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Planning Small Water Supplies in Developing Countries

1. General Background

Public water supply systems are generally lacking throughout the
world. In a study of 75 developing countries, Dieterich (1963) found
that only one-third of the urban population and less than 10 percent of
the total population was se;ved with piped water into the home. An
additional 26 percent of the urban dwellers obtained water from public
outlets, but 40 percent of the urban and at least 70 percent of the
total population had no access to piped water.

Dieterich estimated that within 15 years of his study, about 450
million urban dwellers in the countries he examined would need new,
extended or improved systems. He estimated their cost at about 6.6
billion dollars. Bierstein (1968), however, thinks the estimate is too
low; the cost is more likely to be 10 billion dollars.

The most serious problem facing developing countries regarding
public water supplies is lack of funds. Other problems, however, also
exist. Two of particular concern herein are the following: (1) once
funds are earmarked in a particular country for water systems, decisions
must be made on the towns to receive them, and (2) once towns have been
selected, decisions must be made on the capacity of each system to be
constructed.

The selection of towns to receive systems is basically a problem in
investment timing. Assuming that all towns will eventually have supply
facilities, the question is: should the particular town under consideration

receive a system this year or not? In developing countries, this question
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is usually resolved by value judgement and political fiat.

Determinatior of water system capacity for each town is fundamentally
a question of investment scale: how large should water systems be con-
structed? As in the economically advanced countries, water systems abroad
are usually constructed with capacity to meet existing demands plus some
excess. The amount of excess capacity is generally determined by applying
design standards from the advanced countries. It is common, for example,
to provide capacity beyond immediate needs for 20 or 25 years or even
longer.

The deficiencies of current water supply planning oractices abroad
are readily apparent. Use of value judgement and political fiat can
easily lead to misallocation of scarce funds, and unquestioned use of U.S.
design standards in countries with significantly different economic
conditions is clearly inappropriate. As a result, this research was under-
taken to develop a more rigorous methodology for deciding water supply -

timing and scale in low income countries.

Related Work

The proposal for this research was based largely on the work of Alan
Manne (1967) who developed mathematical models for investment iﬁ the chemical
process industries. In the model most applicable to water supplies, demand
ig assumed to increase linearly with time as shown in Figure 1; the rate
of demand increase is D units (million gallons per day, for example) per year.
Initially (at time 0), the capacity of supply facilities is equal to the
rate of demand. y years are allowed to elapse before making the first‘
expansion. During this period, either the supply deficit c;n be made up
by importing from another supplier or the deficit can be left unsatisfied°

It

in either case, a cost is incurred. With importing. the cost is p dollars

14

per unit imported, but if the demand goes unsatisfied, a social loss
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results of p dollars per unit demanded but not supplied.

Assume at year y (the first time of construction) that the expansion .
has capacity xD (mgd) and costs C(xD) dollars. If the demand goes on
forever and costs do not change with time, expansions of this same scale
are required in years x +y, 2x +y, etc., and every construction period is
prec;ded by y years of deficit, as shown. With this informatjon, the
following expression can be written for total present value cost over an
infinite time horizonm.

[[Je-rt pDt dt + e°TY C(xD)1/(1-e7FX) @
The first term'inside the bracket is the present value of importing or
social costs during y years of deficit. The second term is the presenf
value expansion cost. The entire bracketcd expression is the total ;resént
value cost incurred each cycle of x years. fhe férm outside the bracket
is the present worth factor for an infinite number of cycles. In each
term, r is the discount rate.

Both in the chemical and water supply industries, C(xD) is a function
of the form »

" eom = kG, )
where k is a constant and "a", a propér fractionm is called the economy of
scale factor. This function is shown in Figure 2. Note that the slope of
line segment 0-C(z) is the averagg cost of a system of scale 2o As scale

!

increases, average cost decreases which ie the condition that obtains when
economies of scale exist.

Substituting (2) into (1) results in an expresé;on with variable%
x and y and parameters p, D, r, kand a. y is thg deé&sion vaiiablq_that
denotes when to make the expansion (i.e., investment timing) and x is the

decision variable associated with expansion scale. (x—y)-islthe number of

&ears of excess capacity of’each expansion which 18’ genczaily called the
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design period. To find the optimal values of the variables (i.e., the values
that minimize total present value cost), the partial derivatives of (1)
with respect to x and y can be set equal to zero and solved. The most impor-

tant optimality condition that results is

y* = Lﬂti!;_'la_l . (34)
P

where the asterisk denotes an optimal value.

'this completes Marmne's model. It has valuable iﬁplicationg‘for water
supply planning abroad. Most important, it presents a framework for making
optimal decisions or expansion timing énd scale taking account of demand, the
discount rate, the social losses associated with unsatisfied demand, and
the particular characteriatiqg of water system cost functions. Besides pro-
viding this framewoxk, (3A) shows that y* approaches zero as p increases to
infinity. But this implies that there'should be no period of deficit when
the social losses due to unsatisfied demand are very lerge. In the economi-
cally advanced countries, y* is deliberately set to zero (i.e., supply deficits
are disallowed) which implicitly assigns high value to p. In'the developing
countries, of course, the period of deficit is not usually zero.

Another important observation can be made from (3A) by rearranging it

as follows

p= rlkéxblal ’ , ‘ (3B)

y

The numerator of the fraction is the product of the discount rate and the
cost of expansion which is the annual opportunity cost of capital (a cost
analagous to the annual interest charge). The denominator is the unsatis-
fied rate of demand at the time of expansion. In this form, the equation
shows that a value is imputed to the social losses (or correspondingly, to
the benefits of publicly supplied water) whenever a decision is m;de to

invest in a water system. That is, by deciding to build at some point in
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time (that is assumed to be optimal) and to ‘some particular scale (not
necessarily optimal), a value is implicitly assigned to the benefits of

public supbly.

Research Objectives

. With Manne's work as a guide, research was proposed which included
two objectives:

(1) develop a theoretical planning model for deciding water supply timing
and scale in small communities of developing countries. ‘

(2) initiate field studies to obtain data on the parameters of the model
to make it operational.

Although Manne's model provides valuable insights to water sgpély .
planning in developing countries, as it stands it is not‘suitable for use.
In the first place, it is intended for eggansion plann;ng. This follows from
the assumption that supply capacity and demand are initially equal. Clearly,
water supply planning abroad is primarily for new systems that have initial
outstanding demand, not for expansions.

More serious, Manne's model is for a single independent community. But
towns abroa& cannot be treated independently. Rather, planning is done
regionally, pefformed by a central agency of the national government, and the
basic problem is to allocate annual budgets among towns in need of systemns .
The budgets create economic interdependencies among systems (what is doné in
one town affects the others; for example, funds spent in A are automatically
denied to B,C,D,...) which invalidates use of a‘aingle-system modél like-
Manne's.

The work of model development, ‘therefore, hdd to focus on several
commuhities instead of only one. Aaditionallyl”ﬁiﬁe‘in’the model had to
be made discrete because budgets are imposed at fixed points in time.

(Time in Manne's model is continuous.) Finally, the modei had 'to include*

the considerations of Manne's model pertinent to developing countries:



economies of scale, water supply benmefits, increasing demand, the discount
rate, etc. "
While the first research objective is theoretical, the second is pri-
marily applied. It was proposed to obtain at least preliminary information
on water demand patterns in small communities, costs of water system
construction, the economies of scale of water systems abroad, and by imputing,
the benefits of publicly supplied water. In connection with this last point,
it was proposad to obtain field information on the parameters of the right
hand side of (3B) for water supply investment decisions that had been made
in the past. This includes the discouni rate (r); construction cost
[k(xD)2], and the unsatisfied rate of demand at the time of construction

(Dy*). Values of p were then to be calculated from (3B). All of the field

data were to be obtained from Central America.

4. Regional Planning Model

1 4
The essential elements of the planning model developed in this research

are presented in Appendix 1. The model, however, ir the appendix is not
for regional planning. Rather, it is basically a reformulation of Manne's
model with discrete instead of continuous time and with the assumption
relaxed that supply capacity and demand are initially in balance. With the
conversion to discrete time, the model can easily be extended to accomodate
multiple towns and budget constraints and thus be suitable for regional
planning. The work required to extend the model is described in Appendix 1,
and the actual model in extended form is included in sections 4 and 5 of
Appendix 2, For the sake of completeness, the model is summarized herein.
.Let time be divided into short (say, annual) periods denoted t. In
certain of these periods (to be selected by the model user), let water supply
systems be propused for construction. These "construction'opportunity periods"

are denoted j. Let Cij be the construction cost of the system proposed for



town i in period j. cij is analagous to the cost function C(xD) of Manme's
model. Instead of being curvilinear however, cij is a straight line approxi-
mation of C(xD) as shown in Figure 3. Clearly, it is accurate only for
capacities between A and B.

cij 1s called a fixed charge function. In symbols,

where sij is a fixed charge (or set-up cost) for the system proposed for
town i in year j; sij is the cost per unit capacity (say, dollars per mgd),

as shown. z,. is a decision variable that ‘denotes the scale- (mgd) of the

1]
system to be constructed in town i in year j. Model solution will yield
optimal values for the z's. zij is also a decision variable but unlike
z44 which is continuous, zij must be either 0 or 1. If a system is con-
structed at i in year j, then 244 will be positive and zij must equal 1 so
that the fixed charge is incorporated in the cost function. If a system is
not constructed, then z45 = Zij = 0,

Construction cost incurred in period j can be discounted to present
value (p.v.) by multiplying by a present worth factor, Fj. Total p.v.
construction costs for water systems proposed for all towns in all periods

is obtained by summing the discounted value of (4) over all i and ]

Fj Sij Zij + i § Fj sij zij . (5)

As in Manne's model, let p be the social loss associlated with each
gallon of water demanded but not supplied. The units of p are dollars per
gallon, and if the value of publicly supplied water varies among towns and
from one period to another, we must use the symbol py. to denote the partic-
ular value in town i in year t. Let yy, be the unsatisfied demand in town i
in year t. yy, i8 a (continuous) decision variable to be evaluated from model

solution; typical units are mgd. Let dt be the duration of year t; in general,
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d, is 365 days for all t. Then the amount of demand (in million gallons)
left unsatisfied in town 1 in year t is d; Yie® The social cost that
results from this unsatisfied demand is Pyt dt Yier and the total p.v. of

social losses in all towns during all periods of the planning horizon is
IIF Py de Vae (6)

where Ft is the present worth factor for year t. The total objective function
to be minimized for this model is the sum of (5) and (6).

‘Aé this point, it is important to note that some of the decision variables
(the i'a and y's) are continuous whereas others (the 2's) are integers. Hence,
this is a mixed integer programming (MIP) model which has nearly the identical
format as a linear programming (LP) problem and indeed can be solved by repeated
use of LP*,

To complete the model, several constraint sets are required. The Z's

must be O or 1 and the z's and y's must be nonnegative.

zij = Qor l, all 1,]
244 20 , all 1,] (7
Vi 2 0 , all 1,t

As described above, Z must be 1 whenever project scale is positive t6

assure inclusion of the fixed charge. This 1is accomplished by the‘cdnsﬁfainé

€ "

zij 2 ki Z44 » ali i, 4§, (8)

whete‘ki~ia a small number that is generally different for each town. Note

%P and MIP models and their solutions are very well described in Hillier
and Lieberman (1967) and McMillan (1970). .
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that when zZ44 is positive, no matter how small, Zij will have to equal 1,
zij’ however, can never exceed llki; ki therefore, sets an upper bound on
Zi4 and in general should be assigned the reciprocal value of the upper limit
of accuracy of the fixed charge function. In Figure 3 for example, ki would
be 1/B.

Perhaps the heart of the constraint set is the restriction placed on

demand. For any town i in any year t, we require that

initial capacity unsatisfied total
supply + constructed + demand 2 demand
capacity prior to t int int

In symbols we have

Qio +5£t zij + yitz q4¢ » 811 1,t (9)

where Qio is the existing supply capacity in town i at the start of the planning
period and 9, is the water demand in town i in year t.

The final constraint requires that budgets not be exceeded. Let Bj
be the funds available for construction in year j. If unused funds are
forfeited at the end of the budget year, then we have

i sij zij + i Bij zij s Bj , all j. (10A)

However, if unused funds are allowed to carry over from one budget period

to the next, we have

z g Sy, 2, +12 g 8, 2z, ¢ g B 11 10B
i n=1 in in { n=1 in “in = n=]l n’ a j ( 0 )

While expressions (5) through (10) describe the basic model, there are
a number of optional constraints that can be added to enhance realism.
Whenever a project is constructed, total supply capacity should at

least equal existing demand. This can be accomplished by the following

QO +£21 zin 2 Zij qij ’ all i,j- (11)

The method of cost accounting in the objective function discriminates
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against projects proposed near the end of the planning horizon. The entire

cost of such projects lies within the horizon while useful life extends
beyond it. To provide continuity into the future, a terminal constraint
may be included. This provides for a minimum target level of excess
capacity (or maximum level of undercapacity) in each town at the end of the

planning horizon.

Qio + § zij 2 947 + QiT  all 1 (12)

where 9 is the demand in town 1 at the end of the horizon and QiT is (1)
the minimum desired excess capacity in town 1 if > 0 or (2) the maximum
allowable supply deficit if < 0.

We saw in Figure 3 that the fixed charge cost function is an accurate
approximaticn of a power function like (2) only within certain limits. In
many cases, difficulties might be encountered in selecting the values for
A and B over which the fixed charge function applies. If A and B, for
example, are selected so as to bracket the expected scale of initial con-
struction, the resulting cost function would be inappropriate for capacity
expansions with scale less than .

To overcome this difficulty, the power function can be approximated with
two (or more) fixed charge functions as shown in Figure 4. Here Cij applies
in the capacity range A-B and Cij in the range B-C. The cost of the system
proposed f;r town i in year j is

¥, sij Zg, + F, 51 2ty + Ty s2, 23, + ¥, sfy o (13)

To assure that at most only one cost function is used, we impose the restric-

tion

2, +22, <1, all 4, j (14)
ij ij" ’ ’

While this formulation adequately provides an accurate cost function for

initial construction and expansions, it introduces another integer and
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. continuous variable and another constraint for each construction opportunity

period,

Parameter Values From Central America

The results of field studies conducted in Central America to determine
(1) water system cost functions, (2) patterns of water demand, and (3) imputed
values of water supply benefits (i.e., p values) are presented in sections

4, 5 and 6 of Appendix 3. For convenience, they are summarized herein.

Water System Costs

It has already been noted that water systems reflect economies of
scale and have a cost function of the form shown in (2) and (15)

C(z) = k(2)2 , (15)
where z 1s the scale variable with typical units, mgd. We have already
noted that "a" 1is the economy of scale factor with values between O and 1.

In Appendix 4, it is shown that "a" denotes the percentage change in cost
per percent change in scale. In (15) by substituting z = 1, note that C(1l) = k.
Hence, k is seen to be the cost of a one mgd system.

(15) can be linearized by taking the logarithms of each side

log C(z) = log k + a log (z) (16)
Y=b» + aX

In this form, the parameters of the function (a and b) can be readily
determined by least squares analysis given values for Y and X.

Data were collected on 65 water systems in Central America for the
least squares analysis. The systems were constructed between 1965 and 1969,
are of the gravity type without filtration, include piped house services and

public fountains, and were designed for towns with populations of 7500 or
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less. .
The least squares analysis resulted in the following function
C(z) = 300,000 (z)0:83 (17)
Hence, the cost of a one mgd system is seen to be $300,000 and the econoﬁy ;
of séaié‘factor is 0.83. It is important to note that larger economies of

", Hence, the economies

scale are assoclated with smaller values of "a
reflected above are quite small. The data, however, from which (17) was devel-
oped did not adequately reflect planning and administration costs connected

with project implementation. Had these costs been included, it is probable

that "a" would be less than 0.83.

Water Demands

Data on water demand patterns were obtained from a study of 10 towns
in Guatemala during the period 1967-71. The study was under the direction
of lng. Octavio Cordon of the Regional School of Sanitary Engineering at
San Carlos University, Guatemala. The towns had populations ranging from
900 to 6200 with an average of 3100. The average age of the water systems
is currently, 3.5 years.

The study revealed that on the average, 25 percent of the population
was connected to the system by the end of the first year of operation. New
connections were made at the approximate rate of 8 percent of the population
per year. Those without connections generally rely for their water on public
fountains and washing stations.

