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1. Statement of task 16 

The Report on Carbon Estimates Uncertainty will discuss the relative contribution of 
uncertainty associated with estimating carbon stocks in the aboveground biomass, and all 
other pools (belowground, dead, litter, soil). The report also includes a detailed 
explanation of the methodology used in the design and implementation of BIOREDD+ 
program over the nodes and the uncertainty associated with field sampling, Lidar 
sampling, estimation of forest carbon stocks from lidar, and estimation all carbon pools 
used in establishing the REDD+ projects and the MRV systems.    

2. Background 

A comprehensive and accurate assessment of uncertainty in the forest carbon stocks in all 
pools are critical for understanding the quantitative limits of the products and for 
ensuring their usefulness to the broader BioREDD community, and future carbon credit 
qualifications.  The BioREDD project documents require a thorough evaluation of 
uncertatinties to meet the guidelines of the VM0006 methodology.  In particular, the 
BioREDD project adopted new techniques that have not been previously used in any 
VCS tools due to the difficulty of the region for security, and access to establish ground 
based carbon estimates. The new techniques make use of extensive airborne high 
resolution lidar observations for estimating above ground carbon density in the proejct 
areas, and additional data from other sources from previous studies in the region or 
literature to quantify carbon pools in all BioREDD project regions.  Our team has 
developed several reports on lidar estimation of vegetation biomass and other carbon 
pools and estimates in different BioREDD reports.  These analysis are based on several 
years of experience in assessing uncertainty associated with complex products generated 



	   4 

from multiple sources of input data, models, and error sources (Hagen et al., 2006; 
Saatchi et al., 2011; Harris et al., 2012; Weisbin et al. 2013).  

The forest carbon estimates are produced using a combination of tree level measurements 
and models.  All ground measurements, remotely sensed observations, and process-based 
and statistical models are all imperfect and no matter how carefully obtained, managed, 
or processed. After models are fit to data, substantial noise (i.e. residual errors) will 
certainly remain. This residual noise is due to both measurement and model uncertainty 
(i.e. noisy data and imperfect models), with model uncertainty potentially due to both 
parameterization and choice of the functional form of the model. In addition, the variance 
of these residuals can be heteroscedastic (i.e. not constant with respect to one or more of 
the independent variables). The bootstrapping approach to uncertainty assessment, also 
known as resampling with replacement, is more appropriate than conventional analytic 
methods for data with heteroscedastic and/or non-normally distributed errors. This 
method assumes that the observed data represent only one possible realization out of 
many, and reconstructs a large number of alternate realizations based on random 
resampling of the residuals. Bootstrapping brackets the range of unobserved values 
conditioned on the assumption of the model and its associated likelihood function (Efron 
and Tibshirani, 1993). 

Here, as in our past successful projects, we will estimate statistical uncertainty bounds 
associated with the final forest carbon stock and change estimates using a randomized, 
Monte Carlo-style sampling technique (Hagen et al. 2006; Robert and Casella, 1999; 
Harris et al, 2012). This technique relies on the bootstrapping approach described above. 
With bootstrapping and its Monte Carlo-style framework, we avoid making incorrect 
assumptions about the distribution of the underlying data sets, while combining the 
individual uncertainties from many different sources. 

We will construct a minimum of 1,000 scenarios, each one generated from randomized 
alternative data sets, each providing a realistic set of parameters for each model 
component. At the conclusion of our simulation, each of the 1,000 scenarios will exist as 
a full resolution gridded map of carbon lost to the atmosphere as a result of forest loss 
and gain between 2000 and 2010. From these 1,000 scenario maps, we will construct the 
95% prediction limits at the pixel, county,  regional, and national scales by first 
aggregating each individual map to the targeted scale (e.g., country, continent) and then 
selecting the 0.025 and 0.975 percentiles (i.e., 25th and 975th) from the 1,000 sorted 
simulations. The identification of the percentile values is computed individually for net 
change of forest cover, carbon stock, and stock changes, such that the low emission value 
is not simply a combination of the low bound for forest cover change and the low bound 
for carbon stocks; it is the 50th out of 1,000 sorted simulations that combined change in 
forest cover and carbon stock. 

3. UNCERTAINTY IN PLOT ESTIMATES OF AGB 

Inventory plots have been established and tree level data have been collected in 
BioREDD project areas. The plot-based measurements are used for calibrating and 
validating lidar remote sensing estimates of forest aboveground biomass within the 
LULC class or forest stratum.  Often in field base approaches, estimates of forest biomass 
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from tree dimensions data are considered the golden standard.  According to the IPCC 
guidelines for REDD projects (A/R CDM tool 14), tree dimensions can be converted to 
forest carbon stocks (above and below) using either the biomass expansion factor or 
allometric equation method. In either case, the standard error is calculated by considering 
the number of samples within forest stratum or area without any consideration for other 
errors.  However, in recent years, there has been efforts to consider the errors in inventory 
data in order to provide better estimates of biomass and changes that may be used for 
understanding ecological changes from climatic effects and climate mitigation policies as 
in REDD.  This renewed interest in tropical forest inventories has also motivated a new 
literature on methodological aspects that have greatly improved our confidence in 
biomass data estimated from plots (see Chave et al. 2004).  
 
The REDD methodology also provides guidance in the use of quality control/quality 
assurance (QA/QC) procedures prescribed under national forest inventory to establish 
protocols for data collection and uncertainty assessments. In the absence of these, QA/QC 
procedures from published handbooks, or from the IPCC GPG LULUCF 2003, are 
applied.  In this section, we discuss the uncertainty in ground estimates of forest biomass 
from various error sources: 1. Measurement errors, 2. Allometry errors, 3. Sampling 
error, and 4. Plot location errors. 

3.1 Measurement Errors 

In the BioREDD project, the plots are only used for calibration and validation of lidar to 
AGB model.  The minimum number of plots required for developing and validating the 
remote sensing to AGB predictive model was estimated to be 45, with 30 plots for 
calibration and 15 plots for validation. This requirements were based on a similar 
methodology as in CDM A/R tools for Calculation of the number of sample plots for 
measurements within A/R CDM project activities, and based 
on minimum number for developing remote sensing and 
AGB predictive model (Asner and Mascaro, 2014). In 
general one predictive model is enough to estimate forest 
biomass from lidar in BioREDD regions if the ground 
allometric model used in estimating AGB at the plot level is 
also one.  

In the BioREDD project we increased the number of 
calibration and validation plots in order to make sure that 
the numbers are enough for developing more than one lidar 
to AGB predictive model if necessary.  A total of 15 cluster 
plots were used in 15 lidar transects covering different strata 
in the BioREDD regions. Each cluster plot met the 
following requirements: 

Fig. 3.1.1 Shape and size of permanent 
and satellite plots within the lidar 
transect. 
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1. Each cluster plot had one permanent plot of 1-ha in size (100 m x 100 m) and 8 
satellite or auxiliary plots at 0.25 ha in size (50 m x 50 m). 

