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Abstract
Monitoring Asia’s changing forests in a consistent, repeatable manner is of great importance to understanding the carbon 
balance. As part of the United States Agency for International Development (USAID) Lowering Emissions in Asia’s Forests 
(LEAF) program’s effort to facilitate the development of practical monitoring systems, this study evaluated three automated 
forest loss detection algorithms in the four core USAID LEAF study areas using Landsat data spanning 2001 to 2013. 

The evaluated algorithms were CLASlite, Hansen’s Global Forest Loss product, and a new algorithm called Multiple Linear 
Trend Analysis (MLTA). Google Earth Engine (GEE) was used throughout this project as an efficient cloud-based 
computation platform. GEE provides massively parallel computing infrastructure available to many areas with limited 
information technology infrastructure. CLASlite is freely available, but rather difficult to properly calibrate to the changing 
forest dynamics of the four study areas. Hansen’s loss product is readily available, spatially explicit, and updated annually, but 
lacks any ability to refine the definition of deforestation. Additionally, it has no separate forest degradation category. MLTA 
can be customized to meet specific definitions of deforestation and forest degradation but proved difficult to properly calibrate 
to characterize deforestation and forest degradation without sufficient on-the-ground knowledge. 

Results indicate no clear trends of annual forest loss rates throughout the four study areas from 2001 to 2013. Also, there is a 
large variance in the amount of forest loss detected by each algorithm. A quantitative accuracy assessment was conducted using 
the Timesync Landsat visualization tool across a total of 2,000 30- by 30-m sample pixels. Results indicate that the Hansen 
product, while only identifying forest cover loss, overlaps with much of what the accuracy assessment characterized as forest 
degradation and degradation, thus combining the two in a single class. The CLASlite products generally had the lowest 
accuracies. The MLTA product had high accuracies in some areas, which indicated that with better calibration the method 
could potentially meet monitoring needs. 

Remote sensing-based methods have the potential to provide practical automated estimates of forest change in Asia. Currently, 
methods are being actively developed to meet these growing needs. Results from this study indicate that currently available 
methods may be sufficient for first-order estimates of deforestation and degradation, but further refinement may be necessary 
for more precise needs. 
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Background
The USAID/Regional Development 
Mission for Asia’s (RDMA) Lowering 
Emissions in Asia’s Forests (USAID 
LEAF) project aims to strengthen the 
capacity of countries in the Asia region 
to produce meaningful and sustainable 
reductions in greenhouse gas (GHG) 
emissions from the forestry-land use 
sector. To achieve this, USAID LEAF is 
seeking rapid, robust and cost-effective 
methods for monitoring deforestation 
and forest degradation. 

Forest degradation is estimated to 
account for a large portion of forest 
biomass loss in the region; however, due 
to its complex spatio-temporal patterns, 
consistent detection using automated 
algorithms has proven difficult. 
Currently, most countries do not have 
the ability or data to rapidly assess the 
significance of forest degradation and 
historical patterns and trends. Recent 
advances in algorithms that manipulate 
satellite imagery, combined with 
cloud-based computational capacity, are 
providing potential means for countries 
to develop systems to begin meeting 
these needs.

In an effort to provide repeatable, 
statistically valid deforestation and 
forest degradation estimates, the U.S. 
Forest Service International Programs 
(USFS-IP) through the Remote Sensing 
Applications Center (RSAC), in 
collaboration with the USAID LEAF 
project, designed and implemented 
methods to address three key needs:

 � A Landsat-based cloud-free annual 
and biennial image compositing 
process for use in CLASlite mapping 
software; 

 � A change detection method sensitive 
to slow-onset, long duration forest 
cover loss in Southeast Asia and 
Papua New Guinea;

 � A method to validate forest cover 
change products depicting 
deforestation and forest degradation 
from 2001 to 2013.

High relief tropical forests pose many 
challenges for automated, optical 
remote sensing-based forest change 
analysis. This is primarily due to clouds/
cloud shadows, hillslope shadows, 
smoke, haze, spectral saturation, and 
limited archived imagery. In addition to 
difficulties due to data limitations, 
forest change patterns are variable and 
often-times slow to emerge. These 
difficulties can be further complicated 
by the need for deforestation and forest 
degradation estimates to relate land 
cover change to land use change. Since 
land use definitions vary greatly 
between regions/countries, only forest 
land cover change was addressed in this 
study.

For this project, RSAC developed and 
implemented techniques within Google 
Earth Engine (GEE) that enable the 
entire Landsat Thematic Mapper (TM), 
Enhanced Thematic Mapper (ETM)+, 
and Operational Land Imager (OLI) 
archive to be leveraged to provide 
cloud- and cloud-shadow-free pixels for 
analysis. 