Average daily water use (from house meter records) ranged from 16 to
34 gallons per capita per day (60 to 130 liters per capita per day) with
an average of 25 gped (100 lpcd). In general, per capita water use increased
at the rate of 3 lpcd per year which implies a rate of about 3 percent per

year (or perhaps something less).
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Relationships of peak to average flow were determined from master
meter data. The ratio of maximum daily to average daily demand (in English
units) was found to be

1.09 Q—.058
where Q is average daily usage in mgd. If Q is average daily usage inllitera
per second, the ratio is 1.35 Q-.058{ ‘

Comparison of master and house meter dafa provided a basis for deter-
mining unaceounted for and publicly used water. It was found that this was
less than 2 percent of the total demand. This low value is due in part to
minimal leakage associated with the newness of the systems. It also implies,
however, that the amount of water demanded by public fountain users is extremely
small, probably being not much different from that obtained from rivers and

lakes prior to systems construction.

Imputed Water Supply Benefits

(3B) is an equation that can be used to impute the benefits of
publicly supplied water in towns already served with systems. The
assumptions under which (3B) can be used are described in Appendix 3.
Imputed values (p's) were calculated for 65 towns in Centvral America. The
method of calculation is as follows.

In “Town 1" of Appendix 3, the population at the time of water system
construction was 453, and the cost of the system was $9180. Assuming a
discount rate of 10 percent, the annual opportunity cost of capital is
$918,00 (= .10 x 9180) per year. If the planners assumed that all inhabi-
tants desired water at the rate of 30 gallons per capita per day, the
unsupplied rate of demand immediately prior to project implementétion was

13,500 (= 30 x 453) galloﬁs per day or 4,930 thousand gallons per year.
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The imputed value of p therefore is

918 dollars per year
P = 492¢ thousand gallons per year

or 18.6 cents per thousand gallons.

The p-values in Appendix 3 range from 8.9 tn 76.0 cents per thousand
galions. The variance is 150.27 and the standard deviation is about 1£.3.
About 50 percent of the p-values-are equal to or less than 20 cents per
thousand and 90 percent are equal or less than 40 cents per thousand

i

gallons.

Additional Work
In addition to model development and parameter estimation, extcasions
were made of Manne's models to facilitate their use and gain greater in-

sights to water supply planning.

Expansion Model Without Deficits

The model of section 2 is for expansion planning when water has
finite value. The optimal;ty condition (3A) indicates that if-p is infinite,
the deficit period y is zero. This results in the expansion:patterns:shown -
in Figure 5 which is:typical for-the U.S. and other economically advanced
countries.

With deficits eliminated, there 'is only a single decision variable,
x, which denotes the period of axceus.capacity for each expansion. The .

total p.v. cost of an infinite number of~ expansions is

k(xD)2 oot (18)

l-e-rx
An expression for the optimal value of x can be obtained by setting the
derivative of (18) with respect to x equal to zero and solving. The

resulting equation is
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Figure 5. Expansion Model Without Deficits
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a= _rxk (19)
eTx* _ 4 )

k19) shows that the optimal period of excess capacity is a function
of only two parameters, the economy of scale factor and the discount rate.
Unfottundtely, it is impossible to solve (19) for x¥*; given values for "a"
'and r, x* must be obtained by numerical methods (Newton's, for exampie)
which are difficult to use. As a:fésglf, an apprqgiméting equation for (19)
solved explicitly for x* was developed as pértlof this research using

statistical procedures.

x* = 2,6 (1-a)1.12 {20)

T
The standard error of this equation‘for values of "a" between 0.60.and 0.85
gm e on .
and r between 0.05 and 0.20 is only 0.057<whiéh’iﬁplies an excellent‘fit.
To illustrate use of (20), as;ume a comﬁ;éity with 20,000 present
population anticipates future water demand increase at the rate of 12,000
gallons per day (gpd) per year. Aééume further that the excess cap#city of
_existing supply faciliti;g~;s nearly exhaustqd so that within a year or so,
an expansion will be neéded. If the economy of scale factor for water
supply facilities is 0.7 and the Qiscount(rate is 6 percent per year, the
optiﬁal period of excess capqcity from (20) is 11.3 years:
x* = 2.6 (1 - .7)1:12/,06 ='11.3,

and the optimal capacity of the expansion is 0.135 mgd (= 11.3 x 12,000 x 10-6).

Initial Construction

. Maqpe's models cited in section 2 and above are for expansions only.
In developing countfieé, however, the more ccmmon problem is design of
initial facilities for which there is an ouf.standing demand. This situation
is shown in Figure 6. Note that the initial project munt meet existing

demand Do and have excess capacity for X1 yearg at the end of which time

a planning situation identical to that described above (i.e.. with eauallv
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sized expansions) is encountered. The planning problem is to determine the
optimal value of %, and the methodology for so doing has been developed by
Thomas (1970).

The approach is similar to Manne's. An expression is written for total
present value cost which includes initial construction plus the p.v. cost
of an infinite number of future expansions discounted from year x; to time
zero. The resulting objective function is |

k(Dy + x1D)a + e X1 k(xD)a \ (21)
1-e X

in which x,D may be substituted for D,, where x, is the elapsed period
(in years) from the time of zero demand o the present as shown in Figure 6.

In this model, the two decision variables are x; and x. The optimal
value of x, the excess capacity period of expansions, is found from the
derivative of (21) with respect to x set equal to zero. As expected, the
optimality expression is identical to that of Manne's modei, (19), for which
approximating equation (20) can be uéed. fhe optimal value of §1, éﬁe
excess capacity of initial construction, results from the derivative of (21)
with respect to X, set .equal to zero:

D a'k(dy +xiM¥La r & kGm)2 (22)
1-e7TX

As in the case of Manne's model, (22) cannot be solved explicitly for
the decision variable, xi. An approximating equation, however, has been

‘developed}qs part of this research.

xj = 2.6 (-a)112 + 0.3 (1-a) x,0°8° (23)
r /T

In (23), the parameters are the economy of scale factor (a), the discount
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rate (r), and the elapsed period to zero demand (x,). Note that when x, is
zero, there is no initial outstanding demand and the planning problem reduces
to the case of exvansions only; (23) correspondingly reduces to (20). Also
note from (23) that the excess capacity of initial construction is always
greater than that of expansions. It follows that it is erroneous to use

the same design standards for new systems and capacity expansions. The fit
of (23), unfortunately, is not as good as the previous approximation, but the
equation is sufficiently accurate to be of practical value.

To illustrate use of (23), assume in the earlier example that per capita
demand is 30 gallons per day; existing demand is therefore 600,000 gpd. |
Assuming no public water supply, the elapsed period to zero demand (xo) is 50
years (= 600,000/12,000). From (23), the optimal period of excess capacity

is 21.5 years:

¥ = 11.3 + 0.3(1=.7) 50°*%% & 11.3 + 10.2 = 21.5

1 g
/- 06

Henc;;-oétimal capacity of the initial project is 0.858 mqd (= 0.600 + 21.5 x 12,000
X 10'6) agssuming expans‘ons are designed for 0.135 mqd.

A final observation on this model is pertinent. The assumed construction
cost fﬁnction is of the form C(z) = kza, whef; z 1s capacity in mgd. The

average cost of a system of scale Z is k Z(a-l). From the derivative, the

1

marginal cost of a system of scale Z is [a k Z(a'l)]. It immediately follows

that marginal cost is average cost times "a" with units dollars per mgd.*

Inspection of (22) shows that the left side is the product of D and
the marginal cost of the initial project with units dollars per year. On

the righé side of (22), the fraction is the p.v. of an infinite number of

"
1a L, Ve

expanaionpgdiséoudted to yéaf 3 (refer to 18). The expoﬁential in froﬁé-of

-
- .

*Note that "a" must therefore be the ratio of marginal to average, cost.
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the fraction discounts this cost to present value at time zero. Hence, the

right side is the product of r and p.v. expansion cost, also with units dollars:

per year. Hence, (22) can be rewritten in words

annual marginal ' annual pP.v. cost
rate of x cost of - discount x of all
demand initial rate future
increase system expansions

This condition must obtain for optimality. In this form, note that the number
of future expansions need not be infinite nor is it necessary (for a local

minimum) that the expansions be optimally sized.

Waiting Period Model
In both models of this section, the value of publicly supplied water

is assumed to be infinite. Now let us assume that water in a community
without existing supply facilities has finite value. This implies that
construction of the inirial system will be prece&ed by a waiting period
as in the model of section 2. Once a system is constructed, however, a policy
of disallowing deficits is imposed which implies an increase in the value
of water to infinity. This situation is depicted in Figure 7.

An expression of total p.v. cost can be developed as before. This
includes the social costs of deficit during the first y years, the p.v.
cost of initial construction, and the present value cost of future expansions.

- - a
t{% Tt p(p, + Dt)dt 4 €7 k(D + yD + x;D)

25
+ e-r(yxi) k(xD)2 . (25)

1-e~¥X

(25) includes three decision variables: y is the waiting period before

constructing the first system, Xy is the excess capacity betiod of this project

and x is the excess capacity period of future expansions. 'Optimal values of the

(24)
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Figure 7. Deficit Model for Initial Construc-
tion and Expansions.



variables can be found by setting the appropriate partial derivatives of
(25) equal to zero and solving.

The derivative with respect to x results in an expression identical
to Manne's expansion model (19) which, as we have seen, can be approximated
by (20).

The derivative with respect to x1 results in an expression essentially
identical to that obtained by Thomas in the initial construction model pre-
sented above (refer to 22). There is a slight difference in mathematical
symbols, however. The term in parenthesis on the left hand side of (22)
must be replaced by (Do + yD + xID) to account for increasing demand during
the initial years of deficit. The word description of the optimality
condition (24) remains unchanged.

The optimal waiting period is determined from the derivation of (25)

with respect to y. The resulting expression is cumbersance

* * - ®
p(D, +Dy") + D a k(b, +yD+x0)2Lary k(Do + y*D + ;D)2

1 I 111
+r e T*1 k(xp)a (264)
l-e~IX
Iv

{:f Yy * B
Terms II and IV, however, can be eliminated from (26A) by substituting the op~-
b

timality equation obtained from the derivative of (25) with respect to Xy,
This assumes that the initial project is optimally timed and scaled. The

resulting expression is

P(Dy + Dy*) = r k(D, + y*D + xD)? (26B)

But this is essentially identical to (3A) and (3B). It states that for the

optimal planning of the initial project, the rate of social losses at the
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time of construction (the left hand side of 26B) must equal  the annual
opportunity cost of the initial project. NI

In sum, the optimality conditions for this model are identical to
those of the three separate models previously derived. In regard to
the waiting period, initial construction should be delayed until social
costs accrue at the same rate as the annual opportunity cost of the first
project. Regarding the scale of the first project, it should be adjusted
so that its marginal cost times the annual rate of demand increase equals the
product of the discount rate and the present value cost of all future
expansions. Finally, the optimal scale of expansion can be calculated from

(19) or (20).

Dissemination of Research Results

Significant efforts have been made to disseminate the results of this
research. Methods have included lectures, preparation of reports and
technical papers, publication in professional journals, and personal commu-
nication.

Early findings of the study were presented in a lecture tc about 40
faculty and students in the author's department at the University of North
{arolina, Subsequent lectures were delivered to an additional 30 students
at UNC. Recently, a lecture on some of the more basic concepts resulting
from the study was delivered to a group of about 30 sanitary engineers in
the Washington, D.C., area concerned with water supply planning abroad.
Earlier this year, the content of Appendix 1 was presented to about 50
participants at a national meeting of the American Geophysical Union, and
in June, 1972, the content of Appendix 4 was presented to about 50 conferees
at the annual meeting of the American Water Works Association. In sum, about

200 individuals have been exposed to various aspects and findings of this
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work through lectures.

The reports and papers associated with this work (largely those included
in the appendices) have been distributed to universities, institutions
engaged in water supply planning abroad, firms of consulting engineers,
and individuals. Approximately 20 copies of each of Appendices 1 and 4 were
distributed within the author's department. In addition, copies of these
papers were sent to another 10 to 15 professors in universities. Planning
institutions that received copies include the World Health Organization,

Pan American Health Organization, World Bank, Interamerican Development

Bank, Technion (Israel Institute of Technology), and 2 or 3 more. Firms
include Camp Dresser and McKee, Hazen and Sawyer, Hydroscience, Quirk Lawler
and Matusky. Finally, copies of 2 or more of the appendices were sent to
about 20 individuals. In all, about 120 reports and papers were distributed.

The papers in Appendices 1 and 4 have been accepted for publication
in professional journals. The paper of Appendix 1 will be published in

Water Resources Research and the paper of Appendix 4 will be published in

the Journal of the American Water Works Association. At least one more
paper will be prepared as a result of this research; it will'be submitted

to the Sanitary Engineering Division Journal, American Society of Civil

Engineers.

Little information is available on the use being made of research
results. The greatest interest has been by Technion, the World Bank, the
Pan American Health Organization, and the Interamerican Development Bank.
Technion and IDB have investigated programming algorithms via the writer
for solution of the model of section 4, and it is hoped that serious efforts
will be made by these organizations to apply the model. Other groups and
individuals have expressed interest in the single-system models of section

6 and the method of imputing water supply benefits presented in section 5.
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Needed Research

This research has identified the principal factors ‘affecting the.
optimal planning of water supplies in developing countries: project
capacity is largely dependent on economies of scale in construction;
optimal timing is primarily a function of public water supply benefits;
budgetary constraints create economic interdependencies among systems
mgking it necessary to plan on regional bases. The research has also
produced a mathematical model for improved investment decisions abroad,
and preliminary steps have been taken to make the model operational. A
great deal of work remains to be done, however, if this beginning is to
be fruitful in producing more nearly optimal plans.

Although some experimentation has been done using ficticious data, the
mathematical model needs to be applied to real planning problems. Computer
studies should at first be undertaken for systems including only a few
towns. Sensitivity analyses for these small systems should then be made
by changing key parameters: for example, water supply benefits, future
demands, construction cost functions, and budgetary constraints. Gradually,
problem size should be increased by adding additional towns. This program
of model application would (1) provide a basis for judging the realism of
"optimal" results produced by the model, (2) identify the sensitivity of
optimal plans to small changes (i.e., uncertainty) in model parameters, and
(3) determine the cost and difficulty of computer solution for problems of
increasing size.

Preliminary computer results indicate that solution costs increase
rapidly with the number of integer variables in the model. In addition,
the large amount of computer capacity required for execution of the algo-

rithm used for solution severly limits the size of problems that can be
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run on existing machines.* As a result, an investigation should be made -
of computer programs -that can solvg the model more efficiently. If a
better algorithm is not located, work should be done to modify existing
programs or produce a new algorithm designed specifically for this model.

The model should be reformulated for simpler solution. By corverting
it to a linear programming (LP) model, for example, solution could be
obtained on relatively small computers ut low cost. While it is doubtful
that the model itself can be changed to LP, it is probable that it can be
alterred so that it can be solved by repeated use of LP. The model should
also be simplified in order to obtain a first cut at an optimal plan. In
its existing form, this might be done by using longer time intervals, a shorter
planning horizon, and fewer construction opportunity periods. Similarly,
the model can be refined and extended to make it more realistic.

Model improvement is only one aspect of needed research. In additiom,
field studies are required for evaluation of parameters. In particular,
work should be done to accurately determine cost functions for water supply
ard distribution sysccms throughout the world. Such functions are required
for systems employing different treatment methods (e.g., disinfectionm,
chemical coagulation, slow sand filtration), for gravity and pumped sttems.
for systems with house services and/or public fountains, etc. Field data
are also needed on demands in towns newly served with water supplies. Infor-
mation should be obtained on the rate at which new connections are made,. water
demands for different user categories, unaccounted-for losses, demand varia-
tions, and the increasing rate of usage after connection . . Choar

Most difficult of the field work is that required for evaluation of water

%A branch and bound algorithm by R. Shareshian of IBM has been used to 'solve
the model.
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supply benefits. The method of imputing presented above is expedient but
not entirely satisfactory. Determination of shadow health costs is an
alternative method, and it might be possible to use differences in the
market values of properties with and without water services as indicators
of benefits. These and other suggested methods are described more fully
in Appendix 4.