2. The center location of permanent plot was selected randomly in the lidar transect 
in the forest area to allow sampling all forest conditions as in fragmented, 
degraded or secondary forests.  The satellite plots were located at 250 m and 500 
m away from the center permanent plots in four cardinal directions (Fig. 3.1.1). 

3. In addition to above plots, we also developed a set of 45 plots, each 0.25 ha in 
size for spatial uncertainty analysis of the lidar estimation of biomass. We 
selected one lidar transect with relatively easy access and with no previous plots 
and developed 45 systematically located plots.  

 
 
Here, we use the ground plots to calibrate the lidar data for estimating forest biomass in 
project areas. Any errors in ground estimate of the forest biomass can readily propagate 
through the various models impacting lidar estimates of biomass.  Using a generic 
allometric model as:  
 

AGB = aρi
i=1

N

∑ Di
2hi  

 

We identified three measurement errors impacting the estimates of the forest biomass: 1. 
Errors in measuring the diameter (D), errors in measuring tree height (h), and error in 
identifying or measuring species wood density (ρ).   During the project, we collected data 
to quantify errors associated with the measurements and using an error propagation 
approach to quantify the overall effect of ground measurements in estimating carbon 
stocks in project areas (Chave et al. 2004; Saatchi et al., 2011).  

Measurements from QA/QC procedure from 45 sample plots collected within a lidar 
transect in a systematic fashion to examine the effect of measurement errors.  Two teams 
were formed to collect data in the field and have replications to examine the potential 
errors in the data. The first team, collected data in a systematic fashion in 45 plots and the 
second team randomly sampled 10 trees in each of the 45 0.25 ha plots.  

The QA/QC data are used in the following steps to estimate the uncertainty of 
measurements:  

1. Errors in DBH measurements were calculated from the data collected in 45 plots 
and the uncertainty in estimating DBH were then propagated through the local 
allometric equation to assess the impact on the plot level biomass estimation. 

2. Errors in tree height (H) measurements were quantified from the data collected in 
45 plots and the errors were propagated in developing the local height diameter 
(H-D) relationship and then through biomass estimation at the plot level using the 
local allometry.  
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3. Errors associated with wood density of tree species were estimated by the 
knowledge of the number of species un-identified in the field and the wood 
density measurements of sample species collected during the field campaign. The 
errors in estimating the wood density were propagated through the allometric 
equation to assess the impact on the plot level estimates of biomass.  

 

Error in Tree DBH Measurements: 

The errors associated with DBH are shown in Fig. 
3.1.2. It appears all trees except few have very 
accurate estimate of DBH. Out of 429 trees, 414 
were measured with high accuracy (RMSE < 0.5 
cm). About 15 trees have large measurement errors 
that may be due to factors different than 
measurement errors. Some trees have large 
differences in DBH (22 cm by group 1 and 59 cm by 
group 2). These differences may be due to 
registering the number of trees while recording the 
data or due to location of measurement above the 
tree buttress.  The bias in measurements was small 
but was included in the measuremnet errors for 
estimating biomass at the plot level from the two 
data sets. The relative error associated with DBH 
varied from < 1% for 414 trees to about 11% for all 
QA/QC trees.  We used the uncertainty in estimating 
DBH in evaluating the error in AGB at the tree level. The RMSE of tree biomass was 
about 182.64 kg (bias 0.82 kg, n=429) (Fig. 3.1.4).  The bias in the estimate was 
negligible and therefore had impact of  < 0.8% on the biomass estimation at the plot level 
when propagated to all the trees for 45 plots.  

Error in Tree Height Measurements: 

The errors associated with the height measurements are shown in Fig. 3.1.3.  The errors 
in height estimation appear to be large at the individual tree level but have approximately 
no bias between the two groups (RMSE=4.21 m, bias=-0.29 m).  For the first 400 trees, 
the RMSE drops to about 2 m in height and negligible bias (0.08 m).  Similar to the DBH 
measurements, it appears that the difference in measurements between the two groups is a 
combination of errors in measurements and recording.  However, using the two 
measurements, we develop height-diameter relationships for the 45 plots and find that the 
two equations appear to be idenitical. Using both H-D equations in local allometry results 
in negligible uncertainty (< 0.5%) in biomass estimates at the plot level.  The aggregate 
effect of tree diameter and height measurement errors on the tree level biomass 

Fig.	  3.1.2.	  Tree	  diameter	  measurement	  error	  
developed	  from	  the	  QA/QC	  data	  collected	  in	  45	  
0.25	  ha	  plots.	  	  
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estimation from the local allometry is provided in Fig. 3.1.4. 

 

 

Error in Tree Wood Density Estimation: 

In most applications wood density is not measured 
but extracted from published tabulated values from 
global or tropical wood density data. In the field, tree 
species are identified and then matched with 
scientific names in the published tables.  For the 
BioREDD project, we used the recommended 
methodology of using the tree identification, 
extracting values from tables, and applying an 
avarage plot level estimate for those trees that were 
not idenitified in the field.  In most plots, more than 
90% of trees were idenitified at the species and 
genus level.  In addition, the BioREDD project 

Fig.	  3.1.3.	  Height	  measurement	  error	  estimated	  from	  the	  QA/QC	  measurements	  reported	  from	  two	  groups	  
in	  45	  0.25	  ha	  plots.	  	  The	  height-‐diameter	  relationship	  in	  the	  right	  panel	  shows	  approximately	  no	  difference	  
in	  estimating	  tree	  height	  from	  diameter	  from	  the	  two	  sets	  of	  measurements.	  	  	  	  

Fig.	  3.1.4.	  Tree	  level	  biomass	  estimation	  error	  
associated	  with	  differences	  in	  the	  DBH	  and	  height	  
measurements	  between	  group	  1	  and	  group	  2.	  	  
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collected measurements of wood density of trees at stem and branch level for a selected 
number of trees.  

The BioREDD project developed a method based on the fit of a model that would 
estimate the density of wood from tree trunks (WD_T) based on wood density of 
branches (WD_R). For this the hypothesis of linear relationship with a slope of 1 and 
intercept 0 between WD_T and WD_R of felled trees 296 to construct models evaluated 
allometric relation.  Regardless of the test for the hypothesis, the measurements were 
used to improve estimation of species and compared with data from tabulated data to 
estimate the potential errors assocaited with the wood density values.   

The team develpoed a regression model to estimate the tree trunk wood density from 
branches and used this relationship to estimate the wood density of all tree species with 
measurements.  A minimum of 30 random collections of branches that were 
approximately 2-3 cm thick and 10 cm long on each of the permanent plots of 1-ha were 
used for this calculation. Based on the value of WD_R, each individual WD_T was 
estimated using the regression model, and then used to obtain an average WD_T per plot.  
This average wood density was then compared with a similar number from tablulated 
data. At the plot level, this average value WD_T per plot was the one assigned to each 
individual in each plot system for unidentified trees.  

