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ABSTRACT

Duckstein, L., Fogel, M.M. and Thames, J.1., 1972. Elevation effects on rainfall: a stochastic model.
J. Hydrol ., 18: 21-35.

The variation in point precipitation with clevation is investigated using an event-based stochastic
model of thunderstorm rainfall and empirical data. Parameters of the model co:respond to the number
of events per unit of time and the depth of rainfall per event. An incrcase in precipitation with eleva-
tion may be duc to an Increase in the number of events, in the amount of rainfall per event or to some
combination of both possibilities. The distribution of the number of events per scason is assumed to
be a Poisson variate while the distribution of puint rainfail depths may be taken as geometric. The
summation of a random number of random variables is used to represent seasonal point precipitation.
Assuming that the two parameters of the micdel increase lincarly with elevation, then total scasonal
ninfsll increases as a quadratic polynomial with elevation. The use of the modcl allows one to obtain
the return period of storm tainfall of a given magnitude despite a short historical record. An indepen-
dent set of data was used to verify the procedure.

INTRODUCTION

Elevation of the precipitation gaging station is considered to be one of sever-
al topographic parameters that affect annual or seasonal totals (Wiesner, 1970).
In one of the most detailed studies of orographic influences on precipitation,
_ Spreen (1947) correlated imean seasonal precipitation with such factors as
elevation, rise, exposure and orientation for western Colorado. Elevation
alone accounted for 30% of the variation in precipitation while all five para-
meters together explained 85% of the variation. Schermerhorn (1967) also
noted that for western Oregon and Washington station elevation alone does
not cxplain much of the variation in annual precipitation which predominant-
ly occurs in winter. Indices of terrain elevation and barricr elevation with the
latter being difficult to define in a simple. objective fashion, together with a
latitude index explains most of the variation.

Hamoun (1971) suggests that the weak correlations in precipitation—
elevation relationships “‘are attributable to the inability of the unshielded
gage to capture the falling precipitation, particularly snow, when exposed to
even light winds™. Using data from a dual-gage network in southwestern
Idaho, he states that the catch in the shielded gages are 23% greater than the
unshielded catch and that computed values of **actual™ precipitation are in-
creased by 43% over the unshiclded catch. The computed values are derived
using an empirical relationship involving both unshielded and shielded catches.
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When the annual precipitation is separated into that resulting from winter
frontal systems and summertime air mass convective storms, it is noted ihat
winter precipitation is increased more than four-fold at the 7000-ft. clevation
as compared to that found at 4000 ft. For these same elevations, summer
rainfall is not quite doubled. Thus, it appears that analyses using annual pre-
cipitation data may also introduce considerable bias ard that individual
storm analysis offers the soundest basis for determining topographic effects
on precipitation.

In all such studics, little or no attempts have been made to determine
whether the increase in precipitation with elevation is due to an increase in
the number of storins that occur, or in the ainount of precipitation per storm
or {0 some combination of both possibilities. Hamon (1971) reports on a
single winter storm in which precipitation increases linearly from 0.4 inch at
4000-ft. to about 1.2 inches at the 7000-ft. elevation.

This paper considers summer rainfall only, that is, essentially rainfall
caused by air mass convective storms occuiring in July, August and Septem-
ber. To verify the model developed, data from a cloud seeding experiment
designed to investigate the possibility of increasing thunderstorm rainfall in
the Santz Catalina Mountains near Tucson, Arizona (32° 25'N 110° 45' W)
were used (Battan and Green, 1971).

BASIC RAINFALL "ROBABILITY MODEL

Evert-based models are characterized by at least two random variables and
their distribution. First, there is the random number of events per unit of time
(season or year) designated as N. An alternate choice would be the interarri-
val time between events. Then there are one or more of the random variables
of interest such as the depth of rainfall R or the duration of rainfall D. If
more than one such random variable is of interest, then a joint distribution
would be needed.

