INCREASING THE AVAILABILITY OF DIETARY VITAMIN A
TO UNDER-SIX-YEAR-OLDS
THROUGH NATURAL, PLANT, FOOD-SOURCES OF PROVITAMIN A
(PROVITA)

2nd QUARTERLY PROGRESS REPORT
JANUARY - APRIL 1991

Submitted by:
Jack Blanks, Director of Programs,
IEF Headquarters

Noel W. Solomons, Scientific Coordinator,
CeSSIAM

Gustavo Hernandez-Polanco, Staff Director,
IEF/Guatemala

June, 1991
TABLE OF CONTENTS

I. PROGRAM SUMMARY ... 1
 A. Project Components... 1
 B. Personnel.. 1

II. SECOND QUARTERLY PROJECT ACTIVITIES,
 JANUARY, 15TH THROUGH APRIL, 30TH, 1991........... 1
 A. Headquarters (Bethesda)................................. 1
 B. Field (Guatemala).. 2
 i. Component #1.. 2
 ii. Component #2.. 3
 iii. Component #3.. 4
 iv. Component #4... 5

III. APPENDICES.. 6

IV. ANNEX... 6
I. PROGRAM SUMMARY

The following is the Second Quarterly Progress Report for the collaborative IEF-CeSSIAM project "Increasing the Availability of Dietary Vitamin A to Under-Six-Year-Olds through Natural, Plant, Food-Sources of Provitamin A," (Provita), covering the period of January through April, 1991.

A. Project Components

The outline for this report will follow a similar format as in the first quarterly report describing completed activities under each of the four project components, with supporting documents cited as appendices. The four components of the project are identified as:

1) Capacitating the laboratory at CeSSIAM in analysis of human plasma for retinal concentrations (HPLC);

2) Chemical analyses for total vitamin A activity of important selected plant foods;

3) Effecting food-distribution intervention with important selected plant foods, and;

4) Evaluating the biological and behavioral impact within household units of the food intervention.

The schedule of events is attached as Appendix 1, Time Calendar.

B. Personnel

The personnel and staff directly involved in the project remain as listed in the first quarterly report, with the exception of a new field coordinator for the food distribution component.

II. SECOND QUARTERLY PROJECT ACTIVITIES, JANUARY, 15TH THROUGH APRIL, 30TH, 1991.

A. Headquarters

* Transfer of project funds to Guatemala for CeSSIAM-related components (#1,2,4) and IEF-related components (#3) for expenses through the reporting period. The approximate dollar amount spent were $9,481 (AID) and $1,613 (IEF).

* Procurement of project related supplies and equipment for the program included micro-centrifuge for the HPLC component. The purchase of a vehicle was investigated.
* Mr. Edwin Henderson, Administrative Officer, Bethesda, made a supervisory visit to Guatemala city on January 27th-31st, to meet with Dr. Hernandez-Polanco, Project Director, Dr. Noel Solomons, CeSSIAM Director, and other project staff for the purpose of reviewing project accounting procedures.

* Mr. Jack Blanks and Mr. John Barrows, from IEF headquarters met with Francis Davidson of USAID, Office of Nutrition, in Roslyn in January and April to discuss the Provita program and other vitamin A activities in Guatemala.

* Mr. Jack Blanks met with CeSSIAM staff and Dr. Hernandez-Polanco in Guatemala in March and April, to discuss project activities.

* Mr. John Barrows met with CeSSIAM staff and Dr. Hernandez-Polanco in March, to discuss project activities.

* Mr. John Barrows organized the completion of the second quarterly report for submission to USAID.

B. Guatemala

i. Component #1: Capacitating the laboratory at CeSSIAM in the analyses of human plasma for retinal concentrations (HPLC).

The primary staff of this component are, laboratory analysts, Isabel de Ramirez and Ma Eugenia Romero.

* Licda. Isabel de Ramirez and Ma Eugenia Romero met weekly with the vitamin A group to review progress of the Provita project.

* Licda. Isabel de Ramirez and Ma Eugenia Romero attended a course, "Writing and Editing Scientific Articles," held at INCAP. The course was offered by PAHO and consisted of 40 hours of intensive instruction.

* Licda. Isabel de Ramirez and Ma Eugenia Romero met with Lic. Carmen Arriola, HPLC Laboratory Analyst, with the Instituto CentroAmerican de Investigacion y Tecnologia Industrial (ICAITI) for a demonstration on how to centrifuge, to filter by vacuum, and to evaporate a sample with a nitrogen stream.

* Licda. Isabel de Ramirez and Ma Eugenia Romero investigated the possibility for the local purchase of a micro-centrifuge and a vacuum pump.

* Licda. Isabel de Ramirez and Ma Eugenia Romero consulted with Ing. Jorge Perez, a local HPLC technician, to inspect a small
leak of solvent from the HPLC column and provided instruction on how to adjust the connection if necessary in the future.

* After several cancellations, Dr. Frank Morrow, USDA Nutrition Research Center on Aging, Boston, visited CeSSIAM in Guatemala City. The purpose of the visit was to assist CeSSIAM in the completion and set up of the HPLC. In particular, Dr. Morrow provided training to CeSSIAM laboratory analyst, brought certain laboratory instrumentation and supplies, and assessed the overall needs to maintain the HPLC independently in Guatemala. (See Appendix #2, Trip Report).

See ANNEX for individual reports.

ii. Component #2: Chemical Analysis for total Vitamin A activity of important selected plant sources.

The primary staff of this component are, research physicians, Dr. Carmen Yolanda Lopez-Palacius, and Dr. Jesus Bulux.

* Dr. Carmen Yolanda Lopez and Dr. Jesus Bulux met with Licda. Concepcion de Bosque, Food Science Group Leader, Division of Agricultural Chemistry, of the Institute of Nutrition of Central America and Panama (INCAP) for continued discussions concerning the INCAP laboratory capacity to analyze beta-carotene (and total vitamin A content) in plant and animal tissues. A request was made for the determination as to whether INCAP was able to complete analysis for total vitamin A for plant sources identified for analysis in component #2 of the project. The analysis of these plants is required prior to the initiation of component #3, the food distribution intervention. (See Appendix #3A-B, Letter-translation).

* Negotiations, via IEF-Bethesda, were initiated between the IEF and Steven Schwartz, PhD., Associate Professor of Food Chemistry, Department of Food Science, North Carolina State University for possible contractual arrangements to complete the analysis of total vitamin A of selected plant items, in the event that INCAP is unable to meet the project time schedule.

* As it became apparent that INCAP was unable to meet the immediate demands of the project, a contract was drafted between the Department of Food Science and IEF-Bethesda for the chemical analysis of total vitamin A for the initial three selected plants. It is estimated that the laboratory will be contracted for a six week time period. In the event that there is additional laboratory time available, the opportunity will be taken to analyze additional plants. Analysis is expected to begin in mid-July, 1991.
* It became apparent that Ms. Fatima Canjura, a LAPUSAU fellowship recipient on leave from the Universidad del Valle, will be unable to provide her expertise in HPLC to CeSSIAM-IEF.

* Dr. Carmen Yolanda Lopez and Dr. Jesus Bulux attended a course in, "Writing and Editing Scientific Articles," held at INCAP. The course was offered by PAHO and consisted of 40 hours of intensive instruction.

* Dr. Carmen Yolanda Lopez met with Ing. Agr. Leonel Cruz, from Semillas Mejoradas de Centro America, S.A. (SEMECA) to discuss contacts of farms where sweet potatoes, carrots and quilete can be produced for purchase by the project.

* A similar meeting was held with Ing. Agr. Jose Daniel Villela, Agriculture Development Project Officer, (PDA) from USAID Guatemala to discuss information on production and commercialization of species of carrots, sweet potatoes, and quilete.

* Dr. Carmen Yolanda Lopez completed a literature review at INCAP on 1) collection and preparation of plants for analysis by HPLC, 2) review of available food tables for food sources of vitamin A and their content, 3) references to the collection and laboratory analysis of foods, and 4) recent information on Vitamin A food content and HPLC analysis.