Finally, studies should be made of water planning institutions and
practices throughout the world. Specific information is needed on how
towns are selected to receive new supplies, how budget levels are set
each year, engineering manpower limitation and its effect on design and
planning work, and the need for regional water systems created by water

scarcity problenms.
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Appendix 1

' ﬁq;er Supply Planning by Mixed Inf@ﬁet Programming
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WATER: SUPPLY PLANNING BY MIXED INTEGER PROGRAMMING -

_Abstract

Integer and -mixed integer programming models for ‘the eibanaion planning of -
water supply systems are presented. A cost minimization model is developed
for the optimal sequencing of alternative expansions of given scale. The
principal constraint set requires that projects be sequenced so as to con-
tinually satisfy water requirements. Also presented is a more general model
for determining the optimal timing ard scale of the next supply system ex-
pansion given that water requirements are temporarily allowed to go unsatis-
fied. This model, which is primarily intended for use in developing countries,
(1) treats expansion timing and scale as decision variables, (2) seeks to
maximize the present value of net benefits, (3) handles economies of expansion
scale via fixed charge cost functions, and (4) accomodates arbitrarily varying
water-requirement functions. Paramétric study of the model reveals that witﬁ
increasing future water requirements, expansion timing should be delayed as (1)

fixed construction charges increase, or (2) the value of publicly eupplied‘ﬁater

R e A Ml .
N " FAR TSV 5 BEPE R M

decreases. Additionally, optimal excess capacity increases with decreasing cost
R < A S % S L P e

per unit scale. 'Model results suggest ‘a method £or 'imputing Water supply benefits..
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INTRODUCTION

In.a nodel for the optimal sequencing of water nupﬁly projects, Butcher
et al. (1969) postulate a_schedulc'of price-independent water demands that
increase over a finite time horizon. A set of water supply projects of dif- .
ferent scale and cost is given. The aggregate scale of the set of projects
is equal to the maximum rate of demand at the end of the horizon. The plan-
ning problem is to determine the optimal sequencing of the projects so as to
minimize total present value cost while satisfying demands

The sequencing problem incurporates several assumptions. Projects are
independent and can be implemented in any order. The benefit of each unit of
water demanded is constant. Since all vater requirements must be satisfied,
the total benefit of supplied water is fixed. Hence, benefits need not be
explicitly considered since they are independent of the sequencing pattern.
Minimization of total present value cost, therefore, is equivalent to maximi-
zation of present value net benefits.

In addition to the benefit of each unit of water being constant, its
value is inplicitly assumed to be 1nf1;1f0. To let even the smallest portion
of demand go‘unontiafied results in infinite cost. It gl alvays less expensive,
thercfor;. éo\éonotruct facilities than incur a supply deficit.

The sequencing problem does not e;plicitly consider operating costs.
Implicitly, however, they are proportional to the amount of water produced, and
the cost per unit {s identical for all projects. Total operating costs are
therefore fixed because of the need to satisfy demands. Like benefits, operating
§Olts can be {gnored.

The problem in solved by dynamic programming. In a recent paper, Morin

et al. (1971) show how a nigniticunt reduction {n computational effort can be
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made still using dynamic programming. In the present paper, a model is develope
for solution of the problem by 0,1 integer programming. This is followed by
a similar 0,1 mixed integer programming modal that focuses not on the optimal

sequencing of projects but on the timirg and scale of the first project to be

implemented.

INTEGER PROGRAMMING MODEL

The water requirements schedule proposed by Butcher et al. in their
nuserical example is shown in Figure 1. For our purposes, the schedule appears
as a step function. Water requirements change only at the start of a nev year.
qe is the rate of demand in year t; convenient units are gallons per year (gpy).

Four alternative projects are considered. These are shown in Table 1.

Q® 1s the capacity (gpy) of project s and C® is its cont.

Table 1
ALTERNATIVE PROJECTS
Project Capacity Cost
—fa) —Q% (5]
1 2 30
2 4 50
) ' ) 65
4 7 75

Both Morin (1971) and Erlenkotter (1467) have shown that it is never optimal
to implement a new project uhile existing supply facilitles have excess capacity.
Rather, project implementation should be delayed until excess capacity is reduced
to zero by increasing demand. For the numerical example, therefore, the possi-
bility of construction need not be considered every year but only 11 times during

the 30-year horizon. Such times are called construction opportunity periods.
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QUANTITY {q)

YEAR (1)

Year (1) 1 2 34 5689 10 (2 13 1517 20 23 30
Quantity (q).2 34 56 78 9 0 0 12 13 14 15 16 I7

Figure |. Water Requirements Function
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Table 2
TIMES OF ZERO-EXCESS CAPACITY

) Alternative Years of
Number of Cumulative Zero-Excess
Projects —Capacity Capacity

1 2, 4, 7 1, 3,6

2 6, 8, 9, 11 ) 5, 8, 9, 12
3 10, 13, 15 10, 15, 20
4 - 17 30

Clearly, one of the four projects must be constructed immediately if supply

capacity 1s to exceed requirements. This first project will start production
the end of year 0 and have capacity of either 2, 4, or 7. The excess capacity
of this project will be exhausted in year 1, 3 or 6 at which time the second
project must be implemented. The combined capacity of two projects will be 6,
8, 9 or 11. These are all the scale combinations without replacement of 2 out
of the 4 projects. The corresponding times of zero-~excess capacity are shown
in Table 2. Proceeding in similar manner, we obtain the 11 conmstruction oppor-
tunity periods (j) shown in Table 3; also shown are the associated demands (qJ)

and present value (p.v.) factors (Fj)'

Table 3
CONSTRUCTION OPPORTUNITY PERIODS
tear ()% 0 1 3 5 6 8 9 10 12 15
Period (§) 1 2 3 4 5 6 1 8 9 10
Demand (q,) - 2 4 6 7 8 9 10 11 13

p.v. Factors (Fi) 1.000 .952 .864 .783: .746 .677 .645 .614 ,557 .481

*years of zero-excess capacity from Table 2

20
11
15
377
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With 11 construction opportunity periods and 4 projects, there are 44

implementation alternatives. In general, the present value cost of project s

proposed for construction in petiod‘j is Fj c®, Let X: be a 0,1 decision

3

variable associated with this alternative. If Xg is 1, then project s should

be implemented in pefiod j; otherwise, the project should not be constructed.

Total present value cost 1is therefore

8 y8
E § Fj C xj ’

(1)

which is the objective function to be minimized. For the numerical example

herein, (1) 1s the sum of all elements in the following matrix.

Period (J)
1 2

" agxl 1
1 30X} (.952)30%3 . . .
Project 2 50x2 (.952) 50x2 . . .

1 2

(s)

4 4

4 75X} (.952)75X, . . .

11
1
(.377)30x}, |
, 2
(.377) 5062,

4
(.377)75}(11

Four constraint sets complete the model. The binary decision variables

must be restricted to integral values.

Xy=Oor 1, all 1,8 .

(2)

At most, one project can be built in each conétruction opportunity period.

8
E xj <1, all}

(3)
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‘J'.J

Also, project s can be built at most only once.

',§‘X; <1, alls (4)
The capacity of the project implemented in period 1 must equal or exceed:
the demand through period 2, the next construction opportunity period. Similarly,

the cumulative capacity of projects implemented in periods 1 and 2 must equal
or exceed demand through period 3. In general, the total capacity of all projects
implemented through any period j must equal or exceed requirements through

period j+l. Hence we have

:.z2Q°x8>4q
3<i's | +1 » all j . (5

For the problem herein, the first two constraints of this set are
S R S S
b R ] 3 4 1 2 3 4

le + 4X1 + 4x1 + 7X1 + 2x2 + 4x2 + 4x2 + 7X2 2 4

The remaining constraints are developed in similar manner. Note that for the

last constraint (j = 11), the right hand side is q32 for which the bounds are

8
9y Y L Q-
DISCUSSION

If J 1s the number of construction opportunity periods and S is the number
of ‘alternative projects, the total number of decision variables in the model is
JS. In addition to integer restrictions on the variables, the total number

of constraints is 2J + S.
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For the numerical example, the number of decision variables is 44 and the
number of constraints is 26. This problem was gsolved in less than 30 seconds
on the IBM 360 computer with a branch and bound algorithm developed by
Shareshian (1969). The algorithm Jses the Land and Doig (1960) method.

Solution results are identical to thos= obtained by Butcher et al. Tle
optimal sequence of projects is 4, 2, 3, 1 in years 0, 6, 12 and 20 with minimum
present value cost of 159.81l. Only slightly poorer is the sequence 4, 2,1, 3
in years 0, 6, 12, 15 with present value cost of 160.28. This near optimal solu-
tion was identified in 32 iterations (i.e., branches) of the algorithm whereas the
optimal solution required 3493 iterations. In general, integer programming
formulations permit identification of such near optima that cannot be readily
detected by dynamic programming. With large scale problems, this can be of
significant importance.

Aside from the method of solution; the model itself can be modified to
make it more useful. The scales of alternative projects in the model have been
decided in advance. In practice however, project scale is seldom fixed. This
is generally true whether the projects are separate supply systems or capacity
expansions of the same system. Instead of assuming project scale is given,
therefore, it might be better to treat it as a decision variable.

The solution of the sequencing problem results in an optimum construction
schedule for all projects. There may be little value or interest, however, in
an entire sequence. After all, the planner is only bound by his next decision.
Furthermore, future changes may invalidate old results. It may be preferable,
therefore, to concentrate ouly on the next project instead of a sequence.

In the United States, it is generally desired that water supply capacity
equal or exceed water requirements. As shown by Manne (1967) and assumed in the
sequencing model, this implies that the water from local facilities has infinite

value. This however, is seldom true. Water can often be imported from a
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neighboring community at finite price, and where this is impossible as in the
developing nations, the social losses due to unsatisfied demand are usually
not infinite. If water value is made finite, however, supply deficits become
permissible and it does not automatically follow that the first project should
be implemented now. Hence, the question of optimal timing is raised.

In the next section, a model is presented that takes account of the above
considerations. The purpose of the model is to determine the optimal timing
and scale of the next water supply project given a water requirements function,

finite water value, and project cost functions.
MIXED INTEGER PROGRAMMING MODEL

For simplicity, only a single project is under consideration. Construction
opportunity perlods (j) are preselected. The project, for example, might be
proposed for construction immediately and every year of the next 5~-year period
or perhaps every other year of the next 8 or 10-year period. The exact schedule
is left to the judgment of the planner. Identification of the optimal construc-
tion period results from model solution.

The water supply project is assumed to reflect economies of scale; average
costs decrease with increasing scale. For this purpose, a fixed charge cost
function as shown in Figure 2 is assumed. Consider the alternative of imple-
menting the project in period j; S is its fixed charge (a set-up cost) and s is

\]
the cost per unit scale. If the project is constructed in j, its p.v. cost is

Fj (s zJ + 8 zj) . (6)

where F1 is the p.v. factor for period j. Zj is a 0,1 decision variable that
indicates whether or not the project should be implemented in j; zj, a continuous

decision variable, indicates scale. The 0,1 variable must be restricted so that
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COST
(C) )

SCALE (z2)
C=S+sz

Figure 2. Fixed Charge Cost Function
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if z

> 0 (i.e., the project is constructed) zj = 1;: otherwise zJ “z =0,

3
Total p.v. 1mp1ement£ﬁion costs are obtained by summing (6) over all ionstruc-
tion opportunity periods.

As in the previous model, the planning horizon is divided into time segments;
l-year periods are recommended. Specifically, d, is the duration of t (years)
and q, 18 the corresponding rate of water demand (gpy). Each unit (gallon) of
publicly supplied water is assumed to have a value of p dollars. If all water
requirements in year t are satisfied by local community supply facilities,

Ft p dt q is the present value benefit for that year, a fixed constant which
we shall call Bt' If, however, Ye (a decision variable) is the rate of demand
left unsatisfied by the local system in t, then the present value water supply

benefit that year is

Bt - Ft p dt yt (7)

Total p.v. benefits of public supply are obtained by summing (7) over all years
of the horizon.

Operating costs are assumed to be proportional to the amount of water pro-
duced; p is the operating price (dollars per gallon). If all water requirements
in t are satisfied from public supply, the p.v. cost is fixed; call it Kt' 1f,

however, y, is left unsatisfied, then the p.v. operating cost in t is

Combining (6), (7) and (8) after summing‘over appropriate time indices (j and t)
results in an expression of total p.v. net benefits, the objective function to be
maximized. The constant terms however can be ignored, and by defining p = § - ;
and then multiplying the objective function by -1, we obtain an expression of
total p.v. cost to be minimized

IF;SZ;,+L F -LF "
jj k| jjszj ttp"tyt 9)
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For now, p can be considered the net cost per gallon of water demanded but not
supplied by local facilities. In the case of importing, p 18 the net purchase
price of water from an adjacent commurity. In the previous model, p has infinite
value whereas here it is nonnegati;e.

Several constraint sets complete the model. Integer and nonnegative restric-
tions are as follows '

Z:I = 0or 1, all j

z, >0 s all j

]
¥, 20 ,allt. (10)

Z must be 1 whenever project scale is positive to assure inclusion of the fixed
charge.
Zj 2k z,, all j, (11)

where k is a constant that can be made arbitrarily small. When ’j is 0, 2j will
also be 0 because it adds nothing to production, only cost. However, as soon as
zj is positive, 2j is 1. Clearly, zj cannot exceed 1/k; k therefore sets an
upper bound on projéct scale.

At most, only one project is to be constructed.
:}': 2y <1 (12)

Demand constraints are similar to those of the previous model. For any year t,

initial capacity unsatisfied total
supply + constructed + requirements 2 requirements
capacity prior to t in t int

Q + thzj + Ye 2 q;, alle, (13)

where Q, denotes existing aupply capacity at the start of the planning period.
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Erlenkotter (1967) has shown that whenever a project is constructed, total
supply capacity should at least equal existing demand. This can be accomplished
by the following
Q, +3§sz :_Zj qJ , all J (14)
qj is the rate of demand in construction opportunity period j. 1I1f the project
i{s constructed in j, ZJ is 1; othervise it is 0. Hence, this constraint requires
total supply capacity to (1) at least equal O if an expansion is not made, and
(11) at least equal existing demand if an expansion is made.
The method of cost accounting in the objective function discriminates
against projects proposed near the end of the planning horizon. The entire cost
of such projects lies within the horizon while useful life extends beyond {t.
To provide continuity into the future, a terminal constraint may be included.
This provides for a nininua.targct level of excess capacity (or maximum level
of undercapacity) at the end of the planning horizon.
Q°+§z31qrr+01- , (15)
vhere Y is the demand at the end of the horizon and QT is (1) the ainimun desired

excess capacity 1f > 0 or (11) the maximus allowable supply deficit if < O.
NUMERICAL EXAMPLES

A numerical problem was programmed for the computer in which the first 20
ycars of Butcher's water requirements function was used. The assumed fixed charge

cost function was
C(z) =10+ 102

(Note that C(2), C(4) and C(7) are 30, 50 and 80 respectively which are close

to the values used by Butcher et al. in thei: example.) Years O, 1, 2, 3, 4,
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and 5 were selécted as construction opportunity periods (j = 1 thru 6). Thus,
1f a project was to be constructed it would have to be done sometime in the next
five years. The net value of water, p, was set equil to 2; the duration of all
time periods, d,, was 1 year; and the discount rate was 5 percent.
In general, the p.v. cost ogvthe project proposed for comstruction in

period j is Fj (10 zj + 10 zj),m Total p.v. construction cost is therefore

At

10-000 21 + 10-000“21 + 9‘0524 22"' “n c; ‘o 'i' 70835 26

The p.v. cost of unsatisfied demand in year t is F¢:2 y.. Total p.v. social

costs are therefore

The total objective funct;on to be minimized is the sum of the above two cost
expressions in which there are 6 integer and 26 c;ntinuous variables.

The maximum demand during the 20-year h;rizon is 15. Assuming the maximum
scale project that would ever be built is, say, 20, the value of k for the

fixed charge constraints is 0.05 ( = 1/20). The resulting 6 constraints are
Zj > .05 Z5 » J=1,2, « « «,6 .
The redundancy constraint that allows construction only once is

Zy+Zg+ o o . +2Zg2l,
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snd the 20 demand constraints are:

R 22
V) 4+ 22 ‘ RS Y, >3
2+ 23 + 23 . +y3,16
z).+ 25 + 234 24 + y‘ >S5
2+ 23 + 23+ 2 +2g ‘+.y5‘:_6.

‘1*‘2*‘3*‘6*‘5*_’6*’617

3174‘ 22 4‘.33 + 'z‘ + g + 26 + yzo >. 15

The set of 6 minimum capacity constraints (14) assuring that existing demand 4

at the time of construction is met can be rearranged as follows

Ia
°.

z -

175
222"21-22 5_0
3v23'21-22-23 _<_0

626-21- . . . -1610

Mote that the coefficients of the Z's nr; the dcllndl.in years O thru 5
(construction opportunity periods 1 thru 6).

For this problem, a terminal constraint was not included. Thus the model
required a total of 33 constraints in addition to integer and nonegative restric-
tions. Solution was obtained with Shareshian's algorithm. The optimal course
of action 1s to build the project in year 2 with capacity of 11 in which case
there will be excess capacity for 10 years. Total p.v. cost 1is 137.97.

