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1 SOURCES 

This tool uses the latest versions of the following tools and methodology: 

• CDM tool Calculation of the number of sample plots for measurements within A/R CDM 
project activities 

• CDM tool Estimation of carbon stocks and change in carbon stocks of trees and shrubs in 
A/R CDM project activities 

• VCS methodology VM0006 Carbon Accounting in Project Activities that Reduce 
Emissions from Mosaic Deforestation and Degradation 

2 SUMMARY DESCRIPTION OF THE TOOL 

Precise estimation of carbon in aboveground live forest biomass (ALFB) is critical for the 
implementation of many agriculture, forestry and land use (AFOLU) projects. ALFB is the primary 
factor for determining baseline levels for forest carbon pools. The geographic area of AFOLU 
projects is often large (>40,000 ha) and encompasses a wide range of land use/land cover 
(LULC) types. Statistically valid sampling strategies for such large areas using traditional ground-
based forest inventory plots are often infeasible due to cost and access constraints. Current VCS 
methodologies have no provision for the use of remote sensing (RS) methods to determine 
biomass and rely solely on traditional plot-based biomass measurements. This tool is intended to 
reduce the need for extensive ground-based sampling by leveraging remotely sensed data 
calibrated using a minimal number of ground-based sampling plots. 

This tool provides a method for determining average ALFB density at the stratum or area of 
interest (AOI) through a combination of remote sensing data and field measurements to provide 
accurate and cost effective estimation of ALFB across varied LULC classification types and broad 
spatial extents. The use of RS (LiDAR, RADAR, hyperspectral/hyperspatial imagery) in 
combination with a relatively small number field plots and can be used to achieve a statistically 
valid sample applying this tool.   

This tool is intended for use in estimating average ALFB density at a specific point in time. This 
tool does not present specific methods for detection of change in ALFB over time, or wall-to-wall 
carbon density mapping. This tool is intended for use with approved VCS methodologies within 
the scope of AFOLU involving estimation of ALFB. This tool is therefore limited to project 
categories within the AFOLU sectoral scope where forest is present and estimation of ALFB is 
required.  

The main procedural steps in this tool are: 

1. Field and remote sampling 

2. Predictive model development 

3. Assessment of error and uncertainty 

4. Discounting estimates based upon step 3  
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3 DEFINITIONS 

In addition to the definitions set out in VCS document Program Definitions, the following 
definitions apply to this methodology: 

Aboveground Live Forest Biomass (ALFB)  
Live forest biomass above the soil, including the stem, stump, branches, bark, seeds and foliage 
of vegetation. The ALFB includes live shrubs and trees biomass.  

Area-normalized 
The division of a metric derived in aggregate for a region, by a unit of area (eg, Mg ha-1, t ac-1) 

Area of Interest (AOI) 
Geographic region within which carbon in aboveground biomass is to be estimated. It could be a 
reference region, project area, forest stratum, leakage belt or jurisdictional program area 

Calibration Plot (CP)  
A subset of SPs used to develop a predictive model relating RS metrics to ALFB 

Land Use and Land Cover (LULC)  
Definition used to stratify an AOI into regions with similar characteristics 

Model Dependent Estimator (MDE) 
A two-phase approach for estimating forest biomass that rests on the assumption that predictive 
models are correctly specified to estimate the biomass from remote sensing data for each forest 
type, land cover class, or forest stratum 

Predictive Model (PM) 
Mathematical model relating predictor variables (independent) derived from RS data to ALFB 
(dependent) 

Remote Sensing (RS)  
Imagery or other gridded data acquired from aerial or satellite platforms and ortho-rectified to a 
geometric coordinate system such that scale is uniform. Metrics derived from remote sensing 
platforms can include directly measured reflectance at a given frequency, or derivative metrics 
such as gridded raster of tree canopy height from LiDAR 

Remote Sensing Plot (RSP) 
Individual pixels t of RS data used to estimate ALFB, ≥0.25 ha in size with1 ha as optimum size 
(see diagram below). 

Remote Sensing Sampling Unit (RSSU) 
A distinct, contiguous area of a given stratum or AOI area covered by RS data as seen in the 
diagram below. There may be multiple RSSUs in a given stratum if there is non-contiguous 
overlap of RS data with a given stratum. RSSUs can be different sizes as long as the combined 
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area covered by RSSUs within a given stratum is equal or greater to the minimum specified in 
equation (2). 

 

Root Mean Square Error (RMSE) 
A measure of the differences between values predicted by a model and the values actually 
observed, represented as follows: 

RMSE = �
1
n�(γ′i − γi)

2
n

i=1
 (1) 

Where: 

RMSE = Root mean square error of the predictor (sample measurement units) 
𝛾𝛾′ , 𝛾𝛾  = Observed and predicted values (sample measurement units) 

Sample Plots (SP)  
A geographic subset of the AOI or strata within which ALFB is measured in-situ using field 
instrumentation and used as a basis for ALFB estimation at the strata or project scale 
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Validation Plot (VP)  
A subset of SPs not used in developing predictive relationship between RS metrics and AFLB 
used to test predictive accuracy of the model developed using CPs 

4 APPLICABILITY CONDITIONS 

This tool is applicable to all forest types and age classes. The tool is applicable for use with 
methodologies or tools that require an estimate of area-normalized ALFB density. For such 
methodologies or tools, this tool can be used to produce estimates of ALFB density for initial 
inventory, or as a part of measurement, reporting, and validation. This tool is intended for the 
generation of ALFB density using a sampling approach. However, it can be used for wall-to-wall 
mapping of ALFB if remote sensing data covers the entire AOI. In addition the following are the 
conditions under which this tool may be used: 

• The tool is applicable in conjunction with AFOLU methodologies in which estimation of 
ALFB is required. 

