
 ICMS assessment report

w
w

w
.o

m
e

ga
-t

ru
st

.r
o

Rule of Law Institutional Strenghtening Program (ROLISP)

September 30, 2015

ICMS assessment report

September 30, 2015

Page 2 out of 50

TABLE OF CONTENT

1. INTRODUCTION .. 3

1.1 General information .. 3

1.2 Objective .. 3

1.3 Scope ... 3

1.4 Disclaimer .. 3

2. EXECUTIVE SUMMARY ... 5

3. ICMS ANALYSIS .. 6

4. ANALYSIS RESULTS .. 8

4.1 Database assessment ... 8

4.3 Software architecture assessment ... 20

4.4 Performance assessment.. 33

4.5 ICMS IT environment analysis.. 47

ICMS assessment report

September 30, 2015

Page 3 out of 50

1. INTRODUCTION

1.1 General information

This document has been developed following the analysis of the Integrated Case Management System

(ICMS) performed by Omega Trust between the 26th of August and 30th of September 2015. This

analysis represents the phase 1 of the "Development of a Concept for a New Integrated Case

Management System for the Moldovan Courts" project.

This analysis was conducted according to the Contract no. AID-1117-C-12-00002, purchase order #69,

established between Omega Trust as provider and Checchi and Company Consulting as beneficiary.

In this report, we described the tests which were conducted and the techniques which were used in order

to achieve the objective of this phase together with the results obtained following these tests.

This report details the deficiencies which were identified during our analysis and provides proper

recommendations for solving these deficiencies.

This report is addressed to the Checchi and Company Consulting, Inc. Management and contains

confidential information.

1.2 Objective

The objective of this phase was to determine the extent to which the current ICMS solution maintains

data and system security and provides relevant and reliable information, achieves organizational goals

and is able to accommodate new functionalities by performing an independent and objective analysis and

to identify areas which needs improvement from the technical point of view to be taken in consideration in

implementing the new ICMS system. In this regard, our assessment process was focused on analyzing

the current ICMS from technical point of view and gathering information regarding its capacity,

performance and limitation to grow and expand.

1.3 Scope

The scope of our analysis included the IT hardware and software infrastructure specific for the ICMS

system.

1.4 Disclaimer

The current status of this report is final and should be considered accordingly. The entire assessment has

been performed between between 26th of August and 30th of September 2015.

The results presented in this report represent just a "picture" of the IT hardware and software supporting

infrastructure for the ICMS system at the date of the report. If the technical aspects analyzed in this

project will be modified at a later date, some results may be invalidated.

ICMS assessment report

September 30, 2015

Page 4 out of 50

This report has been developed based on the information obtained from the tests which we have

conducted and the information provided by the representatives of Checchi and Company Consulting, Inc,

Center of Special Telecommunications (CTS) and Courts. Therefore, if any information which we were

provided with was wrong then some of the results reflected in this report may be wrong, as well.

ICMS assessment report

September 30, 2015

Page 5 out of 50

2. EXECUTIVE SUMMARY

Following the technical assessment which we have performed on the existing ICMS system we noted

that, generally, this system in some extent is able to meet the current user requirements but the

technologies and the principles used to develop it are quite outdated and cannot provide anymore the

best performance in line with the actual software development trends. Therefore, the current solution is

quite difficult to be maintained and the implementation of further enhancements is even more difficult.

In regard to the application's database, following our tests we noted that the database supports a correct

running of the application but, in terms of performance, there are some issues which might affect the

speed of the system especially during the high load periods. These issues refers mostly to the database

indexes which we noted that they have a high fragmentation degree. Considering that a database index

should improve the speed of data retrieval operation, we can say that due to the fragmentation the

objective of these indexes is not covered and finally, the performance of the system is affected.

In terms of software architecture assessment, we noted that the system is developed using a reliable

technological framework. However, we found lacks of uniformity when it comes to the version of

framework used (currently, there are two major versions in production, released at a 3 years’ time

difference , 3.5 in 2007, and 4.0 in 2010). This fact increases the maintainability efforts, as well as the

risks for any compatibility issues. Also we found other issues in terms of development concepts (such as:

combination of several design patterns, use of ASP.NET Web Forms, complex structure of layers, high

code source complexity degree) which lead to a common conclusion: the ICMS solution needs to be

redesigned using modern principles and tehnologies.

Following the tests performed to assess the performance of the system, we identified some bottlenecks

which might affect in certain situations the speed of the system such as:

 Bottlenecks at the traction log level

 There is no caching mechanism in place and data is read every time directly from database and this

creates a performance bottleneck

 The store procedures are complex and can generate excessive load on the database server

 There are no load balancers in place to receive the HTTP requests and to route them to the

webservers with the smallest workload

In terms of infrastructure, we noted that the application and the database are installed on separated

virtual machines, one for each court. In this regard, we consider that having a single database and

application machine, with state-of-the-art storage options, that will support the whole ICSM application

will increase the peformance of the system.

Please find all the results and the details for the issues mentioned above in the chapter 4 of this report

(ICMS analysis).

ICMS assessment report

September 30, 2015

Page 6 out of 50

3. ICMS ANALYSIS

As part of our work, we have performed a technical analysis of the current IT infrastructure (both software

and hardware) of the ICMS system to assess the performance and the capacity of this system to support

the activity in the courts and to achieve the specific business objectives and, finally, to identify the areas

which need improvement from technical point of view and should be taken in consideration in

implementing the new ICMS system.

In this regard, in order to obtain the best results, we have followed an approach based on several steps

including specific technical tests, as detailed below:

 Step 1 - Database assessment

During this step, we conducted an analysis of the quality and integrity of the information processed
and stored, including security aspects. By performing specific performance tests our goal was to
identify whether the database design and structure provides the best possible design for the
organizational needs and its corresponding web application to ensure effective and efficient
processing of information.

In this respect specific tests were performed including:

o Analyzing the database schema

o Analyzing the entity-relationship diagram

o Analyzing the database index

o Performing the database performance test

 Step 2 - Software architecture assessment

As part of this step, we have performed an analysis of the current logical and physical architecture of

the ICMS system, in order to identify any deficiencies which may represent performance issues or

limitations that prevent further enhancements of the system with new functionalities or may affect

the system's interconnectivity with other IT systems which belong to other relevant institutions.

Therefore, the software architecture assessment step included software, hardware and
telecommunication infrastructure aspects and was performed taking in consideration the following
main aspects:

o Analyzing the application framework

o Analyzing the object interaction

o Analyzing the ICMS components

o Analyzing the services orientation assessment

o Analyzing the infrastructure and system scalability review

ICMS assessment report

September 30, 2015

Page 7 out of 50

 Step 3 - Performance assessment

During this step, our goal was to assess and determine whether the current ICMS solution is
optimized to support current business processes in terms of performance. In this regard, the
following activities were conducted:

o Bottlenecks identification

o Input/output analysis

o Query optimization

o Assessing the web server performance

o Analyzing the hardware description

o Analyzing the performance tests outputs

We have identified also some deficiencies adjacent to the ICMS system (such as: source code writing

issues, related IT management issues, hardcoded parameters) which were described in the Section 4 of

this report.

Please find the results obtained during this analysis and our improvement suggestions in the next chapter

of this report.

ICMS assessment report

September 30, 2015

Page 8 out of 50

4. ANALYSIS RESULTS

Please find below a detailed description about the tests performed and the obtained results. Please note

that, for an easy retrieval of the information, the identified issues and recommendations were highlighted

in separate boxes as diagnostics.

4.1 Database assessment

In order to analyze the database component of the current ICMS solution, there were two configurations

used, one live instance, accessed in read-only mode (db_botanica and the central database), and one

test instance, accessed in full-access mode. But, please do note that any operation done on the live

instance left no permanent trace, and it didn’t interfere in any way with any operational data. Simply put,

only log data was analyzed and accessed on the live system, in order to get a real results when doing

benchmarks.

Last but not least, the following tools were used for doing database assessments: Microsoft SQL Server

Management Studio, Toad SQL Suite, RedGate SQL Tool belt, RedGate SQL Index Manager, as well as

HammerDb. None of these interfere in any way with any live databases of the application.