At the plot level the impact of wood density measurements and tree identification is given 
by RMSE=0.02 (g/cm3).  The wood density uncertainty can impact the biomass 
estimation through allometric model and as a linear coefficient.  On the average on the 
plot level the impact of this error is < 1% of the mean plot level biomass.  
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3.2 Ground Allometric Errors 

Tree biomass is estimated from size measurements and species wood density from 
allometric models. These models can be variable depending on the forest type, 
environment and edaphic conditions controling growth and mortality of trees and other 
factors that impacts species composition and structural variations.  There are several 
models in the literature that can be used to estimate the tree biomass and hence the 
biomass of a plot when inventory is available.  

For developing local allometric equations trees have been harvested from different 
locations representing the species and diameter and height classes for the forests of the 
region. The allometric equations were also separated for three types of forests as in terra 
firme (Colinas), flooded forests (Guandal) and mangrove (manglar).  These equations 
were used to calculate the forest above ground biomass from field data that in turn were 
used to calibrate and validate remote sensing estimates of forest biomass.  For other 
carbon pools direct measurements and/or existing allometric models were used.  

Fig.	  3.1.5.	  Errors	  associated	  with	  the	  tree	  and	  plot	  level	  wood	  density.	  The	  right	  panel	  shows	  the	  wood	  density	  
estimation	  error	  from	  regression	  model	  compared	  with	  the	  observed	  values.	  	  The	  estimated	  values	  of	  species	  
were	  used	  in	  each	  plot	  to	  develop	  average	  values.	  The	  left	  panel	  shows	  plot	  level	  average	  values	  againsted	  the	  
tabulated	  values.	  	  
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To examine the accuracy of allometric relations, we used six models to estimate the 
biomass of mature forests of coastal Colombia. Of the six models, three are to estimate 
the biomass of mature forests generally three to estimate biomass as forest type, guandal, 
mangroves and colinas. In addition, three models were developed to estimate the biomass 
of secondary forests. Trees of all diameter classes including individuals with larger 
diameters found in the study are also included. Finally, two models to estimate the 
biomass of palms were developed. The three groups of models, mature forest, secondary 
forest and palms, are solid from a statistical point of view. However, it is considered that 
the models found for mature forest can more accurately estimate the biomass of all 
forests including successional forests, because the database of trees in mature forest 
includes individuals of all size classes including large trees, palms, and species from 
secondary forests.   The following models have been used in the BioREDD projects.  

Colinas ln(AGB) = -2.130+2.015×ln(D)+0.724×ln(H)+1.002×ln(WD) 

Guandal ln(AGB) = -2.328+1.833×ln(D)+0.724×ln(H)+0.151×ln(WD) 

Manglar ln(AGB) = -2.818+2.185×ln(D)+0.724×ln(H)+0.650×ln(WD) 

 

 

For biomass values estimated in individual permanent and satellite plots see 
(GeoEcoMap Report 8&9)  

For trees smaller than the threshold of 10 cm, we used a model based on several plot data 
including data in Panama, Colombia consulated from literature (Chave et al., 2003; Sierra 
et al., 2007; Usuga et al., 2010). The following model was used to estimate the ratio (Rt) 
of AGB for trees > 1 cm to AGB for trees > 10 cm.  Once the ratio was applied, the total 
biomass was caluclated by: 

 

 
 

 

Rt =1.483AGB10cm
−0.0613      n = 65,   R2 = 0.91
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Fig. 3.2.1. The ratio of forest biomass with all trees > 1cm to biomass of trees above the 
threshold of 10 cm measured in the field.  The ratio will correct the biomass from 
measurements to total biomass. 

 

We used the carbon fraction value of CF = 0.485  to convert the biomass to carbon 
numbers. This number is smaller than the conservative value of 50% suggested by the 
IPCC guideline, but is the average of values reported in the region and most Amazonian 
forests (Higuchi et al., 1994).   

 

For estimating the uncertainty in biomass estimation from allometric models, we 
performed two assessments: 

In the first assessment, we used the local model and compared the values of biomass with 
other existing models used for the region or tropical forests. We used three models, 
assuming model 1, as the local model, we assigned Saldarriaga (2014) allometry as 
model 2,  Alvarez et al. (2012) as model 3, and Chave et al. (2014) as model 4.  When 
comparing the biomass from these tree models for the region from the same diameter, 
height, and wood density, we found no significant differences among them (ANOVA; P> 
0.5). However, model 1 from local allometry produced on the average the lowest values 
among all models, since when the average error (100 × (AGB-est - AGB_model) / 
AGB_model) was calculated,  model 2 from Saldarriaga (2014 ) produced higher values 
by 3.9% ,  model 3 Alvarez et al. (2012) 10%, and model 4 Chave et al. (2014) 7.2%.  
This analysis provided us with the conclusion to use the local allometry, although 
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developed with less number of harvested trees, as the model to estimate biomass from 
ground measurements of structure.    

The error in local allometry itself was calculated from the regression model development 
from harvested trees. For trees > 10 cm in diameter, the model provided an error of 
approximately 4% for a sample size of 240 trees (number of harvested trees). This error 
increaseted to about 10% for 50 individuals.  The average error for estimating the 
biomass of individual tree was about 29%:  

σ A = 0.29 < AGB >  

 

 

 

Fig. 3.2.2.  Allometric model errors in comparison with locally developed allometry.  

 

Error Associated with Tree Size Limit of Allometry 

The choice of allometry also creates another condition for its implementation at the plot 
level.  In general, allometric equations are developed as a regression model from 
harvested trees of different sizes and tree structure. Once the equation is developed, it can 
be used over all ranges because the regression model can predict biomass values outside 
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the range of the data used to develop the model. However, according to the VCS 
methodolog and the IPCC guidelines, the allometric equations are not recommended to 
be used for trees greater than the size of the largest harvested tree used in the equation.   
In developing the local allometry, the size of the largest diameter tree was 155.4 cm (55.4 
m height).  In our study, we used the common scientific method of applying the allometry 
to all tree sizes present in the plot.  In order to demonstrate that our approach is not 
different from the recommended methodology, we estimated the biomass for each plot 
using the recommended methodology and compared it to the one used for all trees (Fig. 
3.2.3). 

The results show that there are only 3 plots with trees > 155.4 cm diameter with slightly 
lower biomass values when the local allometry with DBH threshold was used.  Using the 
new estimates with DBH threshold to relate to the mean canopy height, we find negligble 
impact on the biomass estimate. The biomass height model cannot be distinguished from 
the model with original biomass.  Using the two models and estimating biomass created 
and RMSE=1.58 Mg/ha that was less than less than 1% error (1.58/199.5). 

 

Fig. 3.2.3.  Comparison of biomass estimates from allometry applying on all trees 
without DBH limit and with the DBH limit of 155.4 cm.  The left panel shows the 
differences in estimates, and the right panel shows the indistinguishable regression 
models relating the biomass to mean canopy height similar to models that are used in 
estimating biomass from lidar data. 