The problem was reforaulated with p values ranging from 1 to 10. The results

are shown in Table 4. Suvlution time on the IBM 360 computer was less than 20

secondd per problem,
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Table 4
EFFECT OF p ON OPTIMAL PLAN
Excess®
Minimum Build in Optimal Capacity
p p.v. Cost Year Capacity Period
1 107.26 Never - -
2 137.97 2 11 10
3 : 149.02 0 12 13
4 153.08 0 13 15
S 155.07 0 14 17
10 160.00 0 15 20

*The number of years of excess capacity following project implementation
DISCUSSION

(1) Table & shows the effect of p on the optimal timing and scale of conatruc-
tion. With large p, supply deficits should dbe eliminated by constructing early
and providing sufficient excess capacity to satisfy demands. With decreasing p,
deficits becoae pernissible, both by delaying construction and providing less
excess capacity. Table & shows that excess capacity periods (commonly called
design periods) should be small wvhere p is small, as in developing countries,
and large vﬁerc p is largg. as in the economically advanced nations. U. S.

design standards should not in general be used abroad.

(2) Examination of the model reveals th;t vith increasing water requirements
over time, project implementation should be delayed as fixed construction charges
(S) increase. Additionally, the optimal amount of excess capacity increases as
cost pcr unit scale (s) decreases. The exact effect of these cost parameters

on timing and scale is largely affected by the demand function.

(3) The podel can be readily modified to aczomodate various planning situations.

The parameters of the constructioa cost function, for example, can be made tixze
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dependent to account for changing future costs. In this case S and s would Se

replaced by SJ and 84+ Similarly, p, can replace p.

(4) Several projects instead of only one can be considered by adding another
index to the parameters and variables of the construction éoet function. Hence,
244 would be the scale of project i proposed forﬁimplemeﬁtation in period jJ.
With multiple projects, changes result in both objective function and con-

straints, but these for the most part only include additional summations over {i.

(5) Successive projects (or more realistically, suébessive expanrions) instea&
of 6hly the first can be handled if the cost of such expansions is‘independént
of aggregate project scale. Assuming the same fixed charge cost fuﬂctioﬁ"applies
to every expansion, deleting (12) enables determination of the optimal construc-

tion pattern, beyond the initial project.
. ]

(6} Minimum capacity constraints are included so that a project is never con-
structed with insufficieni capacity to meet existing demands. If desired, qj
can be substituted for 9 in (14) so as to provide some arbitrary amount of

excess capacity in the event of construyction, where qj > qy-

-,

(7)' Several questions surround thé use of p in the model, the neé value of
locally ‘supplied water. In the'ﬁ. S, P is most realibtically the net price of
;mport&ng. Purchasing water froﬁ an adjaéent community is an alternative to
local supply. ‘It is not, however, a subg%itute for distribution. Hence, if p
is ;nfimport price; the model can only he applied to water supply, treatment

and transmission facilities - not distribhution.

o ¢ s . L
(8) In developing countries, the model can realistically be applied to entire
water systems (supply and distribution) in small communities. The alternative

.to local supply abroad is to go without publi: facilities. In, this .case, p is
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a measure of the social losses due to unsatisfied demand. These are primarily
amenity (quality-of-life) losses rather than economic development benefits
fotegone; for example, the lost value of labor due to water-related sickness and
death, the value of time and energy spend in carrying water, etc.

The assumption in p that social losses are proportional to the quantities
of water demanded but not supplied is reasonable for developing countries. In
general only quantities to meet the basic necessities of life are demanded:
watev for drinking, cooking, hygiene. The value in use for any of these purposes
is not much different. At the point where water is used for less essential
purposes, however, its value will start to diminish and the proportionality
assumption will not hold. For this reason, the model is less applicable to

larger cities,

(9) Analysis of an expansion model by Erlenkotter (1967) that is similar to
the one herein reveals that construction of a project should ideally be delayed
until the social losses due to unsatisfied demand accrue at the same rate as
the annual opportunity cost of capital invested in the project. Assuming y is
the unsatisfied rate of demand at the time of comstruction (gpy), C is the
implementation cost, r is the discount rate (per year), and p is the value of
publicly supplied water (dollars per gallon), a mathematical statement of the
optimality condition is py = rC, where the units on both sides are dollars per
year. The data in Table 4 generally give the same result. Where p = 2, for
example, z* = 11, C(z%) = 120, and rC(z*) = 6; from the demand schedule, y in
year 2 is8 3 and py = 6.

Rearranging the optimality condition we obtain p = rC/y. In this form, it
is possible to impute water supply benefit values either for decisions made in
the past or ones currently under consideration. Assume for example that a new
water system is being considered for a town of 10,000. The system will cost

$150,000 (C) for which the annual opportunity cost is $7,500 if the discount
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rate (r) 18 5 percent. Assuming the present demand (y) is 73 million 8Py
(20 gallops per day per capita), a decision to invest now would implicitly
assign a,net value (p) of about 10 cents per chousand gallons to publicly
supplied water.

Inputed values for past decisions have only limited value for future plan-
ning purposes. They can, however, (i) indicate the general level of value
placed on public water supply by previous investment, (il) serve as guidelines
for setting future p-values as a matter of planniné policy, and (i1ii) provide
a basis for comparison with water supply prices and other measurements of willing-
ness to pay.

More important is the role of imputed p's for current investment alterna-
tives. They can be compared with intuitive notions of public water supply value
and thus be used as investment criteria. In the problem above, for example, if
water is thought to be worth more than 10 cents (net) per thousand gallons, investment
should have been made sometime in the past when rC/y was larger. Since this
was not done, the project should be constructed now because by delaying, rC/y

will decrease due to economies of scale.
SUMMARY

(1) As in the case of the first model, many dynamic programming problems can
be reformulated for integer programming. An advantage of such formulation is
1
that branch and bound techniques permit i&entification of near optimal solutions

which can usually be obtained at significantly lower costs than global optima.

(2) In many cases, concern solely with the optimal sequencing of water supply
projects is unrealistic. This assumes that project scales are decided in advance,
locally supplied water has infinite value, and that it is important to know the
subsequent construction pattern after the nex*: project has been built. Instead

of sequencing, it is often more important to know when to build the next project
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and to what scale.

(3) ?he mixed integer Programming model herein 1; specifically concerned with
the timing and scale of public water facilities in a single community. The
model can most realistically be used for the planning of water supply systems
(without distribution) in the U. S. or complete rural water systems (including

distribution) in developing countries.

(4) If the model is applied in the U. S., the price of importing water from
neighboring comnmunities less the local price of operation would most logically
be used for the value of p in the objective function. When applied abroad where
water systems are generally lacking, p reflects the social losses that result
from having to go without publicly supplied water. Evaluation of p in this case
is a stumbling block since entirely satisfactory methods have not'yet been developed.
Some alternative approaches for the determination of p include (i) imputing, as
described herein, (i1i) use of price data from towns served with water, assuming
such data reflect willingness to pay (a more tenable assumption abroad than in
the U. S.), (1i1) questionnaires regarding willingness to pay, (iv) political
fiat, (v) value judgement, (vi) differences in the market value of properties

with and without public water service, and (vii) shadow health costs.

(5) While most of the assumptions of the mixed integer programming model fit
within the community conditions of developing countries, the model cannot be
applied abroad without modification. This is because water supply planning
abroad is usually dome by a central agency of the national government. Instead
of considering each community independently as in the U. S., water systems for
an entire group of towns must be planned simultaneously. This results from the
requirement that the central planning agency alocate the national water supply
sector budget among towns in need of systems. Annual budget constraints, there-

fore, create economic interdependencies among systems that are lacking in the U.S.
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With centralized planning, the mixed integer programming (MIP) model
would be merely a component of a larger budget allocation model. The MIP model
woéld have to be repeated once for each community under consideration. This ,
can be done simply by adding a location index to model variables and parameters.

" The objective function would then require additional summation over this index

and the model would be completed by inciuding a set of budgetary constraints.
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Water Supply Investment Models for Developing Countries
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WATER SUPPLY INVESTMENT MODELS FOR DEVELOPING COUNTRIES

l. General Problem

Water supply planning in developing countries is usually
performed by an agency of the national government. The prin-
cipal investment problem is allocation of budgets among com-
munities in need of systems. With such centralized planning,
it is not possible to consider each system separately. Rather,
all systems must be planned simultaneously benause when funds
are invested in one project, they are automatically denied to
the others. .

The principal investment questions are when :0 construct
water systems and how large to make them. Since it can be
demonstrated that new water systems in developing countries
should have excess capacity for 10 to 15 years, the most dif-

ficult problem is determination of investment timing.

2.1 Sequencing bv Absgnlute Advantage

Suppose that water systems are to be constructed in several
towns and that the scalz of each is decided in advance. The
investment problem is to determine investment sequencing among

the alternative projects.

2.2 Definitions

C;+ = present value cost of the system proposed for
town i in year t.

X3¢ = Dbinary decision variable (0 or 1) associated
With Cit .

Ki¢ = construction cost of the system proposed for
town i in year t.

Bt =

available budget for year t.
A to™ o,
ae\’!°2::§°‘°\° cop
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2.3 Objective Function ‘

The objective function to be minimized is the total present
value cost of investment; i.e.; the sum of all elements of the
following matrix:

| ,(I;mé Period (t)
1. 112 “ one T

1 ) -91‘ clz REEN] C‘Tﬂ
Town (i) 21 €y, "Cay e C.r' |

Minimize (2.1)

HeM
™
(@]
'-‘o
t
]
-
ct

2.4 Constraints

Integer:

1f a system should be constructed in town i in year t,

then X, is 1; otherwise it is 0. Hence

;¢ = Oorl, all i,t (2.2)
Redundancy:

In each town, it is possible to construct a system once

and only: once. Hence

£ax;, = 1,alld (2.3 a)
t

Alternatively, we msy want to require that a system in each
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town need not be constructed, but if it is] it can only ‘be’

constructed once. Hence

E X;p < 1, alli , (2.3 b)
Budget: .,
The total cost of construction in any year cannot exceed

the available funds. Hence

With this constraint, the unused budget from each year is
forfeited. If unused funds are allowed to accumulate, we then
require cumulative budgets through year £ to equal or exceed

cumulative construction costs. Hence

I I K;x,. < L_B._,allt (2.4 b)
itet it it - t<t t?

Note that t assumes the same values as t.

2,5 Comments

The simplest form of this model includes (2.,1), (2.2), and
(2.3 a). The expected solution would prescribe construction of
all systems in the final time period because in\general,
Cit > Citsr-

If (2.3 a) is replaced by((%.a b), the optimal solutibn
would be to do nothing; i.e. x§, = 0 foﬁ/all i and t. This
would continue to be the solution if budget constraints (2,; a)

-...‘sh.
or (2.4 b) were added.
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A more reasonable model would require all towns to have
systems without exceeding budget constraints. Such a model
would include (2.1), (2.2), (2.3 a) and (2.4 a). Care must
be taken that the total budget equals or exceeds total construc-
tion cost. If it does not, the problem has no solution.

Probably the most realistic model would replace the budget
constraint by a restriction requiring a minimum numb?r of sys~

tems to be constructed each year. Defining
ng = minimum number of required eystema‘in year t,
we have

This model would therefore include (2,1), (2.2), (2.3lb),

and (2.5).

3.1 Sequencing by the Efficiency of Investment

The above model only requires that total present value
investment cost be minimized., It does not consider the
nefficiency"” of investment. If an implicit goal of investﬁént
is to allocate the hudget so as to serve as many people as
possible, then an appropriate planning criterion would be
present value construction cost per capita. Assuming that this
criterion is to be minimized, preference would generally be
given to 1arger systems where greater economies of scale exislt.
The functmon of the model would then be to determine investment

timing for each community so as to meet restrictions either on
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budgets or the minimum number of systems to be constructed

each yean.,

3.2 Definitions

Ej¢ = present value construction cost per éapita of the
system proposed for town i in year t. Other
definitions as in section 2.2. '

‘3.3 Objective Function

i

The objective function to be minimized is the total present

value investment costs per capita. Hence

Minimize Eit X ¢ (3.1)

I
t

(T

3.4 Constraints

The constraints are identical to those of the previous

model.

3.5 Comments

In general, the comments of section 2.5 apply herpiq. The
simplest form of the‘modél would still prescribe construction
in the last period since Ej¢ is geperally greater than Ests1
due to both economies of scale and the discount rate.

The most, realisitic form of the model includes a constraint
on the minimum number of systems to be built each year. It
might also inélude an uppef bouﬁﬁ :on construction cost. Care

must be taken that these two constraints do not conflict .

Minimize

He
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Subject to I X5e < 1, a1l Redundancy
t
L xge > nesall t Minimum No.
i
EKgexie € Bpallt  Budger

X;¢ 2 0orl, all i,t Integer

4.1 Sequencing by Comparative Advantage

Although the previous model is an improvement on the first,
it is still deficient because it does not consider comparative
advantages among project. For this, it is necessary to include
not only the present value cost of construction but also the
economic losses that accrue by delaying implementation from one
period to another. In other words, to decide optimal timing,
it is necessary to examine the benefits foregone by not con-

structing now.

4.2 Definitions

Assume the planning horizon is divided into T periods each
of l-year duration; t is the time period index. Further assume
that during T years of the horizon, there are J opportunities
to construct a system of predetermined scale (in general, the
scale will meet existing demands and provide excess capacity
for 10 or 15.years). Then j is the index of the construction
opportunity period.

Qij = water supply capacity of the project proposed for
town i in period j (with such units as gallons per day)

C. s greeent value cost of the system proposed for town i
n period j
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binary decision variable (0 or 1) associated with cij

x
(74
(W
"

Pi+ = présent value net benefit of publicly supplied Wat8i"
in town i during period t (with such units as dollars
per gallon)

Kij = construction cost of the system proposed for town i
in period j

de = duration of period t (in days)

Yi¢ = continuous decision variable that denotes the rate of
unsatisfied demand in town i during period t (with
such units as gallons per day

Qj0 = existing demand in town i at start of the planning
horizon

9;¢ = incremental increase in demand in town i during period t

Qjo = capacity of existing supply facilities in town i at
start of the planning horizon

Bj = available budget in year j.

4.3 Objective Function

The total present value construction cost‘is,

L L C;s x.
ij 1j "ij
To this must be added the cost of benefits foregone during

periods when the demand for publicly supplied water is not
satisfied. The rate of unsatisfied demand in town i during
period t is d, Yi¢s the present value cost of this unsatisfied
demand is'pit de Yits and total present value cost is

TIPic deVie

The total objective function to be minimized is therefore

LT C:i % + I (4.1)
iq 1374 i
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4,4 Constraints

Integer:
' xij = Oorl, all i j (4,2)
Nonnegative:
yie 2 0, all i, t (4,3)
Redundancy:

This model is concerned with deciding when'tb build a

single system during the planning horizon. Hence we have

.<_ 1’ all i . (u'ou')

5

Derand:

For each year £ of the planning horizon, the sum of
existing capacity in town i plus expansion capacity through £
and the rate of unsatisfied demand in £ must equal or exceed

cunulative demand through t. Hence

Qin * Za Qius Xss + y:8 > Qi+ I Qi4s all i % (4.5)
10 j<t ij "1j it 10 t<t at? ?
Budget:

Where unuced budgets are forfeited we have

Z K,

£ Ky xij < Bj, all j (4.6 a)

and where unused budgets accunulate

£ I, Kii %;i < IaBi 5 all ] (4.6 b)
ijgg oY 3¢5 9
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4,5 Comments.

It -can be shown that the values for p are the gross bene-
fits qf publicly supplied water less the cost ;f producing
water in local supply facilities. |

The model is a problem in mixed integer programming. It
can be solved by one of the branch and bound techpiques.

The present value cost of construction for projects
proposed near the end of the planning horizon must be adjusted.
Otherwise, demand backlogging rather than construction will be
preferred because the entire cost of such projects lies within

the horizon while useful life extends beyond it.

5.1 A Model for Determining Optimal Timing and Scale

The four previous models are concerned only.with optimal
timing. It is implicitly assumed that the ‘proposed scale of
each alternative project is optimal. While it can be shown
that water systems in general should have excess capacity for
10 or 15 years, the exact scale will depend on particular local
conditions. Hence, scale should ideally be treated as a

continuous variable. This is done in the model herein.

5.2 Definitions

__As in the previous model, t is the time period index and
T ‘A’(\h‘r -s‘—,?‘v L]

j:ig‘%ﬁé'bbﬁétruction opportunity period index

Pj, F, = present worth factor for periods j and t,
respectively '
S:: = - a fixed cost that is incurred if project i 1is

1 implemented in period j
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zij = a binary (0,1) decision variable associated with Sij
8i4- = construction cost per unit scale (e.g., $ per mgd)

for project i with implementation in period j.
Z;3 = continuous decision variable for the scale of project

J i proposed for implementation in period j

Pit’dt’yit’qio’qit’QiO’Bj’ as in previous model¥®

ks = the reciprocal of the largest scaic¢d project that could
ke constructed in town i
Qp = aminimum required excess capacity i) town i at end of

glanning horizon

5.3 Objective Function

The present value implementation cost of the project

proposed for town i in period j is

The present value of the benefits foregone by not satisfy-

ing the demand for publicly supplied water in town i during

period t is

Fy Pit d¢ Yit

Summing these costs over all towns and construction opportunity

periods results in total present value cost

S.4 Constraints

Integer:

Zij

0 or 1, all i,j (5.2)

*  except Pi+ is not a present value herein.