Diagnostic:

The database server itself runs Microsoft SQL Server 2008 R2 x64 Enterprise Edition, released

in 2010. But apart from that there are no patches installed, nor any Service Packs. Microsoft

states and recommends the good practice of keeping the system up to date, and apparently

this maintenance step was not done properly.

ICMS assessment report

September 30, 2015

Page 9 out of 50

4.1.1 Analyzing the databases schema

The ICMS main database is represented by several objects, of the following types and quantity:

o Tables: 134

o Views: 1

o SQL Stored Procedures: 606

o User-Defined Functions: 68

o Schemas: 14, including NT_AUTHORITY\Network Service and System.

The database itself can be considered a medium-to-large one, having a total size of about 150 GB.

This is a short summary of the biggest tables in terms of number of records, or space used either by data

or by indexes.

Table Name # Records Reserved
(KB)

Data (KB) Indexes
(KB)

Unused
(KB)

Cases.Files 341,281 118,642,6
96

118,618,0
64

20,056 4,576

Cases.ReportComplaints 1,015 13,389,41
6

13,388,48
0

184 752

Cases.Rulings 65,169 7,481,768 7,478,376 360 3,032

Cases.Decisions 34,646 5,479,120 5,465,104 11,056 2,960

Cases.Minutes 64,906 5,264,224 5,261,640 280 2,304

Cases.Summons 98,311 3,882,344 3,850,832 21,880 9,632

Schedules.Alerts 2,057,062 1,121,848 1,052,440 62,944 6,464

Schedules.AlertUsers 2,143,949 507,512 141,568 324,800 41,144

Cases.Actions 985,142 289,936 222,240 66,776 920

Cases.Cases 68,079 143,248 73,216 66,424 3,608

Cases.Statuses 337,063 103,024 43,072 54,832 5,120

Cases.Hearings 119,486 97,344 42,240 52,608 2,496

Cases.Persons 153,612 74,768 40,768 32,760 1,240

Cases.Parties 187,581 57,392 20,960 34,768 1,664

Cases.HearingsParties 369,158 53,648 16,776 26,784 10,088

Cases.CaseJudgeAssignment
s

69,025 41,440 19,632 13,840 7,968

Complaints.SystemLoggings 39,480 19,208 18,648 88 472

Diagnostic:

This total size, combined with indexes fragmentation (as you can see below) raise

performance concerns when using commodity hardware.

ICMS assessment report

September 30, 2015

Page 10 out of 50

Cases.CaseCategories 78,916 17,904 6,280 8,824 2,800

Complaints.Rulings 74 11,216 11,160 16 40

Complaints.ReportComplain
tAction

27,796 8,072 6,768 904 400

Classifiers.Templates 235 7,656 7,072 40 544

Complaints.ReportComplain
t

5,267 4,200 3,688 408 104

Complaints.ReportComplain
tParties

14,308 3,712 2,840 600 272

Cases.SummonParties 26,464 3,584 1,176 2,096 312

Complaints.ReportComplain
tStates

32,529 3,544 3,120 88 336

Cases.HearingsResults 3,447 3,136 896 72 2,168

Translations.Texts 21,173 3,040 2,872 56 112

Translations.Translations 10,866 2,088 1,040 928 120

Complaints.Files 4 1,888 1,872 8 8

Cases.Recusals 358 1,480 760 48 672

Securities.UserProfiles 4,059 1,472 648 72 752

Courts.Workers 1,108 1,352 440 424 488

Classifiers.HelpTopics 105 1,264 1,216 16 32

Classifiers.Parameters 1,666 1,256 400 440 416

Cases.Appeals 1,243 1,160 320 320 520

Complaints.ReportComplain
tJudgeAssignments

5,333 1,152 832 72 248

Cases.ReportComplaintStat
es

6,037 848 360 336 152

Cases.AppealsProcess 1,335 848 512 40 296

Classifiers.CaseTypes 1,102 824 496 136 192

Complaints.ReportComplain
tCategories

8,924 776 456 72 248

dbo.ActionsAdministrative 1,134 648 392 80 176

Securities.RolePermissions 1,885 568 144 296 128

Complaints.ReportComplain
tFiles

8,068 568 392 56 120

dbo.PartyFisas 750 560 336 120 104

Cases.ReportComplaintCase
Types

1,830 504 128 256 120

Cases.CaseJudges 2,787 456 408 16 32

 Diagnostic:

By looking at this information we realize the need for partioning of data, at least for the two

biggest tables – Schedules.Alerts and Schedules.AlertsUsers.

ICMS assessment report

September 30, 2015

Page 11 out of 50

Not shown in the previous table are a series of database tables, over 10, that do not have any records,

and represent only legacy design, adding to the overall technical debt.

Moving on, when analyzing the database schema, one can easily see the naming conventions. Although

they are pretty consistent (English, using Pascal case), but with few exceptions, like Reports.rptCivil_1 for

example. Even so, overall, just by looking at its name you have a hint about the data type stored there.

But everything changes when noticing the name of the columns. Almost all of them are named by adding

the name of the table as a prefix, which burdens their name, and makes it even difficult to write SQL

scripts.

The advantages of using globally unique identifiers are pretty obvious, but overall they seem to be more

than normally needed – in some cases, simple integers would suffice, even more considering they are

indexed better. But when it comes to nvarchar of maximum size, their choice is purely subjective, and

directly influences the overall size and query performance.

None-of-the-less, when looking at the user defined functions we notice that plenty of them use XML entity

data. And from the very beginning, one can assure you that it only adds another processing step in

between, thus affecting performance. Data is already stored in a normalized relational structure, and by

putting them into XML and back gives a false sense of ease of manipulation. On this topic one can notice

the interest in XML support in recent developments of SQL Server. If in 2008 it was a hit, now, in the

latest version – 2014, even if the features are still there, they are not as popular as before.

Diagnostic:

Digging even deeper, at the data type level, we notice a heavy usage of GUIDs and of LOBs

(especially nvarchar of maximum size).

ICMS assessment report

September 30, 2015

Page 12 out of 50

4.1.2 Analyzing the entity-relationship diagram

The database schema can be represented by a diagram, but reading it would prove painful, due to the

big number of tables. But understanding of the concepts can be gained by following the schema names:

Cases, Classifiers, Complaints, Courts, Reports, Schedules, Securities, Surveys and Translations.

Considering database normalization, the database presents characteristics of the third normal form, as

well as the second one, in cases where some attributes of certain tables are not determined only by the

candidate keys of that table but by other non-prime attributes. And this design flaw spreads shoulder to

shoulder with the naming convention, when the name of the table is used as a prefix for the name of the

columns. But in the end, this is normalization option is something of lower impact, and it may be

considered a developer’s preference.

Diagnostic:

As for the relationship between entities, index-based foreign keys are used, with GUID

columns. A quick and dirty optimization technique could be to replace GUIDs with integers

where possible.

ICMS assessment report

September 30, 2015

Page 13 out of 50

4.1.3 Analyzing the database index

The database indexes analysis was done using RedGate SQL Index Manager that offers comprehensive

reports. The analysis was done on a fresh copy of a production database, installed in a testing

environment. After analyzing the 217 indexes of the databases, there are the results it found with a high

and medium importance level:

Index Table Size
(pages)

