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Introduction:
 

This project began with our early observation of the in vitro growth

inhibition by lipophilic chelators 
(i.e. of iron and copper for the most part),
 

our study of their possible mechanism of action and the role of these and other
 

cations in malaria metabolism. Subsequently as a result of this approach we
 

recognized the vital role of calcium to parasite metabolism and the unrecognized
 

potential of a large number of drugs presently in clinical use for a variety of
 

human diseases and the potential these offer in malaria chemotherapy. While the
 

calcium study was an offshoot of the iron study, the studies are quite distinct
 

and consequently they will be presented in two separate sections of the final
 

progress report.
 

Final Progress Report
 

1. Lipophilic chelators and iron metabolism:
 

In the last few years considerable progress has been made in understanding
 

the metabolism of the malaria parasite (1-4). 
 Points of departure between the
 

metabolism of the parasite -nd host have been described by us 
(5-7), several of
 

which have the potential of yielding rational approaches to chemotherapy of
 

malaria. Therefore, our efforts to develop new compounds which exploit these
 

unique characteristics of parasite metabolism offer a novel approach which
 

promises new chemotherapeutic agents where cross resistance to antimalarials
 

currently in use would not be 
an immediate problem, since conventional
 

anti-malarials appear to involve other mechanisms.
 

The growing malaria parasite degrades glucose almost quantitatively to
 

lactate over 16 hours (8-9). 
 There is no evidence of a classical Pasteur Effect
 

in either the primate malaria parasite, Plasmodium knowlesi (5), 
 or the human
 

parasite, P. falciparu' 
 In addition, there is no evidence of the existence of
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a tricarboxylic acid cycle in P. knowlesi 
(5,6); and optimim growth in P.
 

falciparum occurs in vitro at 3% 0 , 
 with good growth resulting at 0.5% 02, but
 

not below (7). 
 This would suggest that in the malaria parasite oxygen does not
 

mediate to any significant degree an ATP generating electron transport system2
 

but instead participates in biosynthetic reactions through metalloprotein
 

oxidases (10-12). 
 These would presumably involve oxygen transferases and mixed
 

function oxidases. This is a significant departure from the metabolism of most
 

normal mammalian host cells.
 

The rationale of our approach in choosing compounds selective toxic 1o the
 

intracellular malaria parasite involves lipophilic chelators known to inhibit
 

fhese metalloprotein oxidase enzymes in cell-free systems (13-14). 
 An example
 

of this can be seen in the homolactate fermenter Schistosoma mansoni where small
 

amounts of 02 are required for tanning eggshells by oxidation of phenolic
 

compounds, not energy generation (1). We, however, felt that only those
 

compounds which exhibit: 
(1) lipid/H 20 partition coefficients favoring
 

penetration and 
(2) high binding constants enabling them to compete effectively
 

with naturally occurring intracellular chelators for metal ions, would be
 

logical candidates. 
The alkylthiocarbamates (e.g., diethyldithiocarbamate) and
 

the 8-hydroxyquinolines are chelators of this type (Fig. 1).
 

Scheibel et al. first demonstrated that growth of the human malaria
 

parasite is sensitive to inhibition by low doses of these agents (8,9,15-17) and
 

this antiparasitic activity depends directly on chelation. 
 In addition, the
 

alkylthiocarbamates (Fig. 1) and 8-hydroxyquinoline (oxine) (Fig. 1), 
 at
 

pharmacologic doses, inhibited the glycolysis of infected erythrocytes with
 

little effect on the same processes in normal red cells. Several of these
 

2Similar to what is observed in tumor cells 
[see Boxer & Devlin, Science
 

",134:1495-1501, 1961; Papaconstantinou & Colowick, J. Biol. Chem. 236:278-284;
 

285-288, 1961].
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agents are well tolerated by higher animals and are more plasmodiacidal than
 

quinine in vitro, even against chloroquine resistant Plasmodia. 
Recently, other
 

investigators reported the antiparasitic activity of a number of compounds
 

capable of chelating metal ions 
(see 17 for references); unfortunately, the only
 

instance where there is conclusive chemical evidence that this antimicrobial or
 

antiprotozoal activity is directly related to chelation is with the oxine-type
 

of chelators 
(9,18). Shapiro et al. (19) and Raventos-Suarez (20) postulated
 

that selected chelators may act by blocking iron or copper utilization by the
 

parasite thereby depriving the organism of an obligate nutritional requirement.
 