Number of events per season

Thunderstorms seem to occur in an independent manner in time and space
such that the number of rainfall events per season N follows a Poisson prob-
ability mass function (Brooks and Carruthers, 1953). A similar result was ob-
tained in a study by Todorovic and Yevyevich (1969). The probability mass
function for N can thus be written as:

-
r,,,u)=‘—ﬂﬁ /=0,1,2,.. )

where m is the mean number of events per season.
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For this paper, an event is defined as the occurrence of at least 0.01 inches
of rain at a gage; if one hour nr more separates the recording of such rainfall,
this results in the counting of two distinct events. In terms of an earlier paper
(Duckstein et al., 1972), this would be a new event definition. The first defi-
nition required a dense rain gage network while the second definition required
at least two gages within 3—10 miles from one another. In this way, the more
intense thunderstorm rainfall may te distinguished from the more uniform
frontal-type rainfall. This situation presents no such problem in the case here-
in as summer rainfall is almost always from showers and thunderstorms of a
local nature (Scllers, 1964). Inasmuch as only point rainfall is being consid-
ered, there is no way of inferiing how much rainfall may have occurred with
a few miles of the point being considered without recording anything at this
gage. For this reason, in the absence of any proof to the contrary, the struc-
ture of thunderstorm cells is assumed to be invariant within the range of ele-
vation being considered (2500—8600 ft.). That is, distinct cells cause rains
over an area roughly circular with a diameter generally between 4—6 miles
and the depth of ruinfall is maximum at the center and decreases rapidly from
there (Fogel and Duckstein, 1969; Osborn and Lane, 1972).

Depth of point rainfall

As shown in an earlier paper (Fogel and Duckstein, 1969), a geometric
probability mass function for point rainfall depths was derived from an anal-
ysis of a dense network of rain gages. Thus, for f units of rain, the distribution
of the depth of rainfall R is:

fRN=(-p)P  j=0,1,2,.. ‘ @)

where p, in this instance, is the probability of success of the point in question
receiving any amount ¢f rain above a given threshold value including zero.

Discussion of areal rainfall

Consider that a thunderstorm system containing several cells is present over
a watershied during the period considered, say 24 h. If the measuring points,
rain gages, are sufficiently far apart so that the measurements at any two
gages comes almost always from two different cloudbursts, it can be said
that the system has spatial independence and temporal dependence.

For a given storm, the areal rainfall 8, or the mncan rainfall over a given
area, may be considered as the average of a fixed number of n# point rainfall
measurements R,, R,, ..., R,. Since the average amount of rainfall for the n
gages differs from the sum of the n gages only by a constant scaling factor, it
is possible to use this latter value in developing a probability mass function
for areal raintall.
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If the point rainiall variates R, R, ..., R, are mutually independent with
an identical probability mass function (eq. 2), then it has been shown that
the areal rainfall 8 has a negative binomial distribution with parameters p
and r=n (Fogel et al., 1971).

-1
0= () a-prp N©)
Total seasonal rainfall

It is sometimes desirable to determine the mean and variance of total pre-
cipitation during a given time period. This is readily done with the upproach
taken herein.

Let Z be the total number of units of rainfall for a summer season:

Z=R,+Ry+..+Ry : 4)
where Ry, R, ..., Ry are mutually independent identically distributed ran-

dom variables. Regurdless of the distribution or independence of R and N, the
mean or expected value E(Z) is given by:

E(2) = EIM E(R) (5)

If R and N are independent, then the variance VAR(Z) is given by:
VAR(Z) = VAR(V) (E(R)]2 + (E(N] VAR(R) (6)

That {hc total seasonal rainfall Z can come from various combinations of
point rainfall depths per event R and the number of events N during a season
is readily apparent. A table may be arranged to produce these combinations
with the rows corresponding to the number of events per year, and the co-
lumns to the total seasonal rainfall. Cell (, £) would thus represent the joint
probability of j units of rain-and & events per year. Within cach cell, different
occupancy distributions of storms are possible. Using classical combinatorial
analysis techniques, the probability of each of these occupancies can be cal-
culated (Feller. 1957). '

A Monte Carlo simulation can now be set up to generate an unordered
succession of yearly combination of events. In those instances where the or-
der of event occurrence is of importance, it can be incorporated into the
simulation to generate a time series of events.