* Dr. Carmen Yolanda Lopez and Dr. Jesus Bulux completed a final report of "Proyecto de Recoleccion de Algunos Cultivos Nativos de Guatemala" FAC. AGR. USAC, ICTA, CIRF, "Consejo Internacional de Recoleccion Fitogenetica." September 1986.

* Dr. Solomons, Dr. Bulux, Dr. Hernandez-Polanco, Julieta Quan de Serrano from Guatemala, and Mr. John Barrows, from Bethesda, attended the Second Annual Carotenoid Interaction Group Meeting (CARIG) prior to the 75th Annual Federation of American Societies for Experimental Biology (FASEB) held April 21-25, 1991, in Atlanta, Georgia.

See ANNEX for individual reports.

iii. Component #3: Effecting food distribution intervention with important selected plant foods.

The primary staff responsible for this component are Dr. Hernandez-Polanco and Licda. Guisela Leche.

* The manual of operations for this component, first included as an English version annex in the DIP (Annex #9) was translated from English into Spanish. (See Appendix #4, Manual).
* In discussions among Dr. Hernandez-Polanco, Mr. Jack Blanks, and Dr. Noel Solomons on March 5, 1991 in Guatemala City, the merits of Ms. Guisela Leche, Licenciada Anthropologia (Bachelor in Anthropology) was identified as the final candidate for the position of field director for component #3 to be carried out in Santa Rosa. Ms. Leche will begin work in April (See Appendix #5, Resume).

* A separate bank account for component #3 activities (vehicle operations, staff stipends, purchase and transport costs) was opened in Guatemala City.

* In-country prices for vehicles suitable for the project and associated duty costs were investigated by Dr. Hernandez-Polanco and communicated to Bethesda. Dr. Hernandez-Polanco and Ms. Leche made further inquiries from the Instituto de Capacitacion Tecnologica Agricola (ICTA) for possible contractual arrangements for carrots, sweet potatoes, and quilete.

* Dr. Hernandez-Polanco and Dr. Solomons met to plan and discuss the estimated purchasing requirements for sweet potatoes, carrots, and quilete. (See Appendix #6, Memorandum).

See ANNEX for individual reports.

iv. Component #4: Evaluating the biological and behavioral impact within household units of the food intervention.

The primary staff responsible for this component are Dr. Gustavo Hernandez-Polanco and Licda. Guisela Leche.

* Lic. Hector Gamero and Dr. Jesus Bulux worked on the protocol for evaluation in which the distinct activities will be outlined and standard procedures established. The document still lacks various sections as it is undergoing a review. Mr. Gamero completed a background paper used in the development of the protocol. (See Appendix #7, Protocol).

* Lic. Hector Gamero obtained and reviewed various interview questionnaire instruments that have been employed at the Institute of Nutrition of Central America and Panama for the recording of dietary information in field studies. As the first step, discussions were conducted with professionals of that institution who had worked with this type of information to consider the advantages and disadvantages of these formularies. One aspect of importance is the pre-coding of data for later data management. One of the questionnaires has been used for recording 24-hour recall data in Guatemala and other Latin American countries.
* Licda. Eugenia (Kena) Saenz de Tejada, who successfully completed an extensive field consultancy for the IEF's Intrahousehold Project, is a university professor in the Department of Anthropology at the Universidad del Valle. She is in charge of the compulsory field elective which each undergraduate anthropology major at the University undertakes in the summer months of June and July.

A letter on University letterhead stationery from the Universidad del Valle was received approving the involvement of up to six students for their field elective as part of the baseline assessment of the populations of three hamlets in the area around Santa Cruz Naranjo. On March 4, a meeting was held among Dr. Noel W. Solomons, Lic. Hector Gamero and Licda. Kena Sanez de Tejada to discuss administrative and financial issues. They established that the Provita project will be responsible for the transport of Licda. Saenz de Tejada, and up to six companion students, for six weeks (round-trip per week) to the field staging site (Barbarenas). Provita will also rent a house in the town for two months. The meals $3 per person will be provided.

Licda. Saenz de Tejada will be a consultant to the project to produce the anthropological instruments. The anthropology students will work in teams and administer both the anthropological and the food intake instruments.

III. APPENDICES

(See following pages)

IV. ANNEX

(See following pages).
SCHEDULE OF ACTIVITIES

Sept. 1990 - Nov. 1992

<table>
<thead>
<tr>
<th>Month</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
</tbody>
</table>

English

Activities
- Field mapping
- Data collection
- Data analysis
- Report writing

Notes
- Support for US laboratory
- Final report

Spanish

Activities
- Field mapping
- Data collection
- Data analysis
- Report writing

Notes
- Support for US laboratory
- Final report
VITAMIN A ANALYSIS IN GUATEMALA

I. OBJECTIVE

The objective of a visit to the Cessiam headquarters by Dr. Frank Morrow was to: a.) complete the set-up of the HPLC (high performance liquid chromatograph) located in the Hospital’s clinical laboratory; b.) train the Cessiam staff in the analysis of plasma specimens for vitamin A using the on-site HPLC instrumentation; c.) convey certain items of laboratory instrumentation and supplies necessary to complete the training process; d.) assess overall needs to ensure that future vitamin A analyses can proceed in Guatemala in an independent manner.

II. DETAIL OF EFFORT

Present for the three day training:

Licda Isabel de Ramirez
Licda Ma Eugenia Romero
Dr. Carmen Yolanda Lopez

Present for portions of the training sessions:

Licda Fatima Canjura
Ing Jorge Perez

Dr. Morrow arrived on the afternoon of April 11, 1991 and commenced setup of the HPLC for vitamin A analyses on the morning of Friday, April 12, 1991. The Beckman Gold HPLC was found to be in good working condition and preliminary chromatographs of retinol and retinol acetate were produced by midmorning. In order to program the HPLC to provide consistent and accurate quantitation of vitamin A, most of Friday was dedicated to reading instrumentation manuals and instructing Cessiam staff in general HPLC techniques. The latter include degassing and changing of solvents, priming of the HPLC pumps, injection of standard solutions, establishing correct integrator attenuations, establishing proper analytical wavelengths and flow rates, and monitoring of solvent pressures for pump-related problems. Retinol and retinol acetate standard solutions were prepared using Cessiam’s new electronic analytical balance and the Cessiam staff practiced multiple injections and use of the integrator in manual mode. Friday evening was used to author a customized computer program for the Beckman integrator which would subsequently be used to identify and quantitate the vitamin A peaks and report out patient and calibration results as the mean of duplicate injections.

Saturday and Sunday were used to train the Cessiam staff in analysis of vitamin A-assayed plasma specimens carried from
HNRC's Nutrition Evaluation Laboratory in Boston. Particular attention was directed toward each member of the team to ensure that they received hands-on experience in the preparation and extraction of samples and in the operation of the HPLC. The remainder of the visit, primarily Sunday evening, was used to assess needs for supplies and instrumentation in order to complete the Cessiam capabilities for vitamin A analysis.

PERFORMANCE ON INTER-LABORATORY COMPARISON:

Replicate injections of the same sample were undertaken (n=4) and resulted in a within-run coefficient of variation of 1.6% at a concentration 58.5 ug/dl. This represents a slightly better level of precision than that typically observed in the Boston laboratory (approximately 3.0% coefficient of variation). Regarding the inter-laboratory accuracy assessment, the Cessiam values averaged approximately 80% of that observed in the Boston laboratory. This differential is significant and was attributed to two factors: a) the plasma specimens were transported from Boston to Guatemala City at ambient temperatures for approximately 18 hours; b) the lack of a spectrophotometer within the Cessiam facility did not allow for the exact quantitation of the retinol external standards used to assign the calibrator values.