61

11
Fixed Charge;
Whenmvar an expansion is made, a fixed charge is incurred;
that is, whet: » > 0, 2 = 1. This can be done with the follow-
ing

4. > k

2 kj 234, all 1,5, (5.3)

By making k; very small, zij will have to equal 1 when 235 is
positive. Actually, k; sets an upper bound on expansion scale

and hence should be chosen accordingly.

Non-negative:

Redundancy:
As before, at most one system can be constructed in each
town. For this reason, the planning horizon should not exceed

10 or 15 years. Hence

z Zo. i 1, all i (5.5)

Demand:

As in the previous model, the sum of existing capacity in
town i plus expansion capacity through t and the rate of un-

satisfied demand in £ must equal or exceed cumulative demand

through t. Hence

+ _Z Z.. + yi% _>_ qio + tﬁ; Qit, all i,t (5.6)

Excess Capacity:

It can be shown that whenever a system is constructed,


http:Wervi.er
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total supply capacity should at least equal total demand.

4

Hence

o5, 2y 2 Zgy (Ggo * 27 Git)s all i, (5.1

Yo " 43 =i t<

Terminal:

It is reasonable to require that by the end of the plan-
ning horizon, each town should have a supply system that
provides some degree of excess capacity over demand. Hence

Qo * g 235 2 9o * I it Qp» all i (5.8)

If Q4p is chosen to be < 0, a maximum level of unsatisfied

demand is implied.

Budget:

If unused budgets are allowed to accunulate, we have

] <L, B, all] (5.9 a)
<3

J

H. 1

I, [S:s Zis + 83 244
P ij “1) ij 1)

If unused budgets are forfeited, we have

Az~ 4+ 8.2 28] < BS 3 .
g [Sl:l le 5;3 zlJ] < BJ, all j (5.9 b)
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Interim Report On The Optimal Design of
Small Water Supplies In Developing Countries

1. 'Introduction

Community water supply engineering is significahfly
’different in developing countries than in the United
States. Most water systems abroad are planned by a cen-
tral agency of the national government while in the U.S.
planning is done by‘individual municipalities. The cen-
tral agencies operate under budget restrictions that make
it necessary to plan several systems simultaneously. In
the U.S. however, water s&stems can usually be planned in-
dividually without having to consider the allocaticn of a
budget among different communitiés. The economic condi-
tions are much more stringent in the low income countries
than in the U.S. Most water supply construction abroad is
for new systems while in the U.S. it is for expansions. It
is common in developing countries for at least part of the
water demand of large segments of the population to be pe-
) ;iédically unsatisfied, but in the U.S. the total demand is
neafly always supplied. Water systems shroad primarily
serve domestic needs, but U.S. systems additionally meet
large commercial and lawn irrigation requirements.

- Despite the differences, U.S. planning practices are
widely used in developing countries. It is not uncommon,

for example, to find water plants designed for more than



2
twenty years and water mains for more than forty. As in the
U.S., expansion policy usuall} assumes without question that
the capacity of water supply facilities should alwafs equal
or exceed demand, although budget and other limitations of-
ten force unwanted supply deficits. Design values for the
annual rate of demand increase are'often based more an U.S.
experience than that of -developing countries,,#nd'this is
sometimes true as well for per capita rates of watef
consumption,

Because of the differences in planning cénditions, it
;s generally recognized that U.S. criteria will not prod-
uce optimal designs abroad.®* U,S. practice is of course
used because neither the technology nor the planning para-
. meters have been developed éhat are specifically pertinent
to the water supply situation in low income countries. The
goal of this study therefore includes developing the theory
and methodology for field evaluation of design criteria
that.will improve water supply planning abroad.

The primary concern of this study is with the scale and
timipg of investment in water supplies. These factors are
the principal determinants of cost and are the most basic
parameters in need of investigation.  Thoretical insights

regarding timing and scale can be gained from an examination

# TIndeed, the accuracy of conventional design criteria
within the U.S. has been questioned in recent years.
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of the mathematzcal models of Alan Manne* Hence, tbo per-

soF.
v

s
- . f 11111

t;nent aspects of hls work are summarlzed and dlscussed

3 N

herein. To make Manne's models practlcable for water

it

‘supply systems, field evaluation is needed of his key plan-
ming parameters. Presentation of completed field work in
thislregard follows the section on theory. This includes
work im Central America to evaluate water demands and
§analyze cost and other data records. The report concludes
with suggestions for additional studies needed to complete

the project.

2. Theory
Although Manne has developed several models for the

timing and scale of investments, only two are discussed
herein. One is called the '"no-backlogs" model and the
other is called the "time-phased imports" model.

No Backlogs Model

The no-backlogs model is for the planning of a single
isolated project. This implies that when the model is

used for water supplies in developing countries,.selection

% ¢,f. Manne, A.S5., "Capac1ty Expansxon and Probabilistic
Growth", Econometrica, v 29, n 4, pp 632~ 649, Oct. 1961.
Also, Investments for Capaclty Expansion: Slze, Location

~and Time Phasing, MLl Press, Cambrldge, Mass., 1967
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has already been made of the town that is to receive a new
system er expansion.®

: 'Initially, a sﬁpply system is ;séhmed to éxisf, qﬁa‘the
rate of demand (in our case, the @emand for water) ié E;ac%ly
equal to production ?apacity. While this assumption is more
appropriate for expaﬁsion of existing systems than cogétruc-
t%pg of new ones, it is useful for model development‘and

will ultimately be relaxed.

The demand for water is assumed to increase at the cons-~
tant rate of D ﬁgd per year. This increase continues for-
ever (i.e., the time horizon is infinite). Demand is known
with certainty and is not affected by the selling price of
water., '

The cost of a system exﬁansion depends only on its size.
As is common in the field of water supply, the cost of a sys-
tem increases as its size increases but at a decreasing rate.
The cost of a 6 mgd water system, for example, is less than
twice the cost of a 3 mgd system.

The capacity of water supply facilities must always equal
or exceed demand®*, The capacity curve must therefore lie

T ———————

.% This report does not consider the question of how to
select the towns that are to receive water systems.
Although this is a difficult planning problem abroad,
jts treatment is deferred to the final report.

#% Although this policy is commonly followed in the U.S.
_and is often the desired policy abroad, it is not too
".pealistic for developing countries and consequently

is relaxed in the next model.
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on ‘or-above the demand curve. -This results in the.step:...

function shown ‘in ‘Figure l. Because demand and: supply are
presently in balance (i.e., now, at time zero) now is the.
time for the first expansion, and the next will be required
when demand has again grown equal to supply. . With cons~ .
tantly increasing demand, an'infinite time horizon, and,
unchanging costs and discount rate, the future is identical
from each point where supply and demand are in balance.
‘Hence, the expansion scale that is optimal at the:present
point of balance is optimal at every other such point.
Based on the above asgumptions, the mathematical
model for determining optimal expansion scale can be devel-
oped. If x is the design period in years and D iz the
rate of demand increase in mgd ﬁer year, then the scale of

each expansion is xD'mgd*. The expansion cost function is
C = k(xD)2,

If the value of the exponent, a, were one, this function

would be linear and cost would be directly . proportional to
scale. The cost, for example, of a 6 mgd expansionﬂwoulg
then be twice that of.a 3 mgd system. In the. water supply

field, the value of "a" is between zero and one. The

* The design period is the time between subsequent expan-
gions. With this modeal, x is also (i) the period of
excess capacity following an expansion, and (ii) the
period between points where demand and supply are equal.
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parameter k is the cost of a one~mg&-systemﬂwhich,is imme- |
-diately apparent by*setting'expgﬁéion scale, xD, equai to,
unity. : 1 N

The planning problem is to.find, the optimal design pe-
riod (x%) that minimizes cést. The mathematical expression
for total present value.cost of all future expansions can
" be déveloped using the device of a recursion equation.
Defining K as the present value of all future expansion

costs from any point where supply and demand are in balance,

we can write

X

K = k(xD)2 + e F* K.

This says that the present value of future costs at time
zero is the sum of the first expansion cost (which is
already a present value) and the discounted value of all
future expansion costs from the next point where supply and
demand are equal. Discounting is obtained using the factor
e~TX yhich is approximately equivalent to the more conven-
tional discount operator 1/(1+r)*. where r is the rate of
interest. Solving the equation for total present value

cost results in the following
K = k(xD)3/(1-e"T%),

To find the design period that minimizes this cost, x*, the

derivative can be sev equal to zero. The resulting
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x = design period (years)
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optimality condition is :
®
a = rxt/{ef¥ -1).

The above equation, which cannot be solved explicitly
for optimal design period x*, indicates that the best ‘
design period is a function of the exponent "a", which is
called the economy of scale factor, and r which is the
interest rate.* Numerical results from solution of this
equation are presented in Figure 2. This graph shows that
the design period should decrease as either "a" or r (or
both) increase. This suggests that in developing countries,
were no backing policies to be adopted, water supply expan-
sions should serve for relatively shorter periods of time
than in the economically édvanced ones because of higher
discount rates. Also, where economies of scale are lacking,
the optimal design.period is zeré indicating that excess
capacity should not be built ahead of demand.

Assuming that the discount rate in developing countries
lies in the range of 5 to 15 percent and the economy of
scale factor is between £ and .8 (for water treatment plants
in the U.S., "a" is about .65), the following table shows

the optimal design periods that would apply.

% The numerical value of "a" indicates the economies of
scale associated with water system construction. We
have already seen that expansion costs are directly
proportional to scale when "a" is one. In such a case,
economies of scale are absent. With smaller values of
"a", greater economies result. Doubling scale when "a"
ig 0.7 for example increases expansion cost by about
62 percent.
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Table 1

Optimal Design Periods
(in years)

No~Backlogs Model

r/a .60 «65 .70 .75 .80
.05 18.0 16.2 13.5 11.0 8.6
.10 9.5 8.1 6.8 5.5 4,3
.15 6.3 5.4 4,5 3.7 2,9

Water supply agencies abroad often use design periods
of 20 or 25 years. Based on the above, it appears that such
values are too high. This implies that scarce resources are
being tied up unproductively too long. It might be asked,
what are the economic consequences of such overdesign?
Manne's present value cost function provides the answer.

If the erroneous policy of overdesign is followed forever,

the function
K = k(xD)2/(1-e"T%)

indicates excessive costs. For example, where "a" is .65
and r is 10 percent, conditions that presumably apply to many
weter systems in developing countries, the optimal design

period is 8.1 years with total p.v. costs, K, of 7.02%,

* To obtain K, k and D were set equal to unity which results
in no loss of generality.
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By erroneously using a 25-year design pdlicy, K is 8,83
regsulting in excess present value cost of 26 percent. More
generally, the consequences of over or underdesign can be
seen from Figure 3 which is a graph of the above cost func-
tion. The flatness of the curve suggests that élightly
erroneous policies are not too serious, at least relatively

speaking, although the actual dollar amounts may be substantial.

Time-Phased Imports Model

The basic assumptions of this model are nearly identi-
cal to those of the previous one. Only a single water sup-
ply project is considered, initially supply capacity and de-
mand are equal, demand increases linearly, the time horizon
is infinite, and the expansion cost function reflects econo-
mies of scale. The important difference with this model is
that supply capacity need not always equal or exceed demand.
Instead, demand is periodically allowed to rise above capacity
which results in deficits as shown in Figure 4.

During periods when the water system is inadequate,
excessive demands must be left unsatisfied because no other
supply alternative exists. Under other circumstances, import-
ing water from a neighboring community might be possible.

This however cannct be done becauss the demand and supply
functions of the model implicitly include distribution. A
demand, for example, of three mgd not only is a requirement

for a certain quantity of water but also implies that the flow
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must be distributed to users throughout the town. Similarly,
system capacity of, say, four mgd implies the ability to prod-

uce and distribute this amount of water. Hence, excessive

demand implies a deficiency both in production and distribu-
tion facilities that cannot be met by importing.

From Figure 4, three important observations can be made.
The future from every point where capacity and aemand are
equal is identical. Hence, the policy that is 6ptimal now
at the first point of balance is optimal at every other such
point. This accounts for the even timing between expansions
and constant expansion scale.

Secondly, the design period (x) is the time between
successive expansions. An expansion wipes out the y years
of deficit that preceed construction and provides x-y years
of excess capacity..

Finally, with this model there are two decision varia-
bles, expansion scale and timing. No longer is timing fixed
by the requirement that capacity equal or exceed demand as in
the other model. Rather, the optimal waiting period is now
a matter for decision.

As with the no-backlogs model, the planning objective is
to minimize to:al present value cost. This includes expan-
sion costs, op:ration and maintenance costs, and social
costs that result when part of the demand is not satisfied.
..These latter are called backlogging costs.

In the no-backlogs model, the output of the water system
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is equal to the total demand which is a fixed constant. Ope-
ration and maintenance costs are assumed to be proportional
to system output which means that they are independent of
project scale and carl be ignored.* In the imports model
however, system output is not equal to the total demand. The
fact that demand is fixed no longer reduces operating and
maintanance costs to a constant. Hence, they must be explic-
itly considered in model formulation.

The total present value cost function of this model can
be developed by referring to Figure 4. As with the no-back-
logs model, a recursion equation is used. The general approach
is as follows:

(1) The present value cost of operation is calculated

as if the total demand is supplied by the system.
The result is a constant as in the case of the no-
backlogs model, but its value is too large because
it erroneously includes the operating cost of
periodically supplying water beyond system capacity.

(2) In order to correct this error, the present value

of excess operating costs must be substracted for

the periods. of deficit.

+

# It is assumed that operating costs equal the price of
operation multiplied by the amount of water produced
and then discounted to time zero. But the amount of
water produced in the no-backlogs case is equal to
total demand which is a constant, and the price is
constant. Hence the product of these terms is also a
constant that is indenendent of design peried. TIts
derivative in the expression for total present value cost
is therefore zero, and it follows that operating costs
can be ignored.
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(3) Now however, the present value social or backlog-
ging costs from not meeting total demand during
the same periods of deficit must be added.

(4) Finally, present value expansion costs must be
included.

In the strategy of model development, the erroneously high
operating costs is a constant that does not affect the op-
timality conditions and hence can be ignored. The downward
adjustment in operating costs during periods of capacity
deficit cén be combined with the social costs of the same
periods. Finally, expansion costs are included and the
entire expression put in the framework of a recursion equation.
For developing the recursion equation, G is defined as
the present value of future variable costs from any point
where supply capacity and demand are equal. G is a function
of expansion costs, backlogging costs for periods of capacity
deficit, and operating cost "credits" to compensate for the

error in the assumptions that total demand is met by the

system.
present value present value present value
G= |backlogging excess operating expansion
costs during — |costs during + cgst at
period 0 to vy period 0 to vy time y

() - (II) (I11)

present value
+ lcost of G
at time x
(Iv)
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If p, is the social cost per gallon of water demanded
but not supplies during periods of deficit and p, is the
operating cost per gallon of water, the combination of thesée
prices for items I and II in the above expression is the net
"backlogging" price p, where p is the difference between
p; and p,. Typical units of p are dullars per gallon, and
its value is always positive, for should the social cost of
not meeting demand (p)) be less than the operating cost (p,),
it would be more economical to let demands go unsatisfied
and never construct a water system.

The backlogging price p is a measure of the net social
losses due to unsatisfied demand. It represents the net
benefits foregone by not having a public water supply system.
Such social losses primarily include amenity benefits not
achieved, although for larger water systems, foregone econo-
mic development benefits would also be included. Typical
lossses for small systems include the value of labor due to
sickness and death and the value of time and energy spent in
carrying water, losses that would have been avoided had a
public water system been in existence. '

The mathematical expression for the above recursion equa-

tion can be written as follows

v
G = fe Tt pDt dt + e~TY k(xD)2 + e™F* G
0 (I & II) (II1) (IV)
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. After integrating and solving for G, the optimal waiting pe-
riod ﬁrior to expansion (y®) and the optimal design period
(x*) can be found by setting the appropriate partial
derivatives equal to zero. The resulting optimality condi-

tions are

r k(xD)3/pD
[x* (eFX* = 1)1 /7 [y*/ (™" - 1] -

y*

a

The first expression above has valuable implications for
water supply planning in developing countries. As the backlog-
girg price, p, increases, the deficit period, y*, approaches
zero. But when y* is zero, the situation is identical to
the no-backlogs model. Hence, the restriction disallowing
deficits is equivalent to assigning an infinite value to the
backlogging price.