• The remotely sensed data necessary to estimate ALFB is accessible for the time period 
desired. 

• Predictive model (PM) relating RS metrics to ALFB is parametric (eg, ALFB = f(x,α, ε)) 

This tool is not applicable under the following conditions: 

• The overarching methodology requires specific method for determining change in 
biomass density over time. This tool does not provide methods for temporal change in 
ALFB density. However, the tool can be repeated at distinct points in time to determine 
an ALFB delta.  

5 PROCEDURES 

The product of this tool is an estimate of ALFB density using RS sampling at the stratum or AOI 
based. This method may employ a stratification of the AOI into like biophysical land cover or 
forest types. Stratification may be used to increase the accuracy of the ALFB density estimate or 
for the purposes of reporting AFLB density for a LULC class used in other methodologies. This 
tool does not present a method for stratification.  

If this tool is being deployed in the context of an emissions reduction project in which a historical 
baseline of emissions is established for LULC classes within the AOI, the LULC classification 
map should be used as the basis for establishing a RS sampling design to ensure sufficient 
sampling density for each LULC type. Stratification may also be used to improve the accuracy of 
the RS  ALFB predictive relationship.  

The procedures are outline here and are specified in greater detail in the following sections: 

1. Consider stratification 

2. Collect Remote Sensing (RS) samples 
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3. Collect in-situ samples 

4. Develop and test predictive model (PM) 

5. Use PM to estimate ALFB at the stratum or AOI 

6. Discount estimate bade on uncertainty 

5.1 Estimation Using RS Predictor  

Remotely acquired data can capture an array of biophysical characteristics of the landscape at a 
range of scales. In many cases, data collected from RS platforms can be functionally related to 
ALFB such as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) wherein 𝑥𝑥 is one or many metrics derived directly from one 
or many sensors. The RS predictor method employed in this tool follows the model-dependent 
estimator (MDE) (Asner et al. 2013) and is based on a data collection design that insures correct 
and unbiased estimate of carbon density or total carbon.  An RS predictor based on MDE 
accounts for sampling error and model error and allows for the user to partition the variance into 
these components for each stratum or AOI.   The RS predictor accounts for the fact the RS data 
such as a LiDAR survey along a flight line is a cluster.  The RS predictor also takes into account 
the model error, i.e. the variations due to the variability of model coefficients impacting estimates 
of carbon density.  

To employ this predictive approach, a two-phase sampling design is required, as follows: 

1. Remote sensing sampling: RS surveys from airborne flights or satellite orbits are 
referred to as remote sensing sampling unit (RSSU, or level 1 sampling (Saatchi et al. 
2011). The RS surveys are random samples. Systematic sampling may be employed and 
treated as if random. For cases in which there are trends in the biomass density (such a 
north-south or east-west trend), an unaligned systematic sampling design can be treated 
as random without inflating the estimator errors (Nelson et al. 2012).  

2. In-situ sampling: Sampling plots (SP), or level 2 sampling, coincident with RS sampling 
(level 1 sampling) is needed to calibrate and validate the predictive model. Sampling 
plots must be located within an RSSU. The level 2 samples must be selected randomly 
with replacement or systematically in order to represent to the greatest extent possible 
the full range and variability of ALFP within stratum or AOI and to reduce the bias. The 
objective of SPs is to facilitate PM development. SP’s as defined in this tool cannot be 
used as an unbiased estimation tool such as in forest inventory sampling. For other 
sampling references aligned with this approach see Maltamo et al. (2010) and Juntilla et 
al. (2013). 

RS survey must not be designed to use existing plots.  RS data collection must be planned to 
cover sufficient area within each stratum (or AOI) to achieve the project proponent’s uncertainty 
threshold for the estimate.  Predictive model relationships between level 1 and level 2 data are 
established using a subset (calibration plots) of the sampled area (SPs) and tested using the 
remainder of the sampled area (validation plots) using a cross validation (Picard & Cook 1984) 
procedure to provide both accuracy and precision, which must be clearly documented.  The use 
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of SPs is limited to calibration and validation of predictive model only and is not used to 
independently estimate ALFB at the stratum or AOI scale.  

This tool can be used for developing a tessellated (wall-to-wall) carbon map from RS data only if 
RS data covers the entire AOI. In this case, the PM can be directly used to estimate the mean 
and variance of ALFB of AOI based on predicted ALFB density for all RSP’s without the need for 
stratification or statistical sampling approach (Saatchi et al. 2011).  

The result of the use of this tool will be an area-normalized (eg, t C/ha) estimate of average AFLB 
density within the AOI or for each stratum within the AOI.  Figure 1 below presents a high-level 
schematic representing the process described in this tool for estimating ALFB density at the 
stratum or AOI level. 

Figure 1: Schematic Diagram of Procedure Specified in this Tool to Estimate ALFB 
Density for Strata or AOI from Systematic and Random RSSUs and CP and VP plots 

 

 

5.1.1 Step 1: AOI Stratification  

Stratification of the AOI may improve prediction of AFLB densities from RS data within like land 
cover types. Deployment of this tool without stratification may require the project proponent to: a) 
accept increased uncertainty in the estimate, or b) obtain RS metrics that that can achieve 
sufficient accuracy without the use of stratification.  
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If this tool is being used in the context of emissions reductions projects that require demonstration 
of a historical baseline the project proponent should consider use of those LULC classes as the 
basis for stratification.  