Apparently, the intra-erythrocytic P. falciparum takes up iron from transferrin
 

and, according to Pollack, it is this step that explains the sensitivity to
 

desferrioxamine (21,22). 
 Indeed, it has even been suggested that the rlinically
 

useful quinoline antimalarials (chloroquine, primaquine, etc.) 
also block iron
 

uptake in the parasitized cell (23).
 

Many years ago it was proposed that the antimicrobial action of agents such
 

as the dithiocarbamates and of 8-hydroxyquinoline was by formation of chelate
 

complexes or precipitates with various heavy metal ions indispensable to
 

microbial growth. 
Growth was thought to be prevented by inhibiting the
 

production of essential enzyme systems containing these elements. 
 Since then,
 

this hypothesized mode of action of these agents has been questioned (24,25).
 

Evidence against the precipitation theory is offered in the case of
 

copper:8-hydroxyquinoline which has been reported to be even more active as a
 

fungicide than oxine.
 

Early work by Albert (26) and later work by Scheibel (17,27) attribute a
 

different mechanism to both the thiocarbamate and oxine chelators. 
Albert (28)
 

maintains that toxic complexes are formed with metals of variable valency which
 

are present in the medium, a mechanism he feels applies to many of these agents
 

used in medicine. 
Oxine exerts its lethal effect by combining with these
 



metallic ions without which there is no antibacterial activity (28). 
 The
 

chelates formed from the reaction of oxine with these metals, e.g., iron or
 

copper, are themselves as toxic as, 
or even more strongly antimicrobial than,
 

oxine (Fig. 1) (29). 
 This was found to be the case in P. falciparum cultures by
 

Scheibel (15,27) with the 2:1 chelator:metal complex of
 

quinoline-2-thiol-N-oxide:zinc. 
It presumably penetrates the cell as a
 

lipophilic 2:1 complex with the metal and then reverts to a 1:1 oxine:metal
 

complex, a true toxic agent which initiates oxidative chain reactions
 

inactivating labile enzymes and killing the cell 
(Fig. 1) (30,31). The mode of
 

action of the dialkylthiocarbametes is closely comparable with that of oxine and
 

pyridine-2-thiol-N-oxide (32) except that the latter has a lower stability
 

constant and lower partition of coefficient than oxine but is more active
 

biologically being more able to liberate 1:1 complexes within the cell 
(30).
 

Scheibel extended this proposed mechanism to suggest that the free chelator
 

(liberated when the 2:1 complex reverts intracellularly to a 1:1 complex) may
 

also exert profound biological effects 
(27). In fact, there are significant
 

differences between the results found in the plasmodial system by Scheibel (27)
 

and that by others working on bacteria and fungi, suggesting "toxic complexes"
 

may not play the inhibitory role in malaria in vitro cultures that they have
 

been reported to do in bacteria and fungi. The addition of copper or iron salts
 

does not change the lethal effects of chelators against malaria; the increase in
 

the concentration of chelators does not result in "concentration quenching" of
 

growth curves; an increase in the lipophilicity of the chelating agent does not
 

result, in some 
instances, in a proportional increase in plasmodiacidal activity
 

(6-hydroxy-m-phenanthroline or oxine are less lipid soluble but more potent than
 

5,6-benzo-oxine, and pyzidine-2-thiol-N-oxide is less lipophilic but more potent
 

than quinoline-2-thiol-N-oxide) (9,15,16); (Fig. 1) and EDTA or cobalt aided to
 



growing cultures did not antagonize the activity of chelators as had been found
 

in other microbial systems (33). 
 However, in agreement with Albert's "toxic
 

complex theory" the rate of uptake by P. falciparum of 8-hydroxyquinoline:
 

radiolabeled 59Fe complexes within 6 hr under conditions similar to our original
 
growth inhibition studies 
(9), occurs at doses corresponding to, or less than,
 

those producing the lethal effects and metabolic changes (34). 
 In addition, the
 

presence of 8-hydroxyquinoline facilitates entry of the radiolabeled cations and
 

uninfected erythrocytcs take up less cation, especially in the absence of
 

chelator. Consequently, while this suggests the chelator plays an important
 

role in the increased activity on parasitized red cells, it remains to be seen
 

how much activity is due to the chelator itself (and how much is due to the
 

participation of iron), 
and what is ti-eir discrete site of action. Future
 

studies utilizing radiolabeied oxine are necessary to answer this, particularly
 

since recent evidence has been presented indicating that iron deficiency may not
 

be protective in clinical malaria 
(35), so iron may not be as important to the
 

parasite as once thought. 
 [This would be at variance wIth Shapiro's (19) and
 

Raventos-Saurez's (20) theory that the chelators act by depriving the parasite
 

of obligate nutritional requirements.] In addition, Peto and Thompson have
 

published data to indicate P. falciparum does not directly utilize serum iron
 

and the chelator, desferrioxamine, does not inhibit the parasite by interfering
 

with the supply of iron form the incubation medium (36). In fact other ions may
 

play as important a role as iron. 
 X-ray fluorometry studies show that while iron
 

level remains constant throughout the parasite cell cycle that of zinc increases
 

parallel with parasite maturation to reach a 2-3 fold higher level than that of
 

uninfected red cells. 
Most of this gain is associated with the parasite (37).
 