3.3 Error Propagation 
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We propagated errors from different sources into the local allometric model used for the 
BioREDD project and evaluated the ensemble effect of errors on the estimation of plot 
level forest biomass carbon stock.  In the following, we assume that the measurement and 
the allometric uncertainties are independent sources of variability. The overall 
uncertainty on the AGB estimation of a single tree therefore: 
 

𝜎 = 𝜎! + 𝜎!  
 
To estimate the error in tree level biomass estimation, we need to quantify the allometry 
and measurement errors. The allometry error was definited to be approximately 34% for 
trees > 10 cm diameter  

𝜎! = 0.34 < 𝐴𝐺𝐵 > 

 

For measurement errors, we included different sources of errors, including DBH 
measurement error, height model error, wood density error, and allometric model error.  
To combine the errors, we first converted the standard errors for each term in units of 
Mg/ha as the effect they may have on the biomass estimation. Second, we assumed these 
errors are independent in nature.  The argument in independence is justified as 
measurement errors for size, wood density, and model errors are not related and can be 
considered independent source of error.  To estimate the ensemble effect, we use the 
following error propagation formula: 

 

σM =< AGB > α 2 σ D
2
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+β 2 σ H
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α =
∂ln( f )
∂ln(D)

,     β =
∂ln( f )
∂ln(H )

,    δ =
∂ln( f )
∂ln(ρ)

f = aρD2H

 

 where the function f represents the general form of the allometric equation and in 
our case, it is the local equation.  For the diameter measurement error, we use 2.59/23.5 = 
0.11 (11% of the mean), for height measurement error we use, 4.21/19.85=0.21 (21%), 
and for wood density we use 0.023/0.56=0.04 (4%), and for the correlation coefficient of 
0.68 between diameter and height in the above equation.  These will provide the 
measurement error of about 21.4% of the AGB:  

𝜎! = 0.214 < 𝐴𝐺𝐵 > 

The total uncertainty of AGB estimation for a single tree is on the average 55.4%, 
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partitioned into 29% due to allometric error and 21.4% due to measurement errors.   

At the plot level the uncertainty will go down as a function of number of trees per plot.  

 

Fig. 3.3.1.  Percent error associated with the size of plot and the number of trees (Sample 
size) within a plot.  Small plots having less than 100 trees may have large errors 
associated with their biomass estimation even from a local allometry.  

The tree-level uncertainties shown in the above figure average out at the stand scale when 
the number of trees in sample plots increases. The above figure also suggests that 
biomass estimation of individual plots with less 50 trees can be much larger than. For 
example, in a typical plot of one-quarter of a hectare, the error on the AGB estimate is 
10% of the mean. In Chave et al. (2003),  the uncertainty on AGB estimate was assessed 
based on limited sampling plots and was shown the AGB held in the sub-plots of a 50 ha 
plot is not autocorrelated, even for very small sub-plots: two neighbouring sub-plots of 
size10 m °— 10 m to 100 m °— 100 m are not significantly more similar in their AGB 
stock than two randomly chosen plots. We also developed a test of normality for the data. 
This suggests that for ground plot estimate, there is no need to include any spatial auto-
correlation error.  In addition, the test of normality at plots at difference sizes indicate 
that the size of one-quarter of a hectare is the minimal size such that the normality 
criterion is satisfied in this forest, in agreement with other published results in tropical 
forests.  Although this figure might vary slightly with the stem density in the plot, it can 
be taken as a reasonable guideline.  In the BioREDD region, we used the minimum size 
of 0.25 ha for field surveys and biomass estimation to calibrate the lidar metrics. 
 
 
4.0 UNCERTAINTY IN LIDAR ESTIMATE OF AGB 
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4.1 Lidar Measurement Errors 

This section provides the basic information about the lidar measurements of forest height 
and accuracy at the plot level. We used several height metrics in developing the lidar 
biomass estimator. These included the percentile heights (RH10, ….RH100). However, 
we used the mean top canopy height (TCH) as the metric for biomass estimation.  The 
processing provided the TCH for each 50 m area over all lidar data developing (83,000 x 
4) sample area for biomass estimation. The processing steps to develop 0.25 ha scale 
height metrics from lidar data included: 

We assessed the classification of the lidar raw data into ground and canopy using the 
point cloud data and las files.  In Microstation (using the Terrascan/Terramodel 
extension) and ArcGIS 10.2 (using the LP360 extension) the las files were imported and 
the triangulated ground model was visualized to assess the quality of the client 
classification.  If larger interpolations in the DEM are present, they are flagged and 
analyzed to determine whether the DEM could be improved via additional processing. 

In forested ecosystems the outlier values are generally high points caused by low clouds 
or birds or any objects on the path of the lidar and top canopy height that appears well 
above the top of the forest canopy.  If the client classification does not re-classify these 
points as error points, we removed them manually so they don’t provide large errors 
canopy height values.  We re-classified all error points by first flagging them in ArcGIS 
and reclassifying them in Terrascan.  Majority of lidar sample areas do not have these 
high and low points.  However, when they are present, they are often sparsely scattered 
throughtout the lidar transects but are sparse and have very low impact on the overall 
accuracy of lidar top canopy estimates at the plot scale.  

To quantify the errors associated with lidar estimation of forest height we use the 
following approach:  

1. There is no true forest height measurements from ground in order to estimate the 
lidar measurement error, we estimate the error statistically using the lidar 
observations alone.  In general, over tropical forests, tree height is much better 
measured from lidar observation from the above of canopy using laser ranger. 
This measurement is only subject to errors related to ground classification from 
lidar point clouds.  

2. To estimate the error, we perform a new ground classification of lidar point 
clouds using a random sample of lidar scenes and compare the classification with 
the data provided by the commercial vendor.  We also visually examine the 
location of true ground in the point cloud and make sure the different between 
CSM and DEM represent the true height.  

3. We compiled 10 lidar scenes and in each scene used transects of more than 200 m 
long to compile a statistical sample of ground elevation DEM.  We evaluate the 
error by comparing the following two data sets: 

𝐶𝑆𝑀 − 𝐷𝐸𝑀!    , 𝐶𝑆𝑀 − 𝐷𝐸𝑀!     
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where DEM1 is the original ground classification elevation received from the commercial 
vendor, and DEM2 is the ground elevation classified using the terrascan software and 
GeoEcoMap Macro program and visual examination.  Note that, here we do not 
necessarily imply that any of the DEM classification is supperior, even though we prefer 
DEM2 as the values are processed with several iteration of Macro and appears to be more 
accurate when compared visually to DEM1. 

 

 

Fig. 4.1.  Sample transect of approximately 200 m with ground classification DEM2.  We 
selected the transects randomly over both flat and complex terrain as shown in this figure.  
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Fig. 4.2. Estimated error of forest canopy height at 1 m spatial resolution by quantifying 
the error in DEM from two classification approaches.  