The project proponent should consider two stratification options: 1) LULC classes may be used 
as strata if ALFB densities within each LULC class are relatively constant; or 2) LULC classes 
may be further subdivided into multiple strata if sufficient biophysical variance exists within the 
LULC class. Reduction in uncertainty of ALFB estimation may be achieved through establishing 
strata with homogeneous biophysical (ie, biomass density) characteristics. Stratification if 
employed, must result in a wall-to-wall (tessellation) map of like land cover types covering the 
AOI. A range of RS (or other) data sources can be used in this step. However, the functional 
relationship between the RS and ALFB must be described in detail and reference empirical 
relationships demonstrated in relevant scientific literature. The same RS data may be used in 
stratification and biomass estimation, however in-situ sampling data used for stratification and in-
situ sampling data (SP) used in biomass estimation must be independent and distinct. 

If stratification is employed, overarching methodologies should be consulted for guidance. This 
tool does not present a method for stratification. If this tool is being deployed outside of the 
context of another overarching (VCS or otherwise) methodology, see Johnson (Johnson 2000) for 
a useful general reference on the subject. 

5.1.2 Step 2: Sampling  

Sampling is a means of collecting representative data from a geographic subset of the AOI used 
in predicting and validating ALFB density for the AOI. This tool presents a method for combining 
in-situ plots (SPs) with sampling via a RS platform. The combination of in-situ plots and RS can 
substantially reduce the cost of collecting necessary sample data to achieve a level of uncertainty 
within the desired threshold. Figure 2 below provides an example sampling schematic.  
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Figure 2: Schematic representation of sampling strategy for using SP and RS metrics to 
estimate ALFB density for strata/AOI.  

 

The sampling frame, or area within which sampling should be conducted is specified by the 
project area for which an estimate of ALFB is required in any overarching methodology. Unless a 
buffer for the AOI is specified in an overarching methodology, a spatial buffer of 1000m around 
the perimeter of the AOI must be included in the sampling frame to ensure that results accurately 
reflect the ALFB gradients at the perimeter of the AOI. 

5.1.2.1 Step 2a: Sampling with RS Data 

The volume of emission reductions generated by a project must be discounted based on the 
uncertainty of the estimation methods. Statistically, reduced uncertainty is achieved with greater 
sampling intensity. Increased sampling intensity may, however substantially increase cost. Thus, 
the project developer must establish a threshold of uncertainty balancing cost and emission 
reduction volume. No objective standard can be used to arrive at such a threshold as project 
development costs vary greatly, as do expectations of emission reduction return.  

Sampling sufficient area to achieve the uncertainty threshold over large areas based solely upon 
in-situ measurement plots may be infeasible due to cost and logistics. Aerial RS data such as 
Light Detection And Ranging (LiDAR), RAdio Detection And Ranging (RADAR), or multispectral 
imagery can substantially reduce the overall cost of field data collection as large areas can be 
covered in much less time and with less expense than field crews. However, the use of RS data 
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introduces an additional source of error resulting from converting the RS metrics to ALFB (ie, 
model error). Thus, selection of an RS platform such as LiDAR that can directly obtain metrics 
strongly related to AFLB is critical. In the case where such data can be obtained, additional error 
can be readily reduced when averaged over larger area (Asner et al. 2013; Vincent et al. 2014). 
The accuracy of the predictive relationship between RS and ALFB must be clearly presented and 
the uncertainty in the estimate must be used in discounting ALFB (see Section 5.1.3) 

In this tool the term remote sensing sampling unit (RSSU) is used to refer a spatially contiguous 
area within a stratum for which RS data has been collected (see figure in definition section for a 
schematic representation of the RSSU). Simple random sampling, systematic sampling, or 
stratified random sampling can be employed in designing RSSUs. In general, ALFB estimation 
based solely on RSSU is assumed to have larger errors than estimation based only on SPs. The 
use of larger RS sampling sample units reduces the estimator error.  

Remote sensing plots (RSPs) are distinct and equally sized regions within an RSSU. In remote 
sensing terminology, the RSP is equivalent to the pixel. For this tool, the RSP must be 1 ha in 
area. RSPs are inherently clustered due to the swathing or field-of-view configuration of airborne 
or space-borne sensors. See figure in definition section for a schematic representation of the 
RSP. ALFB estimation using the RSSU must include the spatial correlation among RSPs.  The 
combined size of RSSUs within a stratum must be larger than the spatial correlation length (range 
of the semivariogram) of RSSU estimator error (see equation (2)). The number of RSSUs and the 
size of RSSUs necessary to achieve the required precision are inversely related: the smaller the 
sample size, the larger the number of samples.  

The combined area samples with an RS platform within each stratum or for the AOI must be of a 
minimum size to allow unbiased estimation of mean ALFB.  Determination of the extent of RS 
data collection is dependent on the desired confidence in the estimate produced by this tool and 
on the use of ALFB density estimates known a-priori either from a pilot study, from appropriate 
literature, or using default values provided herein. The number of RSSUs for each stratum or of 
the AOI can be calculated from the following: 

 
𝑛𝑛 = �

𝑡𝑡∞𝑣𝑣𝑣𝑣𝑣𝑣

𝐸𝐸
�
2
𝜎𝜎𝐿𝐿2 (2) 
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𝜎𝜎𝐿𝐿2 = ��𝑐𝑐𝑐𝑐𝑐𝑐(

𝑚𝑚

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
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𝑚𝑚
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(312) 

 

 𝜌𝜌(𝑑𝑑) = exp (−
𝑑𝑑
𝑐𝑐𝑐𝑐

) (43) 

 

Where: 

𝑖𝑖, 𝑗𝑗 = Generic indices representing pixels in the RSSUs (unitless) 

𝐸𝐸 = Accepted margin of error (ie, one-half of the confidence interval) in estimation of carbon 
density or ALFB at each stratum or AOI (t ha-1) 

