Pig Production without Antibiotics

Remco Schrijver DVM, PhD

Ремко Шрівер DVM, PhD
• Why?
• How?
• Effect on economics of farms?
• Alternatives?
Pig Production without Antibiotics?

Some remarks:

• Car without a motor?
• Dog without teeth?
• Restaurant without waiters?

• Are we crazy?
WHY?

Infectious Disease

From Pigs to People: The Emergence of a New Superbug

The discovery of a novel strain of MRSA able to jump from livestock to humans has sparked a multicountry effort to see how dangerous it might be.

The first infection was puzzling, almost inexplicable. In July 2004, Andreas Voss of Radboud University Nijmegen Medical Center in the Netherlands admitted a 6-month-old girl for surgery to repair a congenital heart defect.

Because an infection with the common bacterium *Staphylococcus aureus* would pose a grave risk following heart surgery, Voss and his colleagues screened the baby girl for the microbe. They found not just *S. aureus* but also a menacing drug-resistant form known as methicillin-resistant *S. aureus* (MRSA). The physicians were flummoxed. Although MRSA has reached epidemic proportions in or other livestock harbored MRSA, and no MRSA strain had ever been known to jump from livestock to humans. If the Dutch doctors' fears were correct, a novel strain had just gained that ability, opening up a new route for a potentially dangerous superbug to spread among humans.

"Initially, we were very much afraid that this would be a major problem that could spread to the entire population," says Jan Kluytmans, a microbiologist at VU University Medical Center in Amsterdam.
Development of antimicrobials: since 1968 only 5 new classes, 1935-1968: 14
Antibiotic resistance: always occurs
How does it occur?

• More antibiotic use \rightarrow better selection of resistant variants
“It does not reach us, we cook the meat!”

Nonsense:

• Also contamination during preparation possible
• Other routes transmission
It does reach us! → contact with animals, contaminated animal products
That is why
Decrease in animals - benefit for humans

NEWSFOCUS

INFECTIOUS DISEASE

From Pigs to People: The Emergence of a New Superbug

The discovery of a novel strain of MRSA able to jump from livestock to humans has sparked a multicountry effort to see how dangerous it might be.

The first infection was puzzling, almost inexplicable. In July 2004, Andreas Voss of Radboud University Nijmegen Medical Center in the Netherlands admitted a 6-month-old girl for surgery to repair a congenital heart defect.

Because an infection with the common bacterium Staphylococcus aureus would pose a grave risk following heart surgery, Voss and his colleagues screened the baby girl for the microbe. They found not just S. aureus but also a menacing drug-resistant form known as methicillin-resistant S. aureus (MRSA). The physicians were flummoxed. Although MRSA has reached epidemic proportions in or other livestock harbored MRSA, and no MRSA strain had ever been known to jump from livestock to humans. If the Dutch doctors' fears were correct, a novel strain had just gained that ability, opening up a new route for a potentially dangerous superbug to spread among humans.

"Initially, we were very much afraid that this would be a major problem that could spread to the entire population," says Jan Kluytmans, a microbiologist at VU University Medical Center in Amsterdam.
Pig density and livestock associated MRSA in humans
Proportion of Methicillin Resistant *Staphylococcus aureus (MRSA)* Isolates in Participating Countries in 2013

More human disease and deaths
How? Example-NL

- Goals set by the Dutch government
- Agreement with industry:
 - Target -20% in 2011)
 - Target -50% in 2013)
 - Target -70% in 2015)
- Setting up of Veterinary Drug Authority (SDA)
- Mandatory recording of prescription and usage
SETTING OF BENCHMARK VALUES
Based on prescriptions pro farm:

‘Animal Daily Dose’:

Calculated by treatable weight (based on prescriptions) divided by “kg animal” at risk
Sows with piglets farms, based on data of 2011
SETTING OF BENCHMARK

ACTION THRESHOLD
Direct measures required which reduce use of antimicrobials immediately

SIGNALING THRESHOLD
Use of antimicrobials requires attention

TARGET VALUE
No action required

Table 2: Quantitative benchmark indicators for antibiotics usage (ADD/D/Y) in broilers, sows/piglets, fattening pigs, cattle and veal calves for 2013. Green means 'no immediate action required'; orange means 'high usage, requires additional attention'; and red means 'immediate action required'.