It is also known that there is an obligate calcium requirement for invasion ani
 

replication in P. falciparum and some clinically effective antimalarials
 

function in part by inhibiting this vital cellular mechanism (38) (to kc
 



discussed in part 2 of report). 
 In any event, iron and iron chelators appear to
 

play an important role in malaria metabolism and applications for chemotherapy,
 

especially since Pollack et al. 
(39) demonstrated that desferrioxamine (an iron
 

specific chelating agent) does suppress in vivo parasitemia in P.
 

falciparum-infected Aotus monkeys. 
 In vitro this effect is overcome by addition
 

of iron to the culture, suggesting it is this cation 
(iron) which is involved.
 

Peto and Thompson (36) suggest chelators, suc> as desferrioxamine, may
 

inhibit growth of P. falciparum by blocking the synthesis or action of
 

ribonucleotide reductase, an iron containing enzyme necessary for DNA synthesis.
 

Desferrioxamine is a potent inhibitor of DNA synthesis in vitro by human B and T
 

lymphocytes, and this was associated with diminution in ribonucleotide reductase
 

activity (40). In addition, a series of iron chelating agents (the
 

catecholamide siderophores), parabactin, vibriobactin, GABA and Compound II 
are
 

reported to have similar activity in L1210 leukemia cells (41-43) and their
 

activity reflects their lipophilicity, as seen with 8-hydroxyquinoline chelators
 

in bacteria, fungus, and Plasmodia. These compounds are reported to be
 

relatively non-toxic to higher animals 
(44,45). This may suggest a common
 

mechanism for a number of these agents, many of which are well tolerated by
 

higher animals, enabling one to mount a rational approach to the problem of
 

antimalarial chemotherapy.
 

In a preliminary study, these catecholamide siderophores were assessed by
 

us for in vitro antimalarial activity to determine if antitumor potent4.al might
 

be reflected in antimalarial activity. 
Activity was assessed, as described in
 

previous studies (16). The catecholamide siderophores were generously supplied
 

by Dr. Raymond Bergeron, University of Florida, Gainesville, FL. As can be seen
 

from Table 1, the most potent chelator appears to be vibriobactin and the least
 

potent is reduced compound II. Antimalarial potency in vitro appears to
 

http:potent4.al


correlate with lipophilicity, in general, and it is the same order of magnitude
 

(m.cromolar) as that required to inhibit L1210 leukemia cells.
 

Table I
 

Concentration (in uM) required to reduce in vitro growth oi
 

P. falciparum 50% (ED50) after exposure for 2 days and 3 days
 

Day 2 
 Day 3
 

Vibrobactin 
 4.5 
 1.8
 

Parabactin 
 2.6 
 2.3
 

Compound II 
 4.5 
 3.7
 

GABA 
 5.1 
 4.3
 

Reduced Compound II 28.5 
 25.0
 

It has been suggested these chelators can exist for sometime in a free
 

state in the media during which time they diffuse into cells at a rate associated
 

with their favorable partition coefficients (43). Vibriobactin is more lipid
 

soluble than parabactin as indicated by an octanol-water partition constant of
 

65 vs 35 (41). 
 Parabactin appears equal to GABA and in general the antileukemic
 

and antiherpetic activity of the sperr.idine catecholamide (ferric) iron
 

chelators is prevented by exogenous iron 
(43) similar to what is seen in the
 

malaria system with the hydroxami acid chelators, desferrioxamine3 , and the
 

poor penetration seen with either rhodotorulic acid or mycobactin P complexed
 

with iron (34). Parabactin initiates inhibition earlier than compound II also
 

reflecting greater lipophilicity (42). 
 This would suggest in vitro antimalarial
 

activity of drugs in Table I largely reflects their lipophilicity, which in
 

general is similar to the oxines in our earlier malaria studies 
(9,15,16,34).
 

3Desferrioxamine not saturated with iron is taKen up by red cells infected by P.
 

falciparum (Fritsch & Jung. Z. Parasitenkd 72:709-713, 1986.
 