𝑛𝑛 = Number of RSSUs within each stratum or AOI (unitless) 

𝑡𝑡∞𝑣𝑣𝑣𝑣𝑣𝑣 = Two-sided Student’s t-value at infinite degrees of freedom for the required confidence 
level (unitless) 

𝑟𝑟 = Range from semivariogram estimating the spatial correlation of errors associated within 
cluster samples in RSSU (distance measurement units in units of pixels) 

𝑐𝑐 = Fit for exponential spatial correlation function derived from semivariogram analysis 
(unitless) 

1 Weisbin et. al (2014), equation 13. Note that equation 13 in Weisbin et al. (2014) is for a specific 
case where 𝜎𝜎𝑢𝑢𝑢𝑢,𝑗𝑗2  is expressed in terms remote sensing variables. The second term in the equation 
represents the spatial correlation effect through covariance matrix of i,j pixels.  See other sources 
for similar formulations (Wagner 2003; Chilès & Delfiner 2012).  

2 𝑐𝑐𝑐𝑐𝑐𝑐() is the covariance function -- 𝜌𝜌(𝑑𝑑) in the alternate form -- associated with ALFB variance 
for each RSP 

3 Weisbin et. al (2014), equation 13. 
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𝑑𝑑 = Distance between pixels i and j within 𝑚𝑚 (pixels) 

𝜌𝜌(𝑑𝑑) = Spatial correlation function in terms of distance d based on exponential semivariogram 
model (unitless) 

𝜎𝜎𝐿𝐿2 = Variance derived from a-priori RS data, a pilot study, or default values of ALFB density 
for the stratum or AOI4 (t ha-1)2   

𝑚𝑚 = A dummy large number representing pixels in RSSU (pixels)  

𝜎𝜎𝑢𝑢𝑢𝑢,𝑗𝑗2  = Estimated variance associated with ALFB values for each 1-ha pixel (t ha-1)2 

In above equations, 𝑛𝑛 is the number of RSSUs for stratum j. The value of 𝑛𝑛 will depend on the 
desired 𝐸𝐸 and the estimated standard deviation of biomass stock for each RSSU as defined by 
𝜎𝜎𝐿𝐿2. When the value of 𝑚𝑚 is large, the standard deviation 𝜎𝜎𝐿𝐿2 will be small and hence the number of 
RSSUs will be small.  The target number of pixels in each RSSU (𝑚𝑚) is selected to allow efficient 
and cost-effective sampling design, while ensuring sufficient sampling density.  In most 
applications a larger 𝑚𝑚, meaning a larger area coverage for each RSSU and resulting in a smaller 
𝑛𝑛, is a cost effective. In most applications, 𝑚𝑚 is larger than required because of flight plans, 
causing a much smaller error of ALFB at the stratum or AOI scale, providing oversampling for 
conservativeness of estimation uncertainty. 

The semivariogram analysis defining the correlation coefficient (Chilès & Delfiner 2012) quantifies 
spatial correlation of pixel level estimates of ALFB within the RSSU due to variations of forest 
structure, environmental conditions (moisture or temperature), and edaphic conditions 
(topography and soil types). In RS sampling, the spatial correlation can be described by the 
covariance function of observations at a distance d apart from each other indicating that pixels at 
smaller distances tend to be more similar (higher correlation) than pixels at larger distances.  The 
correlation among pixels suggests that each pixel cannot be assumed independent (Weisbin et 
al. 2014).  

The method to estimate the variance in ALFB to determine RS sampling intensity using 
correlation length from semi-variogram analysis requires a priori knowledge of variation in ALFB, 
access to existing RS data over the region of interest (eg, stratum) or the use of default 
conservative values. One of the following three options can be used to determine the spatial 
correlation function:  

1. Use a priori RS data (eg, LiDAR scanning) for the area to establish a range of correlation 
lengths (range of semi-variograms) for the region to upper and lower bounds for the 

4 If a previous study is available estimating average ALFB within the AOI or stratum with no spatial 
variability, a default value of 15% of the estimate can be used.  If a spatially variable estimate is available 
this function should be used to account for spatial covariance. The equation is represented in terms of a 
covariance matrix of errors associated with the pixels as in Wagner (2003) eq. 3 and written in terms of 
variogram function as in Chilès and Delfiner (2012) chapter 2. 
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number of RSSUs for each strata. Chilès & Delfiner (2012) provide guidance on  
semivariogram analysis. A reference for the method used to develop the a priori dataset 
must accompany documentation of the application of this tool (eg, project description, 
etc.) if this option is chosen. 

2. Perform a pilot study by first collecting sample RS data over the region to establish the 
bounds for the number of RSSUs. Chilès & Delfiner (2012) provide guidance on 
semivariogram analysis. A detailed description of the methods used in the pilot study 
must accompany documentation of the application of this tool (eg, project description, 
etc.). 

3. Use the default values from literature (Weisbin et al. 2014; Zolkos et al. 2013; Asner & 
Mascaro 2014) specified below. If an estimate of ALFB from a previous study that does 
not vary across the AOI or stratum is used, reference to the method used to estimate 
ALFB must accompany documentation of the application of this tool (eg, project 
description, etc.). 

𝑐𝑐 =
1
3
 (5) 

𝑟𝑟 = 10 (1 ha pixels) (6) 

𝜎𝜎𝑢𝑢𝑢𝑢,𝑗𝑗2 =  �0.15𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑝𝑝� �2 (7) 

Where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑝𝑝�  = Average ALFB density for the AOI or stratum from previous study or relevant literature.5 

RSSU layout must take into consideration the following: 

1. RSSU must be located randomly or systematically within the AOI. In the case of random 
selection with airborne RS data, the center location and the heading of airborne flight 
must be randomized. 

