to occur in an independent manner in time and space 
uch that the number of rainfall events per season N follows a Poisson prob

ability mass function (Brooks and Carruthers, 1953). A similar result was ob
tained in a study by Todorovic and Yevyevich (1969). The probability mass 
function for N can thus be written as: 

=fw( / = 0t 1, 2, e ra 

where m is the mean number of events per season. 
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For this paper, an event is defined as the occurrence of at least 0.01 inches 
of rain at a gage; if one hour or more separates the recording of such rainfall, 
this results in the counting of two distinct events. In terms of an earlier paper 
(Duckstein et al., 1972), this would be a new event definition. The first defi
nition required a dense rain gage network while the second definition required 
at least two gages within 3-10 miles from one another. In this way. the more 
intense thunderstorm rainfall may be distinguished from the more uniform 
frontal-type rainfall. This situation presents no such problem in the case here
in as summer rainfall isalmost always from showers and thunderstorms of a 
local nature (Sellers, 1964). Inasmuch as only point rainfall is being consid
ered, there is no way of infening how much rainfall may have occurred with 
a few miles of the point being consider,:d without recording anything at this 
gage. For this reason, in the absence of any proof to the contrary, the struc
ture of thunderstorm cells is assumed to be invariant within the range of ele
vation being considered (2500-8600 ft.). That is,distinct cells cause rains 
over an area roughly circular with a diameter generally between 4-6 miles 
aid the depth of rainfall is maximum at the center and decreases rapidly from 
there (Fogel and Ducks!ein, 1969; Osborn and Lane, 1972). 

Depth ofpoint rainfall 

As shown in an earlier paper (Fogel and Ducksteln, 1969), a geometric 
probability mass function for point rainfall depths was derived from an anal
ysis of a dense network of rain gages. Thus, for Iunits of rain, the distribution 
of the depth of rainfall R is: 

fR) = (l-p)p =O, 1, 2,... (2) 
where p, in this instance, is the probability of success of the point in question 
reciving any amount of rain above a given threshold value including zero. 

Discussionof arealrainfall 

Consider that a thunderstorm system containing several cells is present over 
a watershed during the period considered, say 24 h. If the measuring points, 
rain gages, are sufficiently far apart so that the measurements at any two 
gages comes almost always from two different cloudbursts, it can be said 
that the system has spatial independence and temporal dependence. 

For a given storm, the areal rainfall B, or the mean rainfall over a given 
area, may be considered as the average of a fixed number ofi point rainfall 
measurements R I , R 2 , ..., R,. Since the average amount of rainfall for the n 
gages differs from the sum of the n gages only by aconstant scaling factor, it 
is possible to use this latter value in developing a probability mass function 
for areal rainfall. 
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If the point raini'all variates R 1 , R 2, ....R,, are mutually independent with 
an identical probability mass function (eq. 2), then it has been shown that 
the areal rainfall B has a negative binomial distribution with parameters p 
andr n (Fogel et al., 1971). 

To tal seasonal rainfall 

It issometimes desirable to determine the mean and variance of total pre-. 
cipitation during agiven time period. This is readily done with the approach 
taken herein. 

Let Z be the total number of units of rainfall for a summer season: 

Z = Ri + R 2 + ... + RN (4) 

here R1, R 2, ..., Rv are mutually independent identically distributed ran
dom variables. Regardless of the distribution or independence of P and N, the 
mean or expected value E(Z) is given by: 

E(Z) = E(N) E(R) (5) 

If R and N are independent, then the variance VAR(Z) is given by: 

VAR(Z) = VAR(N) [E(R)12 + [E(N VAR(R) (6) 

That J'; total seasonal rainfall Z can come from various combinations of 
point rainfall depths per event R and the number of events N during a season 
is readily apparent. A table may be arranged to produce these combinations 
with the rows corresponding to the number of events per year, and the co
lumns to the total seasonal rainfall. Cell (i, k) would thus represent the joint 
probability of j units of rainand k events per year. Within each cell, different 
occupancy distributions of storms are possible. Using classical combinatorial 
analysis techniques, the probability of each of these occupancies can be cal
culated (Feller. 1957). 