ELEVATION EFTECTS ON RAINFALL 25
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Fig. 1. General topography of the Santa Catalina Mountains in southern Arizons. (After Battan and
Green, 1971.) .

EXPERIMENTAL DATA

As a means for evaluating a series of cloud seeding experiments, the Insti-
tute of Atmospheric Physics of the University of Arizona operated a network
of 29 recording gain gages distributed over the Santa Catalina Mountains in
southern Arizona (Battan and Green, 1971). This mountain mass is a more
less isolated block which attains an altitude nearly 7000 ft. abouve the city
of Tucson located some 20 miles to the southwest (Fig. 1). The rainfall data
were initially collected duriag the summer months of the yewrs 1957 through
1960. After the first set of measurements, some gages were moved and six
others were added, making a new network of 35 stations. Measvrements were
madc during the sumters of 1961, 1962 and 1964. An illustrition of the
correlation with station elevation is shown if Fig. 2, whereas Fig. 3 presents
the results of a linear regression analysis using all the available data.
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Fig. 2. Comparison of elevition contours with Isohyets of summer rainfall in the Santa Catolina Moun-

tains. (After Battan ond Greer:, 1971.)

R24 00348 001340
s ° 2077

MEAN 24-HOUR RAINFALL - INCHES

A '} A A

A

2 3 & 35 &6 7T 8
ELEVATION - THOUSANDS OF FEET

9 0

Fig. 3. Relationship of summer rainfall to station elevation.
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VARIATION OF MEAN SEASONAL RAINFALL WITH ELEVATION

Model

A priori, the increase of mean rainfall amount with elevation may be due
to an increase in the mean number of events E(V), or an increase in the mean
amount of rainfall per event E(R) or an increase in both E(N) and E(R) with
altitude. »

In general, let:

EN)=m_ + ah : )
E(R)=R, + bh ®)

where m,, is the mean number of events per season at a datum, R is the mcan
amount of rainfali per event at the datum,  and b arc constants and # is the
elevation in thousands of feet. Substituting the above two equaticns into eq.
S results in:

E(Z) = (my+ah) (R +bh)
=mgR, + @R +bm ) h + abh?

Under these hypotheses, then, the total seasonal (or 24-h) rainfall increases
as a second order polynomial of elevation with positive coefficients. The
- relative importance of the term in & and that in /12 have to be ascertained ex-
perimentally. Strictly speaking, however, if E(N) and E(R) increase linearly
‘with A, then E(Z) must increase quadratically with A.

9

Experimental results

Using the data only from those stations with 7 years of record and the
definition for an event given earlier, the regression of E(N) = m on elevation
h was obtained as shown in Fig. 4. In this analysis:

m=1244+3.12h 25<h<8.6 ' (10)

and hence fromeq. 7,n,= 12.44 and a = 3.12.
The regression of E(R) on & is shown in Fig. 5 and is written:

E(R)=0.1869 +0.0116 4 ' (1)

Thus, R, =G.1869 and b = 0.0116.

To obtain the equation relating total seasonal reinfall to elevation, the re-
gression of 24-h rainfall on clevation (Fig. 3) was inultiplied by the appro-
priate number of days in a summer season. The results are:

E(Z) = 2.15+ 0.96 ay
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On the other hand, use of the modei (eq. 9) would lead to the éxpression
B(Z2)=2.33+0.727 h + 0.0362 h? (13)