Landsat-based annual/biennial image 
composites use the cloud/cloud-shadow-
free pixels to depict forest cover status 
throughout the analysis period. These 

data were used in two separate change 
detection approaches, including 
CLASlite, as well as an independent 
image interpretation-based method 
known as TimeSync (Cohen et al. 
2010). These methods were applied 
across the four core USAID LEAF study 
areas (figure 1):

 � Madang Province, Papua New 
Guinea

 � Houaphan Province, Laos

 � Lam Dong Province, Vietnam

 � Mae Sa-Kog Ma UNESCO Man and 
Biosphere Reserve (MAB), Thailand

Each of the study areas presents 
different types and frequencies of 
deforestation and forest degradation. It 
was expected that Madang Province and 
Houaphan Province would exhibit 
forest cover change largely resulting 
from shifting agriculture, while Lam 
Dong would exhibit forest cover change 
due to long-term land use change from 
forest to large-scale agriculture. Because 
the Mae Sa-Kog Ma MAB study area is 
mostly within a preserved area, it was 
expected to undergo very little forest 
change.

Figure 1—Location and outline of four USAID LEAF study areas analyzed for this project.
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Methods

Computing Environment
All analyses for this project were 
conducted using Landsat data. Until 
recently, using Landsat data required 
time-consuming image downloading 
and pre-processing, such as cloud 
removal. Since about 2010, Google has 
been constructing a cloud-based 
geospatial data computing system called 
Google Earth Engine (GEE). As of 
2015, GEE is still in a beta testing 
phase, but provides extensive 
capabilities. GEE provides access to 
most freely available geospatial raster 
data sources including approximately 
two million Landsat scenes (Gorelick 
2013). In addition to eliminating data 
acquisition time, all computation is 
performed in parallel over many small 
image tiles, reducing processing times 
by orders of magnitude. Since remote 
sensing in the tropics requires an 
extensive amount of data and 
computation, GEE was the chosen 
primary computing method.

The Landsat archive provides an 
extensive record of earth surface 
conditions across the globe spanning 
about 40 years. These data vary in 
availability and quality across space and 
time and therefore require careful 
preparation to provide the best possible 
depiction of earth’s surface conditions 
and dynamics. 

Our first objective was to create 
Landsat-based cloud-free annual or 
biennial composites for each study area 
to be used with the CLASlite algorithm. 
This required the six common optical 
bands of Landsat.In order to reduce the 
impacts of seasonality, the first half of 
the dry season was the targeted period. 
In Madang, this was from the 28th of 
May to the 3rd of October. The 
targeted date range in the remaining 
study areas was the 1st of November to 
the 31st of January. Image availability 
and quality proved significantly more 
limited in Madang Province, PNG. 
Therefore, a two-year window for each 
composite was developed in order to 

obtain a reasonable proportion of 
observations of sufficient quality. 

A common difficulty with optical 
remote sensing data is cloud and 
cloud-shadow removal. Google has 
created a simple cloud-masking 
algorithm based on the spectral and 
thermal properties of clouds. It finds 
pixels that are bright and cold, but do 
not share the spectral properties of 
snow. Specifically, it defines the cloud 
score as the minimum of the following 
values:

((blue band - 0.1) / 0.3) - 0.1,

((blue band + green band + red band - 
0.2) / 0.8) - 0.2,

((NIR band + SWIR1 band + SWIR2 
band - 0.3) / 0.8) - 0.3,

((300 - temp band ) / 290) - 300, and

((0.8 - ((green band - SWIR1 band) / 
(green band + SWIR1 band))) /0.6) 
- 0.8 (http://earthengine.google.org/).

Through extensive testing and 
qualitative analysis, it appears to work 
well in all areas except for where cirrus 
clouds overlap with perennial snow 
cover. This was not of concern in the 
USAID LEAF study areas.

Since cloud shadows share similar 
spectral properties with water and 
hill-slope shadows, they are more 
difficult to identify using simple rule 
sets than clouds. Where sufficient 
Landsat data were available, a newly 
developed cloud shadow masking 
method was used. The Temporal Dark 
Outlier Mask (TDOM) algorithm 
identifies pixels that are dark in the 
infrared bands but are found to not 
always be dark in past and/or future 
observations. This is done by finding 
statistical outliers with respect to the 
sum of the infrared bands. Since this 
method requires a sufficient number of 
observations (~4 or more), it could not 
be implemented in Madang Province. 
As a result, all pixels that were dark in 

the infrared bands were masked in 
Madang Province. TDOM was 
implemented in all other USAID LEAF 
study areas. 

After cloud/cloud-shadow masking, the 
remaining values must be summarized 
to develop a composite image. Several 
common compositing methods were 
qualitatively evaluated (see box 1). 
Ultimately the Median summary 
method was chosen. While the median 
value of cloud/cloud-shadow-free pixels 
may not include pixel values from the 
same date across different bands and 
may omit pixels that include forest loss, 
it tends to be the least prone to include 
any noise or artifact. 