There are so many redox and biosynthetic enzymes in which a metal serves as
 
the prosthetic group that it is impossible to predict with absolute certainty
 
which enzyme is being inhibited by these chelators. It appears, however, (at
 
least from what is known about their mechanism in tumor cells, that the activity
 

of these agents is associated with the inhibition of the rate limiting iron
 
dependent enzyme ribonucleotide reductase, an obligate step in DNA synthesis.
 
This iron containing enzyme is activated by oxygen and catalyzes the conversion
 

of ribonucleotides to deoxyribonucleotides. 
 This is not, however, an isolated
 

event. 
 A number of iron chelators such as desferrioxamine and related
 
hydroxamates, alpha-picclinic acid, certain thiosemicarbazones as well as other
 
types of inhibitors, such as deoxynucleosides have been shown to inhibit tumor
 
growth by interfering with ribonucleotide reductase activity (for complete list
 

of refs see 42). 
 The mode of action of the anticancer agent, hydroxyurea, is
 
believed to inhibit cell growth through inhibition of this enzyme (42,43). 
 What
 
makes the future consideration of these siderophore compounds so compelling is
 
the combination of lipophilicity and very high affinity for iron plus low host
 
toxicity. 
They could extract iron from critical binding sites within the cell
 

not accessible to other agents.
 

Therefore, complete resolution of the mechanism of these chelators in
 

malaria awaits the measurement of uptake and the metabolic fate of the
 

radiolabled chelator itself. 
In addition, the sensitivity of ribonucleotide
 

reductase to these agents must be measured in a cell-free system. 
With few
 
mechanistic approaches to explore in the rational development of new
 
antimalarial drugs, it has been said by Desjardins and Trenholm in their recent
 
review of Antimalaria Chemot'.erapy: 
"the observation of such a potentially novel
 

mechanism of antimalarial activity (metal chelators) warrants further
 

investigation" (46).
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2. 	•Calcium-calmodulin antagonists
 

Thommen-Scott, (1) and Nickell, Scheibel and Cole, (2) independently
 

reported on the antimalarial activity of cyclosporin A (CsA). 
 The 	later report
 

resulted form an attempt by Bueding to use this immunosuppressive agent to
 

ameliorate the formation of granulomas around Schistosoma mansoni eggs in the
 

livers of infected mice (3). 
 The unexpected in vivo antischistosomal effects of
 

CsA are a consequence of hemoglobinase inhibition in the parasite (4,5).
 

Another antimalarial, Quinghaosu, (a natural product used by the Chinese
 

since antiquity) is structurally distinct from cyclosporin but also produces
 

worm 	reductions approaching 80% in S. mansoni and even greater in S. japonicum
 

infections in vivo (6). In addition, it appears to also inhibit the
 

hemoglobinase of this helminth (Bueding, personal communication).
 

Paradoxically, however, Scheibel reported that neither CsA nor Quinghaosu
 

inhibit the hemoglobinases of the human malaria parasite (7) as assayed at the 3
 

pH optima using either the method of Bueding et al. (4), or that of Gyang et
 

al. 	(8), (also see ref. 2). It would, therefore, appear that the mechanism of
 

antischistosomal activity is different than the antiplasmodial activity of these
 

drugs or that other mechanisms are also involved in antischistosomal activity,
 

or that agents such as these inhibit another vital cellular process yet to be
 

elucidated in the malaria parasite. 
It would also appear antiparasitic activity
 

of CsA is not the result of immunosuppression but is instead a direct effect of
 

the drug on the parasite (2,7).
 

Calcium (Ca++ ) has been shown to be absolutely indispensable for the normal
 

growth of P. falciparum cultures, particularly during the maturation phase,
 

20-26 hours after invasion, and also either in the process of reinvasion or
 

final maturation of a fully infective merozoite (9). 
 Malarial parasites
 

actively accumulate Ca within themselves to levels 30 times those found in
 



uninfected erythrocytes. 
The rate of influx is 7 times that which occurs in
 

normal red cells (10,11,12). This enhancement of calcium uptake was more
 

pronounced with increasing parasitemeia and maturity of parasites (13), 
and is
 

accomplished in cells almost impermeable to this ion and against the active
 

extrusion gradient by Ca++ATPase 
(14). The regulation of calcium is also
 

important to another protozoan parasite, the African trypanosome. For example,
 

calcium influx triggers the surface coat release in antigenic variation and
 

synergizes the action of some trypanocidal drugs (15). Calmodulin, a low
 

molecular weight intracellular calcium binding protein present in eukaryotic
 

cells, has been identified in three species of African trypanosomes, Trypanosoma
 

brucei rhodesiense, T. congolense and T. vivax 
(16) and trypanosome calmodulin
 

is physically and functionally distinct from that of host tissues (17).
 