Fragmentati
on %

PK__SystemLo__E0EFB9F75C6
68DE9

Complaints.SystemLoggings 529 99.24

ReportComplaintParties_pk Complaints.ReportComplaintParties 355 98.87

IX_CaseJudgeAssignments_Ju
dge

Cases.CaseJudgeAssignments 514 98.64

IX_AlertUsers_UserID Schedules.AlertUsers 11234 98.44

IX_HearingsParties_party Cases.HearingsParties 1853 97.9

ind_Name Cases.Persons 1810 95.64

UQ_Translations Translations.Translations 109 95.41

IX_User Schedules.AlertUsers 11024 93.72

ReportComplaintJudgeAssign
ments_pk

Complaints.ReportComplaintJudgeAs
signments

104 93.27

IX_SummonParties_Party Cases.SummonParties 135 90.37

IX_CaseJudgeAssignments_Ca
se

Cases.CaseJudgeAssignments 544 87.13

IX_Hearing Cases.Summons 746 84.85

IX_CaseJudgeAssignments_Da
tes

Cases.CaseJudgeAssignments 544 84.38

PK_HearingsResults Cases.HearingsResults 112 83.04

ind_Persons Cases.Parties 1309 82.43

IX_Decisions_Cases Cases.Decisions 235 81.7

pkc_CaseJudgeAssignments Cases.CaseJudgeAssignments 1723 81.31

idx_CaseType Cases.CaseCategories 430 80

IX_Hearings_Case Cases.Hearings 776 78.09

Cases_idx3 Cases.Cases 820 76.71

IX_Files_EntityId Cases.Files 2324 73.75

IX_Dates Cases.Summons 819 73.14

pkc_Cases Cases.Cases 9117 72.02

IX_Party Cases.Summons 687 69.72

Hearings_idx4_dev Cases.Hearings 1283 63.91

Hearings_idx4 Cases.Hearings 1213 63.64

Decisions_idx Cases.Decisions 427 63.23

Actions_idx Cases.Actions 4912 58.39

IX_Deleted Cases.Summons 305 58.03

IX_Decisions_Hearing Cases.Decisions 219 57.53

ICMS assessment report

September 30, 2015

Page 14 out of 50

ind_Judge Cases.Cases 443 57.11

ind_Cases Cases.Parties 1101 53.41

Persons_idx Cases.Persons 873 50.74

IX_Hearings_Date Cases.Hearings 645 49.77

Statuses_idx3 Cases.Statuses 3641 46.28

IX_Hearings_Room Cases.Hearings 625 44.48

pkc_Hearings Cases.Hearings 4899 43.56

ind_PartyType Cases.Parties 933 38.05

ind_CaseIndex Cases.Cases 365 35.89

ReportComplaint_pk Complaints.ReportComplaint 457 33.92

pkc_Decisions Cases.Decisions 1666 32.17

Hearings_idx Cases.Hearings 455 31.21

IX_HearingsParties_Hearing Cases.HearingsParties 1358 28.94

ind_TypeOfExamination Cases.Cases 347 28.24

Hearings_idx3 Cases.Hearings 986 24.85

IX_CaseCreatedOn Cases.Cases 258 24.81

ind_TypeOfCase Cases.Cases 315 24.44

pkc_Rulings Cases.Rulings 3987 23.07

Statuses_idx Cases.Statuses 1254 21.13

ind_Registered Cases.Cases 272 20.59

Persons_idx_dev Cases.Persons 1218 18.64

idx_Case Cases.CaseCategories 313 17.25

IX_Decisions_Dates Cases.Decisions 207 16.43

IX_Cases_IsDeleted Cases.Cases 178 14.04

IX_Hearings_IsDeleted Cases.Hearings 308 12.01

Statuses_idx2 Cases.Statuses 1738 11.22

A quick impression of how bad these results are can be obtained by performing synthetic benchmarks

(same input parameters, operation repeated multiple times), before rebuilding indexes as well as after

this, a plus as high as 42% of performance can be obtained.

Diagnostic:

The results speak for themselves. Traditionally, any index with a fragmentation level over 30%

should be rebuilt with top level priority, but when dealing with big databases the

recommended threshold is as low as 10%. Even so, one can see that indexes of tables with a

considerable amount of data, such as Cases.CaseJudgeAssignments or Cases.Persons have

a fragmentation level of over 90%. Basically, for one in ten operations, the index does not

count, just like not being there at all.

ICMS assessment report

September 30, 2015

Page 15 out of 50

Stored Procedure No of
repetitions

Time
before fix
(seconds)

Time
after fix
(seconds)

Performan
ce gain (%)

[Complaints].[Reports_Transfer] 1 3.01 2.64 14.21

[Complaints].[Reports_Transfer] 1000 4.88 4.31 13.23

[Cases].[Case_Create] 1 0.12 0.11 9.49

[Cases].[Case_Create] 1000 0.34 0.31 8.01

[Complaints].[sp_AssignJudgeRando
m]

1 1.45 1.2 21.32

[Complaints].[sp_AssignJudgeRando
m]

1000 1.43 1.13 26.34

[Complaints].[Reports_MergeRepor
t]

1 37.02 26.06 42.03

[Complaints].[Reports_MergeRepor
t]

1000 41.33 29.12 41.92

By extrapolating this information and taking into consideration the size of several indexes, like the ones

on table Schedules.AlertUsers, we understand that the performance of certain queries is heavily affected.

ICMS assessment report

September 30, 2015

Page 16 out of 50

4.1.4 Performing the database performance test

Designing and implementing a database benchmark is a significant challenge. Many performance tests

and tools experience difficulties in comparing system performance especially in the area of scalability, the

ability of a test conducted on a certain system and schema size to be comparable with a test on a larger

scale system. When system vendors wish to publish benchmark information about the database

performance they have long had to access to such sophisticated test specifications to do so.

TPC is the industry body most widely recognized for defining benchmarks in the database industry

recognized by all of the leading database vendors. TPC-C is the benchmark published by TPC for Online

Transaction Processing systems, for both load and stress tests.

The HammerDb workload is based on and intended to be as close as possible to the example published

in the TPC-C specifications. As such, the implementation is intentionally non-optimized or biased towards

any particular database implementation or system hardware. The crucial element is to reiterate the point

made in the previous section that the HammerDb workloads are designed to be reliable, scalable, and

tested to produce accurate and repeatable and consistent results. In other words, HammerDb is designed

to measure relative as opposed to absolute database performance between systems. What this means is

that if one runs a test against one particular configuration of hardware and software and re-run the same

test against exactly the same configuration, the same results within the bounds of the random selection

transactions will be obtained. This bounds are typically within 1%, therefore the accuracy of results is

guaranteed. This fact is of great importance, given the fact that the ICMS system relies on several

databases, installed on several servers and running benchmarks on all possible configurations is time-

expensive.

This being said a stress tests was configured for HammerDb for two virtual users. A simulated workload

was simulated, with the same load factor for database data as the real one. Finally, the transactions-per-

minute factor of the database was pretty low, and even most important it varies quite a lot in the range of

25.000 TPM up to 65.000 TPM.

ICMS assessment report

September 30, 2015

Page 17 out of 50

To simplify all this data, if 65.000 TPM is the performance of the overall system, we can see drops of

performance every couple of seconds. In a real-world usage scenario, this proves very dangerous, and it

could cause even abnormal behavior or data-loss. It is worth noticing that while running this benchmark,

the CPU utilization raised up to 75% on each core, but the memory consumption stayed constant at

about 3GB.

Moving on to stress tests, a simple runner was used, that was given the exact SQL script on four threads,

each thread running four concurrent queries. For giving better insight on the salability capabilities of the

system, a simple search query on the people list was used, something that is easily encountered in a

real-world scenario:

SELECT * FROM [test_botanica].[Cases].[Persons] WHERE

[test_botanica].[Cases].[Persons].[PersonLastName] = 'Buzdugan' ORDER BY

[test_botanica].[Cases].[Persons].[PersonFirstName]

Diagnostic:

The results showed an average rate of one (1) error at each 200.000 completed queries. Even if

it’s a small number, such a simple query should have been executed flawlessly.

If we try to push the upper limits to 6 threads, each running up to 10 concurrent queries, thus

to a total of 60 threads, the error rate raises to one (1) error at each 100.000 completed queries.

One can just imagine that complex queries or stored procedure can prove even more error-

prone.

ICMS assessment report

September 30, 2015

Page 18 out of 50

ICMS assessment report

September 30, 2015

Page 19 out of 50

4.1.5 Analyzing security issues

The passwords for the ICMS user accounts are clearly visible in the database.

Therefore, there is a high risk that unauthorized people (such as database administrators from CTS) to

access confidential information of ICMS users or to use their accounts to access the system. Also, in case of

an attack on the system, without a proper encryption of passwords, the potential attackers can easily get the

passwords and gain access to accounts and to confidential information.

We recommend to implement in the SQL Server database a strong encryption algorithm for the users'

authentication passwords in the ICMS sytem which must not allow their reconstruction.

Diagnostic:

The passwords for the ICMS user accounts are clearly visible in the database. We recommend to

implement in the SQL Server database a strong encryption algorithm for the users'

authentication passwords in the ICMS sytem which must not allow their reconstruction.