Equations 12 and 13 are plotted in Fig. 6 and as seen, the curves are very
close to one another with the quadratic model well inside any confidence
band of the observed data. The reason for such an agreement between an
“exact” model (eq. 13) and an approximate linear model (eq. 12) are data
scatter and the relatively low value of the coefficient of #2 ineq. 13. It is
recognized that iine quadratic model is based on the correctness of the linear
assumptions in ¢q. 7 and 8. The main point, however, is that the variations
of N, R and Z with & which cannot all be linear theoretically, can be taken as
such practically. .
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Flg. 6. Comparison of event-based model and regmdon of total summer rainfall on ekﬁtbﬁ.
VARIATION OF VARIANCE WITH ELEVATION
- Model

Hypothesizing that the mean number of events N and the amount of pre-
cipitation per event R are independent random variables, the variance of Z is
given by eq. 6, namely:

VAR(Z) = VARWV) [E(R)]? + [E(V)) VAR(R) : ' (6)

E(N) and E(R) are given as a function of & by eq. 7 and 8. To evaluate the
variances of N and R, it is assumed, as previously mentioned, that N is a
Poisson variate and R a geometric variate, Thus, their mean and variances are:

E(M)=VARN)=m=m +ah (19)
ER)={Eo=R, + bk s
VARR)= o fp)f (Ry#bH) (1+Rg#0k) (16)

. ,Subs‘fituting eq. 14, 15 and 16 into e(f: 6 yields:
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' VAR(Z) = =L (145)
(1-p)?

_ . (17)
= (rmg+ah) (R +bh) (142R ,+2bh)

Thus, under the stated hypotheses, the variance of total seasonal rainfall in-
creases as a cubic polynomial in & with positiv: coefficients.

-In a similar fashion, the coefficient of variation, defined as the standard
deviation divided by the mean, is obtained with the results:

[ 1 +2R, +2bh ]'/2
V@ = [Tmgrai) R o)

(18)

Hence, the coefficient of variation of Z is seen to decrease as elevation in-
creases, or in other words; the mean increases faster than the variance.

Experimental results

Inasmuch as th¢ data are available only for a 7-year period, the assumption
that NV is Poisson distributed cannot be testzd. However, previous informa-
tion (Fogel and Duckstein, 1969) suggests that the hypothesis is rzasonable.
The distribution R for a high-altitude station and a low-altitude one are illus-
trated in Fig. 7 and 8. The hypothesis that R is a geometric variate could not
be rejected by the Kolmogorov—-Smirnov test at the 90% level of significance.

*Fromeq. U1 and 15, the variation of p, the geometric distribution para-
meter, with 2 is given by:

" R,tbh
P=T+R,+bh 19
_0.1869+0.0116h |
1.1869+ 0.0116 A
100 . - T 1
§ ,,_c:ouc.mc MOOEL
& 901 peO22t
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" 'Fig. 7. Distribution of rainfall per event for high altitude station,
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" COEFFAICIENT OF VARIATION

Evaluation of eq. 19 reveals that p increases from a value of 0.175 for an
elevation of 2500 ft. to 0.221 for 8600 ft.

_ Consider now the coefficient of variation (eq. 18), which isa normahzcd
mcasure of the spread of the data versus elevation. Substituting eq. 10 and
‘11 into eq. 18 yields:

: _ 1.3738+00232h
V() = [( 12.44+3.1211) (0.1869+0.01 61:)]

A comparison of eq. 20 with the seasonal rainfall coefficients of variation of
those individual stations with 7 years of record is shown in Fig. 9. As can be
seen in Fig. 9, 2 plot of the coefTficient of variation of seasonal rainfall against
elevation, the experimental data tends to confirm the model which would
imply independence between N and R.