Deforestation/Forest 
Degradation Detection Methods

Change Detection Methods 
Overview
Once the task of choosing the best 
image compositing method was 
completed, the primary focus of this 
study was to identify methods for 
automated monitoring of deforestation 
and forest degradation. Three methods 
were tested (table 1): 

 � CLASlite (Asner et al. 2009) is a 
method that is easily implemented, is 
freely available, and has proven 
effective at identifying deforestation 
and forest degradation in the tropics. 
It has three primary steps: data 
preparation, fractional cover analysis, 
and change classification. The data 
preparation methods were not used 
since cloud/cloud-shadow-free 
composites were provided from 
GEE. The fractional cover analysis 
method uses an extensive spectral 
endmember library to decompose the 
percent photosynthetic, non-
photosynthetic, and bare ground 
found within each pixel. The three 
bands of fractional cover are then 
used in a hard-coded change 
detection decision set to find 
deforestation and disturbance (an 
approximation of forest degradation).

http://http://earthengine.google.org/
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Four compositing methods were tested for this study. They included:

Optimal date-centered method—Cloud/cloud-shadow-free pixels were chosen by their proximity to a specified date.

 � Pros:
 z Ensures that for each pixel, values across all bands are from a single date
 z Theoretically minimizes phenology impacts

 � Con:
 z Because clouds/cloud-shadows missed in the masking step can easily be selected, outputs tend to appear 

noisy

Percentile-stretch summary method—In order to avoid omitting changed pixels across a long compositing period, pixels 
are chosen using different percentiles. Bands correlated to the presence of vegetation (green and near-infrared) were 
summarized using a lower percentile reducer, while bands correlated to the absence of vegetation (red, and short-wave-
infrareds) were summarized using a higher percentile reducer.

 � Pro:
 z Increases the likelihood of including pixels that underwent forest loss
 z Increases the likelihood of including cloud/cloud-shadow artifacts missed in the filtering process

 � Con:
 z Pixel values may be from different dates across different bands

Percentile vegetation index method—In order to try to ensure the values across the different bands for a given pixel 
were from the same observation and corresponded to some level of vegetation, a percentile vegetation index method 
was tested. This method involved finding the pixels that corresponded with the nth percentile of a given vegetation index.

 � Pro:
 z This method provides pixel values across all bands from single dates

 � Con:
 z Heightened vegetation index values can correspond with omitted clouds/cloud-shadows, reducing the 

composite’s quality

Median summary method—While the median value of all cloud/cloud-shadow-free pixels may not include pixel values 
from the same date across different bands and may omit pixels that include forest loss, it tends to be the least prone to 
include any noise or artifact. 

 � Pro:
 z Least likely to include cloud/cloud-shadow artifacts missed in the filtering process

 � Con:
 z Values across different bands may be from different date

Box 1—Compositing Methods Tested

 � Hansen Global Forest Change 
(Hansen et al. 2013) is a pre-
computed global forest change 
product that depicts forest loss and 
gain from 2000 onward. It is 
updated annually and freely 
available. It uses various spectral 
indicators of the vegetated states in a 
statistical model to detect 
deforestation. The product has come 
under some criticism that it does not 
depict forest degradation adequately. 
Despite this limitation, it is likely to 

be a good product for detecting 
deforestation since its final loss 
detection methods are based on 
statistical models instead of hard-
coded heuristics.

 � Multiple linear trend analysis 
(MLTA) was developed in an effort 
to design a change algorithm that is 
sensitive to much of the slow forest 
change that Hansen is cited for 
omitting. The method builds on the 
work of Vogelman et al. (2012), 

Forest Monitoring for Action 
(FORMA) (Hammer et al. 2009), 
and the Real Time Forest 
Disturbance Trend Disturbance 
Detection (RTFD TDD) product 
(http://foresthealth.fs.usda.gov/
portal/Flex/FDM?dL=0). Separate 
deforestation and forest degradation 
products are produced. It is likely 
less sensitive to sudden change with 
a quick recovery than are CLASlite 
or the Hansen Global Forest Change 
products.

http://foresthealth.fs.usda.gov/portal/Flex/FDM?dL=0
http://foresthealth.fs.usda.gov/portal/Flex/FDM?dL=0
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Table 1—Highlights of the differences of each method

Method name Primary data source Preliminary change 
detection method

Final change 
detection method

CLASlite Landsat 5, 7, and 8 Spectral end-member 
analysis Multi-year heuristic

Hansen Global Forest 
Change

Landsat 7 and 8 (as of 
2015)

Various change 
co-variates

Statistical classification 
model

Multi-date Trend 
Analysis Landsat 5, 7, and 8 Moving window FORMA 

linear trend fit
Multi-date and multi-
year heuristic

Moving Window Trend Analysis 
Method Summary

While the Hansen and CLASlite 
products both provided potential 
methods for deforestation and/or forest 
degradation monitoring, a customized 
method was developed to leverage 
theoretical strengths of trend-based 
forest change detection methods. The 
moving window trend analysis method 
is built around the idea that much of 
the change in the tropics occurs over a 
period of 2 years or more. For the 
purpose of this study, this is considered 
a slow-onset forest disturbance. Since 
these changes generally have a low 
magnitude of change over any single 
year, many algorithms designed to 
detect abrupt changes will omit them. 
This algorithm loosely defines 
deforestation as a severe forest cover 
change that occurs over the course of 
1–3 years. Forest degradation is loosely 
defined as a subtle forest cover decline 
that occurs over the course of 3–5 years. 
Since subtle changes that only occur for 
a short period manifest the same as 
noise, they are considered undetectable. 