ICMS assessment report

September 30, 2015

Page 20 out of 50

4.3 Software architecture assessment

4.2.1 Analyzing the application framework

The application framework consists actually of several software frameworks, most of them from Microsoft,

as well as other open source products. The choice of having them is heavily influenced by the role of the

component they are used in, and this decision affects the overall architectural pattern and system

performance.

The first software framework used, which supports all of the others, is Microsoft .NET Framework,

versions 3.5 and 4.0 (plus minor upgrades and service-packs). This choice is a particular great one, this

framework has a very good reputation into enterprise environments as being robust, secure, and offering

rapid application development as well as modern capabilities. Critics may argue that it only runs on

Microsoft Windows machines as opposed to other open source frameworks that are platform independent

- yet again, this is not a problem if such server environments are accepted. Windows server

environments prove more stable and easier to manage than Linux ones. Last but not least, one may

argue that this framework is a little “heavy”, because it comes with a huge library (the core .NET

Framework itself), and not only the software development kit. But, for the purposes of this application,

rather than building everything from scratch, using a framework that offers many building blocks proves

the right choice.

4.2.1.1 Web Application

For the web application itself, the main framework used in ICMS and MMP applications is ASP.NET Web

Forms from Microsoft, version 3.5 (launched in 2007). While the choice of the base underlying framework

is a great one, the adoption of the Web Forms version of ASP.NET is rather poor. Overall, the framework

itself works well, but compared to a modern Web Application framework (like the MVC version of

ASP.NET), some issues are clear.

For the MRS application ASP.NET MVC was used, but only version 3, that relies for the views on a

combination of ASPX and Razor view engines that proves unstable. But the MRS application itself is

rather small compared to the rest (ICMS plus MMP), therefore, further-on when specifying the ICMS

application, we are talking primarily about ICMS or MMP.

Diagnostic:

The chosen application framework is appropriate. Still, one major problem is exposed in the

current version of the ICMS application – the lack of uniformity when it comes to the version of

.NET Framework used. As stated previously, there are two major versions in production,

released at a 3 years’ time difference (3.5 in 2007, and 4.0 in 2010). Even more, both of them

are out of date considering the current version – 4.6, but still supported by Microsoft’s official

channels. Finally, as well as not using the latest upgrades and patches of the newer versions,

the usage of two different versions dramatically increases the maintainability efforts, as well

as the risks for any compatibility issues.

ICMS assessment report

September 30, 2015

Page 21 out of 50

Web Forms provide an attractive platform for most developers, especially those coming from desktop

development. View State, Post back tracking, event routing, and single-page behavior are all based

around a forms-based interface that resembles the Windows Forms framework. Criticism with the Web

Forms model comes mostly from hard core developers who consider this framework as a leaky

abstraction layer that doesn’t truly capture the Internet and web paradigm. Web Forms essentially try to

emulate a desktop implementation that hides the stateless nature of the HTTP protocol. Web Forms

provide a high level of abstraction of the core Web implementation by using a sophisticated control and

event-based engine that handles access, routing, and rendering that mostly hides HTML and HTTP

semantics from developers.

This is both a blessing and a curse. Web Forms, by leveraging the Rapid Application Development

concepts, allow developers to quickly create applications simply by dragging and dropping server-side

controls and handling page-level events for both the page and the controls on the page. Even though,

this works well, it’s a high-level of abstraction and many developers completely forget, and even worse,

never learned, how the HTML layout actually works behind the scenes. As a result, it’s common to end

up with non-validating HTML, or bloated and hard-to-manage HTML layout that is very designer

unfriendly. Add to that a huge amount of View State if you don’t effectively manage View State properly

and you can easily end up with pages that are much bigger than they need to be and slow as molasses.

Behind this abstraction layer, Microsoft built a very complex engine that has many side effects in the

Page pipeline. It can sometimes get very difficult to coordinate the event sequence for data binding,

rendering, and setup of the various controls at the correct time in the page cycle. Web Forms need to run

through a single server-side form so they can’t easily be broken up into smaller logical units. In complex

forms, event handlers can get very bulky with the tasks they need to handle and often in ways that can’t

be easily refactored so you end up with code that is difficult to maintain and impossible to test.

The big problem with View State is that it’s non-deterministic and that control developers are encouraged

to store all property state inside of View State, which is both inefficient and bloats the page content. All of

the stock ASP.NET controls that come in the box actually work with View State off although you may

have to set a few additional properties explicitly and you may end up with a few extra code snippets to

Diagnostic:

The lack of abstractions is a major minus of this architecture.

Diagnostic:

Maintaining a view state engine proves a poor performance-wise decision.

View State fiercely bloats page content, it has a bit of performance overhead (serialization),

and in AJAX applications especially, View State corruption caused by client-side updates to

Page data can be a royal pain to deal with. Usually, when diagnosing performance problems

within Web applications you will find that the issues are directly related to rampant use of

View State and of poor understanding of its impact on page size and performance.

ICMS assessment report

September 30, 2015

Page 22 out of 50

track certain settings, but you will generally end up with lighter and snappier pages that are also more

AJAX friendly.

Moving on, another annoying overly helpful feature is the change event management. Whenever change

events are hooked up it’s very common to get unexpected behavior with these events firing from

seemingly unrelated operations from control initialization and direct access. This comes back to the

specific implementation of the page framework and how and when events fire. Developers have to be

intricately familiar with the event sequence which is no trivial matter since there are many, many events

that fire as part of the page process both on the page and on each control. Granted this is not one of the

most frequent pain points, but they do happen and when they do happen they tend to be a huge time

sink.

Diagnostic:

The event management complexity is another major minus of Web Forms.

This framework is all about events. Post back events, page pipeline events, and change events

all are at the core of Web Forms. While events are part of what makes Web Forms easy they

can also make things complicated because the IIS engine plus the ASP.NET engine fire a ton

of events as part of each and every request. Figuring out exactly when each piece of code in

your Page fires as well as when every control or user control fires takes a solid understanding

of the full page model and control tree architecture which is not trivial and requires a bit of

experience and time.

Diagnostic:

AJAX is cumbersome when dealing with Web Forms.

As a no surprise, client-side scripting and Web Forms in general don’t go together all that well.

As previously mentioned, there are issues surrounding View State consistency if you use

client script to update POST data sent back to the server. This makes it often difficult to work

with frameworks other than ASP.NET AJAX, which is the only framework that explicitly

understands the Web Form model and View State.

Microsoft AJAX framework in general is not a great client-side library solution in the first

place. It’s big, not very modular and provides only limited functionality for the client-side

developer with the client framework being more of a core reference implementation than a

useful API library that provides usable functionality for client-side scripting. If you compare it

to a highly functional approach of libraries like jQuery Microsoft AJAX feels like it’s seriously

lacking practical functionality. Add to that the rigidity and complexity of the control creation

model and it’s hard to justify using Microsoft AJAX for anything but the server-side controls

provided in Update Panel and the AJAX Toolkit controls.

Using alternative libraries with Web Forms is possible but there are some issues you need to

watch out for. Specifically, View State corruption is a problem when updating client control

content that is already stored in View State and then sending it back to the server. Event

Validation as well can cause all sorts of problems with pages posting back to the server and

you’ll want to likely turn this feature off on pages that use AJAX and modify control content.

ICMS assessment report

September 30, 2015

Page 23 out of 50

4.2.1.2 Data Services

The main framework used for data services is Microsoft Windows Communication Foundation, version

included in .NET 3.5 (released in 2007). And while it sure is an improvement compared to plain ASP.NET

Web Services, on the long run, this choice proves to be a poor one. In the end it does run well, but it has

some major issues that again influence the overall system architecture.

Unlike a RESTFUL API using JSON, like the Microsoft ASP.NET WebApi, WCF’s drive to unification is so

strong it has lost sight of usability. Web Services and .NET Remoting had so much appeal because they

promised to finally make remote communication simple. But then they failed. Not because their APIs did

not live up to the promise of simplicity, but because they too bet on the wrong horse: synchronicity.

Remote communication should always be asynchronous, because that´s how autonomous systems

communicate. And if you deny that fact you run in all sorts of performance problems.

4.2.1.3 Data Access Layer

Moving on to the Data Access Layer, things are rather simple. There was no specially designed data

access layer library used, nor any object-relational mapping framework, but pure data access using

ADO.NET (part of .NET Framework) and a whole bunch of SQL Stored Procedures developed using T-

SQL.