III. FINDINGS AND RECOMMENDATIONS

Attention was directed toward assessing Cessiam's physical facilities for carrying out quality vitamin A analyses and, as well, toward the technical abilities of the Cessiam laboratory staff. Overall, the Cessiam laboratory facility was found to be adequate to meet the intended task with minor additions required as described below. The HPLC laboratory, though small, is consistent with recent directives in the planning of laboratory space in which dedicated analyses are to be conducted. This provides for minimal distraction to the analyst and less likelihood of inadvertent tampering by non-laboratory personnel. The space provided allows for two Cessiam personnel to work side-by-side with adequate work areas provided that certain functions (use of spectrophotometers and freezer space) are provided in the main clinical laboratory facility. Specific additional items needed to complete the facility is described below:

PHYSICAL PLANT

(1) FREEZER SPACE: The current freezer space is limited and too warm (approximately -5 degrees C) to provide long term stability of patient specimens or vitamin A standard solutions. It is recommended that some effort be directed at providing access to a modern freezer with a mean temperature of -20 degrees C. Do not use a frost-free type. If an ultra-
cold freezer can be obtained, it would be preferable but not essential. Quick turnaround times on the vitamin A analyses (i.e. elapsed time from venipuncture to analysis) will reduce the importance of an ultra-cold freezer.

(2) SPECTROPHOTOMETER: Accurate quantitation of vitamin A levels in plasma requires that the analyst determination the exact concentration of vitamin A standard solutions immediately before calibration of the HPLC. This is accomplished using a narrow bandwidth spectrophotometer set to 325 nm and the extinction coefficient for vitamin A. Currently, there is no working spectrophotometer within the Cessiam facility which can provide this necessary step. Mr. Jorge Perez is currently working with Dr. Morrow to enable the Bausch & Lomb Spectronic 100 (previously borrowed from the HNRC in Boston for the riboflavin project) to provide this necessary step. Alternatively, the Cessiam staff need to seek access to a similar spectrophotometer near the hospital such that stock vitamin A standards can be read and then transported back the Hospital de Robles in an ice chest while protected from sunlight.

(3) CENTRIFUGATION: The IEF, through Dr. Jack Blanks, is in the process of sending a compact Eppendorf microcentrifuge to Cessiam to facilitate the spinning of sample extracts.

(4) LIQUID HANDLING EQUIPMENT: Dr. Morrow left one Rainin pipette (P-200) and attendant yellow and blue pipette tips with the Cessiam staff. An additional Rainin pipette (P-1000) and an Eppendorf repeater pipette are required and will be arranged through Dr. Blanks at the IEF.

(5) VESSELS: Dr. Morrow left several volumetric flasks with the staff. Additional copies should be obtained since breakage is inevitable. Recommended sizes: 10, 50, 100 ml volumetric class A flasks with ground glass stoppers. Also, Dr. Morrow is preparing special amber glass vials for the storage of retinol, retinol acetate and alpha-tocopherol standards. These will be forwarded to Cessiam by express mail package.

(6) REAGENTS: Bulk reagents such as methanol, ethanol and nitrogen gas are available locally.

(7) DISPOSABLES: There was some concern from the Cessiam staff about the expense associated with the use of disposable items such as microcentrifuge tubes and plastic pasteur pipettes. It is recommended that Dr. Solomons intervene and provide adequate budgetary resources and insist that the Cessiam staff NOT re-use these items. Each patient sample will require the use of one disposable pipette and one disposable microcentrifuge tube at a cost of approximately four cents total per analytical result. This expense is considerably less, in fact, that the cost of rinsing re-usable
glassware with HPLC grade methanol, a necessary step in order to remove adhering vitamin A from previously extracted specimens. Additionally, the Beckman Gold Integrator (model 427) came within only one roll of heat sensitive paper. Additional rolls will be needed in order to undertake routine analyses.

PERSONNEL

Dr. Morrow was favorably impressed with the technical abilities of the Cessiam staff identified by Dr. Solomons to conduct the vitamin A analyses. Each staff member possessed more than adequate laboratory skills to undertake the HPLC procedure and learn the new skills needed to complete this project. Overall, their level of enthusiasm was high and they demonstrated considerable pride in the Cessiam operation. More importantly, they were eager to expand this effort into providing quality, state-of-the-art HPLC analyses in support of the upcoming research projects involving the distribution of carotene-rich foods in the household. There was some degree of hesitation on their part regarding the use of the equipment itself, but this hesitance subsided considerably by the end of the four day visit. As hands on experience is obtained during the next several weeks, this concern should be largely eliminated. Dr. Morrow will assist in this process by regular phone and fax assistance throughout the summer months. After observing first hand the necessary steps to provide quality vitamin A results, they expressed some concern that a four hour work day would be inadequate in order to undertake the assay. [Note to reader: evidently, their current employment agreement is to work four hour blocks of time each day in the clinical lab and the Cessiam lab]. I agree with their concerns and some attention should be directed toward allowing for 8 hour blocks of time during both their training phase and during the analysis of plasma specimens for the actual research projects. Four hours is simply not enough time to set up the assay and provide a reasonable number of analyses each day.

Regarding the use of the auto-injector, Mr. Jorge Perez, the local instrument repair person has recommended that they not use the auto-injector for this operation. As auto-injectors are complex mechanical devices subject to frequent down time, Dr. Morrow is in agreement with this recommendation. However, large specimen workloads (e.g. hundreds of samples over a period of one month) may eventually require the incorporation of the auto-injector in order to provide reasonable turnaround times. This is especially important if an ultra-cold freezer is not provided for long term storage of plasma specimens. Moreover, the novelty of the HPLC experience will quickly diminish and the auto-injector would eliminate the most tedious aspect of HPLC analysis: manual injections on seven minute intervals.
REPAIR AND MAINTENANCE OF HPLC EQUIPMENT

A final concern regarding the Cessiam staffing pattern relates to the provision of mechanical repairs for the Beckman Gold system. As I reported to Dr. Solomons, there are two types of repairs which need to be made on a modern HPLC system: a) those which can be reasonably undertaken by on-site staff; and b) those which require the assistance of factory trained experts.

Mr. Jorge Perez has evidently indicated some level of willingness to assist the Cessiam staff in the former and he appears to possess mechanical and electrical skills commensurate with the task. Nevertheless, provision of expert repairs for more serious problems will remain an issue unless plans are put into place to deal with them. Dr. Solomons has suggested sending Mr. Perez to the Beckman repair school in California. I have advised against this on several bases: (1) Mr. Perez is about to commence a full-time job at a local pharmaceutical company - a conflict since the Beckman school would require at least two weeks of class time in California; (2) Mr. Perez does not speak any English; (3) Beckman would not likely agree to place an outside person in their classes unless they can show a rather sophisticated level of previous training in electronics down to the component level (i.e merely having good mechanical skills would not be adequate); and (4) Cessiam lacks the specialized repair tools including meters and oscilloscopes used to make such repairs.

RECOMMENDATION: I would recommend that Cessiam or IEF investigate the prospects of making a special arrangement with Beckman (either locally or through California) which would provide favorable pricing for some sort of modified service agreement. This might entail, for example, Jorge using telephone or fax to identify the problem and then pulling the appropriate board or component for express mail to California for repair. Alternatively, Cessiam may want to solicit free repair time from Beckman in return for paying for airfare and local accommodations for the Beckman repairman.

IV. QUALITY CONTROL

Dr. Morrow is currently looking into the prospects of formulating a freeze dried vitamin A plasma pool which can be transported at ambient temperatures for up to 48 hours. Such a pool would be reconstituted prior to analysis in Guatemala City and the result compared to the expected value from the lab in Boston. Such materials are not available commercially. A pilot batch of QC materials should be available by the middle of June, 1991.
INSTITUTO DE NUTRICION DE CENTRO AMERICA Y PANAMA

OFICINA SANITARIA PANAMERICANA
Oficina Regional de la
ORGANIZACION MUNDIAL DE LA SALUD

IN-CA-CB-91-193

15 de abril de 1991

Dr. Jesús Bulux
Area de Vitamina A
CESSIAM
Ciudad de Guatemala

Estimado Dr. Bulux:

En respuesta a su solicitud con fecha 11 de marzo de 1991, deseo informarle que en este momento estamos llevando a cabo las actividades necesarias para montar definitivamente en el INCAP, la metodología, por HPLC para la caracterización de carotenos. Por tanto, a corto plazo podemos estar en capacidad de ofrecer nuestra colaboración y servicio en la cuantificación y caracterización de carotenoides.