Aside from indicating the conditions for the single best
system expansion, the first equation above indicates an opti-
mal planning policy. This means that given a value for design

period x, optimal or not, total present value costs will be

minimized by delaying construction y* years from the time
capacity and demand are equal. If the design period is the
optimal value (i.e., x*), the absolute minimum will be obtained,
but if x is non optimal, a relative minimum that is the lowest
possible value for the given x will result.

Knowledge of the optimal waiting period is of little

practical value for the planning of new water systems because



85

15
1 ] B

y* .is measured from the point of equilibrium between capacity
and demand which does not ék&ét. However, the optimality
condition can be rearranged to other forms that are more

useful, the following for example
y* = [kD? / pD] rx2 .

The term in brackets is called the "penalty factor". As we
have élready seen, k is a measure of construction cost and

P is a measure of the social costs due to leaving part of
the demand unsatisfied. For convenience, let us assume that
the value of D is unity.

The penalty factor describes a.cost ratic between'meet-
ing and not meeting water éemands. High values of the factor
imply that construction is relatively more expensive than
backlogging and vice versa. In places like the U.S. where
the benefits assigned to publicly supplied water are very
high, p is large and the penalty factor approaches zero. Con-
versely, in developing countries p generally has low value
and the factor is large.

Figure 5 shows the optimal levels of the waitiné period
(y*) and design period (x*) as functions of the penalty fac-
tor for arbitrarily selected "aﬁ and r of 0.65 and 10 percent,
The most important observation from this graph is that
(x*~y?*) is a maximum vhen the penalty factor is zero and it
decreases as the penalty factor increases. But (x* - y*) is

the optimal period of excess capacity following an expansion.
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Hence we can conclude that whether there are supply deficits
or not, the optimal period of excess capacity for a water
system should never exceed the design period values obtained
for the no-backlogs model. Once the decision on when to
construct a system is made, its maximum scale can be determined
in the absence of information on backlogging prices.

An example will illustrate. Assume town population is
-10,000 and the rate at which water is needed is 20 gallons
per day per capita. Assuming no existing water system, the
present rate of unsatisfied demand is .20 mgd. Suppose the
growth rate of demand is .005 mgd per year and "a" and r are
.7 and 10 percent. From Table 1, the maximum period of
excess capacity is 6.8 years. which results in maximum excess
capacity of .034 mgd (6.8 x,005), Hence, the scale of the ex-
pansion to be made now should not exceed .234 mgd.

In this example, the decision is made a priori that a
water system is to be constructed now. The possibility exists
however that now is not the best time for expansion; perhaps
it would be more economical to delay construction. Although
the optimality equation above cannot indicate the best time
for implementation unless numerical values are ° available for
ali the parameters, it can assist in deciding whether to build
now or not even if an exact value is not available for p.

Consider the equation in the following form

p = r[k(xD)3] / Dy*
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The term in brackets is the cost of expansion and the numera-
tor is the annual interest on investment in dollars per
year. The denominator is the unserved rate of demand at the
time of expansion. By substituting numerical values for the
right hand side, p can he estimated. This is the value of p
that would be implicitly assigned by undertaking the proposed
construction. The calculated p is called the imputed value,
and by comparing it with what the planners think is the true
value of pubiicly supplied water, the decision can be made
to build now or wait. If the imputed p is too large, build-
ing now would assign greater benefits than what the water is
really worth, and hence thg project should be delayed, but
if it is too small, implementation should proceed.

The previous example can be used for illustration. The
planners know that if a system is to be'constructed, its
scale should not exceed .234 mgd. Suppose they decide to
use this scale. The questions is, should the system be
built now or not?

Suppose the estimated cost of a .234 mgd system is
$145,000%, Also assume that the discount rate is 10 percent
per year. Then the interest on construction is $14,500 per

year, If construction is made now, the unserved rate of

* The assumed construction cost function from which this
value derives is C=400,000 (xD)7, where xD is scale in
mgd and C is cost in dollars.
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in the economy of scale factor, "a". With

numerical values for "a" and the discount rate

(r), it is possible to calculate optimal design
period, %%, for the no-backlogs model. Although

x* is of little value from the standpoint of
applying the no-backlogs model, it is of consideraltle
interest as an upper limit on the period of excess
capacity.

(2) Optimal design period is of little planning value
by itself, Our interest is in the optimal scale
of construction which depends equally on the
design period and the rate of demand. Specifically,
information is needed on the growth rate of water
demand in communities newly served with supply
systems. Hence, development of statistical predic-
tion models using such data from developing coun-
tries should be made.

(3) With accurate information on both design period and
water demand, it should be possible to make fairly
good estimates of optimal water system scale. The
flatness of the total present value cost function
suggests that serious errors should not result
even if the scales deviate somewhat from optimality.
The problem of construction tining however still
exists. Although the scale might be correct,
investment at the wrong time might lead *“o serious
misallocation of scarce funds. Sclution to the
timing problem depends on numerical data for the
net benefits of publicly supplied water. Although
it appecars that accurate estimates of public water
supply bencefits will be long in coming, work on
this problem can be started using the method of
imputing to analyze cost and other data from develop~

ing countries.

(4) Neither the comments above nor the models of this
section have taken proper account of the type of
centralized planning in the presence of budgetary
constraints that is emploved in developing coun-
tries. Hence, additional theoretical worl: is
needed to develop planning models more suitable to
the conditions abroad, and these should then be
applied to specific water supply planning problems.

In connection witkh cach of the above points, scme work
has been started. With exception of item 4 which will be
discussed in the final report, some of the rasults that have

been obtained are presented in the following sections herein.
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3. Construction Cost Function

The upper limit on the excess capacity that should be
built into a water system depends largely on the economy of
scale factor, "a". This factor can be estimated by statis-

tically fitting the cost function
C = k(xD)@

to water system construction data. With values for cost (C)
and design scale (xD), the parameters k and "a" can be de-
termined by least squares analysis..

As a subetitute for design scale, the statistical
analysis can be made using data for design population. In
this case, it is necessary to replace xD by the product of
per capita water demand (q).and design population (w).
Assuming per capita demand is the same for all systems, the

cost function to be fitted to the data is
C = k(qw)® = (kq?) wd = k,w? -

For convenience, C is cost in thousands of dollars and w is

the expected number of inhabitants to be served by the end

of the design period. k, therefore is the cost (in thousands

of dollars) of serving a town with a design population of oné.
Iﬁ order to use least squares analysis for estimating

the econcny of scale factor, it is necessary to take the

log transform of the above function. This results in a

linear equation
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= +
¥ =Dy +b X,

where Y and X are the logarithms of system cost and design
population, respectively, b, is the log of kys and b, is
the economy of scale factor. The corresponding equations

for parameter evaluation are

b

(£Y)/n - b, (ZX)/n
(ZXY - (EX)(ZY)/n)/[EX% - (ZX)2/n],

0
by

where n is the number of daté points in the saﬁple.

The appendix includes cost data for 65 water systems
constructed in Central America from 1965 through 1969. All
are of the gravity type and are new rather than extensions
of existing water works. From the least squares analysis,
b, was found to be -3,07 and b, is 0.83. The equivalent

0
exponential form of the cost function is

C = .0o46 w83,

If per capita water consumption is 30 gallons per day, the
design population for a one mgd system is about 33,300,

The corresponding cost of this scale system calculated by
the above equation is approximately $260,000. Hence, the

cost equation in its original form is
c = 260 (xD)+83 ,

where design scale (xD) is in mgd. If per capita consumption
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is 25 gallons per day instead of 30, the coefficient in the
equation is 300 instead of 260.

The large "a" value obtained from this analysis implies
that economies of scale associated with watéq supply systems
are rather small. ‘Referring to Figure 2, the period of
excess capacity (x®*) for a discount rate Sf 10 percent should
apparently be less than 5 years. This is considerably shorter
than the 20 or 25 year periods:.currently in use, but before
recommending that design periods in developing countries be
drastically reduced, it is necessary to examine the basis
on which the economy of scalg factor was.estimated.

The most obvious.weakness of the statistical analysis
is that it is based on a relatively small data sample. The
conditions in 65 towns hardly constitute a firm basis for
changing design policy. What is needed, therefore, are
additional data from newly constructed water systems that
will improve the confidence that can be placed in the economy
of scale value. A@ this point we can only observe that
water supply systems in Central America seem to be overdesigned.
Although the results reported herein and thosé given earlier®
for some systems in Guatemala imply that a design period of
10 years would be preferable to one of 20 or 25 years, it

is stil) too soon to strongly recommend a definite design value.

* Lauria, D.T., Report on “ater Demand Studv, Communitv
VYater Supply Pranch, U,S. AID, Yashington, D.C., 1969
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Another problem herein is with the data used for the
statistical analysis. To large extent, the ccst data are
acounting costs that primarily cover construction. But the
cost function implicitly includes plannirg, engineering,
legal and administrative costs in addition to those of
construction, and unless these are reflected in the data,
somewhat erronéous results will be obtained. Actually, the
economies of scale associated with planning and engineering
are probably far greater than those of construction. Because
some planning and other costs are not included in the data
of the appendix, the value of the economy of scale factor
is probably too high. Correspondingly, the indicated period
of excess capacity is probably too short. It is doubtful,

however, that even if all costs were taken into account, the

-period would exceed 10 years.

4, Water Demand

The optimal sizing of water supply systems isnot only a
function of the design period., Additionally, it depends on
the future expected rate of water usage. Although many assump-
tions have been made about rates of water demand and various
values are currently in use for design purposes, little has
been done in developing countries to éctually measure consump-
" tion. Consequentlv, in 1967 a study was started in Guatemala

to obtain demand data in communities newly served with
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supply systems.®

Preliminary water demand studies have been completed in
ten towns, and additional studies are in progress. The ten
towns have populations ranging from 900 to 6200 with an
average of 3100. The oldest water system in these towns
has been in existence about four years and the nowést about
one yeaf; the average age is 2.4 years.

The town with the smallest percentage of connections
serves only one person in eight with piped water into the
home. The town with the largest percentage serves about
eight in ten, and the mean number connected is 44 percent.
On th-s average, about 25 perccnt of the population is
connented by the end of the first year and new connections
are made at the approximate rate of 8 percént of the popula-
tion per year. Those without house connections generally
rely for their water on public fountains and washing stations
distributed throughout the town. .

From an analysis of house meter records, it was found'

that average consumption ranged between 60 and 130 liters

* For a preliminary report on this study, see: Cordon, Oc-
tavio, "Nemandas ce Agua:r Freograso de le Invae +izacicn"
paper presented at the 13th Meeting of the Interamerican
Society of Sanitary Engineers (AIDIS), Caracas, Venezuela
August, 1970. (Most of the data of this section are from
this report.)

- ]
e eambitawer 9y
-
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per capita per day (lpcd). The average was about 100 ipcd
which is equivalent to approximately 26 gallons per capita
per day (gpcd). As water users became accustomed to having
a system, average demand increased, rapidly at first and
then more slowly. At one extreme, the av?rage rate of
increase for the period of record was 5.36 lpcd per year,
but overall, the ten towns showed demand growth of about 3
lpcd per year. Bascd on 100 lpcd average consumption, this
rate is something less than 3 percen¥ per year. Had the
systems been somewhat oldei, it is expected that the average
increase would have been less. Consequently, 3 percent may
be an upper limit on growth. '

. The system of water rights employed in Guatemala entitles
households to 30 cubic meter pér'month without having to pay
excess usage charges (about.260.gailon8 per day). With an ,
average of 5.7 persons ﬁer house connection, this amounts to
about 45 gpcd. The actual average usage of only 25 gpcd dur-
ing the initial years of system operation is far below this
l1imit. Additionally, it was found that 90 percent of monthly
consumption during the eably-years is equal or less than 30
cubic meters, and 50 percent of the consumption is less than
15 cubic meters.

In addition to the analysis of individual méter recbrds,
data were collected on total community water demands. Nutat-
ing dsc meters, either alone or in parallel, were installed in

" the sﬁpply main of each of the ten systems under investigation
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The master meter for each town was kept in operation for one
month during which time the flow was recorded (by hand)
every 15 minutes.

Based on the master meter data, mathematical models have
been developed for relatioﬁships between average and extreme
flows. The resulting function that is probahly most important
for design purposes is R = 1.35/6'.’. where 6 is the.average
daily demand in liters per second and R is the ratio of maximunm
daily to average daily demand. The equival;nt function in
English units igs R = 1.09/Q°f'., where Q is average daily
usage in mgd. As precfed, the value of R decreases as sys-
tem scale increases.

The master and house meter data together provide a
measure of unaccaounted for and qulicly used water. It
was found that this is less than 2 percent of the total
demand. Such a low value is due in part to the fact that
the studied systems were new and leakage minimal. However,
the value also implies that for those users dependent on
public fountains and washing stations, the amount of water
demanded is extremely small, probably being not much different
from that obtained from natural sources prior to system
construction.

The findings reported herein and the results of the cost
aﬁalysis of the previous section provide a basis for calculat-
ing the scale of new water supply systems abroad. Presumably,

the scale so determined will be more nearly optimal than if
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conventional design criteria were used. An. example will-.
illustrate. ’

. Suppose, that water is to be.provided for a town with .
present populatioﬁ of 5000. Assuming population increases
at 2 percent per year apd the design period is 10 yeagé, the
population for which the system should be designed is 6100.
For those connecting to the system now, an average demand of
about 26 gped is expected. This demand will grow to 32 gped
by the end of the design period if the annual rate of increase
is 2 percent.* By the end of the design period, the entire
town should be served in the home if connections are made at
the same rate as that found in the study. Of course, at that
time some of the connections will be new while others will
have been in existence from the beginning. Assuming 25 per-
cent of the population connects initially and the remaining
connections are evenly distributed over the 10-year design
period, the resulting average per capita demand is about 30
gped, and the corresponding total demand is .183 mgd. If at .
the end of the design period the public and .unaccounted for
usage is, say, S bercent, the average demand will be about
.195 mgd or 32 gped (121 1pcd).

Having estimated the average future demand, a problem to

. % .'Study results imply an uppér limit oﬂ‘démah&géréwth,of 3
percent annually.. The 2 percent.value has, been. arbitrarily
selected.
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be decided is whether the system should be designed for this
flow or a higher rate to meet peak demands. Assuming the
system is to supply maximum daily requirements, its capacity
must be 1,20 times the average daily rate (or .234% mgd) based
on the equation for R reported above. The corresponding per
capita demand is about 38 gped or 1u45 lped. Using the project
implementation cost function of the previous section, a sys-
tem of this scale would cost about 18 percent more than if
the facilities were only designed for average daily demand.®

While the study thus far has provided general informa-
tion on the_éemand-phonemenon, more specific data are still
needed. Mathematical functions should be developed to relate
.household usage to measurable environmental factors. In
particular, the wide variation in average ber capita usage
(from 60 to 130 lped) needs to he explained. Public and
unaccounted for demand must be more carefully measured and
broken into components; ‘e.g. public fountains,'washing
stations, leakage, etc. Data are needed on how the rate of
demand changes with time (particularly with the age cf the
system), and more information should-be collected on the .
rates at which new ﬁsers are cognected to the system. ‘Perhaps

most important, an analysis is needed to determine the economic

« If initial population were 500 instead of 5000, R would be
'1.37, the maximum daily demand would be 44 gped (166 lpcd),
‘and system cost would be 30 percent higher by designing for
maximum daily instead of average daily demand.
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_consequences of designing for various peak rates of flow
.because at present, there is little economic justification

for basing scale on maximum daily dsmand.

5. Imputed Water Supply Benefits

Whenever a decision is made to construct a new water sys-
tem or extension, a certain value is implicitly assigned to
publicly supplied water in the community. In essence, the
planners say that the value of water is such that construction
is less expensive than allowing demands to go unsatisfied any
longer. In most cases, the planners do not know the numerical
value they attach to public supply, but it can be estimated
(or "imputed") using the mathematical model presented in
section 2.

Let us assume that when a decision was made in the past
to construct a water system, the planners felt it was correctly
sized and timed. That is, both the design scale of the system
and the size of the town to be served were thought to be op-
tlmal. With this assumption, the implicitly a851gned value of

water can be imputed by the equation
p=r [ k(xD)® ]/ Dy .

As preV1ously defined, p is the difference between the
gross value of water and the price of production in local
.supplv facllltles. The numerator is the annual rate of

nterest on pro:ect cost (dollars per year), and the
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denominator is the rate of unsupplied demand at the time of
construction (thousands of gallons per year). In the remainder
of this section, the denominator, Dy, is replaced by the product
of town population at construction time (w) and the per capita
demand for water (q). For towns not previously served by water
systems, wq is equivalent to Dy.