With these definitions in mind, the 
algorithm first gathers all cloud and 
cloud-shadow-free Landsat observations 
within the study years (2000–2014 for 
this project) for a defined set of date 
periods using the same cloud masking 
algorithm and the basic cloud-shadow 
masking algorithm used to create 
Landsat composites. The date period is 
generally between 32 and 64 days, 
depending on the expected frequency of 

cloud-free observations in the study area 
and the phenology of the forest. For 
each date period, a stack of annual 
median vegetation index composites is 
computed. Then, for a specified epoch 
length, a linear fit is performed using 
the FORMA linear fit algorithm on a 
moving window. For example, if the 
study years are 2000–2014 and the 
epoch length is 4 years, the first window 
will be 1997–2000, then 1998–2001, 
1999–2002, etc. Each of these epochs 
will have a slope returned from the 
FORMA linear fit algorithm (Hammer 
et al. 2009), resulting in a stack of 
trends for each pixel for each date 
period. 

The next step is to simplify the series of 
linear slope stacks. Detectability of 
change is generally a function of the 
magnitude of change and how many 
times it is observed. Vogelmann et al. 
(2012) used a t-test with respect to the 
slope of the linear fit to filter real change 
from likely noise. MLTA adapts this idea 
of change magnitude and persistence by 
filtering slopes by the number of date 
periods the slope is below a certain 
threshold. If a slope is highly negative in 
2 out of 3 of the date periods, it is more 
likely to be real change than if it only 
appears negative in 1 of the date periods. 
Additionally, if the slope is only 
moderately negative, but appears 
moderately negative in 3 out of 3 date 
periods, it is more likely to be real as 
well. Individual change years are 
identified using this idea. This results in 
a stack of binary change/no-change layers.

The final filter is a moving window 
majority filter. It is expected that 
deforestation may occur over a shorter 
period of time, but have a higher 
magnitude, while degradation will have 
a lower magnitude, but be observable 
over multiple epochs. With this idea, a 
moving majority filter helps to identify 
persisting subtle trends associated with 
degradation. 

This can yield a depiction of subtle but 
persistent change, as well as severe, and 
only moderately persistent change, 
thus providing a potential alternative 
method for monitoring deforestation 
and forest degradation in the USAID 
LEAF study areas.

Independent Estimation and 
Validation Methods

Sample Design

In order to compare the products, a 
total of 2,000 30 by 30-m pixels were 
sampled and visually interpreted using 
the TimeSync data analysis tool. A 
proportional random sample by 
country area was used to generate these 
2,000 samples. This design provides a 
more precise estimate of omission of 
forest cover loss than of commission 
since forest cover loss occurs over 
relatively small areas as compared to 
areas of no loss. TimeSync uses 
Landsat imagery as the interpretive 
base along with some higher resolution 
imagery from Google Earth.
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Interpretation Method

The TimeSync data analysis tool was 
used to better understand the validity of 
the three change detection methods. 
TimeSync is a tool that can be used for 
image time series visualization, 
algorithm calibration, and/or data 
collection. TimeSync allows for human 
interpretation of pixel level changes 
through a time series using the 
comprehensive coverage provided by the 
Landsat program (Cohen et al. 2010). 

The primary difference between 
TimeSync and the FAO Collect Earth 
tool (http://openforis.org/) is that 
Timesync is oriented around exploiting 
the strengths of the Landsat archive, 
with a loose integration of Google 
Earth. At the time of writing this report, 

Collect Earth’s ability to visualize the 
rather complex nature of Landsat data 
was in its infancy compared to 
TimeSync. For this reason, TimeSync 
was chosen for this project.

While an ideal independent validation 
would be based on observations of data 
not used in the automated analysis, 
there is no more consistently available 
set of spatially relevant earth surface 
observations than the Landsat archive. 
For this reason, TimeSync primarily 
relies on the Landsat archive, but 
incorporates the strengths an analyst can 
provide by analyzing the Landsat data 
along with any data available in Google 
Earth to better understand the change 
dynamics. 

There are four components to 
TimeSync: an image chip window, a 
graph window, a data collection 
form, and Google Earth. When plots 
are loaded, the image chip window 
and graph window are opened with 
data concerning the plot (figure 2). 
The image chip window shows a 
Landsat false-color composite for 
each image found in the time series, 
highlighting the pixel from the 
sample. The graph window shows 
multiple indices with corresponding 
data that are valuable for the 
analysis, tracking the pixel through 
time. The data collection window 
has multiple fields available for 
interpreter input based on the 
specified response design. 