2. Unless a buffer for the AOI is specified in an overarching methodology, a spatial buffer of 
1000m around the perimeter of the AOI must be included in the sampling frame to 
ensure that results accurately reflect the ALFB gradients at the perimeter of the AOI. 

5 A conservative estimate of 15% of the mean ALFB from LiDAR measurements over the tropical forests can 
be used as an estimate of the variance to determine sample size and intensity (Asner & Mascaro 2014; 
Meyer, Saatchi, Jerome Chave, et al. 2013) 
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3. RSSU may be a contiguous transect of size 𝑚𝑚 covering the variability of ALFB within 

each stratum for cost and operational considerations. 

4. RSSU may also be divided into segments to cover the variability of ALFB within each 
stratum by keeping the total area of RSSU as required.  

5. The pixel resolution of the data derived from the RS platform must not exceed the size of 
the SP when applying the RS predictor to avoid any potential estimation bias. After ALFB 
prediction, the RS product can be aggregated to any pixel resolution (e.g. 1-ha or 
greater) for ALFB estimate for stratum/AOI (see section 5.1.3.3).  For SP plot size and 
design, see Section 5.1.2.2.  

5.1.2.2 Step 2b: In-situ Measurement Plots 

In-situ measurement plots, or sample plots (SPs) are considered the level 2 sampling and are 
used to develop predictive models, validate, and quantify uncertainty in the relationship between 
RS metrics and ALFB.  The relationship between RS data and ALFB density can be considered 
an allometric relationship.  Level 1 and level 2 sampling must be independent; hence the location 
of SPs must be established at random or systematically within each stratum (or across the AOI).  
If a random approach is used, adherence to random selection without replacement6 of SP 
locations is critical.    

If the coefficients of allometric relationships for distinct species do not vary across the AOI 
(between strata), there is no requirement for SPs to be co-located with all RSSUs.  If stratum-
specific allometric relationships are used (ie, regression coefficients vary across strata), sampling 
to develop the relationship must be conducted within the overlapping area of the RS data extent 
and the each stratum. Otherwise, if allometric equation coefficients do not vary across the AOI, 
only one RS  ALFB allometric relationship can be used (Saatchi et al. 2011).   

A minimum of 45 SPs must be established within the area covered by the RS data within the AOI. 
Of the 45 SPs 30 Calibration Plots (CP) must be used to develop the PM and 15 used as 
Validation Plots (VP) (Asner & Mascaro 2014). In the case of stratification within one forest type 
(ie, one allometric equation), the total number of plots required for the tool will remain at minimum 
of 45.  

Sample plots must be large enough to avoid edge effects and provide unbiased relationship with 
RS metrics (eg, mean canopy height, top canopy height). Minimum size of 0.25 ha (rectangular: 
50 m x 50 m) or 0.28 ha (circular: 30 m radius) (Meyer, Saatchi, J. Chave, et al. 2013; Asner et al. 
2012; Asner et al. 2013) must be used for developing RS  biomass allometry.  These plots are 
temporary plots used to calibrate the RS data. Standard quality control / quality assurance 
(QA/QC) procedures for field data collection and data management must be applied. Use or 
adaptation of QA/QCs already applied in national forest monitoring, or available from published 

6 In the event that subsequent randomly selected plot locations overlap, the later plot must be discarded and 
another random selection made. 
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handbooks, or form the chapter 5.5 of Good Practice Guidance for Land Use, Land-Use Change 
and Forestry (Intergovernmental Panel on Climate Change 2003), is recommended. 

Positional accuracy of plots used in calibrating RS models is critical in contrast with traditional 
stratified random sampling. The error in positional accuracy of in-situ plot location reported by the 
GPS system used must be equal to or less than 10 meters and must accompany documentation 
of the application of this tool (eg, project description, etc.). The manufacturer and model of the 
global positioning system (GPS) used must accompany documentation of the application of this 
tool and the reported accuracy of the location by the instrument must be recorded at each plot.  

5.1.2.2.1 Estimation of ALFB in Plots 

Field data collection at SPs must include diameter and height for measured trees and specific 
identification for wood density estimation. If wood density for each species is not collected in field 
sampling, values must be taken from the Global Wood Density Database7 (Zanne et al. 2009; 
Chave et al. 2009). 

To estimate the ALFB of a specific tree species within a sample plot based on field 
measurements, relevant allometric equation must be applied. If this tool is used in conjugation 
with REDD/REDD+, ARR, WRC or IFM methodologies that specify allometric equations, selection 
and use of allometric equations must follow the guidelines therein. For cases in which there is no 
guidance from overarching AFOLU methodologies, allometric equations for forests similar to 
those found in the AOI found in GPG-LULUCF Annex 4A.2 Table 4.A.1 (Intergovernmental Panel 
on Climate Change 2003), or in Chave et al. (2014) may be used. See additional guidance on 
selection and use of allometric equations as well as development allometric equations from field 
data for ALFB in Picard et al. (2012) and Chave (2005).  A useful reference for documenting the 
allometric equation used can be found in Cifuentes Jara (2014). 

5.1.3 Step 3: Prediction 

SPs must be extrapolated to the extent of the strata or AOI. This involves the following two steps:  

1. Develop a PM and estimating its precision in predicting ALFB density within each RSSU; 
and,   

2. Calculate ALFB for each stratum or AOI based upon the ALFB estimates obtained by the 
PM in step 1.  

Estimation of ALFB density for each stratum or AOI involves development and validation of a PM 
relating RS metrics to ALFB measured in SPs. The PM is then used to estimate ALFB for all 
RSPs in the stratum.  