Inmediatamente se inicie el servicio lo haremos de su conocimiento para que CESSIAM realice la solicitud, oficial a través de la Dirección y se puedan planificar las actividades.

Atentamente,

Lic. Concepción de Bosque
Sección de Tecnología Nutricional INCAP.

cc: Dr. L. G. Elías/Jefe CA
 Dr. E. Acevedo/CA
 Dr. O. Dary/NS
 Archivo
June 4, 1991

Dr. Jesus Bulux
Vitamin A Task Force
CESSIAM
Guatemala City

Dear Dr. Bulux:

In answer to your request dated March 11, 1991, I would like to inform you that we are currently taking the necessary steps to implement the HPLC methodology for the characterization of Carotenes at the INCAP. Therefore, in the near future we will have the capability to offer our cooperation and services for the quantification and characterization of Carotenoids.

As soon as we start this service, we will inform you so that CESSIAM sends its official request through the proper official channels.

Sincerely,

Lic. Concepcion de Bosque
Seccion de Tecnologia Nutricional
INCAP

cc: Dr. L G. Elias/Jefe CA
Dr. E. Acevedo/CA
Dr. O. Dary/NS
Archivo
ANEXO 1

INCREMENTO DE LA DISPONIBILIDAD DE VITAMINA A DIETETICA PARA NIÑOS MENORES DE SEIS AÑOS DE EDAD A TRAVES DE PLANTAS FUENTES DE PROVITAMINA A

INTERVENCION

Propósito de la Intervención

El propósito de la intervención es determinar la eficacia del suministro de vitamina A en la forma de alimentos ricos en carotenos al sector de la población más vulnerable a sufrir hipovitaminosis A, los niños preescolares menores de seis años de edad, y la forma en que estos son preparados, distribuidos y consumidos entre los diversos miembros de la familia dentro del hogar. Un resultado secundario que se pretende obtener con la intervención es que aquellos individuos que consuman las plantas tengan un mejoramiento o un mantenimiento de su estado nutricional de vitamina A.

Objetivos de la Intervención

Proveer de un vegetal amarillo (camote dulce), un vegetal naranja (zanahoria) y una hierba verde (quilete), dos veces por semana durante un período de trece meses (agosto de 1991 hasta agosto de 1992), para un total de hogares que den 80 a 100 niños preescolares en dos aldeas de la jurisdicción de Santa Cruz Naranjo, en el departamento de Santa Rosa. La cantidad diaria de actividad de vitamina A será de 450 equivalentes de retinol (RE), en igual contribución desde zanahoria, camote dulce y quilete para cada miembro seleccionado del grupo familiar. En una aldea todas las personas de los hogares participantes serán elegidas o seleccionadas, en la otra ladea solamente lo serán los niños menores de seis años de edad. Los promotores proveerán mensajes de educación apropiados en las respectivas aldeas.

Personal del Proyecto de Campo

La intervención tendrá como base central la Oficina de Intervenciones de Campo de la Fundación Internacional del Ojo (IEF), de la cual el Dr. Hernández Polanco es su director. Como paso inicial tendrá que ser designado un director de campo, que será una persona que tendrá la función de supervisar en forma directa la distribución de los alimentos por los promotores. Estos, operarán entre Guatemala y Santa Rosa, con residencia en la primera. Entre sus atribuciones estarán el mantenimiento de un registro de costos y el trabajo relacionado con las entregas comerciales de las plantas.

A nivel de Santa Rosa los promotores estarán encargados de la distribución de los vegetales con la eficiencia del caso. Ellos manejarán el vehículo y tendrán las siguientes tareas: 1. recoger las zanahorias, camotes dulces y quiletes en los puntos de distribución (alrededor de la capital) en dos mañanas por cada semana; 2. conducir el producto a las aldeas; 3. dejar el producto en el centro de empaque; 4. distribución de los paquetes a las casas de la vecindad, en la mañana siguiente a su llegada y 5. recolección de las bolsas vacías.

En las dos aldeas del estudio serán contratadas amas de casa para desempeñar el trabajo de empaquadoras. Ellas recibirán los tres tipos de plantas en volumen total y pondrán las cantidades establecidas de cada uno de los alimentos dentro de las bolsas de los hogares participantes.
Coordinación con CeSSIAM

Con el propósito de alcanzar en máximo grado de separación entre los miembros de la comunidad, con relación a las actividades de la intervención y la evaluación, serán tomadas en cuenta varias medidas: disociación del personal encargado de llevar acabo las tareas y actividades de ambas fases; ausencia de discusiones visibles entre el personal de campo de IEF y los entrevistadores y recolectores de muestras sanguíneas de CeSSIAM (y el personal de la Universidad del Valle). En la Oficina de Intervenciones de Campo de IEF se llevarán a cabo reuniones frecuentes entre los representantes de la Fundación (Dr. Hernández Polanco, Dr. Ivan Mendoza y el director de campo que será nombrado) y personal de CeSSIAM (Lic. Gamero, Dr. Bulux, Licda. Romero y Dra. López. En estas reuniones también se tendrá la presencia de los antropólogos de la Universidad del Valle.

Criterios para la Selección de las Aldeas

La selección de las aldeas será coordinada con CeSSIAM y el grupo evaluador. Esta selección tendrá que obedecer a ciertos criterios:

1. Geográfico: serán dos aldeas del municipio de Santa Cruz Naranjo, en el departamento de Santa Rosa.
2. Conformidad (acuerdo): tendrá que darse una iniciativa local de cooperación y una disposición popular, para enrolar el número requerido de hogares en la participación.
3. Tamaño: tendrán que ser un total de 80 a 100 niños preescolares entre los hogares participantes, en cada una de las aldeas seleccionadas.

Contacto y Consentimiento

Dentro del área en que se operará, representantes del proyecto de intervención tendrán que establecer contacto con las oficinas locales de salud y agricultura del gobierno nacional, para informarles acerca del proyecto. Para contar con la cooperación a nivel local, tendrán que ser informados los jefes o autoridades de las aldeas, para explicarles la naturaleza y el propósito de la distribución de plantas (alimentos).

Suministro de Plantas

Para el suministro de las plantas tendrá que establecerse contacto con una fuente comercial primaria segura, que garantice la entrega de los productos de la intervención. A través de platicas con el ICTA (Instituto de Capacitación y Tecnología Agrícola) se tratará de obtener zanahorias y camotes dulces, genéticamente desarrollados, que sean cubiertos al costo del proyecto, una vez que se establezca un acuerdo. El quílete podrá ser obtenido a través de un vendedor al por mayor.

Los costos de la compra de estos alimentos estarán contemplados en el presupuesto propio de la intervención. El proyecto tendrá que contar con un camión (de tracción en las cuatro ruedas) que tendrá como función primaria la comunicación entre Santa Rosa y la capital para el transporte de las cantidades necesarias de plantas para las aldeas. Los días en que se llevará a cabo este transporte serán los miércoles o viernes.

Distribución de las Plantas

Aleatorización de las aldeas: la determinación de qué aldea recibirá equivalentes de retinol de vitamina A para todo el grupo familiar o solamente pa-
ra aquellos niños menores de seis años de edad, podra ser hecha solamente después de que ambas aldeas hayan sido contactadas y enroladas. La selección podrá ser realizada por medio del lanzamiento de una moneda.

Cantidad de alimentos: El objetivo de la distribución será el de proveer un total de 450 RE como alimento gratuito para cada miembro seleccionado de los hogares de ambas aldeas durante seis días de la semana. Estos 450 RE que recibirán diariamente los hogares incluidos en el estudio provendrán de cantidades iguales en RE de zanahoria, camote y quilete, que en este caso serán de 150 RE, respectivamente.