Furthermore, this particular combination is not bad at all when it comes to the speed of the overall system

compared to any other alternatives. But, whatever advantage gained in performance terms is lost in

maintainability cost, because now, the business logic layer is split in two major areas: the back-end and

the database itself. Just imagine how a release cycle looks like, if you have to consider the deployment

and rollback capabilities of two interconnected systems and all of the risks involved.

Let’s analyze the scenario into a certain developer has to fix a small bug, like show something else in a

certain field. After he identifies the base data access object, he will have to search for the name of the

SQL stored procedure and then to jump into the database (if he has access to that system as well) with

administrative privileges, and modify and compile a SQL Stored Procedure. And hopefully, the changes

he adds to the database will always be in sync with the deployed version of the application. Even more,

one will always have to consider database related problems (query execution plans, indexes, compiled

SQL) every time when doing data access code.

Diagnostic:

The only exception here is the usage of Entity Framework, version 4.* in the MRS application –

and from the very beginning one must take in consideration the recommended upgrade to the

latest Entity Framework version (6.*).

ICMS assessment report

September 30, 2015

Page 24 out of 50

4.2.2 Analyzing the object interaction

The object interaction is represented by choosing a Domain Driven Design approach, combined with

several design patterns and an N-Layer back-end organization. The application contains several

dedicated projects for keeping the Domain model in place, and in some cases, it even succeeded doing

so.

4.2.2.1 Domain Model

Basically the domain model is represented by a list of POCO objects, but with no clear defined

boundaries. The only extra thing they’ve got is plenty of annotations and this is not very helpful when

enforcing business rules. As for the latter, there is a special class library designed just for that that

basically wraps every domain call and it verifies the security context permission.

4.2.2.2 Design Patterns

Several design patterns were implemented, in an almost consistent way: Façade pattern, Adapter

pattern, Repository pattern and Singleton pattern. By looking at the code base, we can analyze how they

are used. By implementing façades, the developer defined a higher-level interface that makes the

subsystem easier to use, by increasing the abstraction level, but lowering the modularity capabilities. The

Adapter pattern is used for converting the interface of a class into other interface the clients expect. An

adapter lets classes work together that could not otherwise because of incompatible interfaces. The

singleton pattern was used for ensuring that certain classes have exactly only one instance, thus

preserving state overall all instances. And finally, the repository pattern was used for giving the domain

model a more transactional approach.

Let’s look at a particular object, the Kernel, which is instantiated only once, using Singleton. Looking at its

code, and considering its usage, we discover a single-point of failure. It is not thread-safe, and

cumbersome to work with. One can easily relate the overall performance of the whole data access layer

to this particular object, because every adapter uses the Kernel instance. So performance is another

thing we lose when mixing creational and structural patterns.

Diagnostic:

Too much security is never enough, but in this case, the whole mechanism relies on a custom

simulation of a “kernel” instance that verifies on the fly permissions. Almost efficient, but with

a considerable performance overhead.

Diagnostic:

While the motivation for using design patterns cannot be debated, their actual implementation

is. Even more, the combination of structural patterns usually indicate that you may have did

something wrong in the past when doing technical design, and you only increase the overall

technical debt. Last but not least, the code complexity itself is pretty high.

ICMS assessment report

September 30, 2015

Page 25 out of 50

4.2.2.3 Layer-based organization

The Back-end is organized following an N-Layer structure, for promoting modularity. At its roots, this is

not a bad idea, yet again, only if applied right.

Diagnostic:

To sum up, a more robust approach could be not mixing so many patterns for a thread-not-

safe approach. By switching to an actor-event model, or to a producer-consumer one, one

could achieve better results, in terms of code quality, maintainability efforts and overall

system performance.

Diagnostic:

The layers are represented by different projects in the same solutions, but often there is

business logic spread across several projects (from Core, to Business Entities, and to the

front-end). Another wrong doing is their actual number. You may expect 4 or at most 5 layers,

clearly defined like front-end layer, business logic layer, services layer, data access layer, and

domain model. Instead, there are over 10 projects laying around.

Diagnostic:

A more robust approach would have been a strict organization of code and keeping things as

simple as possible.

ICMS assessment report

September 30, 2015

Page 26 out of 50

4.2.3 Analyzing the ICMS components

When analyzing the ICMS components, everything can be tighten to the default web application, the

primary entry point of the whole system. Its architecture influences the system so much and in so many

ways, that just by changing it (for example, just by switching from Web Forms to MVC), and doing so

correctly, we would solve almost all problems discussed right now.

Let’s start with the lack of a clear separation of concerns. Indeed, the web project represents the front-

end, and the WCF project represents the service layer.

Moving on, there are no clear views and view models. Indeed, using Web Forms means that your events

would dynamically compile a string representing the html output of server-side controls. Which is even

more complicated than it sounds. Just check that there are situations where the content of a page is

injected using jQuery in an overlay on top of the actual page, opposing to places where the default

rendering approach is used.

It was not developed to be tested by developers, but only by its end users. Which is always a bad tactic.

Basically, the only way to test what all of this is to run the whole system, preferably having direct access

to the physical machine, and understand all the business logic and know all of the required information in

order to have an opinion. This is more than difficult for normal software engineers, even for normal

people with a regular level of responsibility. Some may even say that the developers did they work with

one eye closed, and only using natural light.

Diagnostic:

But there is business logic spread in each of them, and none of them represents the business

logic layer. There is no clear interface segregation and the open close principle is wrongfully

applied. The domain model should be closed to modification and open to extensions, and not

open to both. As for the inversion of control, there is a Dependency Injection framework in

place, but its usage failed to achieve the promised level of modularity. Components are yet

again tightly coupled. And this is exactly the Web Forms way of doing things.

Diagnostic:

This brings us to another big flaw, which is represented in any way possible: the lack of

uniformity. From architecture, to frameworks, to concepts, to coding standards, there is no

such thing as uniformity in this application. For many of the things mentioned above, there are

at least two versions, two ways, or two implementations. This proves confusing even in the

short run, and not to mention the horrible performance penalties it brings.

Diagnostic:

Another issue, in case of the ICMS application, is the totally absence of automated tests. This

application has no unit tests, to performance tests, no load tests, no UI test, and what is

worse, no testing capabilities.

ICMS assessment report

September 30, 2015

Page 27 out of 50

In the case of the MRS application there are several automated tests added to the project that provide a

small degree of confirmation of work-done and code quality. One can only wish for a greater emphasis on

tests in the rest of the ICMS applications.

ICMS assessment report

September 30, 2015

Page 28 out of 50

4.2.4 Analyzing the services orientation assessment

Talking about a Service Orientated Architecture (SOA) will bring us close to the service layer, developed

using Windows Communication Foundation (WCF).

SOA or Service Oriented Architecture is an architecture style for building business applications by means

of services. Application comprises collection of services which communicate through messages. Services

are logical encapsulation of self-contained business functionality. Services communicate with each other

using messages. Messages are standard formats which everyone (every service) can read and

understand. So theoretically all of this concepts are well applied, but in practice, one may see the

limitations imposed by the usage of the Web Forms version and the Windows Communication

Foundation.

To begin with, services should be independent of other services. Altering a service should not affect

calling service, and furthermore, services should be self-contained.

Services should be able to define themselves. Services should be able to answer a question like “what is

does”. It should be able to tell client what all operations it does, what all data types it uses and what kind

of responses it will return.

Finally, services should be able to communicate with each other, or with clients and consumers,

asynchronously.

By analyzing the source code, one may see that this concepts are not well applied, or not applied at all,

such for the synchronicity quality. On the other hand there are several SOA principles well applied such

as reliable messaging (means there should be a guarantee that request will be reached to correct

destination and correct response will be obtained) and secure communication.

Diagnostic:

To sum up, on this topic there are improvements that need to be made, and most of them

relate to choosing a RESTful architecture using Microsoft’s WebApi framework and the MVC

version of ASP.NET. Nevertheless, the case for a puritan SOA architecture should also be

discussed, in order to reduce the enterprise technical debt and the overall maintainability of

the system.