7 http://datadryad.org/repo/handle/10255/dryad.235  
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5.1.3.1 Step 3a: Model Development 

ALFB density prediction for each stratum or for the AOI (𝑆𝑆𝑗𝑗) is accomplished using the SPs within 
𝑆𝑆𝑗𝑗 to develop and validate the PM relating RS data to field-measured ALFB. In this step, metrics 
contained in the RS data are mined for their predictive power vis a vis ALFB as measured in CPs.  
One or several predictors are selected and used to estimate ALFB for the VPs within 𝑆𝑆𝑗𝑗. This 
process is conducted iteratively (cross validation) preserving the ratio of CP to VP to improve the 
strength of the predictor. It is critical that, for each iteration, CPs are used only for developing the 
predictive model and VPs are used only for assessing the accuracy of the model. A minimum of 
10 rounds (𝐾𝐾 ≥ 10) of cross validation must be employed and results reported in any 
documentation of the application of this tool (eg, project description, etc.) to assess the precision 
of the PM.  

5.1.3.2 Step 3b: Reporting PM Precision 

The models RMSE, coefficient of variation and bias must accompany documentation of the 
application of the results of this tool (eg, project description, etc.). Assuming 𝐾𝐾 cross validation 
rounds, RMSE must be calculated from all rounds comparing the observed versus predicted 
ALFB density values for the VPs as follows: 

ε𝑆𝑆𝑗𝑗 = �
1

𝑛𝑛 × 𝐾𝐾
��(γ′𝑘𝑘𝑘𝑘 − γ𝑘𝑘𝑘𝑘)2

𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑙𝑙=1

 (8) 

𝑅𝑅Sj
2 = 1 −

𝑆𝑆SRj

𝑆𝑆STj
 

(9) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑗𝑗 = ��(γ′𝑘𝑘𝑘𝑘 − γ𝑘𝑘𝑘𝑘)2
𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑙𝑙=1

 
(10) 

𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗 = ���𝛾𝛾𝑘𝑘𝑘𝑘 − �
1

𝑛𝑛 × 𝐾𝐾
��𝛾𝛾𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑙𝑙=1

��

2𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑙𝑙=1

 
(11) 

𝐵𝐵Sj =
∑ ∑ (𝛾𝛾𝑘𝑘𝑘𝑘 − 𝛾𝛾𝑘𝑘𝑘𝑘′ )𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑙𝑙=1

𝑛𝑛 × 𝐾𝐾
 

(12) 

Where:  

ε𝑆𝑆𝑗𝑗 = RMSE for stratum j (t ha-1) derived from observed and predicted biomass density 

𝑅𝑅Sj
2  = Coefficient of determination for stratum j (unitless) 
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𝑆𝑆𝑆𝑆𝑅𝑅𝑗𝑗 = Sum of squares of residuals, stratum j (t ha-1) 

𝑆𝑆𝑆𝑆𝑇𝑇𝑗𝑗 = Total sum of squares, stratum j (t ha-1) 

𝐵𝐵Sj = Bias stratum j (t ha-1) 

𝑛𝑛 = Number VPs in stratum j (plot) 

𝐾𝐾 = Number rounds of cross validation stratum j (cross-validation round) 

γ′𝑘𝑘𝑘𝑘, γ𝑘𝑘𝑘𝑘 = Predicted and observed ALFB density at VP l, validation round k respectively (t ha-

1) 

The range of applicability of the PM must be described in terms of the range of biomass densities 
in measured SPs and the range of RS metrics used in the PM.  

5.1.3.3 Step 3c: Estimation of ALFB at the Stratum/AOI 

In a general case with forest stratification and different RS-ALFB allometric relations for each 
stratum, the estimator specified below must be used to estimate the mean and variance for each 
stratum and project area (Asner et al. 2013; Nelson et al. 2012; Næsset et al. 2013). Assuming 𝑛𝑛 
strata, and 𝑛𝑛𝑗𝑗 remote sensing sampling units (RSSU) within each stratum j, the estimator for the 
mean value of ALFB and the variance for stratum j are:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑗𝑗 =
1
𝑛𝑛𝑗𝑗
∑ 𝐹𝐹𝑖𝑖𝑖𝑖(𝛼𝛼𝑗𝑗)
𝑛𝑛𝑗𝑗
𝑖𝑖=1

1
𝑛𝑛𝑗𝑗
∑ 𝜂𝜂𝑖𝑖𝑖𝑖
𝑛𝑛𝑗𝑗
𝑖𝑖=1

 (13)8 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� = �𝑤𝑤𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 
(14)9 

𝜎𝜎𝑗𝑗2 =
1
𝜂𝜂𝚥𝚥2���
∑ �𝐹𝐹𝑖𝑖𝑖𝑖�𝛼𝛼𝑗𝑗� − 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑗𝑗𝜂𝜂𝑖𝑖𝑖𝑖�

2𝑛𝑛𝑗𝑗
𝑖𝑖=1

𝑛𝑛𝑗𝑗(𝑛𝑛𝑗𝑗 − 1)
+

1
𝜂𝜂𝚥𝚥2���
��𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑘𝑘1𝑗𝑗 ,𝛼𝛼𝑘𝑘2𝑗𝑗)𝐹𝐹𝑘𝑘1𝚥𝚥