The tree canopy height error as shown in Fig 4.2 is evaluated at 1 m spatial resolution. In 
propagating the tree height error to canopy height metric used in biomass estimation at 
0.25 ha, we will use 50 m x 50 m= 2500 pixels and estimate the standard error at 0.25 ha 
to be 𝑆𝐷 = !.!"

!"##
= 0.032  𝑚 . We conclude: 

Lidar height measurement error impact on the biomass estimation at 0.25 ha is negligble and 
can be ignored.  

4.2 Lidar Geolocation Errors 

Here, we examine the geolocation errors 
from two sources: 1. Geolocation error of the 
lidar data acquisition and processing. 2. 
Geolocation error associated with ground 
plot location from the ground GPS 
measurements.   

Lidar Geolocation Error 

During the lidar surveys, often ground GPS 
stations or base receivers within the flight 
lines are installed in order to calibrate the 
lidar data for accurate geospatial location of 
lidar grid celsl.  Due to security problems in 
the region and within the flight lines of lidar, 

Fig.	  4.3.	  Calculation	  of	  geolocation	  accuracy	  from	  the	  IN-‐
Fuiosn	  PPP	  methodology	  over	  the	  lidar	  flight	  swath	  in	  
terms	  of	  scan	  time.	  	  	  
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the deployments of ground stations were not allowed. Instead we implemented the IN-Fusion 
Precise Point Positioning (PPP) approach. PPP provides positioning accuracies on the order 
of a few decimeters without a base receiver, and hence is useful for those applications where 
a base receiver cannot be found or installed. Such applications include airborne surveying in 
remote areas or open-ocean hydrographic surveys far from land. The typical PPP algorithm 
implements a floated ionosphere-free (IF) solution that requires up to 30 minutes to converge 
from an initial meter-level position accuracy to a desired decimeter-level accuracy. 
Significant loss of coherent carrier phase tracking such as due to aircraft sharp turns will 
require the GNSS-only PPP algorithm to restart this convergence. IN-Fusion PPP implements 
Applanix's Inertially Aided PPP (IAPPP) algorithm that overcomes this shortcoming by 
preserving positioning accuracy through GNSS outages using inertial coast. IN-Fusion PPP 
uses optimal smoothing to carry the converged decimeter-level position accuracy backwards 
in time and thereby achieve PPP-level position accuracies throughout the survey trajectory. 

The lidar data were processed and calibrated using the IN-Fusion PPP methodology.  The 
error associated with this method is considered neglible compared with other sources of 
errors. An example of the errors along the lidar swath is shown below: 

 

 

 

Plot Geolocation Error 

The main soure of error is due to location of the 
calibration and validation plots within the lidar image 
(raster) data.  The source of error in plot location is 
the GPS measurements in the field.  Without any 
differential GPS, regular GPS measurements from 
commercial units can have large errors (5-50 m)  
depending on the forest cover, the measurement time, 
and the time of the day.  In BioREDD field 
experiments the ground team crew collected GPS 
measurements at the corner of permanent plot and the 
center or four corner of the satellite plots.  We 
examined the gelolocation errors of the plots by 
locating them on the lidar image and comparing the 
relative location of large trees in plots and in lidar 
data.   This error can be readily examined by first 
extracting the mean canopy height (MCH) over the 
plots and relating the height from lidar to height or 
biomass from the ground observation.  If the location 

Fig.4.4.	  Location	  of	  45	  plots	  distributed	  systematically	  
within	  a	  lidar	  scene.	  The	  center	  of	  all	  plots	  are	  located	  on	  
a	  straight	  line	  making	  the	  geolocation	  error	  from	  GPS	  
data	  less	  important.	  
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has large errors, the lidar height metrics and ground data show poor relationship.  

To demonstrate the geolocation errors in the BioREDD project, we use two data sets. The first 
data set includes plots from the 15 permanent and satellite plots disturbuted in all project areas 
and the second data set from the 45 systematic plots on one lidar scence as shown below (Fig. 
4.4). 

We derive two lidar allometry models from the two data sets and demonstrate that the errors in 
the model derived from the 
systematic plots with less 
geolocation errors is 
significantly better.  To further 
demonstrate the effect of the 
geolocation error, we 
simulated the effect of plot 
location error by adjusting the 
plots to fall in the right 
location on the lidar scene 
through a 3x3 or 5x5, 7x7, etc. 
pixels search model.  Here the 
pixel is assumed to be 1 m. 
However, we move the 0.25 ha 
aggregate pixels used for 
biomass estimation from lidar 
data at steps of 10 m and then 
calculate the effect of average geolocation error on the allometry on estimating the biomass of all 
plots.  The RMSE errors from geolocation errors are shown in Fig. 4.6.  

 

Fig.	  4.5.	  	  Two	  allometry	  models	  derived	  from	  the	  plots	  with	  systematic	  	  plots	  
(right	  panel)	  in	  one	  lidar	  scene	  and	  randomly	  distributed	  plots	  in	  15	  lidar	  
scenes	  in	  project	  areas.	  
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Fig. 4.6. Average above ground biomass root mean square error from plot location errors. The 
plot size is 100 m by 100 m and the errors are associated with the center location of the plots. 
When the center location is off 50 m off,  the plot is misplaced in the lidar image and the biomass 
is highly decorrelated. 

Using the two models shown in Fig. 4.5, we calculated the impact of the geolocation error on the 
estimates of forest biomass from the lidar data and propagated this error through the entire system 
of equations when calculating the errors associated with the biomass estimation at the project area 
and for different land use types.   Using the two models, we estimated the impact of the 
geolocation error can be significant and reach an average value of about 26.4 Mg/ha at the 0.25 
ha lidar pixels.  We require to propagate this error when calculating the average biomass 
estimation at the project level.  

 

4.3 Lidar Biomass Allometry Errors 

Lidar Biomass Predictive model 

From lidar data we derived various height metrics to examine the accuracy of the best 
relationship for aboveground biomass estimation. These metrics included the percentile of energy 
from lidar data using the point cloud information or only the top canopy height for each lidar 
pixel (1 m).  As shown in various earlier work, the top canopy height at the native pixel level of 
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lidar is the most reliable metric to use for biomass estimation (Meyer et al. 2013; Asner and 
Mascaro, 2014). The quality of point cloud data is highly variable over individual lidar transects 
or between transects if data were taken at different dates with different lidar flight configuration 
or environmental conditions such as canopy moisture because of the impacts on NIR (Near 
Infrared Lidar) signal penetration into the canopy.   