La distribución de los alimentos: se hará dos veces por semana (miércoles y sábado). En cada uno de estos días cada persona recibirá 1350 RE que cubrirán los requerimientos correspondientes a tres días y provendrán de aportes iguales de RE de zanahoria, camote y quilete, respectivamente. El peso exacto de las fórmulas será establecido cuando los alimentos hayan sido analizados para determinar el total de vitamina A, como parte del componente # 2 de este proyecto.

Mensaje Educativo/Promocional: Los hogares participantes podrán ser orientados con procedimientos hacia el consumo de alimentos, en forma de asambleas reforzadas por mensajes directos a nivel del hogar.

En las aldeas en que participan los hogares completos los mensajes se orientarán hacia el consumo de cada uno de los itens por cada uno de los miembros del hogar.

En la aldea de los preescolares se dirá que solamente para los niños preescolares designados podrán ser preparados los alimentos. Cada niño podrá obtener una cantidad proporcional de cada ítem. Ningún otro hermano mayor u otra persona del grupo familiar, podrá ser servida.

Frecuencia de la Distribución: La distribución a los hogares podrá darse al día siguiente al día de mercado más cercano de la comunidad. Esto podría ser para las aldeas de Santa Cruz: 1. compra martes - distribución miércoles, 2. compra viernes - distribución sábado.

La Cadena de Distribución: La descripción que se hizo con relación a las atribuciones de los promotores y empacadores detalla los eventos de la cadena de distribución a nivel del hogar.

El pick-up se usará para cada viaje de la ciudad a la aldea llevando el volumen total y dentro de las aldeas para la distribución a las casas de la comunidad.

Calendario: La distribución tendrá que comenzar en la primera semana de agosto de 1991 (después de la encuesta basal del grupo evaluador de CeSSIAM-Universidad del Valle) y continuará a través de los meses hasta agosto de 1992, en forma sostenida hasta la siguiente evaluación.

Separación Presupuestaria

Los fondos para las actividades del componente # 3 vendrán de los fondos en dólares de la IEF por medio de una transferencia en una cuenta en quetzales separada de los componentes de CeSSIAM. La firma para los cheques será del
director de la oficina local de IEF (Dr. Hernandez Polanco)

Itemes y Gastos del componente # 3

Personal
Salario del Director de Campo (contratado por IEF)
Salario de los Promotores (contratados por IEF)
Estipendio para empacadoras.

Alimentos
Contrato para el suministro de zanahorias y camotes.

Transporte
Compra de vehículo
Aceite y lubricantes para vehículo (gasolina, aceite, etc)
Costos de seguro y mantenimiento del vehículo.

Suministros
Balanza de escala para empacadoras
Bolsas (x para cada hogar participante)
CURRICULUM VITAE

Nombre: Guisela Margarita Leche Rodríguez
Fecha de nacimiento: 19 de abril de 1958
Nacionalidad: guatemalteca
Cédula de vecindad: A-1 563143
Extendida en: Ciudad, Guatemala
Domicilio: 1a. calle 5-53 zona 2
No. de teléfono: 514872

I. ESTUDIOS REALIZADOS

1965 - 1970 Colegio Santa Inés
Diploma nivel primario.
1971 - 1973 Academia Virgen Poderosa "Casa Central"
Diploma nivel medio.
1972 Academia Virgen Poderosa "Casa Central"
Diploma de mecanografía.
1974 - 1976 Instituto Normal "Casa Central". Título
Maestra de Educación Primaria Urbana.
1977 Facultad de Ciencias Químicas y
Farmacia, Universidad de San Carlos de
Guatemala, área Biología. 7 cursos
aprobados.
1978 Facultad de Humanidades, Universidad de
San Carlos de Guatemala, área Lengua y
Literatura. 9 cursos aprobados y
equivalentes.
1979 - 1984 Escuela de Historia, Universidad de San
Carlos de Guatemala, área Antropología.
46 cursos aprobados y reglamentarios
correspondientes al cierre de
curriculum.
1985 - 1986 Escuela de Ciencias Psicológicas,
Universidad de San Carlos de Guatemala, área
Psicología. 7 asignaturas
aprobadas.
1987 - 1989 Trabajo de tesis en desarrollo,
investigación bibliográfica y de campo.
Estudio comparativo sobre Medicina
Tradicional en asentamiento popular
urbano "El Mezquital" y la comunidad San
Andrés Xecul.

II. ACTIVIDADES LABORALES

1978 - Colegio Centro de Enseñanza de Inglés
sept.-dic. Sistematizada CEIS - Secretaria.
1979 - Colegio Centro Escolar Campoalegre -
ene.-abr. Maestra de educación primaria.
1979 -1981 - Colegio Interamericano de Guatemala -
may.-nov. Maestra de educación primaria.
<table>
<thead>
<tr>
<th>Año</th>
<th>Institución/Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Colegio Juan de Arco - Maestra de educación secundaria (plan básico).</td>
</tr>
<tr>
<td>1986</td>
<td>Instituto de Fomento Municipal INFOM (Unidad PDM-BID) - Licda. inf. en Antropología para la realización de estudios socioculturales en el altiplano de Guatemala.</td>
</tr>
<tr>
<td>1986 - 1987</td>
<td>Universidad de San Carlos de Guatemala en unidad académica Escuela de Historia - Ayudante de cátedra II (investigación de campo y bibliográfica) sobre cambio sociocultural y problemas de marginalidad.</td>
</tr>
<tr>
<td>1988</td>
<td>Fondo de las Naciones Unidas para la Infancia UNICEF, Dirección General de Servicios de Salud DGSS, Centro de Estudios Folclóricos CEFOL (USAC) - Licda. en Antropología para la investigación de campo "Influencia de los medios de comunicación social en salud materno infantil", en el altiplano de Guatemala.</td>
</tr>
<tr>
<td>1989</td>
<td>Instituto Nacional de Administración Pública INAP - Técnico en investigación para realizar un estudio en parcelas, microparcelas y lotificaciones de la costa sur, otorgadas por el INTA.</td>
</tr>
<tr>
<td>1989</td>
<td>Comité Nacional Pro-Ciegos y Sordomudos Hospital "Rodolfo Robles" (CESSIAM) - Licda. en Antropología para investigación de campo ssobre aspectos de nutrición en una comunidad del sur oriente de Guatemala.</td>
</tr>
<tr>
<td>1990 - 1991</td>
<td>Comité Nacional Pro-Ciegos y Sordomudos (Fundación Internacional del Ojo - IEF) - Licda. en Antropología para coordinar el proyecto "Distribución de Alimentos Intracasa NutriAtol) en San Pedro Yepocapa.</td>
</tr>
</tbody>
</table>

III. OTROS Asistencia y/o participación en:

1980

1987 "III Seminario nacional de Medicina Tradicional y I mesoamericano de Etnofarmacología", CAPLAMED. Diploma.

1988 Seminario de urbanismo "Pensemos la ciudad" CEUR Universidad de San Carlos de Guatemala e IDESAC.

1989 Exposición oral "Condiciones de vida en los asentamientos populares urbanos de el Mezquital" CEPADE y MUP.

TO: GUSTAVO HERNANDEZ POLANCO

FROM: NOEL W. SOLOMONS

IN RE: ESTIMATES OF WEEKLY AND WHOLE-PROJECT NEEDS FOR CARROTS, FOR SWEET POTATOES, AND FOR "QUILETE" FOR PROVITA III (BASED ON LITERATURE VALUES OR COLLATERAL ANALYSES OF THE PLANTS)

AMOUNTS OF RETINOL EQUIVALENTS TO BE NEEDED OVER 48 WEEKS

THE IDEA WAS TO PROVIDE 450 RE PER ELIGIBLE PARTICIPANT PER DAY OVER 6 DAYS OF A WEEK FOR ONE YEAR (NOTE: CALCULATING HOLIDAYS AND ANNUAL VACATIONS, IT HAS BEEN ASSUMED .7 WEEKS OF DISTRIBUTION)

WE ARE TO SEEK ABOUT 80 HOUSEHOLD WITH OR MORE PRESCHOOL CHILDREN IN HAMLET A IN WHOM EVERY HOLD MEMBER WOULD BE ELIGIBLE. ASSUMING 5 PERSONS PER HOUSEHOLD THIS WOULD BE 400 PERSONS.