′����� 𝐹𝐹𝑘𝑘2𝚥𝚥
′�����

𝑃𝑃𝑗𝑗

𝑘𝑘2

𝑃𝑃𝑗𝑗

𝑘𝑘1

 
(15)10 

𝜂𝜂𝚥𝚥� = 1
𝑛𝑛𝑗𝑗
�𝜂𝜂𝑖𝑖𝑖𝑖

𝑛𝑛𝑗𝑗

𝑖𝑖=1

 (16)11 

8 Ståhl (2011), equation 11. 
9 Ståhl (2011), equation 12; Nelson et al. (2012). 
10 Ståhl (2011), equation 15 
11 Ståhl (2011), equation 15 
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𝐹𝐹𝑘𝑘1𝚥𝚥
′����� = ��

𝜕𝜕𝜕𝜕�𝑥𝑥𝑖𝑖𝑡𝑡,𝛼𝛼𝑘𝑘1�
𝜕𝜕𝛼𝛼𝑘𝑘1

𝑇𝑇

𝑡𝑡=1

𝑛𝑛𝑗𝑗

𝑖𝑖=1

 
(17)12 

𝑢𝑢𝑗𝑗 =
𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣�𝑤𝑤𝑗𝑗2 ×

𝜎𝜎𝑗𝑗2

𝑛𝑛𝑗𝑗
𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑗𝑗

 

(18)13 

𝑤𝑤𝑗𝑗 =
𝛢𝛢𝑗𝑗
𝐴𝐴

 
(19) 

Where: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 = Mean ALFB density of stratum j (t ha-1) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�  = Mean ALFB across all strata, which can be multiplied by the total area to obtain 
the overall total carbon in AOI (t ha-1) 

𝐹𝐹𝑖𝑖𝑖𝑖 = Sum of all of RSP ALFB estimates derived from the PM in each RSSU i  and 
stratum j (t/ha) 

𝑛𝑛𝑗𝑗 = Number of RSSUs intersecting stratum j (RSSU) 

𝛼𝛼𝑗𝑗 
= Vector of parameters used in the PM, eg, a and b in above ALFB equation 

(unitless) 

𝑃𝑃𝑗𝑗 
= Number of parameters, ie, the number of independent variables (eg, height 

metrics in ALFB equation) (unitless) 

T = Total number of RSPs within each RSSU14 (RSP) 

𝜂𝜂𝑖𝑖𝑖𝑖 = Number of RSPs within RSSU i, stratum j (RSP) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
= First derivative of the function f with respect to the coefficients of the model and 

evaluated for tth RSP within the ith RSSU in stratum j15 (t) 

𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣 = Two-sided Student’s t-value for the desired confidence level and degrees of 
freedom equal to n – M, where n is total number of sample plots within the tree 
biomass estimation strata and M is the total number of tree biomass estimation 
strata (unitless) 

𝑤𝑤𝑗𝑗 = Ratio of the area of stratum j to the sum of areas of all strata (unitless) 

𝜎𝜎𝑗𝑗2 = Variance of ALFB per hectare in stratum 𝑗𝑗 (t ha-1)2 

12 Ståhl (2011), equation 15 
13 Kangas and Maltamo (2006) 
14 As RS ALFB estimates are at 1-ha units, T represents the size of RSSU in ha. 
15 See Ståhl et al. (2011), Appendix A. 
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𝛢𝛢𝑗𝑗 = Area of stratum j or AOI (ha) 

𝐴𝐴 = Total area of AOI consisting of j strata 

𝑁𝑁 = Number of stratum in AOI 

𝑢𝑢𝑗𝑗 = Uncertainty of mean value of ALFB for stratum j (t ha-1) 

In the variance equation (15), 𝐶𝐶𝐶𝐶𝐶𝐶(𝛼𝛼𝑘𝑘1𝑗𝑗 ,𝛼𝛼𝑘𝑘2𝑗𝑗) is the covariance of k1 and k2 coefficients of the 
RS-ALFB PM, represented by function f for stratum j. The first term in equation in variance 
estimate represents the sampling error and the second term describes the model error for each 
stratum. The above relations will be simplified if only one model is used for all strata.  

The uncertainty in the estimate of the mean ALFB for stratum j is defined as the standard error of 
the mean expanded by the desired percent confidence interval, divided by the mean value, and 
expressed as percentage. The uncertainty is given by CDM tool Estimation of carbon stocks and 
change in carbon stocks of trees and shrubs in A/R CDM project activities, and calculated for this 
tool using equation (15). 

In the case where uncertainty exceeds the desired threshold, the estimate must be discounted 
per Section 5.1.4. To reduce uncertainty in the estimate, the parameter 𝐸𝐸 in Section 5.1.2.1 can 
be decreased which will result in increased RSSU area. 

5.1.4 Step 4: Discounting 

If this tool is being deployed in the context of an overarching methodology (eg, VCS, CDM, etc.), 
estimates of carbon in ALFB may be required to be discounted based upon the accuracy of the 
estimate. In this case, guidance on discounting carbon volume should be sought from the 
overarching methodology for the following aspects of this tool: 

• Allometric equations. Allometric equations used in estimating ALFB at the SP may be 
required to be assessed according to the standards of the overarching methodology 
being used.  

• Stratum mean ALFB. Discounting of the estimated ALFB density may be required to be 
performed based upon standard of the overarching methodology.  

6 DATA AND PARAMETERS 

6.1 Data and Parameters Available at Validation 
Data / Parameter 𝐸𝐸 

Data unit t ha-1 

Description Accepted margin of error (i.e. one-half of the confidence interval) 
in estimation of carbon density or ALFB at each stratum or AOI.   

Equations (2) 
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Source of data Arbitrary dependent upon project requirements 

Value applied: 10% of the mean ALFB at the stratum or AOI. 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

The default value of E is 10% of the mean stratum or AOI biomass 
stock (t ha-1). 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑡𝑡∞𝑣𝑣𝑣𝑣𝑣𝑣 

Data unit Unitless 

Description Two-sided Student’s t-value at infinite degrees of freedom for the 
required confidence level. 