Using the top canopy height at each pixel as the basic measurement of lidar data, we developed 
several metrics such as mean top canopy height (TCH) and 25, 50, 75, and 100 (maximum 
height) percentiles of 2500 points at 50 m x 50 m scale.  We tested three types of equations for 
evaluating the contribution of these metrics for biomass estimation: 

 

Where hTCH represents the mean top canopy height, and the metrics are 25, 50, 75, and 100 
percentiles. In all equations  𝜖~𝑁(0,𝜎!) represents the uncertainty in measurements or when 
observations deviate from a power-law by accounting for the heteroskedasticity.   After testing all 
three equations, we arrived to the conclusion that the first equation using the simle mean top 
canopy height (TCH) is the most reliable model as the other models, although slightly improve 
the coefficient of derminiation with AGB and 
the RMSE error of estimation, the are more 
subject to errors and sometimes require a 
higher number of plot data for robust 
estimations of model coefficients.  The TCH 
model has only two coefficients (a,b) and can 
be readily developed using a minimum number 
of 30 points or ground plots.  

We then tested the following two models in 
terms of their accuracy in estimating biomass 
in different forest types.  

AGB = a(WDhTCH )b +ε

AGB = ahTCH
b +ε

 

where WD represents the average WD density 
at the plot level added as linear term to 
improve the estimation of AGB over areas with different WD.  We have already calculated the 
average WD of each plot within the cluster plots (permanent and satellites) and also calculated 
estimates of mean WD for forest type identified during the ground measurements and comparison 
of coordinates with the land cover map of the region.  The advantage of model 1 withiout WD 
component is its straightforward application with the lidar data. Model 2 with WD requires that 
the regional or landscape variations of WD is known.  Using the above two equations, we tested 

AGB = ahTCH
b +ε

AGB = a0 + a1h25 p
b1 + a2h50 p

b2 + a3h75 p
b3 + a4h100 p

b4 +ε

AGB = a0 + a1h25 p + a2h50 p + a3h75 p + a4h100 p +ε

Fig. 4.7.  Lidar biomass model derived from mean top canopy 
height (TCH) and aboveground biomass estimated from ground 
data. The model with WD performs better than the model without 
WD because of variations of WD over the landscape and within the 
BioREDD project areas.	  
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the goodness to fit of both models to the plot data evaluated by AIC (Akaike Information 
Criterion) . The AIC is a measure of the goodness-of-fit that penalizes parameter-rich models, as 
required by the principle of parsimony (Burnham & Anderson,2002). The results as shown 
below: 
 
AGB =1.484(WDhTCH )1.575    ( AIC = 2780,σ = 0.32)  

AGB =1.707hTCH
1.548                 ( AIC = 2850,σ = 0.34)  

 

 
The model with WD performed slightly better than the model without WD (higher AIC and σ). 
We removed the plots with significant numbe of mangrove trees and Guandal, we noticed that the 
models were not significantly different.  We concluded that the model with WD performs better 
than the model without WD only in forests with mangrove trees and in inundated forests 
(guandal) by improving the RMSE of estimation by approximately 10%.  Figure 7.2 shows the 
difference between the models and the improvement.    
The uncertainty of the above models have been evaluated using cross validation approach and 
using plots not used in developing the model. In the above equation we only used 30 plots to 
develop the model in order to demonstrate how the methodology works with the minimum 
number of plots. Overall, we have the following number of plots to evaluate the lidar model: 1) 
15 1-ha permanent plots within the lidar transects. We divided each plot to four 0.25 ha plots to 
increase the number of plots for calibration and validation. This resulted to 60 plots at 0.25ha, 2) 
we have 15 sets of satellite plots falling in the lidar transects with each set having 8 satellite plots 
at 0.25 ha for a total number of 120 with 109 plots accuractely located in lidar images, and 3) we 
collected 45 plots in 0.25 ha systematically within one lidar transect.   Overall, we had 214 plots 
at 0.25 ha in size to develop and test the accuracy of lidar predictive model.  

Statistical Analysis 

The statistical analysis includes evaluating the performance of the model selected above based on 
regressing a dependent variable (AGB) against one or several independent variables (in our case, 
WD and H).  We follow the general form of the model as shown above by assuming ε as an error 
term as a normally distributed with zero mean and SD of σ. If the model as the one selected 
above as p parameters (p=2 for WD and h), then the σ is defined as:  

 

AGB = a(WDhTCH )b +ε

ln(AGB) = a + bln(WDhTCH ) +ε

RSE =σ =
1

N − p
εi

2

i=1

N

∑

N (ε) = N (0,σ 2 ) :   Distirubtion of errors

 

The model as shown above can be linearized in the ln form to simplify the model as a linear 
regression model.  The model be used to estimate AGB from the parameters developed at the plot 
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level, i.e. average wood density WD (g cm-3) and hTCH (m).  The estimated value of AGB can be 
written as: 

AGBest = exp a + bln(WDhTCH ) +ε!" #$= exp(ε)× exp a + bln(WDhTCH )!" #$

where

exp(ε) = exp(ε)N (ε)dε   with N (ε) = N (∫ 0,σ 2 )

exp(ε) = exp(σ 2 / 2)
then

AGBest = exp σ 2 / 2+ a + bln(WDhTCH )!
"

#
$

 

The last equation provides the unbiased estimator for AGB using the height and wood density. To 
examine the model, we used the plot data and calculated the average systematic error (bias) and 
the coefficient of variation (CV) as follo 

bias =
1
N

(AGBest (i)− AGBobs (i))
AGBobs (i)i=1

N

∑

RSE =
1

N − P
AGBest (i)− AGBobs (i)#$ %&

2

i=1

N

∑

MAGB =
1
N

AGBobs
i=1

N

∑

CV =
RSE

MAGB

 

where RSE is the residual standard error representing the random errors.  The standard deviation 

of estimation error can be computed as: SD = RSE 2 −bias2 . 

The table below provides the model fit and the accuracy of the model in estimating the AGB. The 
bias can be readily excluded in the estimator.  From the table, it appears that having a minimum 
of 30 plots for calibration and 15 plots for validation will be enough to acheive at the required 
lidar biomass predictor model and uncertainty assessment. More plots provides only slighty 
improved results. Note that here, we used one allometric model for all forests. In the case, more 
allometric models, for each model, a minimum of 30 plots are required for calibration.  

Table 7.2. Lidar biomass predictive model Model goodness of fit and uncertainty assessment 
using the plot data available for the BioREDD project.  

Calibration 
Sample 
Size 

Model fit Assessments Validation 

Sample 
Size  

Cross Validation Results 

σ  AIC DF RSE Bias CV 
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30 0.329 47 3989 15 37. 96 2.27% 18.8% 

50 0.326 45 3990 25 35. 24 2.01% 16.2% 

100 0.319 45 3980 50 33. 96 2.20% 15.8% 

150 0.311 43 3980 75 31. 96 1.98% 14.8% 

 

5.0 UNCERTAINTY IN CARBON POOLS 

The methodology to estimate carbon pools has been described in earlier reports 
(deliverable 12). Here we repeat some of the main points from the report before 
addressing the uncertainty associated with the carbon pools.  