Figure 2—Example of the GEE-based Timesync interface used for this study. Additionally, Google Earth was used as a source of high 
resolution imagery when available.

http://openforis.org/
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Response Design

The response design was intended to 
depict attributes of forest cover change 
found in all three products, as well as 
forest cover loss characteristics related to 
forest degradation. Each sample site is a 
single Landsat pixel. The user must 
classify the site as forest or non-forest 
using the data from the first available 
observation within the analysis period. 
A forested area was defined as having 
more than 25 percent tree coverage with 
a height above 5 meters, as also defined 
in Hansen’s Global Forest Change 
Product (Hansen et al. 2013). Plots 
were also classified as a high or low 
density forest. A high density forest had 
approximately 80-100 percent forest 
cover of the site, while a low density 
forest was determined to be 
approximately 25-80 percent forest 
cover. While such a specific set of 
criteria is difficult to interpret using 
Landsat data alone, a combination of 
color and texture in the Landsat data, 
any available high resolution data in 
Google Earth, and various Landsat-
based vegetation indices were all used to 
enhance the ability of the interpreter to 
properly classify the plots. Additional 
components of the response design 
included data about disturbance 
occurrence, disturbance date, user 
confidence, recovery occurrence, 
recovery date, end forest type, and end 
forest density with multiple fields for 
comments. 

Results

Landsat Cloud-Free Composites
Creating consistent wall-to-wall annual 
cloud-free composites proved to be 
challenging for all of the study areas. 
The TDOM cloud-shadow masking 
algorithm was not used in Madang 
Province due to the limited Landsat 
data record. Landsat 5 TM data 
generally serve as a primary Landsat 
data source from the beginning of the 
analysis period to 2012, but there were 
no Landsat 5 TM data available over 
Madang Province. In addition, most of 
the available Landsat 7 ETM+ data was 

plagued with missing data lines due to a 
hardware malfunction on the sensor. 
These two compounding issues resulted 
in an insufficient number of pixels to 
identify dark outliers. Instead, all dark 
pixels in the infrared bands were 
masked. While this did include some 
hill shadow areas, due to the relatively 
high sun angles found at lower latitudes, 
very few areas were committed in the 
cloud shadow mask. Despite including a 
date period of 128 days over a two-year 
span for each composite, many 
composites still had many areas without 
high quality observations to use. Many 
pixels only had a single available 
Landsat observation, increasing the 
likelihood of including a pixel value that 
was a seasonal outlier, thus introducing 
increased seasonal variation across the 
composites. All of these factors 
combined led to composites that were 
often only of moderate quality.

The Landsat archive was relatively 
robust in the remaining three study 
areas. Because sufficient imagery was 
available to find dark outliers, the 
TDOM cloud-shadow-masking 
algorithm was used in Houaphan, Lam 
Dong, and Mae Sa-Kog Ma MAB. The 
primary difficulty in these study areas 
was the presence of haze and some 
smoke. Haze proved difficult to 
consistently mask due to its highly 
variable optical depth and similar 
spectral properties to many bright 
surfaces. Since most change detection 
algorithms utilize the higher signal-to-
noise ratio of longer wavelength bands, 
it was expected that haze would provide 
limited impact to the detectability of 
forest loss. Despite the relatively greater 
availability of Landsat imagery in these 
three study areas, there were still many 
areas during some years that lacked 
wall-to-wall coverage (figure 3).

Composites were created by using the 
median summary method (see box 1). 
This method was chosen after extensive 
qualitative comparisons of different 
outputs. While cloud/cloud-shadow 
masking eliminates much of the noise in 
the data, many artifacts are likely 

omitted in the masks. Since artifacts are 
likely to be outliers, using the median 
value reduces the likelihood of 
including them.

Figure 3 shows a high and low quality 
resulting composite for the Houaphan 
study area. 

Qualitative Overview

Since forest loss is generally assumed to 
be detectable one or two years after the 
start of the event, there is some expected 
deviation between when each algorithm 
indicated there was forest loss. For the 
purpose of this study, the final result for 
all forest loss algorithms was the first 
year of detectable forest loss. The five 
final forest change year outputs were 
(figure 4):

 � Hansen forest loss year 2014 (Does 
not explicitly exclude or include 
forest degradation)

 � CLASlite deforestation

 � CLASlite disturbance (implicitly 
degradation)

 � Multi linear trend analysis (MLTA) 
deforestation

 � MLTA degradation

Some general patterns emerged between 
the products across all study areas. In 
general:

 � The Hansen product provided what 
appeared to be a low-noise, 
somewhat conservative estimate of 
forest loss.

 � The CLASlite deforestation and 
disturbance products appeared to be 
somewhat noisy and inconsistent 
relative to the other products. 