A Monte Carlo simulation can now be set up to generate an unordered 
succession of yearly combination of events. In those instances where the or
der of event occurrence ;s of importance, it can be incorporated into the 
simulation to generate a time series of events. 
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Fig. 1.General topography of the Santa Catalina Mountains in southern Arizoc (After Batten and 
Green, 1971.) 

EXPERIMENTAL DATA 

As a means for evaluating a series of cloud seeding experiments, the Insti
tute of Atmospheric Physics of the University of Arizona operated a network 
of 29 recording gain gages distributed over the Santa Catalina Mountains in 
southern Arizona (Battan and Green, 1971). This mountain mass is a more 
less isolated block which attains an altitude nearly 7000 ft. abouve the city 
of Tucson located some 20 miles to the southwest (Fig. 1). Tite rainfall data 
were initially collected duriag the summer months of the yeL's 1957 through 
1960. After the first set of measurementc, some gages were mioved and six 
others were added, making a new network of 35 stations. Meastrements were 
made during the sumners of 1961, 1962 and 1964. An illustrti!nn of the 
correlation with station elevation is shown if Fig. 2, whereas Fig. 3 presents 
the results of a linear regression analysis using all the available data. 
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Fi. 2.Comparison of elcv vtlon contours with isohyets of mpmnar rainfall in the Santa CatWlna Moun
taina. (After Battan and Green, 1971.) 
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VARIATION OF MEAN SEASONAL RAINFALL WITH ELEVATION 

Model 

A priori, the increase of mean rainfall amount with elevation may be dueto an increase in the mean number of events E(N), or m increase in the meanamount of rainfall per event E(R) or an increase in both E(N) and E(R) with 
altitude. 

In general, let: 
E(N) = aAot
 (7) 
E(R) =Ro + bh 
 (8) 

where mo is the mean number of events per season at a datum, Ro is the mcanamount of rainfali per event at the datum, a and b are constants and h is theelevation in thousands of feet. Substituting the above two equaticns into eq.
5 results in: 

E(Z) =(m+ah)(Ro+bh) 
=mORO + (aRo+bmo)h +abh2 (9) 

Under these hypotheses, then, the total seasonal (or 24-h) rainfall increasesas a second order polynomial of elevation with positive coefficients. Therelative importance of the term in h and that in h2 have to be ascertained experimentally. Strictly speaking, however, if E(N) and E(R) increase linearly
with h,then E(Z) must increase quadratically with h. 

Experimental results 
Using the data only from those stations with 7 years of record and the
definition for an event given earlier, the regression of E(N) = 
m on elevation


h was obtained as shown in Fig. 4. In this analysis:
 
m =12.44+ 3.12 h 2.5 <h < 8.6 (10) 

and hence from eq. 7, m 12.44 and a =o = 3.12. 
The regression of E(R) on h isshown in Fig. 5 and is written: 
E(R) = 0.1869 +0.0116h (11) 

Thus, R. = G.1869 and b = 0.0116. 
To obtain the equation relating total seasonal r.-infall to elevation, the regression of 24-lh rainfall on elevation (Fig. 3) was multiplied by the appro

priate number of days in a summer season. The results are: 
E(Z) = 2.15 + 0.96 h (12) 
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Fig. 4. Effect of eleva'|on Un occurrence ot storms per season. 
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Fig. S. Effect of elevation cn rainfall per event. 

On the other hand, use of the model (eq. 9) would lead to the expression 

E(Z) = 2.33 + 0.727 h + 0.0362 h2 	 (13) 

Equations 12 and 13 are plotted in Fig. 6 and as seen, the curves are very 
close to one another with the quadratic model well inside any confidence 
band of the observed data. The reason for such an agreement between an
$'exact" model (eq. 13) and an approximate linear model (eq. 12) are data 
scatter and the relatively low value of the coefficient of/h2 in eq. 13. It is 
recognized that ;ite quadratic model is based on the correctness of the linear 
assumptions in eq. 7 and 8. The main point, however, is that the variations 
of N, R and Z with i which cannot all be linear theoretically, can be taken as 
such practically. 