ICMS assessment report

September 30, 2015

Page 29 out of 50

4.2.5 Analyzing the infrastructure and system scalability review

The scalability of the system is a major painful point. To put it bluntly, the only way this system scales is

by multiplying the installed instances – which is not scalability at all. And this is exactly what is in place

right now, several different instances running the same software in different places. One may argue that

are several reasons for doing so, like security, and separation of concerns, but the truth is that the

application couldn’t have had faced scalability challenges after all.

The main reason for the lack of scalability is the architecture itself. Scalability means doing things in a

specific way from the very beginning, and not adapting on the road. Which was not done. The application

was not designed to be scalable when the developers started working. There is no multi-threaded model

in place and no middle-layer bus to handle events. An acceptable theory is that the overall architecture

was influenced by the Web Forms version of ASP.NET (which is not scalable), and thereafter every

component and every layer expanded even more in the same spaghetti architecture.

Diagnostic:

In conclusion, the ICMS infrastructure cannot handle scalability. There are no Web Farms,

Load Balancers or any scalable architecture that might help in this regard.

Diagnostic:

If a complete rewrite and redo of things will be considered in the future, these scalability

concerns should be handled. First of all, application-external capabilities could be used. A

Web Farm composed of several web servers, that run in sync, guarded by a Load Balancer do

a pretty good job. Second of all, today’s CPUs can handle a lot of threads, so relying on multi-

threading is always a good bet. From elastic models to traditional ones like consumer-

producer one, these models always prove a very good answer when talking about scalability.

The only question that remain to be addressed are the ones about the effort and the cost for

developing such architectures.

ICMS assessment report

September 30, 2015

Page 30 out of 50

4.2.5.1 Analyzing the system interconnectivity

Currently, the integration of ICMS system with IT systems from other institution is hardcoded and no API

(Application Programming Interface) is available to facilitate this interconnection.

Therefore, these interconnections are more difficult to be implemented and managed.

Also, we found out that by interconnecting the ICMS system with other institutions data can be modified

directly in database which means that there is a high risk for the stored data to be altered intentionally or

accidentally by people who access them.

We recommend to implement an API interface to be used to establish the interconnection with the other

systems. Also, we recommend to set up a proper access right policy for the users who access the ICMS

system data from an external interconnected system in order to make sure that they have read only

access to data.

Diagnostic:

The integration of ICMS system with IT systems from other institution is hardcoded and no

API (Application Programming Interface) is available to facilitate it. We recommend to

implement an API interface to be used to establish the interconnection with the other

systems.

ICMS assessment report

September 30, 2015

Page 31 out of 50

4.2.5.2 Analyzing the overall versioning of the system

The ICMS system has three different versions depending on the institution which is using it, namely: The

Supreme Court of Justice, Courts and the Ministry of Justice.

Through such an approach, the ICMS system is more difficult to be managed and developed during its

life cycle. For example, if at some point it would be necessary to develop a change in the system which is

applicable for all the three institutions, currently is required to develop the change in each of the three

versions of the system. There is also a risk that a particular change to be not implemented in the same

manner in all three systems resulting differences that might affect the end users.

We recommend to merge the three versions of the system existing now in one sigle version to serve all

three institutions and to be differentiated by applying specific access rights policies. Therefore, the ICMS

system's development and administration will be carried out in an uniform mannner increasing the

accuracy and efficiency of these processes.

Diagnostic:

The ICMS system has three different versions depending on the institution which is using it.

We recommend for the new ICMS system to merge the three versions of the system existing

now in one sigle version to serve all three institutions and to be differentiated by applying

specific access rights policies.

ICMS assessment report

September 30, 2015

Page 32 out of 50

4.2.5.3 Analyzing the resilience in case of disasters

Currently, there is no alternative site in place to ensure the continuity of the ICMS system in case of a

disaster which affects the primary site (earthquake, flood, fire, etc.). Also, there are no redundant

equipments in place in case when the primary equipments fail.

Therefore, there is a risk that after such an event, the infrastructure of the ICMS system and the activities

which involve the use of ICMS system can not be restored and the activities of courts will be significantly

affected.

We recommend to establish an alternative location (disaster recovery site) which should include

redundant equipments for the ICMS system to ensure that the system will be completely operational

during the outage from the primary location. These redundant equipments should be tested periodically in

order to make sure that they support the real workload and the trasfer of operations can be done

completely, when needed.

Diagnostic:

There is no alternative site and redundant equipments to ensure the continuity of the ICMS

system in case of a disaster. We recommend to establish an alternative location (disaster

recovery site) which should include redundant equipments for the ICMS system to ensure that

the system will be completely operational during the outage from the primary location

ICMS assessment report

September 30, 2015

Page 33 out of 50

4.4 Performance assessment

4.3.1 Bottlenecks identification

In the process of analyzing the performance of the ICMS system, we identified the following diagnostics

in regard to bottlenecks:

Diagnostic:

Resizing the Transaction Log

If the recovery interval is set to the maximum permitted, as it should be, a checkpoint will

occur when the transaction log is 70% full, at high-performance, depending on the I/O write

performance to the data files. This checkpoint produces an I/O bottleneck noticeable in the

HammerDb transaction counter as follows:

ICMS assessment report

September 30, 2015

Page 34 out of 50

To observe the checkpoint, one has to set the DBCC trace to 3502, 3504, 3605 and open the error log.

The following example shows that the checkpoint took 14.7 seconds writing 1GB/s, which coincided with

the drop of performance:

2015 -09 -09 11:41:11.75 spid20s FlushCache: cleaned up 1932082 bufs with

948934 writes in 14739 ms (avoided 25317 dirty bufs) for db 5:0

2015 -09 -09 11:41:11.75 spid20s average throughput: 1024.11 MB/sec, I/O

saturation: 418155, context switches 562834

2015 -09 -09 11:41:11.75 spid20s last target outstanding: 31729.

avgWriteLatency 26

2015 -09 -09 11:41:11.75 spid20s About to log Checkpoint end

To postpone the checkpoint until after the test, the log file must be resized. Being too small will cause

checkpoints before the test is complete. But being too large, this will impact performance again, so one

must carefully resize and spend time to monitor the whole situation.

After resizing the log file to 64GB, the transaction counter is showing a consistent performance, without

any drops for checkpoints:

ICMS assessment report

September 30, 2015

Page 35 out of 50

The very first thing that one could do is establish a primitive caching policy. For example, dictionary data

could be stored in memory for the whole session, and read only for the first time. Other type of data could

be stored in memory for a defined amount of time, until it’s declared invalid (too old), and retrieved again.

Also, the web applications could do much use of session data as well, or even application level data. For

example, user settings and application settings should be retrived from memory from the second time on.

Diagnostic:

Use In Memory Data

As debated further-on, there is no efficient way of using in-memory data. Also, there is no

caching mechanism in place. Basically, data is read every time directly from databases and

this creates a performance bottleneck.

Diagnostic:

Minimize Database Queries

The number of database queries should be as minimum as possible. A stored procedure can

return multiple data sets, and queries can be grouped together in order to make only one

round-trip to the database. Not doing so will generate excessive load on the database server,

and another performance bottleneck.

Diagnostic:

Use Load Balancers

At a basic level, load balancers are components that receive all HTTP requests and do route

them to one of the webserver it is connected to, usually to the one with the smallest workload.

By using such a component, one can reduce the performance bottleneck that is achieved

when multiple concurrent requests hit the very same web server.

Even more, as one may observe further-on, there are over twenty web applications on the

same web server machines. Therefore, the number of concurrent requests is even higher, and

the importance of a LoadBalancer is even greater.

ICMS assessment report

September 30, 2015

Page 36 out of 50

4.3.2 Input/Output analysis

For what it’s worth, the data input and data output processes are working just fine. Without a closer

inspection, one can say that there is no optimization that can be done here. All data that is added in

graphical user interfaces is required, and saved for processing. There is no redundant input data, and

there is no data left “unsaved”.

As for data export capabilities, the application can export in Adobe PDF and Microsoft Word formats. To

be more precise, the PDF processing is achieved using a third party library called Winnovative

WnvHtmlConvert, and for the Word processing Gembox toolkit is used. Both these components are

mature and stable enough, and both offer free versions under specific license agreements. If these

license agreements are breached or not when these components are used is still not clear, there is the

need for an express confirmation from the original developer team as well as a closer analysis from a

team with expertise in such matters.