WE ARE TO SEEK ABOUT 80 HOUSEHOLDS WITH ONE OR MORE PRESCHOOL CHILDREN IN HAMLET B IN WHOM ONLY THE PRESCHOOL CHILDREN WILL BE ELIGIBLE ASSUMING 2 PRESCHOOLERS PER ELIGIBLE HOUSEHOLD, THIS WOULD BE 160 PERSONS.

COMBINED, WE WOULD HAVE 560 ELIGIBLE RECIPIENTS OF A 6-DAY RATION OF 450 RE FOR 6 DAYS OVER 48 WEEKS.

450 X 6 X 48 X 560 = 72,576,000 RE FOR THE ENTIRE PROJECT

ROUNDING OFF, WE SHALL USE THE VALUE OF 75,000,000 RE

AMOUNT OF RETINOL EQUIVALENTS TO BE REQUIRED FOR EACH OF THE THREE PLANT SOURCES OF VITAMIN A

THE PLAN IS FOR EACH OF THE THREE PLANT SOURCES (CARROTS, SWEET POTATOES, AND "QUILETE") TO PROVIDE ONE-THIRD OF THE INDIVIDUAL AND HOUSEHOLD DIETARY VITAMIN A ACTIVITY. THAT IS 150 RE PER DAY OVER 6 DAYS PER WEEK OVER 48 WEEKS IN THE PROJECT. THUS WE WOULD NEED:

25,000,000 RE FROM CARROT
25,000,000 RE FROM SWEET POTATO
25,000,000 RE FROM "QUILETE"
WEIGHT OF CARROTS TO BE NEEDED: PER PROJECT; PER WEEK

WE CALCULATE THE WEIGHT OF CARROT NEEDED TO PROVIDE 25,000,000 RE IN THE FOLLOWING FASHION:

OUR VALUE FOR DIETARY VITAMIN A ACTIVITY IS 1,666 RE/100 G OR 16.7 RE/GRAM OF CARROT.

THUS, THE WEIGHT OF CARROT IN KILOGRAMS THAT WOULD BE NEEDED FOR 48 WEEKS OF PROJECT WOULD BE
\[
\frac{25,000,000}{16.7} / 1000 = 1497 \text{ KG (ROUNDED OFF = 1500 KG PER YEAR)}
\]

DIVIDED INTO THE 48 WEEKS OF THE YEAR, THIS BECOMES
\[
\frac{1500}{48} = 31.25 \text{ KG OF CARROT PER PROJECT WEEK}.
\]

WEIGHT OF SWEET POTATOES TO BE NEEDED: PER PROJECT; PER WEEK

WE CALCULATE THE WEIGHT OF SWEET POTATO NEEDED TO PROVIDE 25,000,000 RE IN THE FOLLOWING FASHION:

OUR VALUE FOR DIETARY VITAMIN A ACTIVITY IS 302 RE/100 G OR 3.0 RE/GRAM OF YELLOW SWEET POTATO

THUS, THE WEIGHT OF SWEET POTATO IN KILOGRAMS THAT WOULD BE NEEDED FOR 48 WEEKS OF PROJECT WOULD BE
\[
\frac{25,000,000}{3.0} / 1000 = 8333 \text{ KG (ROUNDED OFF = 8350 KG SWEET POTATOES PER YEAR)}
\]

DIVIDED INTO THE 48 WEEKS OF THE YEAR, THIS BECOMES
\[
\frac{8350}{48} = 173.4 \text{ KG (175 KG) OF SWEET POTATO PER PROJECT WEEK}.
\]

WEIGHT OF "QUILETE" TO BE NEEDED: PER PROJECT; PER WEEK

WE CALCULATE THE WEIGHT OF "QUILETE" NEEDED TO PROVIDE 25,000,000 RE IN THE FOLLOWING FASHION:

OUR VALUE FOR DIETARY VITAMIN A ACTIVITY IS 633 RE/100 G OR 6.3 RE/GRAM OF "QUILETE"

THUS, THE WEIGHT OF "QUILETE" IN KILOGRAMS THAT WOULD BE NEEDED FOR 48 WEEKS OF PROJECT WOULD BE
\[
\frac{25,000,000}{6.3} / 1000 = 3968 \text{ KG (ROUNDED OFF = 4000 KG "QUILETE" PER YEAR)}
\]

DIVIDED INTO THE 48 WEEKS OF THE YEAR, THIS BECOMES
\[
\frac{4000}{48} = 83.3 \text{ KG (85 KG) OF "QUILETE" PER PROJECT WEEK}.
\]

NOTE: "Quilete" must be purchased based on its gross weight, but the vitamin A content is based on its net weight of vitamin A containing parts, i.e. the leaf. So we might buy a weight of this herb five times that of the green leaves which are the "edible portion."
Anexo 1

PROTOCOLO DE INVESTIGACIÓN
INCREMENTO DE LA DISPONIBILIDAD DE VITAMINA A DIETÉTICA PARA NIÑOS MENORES DE SEIS AÑOS DE EDAD, POR MEDIO DE Fuentes DE PROVITAMINA A EN FORMA NATURAL

I. ANTECEDENTES

La deficiencia de vitamina A constituye un grave problema de salud pública que afecta a individuos y poblaciones en países en desarrollo en Asia, África y Latinoamérica. Las implicaciones de tal deficiencia tienen mayor repercusión en niños preescolares y mujeres en edad reproductiva. Estos se asocian con daños que van desde lesiones oculares leves hasta casos de xerofthalmia y cegera total; adicionalmente a esto, la deficiencia de vitamina A (DVA) se asocia con una alta mortalidad, que en los casos más severos puede llegar a exceder el 25% de los pacientes hospitalizados. Estos casos de muerte a menudo van acompañados de malnutrición proteinico-energética e infecciones (5,6,7,8,10).

Como problema de salud pública la DVA se desarrolla dentro de un ambiente de privación social económica y ecológica; es estacional y alcanza cifras máximas durante los períodos de escasez de alimentos y alta incidencia de enfermedad diarreica y otras enfermedades infecciosas (5,6,10).

A la mayor demanda por el incremento de los requerimientos corporales se suman las condiciones imperantes en los países en vías de desarrollo, como la presencia frecuente de infecciones y la ingesta inadecuada a vitamina A a partir de una dieta insuficiente y pobre en retinol y carotenos (5,9).

Actualmente existe una serie de estrategias tendientes a combatir la DVA, tales como la distribución de dosis masivas de vitamina A, fortificación de alimentos y desarrollo de proyectos hortícolas. Las dos primeras estrategias requieren el empleo de una logística y tecnología de alto costo que está muy lejos de ser disponible en la mayoría de los países del tercer mundo. La tercer estrategia se basa en programas que buscan fomentar y sostener la producción y consumo de alimentos ricos en carotenos, a nivel del hogar, escuela y comunidad. Entre estos alimentos se encuentran los vegetales de color naranja, amarillo y las hojas de color verde oscuro (4,6). Los objetivos de esta última estrategia pretenden el mejoramiento de la disponibilidad de tales alimentos, sobre la base de las condiciones agrícolas y ecológicas de un área determinada; así mismo se pretende el mejoramiento del consumo de tales alimentos por el grupo familiar, particularmente por las mujeres embarazadas y lactantes y los niños preescolares (2,6,9). Con la ingesta de estos alimentos se estaría proveyendo al organismo de otras vitaminas y minerales esenciales, que son comúnmente deficientes en las die...
tas en países en desarrollo (3).