Two important observations need tq be made about the above
equation. The first is that when relatively long design pe-
riods are used for sizing supply facilities, p-values are
relatively large. .This is because the design period affects
project cost upon which p is dependent. Hence, the implicitly
Assigned value of water may be significantly different for two
Alternative projects that would serve the same town but with
different excess capacities:

The second observation is that, for a givén policy regard-
ing design period, p-values in smail towns wili generally be
greater than those in larger communities. This is because
the denominator of the equation for p increases directly as
town population increases, but the numerator increases at a
decreasing rate due to economies of scale. Hence, communities
of different size will have different p's even if the period
of excess capacity is identical.

'l';p calculating P, estimating data rather thgn.data on
actual conditions should be used. This is particularly
necessary invthe case of projecf costg. Estimafes‘are méde
prior to iﬂ&estmeht decisions and form a hasis for action,

‘while accounting costs follow decisions and reveal little
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about how they were reached. Engineering estimates, however,
are often quickly set aside after project implementation and
are difficult to obtain. Consequently, accounting cost data
are used herein with the assumption that there was close
agreement between estimated and actual costs.

The pertinent data from the appendix for imputing the
value of publicly supplied water include population at construc-
tion time and project cost. For town 1, these are 453 inhabit-
ants and 9180 dollars, respectivcly., Assuming a discount rate
of 10 percent, the annual interest on project cost is 918

dollars per year. If the planners assumed that all inhabitants
desired water at the rate of 30 gpecd, the unsuplied rate of
demand immediately prior to project implementation was 13.5
thousand gallons per day i453 % 30) or 4930 thousand gallons

. per year. Hence,

p = 918 / 4930 = $,186/M gallons = 18.6 #/M

The values for the other towns can be similarly imputed.

The p-values in the appendix range from 8.9 to 76.0 cents
per thousand gallons with an average of 24.4. The variance
of the p's is 150.27 and the standard deviation is about 12.3.
As noted above, the variation is due in part to differences in
community size at the time of precject implementation and to
differenees in the design period of excess capacity. For
this set of values, community size ranges from 210 to 3812

" ‘with and average of 950. Additionally, the ratio of

4 from
‘\l:ee‘:: o::l :'\‘\aab\e copY.
,
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design to existing population ranges from 1,35 to 2,62 which,
with an annual growth rate of 2 percent implies that excess
capacity is provided from 15 to nearly 59 years. On the
average, the population ratio is 1.76 and the corresponding
design period is 28 years.

In the absence of budget constraints, it is possible to
use the imputed values of publicly supplied water to make
decisions regarding the timing of new projects. The rationale
is as follows:

1. The true value of water in small communities is assumed
to be constant.

2. The imputed p's constitute a sample of measurements
on the true value.

3. Investment should not be made in any system where the
implicitly assigned value is greater than what the
water is truly worth.

4. Hence, each potentital system must be examined to see
whether investment now would overassign value.

5. If this would result, implementation should be delayed.

6. However, if the assigned value is not too large,
implementation should proceed.

Let us now examine the rationale in more detail.

The assumption that publicly supplied water has the same
value is based on the fact that supply systems in small towns
essentially satisfy only the basic necessities of life. The
value of a gallon of water for drinking is probabl& not much
different than the value of a gallon for personal hygiene.
Where water is uded for less essential purposes as is often
the case in larger towns and cities, the assumption no longer

holds.
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It follows from this assumption that the imputed p's are

. measurements of the true value of water. The 65 values in

- the appendix constitute a sample from the population of all
possible measurements from a specific geographical region.
From the sample, statistical inferences can be made about the
population, particularly its mean.

To build a water supply system too soon implies building
it when town population is too low. As already seen, the
implicitly assigned value of water is relatively high when
the size of the town to be served is small. Delaying implemen-
tation until the population increases causes the assigned
value of p to decrease. Consequently, by comparing the value
of water that would be assigned by constructing now with the
true value of water inferred from the imputed p's. the deci-
sion can be made to proceed with implementation or delay. If
the implicitly assigned value exceeds the true value, imple-
mentation should be delayed until an increase in population
reduces it to the acceptable limit. However, if it falls
short of the true value, it would have been better had the
investment been made earlier.

An example will illustrate. Suppose a town of 100 is
being considered for a water system. Assuming growth at the
rate of 2 percent per year and excess capacity for 30 years,
the estimated project implementation cost (using the equation
of section 3) is $3920. The resulting value that would be
implicitly assigned by constructing now is 35.9 cents per

thousand gallons, assuming an interest -rate of 10 percent
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and per capita usage of 30 gallons per day.

To determiné'whether this price exceeds the true value of
water, a null hypothesis is made that the mean of the popula-
tion of p's equals or exceeds 35.9. An alternative hypothesis
is that the mean is less than 35.9. If the data sample leads
us to accept the null hypothesis, then the water system should
be constructed, but if it is rejected, we should delay. For
testing the hypothesis, a significance level of 5§ percent is
used.®

Assuming the null hypothesis is true, the statistic
(p - po)/N_Ys has the sandard normal distribution®#*, where p
is the sample mean, p, is ‘the hypothesized value, N is sample
size, and s is the standard deviation. The hypothesis should
be rejected if the value of the statistic is less than -1.6u45.
In this case, its value is -7.55 (=[24.4 - 35,93 V85 /12.3).
Hence we reject and consequently decide to delay construction.
By a similar calculation, it can be shown that the implicitly
assigned value cannot exceed 26.9 cents per thousand for
implementation to be currently acceptable.

In this example, the excess capacity period is 30 years
which is too long for a discount rate of 10 percent and an

* Hence, if we reject., the probability of being in error is
equal or less than .05.

#% N is sufficiently large to use the normal rather than t
distribution
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economy of scale factor or .83. A more nearly optimal period
is 10 years. Suppose therefore that the planning office
changes its design policy to 10 years. The town of 100 would
then have an implicitly assigned water value of 23.9 cents
per thousand, and the proposed system would be acceptable.
Hence, reduction of overdesign policies has the effect of

permitting construction in towns of smaller size.

6. Additional Work

The outstanding work required to complete this project
includes the following. Additional theoretical models are
needed that more closely reflect the water supply planning
conditions of developing countries. Also, studies should be
continued to obtain and analyze fiéld data for implementa-
tion of planning models. Finally, efforts should be made to
apply the models in actual planning situations. The work of
these items is described in more detail iin the remainder of

this section.

Theoretical Models

1. The planning models of Alan Manne which form a basis for
much of the work herein assume that supply and demand are
initially equal. This assumption is erroneous for new
water supply systems. Consequently, the models, partic-
ularly the one dealing with imports, should be expanded
to consider an initial supply deficit.¥®

# Muhich has already made such a modification for the no-
backlogs model, but nonlinear programming is required for
solution. c.f. Muhich, A.J., "Capacity Expansion of Water
Treatment Facilities", unpublished Ph.D. Thesis, Harvard-
University, Cambridge, Mass., 1966.
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On page 14 herein, the equation y%* = r k(xD)2/pD is ex-
plained to represent not only the timing for the single
best system expansion, but also an optimal planning
policy. That is, given a decision on expansion scale
(xD), this equation indicates the time of contruction
(y*) that minimizes total present value cost, Similarly,
a mathematical model should be developed to indicate the
policy for optimal expansion scale given a decision on
the time of construction. Indeed, in water supply plan-
ning, it is more common to encounter situations where
the decision has been made to build now and the question

is, to what scale?

While Manne's models are valuable for planning an isolated
system in the absence of binding budgetary constraints,
they are not completely applicable to the centralized wa-
ter supply planning practices of developing countries.
Consequently, a simple model should be developed to illus-
trate the principles of budget allocation among few sys-
tems. It would probably be best for the mod=21 to be
developed for solution by calculus.

For more practial purposes, a larger programming model is
needed that can be used by central planning offices for
deciding the location, timing, and scale of water supply
investments. Lauria has developed two such models, one
for solution by linear programming and the other using
mixed integer programming, but additional work is needed
to improve their efficiency of solution and manageability.®

Field Data

Manne's models show that the economy of scale factor of
the expansion cost function plays a major role in deter-
mining the optimal design period. Additional data are
needed to confirm and expand the results already obtained.
Specifically, "a" values are needed for different system
components including supply, treatment and distribution
facilities. In addition, data from several countries
should be analyzed to identify regional differences in
economies of scale. It also seems desirable to analyze

c.f. Lauria, D.T., "The Location, Timing and Scale of Water
Supply ‘Investments in Developing Countries", unpublished
Ph.D. thesis, University of North Carolina, Chapel Hill,
N.C., 1970 ‘ .
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engineering cost data to determine optimﬁl planning
periods.

One of the most difficult studies to be continued is the
investigation of water demands. Unlike the work of the
previous item, major efforts are needed to collect as
wells as analyze data on water usage. As outlined in
section 4, the work to be performed includes developing
statistical models for demand prediction that relate
consumption to measurable community characteristics.
Public and unaccounted for usage needs to be more carefully
measured and explained. Information is required on rates
at which new connections are made. Much more data are
needed on demand variation, and studies should be made to
determine the economic consequences of designing for
various extreme values.

The work of Manne and others® shows that a knowledge of
the value of water is indispensable for proper budget
allocation among alternative projects. The method of
imputing described herein is expedient but not completely
satisfactory for determining the benefits associated with
public supply systems, Consequently, while additional
data from previous investments should be collected and
analyzed to impute p-values, more rigorous benefit studies
should also be started.

Application

The goal of this project is to develop the theory and
improve the practice of water supply planning in develop-
ing countries. As the above items of work progress,
attempts should be made to apply these principles and
models to specific design situations. Two approaches are
possible. The planning models can be used with past data
to compare the decisions that would have been made with
what was actually done. Alternatively, the models can be
used with current data to determine future courses of ac-
tion. In either case, practical application is needed in
order to demcnstrate the value of the approach described
herein.,

See, for example, Marglin, S.A., Approaches to D namic
Investment Planning, North-Hollan ub. Co., Amsterdam,
1963 ‘
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APPENDIX
Water Supply System Data
Town Cost Present Design Population Ratio  Imputed
No. ($) Population Population Design/Present " Price (p)
1 9,180 453 720 1.59 18,5 /M gal -
2 17,520 430 800 1.86 37.2
4 13,780 675 1150 1.70 18.7
5 33,890 gou 1500 1.66 34,3
6 9,970 350 500 1.u43 26.0
7 16,970 815 1110 1.36 19.0
8 12,160 400 800 2.00 27.8
9 24,020 633 950 1.50 34,7
11 . 11,800 540 1000 1.85 20,0
12 19,750 779 1087 1,40 . 23.2
13 16,500 726 1000 1.38 20.8
14 19,430 1159 2300 '1.98 15.4
15 45,280 1905 3000 1.57 2.7
16 46,250 1920 3840 2.00 22.0
18 59,710 3175 4300 1.35 17.2
19 70,570 1230 2215 1.80 52.4
22 94,220 2645 5300 2.00 32.5
23 21,250 613 1226 . 2,00 31.7
24 34,170 1129 1850 1.64 27.7
26 15,100 491 800 1.63 28.1
28 42,190 919 1800 1.96 42,0
29 9,260 576 86u 1.50 4.7
30 13,700 £18 1000 1.62 20.3
31 11,160 . 950 1292 1.36 10.7
32 11,330 400 600 1.50 25.9
33 4,070 400 600 1.50 9.3
35 17,460 800 1600 2,00 19.9
36 4,270 300 408 1.36 13.0
37 17,290 1200, 1800 1.50 13.1
38 12,060 403 800 2,00 27.3
39 14,240 950 1700 1.79 13.7
4l 9,850 613 1200 1.96 14.7
43 12,520 459 712 1.55 24,5
48 35,060 822 2147 2.62 39.0
51 31,840 1563 3000 1.92 18.6
52 21,500 107¢ 1800 1.68 18,3
53 72,120 3875 7500 1.93 17.0
54 23,620 880 1200 1.36 24,5
55 45,660 550 1100 2.00 76.0
56 25,450 672 1150 1.71 , 34,6
57 2,560 250 500 2,00 9.3
58 2,560 1100 '2.00 17,2

550



Town Cost
No. ($)

59
60
62
63
6u
66
67
68
69
70

10,800

8,770
15,550
14,770
12,840
32,490
15,330
43,810
27,250
16,140

17,890
25,170
27,020
25,920
17,490
21,750
12,960

8,070
16,760
17,840

11,400
20,240
38,050
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Present Design Population Ratio  Imputed
Population Population Design/Present Price (p)
536 938 1,75 l18.4
210 420 2.00 38.1
350 700 2.00 40.6
817 1400 1.71 16.5
831 1500 1.80 14,1
666 1300 1.95 4y,7
1u99 2500 1.67 9.3
1532 3100 2.02 26.1
817 1500 1.84 30.4
400 800 2.00 36.9
761 1400 1.84 21.4
1196 2000 1.67 19.2
800 1600 . 2,00 30.9
1201 2300 1.91 19.7
840 1300 1.55 19.1
1584 3168 .2.00 12.5
783 1580 2,02 15.2
770 1200 _1.56 9.6
275 600 2.18 55.7
765 1150 1.50 21.3
Hy6 802 .80 23.4
923 1800 .+ 95 20.0
3912 6200 .58 8.9
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EXCESS CAPACITY

The business world is often alarmed when produgg{on faq?lities are not
used to full capacitx. Ther; has been recent concern inaEu;ope,for example,
with idle capacity in the textile industry due to imports of synthetic fibers
from Asia. Disastrous economic consequences have periodically resulted from
unused capacity in hotels, train and transportation facilities, agriculture,
and manufacturing.

Alarm over under utilization of production facilities might seem strange
to environmental engineers. After all, water supply and sewerage systems are
deliberately provided with excess capacity. In the U. S., it is common to
design sanitary facilitins with sufficient capacity to meet demands for the
next 15, 20 or even 50 years. Such design times are actually periods of excess
capacity and represenc the expected number of years between construction and
the time when demand will have grown equal to system scale thus requiring ex-
pansion. Rejecting the assumption that water is inherently different, it is
important in light of the business world experience to ask why excess capacity
is provided in sanitary facilities, particularly water supply systems.

The primary reason is well known to most: when faced with increasing de-
mands over time, excess capacity is provided because of economies of scale.
Figure 1 shows a typical cost curve for a water system that reflects such econo-
mies. The equation of the curve 18 C = kz®, where z is project scale in mgd
(million gallons per day) and C is cost. The concavity of the function is due
to “a",the economy of scale factor, whose value is between 0 and 1. When "a" is
1, costs vary linearly with scale and economies are absent; large economies on

the bthgr’band are associated with small values of "a'".
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The average cost of a project of scale A in Figure 1 is the slope of line
segment OA'; similarly, the average cost of B is the slope of OB'. 1In general,
vith economies of scale, average costs decrease as scale increases.

When z in the cost function is 1 mgd, C = k. Hence, k is the cost of a
1-ugd syotem. The significance of "s" is not so spparent. By taking the
derivative of the function with respect to z, however, we find that a = (dc/c)/(ds/3).
In this form, the economist vwill recognisze that "s" i{s a measure of elasticity;
specifically, the percentage change in cost per percent change in scale.

Another cost function that reflects economies of scale is shown in Pigure 2.
In this fixed charge function, S is a set-up cost and s is the cost per unit scale,
8 marginal cost. Again ve note that average costs decrease vwith increasing scale.

Economies of scale in water projects is a phenomenon largely associated with
project initiation. Consulting engineers know of the work connected with land
acquisition, state approvals, setting up for design, holding public information
meetings, referenda, bond issues, having the contractor move onto the site, etc.
Once these tasks are done, it makes relatively little cost difference whether the
project has, for example, 5 mgd capacity or 6. To take full advantage of the large
costs sssociated with project start-up, it becomes econocaical to provide capacity
beyond that needed for immediate demands.

Manne (1967) and others have developed mathematical models for determining
the optimal design period (more accurately called the excess capacity period) for
projects involving economies of scale. In their simplest model, one that is parti-
cularly appropriste for water supply and treatment systems in the U.S., a linearly
increasing demsnd function as shown in Figure 3} is assumed. The rate of demand
increase is D mgd (or mgy - million gallons per year) per year. At time 0, demand
and capacity of existing facilities are equal. As is common in U. S. vater prac~
tice, the capacity of supply facilities is required to equal or exceed demand;

hence an expansion must immediately be made. Assuming it will have excess
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capacity for x years, ite capacity 18 xD mgd and its cost is k(xD)2 dollars.
By always designing for the same excess capacity period, expansions of the same
scale are required every x years. Summing the discounted costs of all expansions
results in an expression of total present value cost. The optimal design period,
x*, that minimized this expression is found by setting the derivative with respect
to x equal to zero and solving. The resulting optimality condition for an infi-
nite number of expansions is a = rx*/(erx*-l), where r is the annual discount rate.

A cross plot of this equation showing that x* is a decreasing function of "a"

and r is in Figure 4.
TIMING

It vas notedabove that in U. 5. water practice, the capacity of supply
facilities is required to equal or exceed demand. It is pertinent te ask why.
Specifically, why are deficits in supply capacity disallowed? The answer is that
if demands are not met by local facilities, the consequences are assumed to be
terribly unpleasant. This however is not necessarily true. A case in point is
the Chapel Hill, North Carolina,experience during the summer drought of 196¢.