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Target Level 2012 - 2015</th>
<th>Signaling Level 2013</th>
<th>Action Level 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy cattle</td>
<td>0 - 3 (4#)</td>
<td>> 3 - 6 (> 4 - 7#)</td>
<td>> 6 (7#)</td>
</tr>
<tr>
<td>Suckler cows</td>
<td>0 - 1</td>
<td>> 1 - 2</td>
<td>2</td>
</tr>
<tr>
<td>Beef bulls</td>
<td>0 - 15$</td>
<td>> 1 - 2$</td>
<td>> 2$</td>
</tr>
<tr>
<td>Rearing cattle</td>
<td>0 - 15$</td>
<td>> 1 - 2$</td>
<td>> 2$</td>
</tr>
<tr>
<td>Veal calves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White veal calves</td>
<td>0 - 23</td>
<td>> 23 - 39</td>
<td>> 39</td>
</tr>
<tr>
<td>Rosé starter</td>
<td>0 - 67</td>
<td>> 67 - 110</td>
<td>> 110</td>
</tr>
<tr>
<td>Rosé fattening</td>
<td>0 - 1</td>
<td>> 1 - 6</td>
<td>> 6</td>
</tr>
<tr>
<td>Rosé combination</td>
<td>0 - 12</td>
<td>> 12 - 22</td>
<td>> 22</td>
</tr>
<tr>
<td>Pigs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sows and piglets</td>
<td>0 - 10</td>
<td>> 10 - 22</td>
<td>> 22</td>
</tr>
<tr>
<td>Fattening pigs</td>
<td>0 - 10</td>
<td>> 10 - 13</td>
<td>> 13</td>
</tr>
<tr>
<td>Broilers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD/D/Y</td>
<td>0 - 15</td>
<td>> 15 - 30</td>
<td>> 30</td>
</tr>
<tr>
<td>Treatment days*</td>
<td>0 - 17$</td>
<td>> 17 - 34$</td>
<td>> 34$</td>
</tr>
</tbody>
</table>

* The figure between parentheses is the value determined on the basis of the 'LEI' methodology.
 * Expressed as the number of treatment days per year.
 $ Indicative values; will be adjusted in the autumn of 2013 or 2014 as necessary.
SETTING OF BENCHMARK VALUES FOR VETS

- Based on one-to-one relationship
- Vet is responsible for population of farms
- Based on $DDEDA_F$ of each farm

<table>
<thead>
<tr>
<th>Voorschrijfiveau</th>
<th>Veterinaire Benchmarkwaarde streefniveau, signaleringsniveau en actieniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actiegebied</td>
<td>> 0.30</td>
</tr>
<tr>
<td>Signaleringsgebied</td>
<td>$0.10 - \leq 0.30$</td>
</tr>
<tr>
<td>Streefgebied</td>
<td>< 0.10</td>
</tr>
</tbody>
</table>
Results of antibiotic usage reduction:

- 2011: -32 % (target 20% in 2011)
- 2012: -49 % (target 50% in 2013)
- 2013: sows, piglets: -60%, fatteners -69% (target -70% in 2015)
- Limit reached?
Ab reduction in sow farms

Ab reduction in fattening farms
Effect on economics - reduction of sales of antibiotics - NL
Effects on farms

- Greatest reduction on farms that use (much) more than others (benchmark)
- Old approach: antibiotics and vaccines; now: management and vaccines
- More use of vaccines:
 - Mycoplasma hyopneumoniae
 - PRRSV
 - Circovirus
 - APP (*Actinobacillus pleuropneumoniae*)
- No cover up of management deficiencies by antibiotics, more attention to improve hygiene and management
General Management Factors

- Farm system
 - greatest amount on mixed farm systems
- Number of pigs present
 - Larger farms-more AM usage
- All-in all-out
 - Less AM usage
- Population density in region of farms
 - Many pigs nearby- more AM usage
- Optimal management, hygiene and biosecurity
 - lower AM usage
Antibiotic reduction does not necessarily lead to increased costs of production, but costs factors change:

- Costs of antibiotics
- Costs of vaccination
- Costs of improved Management
• Sow farms: 56 € → 74 € increase for animal health costs (2005-2012) Blue: total animal health costs; Red: veterinary costs; Green: veterinary drug costs; Yellow: antibiotics; Blue: vaccination costs; Dotted red: daily antibiotic usage
• Fatteners: 5.25 € → 2.12 € decrease for animal health costs (2005-2012) Blue: total animal health costs; Red: veterinary costs; Green: veterinary drug costs; Yellow: antibiotics; Blue: vaccination costs; Dotted red: daily antibiotic usage
Farm economics

• Sows: costs of antibiotics as part of animal health costs decreased from 35% (2006) to 12% (2012), vacc costs increased from 26% (2006) to 60% (2011)

• Fatteners: costs of antibiotics as part of animal health costs decreased from 60% (2007) to 32% (2012)
Search for alternatives??

- Garlic: diallylsulfide..?
- Honey: polyphenols, flavonoids..?
- Phytotherapy..?
- Homeopathy…?

- Always rely on
 → scientifically proven, evidence-based medicine
Pig Production without Antibiotics?

• We are NOT crazy
• Significant reduction possible
• Alternative strategies needed (vaccination, management,..)
Acknowledgements

• Mrs Dr Hetty van Beers, Director Veterinary Drug Authority (SDA)
• Dr. Reggie de Winne, veterinary practitioner
• Dr. Ron Bergevoet, Wageningen University