29 ELEVATION EFFECTS ON RAINFALL 

10- VNT-BSEL MODL-vr 

Z REGRESSION 
S°(j)2 IS .6h 

I. 

1_4 

0 

I 2 3 4 S 6 7 6 9 10 

ELEVATION - THOUSANDS OF FEET 

FI& 6. Comparison of event-based model and regmsson of total summer rainfall on en'atIn. 

VARIATION OF VARIANCE WITH ELEVATION 

Model 

Hypothesizing that the mean number of events N and the amount cf pre
cipitation per event R are independent random variables, the variance of Z is 
given by eq. 6, namely: 

VAR(Z) = VAR(N) [E(R)] 2 + [E(N)] VAR(R) (6) 

E(N) and E(R) are given as a function of h by eq. 7 and 8. To evaluate the 
variances of N and R, it is assumed, as previously mentioned, that N is a 
Poisson variate and R a geometric variate. Thus, their mean and variances are: 

E(N) =VAR(N) =m =mo +ah (14) 

E(R) = - Ro + bh (15) 

P
VAR(R) = (Ro+bh)( I +Ro+bh) (16)
,p)2
 Susttuig

•Substituting eq. 14, 15 and 16 into eq.. 6 yields: 
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2
VAR(Z)= (-p) (1+;5) 

= (?,'o+ah) (Ro+bh) (1+2Ro+2bh) (17) 

Thus, under the stted hypotheses, the variance of total seasonal rainfall In
creases as a cubic polynomial in h with positive coefficients. 
.In a similar fashion, the coefficient of variation, defined as the standard 

deviation divided by the mean, is obtained with the results: 

[ + 1/, (18)V(Z) I +,2Ro 2b 2 

Hence, the coefficient of variation of Z is seen to decrease as elevation in
creases, or in other words, the mean increases faster than the variance. 

Experlmen tal results
 

Inasmuch as the data are available only for a 7-year period, the assumption 
that N is Poisson distributed cannot be tested. However, previous informa
tion (Fogel and Duckstein, 1969) suggests that the hypothesis is re-asonable. 
The distribution R for a high-altitude station and a low-altitude one are illus
trated in Fig. 7 and 8.The hypothesis that R is a geometric variate could not 
be rejected by the Kolmogorov-Smirnov test at the 90% level of significance.

IFrom eq. I1 and 15, the variation of p, the geometric distribution para
meter, with h is given by: 

R o + bh
 
P= I + Ro + bh.
 

0 0(19).189 +b 

0.1869 + 0.0116 h1.1869 +0.0116 h 

.-.GEOMETRIC MODEL 
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STATION 23
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MEAN 24-HR RAIFALL-O.175* 

RAINFALL PER EVENT - INCHES 

per event for high altitude station.FI. 7. Dlslbutloio of rainfall 
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Fi. 9. Effect of elevation on coefficient of variation ofsummer ranfall. 

Evaluation of eq. 19 reveals that p increases from a value of 0.1 75 for an 
elevation of 2500 ft. to 0.221 for 8600 ft. 
*Consider now the coefficient of variation (eq. 18), which is a normalized 

measure 	of the spread of the data versus elevation. Substituting eq. 10 and 
S1into eq. 18 yields: 

z) r 1.3738 + 0.0232h 	 (20)
1(12.44+3.12k) (0.1869+0.016/h).( 

A comparison of eq. 20 with the seasonal rainfall coefficients of variation of 
those individual stations with 7 years of record is shown in Fig. 9. As can be 
seen in Fig. 9, - plot of the coefficient of variation of seasonal rainfall against 
elevation, th.: experimental data tends to confirm the model which would 
imply independence between N and R. 
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VARIATION OF SEASONAL MAXIMUM RAINFALL WITH ELEVATION 

Model 

The distribution function 0(k) = 0(k h) of seasonal maximum rainfall at a 
point of elevation h is obtained as follows: 