1. Ground estimation of carbon pools:  We developed a series of field plots as 
described in earlier reports to sample the forest carbon pools in BioREDD 
regions. The field survey and data collection occurred in summer of 2013 and 
ended in early 2014.  The field plots included permanent (1-ha) and temporary 
plots (0.25 ha) over 16 study regions covering a variety of forest types including 
intact and degraded forests.  The measurements included tree diameter for all 
trees > 10 cm.  The 10 cm threshold was selected to meet the requirement of the 
VCS REDD methodological and IPCC guidelines. The measurements were 
converted to forest above ground biomass using a combination of existing 
allometric equations.  However, we found large differences between the 
allometric equations, particularly between wet and moist forests from Chave et al. 
2005.  The Choco region has large variations of rainfall and species composition 
different from the central Amazonian trees where most of the harvested trees in 
Chave et al. (2005) equation are based on.  Ground measurements also included 
the dead trees both the standing and lying to provide the carbon in standing and 
lying organic matter.   

2. The BioREDD team developed a local allometric equation to convert the tree 
structure measurements in the field to biomass. The allometric models were 
developed based on a set of harvested trees. To develop the project based 
allometric model for biomass and carbon content measurements were performed 
by CONIF at four sites, two sites were in the Northern Pacific region near the 
Mutatá and Rio Pepe Indigenous Community Councils/ The other two sites were 
in the Southern Pacific region where fieldwork was conducted in late 2010 and 
early 2011 by CONIF and members of the Community Council in Bajo Mira and 
Frontera and Concosta (Saldarriaga, et al., 2011). All these four sites are within 
the BioREDD region with the aim of establishing REDD + projects in the future. 
The field work for the allometry model lasted four months, ~75 days of fieldwork 
and ~ 45 days of laboratory work. The main objectives of the study were:  
1. Adjust existing allometric functions for upland forests, including a greater 

number of species and individuals distributed in diameter classes from 10 
cm with special emphasis in the higher classes (D> 70 cm).  
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2. Develop models to estimate the biomass of secondary forests.  
3. Develop models to estimate the biomass of some species of palms.  
The selection of sites were based on several criteria such as community interest, 
state forest and diversity, coverage and scientific interest, safety in the work area, 
operating costs, logistics and transport. Working with communities was 
instrumental in achieving the objectives.  We harvested 296 trees ≥ 5 cm diameter 
at four sites, two in the North Pacific and two in the South Pacific, including 240 
from the mature forest trees, 56 trees of secondary forest and 97 palms. In turn, of 
the 240 individuals in the mature forest, 160 are from the terra firme forests in 
middle and low hilly regions (Colinas), 46 from the inundated forests near the 
coastal plain (Guandal), and 34 tree from the mangrove forests (Manglar). 

3. Estimation of carbon pools in BioREDD regions: To extrapolate the ground 
measurements to the entire BioREDD regions, we made use of the estimates of 
aboveground biomass from lidar data randomly sampled in forest strata and 
LULC classes.  From ground measurements, we developed carbon pools and 
ratios of the carbon pools to aboveground carbon density and used the 
aboveground carbon density derived from lidar and LULC map to extrapolate the 
estimates over larger regions. The estimates also included error propagation  
approaches to derive the uncertainty of carbon pool estimates at LULC units 
within the BioREDD project areas.  

4. The statistical approach included estimates of mean and variance of carbon pools 
from the plot data and extrapolating the mean and variance to the entire 
BioREDD regions.  The methodology to extrapolate the estimates to the 
BioREDD region is described in section 11 below.  
 

Estimating carbon pools in all LULC classes for BioREDD project areas are based on the 
aboveground live carbon pool derived from 83,000 lidar data interesected by land use and land 
cover classes as described in report 8&9.  We estimate the belowground, standing and lying 
deadwood, the non-tree carbon pool, litter using models and factors developed above on each ha 
of lidar derived aboveground pool.  The approach is summarized as follows: 

AGT = CFAG × (1.483AGB10cm
−0.0613)

AGNT = CFAGNT × (0.832AGB10cm
0.346 )

BG = CFBG × (0.489AGB0.89 )

LDW = CFLDW × (0.0353
f

AGB10cm
1.093)

SDW = CFSDW × (0.000484
f

AGB10cm
1.614 )

DTS = CFDTS × (0.01538AGB10cm ) :      Intact Forest
DTS = CFDTS × (0.09438AGB10cm ) :      Degraded & Seconadry Forest
where
CFAG = 0.485,CFBG = 0.485,CFAGNT = 0.47,CFLDW = 0.485,CFSDW = 0.485,CFDTS = 0.485
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5.1 Belowground Carbon 

We used this equation to estimate belowground biomass from aboveground biomass:  
 

       
 

where BGB is the belowground and AGB is the aboveground biomass in units of Mg ha-1 
of dry weight.  To develop an uncertainty in the above relationship, we used the 
measurements from Mokany et al. and examined the variations in the ratio of  
below:aboveground biomass or root:shoot biomass ratios with respect to vegetation types 
used in the study.  By including sites in forest plantations and grasslands and tundra, the 
RMSE in predicting the belowground biomass was 9.46 Mg ha-1 and relative error of 
approximately 23.2% (See deliverable 12 for details).  The application of the above 
model to estimate of BGB had standard error of 0.659 Mg ha-1.  For converting the 
belowground biomass to carbon(BG) , we used the carbon fraction value of 0.485 similar 
to aboveground carbon pool. 

The RMSE error will be propagated to project level carbon estimates and through an 

error propagation routine to calculate the error on the total carbon pool for the project 

areas.  The error in BGB is estimated from both the error in the prediction of BGB from AGB 

through the allometric equation above and the error in AGB:  

          

where εBGB  is the relative uncertainty in BGB. The coefficient, 0.89 is the power of AGB in the 
allometric relationship used in the above equation.   

 

5.2 Standing and Lying Dead Wood 

In developing the model or the ratio for estimating deadwood biomass from the 
aboveground live biomass, we also explored the use of ancillary parameter such as the 
degree of fragmention or canopy cover derived from lidar data over each plot to improve 
the estimation of deadwood. Introudcing ancillary parameter such as fraction cover is 
based on the fact that the biomass of deadwood increases in degraded and secondary 

€ 

BGB = 0.489* AGB0.89

€ 

εBGB = (23.2)2 + (0.89εAGB )2[ ]
1/ 2
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forests compared to intact old growth forests. The use of ancilary data improved the 
estimate to some extent  

AGBSDW =
0.000484

f
AGB10cm

1.614

AGBLDW =
0.0353

f
AGB10cm

1.093

AGBTotal =
0.0424

f
AGB10cm

1.106

       

where f is the fraction cover of trees within each plot. The fraction cover is estimated 
from the  lidar data by separating the gaps from tree crown cover within each permanent 
plot. The same method can be used during the ground survey of deadwood by fisheye 
photography or other forestry techniques.  To convert the biomass to carbon, we used the 
default value of 0.485 as in live tree components to estimate the carbon pool values.   
 