 � The MLTA deforestation product 
followed the same general spatio-
temporal patterns of the Hansen 
product, but was less conservative. 
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Figure 3—Example of composites from Houaphan Province, Laos. The top set of images depicts a best-case-scenario for a composite, 
while the lower image represents a worse-case-scenario. White areas represent areas without high quality observations available. 
Missing data due to cloud/cloud-shadows as well as the more linear Landsat 7 ETM+ scanline correction anomalies are evident.

 � The MLTA degradation product 
provided a conservative estimate of 
forest degradation.

 � The MLTA deforestation product 
may have included degraded areas 
that should have been included in the 
degradation product instead. 

All forest loss products detected limited 
change in Madang (figure 4a and 5a). 
The areas that were detected varied in 
consistency between products. Given the 
paucity of the Landsat data record, it was 
expected that the outputs would be 
variable depending on how the 
algorithms handled null data values.

Beyond the frequency of change, more 
universal patterns emerged between the 
three products across all study areas. 

 � Generally, Hansen found areas in 
similar locations as MLTA 
deforestation, but to a lesser extent 
(evident in the expanded example 
regions in figure 4). 

 � Both CLASlite and MLTA products 
detected limited degradation. 

 � Generally, the CLASlite degradation 
product depicted areas that were 
greater in spatial extent and made 
sense with respect to the CLASlite 
deforestation product (figure 5 b 
and c). 

 � CLASlite outputs generally included 
more Landsat 7 ETM+ scanline 
correction anomalies than the other 
products (figure 5c). 

 � While both CLASlite and MLTA 
used the exact same data source, 
the final change algorithms clearly 
provide varying levels of sensitivity 
to the frequency of available 
observations. 

 � Additional anomalous results from 
CLASlite are evident in the MAE 
Sa-Kog Ma MAB CLASlite 
Deforestation Year product (figure 
4d). Here, change rates were much 
higher than the Hansen Loss Year 
or MLTA Deforestation Year 
products. This is especially 
surprising since this area is largely 
within a reserve. 



8 | RSAC-10108-RPT1

A

B
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C

D

Figure 4—Sub-figures A through D show a general overview of individual study area-wide deforestation and degradation outputs. At 
this scale, very little forest loss is evident in most study areas. Some of the broader patterns of agreement between MLTA Deforestation 
Year and Hansen Loss Year can be seen in (B and C) Houaphan and Lam Dong. Also of note is the anomalous nature of the CLASlite 
Deforestation Year output in (D) Mae Sa-Kog Ma MAB.
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Figure 5—A through C shows more detailed examples from three of the study areas (Thailand was not shown again since it was already 
shown at detailed scale in Figure 4D). It is evident that the spatio-temporal patterns of the Hansen Loss Year and MLTA Deforestation 
Year products are somewhat similar in these three study areas, while the CLASlite Deforestation Year product shares limited areal 
coverage and generally detects change as occurring during different time periods. Both degradation products detected limited change, 
with the MLTA Degradation Year product providing the most conservative depiction. 

Forest Loss Dynamics Results

In addition to visually comparing the 
products across the study areas, we also 
wanted to gain a sense of the dynamics 
of the rate of deforestation and forest 
degradation during the analysis period 
between the study areas. Since many of 
the differences among the forest loss 
rates can be confounded by a number of 
variables (data anomalies, algorithms, 
etc.), gaining a concise understanding 
of the broader temporal trends of forest 
loss proved challenging. 

Nevertheless, in order to visualize 
annual change rates across each study 
area, the bar charts below display the 
percent of the total study area that 
changed each year by product (figure 
6). For CLASlite and MLTA, 
deforestation and degradation are 

stacked in order to show the relative 
proportion of areas detected as 
undergoing deforestation compared to 
forest degradation. Additionally, the 
CLASlite products for Madang 
Province are only available biennially 
(figure 6a), making the rates of change 
somewhat misleading. Since the Hansen 
forest loss product does not have a 
separate forest degradation product, 
only a single bar is used to represent it. 
When looking at the graphs for each of 
the study areas, it is apparent that there 
are no clear long-term trends in the rate 
of deforestation and forest degradation. 
It also becomes apparent that each 
product detects different rates of change 
at different periods of time. This 
enhances the difficulty of gaining a 
meaningful understanding of the 
patterns of forest loss. 