Calmodulin regulates a number general cellular responses such as contraction,
 

transport, motility, proliferation and metabolic control, intermediary and
 

cyclic nucleotide metabolism in particular (18). 
 The phenothiazines, known
 

calmodulin antagonists (19), 
markedly inhibit the African trypanosomes (17,20),
 

and the mechanism of drug action is reported to be mediated through specific
 

interaction of the phenothiazines with the pellicular, but not flagellar
 

microtubules (20). Microtubular polymerization is regulated by calmodulin (18).
 

Consequently, it would appear calcium uptake may play some role in the growth
 

and metabolism of the malarial parasite and an understanding of this process may
 

have chemotherapeutic implications. 
 In fact, experimental evidence was
 

published over 40 years ago to suggest quinine inhibits the growth and
 

reproduction of the malaria parasite by reducing the amount of calcium available
 

in the red cell (21). In addition, the malaria parasite has been shown by us to
 

be very sensitive to inhibition by chelators which are capable of interacting
 

with extracellular cations (22).
 



Since the role played by calcium in the malaria parasite is not understood,
 

studies were therefore undertaken by us to determine the effects exerted by
 

agents inhibitory to calcium-mediated regulatory processes such as calmodulin
 

antagonists or calcium antagonists which inhibit extracellular calcium influx
 

(see enclosed PNAS manuscript). We found by radioimmunoassay that free parasites
 

contain calmodulin. Schizont-infected ery
4-hrocytes had calmodulin levels of
 

23.3±2.7 ng/106 cells compared to normals (11.2±1.5 ng/106 cells). 
 Calmodulin
 

levels were proportional to parasite maturity. 
Immuno-electronmicroscopy
 

identified calmodulin diffusely within the cytoplasm of mature parasites, and at
 

the apical end of merozoites, within the ductule of rhoptries, which may explain
 

the calcium requirement for invasion. 
This process is quite sensitive to drug
 

inhibition (23). Cyclosporin A (CsA), 
a drug which we demonstrated possessed in
 

vitro and in vivo antimalarial activity (2,7,24) was reported to bind and
 

inhibit calmodulin like the clinically useful antimalarials (i.e. quinine,
 

mepacrine, chloroquine) .
 We also found by electron microscopic autoradiography
 

CsA concentrated in the food vacuole as does chloroquine and mefloquine and
 

distributed within the cytoplasm of mature parasites. 
The binding of dansylated
 

CsA to schizont-infected erythrocytes was higher than to normal erythrocytes as
 

analyzed by flow cytometry. Kinetic analysis revealed that binding was
 

saturable for normal and infected erythrocytes and possibly free parasites.
 

Competition for binding existed between dansylated CsA and native CsA as well as
 

the calmodulin inhibitor, W-7, and the classic antimalarial chloroquine. 
The in
 

ICsA was reported to be used successfully in treating human cerebral malaria
 

patients in Viet Nam by Drs. C.R. Jerusalem & W. Eling (Nijmegen, The
 

Netherlands). 
 The report was given at the meeting of "Antiparasitic Effects of
 

Cyclosporin A and Analogues" SANDOZ Ltd. Basel, Switzerland, 15 Feb. 1985.
 



vitro growth of P. falciparum was sensitive to calmodulin antagonists and in
 
large part inhibition of the parasite was proportional to known anti calmodulin
 
potency, suggesting there is a possible role for calmodulin in parasite cell
 
functions and chemotherapy. 
Antagonism existed between combinations of these
 
drugs in multi-drug resistant strains of P. falciparm suggesting possible
 
competition for the 
same binding site and implicating calmodulin reactions in
 
drug resistance. 
This would agree with our earlier observations that unlike
 
many other cells, parasite cytochrome P450 does not explain drug resistance 
(25)
 
in Plasmodia. 
 In addition, the malaria parasite was also susceptible to calcium
 
channel blockers. 
 It would appear therefore that sequential processes (i.e.
 
calcium flux into and out of the cell, calmodulin itself, secondary
 
calcium-dependent enzymes) in the parasite are all viable targets of
 
chemotherapeutic interdiction and an understanding of the relationship of these
 
processes would aid in the proper choice of drugs and synergistic drug pairs to
 
treat drug resistant p. falciparum. 
 In addition anticalmodulin activity appears
 
to partially explain the actions of the antimalarial drugs, quinine, mepacrine,
 
and chloroquine as well as the well known immunomodulating effect of chloroquine
 

in-collagen vascular diseases 
(26).
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