The error associated with the standing and lying dead wood can be estimated from 
combining the error associated with the above equations and the error associated with the 
AGB.  We used ground data on deadwood to develop the above models and the methods 
for measuring the carbon stocks in dead wood, both lying and standing, are detailed in the 
standard operating procedures outlined in field measurement protocols used by CONIF 
for the BioREDD project. The basic methods are as follows: (1) For standing dead wood, 
the volume of the main stem is estimated from measures of base diameter and height, 
This is then multiplied by the density of the species (if known or by the average density 
of 0.65). (2) For lying dead wood, measurements are taken to estimate the volume and its 
density class (sound, intermediate, and rotten) according to the methodology. Multiple 
samples of the three classes of dead wood are then collected to determine their average 
wood density (t m-3) according to the methodology. The volume by density class times 
the dead wood density results in an estimate of the carbon stock in lying dead wood.   
 
The uncertainty in AGBSDW and AGBLDW are estimated from the following equations: 
 
 

εSDW = εS
2 +1.614εAGB

2!
"

#
$
1/2

εLDW = εL
2 +1.093εAGB

2!
"

#
$
1/2

 

 

where 𝜀!  𝑎𝑛𝑑  𝜀!   are respectively the errors associated with the regression 
models associated with SDW and LDW respectively (see deliverable 12 for 
model formulation). These error are: 
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5.3 Litter Carbon 

5.4 Soil Carbon  

 
 

 

 

 

 
 
We used the stratified map developed during the Task 1 of the project to design the lidar 
data acquisition and the field sampling plots.  The stratification was developed by 
combining four data layers: climate, soil, topography, and the land cover map. We 
colored the stratified image into 30 distinct colors to demonstrate the potential variations 
of the landscape features that may influence the forest structure, carbon stock and 
dynamics.  The stratified map has been used to define areas for forest inventory and 
airborne Lidar samples.  We selected 49 locations randomly in 30 stratified regions 
within the original project areas. We designed the 49 lidar transects to cover 
approximately 83,000 ha of forests randomly selected over an area of approximately 1.7 
million ha along the Pacific coastal forests of Colombia where the BioREDD project has 
been established. The number of transects and the size of each transect was designed to 
reduce the variance in biomass estimation by taking into account the errors in lidar 
estimates of biomass, allometry, sampling errors, and natural variations of biomass. The 
area sampled by lidar was > 1000 ha and several lidar transects were located within each 
strata depending on the size of the stratum. The over-sampling compared to the ground 
inventory was done intentionally to meet two key requirements: 1) sampling had to be 
random and large enough in each stratum to reduce the standard error in estimation. We 
aimed at < 10% error at 95% confidence interval. However with a large number of 
samples acquired by the lidar data, we achieved errors with approximately one order of 
magnitude better with lidar data.  2) The samples were clustered along the lidar flights 
and therefore required to be large enough to provide the balanced sampling to estimate 
the mean and variance of biomass in each stratum. 
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6.0 REGIONAL ESTIMATES OF UNCERTAINTY 

The lidar data acquired over the BioREDD region followed a stratified random sampling 
approach where the remote sensing sampling units (RSU) are the flight lines of lidar with a 
minimum area coverage. Each flight line has a given swath with regular grid cells of 0.25 ha with 
biomass estimations that are considered the population elements.  Flight lines or sampling units 
are designed to provide a balanced random sample of stratified classes and therefore for each 
strata j there are ηj sampling units and within each sampling units there are ηij lidar grid cells. The 
lidar grid cells within each flight line are considered clustered and the estimator for the mean and 
variance of biomass density for each stratum are given as follows (Naesset et al., 2013; Neigh et 
al., 2013; Stahl et al., 2011). 
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where
AGB = f (x,α,ε) = a(WDhTCH )b +ε

 

where 𝜇! is the mean carbon density of stratum j, 𝐹!" is the carbon density estimates for sample i 

in stratum j, nj is the number of RSU intersecting stratum j, 𝛼! represents the vector of parameters 

used in the biomass model (e.g. a and b in lidar model in above AGB equation, and 𝜂!" is the 

number of lidar biomass units (cluster size) in each sample unit i intersecting stratum j.  Note that 

if lidar biomass estimates are at 1-ha units, 𝜂!" represents the size of the lidar transect or RSU in 

ha.  In above equation,  𝑐𝑜𝑣(𝛼!!! ,𝛼!!!) is the covariance of k1 and k2 coefficients of the lidar 

biomass predictive model, represented by function f for stratum j.  The first term in equation in 

variance estimate represents the sampling error and the second term describes the model error for 

each stratum.  The above relations will be simplified if only one lidar model is used for all strata.  

The lidar model-assisted estimator of biomass (carbon density) is approximately a design-

unbiased estimator irrespective of the model of choice when the number of samples collected in 

each RSU is large (which is the case in airborne lidar collection). The design is unbiased because 
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within each stratum, ground plots are used to make the lidar predictor model unbiased (as 

discussed above) (Naesset et al., 2011).  The variance estimator also propagates the error from the 

lidar predictive model for estimation at the statra and land cover class scales.  

We collected 45 ground samples in a lidar sampling unit or transect to also estimate if there has 

been any bias in estimation of biomass at scale of sampling unit (lidar flight transect). The mean 

for each sample unit can be readily rewritten as: 

µ =

µ̂ j
j
∑

N
+

ê j
j
∑

n
ê j = µ j − µ̂ j

where ê j  is the difference between ground estimated biomass µ j  and lidar

estimated biomass µ̂ j  using the lidar model.  If the number of plots n used for 

estimating ê j  is large (> 10 ) (Sarndal, 1984).  

 

Having more than 30 ground plots will allow us to remove the bias in the system and have an 
unbiased estimate of mean and standard error.  

Using the above relations, we followed the following steps to estimate the mean and variance of 
biomass density in each strata and also based on the land cover types used in the VM0006 
methodology. 

We used the following steps to estimate the aboveground biomass for the BioREDD regions at 
the scale of strata, LULC, and project areas: 

1. The unbiased lidar predictive model was used to estimate the biomass for each 
grid cell within the lidar sampling units.  Since the grid cells are 0.25 ha each, we 
developed approximately 332,000 (i.e. 4 x 83,000) estimates at grid cells. Each 
grid cell has a lattitude and longitude identifier that can be traced to a location 
within each strata in the BioREDD project region.  Each estimate has an error 
associated with it according to relations provided in the previous section.  

2. The grid point estimates and the form of the mean and variance estimator shown 
in this section are used to estimate the mean biomass in each strata and the 
BioREDD project area by using the proportion area of each stratum in the project 
area as given by:  
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µPA =
1

PA
wjµ j

j=1

m

∑

where wj  is the proportion area of each stratum in PA (Project Area)

µ j  is the biomass density for stratum j

m is the number of strata in the project area

 

3. For the LULC classes, we use the same methodology as the strata and replace the 
stratification by LULC map and use the lidar grid cells as samples for estimating 
biomass mean and variance of LULC class types.  
 

 
 

 