Nevertheless, for generating documents in OpenXML format (such as Word’s .docx, or Excel’s .xlsx)

there is no need for a third-party component. The OpenXML standard is pretty much well documented

and easy to use and offers native integration with the .NET framework. But, for the PDF problem,

considering the difficulties in development, one may choose to use an existing commercial framework.

4.3.3 Query optimization

During the process of analyzing the query optimization solutions we identified the following diagnostics:

Diagnostic:

Partitioning the History Table

Before considering any kind of query optimization, one has to check the history table first. For

highly scalable systems, partitioning the history table can reduce insert contention. In order to

do so, one has only to run a configuration script that creates the partition function.

Diagnostic:

Caching

For an application of this size, a caching strategy is a must. Which, unfortunately, for none of

the ICMS applications is not the case. There is no page level output caching in the front-end

applications, there is no data access level caching in place, nothing of this kind. Basically data

is loaded every time when needed directly from database. The only things cached in this

application is non-database related data like settings or code-reflection information. Sadly, no

database information is ever cached. The database server is hit every time. Indeed one can

guarantee 100% data accuracy, but in some cases, dictionary-level data is modified only once,

and it must not be re-read again and again.

ICMS assessment report

September 30, 2015

Page 37 out of 50

Diagnostic:

In-memory data

There are several scenarios where data already loaded from the database, in-memory data, is

not re-used across operations and is loaded once again.

Diagnostic:

SQL Optimization

Last but not least, by reducing the amount of LOB columns, getting rid of any XML processing

in SQL stored procedures and using rebuilt indexes a certain performance gain for SQL code

will be surely obtained.

ICMS assessment report

September 30, 2015

Page 38 out of 50

4.3.4 Assessing the web server performance

The performance of the ICMS application is directly related to the performance of the web server and of

the database server. It must be stated from the very beginning that the web server software is a part of

the Windows server operating system. There is no way to upgrade it without upgrading the whole

operating system itself. And given the fact that the web server machines run Microsoft Windows Server

2008 R2 x64, we know that the web server itself is Microsoft Internet Information Services version 7.5.

Diagnostic:

One first issue is that IIS 7.5 is pretty old. Windows Server 2008 R2 was launched in mid 2009,

therefore this technology is about 5 years old, and in Internet terms, this is very old

Diagnostic:

An upgrade of the Windows Server operating system is recommended, and this will push

forward the version of the web server used. And even more, newer version have many more

interesting features. For example, IIS 8 (included in Windows Server 2012) can bind SSL to

hostnames rather IP addresses thus improving the security factor. IIS 8 also has a new core

framework for application initialization, offering better ramp-up speed when running

something the second time. IIS 8.5 (included in Windows Server 2012 R2) offer dynamic site

activation, very useful in a multi-tenant scenario like the ICMS application, and an idle worker-

process page-out.

Diagnostic:

Apart of upgrading IIS, one can leverage the power of Microsoft Web Farm Framework. This

enables server farm (composed of several IIS instances) that you can add any number of

servers into. Servers participating in the server farm will then be automatically updated,

provisioned and managed by the Web Farm Framework. This means is that one can install IIS

plus required modules and custom SSL certificates once on a primary server, and then the

Web Farm Framework will automatically replicate and provision the exact same configuration

across all of the other web servers in the farm without any manual or additional steps.

Diagnostic:

In addition to making it easy to provision/deploy servers and applications, the Web Farm

Framework should also includes load balancer integration. Specifically, the Web Farm

Framework can integrate with an HTTP load balancer so that as web servers in the farm are

updated with changes, they can be automatically pulled out of a load balancer rotation,

updated, and then added back in.

ICMS assessment report

September 30, 2015

Page 39 out of 50

4.3.5 Analyzing the hardware description

From the hardware perspective, the ICMS application is running on at least 6 virtual machines supported

by blade servers. Virtualization is provided by VMWare software, and all intranet connections have

Gigabit-level network connectivity.

Much insight can be gained by taking a look at a detailed diagram provided by CTS (Center of Special

Telecommunications):

ICMS assessment report

September 30, 2015

Page 40 out of 50

ICMS assessment report

September 30, 2015

Page 41 out of 50

There are three database server machines, each configured with 4 CPUs and 12 GB or RAM, each of

them running Microsoft Windows Server 2008 R2 x64. These 3 database server machines all have

Microsoft SQL Server 2008 R2 Enterprise x64 installed and a multi-tenant configuration. The whole

applications has about 50 distinct databases, and each of these has its own dedicated space on one of

the database server machines.

Moving on to the web server machines, there are three of these as well, each configured with 4 CPUs

and 5 GB RAM, each of them running Microsoft Windows Server 2008 R2 x64. These three database

server machines all have the Web Role activated and properly configured, therefore they rely on

Microsoft Internet Information Services 7.5.

After a close inspection, all hardware specifications follow the guidelines. But still, improvements can be

made for the storage problem. Because of the virtualization, there is no clear information about the

storage hardware used, apart of the reserved sized. All virtual machines have more than 100 GB, and

this should suffice. But the performance of Microsoft SQL Server is tightly coupled with the I/O

performance of the machine it runs. Simple and intuitive information can be gathered by running

performance monitors for average read bytes/second, average write bytes/second, disk read

bytes/second, disk write bytes/second and the average disk queue length.

When it comes to the topology of the ICMS application, one can see that there are several logical

instances, all of them supported by three physical database server machines, and three web server

machines. Each logical instance of ICMS can communicate with another using WCF services, and all

ICMS’s databases communicate with a central store that supports the MMP and MRS applications.

Diagnostic:

But whatever the results, having a RAID matrix in place, or SSD drives will always give a boost

of performance. The only question that remains is if this justifies the cost difference.

ICMS assessment report

September 30, 2015

Page 42 out of 50

db_botanica db_achisinau db_orhei

PIGD PIGDPIGD

ICMS_DWH Baza Centarala

LoadDataFromInstance

WCF WCF

MMP MRS http://instante.justice.md

Update_AssignmentSettings

CSJ

WcfServices

WcfServices

Curtea Suprema

ICMS assessment report

September 30, 2015

Page 43 out of 50

4.3.6 Analyzing the performance tests outputs

All performance tests, all benchmarks, all code exploring point to the same conclusion. A full re-write of

the entire application is required for it in order to run properly. But this is not something that has to be

taken lightly, the whole ICMS application is huge, with lots of specification and requirements.

First of all, there is the clear need for a hardware level organization. Blade servers are pretty great, and if

they aren’t any older than a few years, they will pretty do the job in the near future. But rather than having

multiple database server machines plus multiple web server machines, one should shift towards a web

farm architecture. Just as an example, having a load balancer machine that routes HTTTP requests to

three available application servers running IIS will greatly improve scalability and performance. These

three machines if provided with enough RAM will also support caching scenarios, again, improving

performance. At the very end, there will be a single database server machine, with state-of-the-art

storage options, that will support the whole ICSM application. Of course, such an architecture will have to

support redundancy, so just multiply everything by two.

But, just to rephrase, there is no point in having 25 clones of the same database or 20 clones of the same

web application on the same machine. This can be rephrase like “if you can’t really afford 25 different

machines, then it is better just to have only one supporting everything”.

Moving on towards the application level, the key words must be simplicity, uniformity and testability. In

order to achieve simplicity, one has to keep things as simple as possible. For a start, one can just try to

minimize the time between requests and responses. In order to achieve uniformity, one should try to stick

to the same way of doing things, and preferably, without mixing multiple competing frameworks, or too

many design patterns. Last but not least, one must rely on automated, UI and integration tests rather

more than on real-world usage tests. And to be more specifically, for any services and over-the-Internet

communication, Microsoft WebApi with a RESTful architecture is the way to go. As for the back-end of

the web applications, Microsoft ASP.NET MVC is the right choice, definitely much a better one than Web

Forms. Finally, the latest stable Microsoft .NET Framework version (4.6) is the best available option for

the Microsoft web stack.

Another point worth mentioning is that the software development process should be flexible, and guided

towards updates. Applications must not remain stuck with the versions used at their beginnings.

ICMS assessment report

September 30, 2015

Page 44 out of 50

4.3.7 Other performance issues

4.3.7.1 Hardcoded parameters

There are some parameters in the ICMS system which cannot be modified through the administrative

interface being hardcoded (their value is defined through the source code).