The town's reservoir nearly ran dry, water use restrictions were imposed, and
finally a connection was made to the City of Durham system for importing water.
Once the connection was made, nearly normal living conditions resumed. Had water
importing been planned, however, as the town approached zero excess capacity in
its reservoir, much anguish could have been avoided.

If importing is a viable alternative to local supply, capacity need not
always equal or exceed demand. Manne (1967) and Erlenkotter (1967) have analyzed
this situation and a sketch of their model is shown in Figure 5. Assuming supply
and demand are initially in balance (i.e., supply facilities have zero excess
capacity), water can be imported at price p dollars per gallon for the next y

years at which time an expansion is made. At the time of expansion, the rate of
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demand satisfied by imported vater is Dy. The expansion has capscity D(y ¢+ x)
mgd, it provides excess capacity for x years and costs k(D(y + x) ]® dollars.
By summing discounted import and expansion costs over an infinite time horizon,
an expression of total present value cost is obtained in teras of y and x. Setting
the appropriate partial derivativesequal to O results in expressione for y*, the
optimal wvaiting period during which there is importing, and x*, the optimal excess
capacity period.

One of the optimality conditions from this analysis is that pDy = rC, where
C is the cost of each expansion vhether it is optimally scaled or not and the
other parameters are as previously defined. The units on both sides of this ex-
pression are dollars per year. The left hand side is the rate of iaport charges
at the time of expansion and the right hand side is the annual opportunity cost
of capital vhich is similar but not the llle.ll an annual interest charge. In
this form, the optimality condition indicates that construction should be delayed
until import charges accrue at the same rate as capital opportunity costs.

The optimality expression can be rearranged as follows, y = xC/pD. Of
importance is the fact that y equals O when p equals {nfinity. But wvhen y is O,
we have a situation identical to that shown in Figure 3 where supply capacity {is
required to equal or exceed demand. Hence, under the assumptions of this model,

a policy that disallows supply deficits implies that the price of importing water
from a neighboring community is infinite, a very unpleasant alternative indeed.

1f however water can be imported at finite price, one would conclude (unhot the
assunptions of the model) that deficits in the supply from local facilities are
perzissible. In this case it doss not automatically follow that expansions should
be made vhen excess capacity is reduced to zero. Hence, the question of optimal

timing is raised.
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REGIONALIZATION

The majority of vater supplies in the U.S. are planned and constructed
vithout much considerstion of neighboring systems. Although this situation is
changing it is still largely true that if a town feels the need of expanding
its vater system, it retains an engineer and proceeds with design, financing
and copstruction quite independently. »>uppose, hovever, that two coamunities
share the same source of supply that has inadequate capacity to meet the future
needs ot both. In this case, neither town can independently proceed with
planning. Water taken by one user is denied to the other. The scarce resource,
therefore, creates physical interdependencies between the systems and an alloca-
tion problem results. We cen conclude that towns are able to plan and comstruct
wvater systems without regard for their neighbors only so long as interdependencies
created by scarce resources are absent. The increasing scarcity of water and
particularly wvater quality in the U.S. has much to do with the current trend

towvard regionalization.

WATER SUPPLY PLANNING IN DEVELOPING COUNIRIES

The discussion so far has focused on vater supply planning in the U.S. Now
let us put these concepts vithin the perspective of developing countries. We
intuitively knowv that water supplies abroad reflect economies of scale. Unfor-
tunately, little work has lLeen done to measure such econonies. A study by Lauris
(1969) of newly constructed gravity supply and distribution systems in Guatemala
for snall communities revealed an economy of scale factor of 0.77, and a more
recent study of systems in Hondurss (Lsuria, 1971) showed "a" to be 0.85. Im
neither case did the dats properly reflect planning, legal and administration
costs vhich undoubtedly would reduce these values of "a'". The main point, howsver,

is that economies of scale exist abroad vhich means that excess capacity should be
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provided.

Tne simplicity of Manne's model shown in Figure 3 tempts one to want to
use it for determining optimal design periods in developing countries. The
underlying assuaptions hovever are not applicable. Supply capacity, for example,
does not equal demand at the start of the planning horizon. Although this 1s
true in the U.S. wvhere the principal planning problem is expansion of existing
facilitiea, it does not hold in developi:g countries vhere most water supply
planning 15 for nev systems. While Manne's model does not apply abrosd, it
correctly shows that the optimal excess capacity poriod is a function of the
discount rate which of course is different in developing countries than in the
U.S. Based on thia fact alone, we can conclude that U.S. design period standards
should not be used abroad.

The question of coustruction timing has been shown to be intimately connected
wvith the value of water. In the cited example, importing is assumed to be the
alternative to local supply, and p is the import price. In developing countries,
however, importing water from a neighboring comsunity is not an alternative to
local supply. What is more, importing is never an alternstive to both supply
and distribution. The most common slternative to public supply in developing
countries 1s for the bulk of demand to go unsatisfied. In this csse, the bene-
fits of publicly supplied water sre foregone, and p becomes a measure of the social
losses associated with unservid demand.

Under these conditions, p is an opportunity cost rather than a purchase price.
Only if publicly supplied water has infinite value will it be economical to re-
quire local supply capacity to equal or exceed demsnd. This hovever in developing
countries is unlikely. Hence, assuaming the costs sssociated with unsatisfied
demand are finite, policies dissllowing deficits should not be imposed. It does
not follow, therefore, that public systems should be immediately built in all towns

vhere they are lacking nor that expansions should be made when excess capacity
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is reduced to zero.

Water supply systems in the U.S. can be planned independently only where
resource allocation problems do not exist. In most developing countries, physical
interdependencies of the type caused by vater scarcity are absent. On the other
hand, economic interdependencies are common vhich make it necessary to plan water
supply systems on s regional basis. In developing countries, water supply
planning is performed by a central agency of the national government. The agency
is equipped with annuasl budgets to be allocated among towns in need of systems.
Funds invested in one system are automatically denied to the others. Hence, for

optimal decision making, groups of systems must be planned simultaneocusly.
MIP MODNELS

The above discussion identifies the basic water supply planning problems
of developing countries. National water sector budgets must be allccated amsong
towns needing systems. This involves decisions on vhen and how much to invest
in i{ndividual communities. These are problems of comstruction timing and scale.

In aany instances, plsnning policies can be adopted regarding the smount of
excess capacity to be provided in new vater supplies. Such policies might not
be optimal, but they are expedient and in some cases near optimal. All new systems,
for example, might have excess capacity for 10 or 15 years. If this 48 decided in
advance, then the budget-allocation problem reduces solely to a question of timing:
vhen should community supplies be built?

It is important to note that, were it not for interdependencies created by
budgets, each community could be treated individually as in the U. S., and a model
1ike Manne's could be used to decide optimal timing and scale. The need to consider
budgetary trade offs among systems, however, invalidates this approach.

In an attempt to solve the budget allocation problesm, regional planning models

for use abroad have been developed (Lauria, 1970). The most basic model assumes
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that project scales have been decided in advance. For model use, a set of
communities needing water systems is eelected. A finite planning horizon is
divided into l-year periods in each of vhich wvater demands for the separate towns
sre assumed to remain constant. Changes in demands, however, can take place at
the beginning of each nev year.

In each community, systems are proposed for construction the first year.
¥ith scales already decided (based on current and expected future demands), the
cost of each proposed project is a known constunt. A 0,1 integer variabdle is
associated vith each systew to denote vhether it should be constructed the first
year or not. Projects of fixed scalc are similarly proposed for other years of
the planning horizon (not necessarily every year) for each town, and 0,1 variadles
are used to indicated vhether or not they should be implemented.

If demands are not satisfied by local facilities, they are assumed to go
unserved. A conttinuous variable is therefore included for each town each yesr
to denote the amount of unsatisfied demand. Associated vith each such veriable
is the price of social losses.

The objective function to be minimized is the sum of present value construc-
tion and social costs. Omne constraint set requires the sum of local supply capacity
plus unsatisfied demand to equal or exceed demand in each town each year of the
horizon. Another constraint set requires annual construction costs to fit within
annual budgets, and a final constraint specifies terminal conditions at the end of
the planning horizon.

The model that treates scale as variadle instead of constnﬁt is nearly identi-
cal- Pixed charge cost functions are assused. In this case, the cost o each pro-
posed project has two components, & fixed charge that reflects set-up costs and
s variable charge that depends on scale. A 0,1 integer variasble is associated
vith each fixed charge, and the variable charge includes a continuous decision

variable for project scale. The objective function is the sum of present value
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construction and socisl costs as before. In addition to former constraints,
restrictions are included to assure that projects vhenever constructed vill have
sufficient capacity to at least mset existing demands. Additionally, each 0,1
variable is restricted to the value 1 vhen a project is constructed and 0 other-
vise. This in effect makes these variables indicators of optimal construction
tining. ‘

A model similar to that described ahove has been recently presented (Lauris,
1972). This model and the earlier one in wvhich project scales are fixed can de
solved by -1x§d integer programming (MIP). Solution has been obtained using a
branch and bound algorithm developed by Shareshian (1969). Computer requirements
are extensive and costs are large vhen a large number of communities i{s considered.
Consequently, the second model in which both timing and scale are variable has been

reformulated for separable programming.
WATER SUPPLY BENEBFITS

Much has been written about the nsed for data on water supply dbenefits in
developing countries, but little has been said about how such data would be used
for planning. The MIP models, on the other hand, indicate the role of benefit
information in planning, but they do not resolve the problem of obtaining such
data.

Very little work has been done to estimate the benefits of public water
supplies abroad. One of the classic benefit studies wvas made a decade ago in
Puerto Rico (Pyatt and Rogers, 1962). Using concepts from Weisbrod (1961) and
Dublin (1930), the researchers sought to express benefits in terms of additional
worker income resulting from reduced morbidity and mortality following construc-
tion of public water systems. Although much interest in this approach has per-
sisted, the basic problem remains: the physical (i.e., health) effects of publie

supplies abroad have not been adequately described. Until this is done (vhich
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implies long term prospective community studies), estimation of benefits via
shadov heslth costs will pot be practicable.

It is generally recognized that the benufits of a good or service can de
seasured by vhat one is willing to pay for them. With incomes and the type of
imperfect vater market that exist in the U. S., fev would argue that vhat has to
be paid for water represents willingness to pay. Price, therefore, is not an-
accurate indicator of water supply bencfits in this country. In developing nations,
however, it seems that the price of vater io rural communities aight more accu-
rately reflect ability or willingness to pay. Hence, as a first cut at estimating
vater supply benefits abroad, there might be value in examining existing price
structures. An alternative is to conduct surveys by questionnsire to inquire
wvhat people sre willing to pay.

Water supplies in developing countries affect more than public health. A
property served by a community systen should be worth more than ong without such
service. Buyers are presumably willing to pay for the convenience of vater at
the front door or in the house. Warford (1972) has proposed that the real estate
market abroad be examined to determine the effect pudblic water supply has on
propercy values. This work would require prospective community studies of the
type needed to evaluate health effects.

Instead of attempting to measure vater supply benefits for use in planning,
they can be set by judgement and political fiat. This permits planners to decide
the economic implications of their decisions and it allows orderly progress toward
a future planning goal that disallows vater supply deficita. As shown by Manne's
wodel, smaller deficits are associated vith higher water values. By setting snnual
bencfits that increase to soms large target value during a period of, say, 20 years,
provision would be made for implementing a policy of nc-deficits by the end of
that period.

Although this proposal does not seem reasonable for larger cities, it might
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have merit for rural tovns. To implement the proposal, it would de desirabdle
to use the current level of benefits as a basis for setting higher values ia
the future. This can bs achieved by imputing water supply values for recently.
made investment decisious.

An exasple vill i1llustrate. The optimality condition obtained by Manne
and Erlenkotter vas reported above to be pDy = rC vhich can be solved for p as
follovs, p = rC/Dy. Suppose that a nevwly constructed water system in a town of
10,000 vas thought to be properly sized and timed. The system cost $150,000
(C) which implies an annual opportunity cost (rC) of $15,000 {f the discount
rate (r) is 10 percont. Assuming the unsatisfied rate of demand (Dy) at the
time of construction was 73 million gallons per year (20 gallons per day per
capita), the decision to invest implicitly assigned a value (p) of about 20
cents per thousand gallons to pudblicly supplied water. Similar analyses of other
nev systens can reveal the current benefit level. 1t is important to note,
howsver, that instead of using Hinno'a model that applies only to local plamning,
the imputing should be done using a regional model of the MIP type.

A variation of the above is to impute water supply benefits for current
decisions under consideration and comupare the results with intuitive notions of
wvater value. As before, this can make plannors avare of the economic implications
of their plans. They can then decide to implement or not based on judgement.

Po?‘iizpltclty. the Manne model vill again be used although strictly speaking
1t does not apply. If {n the above example investment in the town of 10,000 had
not just bsen made but rather was under consideration, the imputing calculation
would shov that construction now would assign a value to water supply of 20 cents
per thousand gallons. 1f the planners feel that water in tho town is worth less
than this, construction should be delayed bescause by waiting, the ratio rC/Dy

decreases for a given design period policy due to economies of scale.
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A final comment on water supply benefits is pertinent. The MIP models
and the discussion herein have focused on budget allocation. The budget was
assumed to be known, but clearly, this is one of the most difficult decision
problems in developing countries. With data on the benefits of water supply,

however, the problem of budget setting becomes manageable, at least in theory.
NEEDED RESEARCH

The MIP mecdels described herein represent a first attempt at developing a

water supply planning model for developing countries. The models need to be
made more realistic and extended for specific planning situations abroad. They
ghould be altered to handle among other things price clasticity of demand,
uncertainty, and cost functions unknown to the central planning agency. In
addition, they should be reformulated if possible for simpler solution. Al-
though work has been started in these areas using such techniques as chance
constrained programming, duality analysis and separable programming, much still
remains to be done. |

More experience is needed with model application. Several problems involving
few communities have been solved, but larger problems with perhaps 100 or more
towns should be programmed.

Work is needed in developing countzies to evaluate the bencfits of public water
supply. Most basic is the need to determine the physical effects of water works
abroad. Once these have been identified, evaluation of economic effects should
be quite straightforward. The primary physical efiects involve health and economic
development.

Other studies should also be made to estimate benefits. These include imputing
using data from historical investment decisions, examination of property values,

review of witer price 'structures,: and.surveys to determine willingness to pay.
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The ‘structure of national water supply planning agencies should be investigated.
Specifically, patterns of decision making, the role of political fiat, allocation
of planning personnel, design policies and standards, and methods for setting
national water supply sector budgets should be examined.
The costs of water supply abroad should be analyzed, particularly with regard °
to identifying economies of scale. Special attention needs to be given to
planning, administration and hidden ~osts.
Most of the discussion herein applies to the planning of small water systems in
developing countries. Planning in larger cities, however, pcses special ptobleQa
and these need to be examined. As a start, the planning context should be
investigated.
Of particular importance is the need for accurate demand forecasting abroad.
In the U.S., historical water use records are available for planning purposes,
but in developing countries, such data are lacking. The problem abroad is to
predict future demands in communities that have never had public supply systems,

and for this work, innovative methodologies are needed.
CONCLUSIONS

The objective herein has been to provide an overview of the most fundamental water
supply planning problems in developing countries. The discussion has been
simplistic and many of the statements need to be treated with caution. Some
important considerations ignored herein include (i) price elasticity of demand,

(11) the separate components of water systems, (iii) water quality, (iv)

. operating costs, (v) financing, (vi) uncertainty, (vii) planning objectives

other than econimic efficiency, (viii) health versus economic development benefits,
(ix) water collection from vendors and surface supplies, and (x) selection of

communities to be considered for planning.
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Although the real situation is far more complex, it seems safe to conclude that
(1) the amount of excess capacity that should be provided in water systems is
largely a function of economies of scale and the discount rate, (ii; construction
timing primarily depends on the tension batween implementation costs and the
value of publicly supplied water, and (iii) regional planning is required abroad
because of the need to sllocate national water sector budgets.

Planning for an objective of econom;n efficiency requires data on weter supply
benefits. Three basic approaches can be used to obtain such information. (1)
Market studies can be made for measuring benefits. Pertinent markets include
labor, real estate, and the water market itself. (ii) Benefits can be set by
value judgement and political fiat. (iii) Benefits can be imputed.

Much research, theoretical and applied, is needed to improve water supply planning
in developing countries. New and better regional planning models should be
developed. Studies should be conducted abroad to obtain information on water
supply benefits. Current planning practices and agencies should be examined.
Basic data should be collected on water supply costs, national water budgets,

and community water demands.
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