Some general patterns do, however, 
emerge between the different products. 
As discussed in the qualitative results 
section, the MLTA deforestation 
product generally provides a liberal 
estimate of deforestation, while the 
Hansen loss product is more 
conservative. We also see that the 
CLASlite product can be highly variable 
across the different study areas and in 
time. Most notable are the high rates of 
forest loss in the Mae Sa-Kog Ma Man 
and Biosphere Reserve study area 
indicated by the CLASlite product 
compared to the MLTA and Hansen 
products (figure 6d). CLASlite also has 
a much higher rate of detected 
deforestation and degradation in 
Madang Province. 
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Figure 6—Deforestation and forest degradation rates across each study area for each product. No strong patterns of change rates 
emerged across time. It is clear that the CLASlite deforestation and degradation products tend to be variable across time and study 
area, while the Hansen product is generally conservative. The MLTA product tends to detect more deforestation than either product 
(except for in Mae Sa-Kog Ma Man and Biosphere Reserve), but is generally conservative with its estimate of degradation. 
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Combined Study area Quantitative 
Product Validation

The goal of the independent validation 
was to gain a quantitative 
understanding of the efficacy of the 
various forest loss algorithms. Primary 
challenges to this included:

 � Lack of consistent analysis of forest 
change within image time series with 
abundant cloud cover

 � Limited visual differences between 
forested areas and densely vegetated 
understory 

 � Timing of available observations 
relative to forest loss

 � Difficulty of differentiating between 
forest recovery/regrowth and 
degradation

Despite these challenges, a total of 
2,000 sample pixels were analyzed for 
the entire time series and categorized as 
undergoing deforestation, degradation, 
or no loss. While accuracy assessments 
ideally use an independent source of 
data to depict truth, the samples 
analyzed in TimeSync are believed to 
represent a useful depiction of what 
may be more likely to be truth, but not 
truth per se. With this in mind, all 
TimeSync-interpreted samples were 
used to try to gain a better 
understanding of the efficacy of each 
algorithm at detecting what analysts 
identified as deforestation and forest 
degradation. 

We felt the most useful piece of 
information was the chance that an area 
detected as being deforested or degraded 
was actually deforested or degraded and, 
similarly, that an area that was, in fact, 
deforested or degraded was detected as 
such. These types of accuracy are 
often-times called user’s and producer’s 
accuracies. User’s accuracy represents 
the proportion of samples identified as a 
given class by the algorithm that were 
also identified as the same class by the 

analyst. For example, a user’s accuracy 
of 80 percent for forest loss would 
indicate that 80 percent of the samples 
identified by the algorithm as 
undergoing deforestation were also 
identified as such by the analyst. 
Producer’s accuracy represents the 
proportion of samples identified as a 
given class by the analyst that were also 
identified as that class by the algorithm. 
For example, a producer’s accuracy of 
80 percent for forest loss would indicate 
that 80 percent of the samples identified 
by the analyst as undergoing 
deforestation, were likewise identified 
by the algorithm. This is of particular 
interest since it is suspected that the 
Hansen forest loss product does not 
detect degradation well. If this were the 
case, it would be expected that the 
producer’s accuracy of the Hansen 
Forest Loss product for detecting 
degradation would be very low. 

Figure 7 illustrates the user’s and 
producer’s accuracies between the 
different products and various 
combinations of classes. The broader 
four sections of bars are divided among 
algorithm output. Within each section, 
broader categories of interest are 
grouped. The first category is areas 
identified as undergoing no loss. The 
second is a combination of all loss 
where deforestation and forest 
degradation are combined. The other 
two groups compare deforestation and 
degradation respectively with 
TimeSync. 

The first important highlight is that 
since the majority of the landscapes did 
not experience deforestation or forest 
degradation, both the user’s and 
producer’s accuracies are high for no 
loss categories. The second highlight is 
that the TimeSync-interpreted pixels 
indicate Hansen has a 23 percent 
producer’s accuracy for the forest 
degradation class (23 percent of plots 
identified as degradation in Timesync 
were identified as forest loss by the 
Hansen product). This is higher than 

the producer’s accuracy between 
TimeSync degradation and CLASlite 
degradation (18 percent) and MLTA 
degradation product (13 percent). This 
finding may come as a surprise to many 
users of the Hansen products. It is 
important to keep in mind that this is a 
depiction of forest degradation as we 
defined it for this project and is 
dependent on our ability to accurately 
depict forest degradation using 
TimeSync. Considering that the actual 
degradation products appear noisy and 
rather inconsistent between the two 
algorithms, finding such low accuracies 
is not surprising. The user’s accuracy is 
higher in the MLTA deforestation 
category though, indicating that where 
the MLTA algorithm did identify 
deforestation, the plots were in 
relatively high agreement (64 percent). 

Another pattern that is consistent across 
all products is that the accuracy for 
detecting degradation is much lower 
than for deforestation. This is expected 
since subtle low magnitude changes are 
more difficult to detect. 

Discussion and 
Recommendations
As countries prepare systems to meet 
the increasing needs for improved forest 
cover monitoring, the role remote 
sensing can play often comes into 
question. Many available algorithms 
have been optimized to work in more 
ideal situations common in the mid-
latitudes or even the Amazon. These 
methods do not provide a viable option 
for remote sensing-based monitoring 
systems in Southeast Asia. Recent work 
by Hansen et al. (2013) largely 
addresses the need for consistent, 
annually updated deforestation 
products, but fails to provide the 
flexibility that may be necessary to meet 
a specific country’s monitoring needs 
for deforestation as well as forest 
degradation. 
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Figure 7—Graph depicting the user’s and producer’s accuracies across the different products for the 2,000 sampled pixels. 
Generally, detecting forest degradation proved more difficult than deforestation. The Hansen forest loss product had a higher 
producer’s accuracy (detection rate) for forest degradation than CLASlite. MLTA had the highest producer’s accuracy for all loss 
categories, indicating that perhaps it could serve as a viable option for future work.