In this case, the modification of these parameters is very difficult being necessary to request this change

every time to the system developer. Therefore, this issue can result in a decrease of the efficiency in

using the system.

We recommend to conduct an analysis of the parameters that are currently hardcoded to identify those

which are required to be adjusted periodically and to implement the possibility for these parameters to be

modified directly from the application interface by users with appropriate permissions (e.g.

administrators.).

Diagnostic:

There are some parameters in the ICMS system which cannot be modified through the

administrative interface being hardcoded (their value is defined through the source code). We

recommend to conduct an analysis of the parameters that are currently hardcoded to identify

those which are required to be adjusted periodically and to implement the possibility for these

parameters to be modified directly from the application interface by users with appropriate

permissions (e.g. administrators.).

ICMS assessment report

September 30, 2015

Page 45 out of 50

4.3.7.2 Application source code

We identified some deficiencies at the source code level which may affect further developments of the

system or even the current system in terms of performance. These deficiencies include the following:

 Around 20% of the existing source code is not used. This deficiency can lead to a decrease of the

system's performance by executing unnecessary source code sequences which require additional

resources. Also, the existence of unnecessary source code sequences within the system makes

more difficult the code debugging and troubleshooting and the development of changes or

improvements in the future;

 Some sections from the source code are not optimized being implemented complex instructions

(e.g. queries like: "select in select in select...etc") which may need additional computing resources;

 Some source code sequences are not commented enough. This fact could make more difficult the

source code debugging process or the development of changes or improvements in the systems

because the system developers can not get a fast understanding of the logic behind the source

code;

 Some functions / procedures from the source code do not have an intuitive name (e.g. function

"aacb"). This fact could make more difficult the source code debugging process or the development

of changes or improvements in the systems because the system developers can not get a fast

understanding of the logic behind the source code;

In this regard we identified specific recommendations to be implemented either for correcting the existing

system ar to be taken in consideration during the re-writing of the system as follows:

 Sanitizing the source code by removing the unnecessary code;

 Analyzing the complex instructions and optimizing the executed code by developing more simple

instructions;

 Inserting comments detailing the functions which are implemented in the system by certain

sequences of source code;

 Renaming the functions/ procedures in the source code so as to be more intuitive about the role

which they have.

Also we found out that due to an inadequate management of application and source code versions, there

were cases when the source code version used to perform developments/ changes in the ICMS system

was not the one used in the production environment. In this respect, the risk is that the changes which

are performed by developing/modifying the source code could be implemented in other versions which

may be different from the functional point of view and not in the current production version of the system.

Therefore, these situations can have a significant impact on the ICMS system's users and the specific

operational processes.

We recommend the use of a rigorous software version management system (SVM) in order have a better

control on the application versions developed so far. In order to prevent the situation described above, we

recommend to implement a control which should not allow to perform further developments on the

previous versions of the ICMS system (other than the version which is currently in production).

ICMS assessment report

September 30, 2015

Page 46 out of 50

Diagnostic:

The application source code has deficiencies which may affect further developments of the

system or even the current system in terms of performance. We recommend to perform an

analysis of the existing source code to correct the abovementioned deficiencies and to take

them into consideration during the re-writing of the ICMS system.

ICMS assessment report

September 30, 2015

Page 47 out of 50

4.5 ICMS IT environment analysis

As part of our analysis, we have identified some deficiencies which are directly related to the ICMS

application or they are adjacent to it as detailed below. By solving these deficiencies, it will be improved

the overall performance and qualitz of the system.

4.4.1 Change management

Currently, there is no procedure in place for managing the updates/changes in the ICMS system and to

regulate the flow by which the changes in the ICMS system are initiated, approved, developed, tested

and deployed to the production environment.

The deployment of changes in the system was done in some cases in the past without a prior testing for

assessing whether these changes are working correctly or they affect the functionality of the other

modules in the system. Moreover, when such tests were performed, the time allocated for testing is

insufficient to cover all the relevant operational scenarios.

Also, there is no person with technical skills in charge to analyze and approve/reject the system's change

requests initiated by users. Beside that, there is no system "owner" function in place to coordinate the

decisions which are taken in regard to the system and to ensure that the system is working properly.

Therefore, without a proper procedure for the ICMS system change management and specific

responsible for monitoring this process, there is a risk that the changes deployed in the production

environment are not compliant with the users' requirements and to contain unauthorized functionalities.

Also, without a proper testing process there is a risk that changes implemented system may not work

properly or may significantly affect the overall system.

A formalized procedure for the ICMS system change management should be developed and

implemented to minimize the risks mentioned above.

This procedure shall include at least the following:

 Implementing a change initiation flow based on a formal application request analyzed and

approved by the management;

 Defining a formalized process for testing the changes in which the ICMS system users who have

requested such chanages should be involved;

 Conducting the tests using detailed testing plans which should cover all the system's areas which

are impacted by a change;

 Test data should be similar to the production environment, but should not contain confidential

information;

 The testers must sign on the testing plans in order to certify that they performed the tests;

 The deployment of the changes in the production evironment must be performed only after the

issuance of a formal acceptance by the beneficiary of the system (which could be Checchi and

Company Consulting, Ministry of Justice, The Supreme Court of Justice or the Courts);

ICMS assessment report

September 30, 2015

Page 48 out of 50

 A responsible should be appointed for deploying the changes in the production environment. This

responsible should not be from the development team (it could be allocated, for example, to a

person from CTS). We recommend also to the restrict the access for external developers to the

system or its database;

 Documenting changes and inform users about the changes.

Also, we suggest to appoint a responsible to be in charge for the change management process to

analyze and approve/reject the system's change requests initiated by users and to interface the

relationship between the development company and the beneficiaries. The role of this person is to ensure

that the developers implement the changes in the application in accordance with the user requirements

and comply with the timescales and the quality requirements. This responsible should be the "owner" of

the system being responsible as well for coordinating the teams involved in developing and maintaining

the system properly. The system "owner" should make sure that the decisions for changing/improving the

system fullfils the user's requirements. This person should be nominated amongst the beneficiaries

(which could be Ministry of Justice, The Supreme Court of Justice or the Courts).

Diagnostic:

Currently, there is no procedure in place for managing the updates/changes in the ICMS

system and to regulate the flow by which the changes in the ICMS system are initiated,

approved, developed, tested and deployed to the production environment. A formalized

procedure for the ICMS system change management should be developed and implemented

as mentioned above.

ICMS assessment report

September 30, 2015

Page 49 out of 50

4.4.6 Deployment procedure

There is no procedure in place to ensure that deployment of updates/changes is performed in a uniform

manner on all the 50 instances of the ICMS system at the same time.

In this regard, there is a risk that certain changes/updates performed in production system to be not

deployed in all system's instances or to be deployed with delays affecting the usability of the system.

We recommend to adopt a deployment procedure to make sure when a new change/update is developed

to be deployed in all 50 instances of the ICMS system at the same time. (for example, by using a central

server to place on it each new change developed for the system and further to deploy it automatically on

all the 50 instance of the ICMS system).

Diagnostic:

There is no procedure in place to ensure that deployment of updates/changes is performed in

a uniform manner on all the 50 instances of the ICMS system at the same time. We

recommend to adopt a deployment procedure to make sure when a new change/update is

developed to be deployed in all 50 instances of the ICMS system at the same time.

ICMS assessment report

September 30, 2015

Page 50 out of 50

4.4.8 Redundancy of work

Due to the fact that the personnel from the courts does not consider the ICMS system reliable enough

(there were situations in the past when data was lost and could not be recovered or the system could not

be used), they use both the manual work with papers and the ICMS system to create and manage the

cases and other specific processes.

By doubling the work, the workload of the personnel from the courts gets bigger. Through such an

approach there is a risk that the information handled by the ICMS system to be not complete considering

that the people are still more confident on the papers and they use the ICMS system as a second option.

Therefore, there is a risk that the results processed by the ICMS system (reports, statistics etc.) to be not

accurate.

We recommend to quit the classical management of the cases by paper and to switch together with other

manual processes exclusively to the ICMS system.

Diagnostic:

Personnel from the courts use both the manual work with papers and the ICMS system to

create and manage the cases and other specific processes. We recommend to quit the

classical management of the cases by paper and to switch together with other manual

processes exclusively to the ICMS system.