La efectividad de la estrategia de huertos escolares para la prevención y control de la DVA depende en gran medida de que los productos o el aporte económico que genere su venta, incremen ten en forma directa la ingesta de vitamina A en los grupos a riesgo, ya que se ha visto que los niños con problemas oculares como enfermedad corneal y manchas de bitot consumen con menor frecuencia alimentos fuentes de vitamina y provitamina A (3,8). Algunos de estos alimentos que deberían constituir parte de la dieta familiar habitual, no son servidos a los niños preescolares o a las madres lactantes, a causa de problemas asociados a los mismos tales como: diarrea, calambres estomacales o otros, que son asociados a su alto contenido de fibra (4).

Otra situación que se da en muchos hogares es la distribución ineficientemente familiar de alimentos en forma inadecuada. Cuando esta situación ocurre es necesario proporcionar educación nutricional al grupo familiar en relación a las necesidades de los grupos a riesgo. Este enfoque educativo deberá ser dirigido hacia la obtención de preparaciones adecuadas, tomando en cuenta los factores culturales y los recursos del grupo familiar (4).

La situación de la población guatemalteca con relación al estado de vitamina A, se ha descrito desde mediados de la década de los cincuenta por Viteri, quien afirmaba que un 20% de personas provenientes de grupos representativos de la población guatemalteca tenían niveles subnormales de vitamina A circulante (11). Posteriormente los estudios de Arroyave y Col. mostraron una situación deficitaria de vitamina A en niños lactantes y condujeron al programa de fortificación del azúcar con palmítato de retinol, mediante acuerdo gubernativo de 1974. Con tal intervención se logró que la prevalencia de niveles subnormales de vitamina A en niños menores de cinco años, descendieran de 19.0% a 12.5%. A causa de diversos factores este programa solo funcionó hasta 1977 (1). Estudios posteriores desarrollados por el Centro de Estudios en Sensoriotipias, Senectud, Impedimentos y Alteraciones Metabólicas (CeSSIAM) en áreas periurbanas y en localidades del interior del país, mostraron que en la población a riesgo los niveles séricos de retinol estaban por debajo de 20 microgramos por decilitro. En una de estas investigaciones se pudo establecer que el 56% de 399 niños menores de seis años de edad, tenían consumos de vitamina A inferiores al 100% de las recomendaciones establecidas por la FAO/OMS. La mediana de la ingesta fue de 248 equivalentes de retinol con valores mínimos y máximos de 4 y 3851; se estableció también que un 64% de la vitamina A era ingerida como carotenos (10).
II. OBJETIVOS

A. General
1. Determinar los cambios dietéticos, plasmáticos y conductuales que ocurren entre los miembros de una población determinada, como resultado de la complementación alimentaria con fuentes de provitamina A en forma natural.

B. Específicos
1. Establecer la cantidad de alimentos provenientes de la complementación que reciben los sujetos en estudio, a través de un instrumento de registro dietético que refleje la distribución alimentaria intrafamiliar.
2. Determinar los cambios que experimentan los niveles circulantes de vitamina A de los sujetos en estudio, mediante el análisis de sus concentraciones plasmáticas, una vez iniciada la complementación.
3. Establecer el grado de correlación que existe entre los niveles circulantes de vitamina A de los sujetos en estudio y la ingesta de alimentos provenientes de la complementación.

III. HIPOTESIS

A. En la aldea donde la complementación alimentaria cubre los requerimientos de todo el grupo familiar la distribución de tales alimentos cubre parcialmente las necesidades dietéticas de los sujetos en estudio.

B. Los niveles plasmáticos de retinol y beta-carotenos de la aldea que recibe la complementación mayor son diferentes a los de la aldea de complementación menor.

C. Existe correlación entre los niveles plasmáticos de retinol y beta-carotenos y la ingesta de alimentos provenientes de la complementación, en ambas aldeas.

IV. MATERIAL Y MÉTODOS

A. Población
La población que se tomará para este estudio será la de dos aldeas del municipio de Santa Cruz Naranjo, ubicado en el departamento de Santa Rosa, que está situado en el suroeste de la república de Guatemala.

B. Muestra
La muestra estará integrada por _______ niños menores de seis años de edad
de cada una de las aldeas de El Tiocinte y El Naranjo. Estas son dos aldeas del munici­pio de Santa Cruz Naranjo que muestran similitudes en cuanto al número de habitantes y características generales tales como condiciones socioeconómicas y distancia a la ca­becera del municipio.

C. Diseño Experimental
1. Encuesta Basal
 a. Censo. En las dos aldeas seleccionadas para este estudio se hará un censo para determinar las condiciones socioeconómicas de la población y localizar los hogares que tengan niños menores de seis años de edad. En forma simultánea se pro­cederá a obtener el consentimiento de los jefes de los hogares participantes y a su respectiva inscripción en el estudio.

 b. Muestras Sanguíneas-Mediciones Antropométricas y Encuestas Die­téticas. - Durante un período determinado del mes de junio un equipo de CeSSIAM integrado por Médicos, Químicos-bioló­gos y Nutricionistas obtendrán muestras sanguíneas, y tomarán medidas antropométricas a los sujetos en estudio. Estas muestras serán pos­teriormente analizadas en el laboratorio del Hospital Rodolfo Robles, utilizando la técnica del HPLC.

 Durante este mismo período se obtendrá información acerca del pa­trón alimentario general y del consumo de alimentos fuentes de vitamina A. Esto se hará por medio de la aplicación de dos instrumentos: un recordatorio de consumo de alimentos de 24 horas y un cuestionario de frecuencia de consumo de alimentos ricos en vitamina A.

2. Complementación Alimentaria (Intervención)

 La intervención se hará a continuación de la encuesta basal y tendrá como propósito el suministro de los alimentos que constituirán la complementación alimen­taria. Estos alimentos serán tres vegetales fuentes de provitamina A, que serán en­tregados simultáneamente como una remesa familiar. Uno de los vegetales será de color naranja (zanahoria); otro de color amarillo (camote) y un tercero, una hierba de color verde oscuro (quilete). La proporción relativa de vitamina A de cada uno de estos ali­mentos será ajustada de tal manera que un tercio de la actividad de esta vitamina provenga de cada uno de los alimentos que formaran la remesa familiar. En esta forma dentro de cada hogar participante, cada miembro seleccionado recibirá durante seis de los siete días de la semana 450 equivalentes de retinol por día.

 Los hogares participantes de una de las aldeas recibirán una remesa familiar que cubra los requerimientos de vitamina A de todos los miembros del grupo.
familiar. Los hogares de la otra aldea recibirán una cantidad de productos que cubran los requerimientos nutricionales de vitamina A de los niños menores de seis años de edad, únicamente.

Una información más detallada de la intervención aparece en el manual respectivo.

3. Seguimiento

Una vez iniciada la intervención habrá un período de seguimiento en relación a la distribución y consumo de los tres alimentos fuentes de provitamina A en todos los hogares participantes. Un nutricionista de CeSSIAM visitará periódicamente las comunidades participantes para llevar un registro del consumo de los alimentos donados y de otras variables de interés. Esta actividad se hará a intervalos de dos meses, utilizando los mismos instrumentos que se emplearon en la encuesta de línea basal. Los periodos anteriores y posteriores al proceso de seguimiento serán utilizados para la codificación y entrada de datos a la computadora.

4. Encuesta Final

La encuesta final se hará después de un año del inicio de la intervención y contemplará la medición de las mismas variables que se tomaron en la línea basal.

V. BIBLIOGRAFÍA.

12.
January 15:
Commencement CESSIAM's activities, for the year, 1991.

January 17:
First meeting of vitamin A group in which the progress of each project Vitamin A related and the PROVITA project are discussed.

January 28:
Unfortunately, the long-awaited visit by Dr. F. Morrow at which time he was teach us the Bieri method for determination of retinol in plasma, was post-poned due to airport problems.

January 24:
Weekly meeting of the vitamin A group.