(20)
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VARIATION OF SEASONAL MAXIMUM RAINFALL WITY ELEVATION

Model

The distribution function ¢(k) = ¢(kIh) of seasonal maximum rainfall at a
point of elevation /t is obtained as follows:
Let F(k) be the distribution function of point rainfall. From eq. 2:

k
Fr(k) = /Z% (1-p)p/= 1 —pk*! (21)

By definition:

&(k) = ..Eo PR, <k, Ry<k, .. Ry<k)P(N=n)

For independent events, witheq. 1: -
W= (PR<K))" PN<R)

ot n
= I (Fpolr ey

and substituting eq. 21 into the above:

¢(k) = exp (—mpk*!) (22)
Using eq. 14 and 15 toexpressm and p as a functlon ofh, eq 22 becomes:
d(klh) = exp (—(m tah) (R +bh Y1 (1+R+bR) XYy "“'(23)
The return period 7, of an event of magnitude k at altitudc h is by definition:
T(kik) = [1-¢(kih)] -} (29)
Experimental results |

The incontestable advantage of using a model over using data analysis is
really evident here; with at most 7 years of data which would yield 7 annual
maxima, it is possible to infer with a certain degree of confidence the magni-
tude of events having a much greater return period than the record length.
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Substituting numerical values into eq. 23 yields: .

0.1869 + 0.01 I6h] k+1
1.1869 + 0.01 164

(kW) = exp l—( 12.44+3.1 2h)[ (25)

Since eq. 25 is an extreme value type of equation, it plots as a straight line
on Gumbel probability paper. Fig. 10 presents the frequency distribution of
storm rainfall at two elevations, 2500 and 7500 ft. as obtained from ¢q. 25.
A composite annual maximum series ot four Tucson arca stations represent-
ing 168 station-ycars fitted to a Gumbel distribution is also shown for com-
parison. These stations are far enough apart from each other to satisfy the in-
dependence assumption of the station-year method.

a
]
— WO0EL: SANTA CATALINA MOUNTAIN DATA
- MODEL: ATTEABURY WATERSHED DATA

44 ceeee ANNUAL MAXIMUM SERES
FOR TUCSON

STORM RAINFALL, INCHES

’ 0 0 0 00 200
RETURN PERIOD, YEARS

Fig. 10. Comparison of the cumulative frequency distribution of storm rainfall by different procedures.

Additional verification of the proposed procedure is obtained from the
results of an carlier study (Fogel and Duckstein, 1969). Using data from the
Atterbury watershed, an experimental area located near Tucson, Arizona at a
mean elcvation of 3000 ft. a maximal or extremal distribution for convective
storm rainfall was derived. Instead of using the occurrence of measurable
rainfall (0.01 inch) as used in the present siudy as the basis for defining an
event, the carlier study required that at lcast one storm center (point of max-
imum rainfall) fall over the rain gage network as the condition for the occur-
rence of an event. Nevertheless, the two procedures are in very good agree-
ment with each other despite their different event definitions.

While the annual maximum scrics indicates a smaller variance (flatter slope
in Fig. 10) than the cvent-based model, all three procedures produce results
that are remarkably close to one another. The fact that independent sets of
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data were used in all cases presents a strong argument for using the event-
based probability model to determine the effects of elevation on warm sea-
son rainfall.

DISCUSSION AND COMCLUSIONS

The method being proposed to analyze thunderstorm rainfall with eleva-
tion h requires only the determination of two point parameters, E(V) and
E(R), as a function of & (eq. 7 and 8). From this study, it has been concluded
that:

(1) The mean number of events per season, E(N) = m, increases consider-
ably with clevation (eq. 10).

(2) The mean amount of rainfall per event, E(R), increases moderately with

elevation (eq. 11).

(3) The mean total seasonal rainfall, E(2), increases as a quadratic poly-
nomial with elevation, but a linear approximation is quite satisfactory (eq.

12 and 13).

(4) The number of events per season N can be taken as a Poisson variate.

(5) The amount of rainfall per event R can be taken as a geometric variate.

(6) The independence between N and R tends to be confiimed by the
good fit between experienced and derived coefficient of variation.

(7) The coefficient of variation of the total seasonal rainfall Z is a decreas-
ing function of elevation (eq. 18).

(8) The return period of an event of given magnitude may be obtained
from the model despite a short historical record.
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