With few to no cloud/cloud-shadow-
free Landsat observations in Southeast 
Asia, it proved challenging to create 
cloud-free composites in all four study 
areas. Additionally, they contained some 
seasonal variation across individual 
composites. Many of these limitations 
are inherent with using Landsat as a sole 
data source. Despite these limitations, 
cloud free composites were successfully 
created using automated methods and 
then used in CLASlite. 

This study addresses some of the 
regional challenges related to 
deforestation and forest degradation 
monitoring in Southeast Asia. The 
primary challenge for all forest cover 
loss monitoring methods proved to be 
the availability of high quality Landsat 
observations for the analysis period. 
This difficulty impacts methods that are 
automated, such as Hansen’s forest loss, 

CLASlite, and MLTA, as well as manual 
approaches such as TimeSync. Despite 
all methods relying largely on the same 
dataset, null data artifacts do indicate 
that Hansen’s Forest Loss and MLTA 
methods are generally more effective at 
handling irregularities in quality and 
frequency of available data that is 
inherent with using Landsat data in the 
tropics. 

TimeSync proved to be a necessary tool 
to consistently assess forest loss and gain 
across time. Alternative tools such as 
Collect Earth (http://openforis.org/) 
provide some of the same capabilities in 
a Google Earth-centric environment, 
but lack the consistent visualization of 
the available Landsat archive. While all 
validation data collected in TimeSync 
were assumed to represent “truth,” it is 
prone to interpretation error as well. 
Despite this potential shortcoming, the 

validation using TimeSync-based 
independent “truth” data did provide 
some useful insight into what methods 
may prove useful for future monitoring 
requirements in the region. 

Unlike deforestation, detection of forest 
degradation continues to prove difficult 
using optical remote sensing. This study 
does indicate that all three forest change 
detection methods can detect forest 
degradation, but generally with higher 
error rates than for deforestation. 
Additionally, consistently detecting 
degradation is confounded by a lack of a 
consistent definition. The MLTA 
algorithm demonstrated the merits of 
having the ability to tailor the output to 
meet a specific definition but proved 
challenging to properly calibrate 
without enhanced on-the-ground 
knowledge of likely degraded areas. 
CLASlite proved effective at detecting 

Comparing overall user’s and producer’s accuracy from 2,000 sampled pixels for each algorithm

http://openforis.org/
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some degradation, but since the final 
change decision rule set was largely 
based on work in South America, the 
rules could not be adapted to 
degradation patterns in the USAID 
LEAF study areas. Based on the 
accuracy assessment comparison 
composed of 2,000 randomly selected 
points, the Hansen forest loss product 
proved to be more effective than 
expected at detecting forest degradation; 
however, presently it is not separated 
from deforestation or what Hansen 
refers to as “forest cover loss”. While its 
producer’s accuracy was relatively high 
compared to the other algorithms, it 
remained rather low in absolute terms. 
Perhaps with more calibration and field 
data a customized algorithm such as 
MLTA could be calibrated to more 
effectively detect forest degradation.

Next Steps

With the continuation of the Landsat 
program and the introduction of the 
Sentinel 2 mission (https://sentinel.esa.
int/web/sentinel/user-guides/sentinel-2-
msi/applications/land-monitoring), 
moderate resolution optical remote 
sensing-based monitoring systems 
should be able to provide increasing 
capabilities in the future. Currently, 
historical forest change analysis has 
many difficulties largely centered on the 
inconsistencies with Landsat 5 TM data 
acquisition and warehousing, and on 
Landsat 7 ETM+ scanline data gaps. 
Landsat 8 OLI now has difficulties with 
its thermal band, thus jeopardizing the 
ability to create robust cloud masks. 
The vulnerabilities of the Landsat 
program generally providing one sensor 
at a time will likely be mitigated with 
the Sentinel-2 mission. 

Future methods will need to be able to 
harmonize the differences between the 
two missions’ data to create seamless 
automated monitoring systems. 
Increasingly reliable data streams 
combined with distributed cloud-based 
computing environments, such as 

Google Earth Engine, will enable 
methods such as MLTA to be quickly 
tailored and applied to a monitoring 
need. 

The final key component to automated 
repeatable forest degradation 
monitoring will be a standard definition 
that can be related to optical remote 
sensing data. Until a common 
definition is agreed upon, any method 
will need to remain highly tunable in 
order for a given definition to ensure 
potential efficacy. Additional 
enhancements with better data streams 
will also likely increase the ability to 
separate the subtle signal presented by 
forest degradation from the incessant 
noise. 
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