January 25:
The Engineer Jorge Perez came to inspect a small leak of solvent from the HPLC column. He changed one connection and taught us how to adjust the connection if necessary in the future. Now is functioning well.

January 28:
The course "How to write a scientific article" was held at INCAP. The course was offered by PAHO and consisted of 40 hours of intensive instruction.
FEBRUARY REPORT OF PROVITA PROJECT
HPLC COMPONENT

February 3:
We were still awaiting the arrived of Dr. Morrow, but again he couldn’t come to Guatemala

February 5:
The vitamin A group had a brief meeting with Mr. Jack Blanks.

February 6:
Lic. Isabel de Ramirez y Lic. Eugenia Romero visited Lic. Carmen Arriola who works with HPLC at ICAITI (Instituto Centroamericano de Investigacion y Tecnologia Industrial). We discussed with her the possibility of going to ICAITI to learn how she processes samples for HPLC. She suggested that it would be better if we have the method of determination and the equipment that we treat to run some samples until we get good results. Nevertheless she gave us an appointment for the following day, to discuss generalities concerning methods of processing samples for HPLC.

February 7:
Lic. Isabel de Ramirez and Lic. Eugenia Romero went to the ICAITI to meet with the Lic. Arriola at which time she gave to us a demonstration of how to centrifuge, to filter by vacuum and to evaporate a sample with a stream of nitrogen.
February 25:
We obtained information on the cost of a vacuum bomb.

February 27:
We obtained prices for a microcentrifuge that we need for analysis of samples of plasma by HPLC. In Guatemala such a microcentrifuge is not available anywhere. It will be necessary to order the microcentrifuge from U.S.

10,000 R$
Report to Activities in the PROVITA Projects.

II Component "Content of Vitamin A carotenoids in Foods"

January 15, 1991

* Organized Green Plants Project field activities in Coban, Alta Verapaz.

From January 28, to February 10.

Intensive course "Writing Editing Scientific Articles" by WHO in Institute of Nutrition at Central America and Panama (INCAP).

February:

* Completed field activities in Coban, Alta Verapaz for the Edible Greens Plants Project.

Institutional Connections:

Ing. Agr. Leonel Cruz E., SEMECA, S.A. "Semillas Mejoradas de Centro America, S.A. Provided us with written information on species and by breeds of carrots, as well as contacts of farms where we could grow carrots, sweet potatoes and quõite."
Ing. Agr. Jose Daniel Villela, agricultural Development Project (PDA) for A.I.D. Provided us with information about on the production and commercialization of different species of carrots, sweet potatoes and quilete.

Literature review at the INCAP on:

1- Collection and preparation of plants for analysis by HPLC.
2- Vitamin A content in foods. * Tables of analysis of foods in the tropical countries for vitamin A precursor
3- Recollection and processing. Reference "Método de Laboratorio de Análisis de Alimentos" INCAP Octubre de 1976.
4- Recent information on the vitamin A content of foods, include processing with analysis by HPLC in the Vitamin A+ Sieve.

Personal Comment:
I have three questions:

a) place for samples processing (laboratory name)

b) Company that will supply the vegetables for the intervention.

c) Availability of vegetable samples before the intervention for laboratory analysis.

Since time is short, we need a large supply of good color, size and quality vegetables.
Durante el mes de febrero en el proyecto de PROVITA se realizaron las siguientes actividades:

1. Traducción del inglés al español del Manual de Operaciones del componente que corresponde a la intervención. Este manual fue originalmente redactado por el Coordinador Científico y por el Jefe de Vitamina A de CESSIAM y servirá de base para las operaciones de campo de la fase de intervención. Uno de los primeros pasos de esta fase es la discusión de este manual con el jefe de campo de la intervención, que deberá ser nombrado por IEF. El manual aparece en el anexo #1.

2. Elaboración del protocolo de investigación del componente de evaluación.
 Este protocolo fue redactado con el propósito de contar con un documento formal de base donde se detallaran las actividades del componente de evaluación. En este documento hacen falta algunas partes a causa de que están siendo objeto de una revisión más amplia. (anexo #2)

3. Revisión preliminar de los instrumentos de recolección de datos a nivel de campo.
 En esta actividad se procedió a la revisión de varios formularios que se han empleado en el INCAP para la recolección de información dietética en el campo. Como paso inicial se discutió al respecto con varios profesionales que han trabajado con este tipo de información y se consideraron algunas ventajas y desventajas de tales formularios. Una de las cosas que pareció muy importante fue la precodificación de uno de los formularios para el manejo posterior de los datos. El formulario ha sido utilizado para el recordatorio dietético de veinticuatro horas, en Guatemala y otros países de Centro América. En las actividades del mes de marzo se seguirá con la revisión y/o adaptación de estos documentos, hasta lograr la obtención de los definitivos, que habrán de aplicarse en el campo.

4. Reuniones con la Supervisora de Campo de los estudiantes de antropología de la Universidad del Valle, que participarán en este estudio.
 Se han llevado a cabo dos reuniones con la Licda. María Eugenia Saenz (Kena), con el propósito de revisar formularios o instrumentos que serán utilizados a nivel de campo. También se discutieron aspectos relacionados con la logística de la primera etapa basal, es decir las condiciones y la forma general de operación de los estudiantes de antropología en la comunidad de Santa Cruz Naranjo. Estas reuniones servirán de base para la toma de decisiones con respecto a las próximas actividades (operaciones de campo).
PROVITA
COMPONENTE EVALUACION
Actividades del Mes de Marzo y Primera quincena de Abril

Durante el mes de marzo y la primera quincena de abril en el componente de evaluación de PROVITA se desarrollaron las siguientes actividades:

1. Redacción final del protocolo de investigación del componente de evaluación.
 Este protocolo que fue redactado con el propósito de tener un documento base donde se detallaran las actividades del componente aparece en el anexo 1.

2. Elaboración/revisión de los instrumentos de recolección de datos de campo:
 a. Cuestionario de Frecuencia de Consumo de Alimentos Ricos en Vitamina A
 Se hizo una revisión del instrumento de frecuencia de consumo de alimentos ricos en vitamina A elaborado por Quan de Serrano y Col. en función de las facilidades o dificultades que éste ofreció en la recolección de datos dietéticos del estudio de ancianos del área periurbana de Guajitos. En este sentido se tomó la decisión de utilizar este instrumento, con algunas pequeñas modificaciones, para la línea basal del estudio de Santa Rosa. Las modificaciones irán encaminadas a incluir alimentos locales que pudieran estar afectados por períodos de estacionalidad.

 b. Recordatorio de Consumo de Alimentos de 24 Horas **
 El instrumento que se pretende utilizar para el recordatorio de 24 horas es básicamente el mismo que se a empleado en encuestas dietéticas del INCAP en el área centroamericana. Con el uso de este instrumento se pretende que la información recolectada tenga el máximo grado de codificación posible. Anexo 2.

 c. Cuestionario de Recolección de Datos Antropológicos
 En este momento se cuenta con un cuestionario inicial que tendrá que ser revisado y probado con el grupo de estudiantes de antropología que formaran parte de este estudio. Anexo 3

3. Reunión Inicial con La Jefa de Campo del Componente de Intervención
 Una reunión preliminar fue llevada a cabo con la Licda. Guisela Leche, que es la directora de campo designada por la Fundación Internacional del Ojo (IEF), con el propósito de coordinar y discutir sobre las primeras actividades de los componentes de PROVITA. En esta reunión participaron los responsables de los componentes de análisis de plantas y evaluación de PROVITA y como ya fue mencionado con anterioridad la

 ** Este instrumento será probado en un ensayo piloto que se iniciará la próxima semana.
Licda Leche, quien ya está a cargo de la jefatura de las actividades del componen
te de intervención. En esta reunión se trato de proporcionar a la licda Leche to­
das aquellas informaciones relacionadas con el suministro de las plantas y todos
los contactos previos que se habían hecho con diferentes instituciones.