Equations (2) 

Source of data At infinite degrees of freedom the Student’s T is equivalent to a 
normal distribution 

Value applied: Dependent on the desired confidence level. 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Enables the calculation of the RSSU sample size such that the 
desired confidence interval in the estimate of ALFB can be 
achieved 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑟𝑟 

Data unit Pixels 

Description Range from semivariogram estimating the spatial correlation of 
errors associated within cluster samples in RSSU. See below (this 
section) for a discussion of semivariogram analysis 

Equations (4 

Source of data Default value may be used. See section 5.1.2.1 for alternatives to 
the default value. 

Value applied: 10 

Justification of choice of 
data or description of 

Conservative estimate of the correlation length. Ten 1-ha pixels. 
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measurement methods 
and procedures applied 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑑𝑑 

Data unit Pixels 

Description Distance between pixels within the stratum and all other pixels 
within the stratum 

Equations (4 

Source of data Calculated based on the size of 𝑚𝑚. 

Value applied: N/A.  

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Canonically used in determining spatial covariance.   

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑐𝑐 

Data unit unitless 

Description Parameter of fit for exponential spatial correlation function derived 
from semivariogram analysis 

Equations (4 

Source of data Weisbin, Zolkos et al. and Asner and Mascaro (2014; 2013; 2014). 

Value applied: 1
3
 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Demonstrated in Weisbin, Zolkos et al. and Asner and Mascaro 
(2014; 2013; 2014). 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 
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Data / Parameter 𝑚𝑚 

Data unit pixels 

Description A dummy large number representing pixels in RSSU. The number 
can be arbitrarily large or at least twice the default value of range 
(r). 

Equations (3) 

Source of data Calculated based on stratum size. 

Value applied: Minimum (default) value is 2r = 20 pixels, can be larger. 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

This parameter establishes the minimum size of the RSSU based 
upon the estimated covariance of an a-priori, spatially variable 
ALFB estimate. 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑝𝑝�  

Data unit Tonnes (metric) ha-1 

Description Average ALFB density for the AOI or stratum from previous study 
or relevant literature. 

Equations (7) 

Source of data Previous study. 

Value applied: N/A.  

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Estimates of ALFB density from a previous study can be used to 
estimate RS sampling intensity. 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter K 

Data unit Integer  

Description Number of validation rounds used in cross validation of predictive 
RS model. 

Equations (8)(10), (11) and (12) 
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Source of data Define based upon the number of iterations that result in reduction 

of RMSE relative to previous round, must be 10 or greater. 

Value applied: ≥10 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Greater than 10 rounds of cross validation will provide sufficient 
training and validation to robustly assess the accuracy of the PM 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter γ′ 

Data unit Tons (metric) ha-1 

Description Predicted ALFB density 

Equations (8)(10), (11) and (12) 

Source of data Predictive Model, RS Metrics 

Value applied: N/A 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

RS metrics are correlated with ALFB from SPs to derive a 
parametric model relating RS Metrics to ALFB 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter γ 

Data unit Tonnes (metric) ha-1 

Description Observed ALFB density in SPs 

Equations (8)(10), (11) and (12) 

Source of data In-situ sampling 

Value applied: N/A 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Observed ALFB density is measured in the field at in-situ sample 
plots. 
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 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 

where relevant) 

Comments N/A 

 

Data / Parameter n 

Data unit plot 

Description Number of VPs used validating the PM. 

Equations (8)(10), (11) and (12) 

Source of data N/A 

Value applied: 15 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

Ratio of CP to VP is based on Asner and Mascaro (2014) 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣 

Data unit Unitless 

Description Two-sided Student’s t-value for a confidence level of 90 or 95 per 
cent as required by the overarching methodology and degrees of 
freedom equal to the total number of sample plots within the ALFB 
estimation strata minus the total number of ALFB estimation strata 

Equations (18) 

Source of data N/A 

Value applied: N/A 

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

N/A 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝛢𝛢𝑗𝑗 
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Data unit Hectare 

Description Area of stratum j or the area of the entire AOI if stratification is not 
employed. 

Equations (19) 

Source of data Land use or land cover stratification or project boundary. 

Value applied:  

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

The size of the area to be sampled is critical to determining 
sampling intensity. Area should be measured using appropriate 
survey methods or, in the case where a linear boundary around 
the AOI or stratum area has been established, the use of standard 
mathematical methods for calculating the area of a polygon 
(stratum or AOI) should be used. This may be accomplished using 
Geographic Information Systems software. 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 
Data / Parameter 𝐴𝐴 

Data unit Hectare 

Description Total area of AOI consisting of j strata 

Equations (19) 

Source of data Land use or land cover stratification or project boundary. 

Value applied:  

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

The size of the area to be sampled is critical to determining 
sampling intensity. Area should be measured using appropriate 
survey methods or, in the case where a linear boundary around 
the AOI or stratum area has been established, the use of standard 
mathematical methods for calculating the area of a polygon 
(stratum or AOI) should be used. This may be accomplished using 
Geographic Information Systems software. 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

 

Data / Parameter 𝑁𝑁 
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Data unit unitless 

Description The number of strata j in AOI 

Equations (19) 

Source of data Land use or land cover stratification or project boundary. 

Value applied:  

Justification of choice of 
data or description of 
measurement methods 
and procedures applied 

The number of strata is necessary to calculate ALFB for the AOI 

 Purpose of Data Determination of baseline scenario (for AFOLU methodologies, 
where relevant) 

Comments N/A 

6.2 Data and Parameters Monitored 

None. 
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