Let FR(k) be the distribution function of point rainfall. From eq. 2: 

k 

FR(k) = D (l-p)p/= I -pku' (21) 
/-0
 

By definition: 

0(k) = l(Rl<k, R 2<k, ...RV<k)P(N-n)Pha0
 

For independent events, with eq. 1.: 

0(k)- D [P(R<k)] p(N<n)" 

[FR,(k)jemM 

and substituting eq. 21 into the above: 

0(k) = exp (-Mpk+t) (22) 

Using eq. 14 and 15 to express m and p as a function of h, eq. 22 becomes: 

0(klh) = exp [-(mo+ah)(Ro+bh)k+! (l+Ro+bh) - k - ]) 

The return period T, of an event of magnitude k at altitude h is by definition: 

Tr(klh) = [1-0(klh)]-I (24) 

Experimentalresults 

The incontestable advantage of using a model over using data analysis is 
really evident here; with at most 7 years of data which would yield 7 annual 
maxima, it is possible to infer with a certain degree of confidence the magni
tude of events having a much greater return period than the record length. 
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Substituting numerical values into eq. 23 yields: 

=0(klh) exp 	 6 0.0116h k+I (25)-(2.44+3.12h) +01 

Since eq. 25 is an extreme value type of equation, it plots as astraight line 
on Gumbel probability paper. Fig. 10 presents the frequency distribution of 
storm rainfall at two elevations, 2500 and 7500 ft. as obtained from eq. 25. 
A composite annual maximum series of four Tucson area stations represent
ing 168 station-years fitted to a Gumbt-l distribution is also shown for com
parison. These stations are far enough apart fromn each other to satisfy the in
dependence assumption of the station-year method. 

-MOOL: SANTA CATALINA MOUNTAIN DATA 

-- MODEL: ATTEREBURY WATIERSEIO DATA 

4. 	 -.. ANNUAL MAXIMUM SERIES
 

FOR TUCSON
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Fi. 10. Comparison of the cumulative frequency distribution ofstorm rainfall by different prmocedurf. 

Additional verification of the proposed procedure is obtained from the 
results of an earlier study (Fogel and Duckstein, 1969). Using data from the 
Atterbury watershed, an.expeiimental area located near Tucson, Arizona at a 
mean elevation of 3000 ft. a maximal or extremal distribution for convective 
storm rainfall was derived. Instead of using the occurrence of measurable 
rainfall (0.01 inch) as used in the present sZudy as the basis for defining an 
event, the earlier study required that at least one storm center (point of max
imum rainfall) fall over the rain gage network as the condition for the occur
rence of an event. Nevertheless, the two procedures arc in very good agree
ment with each other despite their different event definitions. 

While the annual maximum series indicates a smaller variance (flatter slope 
in Fig. 10) than the event-based model, all three procedures produce results 
that are remarkably close to one another. The fact that independent sets of 
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data were used in all cases presents a strong argument for using the event
based probability model to determine the effects of elevation on warm sea
son rainfall. 

DISCUSSION AND CONCLUSIONS 

The method being proposed to analyze thunderstorm rainfall with eleva
tion h requires only the determination of two point parameters, E(N) and 
E(R), as a function of/h (eq. 7 and 8). From this study, it has been concluded 
that: 

(1) The mean number of events per season, E(N) = m, increases consider
ably with elevation (eq. 10). 

(2) The mean amount of rainfall per event, E(R), increases moderately with 
elevation (eq. I1). 
(3) The mean total seasonal rainfall, E(Z), increases as a quadratic poly

nomial with elevation, but a linear approximation is quite satisfactory (eq. 
12 and 13). 

(4) The number of events per season N can be taken as a Poisson variate. 
(5) The amount of rainfall per event R can be taken as a geometric variate. 
(6) The independence between N and R tends to be confirmed by the 

good fit between experienced and derived coefficient of variation. 
(7) The coefficient of variation of the total seasonal rainfall Z is a decreas

ing function of elevation (eq. 18). 
(8) The return period of an event of given magnitude may be obtained 

from the model despite a short historical record. 
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